1. (a) Here \(\ln L(\beta, \alpha) = \sum_i \ln f(y_i) = \sum_i \left\{ (\alpha - 1) \ln y_i - \frac{y_i}{\exp(x_i')\beta} - \alpha x_i' \beta - \ln \Gamma(\alpha) \right\} \)

(b) Differentiation yields
\[
\frac{\partial \ln L}{\partial \beta} = \sum_i \left(\frac{y_i}{\exp(x_i')\beta} x_i - \alpha x_i \right) = \sum_i \left(\frac{y_i - \alpha \exp(x_i')\beta}{\exp(x_i')\beta} x_i \right) = 0.
\]
\[
\frac{\partial \ln L}{\partial \alpha} = \sum_i \left(\ln y_i - x_i' \beta - \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} \right) \left(\frac{y_i - \alpha \exp(x_i')\beta}{\exp(x_i')\beta} \right) x_i = 0.
\]

(c) Easiest to derive the outer product of the gradient estimate \(\hat{B}^{-1} \). This yields for \(\theta = [\beta' \alpha]' \).
\[
\hat{\theta} = \left[\sum_i \left(\frac{y_i - \alpha \exp(x_i')\beta}{\exp(x_i')\beta} \right)^2 x_i x_i' \right]^{-1} \sum_i \left(\ln y_i - x_i' \beta - \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} \right) \left(\frac{y_i - \alpha \exp(x_i')\beta}{\exp(x_i')\beta} \right) x_i.
\]
Or can use Hessian which \(\hat{A}^{-1} \) yields after some algebra yields
\[
\hat{\theta} = \left[\sum_i \left(\frac{y_i - \alpha \exp(x_i')\beta}{\exp(x_i')\beta} \right) x_i x_i' \right] \sum_s \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} - \sum_i \left(\frac{\Gamma'(\alpha)}{\Gamma(\alpha)} \right)^2 \right]^{-1}
\]

Note: In general we use \(-E \left[\frac{\partial^2 \ln L}{\partial \beta \partial \beta} \right] \). Here
\[
\left(\begin{bmatrix} E \left[\frac{\partial^2 \ln L}{\partial \beta \partial \beta} \right] & E \left[\frac{\partial^2 \ln L}{\partial \beta \partial \alpha} \right] \\ E \left[\frac{\partial^2 \ln L}{\partial \alpha \partial \beta} \right] & E \left[\frac{\partial^2 \ln L}{\partial \alpha \partial \alpha} \right] \end{bmatrix} \right)^{-1} = \left(\begin{bmatrix} E \left[\frac{\partial^2 \ln L}{\partial \beta \partial \beta} \right] \right)^{-1} \left(\begin{bmatrix} E \left[\frac{\partial^2 \ln L}{\partial \beta \partial \alpha} \right] \right)^{-1}
\]
except in the special case that \(E \left[\frac{\partial^2 \ln L}{\partial \beta \partial \alpha} \right] = 0. \)

(d) In general the MLE for both \(\beta \) and \(\alpha \) will be inconsistent.
Here there is some hope that MLE for \(\beta \) may be consistent, since \(E[\partial \ln L / \partial \beta] = 0 \) requires only correct specification of the mean (then \(E \left[\sum_i \left(\ln y_i - x_i' \beta - \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} \right) \frac{y_i - \alpha \exp(x_i')\beta}{\exp(x_i')\beta} \right] = 0 \)). [Half credit for saying this].

But \(E[\partial \ln L / \partial \alpha] = 0 \) requires the much stronger assumption that \(E[\ln y_i] = x_i' \beta + \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} \)
(then \(E \left[\sum_i \left(\ln y_i - x_i' \beta - \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} \right) \right] = 0 \)).

This fails and the two equations jointly estimated will yield inconsistent estimates.

One way to see this is that \(\hat{\alpha} \) inconsistent then contaminates \(\beta \) that solves \(\sum_i \left(\frac{y_i - \alpha \exp(x_i')\beta}{\exp(x_i')\beta} \right)^2 \) = 0.

More formally, the information matrix is not block-diagonal as \(E[\partial^2 \ln L / \partial \beta \partial \alpha] \neq 0 \) and estimation of \(\alpha \) effects estimation of \(\beta \).

