Solutions to First Midterm Exam

Version A

1. (a) No. Skewed (skewness = 2.5) and large kurtosis (= 14.5 > 3) and from histogram much more peaked and long tails compared to normal.
(b) A box-and-whisker plot (or more simply a box plot).
(c) This creates the proportionate change in \(\text{diff} \) from one day to the next.
(d) This is a Stata dataset. In Stata use menu file > open or command use.
(e) Expect 95% within two s.d.’s of mean. So 1.42 ± 2 × 35.52 = (−69.62, 72.46).

2. (a) From mean \(\text{diff} \) output 95% confidence interval is (−2.80, 5.64).
(b) 90 percent confidence interval is \(\bar{x} \pm t_{273,0.05} \times s/\sqrt{n} = 1.421\pm \text{invttail}(273,0.05) \times 2.146 \)
 \[= 1.421 ± 1.650 \times 2.146 = 1.421 ± 3.542 = (−2.12, 4.96).\]
(c) \(H_0 : \mu = 0 \) versus \(H_a : \mu \neq 0 \), where \(\mu \) is the population mean difference.
 \(t = (1.421 – 0)/(s/\sqrt{n}) = 1.421/2.146 = 0.662. \)
 We reject \(H_0 \) at level .05 if \(|t| > t_{273,0.025} = \text{invttail}(273,0.025) = 1.969. \)
 So do not reject \(H_0 \) since \(|0.662| < 1.969. \)
 Conclude that data do not reject the claim that population mean difference equals 0 at level 0.05.
(d) \(p = \Pr[|T_{273}| > 0.662]. \)
(e) The sample is no longer a simple random sample, violating our assumptions. (This will lead to the standard error of \(\bar{x} \) being greater than \(s/\sqrt{n} \)).
(f) Now we have only \(n = 9 \) observations. The standard error will be much larger so the confidence interval will be much larger. Furthermore, the \(t_8 \) distribution may provide a poor approximation to the distribution of the \(t \)-statistic.

3. (a) \(\bar{x} = (2 + 8 + 5 + 1)/4 = 16/4 = 4. \)
 \[s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{1}{3}((-2)^2 + (4)^2 + (1)^2 + (-3)^2) = \frac{1}{3}[4 + 16 + 1 + 9] = 30/3 = 10. \]
 Sample standard deviation = \(\sqrt{10} = 3.16. \)
(b) \(\mu = E[X] = 0.4 \times 0 + 0.2 \times 1 + 0.4 \times 2 = 0 + 0.2 + 0.8 = 1. \)
 \[\sigma^2 = E[(X - \mu)^2] = 0.4 \times (0 - 1)^2 + 0.2 \times (1 - 1)^2 + 0.4 \times (2 - 1)^2 = 0.4 + 0 + 0.4 = 0.8. \]
 \(\sigma = \sqrt{0.8} = 0.89. \)
(c) Expect \(\bar{x} \) to approximately equal \(\mu = 100. \)
Expect standard deviation of \(\bar{x} \) to approximately equal \(\sigma/\sqrt{n} = 20/\sqrt{50} = 20/7.07 = 2.82. \)
(d) Set sample size to 50. Generate 50 random uniforms and for each set \(X = 1 \) if the uniform < 0.8 and \(X = 0 \) if the uniform > 0.8.
[Stata code (not necessary): set obs 50 set seed 10101
 gen u = runiform() gen x = 0 replace x=1 if u<0.8]

Multiple Choice for Versions A and B

Question 1. 2. 3. 4. 5.
Answer Version A b c e d a
Answer Version B d b b e c
Version B

1.(a) No. Skewed (skewness = 2.5) and large kurtosis (= 12.5 > 3) and from histogram much more peaked and long tails compared to normal.
(b) A box-and-whisker plot (or more simply a box plot).
(c) This creates the change in diff from one day to the next.
(d) This is a comma-separated values file. In Stata use menu file > import or command insheet or command import.
(e) Expect 99.7% within three s.d.’s of mean. So 5.02 ± 3 × 39.52 = (−113.54, 123.58).

