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A ten minute summary: 1. Prediction
@ Think of machine learning as potentially better nonparametric
regression.
o We wish to predict y given x using fitted function f(x).
@ We could use various nonparametric methods

> kernel regression such as local linear, nearest neighbors, sieves
> but these perform poorly if x is high dimensional

* the curse of dimensionality.
@ Machine learning uses different algorithms that may predict better

» including lasso, neural networks, deep nets and random forests.
> these require setting tuning parameter(s)

* just as e.g. kernel regression requires setting bandwidths.
@ Machine learning focuses purely on prediction

» sometimes useful in microeconomics applications
> e.g. predict one-year survival following hip transplant operation.
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A Ten Minute Summary

A ten minute summary: 2. Inference for Economics

But much empirical microeconomics emphasizes estimating a partial
effect.

In principle can perturb an x to get Af(x)

» but very black box especially if f(x) is very nonlinear
> and statistical inference is a problem.

Instead economists impose more structure.

A leading example is the partially linear model

> estimate B in the model y = Bx; + g(x2) + u.

A second leading example is an average treatment effect

» rather than an individual treatment effect.
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A Ten Minute Summary

A ten minute summary: 3. Orthogonalization

e A standard semiparametric estimator is the Robinson (1988)
differencing estimator in the partially linear model

>y =px1+gx)+tu
> B is OLS estimate in model y — m, = B(x; — My, )+ error.
> where use kernel regression of y on x for m, and x on xp for my,.

@ Remarkable result

> the asymptotic distribution of B at the second stage
> is not affected by the first step estimation of m, and mj,
» an example of using an “orthogonal moment condition”.

o This generalizes

> use a machine learner for m, and my, instead of kernel regression
> and apply to other settings with an “orthogonal moment condition”

* e.g. ATE, ATET and LATE where x; is a binary treatment.

» this is a big, big deal.
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A Ten Minute Summary

A ten minute summary: 4. Other contributions of machine

learning

@ Estimators overfit the sample at hand

» e.g. chasing outliers
» so use out-of-sample prediction as criteria

* in particular k-fold cross-validation
» or use penalties such as AlIC, BIC.
@ Biased estimators can outperform unbiased estimators
> e.g. shrinkage estimators such as LASSO and ridge.
@ Data carpentry that creates y and x

> web scraping, text mining, digitizing images, SQL.
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Overview

Q@ Terminology

@ Model selection - especially cross-validation.

@ Variance-bias trade-off and shrinkage (LASSO and Ridge)
Dimension reduction (principal components)
Nonparametric and semiparametric regression

Flexible regression (splines, sieves, neural networks,...)
Regression trees and random forests

Classification (support vector machines)

Unsupervised learning (cluster analysis)

Prediction for economics

LASSO for causal homogeneous effects
Heterogeneous treatment effects

Double / debiased machine learning

o
o
o
o
o
o
@
@
@
@
®

Conclusions
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1. Terminology
@ The term machine learning is used because the machine (computer)
figures out from data the model f(x)
» compared to a modeler who e.g. specifies x and y = x'B + u.
@ The data may be big or small
> typically dim(x) is large but n can be small or large.
@ Supervised learning = Regression

> We have both outcome y and regressors (or features) x
» 1. Regression: y is continuous
» 2. Classification: y is categorical.

@ Unsupervised learning

» We have no outcome y - only several x
> 3. Cluster Analysis: e.g. determine five types of individuals given
many psychometric measures.

@ Focus on 1. as this is most used by economists.
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1. Terminology

Terminology (continued)

o Consider two types of data sets
» 1. training data set (or estimation sample)
* used to fit a model.
» 2. test data set (or hold-out sample or validation set)

* additional data used to determine how good is the model fit
* a test observation (xg,yp) is a previously unseen observation.
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2. Model selection

@ Can choose x's by

v

start from smallest and build
start from largest and prune

v

v

e Traditionally use statistical significance (p < 0.05)
> but pre-testing changes the distribution of B

@ Machine learners instead use predictive ability

» typically mean squared error MSE = %Zle (yi — 9i)2.

A. Colin Cameron U.C.-Davis . Presented af Machine Learning: A Brief Overview June 7 2019

best subsets: find best model of given size and then choose best size.

9/ 60



Overfitting

@ Problem: models “overfit” within sample.
> eg U= (y—XBpors) = (1— M)u where M = X(X'X)~1X
* so |uj| < |uj| on average.
@ Two solutions:

» penalize for overfitting e.g. R2, AIC, BIC, Mallows Cp
> use out-of-estimation sample prediction (cross-validation)

* new to econometrics
* can apply to other loss functions and not just MSE.
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2. Model Selection

K-fold cross-validation is standard method

@ K-fold cross-validation

> split data into K mutually exclusive folds of roughly equal size
» for j =1, ..., K fit using all folds but fold j and predict on fold j
» standard choices are K =5 and K = 10.