(e) Two possible methods are based on \(E[y_i | x_i] = \exp(x_i' \beta) \) are
NLS of \(y_i \) on \(\exp(x_i' \beta) \) which minimizes \(\sum_i (y_i - \exp(x_i' \beta))^2 \).
MM estimation based on \(E[(y_i - \exp(x_i' \beta))x_i] = 0 \) which solves \(\sum_i (y_i - \exp(x_i' \beta))x_i = 0 \).

(f) Here \(E[y] = \alpha \lambda \) and \(V[y] = \alpha \lambda^2 \).
So \(E[x(y - \alpha \exp(x' \beta))] = 0 \) and \(E[(y - \alpha \exp(x' \beta))^2 - 1] = 0 \).
Let \(h(y_i, x_i, \alpha, \beta) = [x_i (y_i - \alpha \exp(x_i' \beta))]' (y_i - \alpha \exp(x_i' \beta))^2 - 1 \)' \(\left((y_i - \alpha \exp(x_i' \beta))^2 - 1 \right)' \).

The GMM estimator minimizes
\[
Q_N(\alpha, \beta) = \frac{1}{N} \left(\sum_i h(y_i, x_i, \alpha, \beta) \right)' W_N \left(\sum_i h(y_i, x_i, \alpha, \beta) \right),
\]
where any full rank weighting matrix will do since this is just-identified.
2. (a) Here \(\Pr[y = 0] = \Pr[y^* = 0] = e^{-\mu} = \exp(-\exp(\mathbf{x}'\mathbf{\beta})) \). So
\[
\Pr[y = 1] = 1 - \Pr[y = 0] = 1 - \exp(-\exp(\mathbf{x}'\mathbf{\beta})).
\]
Estimate by binary MLE. \(\hat{\mathbf{\beta}} \) maximizes \(L_N(\mathbf{\beta}) = \sum_i y_i \ln(1 - \exp(-\exp(\mathbf{x}'\mathbf{\beta}))) + (1 - y_i) \ln(\exp(-\exp(\mathbf{x}'\mathbf{\beta}))) \).

(b) This is ordered model
\[
\begin{align*}
p_0 & = \Pr[y = 0] = \Pr[y^* = 0] = e^{-\mu} = \exp(-\exp(\mathbf{x}'\mathbf{\beta})). \\
p_1 & = \Pr[y = 1] = \Pr[y^* = 1] = e^{-\mu - \mu} = \exp(\beta_1 \mathbf{x}_1') \exp(-\exp(\mathbf{x}'\mathbf{\beta})). \\
p_2 & = \Pr[y = 2] = 1 - p_0 - p_1.
\end{align*}
\]
Estimate by multinomial MLE. \(\hat{\mathbf{\beta}} \) maximizes \(L_N(\mathbf{\beta}) = \sum_i (y_i \ln p_{i0} + y_i \ln p_{i1} + y_i \ln p_{i2}) \) where
\[
y_{i0} = 1 \text{ if } y_i = 0, \ y_{i1} = 1 \text{ if } y_i = 1, \ y_{i2} = 1 \text{ if } y_i = 2.
\]

(c) For notational simplicity initially suppress conditioning on \(\mathbf{x} \)
\[
f(y) = f(y^*|y^* \geq 1) = \frac{f(y^*)}{\Pr[y^* \geq 1]} = \frac{e^{-\mu y^*/y^!}}{(1 - \Pr[y^* = 0])} = \frac{e^{-\mu y/y!}}{(1 - e^{-\mu})}
\]
So
\[
\ln f(y|x) = -\exp(\mathbf{x}_i'\mathbf{\beta}) + y_i \mathbf{x}_i'\mathbf{\beta} - \ln y_i! - \ln(1 - e^{-\exp(\mathbf{x}_i'\mathbf{\beta})}).
\]

(d) Very few got this.
\[
\begin{align*}
\mathbb{E}[y] & = \mathbb{E}[y^*|y^* \geq 1] \\
& = \sum_{y^*=1}^{\infty} y^* \frac{f(y^*)}{\Pr[y^* \geq 1]} = \frac{1}{\Pr[y^* \geq 1]} \sum_{y^*=1}^{\infty} y^* f(y^*) = \frac{1}{\Pr[y^* \geq 1]} \sum_{y^*=0}^{\infty} y^* f(y^*) = \frac{1}{1 - e^{-\mu}} \mu,
\end{align*}
\]
using \(\sum_{y^*=0}^{\infty} y^* f(y^*) \) is \(\mathbb{E}[y^*] \) and we were told that for the Poisson that \(\mathbb{E}[y^*] = \mu. \)