2.(a) From mean diff output 95% confidence interval is (0.03, 10.02).
(b) 90 percent confidence interval is \(\bar{x} \pm t_{242.05} \times s/\sqrt{n} = 5.022 \pm \text{invttail}(242, .05) \times 2.535 = 5.022 \pm 1.651 \times 2.535 = 5.022 \pm 4.185 = (0.84, 9.21). \)
(c) \(H_0 : \mu = 0 \) versus \(H_a : \mu \neq 0 \), where \(\mu \) is the population mean difference.
\[
t = (5.022 - 0) / (s/\sqrt{n}) = 5.022 / 2.535 = 1.981.
\]
We reject \(H_0 \) at level .05 if \(|t| > t_{242.025} = \text{invttail}(242, 0.025) = 1.970 \).
So reject \(H_0 \) since \(1.981 > 1.970 \).
(d) \(p = \text{Pr}[|T_{242}| > 1.981] \).
Conclude that data reject the claim that population mean difference equals 0 at level 0.05.
(e) The sample is no longer a simple random sample, violating our assumptions. (This will lead to the standard error of \(\bar{x} \) being greater than \(s/\sqrt{n} \)).
(f) Now we have only \(n = 9 \) observations. The standard error will be much larger so the confidence interval will be much larger. Furthermore, the \(t_8 \) distribution may probe a poor approximation to the distribution of the \(t \)-statistic.

3.(a) \(\bar{x} = (2 + 14 + 8 + 0) / 4 = 24 / 4 = 6 \).
\[
s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{1}{3} [(−4)^2 + (8)^2 + (2)^2 + (−6)^2] = \frac{1}{3}[16 + 64 + 4 + 36] = 120 / 3 = 40.
\]
Sample standard deviation = \(\sqrt{40} = 6.32 \).
(b) \(\mu = \text{E} [X] = 0.4 \times 0 + 0.2 \times 1 + 0.4 \times 2 = 0 + 0.2 + 0.8 = 1 \).
\[
\sigma^2 = \text{E} [(X - \mu)^2] = 0.4 \times (0 - 1)^2 + 0.2 \times (1 - 1)^2 + 0.4 \times (2 - 1)^2 = 0.4 + 0 + 0.4 = 0.8.
\]
\(\sigma = \sqrt{0.8} = 0.89 \).
(c) Expect \(\bar{x} \) to approximately equal \(\mu = 50 \).
Expect standard deviation of \(\bar{x} \) to approximately equal \(\sigma / \sqrt{n} = 10 / \sqrt{100} = 10 / 10 = 1.0 \).
(d) Set sample size to 50. Generate 50 random uniforms and for each set \(X = 1 \) if the uniform < 0.7 and \(X = 0 \) if the uniform > 0.3.

[Stata code (not necessary): set obs 50 set seed 10101
gen u = runiform() gen x = 0 replace x=1 if u<0.7]

The course grade will be based on a curve from the combined scores of midterm 1 (22.5%), midterm 2 (22.5%), final (45%) and assignments (10%). The curve for this exam is only a guide. Suggested average GPA for this course is 2.4. Curve below has average GPA 2.34 for this exam.

<table>
<thead>
<tr>
<th>Scores out of</th>
<th>30</th>
<th>75th percentile</th>
<th>23 (77%)</th>
<th>Median</th>
<th>20.5 (68%)</th>
<th>25th percentile</th>
<th>18 (62%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>28 and above</td>
<td>A</td>
<td>25 and above</td>
<td>C+</td>
<td>20 and above</td>
<td>A</td>
<td>25 and above</td>
</tr>
<tr>
<td>A</td>
<td>24 and above</td>
<td>A-</td>
<td>24 and above</td>
<td>C-</td>
<td>18 and above</td>
<td>A</td>
<td>24 and above</td>
</tr>
<tr>
<td>B+</td>
<td>23 and above</td>
<td>B</td>
<td>22 and above</td>
<td>D+</td>
<td>17 and above</td>
<td>B-</td>
<td>21 and above</td>
</tr>
<tr>
<td>B</td>
<td>22 and above</td>
<td>B</td>
<td>22 and above</td>
<td>D</td>
<td>16 and above</td>
<td>B-</td>
<td>21 and above</td>
</tr>
<tr>
<td>B-</td>
<td>21 and above</td>
<td>B-</td>
<td>21 and above</td>
<td>D-</td>
<td>14.5 and above</td>
<td>B-</td>
<td>21 and above</td>
</tr>
</tbody>
</table>

2