@ The following shows case K =5

Fit on folds | Test on fold
j=1 2,3,4,5 1— MSE(l)
j=2 1,3,4,5 2 — MSE(2)
j=3 1,2,4,5 3 — MSE(3)
j: 4 1,2,3,5 4 — MSE(4)
j=5 1,2,3,4 h — MSE(5)

@ The K-fold CV estimate is
CVk = & Y MSE;), where MSE ;) is the MSE for fold j.
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3. Bias-Variance Trade-off and Shrinkage Estimation

@ The goal is minimize MSE = Variance + Bias-squared.
@ More flexible models have

> less bias (good) and more variance (bad).
> this trade-off is fundamental to machine learning.

@ Shrinkage reduces variance and may offset increased bias.

> e.g. B =0 has reduced variance to zero.
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Shrinkage Methods: Ridge

@ Shrinkage estimators minimize RSS (residual sum of squares) with a
penalty for model size

> this shrinks parameter estimates towards zero.

@ The ridge estimator B;\ of B minimizes
_ n ! n\2 p 2 p 2
Q?\(ﬁ) - 2121(5"' - XI.B) + AZj:l :Bj = RSS + AZj:l :Bj
» where A > 0 is a tuning parameter to be determined
o This yields B, = (X'X + Al)~ X'y

> BA_’BOLSaSAﬁoandE,\HOasAaoo.

@ Typically first standardize x’s to have mean zero and variance 1.
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Shrinkage Methods: LASSO

@ Instead of squared penalty use absolute penalty.

@ The Least Absolute Shrinkage and Selection (LASSO) estimator BA
of B minimizes

QuB) = Y0, (v~ B+ AY B = RSS + AT, IB,)

» where A > 0 is a tuning parameter to be determined.

@ No closed form solution

!/ .
> sets some s to zero and shrinks others towards zero
> hence name.
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3. Bias-Variance Trade-off and Shrinkage Estimation

LASSO versus Ridge (key figure from ISL)

@ LASSO is likely to set some coefficients to zero.

FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-
gions, |B1] + |Bz| < s and BT + 57 < s, while the red ellipses are the contours of
the RSS.
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4. Dimension Reduction

4. Dimension Reduction

@ Reduce from p regressors to M < p linear combinations of regressors.
@ Principal components (or factor analysis) is standard method

> The first principal component has the largest sample variance among all
normalized linear combinations of the columns of n X p data matrix X

o Considers only x without considering y

> but still generally does good job of explaining y.

A. Colin Cameron U.C.-Davis . Presented af Machine Learning: A Brief Overview June 7 2019 16 / 60



5. Nonparametric and Semiparametric Regression

5. Nonparametric regression and semiparametric regression

@ Nonparametric regression is the most flexible approach.

@ Nonparametric regression methods for f(xo) = E[y|x = x¢] borrow
from observations near to xg

> k-nearest neighbors
* average y; for the k observations with x; closest to xg.
» kernel-weighted local regression

* use a weighted average of y; with weights declining as ||x; — xo||
increases.

@ But are not practical for high p = dim(x)

> due to the curse of dimensionality
» e.g. if 10 bins in one dimension need 102 bins in two dimensions, .....
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5. Nonparametric and Semiparametric Regression

Semiparametric regression

@ Semiparametric models provide some structure to reduce the

nonparametric component from many dimensions to fewer dimensions

(often one).
» Econometricians focus on

* partially linear models y = f(x,z) + u=x'B8+g(z) +u
* single-index models (y = g(x'B)).

» Statisticians use

* generalized additive models and project pursuit regression.

o Later we will work with partially linear models.
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6. Flexible Regression

6. Flexible Regression

@ Basis function models
> scalar case: y; = By + B1b1(xi) + -+ By (xi) + &

* where by (-), ..., bx (+) are basis functions that are fixed and known.

global polynomial regression

splines: step functions, regression splines, smoothing splines
wavelets

polynomial is global while the others break range of x into pieces.

vV v Vv

@ Other methods

» neural networks.
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6. Flexible Regression

Neural Networks

A neural network involves a series of nested logit regressions.

A single hidden layer neural network explaining y by x has

> y depends on z’s (a hidden layer)
» z's depend on x's.

A neural network with two hidden layers explaining y by x has

> y depends on w’s (a hidden layer)
» w's depend on z’s (a hidden layer)
» z's depend on x's.