(e) Since
\[
\mathbb{E}[y_i|x_i] = \frac{\exp(\mathbf{x}_i'\mathbf{\beta})}{1 - e^{-\exp(\mathbf{x}_i'\mathbf{\beta})}}
\]
do nonlinear least squares regression of \(y_i \) on \(\exp(\mathbf{x}_i'\mathbf{\beta})/(1 - e^{-\exp(\mathbf{x}_i'\mathbf{\beta})}) \).
Or do MM based on \(\sum_i \mathbf{x}_i (y_i - \exp(\mathbf{x}_i'\mathbf{\beta})/(1 - e^{-\exp(\mathbf{x}_i'\mathbf{\beta})})) = \mathbf{0}. \)

3. (a) A sequence of random variables \(\{b_N\} \) converges in probability to \(b \) if for any \(\varepsilon > 0 \) and \(\delta > 0 \), there exists \(N^* = N^*(\varepsilon, \delta) \) such that for all \(N > N^* \), \(\Pr[|b_N - b| < \varepsilon] > 1 - \delta. \)

(b) Remarkably few got this completely correct. Simplest is Lindeberg-Levy CLT.
Let \(\{X_i\} \) be iid with \(\mathbb{E}[X_i] = \mu \) and \(\mathbb{V}[X_i] = \sigma^2. \) Then \(Z_N = \frac{\sum_{i=1}^{N} X_i - N \mu}{\sqrt{N} \sigma} \) \(\xrightarrow{d} \) \(N[0,1]. \)
[Other CLT's can be given].

(c) \(y^* = 1 + 2x + u \) where \(x \sim \mathcal{N}[0,1] \) and \(u \sim \mathcal{N}[0, x^2] \)
We observe \(y = 1 \) if \(y^* > 0 \) and \(y = 0 \) if \(y^* \leq 0. \)

(d) In (c) I had meant to generate \(y \) from a Tobit model but mistekenly generated a binary variable. So the natural thing would be to try probit estimation. Tobit is inappropriate.
But I gave full vredit if you thought Tobit was still apropiate, but then noted that the Tobit MLE of \(y \) on \(x \) will be inconsistent for \(\mathbf{\beta} \) as the error here is heteroskedastic. It is not enough to say that standard errors will be wrong. Inconsistency is the most serious problem.

(e) I had intended the question to be about the sample selection model, but if you answered correctly for the Tobit model you also got full credit. The sample selection model is
\[
\begin{align*}
y_1^* & = \mathbf{x}_1'\mathbf{\beta}_1 + \varepsilon_1 \\
y_2^* & = \mathbf{x}_2'\mathbf{\beta}_2 + \varepsilon_2.
\end{align*}
\]
and we observe $y_1 = \begin{cases} 1 & \text{if } y_1^* > 0 \\ 0 & \text{if } y_1^* \leq 0 \end{cases}$, and $y_2 = \begin{cases} y_2^* & \text{if } y_1^* > 0 \\ - & \text{if } y_1^* \leq 0 \end{cases}$.

The errors $(\varepsilon_1, \varepsilon_2)$ have means $(0, 0)$, variances $(1, \sigma_2^2)$ and covariance $\rho \sigma_2^2$.

ε_1 is standard normal. If the MLE is used $(\varepsilon_1, \varepsilon_2)$ are joint normal.

(f) B times do the following.

- Completely resample with replacement all the data $\{(y_{1i}, y_{2i}, x_{1i}, x_{2i})$ for $i = 1, \ldots, N\}$
- For each resample get estimate $\hat{\beta}_b$ and form $\hat{\text{ME}}_b = \exp(\hat{\gamma}_b \beta_b)$.

Standard error is the standard deviation of the $B \hat{\text{ME}}_b$.

(g) This is optimal two-step GMM. Minimize

$$Q_N(\theta) = \frac{1}{N} \left(\sum_i h(w_i, \theta) \right)' \hat{S}^{-1} \left(\sum_i h(w_i, \theta) \right),$$

where $\hat{S} = \sum_{i=1}^N h(w_i, \hat{\theta})h(w_i, \hat{\theta})'$ and $\hat{\theta}$ is a consistent initial estimate such as first-step GMM.

