Econ 102_A (Analysis of Economic Data): Cameron Winter 2019 Solutions to Second Midterm Exam

Version A

1.(a) $r_{x y}=s_{x y} / \sqrt{s_{x x} \times s_{y y}}=4 / \sqrt{25 \times 16}=4 / 20=0.2$.
(b) $R^{2}=r_{x y}^{2}=0.2^{2}=0.04$.
(c) $\bar{x}=(1+2+3) / 3=2$ and $\bar{y}=(4+1+1) / 3=2$.
$\begin{array}{lllll}x_{i} & y_{i} & x_{i}-\bar{x} & y_{i}-\bar{y} & \left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \quad\left(x_{i}-\bar{x}\right)^{2}\end{array}$
$\begin{array}{llllll}1 & 4 & -1 & 2 & -2 & 1\end{array}$
$\begin{array}{llllll}2 & 1 & 0 & -1 & 0 & 0\end{array}$
$\begin{array}{llllll}3 & 1 & 1 & -1 & -1 & 1\end{array}$
$b=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) / \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=(-3) /(2)=-1.5$.
(d) 1. Model $y_{i}=\beta_{1}+\beta_{2} x_{i}+u_{i}$
2. Zero conditional mean error. $\mathrm{E}\left[u_{i} \mid x_{i}\right]=0$ for all i.
3. Constant conditional variance error. $\operatorname{Var}\left[u_{i} \mid x_{i}\right]=\sigma_{u}^{2}$ for all i.
4. Independent errors. u_{i} independent of u_{j} for all $i \neq j$.
(e) Assumptions 1 and 2 are necessary for unbiasedness.
2.(a) Higher Education spending falls by 0.753 percentage points.
(b) A 95% confidence interval for the population slope parameter is $(-0.887,-0.619)$ from the output.
(c) A 99% confidence interval for the population slope parameter is $b_{2} \pm t_{.005 ; 22} \times s_{b_{2}}=-0.753 \pm$ invttail $(22, .005) \times 0.0648=-0.753 \pm 2.819 \times 0.0648=-0.753 \pm 0.183=(-0.936,-0.570)$.
(d) $H_{0}: \beta_{2}=0$ against $H_{a}: \beta_{2} \neq 0$.

From the Stata output $p=0.000<0.05$. So reject H_{0} at level 0.05.
Conclude there is a statistically significant relationship at level 0.05 .
(e) display $2 *$ tail $(22,11.62)$
(f) $H_{0}: \beta_{2}=-1$ against $H_{a}: \beta_{2} \neq-1$.
$t=\left(b_{2}-(-1)\right) / s_{b 2}=(-0.753-(-1)) / 0.0648=0.247 / 0.0648=3.810$.
Since $|t|=3.810>t_{.025 ; 22}=\operatorname{invttail}(22, .025)=2.074$ we reject H_{0}.
Conclude that the slope coefficient is statistically different from -1 at level 0.05 .
3.(a) No. The two are correlated, but one does not necessarily cause the other.
(b) 0.59541 from output.
(c) When $x=12.68$ then $\widehat{y}=20.067-0.753 \times 12.68=20.067-9.548=10.519$.
(d) scatter HigherEd CrimJustice || lfit HigherEd CrimJustice
4.(a) $t=\left(\widehat{\theta}-\theta^{*}\right) / \operatorname{se}(\widehat{\theta})=(19-10) / 5=9 / 5=1.8$ so $|t|<1.96$ and do not reject H_{0}.
(b) $H_{0}: \theta \leq 10$ against $H_{a}: \theta>10 . t=1.8$ again.

Now the critical value is $t_{.05 ; \infty}$. I did not give data on this but for large n it will be less than 1.717 for 22 degrees of freedon given in the Stata output. Now reject H_{0} as $t=1.8>1.717$. (In fact $\left.t_{.05 ; \infty}=1.645\right)$.
(c) $\mathrm{TSS}=$ ExplainedSS + ResidualSS $=100+50=150$.
$R^{2}=$ ExplainedSS $/ \mathrm{TSS}=100 / 150=0.666$. (or use $R^{2}=1-$ Residual $/ \mathrm{TSS}=1-50 / 150=0.666$).

Versions A and B: Multiple Choice

Question 1. 2. 3. 4. 5.

Answer Version B $\quad d \quad c \quad a \quad b \quad a$

The course grade is based on a curve from the combined scores of midterm 1 (22.5%), midterm 2 (22.5%), final (45%), quizes (5%) and assignments (5%). Suggested average GPA for this course is 2.7. The curve for this exam is only a guide. Curve below has average GPA 2.67 .

Scores out of 35
$75 t h$ percentile 29 (83%)
Median 24 (69\%)
$25 t h$ percentile 20.5 (59\%)

A +34 and above $\quad \mathrm{C}+22$ and above
A 29 and above C 20.5and above
A- 26.5 and above C- 19.5 and above
B+ 25.5 and above D+ 18.5 and above
B 24 and above D 17 and above
B- 23 and above D- 16 and above