@ Neural nets are good for prediction

> especially in speech recognition (Google Translate), image recognition,

> but require much tuning and very difficult (impossible) to interpret
» and basis for deep nets and deep learning.
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6. Flexible Regression

Neural Network Example
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hidden layer 1 hidden layer 2

input layer
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7. Regression Trees and Random Forests

7. Regression Trees and Random Forests

@ Regression trees sequentially split regressors x into regions that best
predict y.
@ Sequentially split x’s into rectangular regions in way that reduces RSS
» then ¥; is the average of y's in the region that x; falls in
> with J blocks RSS= Y/ Yier,(vi = ¥r)?.
@ Simplest case is a single x
> split at x* that minimizes L.y <+ (¥i = ¥r,)? + Lixox (Vi — R,)?

* where yg, is average of y; for i : x; < x*
* and ypg, is average of y; for i : x; > x*.

» second split is then best split within Ry and R»
» then predicted y’s are a step function of x.
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Tree example from ISL page 308

1) split X1 in two;

2) split the lowest X1 values on the basis of X2 into R1 and R2;

3) split the highest X1 values into two regions (R3 and R4/R5);

4) split the highest X1 values on the basis of X2 into R4 and R5.

~ A~~~

Ry ta

X2
F

Ry
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Tree example from ISL (continued)

@ The left figure gives the tree.
@ The right figure shows the predicted values of y.

Xisth
1

Xa=ty Xy =ty Y

Xo=ty

R, Ry R

Ry R
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7. Regression Trees and Random Forests

Improvements to regression trees

@ Regression trees are easy to understand if there are few regressors.
@ But they do not predict as well as methods given so far

> due to high variance (e.g. split data in two then can get quite different
trees).

@ Better methods are
> bagging
* bootstrap aggregating averages regression trees over many samples
» random forests
* averages regression trees over many sub-samples
> boosting

* trees build on preceding trees (fit residuals not y).
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Random Forests

o If we bootstrap resample with replacement (bagging) the B estimates
are correlated

» e.g. if a regressor is important it will appear near the top of the tree in
each bootstrap sample.
> the trees look similar from one resample to the next.

@ Random forests get bootstrap resamples (like bagging)

> but within each bootstrap sample use only a random sample of m < p
predictors in deciding each split.

> usually m=~,/p
» this reduces correlation across bootstrap resamples.

@ Random forests are related to kernel and k-nearest neighbors

> as use a weighted average of nearby observations

> but with a data-driven way of determining which nearby observations
get weight

> see Lin and Jeon (JASA, 2006).

» Susan Athey and coauthors are big on random forests.

A. Colin Cameron U.C.-Davis . Presented af Machine Learning: A Brief Overview June 7 2019 26 / 60



7. Regression Trees and Random Forests

Tree as alternative to k-NN or kernel regression

e Figure from Athey and Imbens (2019), “Machine Learning Methods

Economists should Know About”

> axes are x1 and xp

> note that tree used explanation of y in determining neighbors
> tree may not do so well near boundaries of region

* random forests form many trees so not always at boundary.

Euclidean neighborhood,

for KNN matching.

Tree-based neighborhood.

A. Colin Cameron U.C.-Davis . Presented af

Machine Learning: A Brief Overview

June 7 2019

27 / 60



8. Classification

8. Classification

@ y's are now categorical e.g. binary.

@ Interest lies in predicting y using y (classification)

» whereas economist typically want Pr[y = j|x|
» use number misclassified as loss function (not MSE).

@ Some methods choose category with highest Is\r[y = j|x]
> logit, k-nearest neighbors, discriminant analysis

e Support vector machines skip Pr[y = j|x] and directly get y

» can do better.
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ISL Figure 9.9: Support Vector Machine
@ Example with y =1 blue and y = 0 red

> a linear (logit or linear discriminant analysis) or quadratic classifier
(quadratic DA) won't work whereas SVM does.

X2

FIGURE 9.9, Left: An SVM with a polynomial kernel of degree 3 is applied to
the non-linear data from Figure 9.8, resulting in a far more appropriate decision

rule. Right: An SVM with a radial kernel is applied. In this example, either kernel
is capable of capturing the decision boundary.
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9. Unsupervised Learning

9. Unsupervised Learning: cluster analysis

@ Challenging area: no y, only x.

@ Example is determining several types of individual based on responses
to many psychological questions.

@ Principal components analysis

> already presented earlier.

