Econ 102 _A01-A04 (Analysis of Economic Data): Cameron Spring 2021

 Solutions to Second Midterm Exam
Version A

1.(a) $H_{0}: \mu \geq 5$ against $H_{a}: \mu<5$. (Make the claim the alternative).
$p=0.03$ was for 2 -sided test with area in both tails. For a 1 -sided test we therefore halve and $p=0.03 / 2=0.015$ (and note that $\bar{x}=4.4<\mu=5$ so we are in the left tail as desired).
Since $p=0.015<0.05$ we reject H_{0} at 5%.
(b) The regression fit is more flexible and is not restricted to be linear (it is nonparametric).
(c) Correlation $=50 /(\sqrt{25} \times \sqrt{100})=50 /(5 \times 10)=50 / 50=1.0$.
(d) $b_{2}=50 / 25=2$.
(e) $R^{2}=30 / 200=0.15$.
2.(a) $b_{2}=14.79$ so a $\$ 1$ increase in capital is associated with output $\$ 14.79$ higher.
(b) A 95% confidence interval for β_{2} is $(13.01,16.57)$ from the regression output.
(c) A 90% confidence interval for β_{2} is $b_{2} \pm t_{40,05} \times s_{b_{2}}=14.791 \pm \operatorname{invttail}(40, .05) \times 0.8793$
$=14.791 \pm 1.684 \times 0.8793=14.791 \pm 1.481=(13.31,16.27)$.
(d) $H_{0}: \beta_{2}=13$ against $H_{a}: \beta_{2} \neq 13$.
$t=\left(b_{2}-13\right) / s_{b 2}=(14.791-13) / 0.8793=1.791 / 0.8793=2.036$.
Since $t=2.036<t_{40,005}=\operatorname{invttail}(40, .005)=2.704$ we do not reject H_{0} at 1% level.
Conclude that a $\$ 1$ million increase in capital spending may be associated with a $\$ 13$ million increase in output when testing at level 0.01.
(e) $2 *$ ttail $(40,2.0361)$ or test $\mathrm{k}=13$
(f) $\widehat{q}=-372+14.791 \times 3000=-372+44373=44,001$.
(g) regress q k, vce(robust).
(h) 16344 from output.
3.(a) 1. Model $y_{i}=\beta_{1}+\beta_{2} x_{i}+u_{i}$
2. Zero conditional mean error. $\mathrm{E}\left[u_{i} \mid x_{i}\right]=0$ for all i.
3. Constant conditional variance error. $\operatorname{Var}\left[u_{i} \mid x_{i}\right]=\sigma_{u}^{2}$ for all i.
4. Independent errors. u_{i} independent of u_{j} for all $i \neq j$.
(b) Assumptions 1 and 2 are necessary for unbiasedness.
(c) We expect 8 as here OLS is unbiased so the average of the slopes approximately equals $\beta_{2}=8$.
(d) Heteroskedastic standard errors should be used. The error is heteroskedastic with variance $9 \mathrm{x}^{2}$ (and independent).
4.(a) $u=y-(9+3 \times 3)=20-18=2$
(b) $\widehat{y}=10+2 \times 3=16$.
(c) $e=y-\widehat{y}=20-16=4$.

Multiple Choice for Version A
Question 1. 2. 3. 4. 5.
Answer Version A $\quad d \quad b \quad d \quad d \quad a$

Version B

1.(a) $H_{0}: \mu \leq 4$ against $H_{a}: \mu>4$. (Make the claim the alternative).
$p=0.08$ was for 2 -sided test with area in both tails. For a 1 -sided test we terefore halve and $p=0.08 / 2=0.04$ (and note that $\bar{x}=5.4>4$ so we are in the right tail as desired).
Since $p=0.04<0.05$ we reject H_{0} at 5%.
(b) The regression fit is more flexible and is not restricted to be linear (it is nonparametric).
(c) Correlation $=200 /(\sqrt{6400} \times \sqrt{25})=200 /(80 \times 5)=200 / 400=0.5$.
(d) $b_{2}=200 / 6400=1 / 32=0.03125$.
(e) $R^{2}=100 /(100+40)=100 / 140=0.714$.
2.(a) $b_{2}=12.77$ so a $\$ 1$ increase in capital is associated with output $\$ 12.77$ higher.
(b) A 95% confidence interval for β_{2} is $(11.49,14.05)$ from the regression output.
(c) A 99% confidence interval for β_{2} is $b_{2} \pm t_{49,005} \times s_{b_{2}}$
$=12.774 \pm \operatorname{invttail}(49, .005) \times 0.6377=12.774 \pm 2.680 \times 0.6377=12.774 \pm 1.709=(11.06,14.48)$.
(d) $H_{0}: \beta_{2}=10$ against $H_{a}: \beta_{2} \neq 10$.
$t=\left(b_{2}-10\right) / s_{b 2}=(12.774-10) / 0.6377=2.774 / 0.6377=4.350$.
Since $t=4.350>t_{49,05}=\operatorname{invttail}(49, .05)=1.677$ we reject H_{0} at 10% level.
Conclude that a $\$ 1$ million increase in capital spending is not associated with a $\$ 10$ million increase in output when testing at level 0.10.
(e) $2 *$ ttail $(49,4.350)$ or test $\mathrm{k}=10$
(f) 16991 from output
(g) $\widehat{q}=3649+12.774 \times 4000=3649+51096=54,745$.
(h) regress q k, vce(robust).
3.(a) $\widehat{y}=9+3 \times 4=21$.
(b) $e=y-\widehat{y}=20-21=-1$.
(c) $u=y-(10+2 \times 4)=20-18=2$
4. (a) 1. Model $y_{i}=\beta_{1}+\beta_{2} x_{i}+u_{i}$
2. Zero conditional mean error. $\mathrm{E}\left[u_{i} \mid x_{i}\right]=0$ for all i.
3. Constant conditional variance error. $\operatorname{Var}\left[u_{i} \mid x_{i}\right]=\sigma_{u}^{2}$ for all i.
4. Independent errors. u_{i} independent of u_{j} for all $i \neq j$.
(b) Assumptions 1 and 2 are necessary for unbiasedness.
(c) We expect 3 as here OLS is unbiased so the average of the slopes approximately equals $\beta_{2}=3$.
(d) Default standard errors are fine. The error is homoskedastic (with constant variance 12) and independent.

Multiple Choice for Version B

Question	$\mathbf{1 .}$	$\mathbf{2 .}$	$\mathbf{3 .}$	$\mathbf{4 .}$	$\mathbf{5 .}$
Answer Version B	c	a	b	b	c

The course grade will be based on a curve from the combined scores of midterm 1 (20\%), midterm $2(20 \%)$, final (50%) and assignments (20%). The curve for this exam is only a guide. Curve below has average GPA 2.72 for this exam.

Scores out of	34
$75 t h$ percentile	$27.5(81 \%)$
Median	$24.5(72 \%)$
25th percentile	$21(62 \%)$

A+ 33 and above	C+ 21 and above
A $\quad 29$ and above	C
A- 20 and above	
B $\quad 27$ and above	C- 19 and above
B $\quad 25.5$ and above	D+ 18 and above
B $\quad 24$ and above	D
B-	22.5 and above above
	D- 16 and above

