Version A

1.(a) $r_{xy} = s_{xy} / \sqrt{s_{xx} \times s_{yy}} = 4 / \sqrt{25 \times 16} = 4 / 20 = 0.2.$ (b) $R^2 = r_{xy}^2 = 0.2^2 = 0.04.$ (c) $\bar{x} = (1+2+3)/3 = 2$ and $\bar{y} = (4+1+1)/3 = 2$. $x_i \quad y_i \quad x_i - \bar{x} \quad y_i - \bar{y} \quad (x_i - \bar{x})(y_i - \bar{y}) \quad (x_i - \bar{x})^2$ 2 -2 $1 \quad 4$ -11 2 -10 0 1 0 -13 1 1 -11 $b = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) / \sum_{i=1}^{n} (x_i - \bar{x})^2 = (-3)/(2) = -1.5.$ (d) 1. Model $y_i = \beta_1 + \beta_2 x_i + u_i$ 2. Zero conditional mean error. $E[u_i|x_i] = 0$ for all *i*.

3. Constant conditional variance error. $\operatorname{Var}[u_i|x_i] = \sigma_u^2$ for all *i*.

4. Independent errors. u_i independent of u_j for all $i \neq j$.

(e) Assumptions 1 and 2 are necessary for unbiasedness.

2.(a) Higher Education spending falls by 0.753 percentage points.

(b) A 95% confidence interval for the population slope parameter is (-0.887, -0.619) from the output.

(c) A 99% confidence interval for the population slope parameter is $b_2 \pm t_{.005;22} \times s_{b_2} = -0.753 \pm invttail(22, .005) \times 0.0648 = -0.753 \pm 2.819 \times 0.0648 = -0.753 \pm 0.183 = (-0.936, -0.570).$ (d) $H_0: \beta_2 = 0$ against $H_a: \beta_2 \neq 0.$

From the Stata output p = 0.000 < 0.05. So reject H_0 at level 0.05.

Conclude there is a statistically significant relationship at level 0.05.

(e) display 2*tail(22,11.62)

(f) $H_0: \beta_2 = -1$ against $H_a: \beta_2 \neq -1$.

 $t = (b_2 - (-1))/s_{b2} = (-0.753 - (-1))/0.0648 = 0.247/0.0648 = 3.810.$

Since $|t| = 3.810 > t_{.025;22} = invttail(22, .025) = 2.074$ we reject H_0 .

Conclude that the slope coefficient is statistically different from -1 at level 0.05.

3.(a) No. The two are correlated, but one does not necessarily cause the other.

(b) 0.59541 from output.

(c) When x = 12.68 then $\hat{y} = 20.067 - 0.753 \times 12.68 = 20.067 - 9.548 = 10.519$.

(d) scatter HigherEd CrimJustice || lfit HigherEd CrimJustice

4.(a) $t = (\hat{\theta} - \theta^*)/se(\hat{\theta}) = (19 - 10)/5 = 9/5 = 1.8$ so |t| < 1.96 and do not reject H_0 . **(b)** $H_0: \theta \le 10$ against $H_a: \theta > 10$. t = 1.8 again.

Now the critical value is $t_{.05;\infty}$. I did not give data on this but for large *n* it will be less than 1.717 for 22 degrees of freedon given in the Stata output. Now reject H_0 as t = 1.8 > 1.717. (In fact $t_{.05;\infty} = 1.645$).

(c) TSS = ExplainedSS + ResidualSS = 100 + 50 = 150.

 $R^2 = \text{ExplainedSS/TSS} = 100/150 = 0.666.$ (or use $R^2 = 1 - \text{Residual/TSS} = 1 - 50/150 = 0.666$).

Versions A and B: Multiple Choice

Question1.2.3.4.5.Answer Version AbabdbAnswer Version Bdcaba

The course grade is based on a curve from the combined scores of midterm 1 (22.5%), midterm 2 (22.5%), final (45%), quizes (5%) and assignments (5%). Suggested average GPA for this course is 2.7. The curve for this exam is only a guide. Curve below has average GPA 2.67.

		A+	34 and above	C+	22 and above
Scores out of	35	А	29 and above	С	20.5and above
75th percentile	29~(83%)	A-	26.5 and above	C-	19.5 and above
Median	24~(69%)	B+	25.5 and above	$\mathrm{D}+$	18.5 and above
25th percentile	20.5~(59%)	В	24 and above	D	17 and above
		B-	23 and above	D-	16 and above