Econ 102_A01-A04 (Analysis of Economic Data): Cameron Spring 2021 Solutions to Second Midterm Exam

Version A

- **1.(a)** $H_0: \mu \geq 5$ against $H_a: \mu < 5$. (Make the claim the alternative).
- p=0.03 was for 2-sided test with area in both tails. For a 1-sided test we therefore halve and p=0.03/2=0.015 (and note that $\bar{x}=4.4<\mu=5$ so we are in the left tail as desired).

Since p = 0.015 < 0.05 we reject H_0 at 5%.

- (b) The regression fit is more flexible and is not restricted to be linear (it is nonparametric).
- (c) Correlation = $50/(\sqrt{25} \times \sqrt{100}) = 50/(5 \times 10) = 50/50 = 1.0$.
- (d) $b_2 = 50/25 = 2$.
- (e) $R^2 = 30/200 = 0.15$.
- **2.(a)** $b_2 = 14.79$ so a \$1 increase in capital is associated with output \$14.79 higher.
- (b) A 95% confidence interval for β_2 is (13.01, 16.57) from the regression output.
- (c) A 90% confidence interval for β_2 is $b_2 \pm t_{40,.05} \times s_{b_2} = 14.791 \pm invttail(40, .05) \times 0.8793 = 14.791 \pm 1.684 \times 0.8793 = 14.791 \pm 1.481 = (13.31, 16.27).$
- (d) $H_0: \beta_2 = 13 \text{ against } H_a: \beta_2 \neq 13.$
- $t = (b_2 13)/s_{b2} = (14.791 13)/0.8793 = 1.791/0.8793 = 2.036.$

Since $t = 2.036 < t_{40.005} = invttail(40, .005) = 2.704$ we do not reject H_0 at 1% level.

Conclude that a \$1 million increase in capital spending may be associated with a \$13 million increase in output when testing at level 0.01.

- (e) 2*ttail(40,2.0361) or test k=13
- (f) $\hat{q} = -372 + 14.791 \times 3000 = -372 + 44373 = 44,001$.
- (g) regress q k, vce(robust).
- **(h)** 16344 from output.
- **3.(a)** 1. Model $y_i = \beta_1 + \beta_2 x_i + u_i$
- 2. Zero conditional mean error. $E[u_i|x_i] = 0$ for all i.
- 3. Constant conditional variance error. $Var[u_i|x_i] = \sigma_u^2$ for all i.
- 4. Independent errors. u_i independent of u_j for all $i \neq j$.
- (b) Assumptions 1 and 2 are necessary for unbiasedness.
- (c) We expect 8 as here OLS is unbiased so the average of the slopes approximately equals $\beta_2 = 8$.
- (d) Heteroskedastic standard errors should be used. The error is heteroskedastic with variance $9x^2$ (and independent).
- **4.(a)** $u = y (9 + 3 \times 3) = 20 18 = 2$
- **(b)** $\hat{y} = 10 + 2 \times 3 = 16.$
- (c) $e = y \hat{y} = 20 16 = 4$.

Multiple Choice for Version A

Question 1. 2. 3. 4. 5.

Answer Version A d b d d a

Version B

1.(a) $H_0: \mu \leq 4$ against $H_a: \mu > 4$. (Make the claim the alternative).

p = 0.08 was for 2-sided test with area in both tails. For a 1-sided test we terefore halve and p = 0.08/2 = 0.04 (and note that $\bar{x} = 5.4 > 4$ so we are in the right tail as desired).

Since p = 0.04 < 0.05 we reject H_0 at 5%.

- (b) The regression fit is more flexible and is not restricted to be linear (it is nonparametric).
- (c) Correlation = $200/(\sqrt{6400} \times \sqrt{25}) = 200/(80 \times 5) = 200/400 = 0.5$.
- (d) $b_2 = 200/6400 = 1/32 = 0.03125$.
- (e) $R^2 = 100/(100 + 40) = 100/140 = 0.714$.
- **2.(a)** $b_2 = 12.77$ so a \$1 increase in capital is associated with output \$12.77 higher.
- (b) A 95% confidence interval for β_2 is (11.49, 14.05) from the regression output.
- (c) A 99% confidence interval for β_2 is $b_2 \pm t_{49,005} \times s_{b_2}$
- $= 12.774 \pm invttail(49, .005) \times 0.6377 = 12.774 \pm 2.680 \times 0.6377 = 12.774 \pm 1.709 = (11.06, 14.48).$
- (d) $H_0: \beta_2 = 10 \text{ against } H_a: \beta_2 \neq 10.$

$$t = (b_2 - 10)/s_{b2} = (12.774 - 10)/0.6377 = 2.774/0.6377 = 4.350.$$

Since $t = 4.350 > t_{49,.05} = invttail(49,.05) = 1.677$ we reject H_0 at 10% level.

Conclude that a \$1 million increase in capital spending is not associated with a \$10 million increase in output when testing at level 0.10.

- (e) 2*ttail(49,4.350) or test k=10
- **(f)** 16991 from output
- (g) $\hat{q} = 3649 + 12.774 \times 4000 = 3649 + 51096 = 54,745.$
- (h) regress q k, vce(robust).
- **3.(a)** $\hat{y} = 9 + 3 \times 4 = 21.$
- **(b)** $e = y \hat{y} = 20 21 = -1.$
- (c) $u = y (10 + 2 \times 4) = 20 18 = 2$
- **4.(a)** 1. Model $y_i = \beta_1 + \beta_2 x_i + u_i$
- 2. Zero conditional mean error. $E[u_i|x_i] = 0$ for all i.
- 3. Constant conditional variance error. $Var[u_i|x_i] = \sigma_u^2$ for all i.
- 4. Independent errors. u_i independent of u_j for all $i \neq j$.
- (b) Assumptions 1 and 2 are necessary for unbiasedness.
- (c) We expect 3 as here OLS is unbiased so the average of the slopes approximately equals $\beta_2 = 3$.
- (d) Default standard errors are fine. The error is homoskedastic (with constant variance 12) and independent.

Multiple Choice for Version B

Answer Version B c a b b

The course grade will be based on a curve from the combined scores of midterm 1 (20%), midterm 2 (20%), final (50%) and assignments (20%). The curve for this exam is only a guide. Curve below has average GPA 2.72 for this exam.

		A+	33 and above	C+	21 and above
Scores out of	34	A	29 and above	\mathbf{C}	20 and above
75th percentile	27.5 (81%)	A-	27 and above	C-	19 and above
Median	24.5 (72%)	B+	25.5 and above	D+	18 and above
25th percentile	21 (62%)	В	24 and above	D	17 and above
		В-	22.5 and above	D-	16 and above