@ Clustering Methods

» k-means clustering.
> hierarchical clustering.
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9. Unsupervised Learning

ISL Figure 10.5

e Datais (x1.x2) with K = 2,3 and 4 clusters identified.
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FIGURE 10.5. A simulated data set with 150 observations in two-dimensional
space. Panels show the results of applying K -means clustering with different val-
ues of K, the number of clusters. The color of each observation indicates the clus-
ter to which it was assigned using the K-means clustering algorithm. Note that
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10. Prediction for Economics

10. Prediction for Economics: Mullainathan and Spiess

@ Microeconometrics focuses on estimation of 8 or of partial effects.
@ But in some cases we are directly interested in predicting y
> probability of one-year survival following hip transplant operation
* if low then do not have the operation.
» probability of re-offending
* if low then grant parole to prisoner.
e Mullainathan and Spiess (2017)

» consider prediction of housing prices
» detail how to do this using machine learning methods
» and then summarize many recent economics ML applications.

@ So summarize Mullainathan and Spiess (2017).
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10. Prediction for Economics

Summary of Machine Learning Algorithms

Table 2
Some Machine Learning Algorithms

Function class F (and its parametrization) Regularizer R([)

Global/parametric predictors
Linear 3'x (and generalizations) Subset selection||3]]y = Z’,’Ll L.0

LASSO [|Al1, = X411
Ridge [|3]1:? = Tk, 37

Elastic net of| 3], + (1 - ) ||3]]2*

Local /nonparametric predictors
Decision /regression trees Depth, number of nodes/leaves, minimal leaf
size, information gain at splits

Random forest (linear combination of Number of trees, number of variables used

trees) in each tree, size of bootstrap sample,
complexity of trees (see above)

Nearest neighbors Number of neighbors

Kernel regression Kernel bandwidth
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. Prediction for Economics

Table 2 (continued)

Mixed predictors
Deep learning, neural nets, convolutional
neural networks

Splines

Number of levels, number of neurons per
level, connectivity between neurons

Number of knots, order

Combined predictors
Bagging: unweighted average of predictors
from bootstrap draws
Boosting: linear combination of
predictions of resicual

Ensemble: weighted combination of
different predictors

Number of draws, size of bootstrap samples
(and individual regularization parameters)
Learning rate, number of iterations (and

individual regularization parameters)

Ensemble weights (and individual
regularization parameters)
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10. Prediction for Economics

Example: Predict housing prices

@ y is log house price in U.S. 2011

» n = 51,808 is sample size
» p = 150 is number of potential regressors.

@ Predict using

OLS (using all regressors)

regression tree

LASSO

random forest

ensemble: an optimal weighted average of the above methods.

vV vy VY VY Vv

@ 1. Train model on 10,000 observations using 8-fold CV.

o 2. Fit preferred model on these 10,000 observations.

@ 3. Predict on remaining 41,808 observations

» and do 500 bootstraps to get 95% Cl for R?.
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10. Prediction for Economics

e Random forest (and subsequent ensemble) does best out of sample.

Table 1

Performance of Different Algorithms in Predicting House Values

Prediction performance (R°)

Relative improvement over ordinary leasi
squares by quintile of house value

Training Hold-out
Method sample sample 1st 2nd Srd 4th 5th
Ordinary least 47.3% 41.7% - - - - -
squares [39.7%, 43.7%]
Regression tree 39.6% 34.5% -11.5% 10.8%  6.4% -14.6% -31.8%
tuned by depth [32.6%, 36.5%]
LASSO 46.0% 43.5% 1.3% 119% 131% 101% -19%
[41.5%, 45.2%]
Random forest 85.1% 45.5% 3.5% 23.6% 27.0% 17.8% —-05%
[43.6%, 47.5%)]
Ensemble 80.4% 45.9% 4.5% 16.0% 179% 142% 7.6%
[44.0%, 47.9%]
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Further details

Downloadable appendix to the paper gives more details and R code.

1. Divide into training and hold-out sample.

@ 2. On the training sample do 8-fold cross-validation to get tuning
parameter(s) such as A.

> If e.g. two tuning parameters then do two-dimensional grid search.
e 3. The prediction function f(x) is estimated using the entire sample
with optimal A.

4. Now apply this /f\(x) to the hold-out sample and can compute R?
and MSE.

5. A 95% Cl for R? can be obtained by bootstrapping hold-out
sample.

Ensemble weights are obtained by 8-fold CV in the training sample.
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LASSO

@ LASSO does not pick the “correct” regressors

> it just gets the correct ?(x) especially when regressors are correlated
with each other.

