Answer all questions in the space provided on the exam.
Total of 36 points (and worth 20% of final grade).
Read each question carefully, so that you answer the question.
Short Answer (6 points each question)
1.(a) You are given the following diagram for someone facing either $X=20$ with probability 0.5 or $\mathrm{X}=100$ with probability 0.5 .

(i) The utility obtained from full insurance at the actuarially fair premium is given by which point (circle one): A B C D E F or G.
(ii) The expected utility obtained without insurance is given by which point (circle one): A B C D E F or G.
(b) In insurance markets such as health insurance markets, risk is being transferred from individuals to insurance companies.
(i) Why are individuals willing to pay a premium above what they expect to get back in reimbursements? A very brief answer will do.
(ii) Why are health insurance companies willing to take on this risk?

A very brief answer will do.
(c) On an appropriate diagram show the effect on market demand of going from no health insurance to health insurance with 50% coinsurance.

On the same diagram show the welfare loss due to moral hazard.

Econ 132 - MT1(A) S22

2. Circle True or False to each of the following statements about the U.S. health market.
[One point each.]
(a) True False U.S. Health expenditures in 2019 were less than $\$ 10,000$ per capita.
(b) True False Hospital care, physicians, and pharmaceutical drugs combined accounted for approximately two-thirds of health expenditures in 2019.
(c) True False Under a Bronze 60 Health Savings Account plan an insured person pays 60% of in-network specialist visits if annual deductible is not yet reached.
(d) True False U.S. infant mortality rates are lower than in most other wealthy countries.
(e) True False Medicaid is health insurance targeted at adult poor people of any age.
(f) True False FFS insurance declined substantially with the introduction of HMOs.
3. John believes he faces health costs in the current year of either $\$ 2,000$ with probability 0.9 or $\$ 12,000$ with probability 0.1 .
(a) He can purchase complete insurance for $\$ 4,000$. Is this premium actuarially fair? Explain your answer.
(b) Suppose an insurance company sells insurance to 10,000 people who face the same distribution of health costs as does John. What interval will the average claim per individual insured person lie in with probability 0.95 ?
(c)(i) Suppose the health outcomes for the 10,000 people in part (b) are positively correlated. Will the interval in part (b) be wider, the same or narrower? No explanation is needed.
(ii) John obtains a major medical and hospital policy that covers all costs, aside from a $\$ 600$ annual deductible and a 10% coinsurance rate. If John actually incurs annual health charges of $\$ 5,000$, by how much will his health insurance company reimburse him?

Econ 132 - MT1(A) S22

4. Consider the following table

Table 3 - Various Measures of Predicted Mean annual Use of Medical Services, by Plan

	Likelihood of Any Use $(\%)$	One or More Admissions $(\%)$	Medical Expenses $(1984 \$)$
Plan	86.7	10.37	777
Free	(0.67)	(0.420)	(32.8)
Family Pay	78.8	8.83	630
25 Percent	(0.99)	(0.379)	(29.0)
	7.31	583	
50 Percent	74.3	8.31	
	(1.86)	(0.400)	(32.6)
95 Percent	68.0	7.75	534
Individual	(1.48)	(0.354)	(27.4)
Deductible	72.6	9.52	623
	(1.14)	(0.529)	(34.6)

(a)(i) What do we learn from this table? A brief explanation will do.
(ii) Is this table obtained from a randomized experiment or is the table obtained from health records of a random sample of people who happen to obtain different levels of insurance through their employers?
(b) Calculate the arc price elasticity of demand for medical expenses in moving from the 95% plan to the 25% plan. Note: the 25% plan was effectively only a 16% coinsurance plan as it had 25% coinsurance only up to a limit and then 0% thereafter. And the 95% plan had an effective rate of 31%. So use coinsurance rates of 16% and 31%.
(c)(i) State one advantage of having health insurance through an HMO rather than FFS.
(ii) State one disadvantage of having health insurance through an HMO rather than FFS.

Econ 132 - MT1(A) S22

5. Consider Stata output for people who have insurance with either 0% coinsurance or 95% coinsurance.

variable name	storage type	display format	value 1abe 1	variable label
out_inf1	double	\%9.0g		outpatient medical spending in 2011 dollars
coins0	float	\%9.0g		$=1$ if 0% coinsurance and $=0$ otherwise
coins95	float	\%9.0g		$=1$ if 95% coinsurance and = 0 otherwise

. regress out_inf1 coins95

| Source | SS | | df | | MS | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | | Number of obs |
| :--- |
| |
| Mode1 |

| out_inf1 | Coef. | Std. Err. | t | P>\|t| | [95\% Conf. Interval] | |
| ---: | ---: | :--- | :---: | ---: | ---: | ---: |
| coins95 | -406.0351 | 121.2075 | -3.35 | 0.001 | -644.0043 | -168.066 |
| _cons | 1127.435 | 71.77943 | 15.71 | 0.000 | 986.5088 | 1268.361 |

(i) Give the average difference in spending between the two plans.
(ii) Give a 95% confidence interval for the mean difference in spending between the two plans.
(iii) Does a test at significance level 5 percent reject the null hypothesis that mean spending is the same in the two plans? Explain your answer.
(iv) Suppose we give the command ttest out_infl, by(coins95)

Will this also provide an estimate of the average difference in spending between the two plans?
A simple YES or NO will do.
(v) Would the command summarize out_infl give output that includes a 95% confidence interval for average spending across the two plans?

A simple YES or NO will do.
(vi) Provide an estimate of average spending in the 95% coinsurance plan.

Econ 132 - MT1(A) S22

Multiple Choice (1 point each) Note: You should spend 15-20 \% of time on these!

1. A gatekeeper is a feature of
a. HMO insurance
b. FFS insurance
c. both a. and b.
d. neither a. nor b.
2. The Rand experiment was able to more accurately measure
a. the difference in inpatient spending across plans
b. the difference in outpatient spending across plans
c. there was little difference in ability to measure a. or b.
3. A risk-averse consumer has expected annual health costs of $\$ 4,000$ (with a standard deviation of $\$ 5,000$). For $\$ 5,000$ she can purchase a health insurance policy that will cover all her actual health costs. It follows that
a. she will definitely buy the health insurance policy
b. she will possibly buy the health insurance policy
c. she will definitely not buy the health insurance policy
4. A risk-averse consumer is more likely to purchase insurance
a. The greater the curvature of their utility of income function
b. The greater the range of income outcomes they face
c. neither a . nor b
d. both a. and b.
5. Managed competition refers to
a. health care providers competing between themselves to increase market share
b. insurance companies being regulated to prevent them from making supernormal profits
c. insurance companies competing between themselves to sell a standardized insurance product
d. none of the above.
6. Obamacare led to decrease in the numbers uninsured by
a. providing subsidies for lower income people purchasing insurance on the insurance exchanges
b. widening the eligibility to Medicare
c. both a. and b.
d. neither a . nor b .