4. (a) No. The default se's assume independence of u_{it} and u_{is}. But the error u_{it} is likely to be positively correlated with $u_{is}, i \neq s$, decreasing the informational content of the data. Panel robust se's adjust for this.

(b) Yes. The RE-GLS does control for clustering so might expect the two to be similar. The difference is due to the wrong model for clustered errors (equicorrelation) or heteroskedasticity.

(c) $y_{it} = \alpha_i + x_{it} \beta + u_{it} \Rightarrow (y_{it} - \bar{y}_i) = (x_{it} - \bar{x}_i)' \beta + (u_{it} - \bar{u}_i)$.

So do OLS of $(y_{it} - \bar{y}_i)$ on $(x_{it} - \bar{x}_i)$. (Other methods are possible).

(d) `xtreg y x, vce(robust)` or `xtreg y x, vce(Cluster id)`.

(e) That the RE estimator is fully efficient under H_0. This requires that the error $y_{it} = \alpha_i + \varepsilon_{it}$ where both α_i and ε_{it} are i.i.d.

(f) Usual Hausman test is $H = (\hat{\beta}_{\text{FE}} - \hat{\beta}_{\text{RE}})'(\hat{V}(\hat{\beta}_{\text{FE}}) - \hat{V}(\hat{\beta}_{\text{RE}}))^{-1}(\hat{\beta}_{\text{FE}} - \hat{\beta}_{\text{RE}}) \sim \chi^2(q)$.

$\hat{\beta}_{\text{FE}} = 0.17$ with default standard error 0.03 and $\hat{\beta}_{\text{RE}} = 0.12$ with default standard error 0.02.

Note that if indeed the RE is fully efficient then the default standard errors are correct and we would use these.

$H = (0.17 - 0.12)^2 / (0.03^2 - 0.02^2) = 0.0025 / 0.0005 = 5 > \chi^2_{0.05}(1) = 3.84$.

Reject H_0. Conclude that there is a difference so FE is the model.

(g) Now $H = (\hat{\beta}_{\text{FE}} - \hat{\beta}_{\text{RE}})'(\hat{V}(\hat{\beta}_{\text{FE}}) + \hat{V}(\hat{\beta}_{\text{RE}}) - 2 + \hat{\text{Cov}}[\hat{\beta}_{\text{RE}}, \hat{\beta}_{\text{FE}}])^{-1}(\hat{\beta}_{\text{FE}} - \hat{\beta}_{\text{RE}}) \sim \chi^2(q)$.

$\hat{\beta}_{\text{FE}} = 0.17$ with robust s.e. 0.08, $\hat{\beta}_{\text{RE}} = 0.12$ with robust s.e. 0.05, and $\hat{\text{Cov}}[\hat{\beta}_{\text{RE}}, \hat{\beta}_{\text{FE}}] = 0.02^2$.

$H = (0.17 - 0.12)^2 / (0.08^2 + 0.05^2 - 2 \times 0.02^2) = 0.0025 / 0.0081 = 0.31 < \chi^2_{0.05}(1) = 3.84$.

Reject H_0. Conclude that there is no difference so RE is the model.

(h) Stacking we have $y_i = X_i \beta + u_i$, where y_i and u_i are $T \times 1$ and X_i is $T \times k$ with i^{th} row x_i.

Then $\hat{\beta} = (\sum_i X_i'X_i)^{-1} \sum_i X_i'y_i = \beta + (\sum_i X_i'X_i)^{-1} \sum_i X_i'u_i$.

The asymptotic variance is $\sum_i X_i'X_i)^{-1} \text{Var}(\sum_i X_i'u_i)(\sum_i X_i'X_i)^{-1}$.

Given independence over i and $E[u_i | x_i] = 0$ this becomes $\sum_i X_i'X_i)^{-1} \sum_i E[X_i'u_iu_i'X_i](\sum_i X_i'X_i)^{-1}$.

So use $(\sum_i X_i'X_i)^{-1} (\sum_i X_i'u_iu_i'X_i)(\sum_i X_i'X_i)^{-1}$ where $\hat{u}_i = y_i - X_i\hat{\beta}$.

The curve for this exam is only a guide. The course grade is based on course score.

Scores out of 50
75th percentile 38 (76%) A 36 and above
Median 31.5 (63%) A- 30 and above
25th percentile 26 (52%) B+ 24 and above