@ Diagram on next slide shows which of the 150 variables are included
in separate models for 10 subsamples
> there are many variables that appear sometimes but not at other times

* appearing sometimes in white and sometimes in black.
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10. Prediction for Economics

Estimate
O Zero
m Nonzero

Fold of the sample
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Some Thoughts on ML Prediction

@ Clearly there are many decisions to make in implementation

how are features converted into x's
tuning parameter values

which ML method to use

even more with an ensemble forecast.

vy VvV VY

@ For commercial use this may not matter
> all that matters is that predict well enough.
@ But for published research we want reproducibility

> At the very least document exactly what you did
> provide all code (and data if it is publicly available)
> keep this in mind at the time you are doing the project.

@ For public policy we prefer some understanding of the black box

> this may be impossible.
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11. LASSO for causal homogeneous effects

11. LASSO for causal homogeneous effects

Here the basic model is y = Bx; + g(x2) + u.
Good choice of controls g(x2) makes the unconfoundedness
assumption that Cov(xi, u) = 0 more plausible so can give B a
plausible interpretation.
Suppose g(x2) ~ w'y

» the w are various transformations of the x, variables

> so powers, interactions, logs, .....

> this allows for nonlinearity in g(x2).

@ There are now many potential w
> assume only a few matter (most have oy = 0) - a sparsity assumption.
» use LASSO to pick these.

@ Double selection method

> LASSO of y on w picks subset wy, of the w variables
» LASSO of x; on w picks subset wy, of the w variables.

B obtained from OLS of y on x; and the union of w, and w,,

> can use the usual asymptotic theory for B!
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Key LASSO References

@ Belloni, Chernozhukov and Hansen and coauthors have many papers.
@ The following is accessible with three applications

> Belloni, Chernozhukov and Hansen (2014), “High-dimensional methods
and inference on structural and treatment effects,” Journal of
Economic Perspectives, Spring, 29-50

* has the preceding example and a many IV example.
@ This gives more detail on LASSO methods as well as on Stata
commands in the Stata add-on package lassopack

> Ahrens, Hansen and Schaffer (2019), “lassopack: Model selection and
prediction with regularized regression in Stata,” arXiv:1901.05397.
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11. LASSO for causal homogeneous effects

Lassopack

o Consider a variant of LASSO with variable weights
» useful for extension to heteroskedastic and clustered errors.

The LASSO estimator BA of B minimizes
QB) =LY (i—xB)’+2Y " vl

> where y; and x;; are demeaned so y =0 and X; =0
» and A > 0 is a tuning parameter to be determined.

Weights vary with errors homoskedastic, heteroskedastic or clustered.
Tuning parameter A determined in three different ways

» cvlasso uses K-fold cross-validation

» lasso?2 uses goodness-of-fit (AIC, BIC, AICC, EBIC)

» rlasso uses user-specified value “theory-driven” or “rigorous”
* defaults are ¢ = 1.1 and v = 0.1/ log(n)

pdslasso handles the above model y = Bx; + g(x2) + u.
@ ivlasso allows x3 to be endogenous with potentially many
instruments z.
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11. LASSO for causal homogeneous effects

Caution

@ The LASSO methods are easy to estimate using the lassopack
program

> they'll be (blindly) used a lot.

@ However in any application

> is the underlying assumption of sparsity reasonable?
» has the asymptotic theory kicked in?
> are the default values of ¢ and 7 reasonable?
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12. Heterogeneous Treatment Effects

12. Heterogeneous treatment effects

o Consider a binary treatment, so x; = d € {0,1}
@ The preceding partially linear model y = Bd + x50 + u

> restricts the same response 8 for each individual
> requires that E[u|d, xp] = 0 for unconfoundedness.

@ The heterogeneous effects approach is more flexible

> different responses for different individuals
» and unconfoundness assumptions may be more reasonable.

Machine Learning: A Brief Overview June 7 2019

A. Colin Cameron U.C.-Davis . Presented af

45 / 60



12. Heterogeneous Treatment Effects

Heterogeneous effects model

o Consider a binary treatment d € {0,1}

» for some individuals we observe y only when d = 1 (treated)
> for others we observe y only when d = 0 (untreated or control).

o Denote potential outcomes y) if d =1 and y(© if d =0

» for a given individual we observe only one of yi(l) and y.(o).

1
@ The goal is to estimate the average treatment effect

> ATE= E[y") - ]

1
@ The key assumption is the conditional independence assumption
0 (1
> di L {Y,'( )v)/,'( )}|X,'.

» conditional on x, treatment is independent of the potential outcome
> a good choice of x makes this assumption more reasonable.

A. Colin Cameron U.C.-Davis . Presented af Machine Learning: A Brief Overview June 7 2019 46 / 60




ATE estimates

@ ATE can be estimated in several ways
» regression adjustment models E[y(1)|x] and E[y(0)|x]
* then compute the average difference in predicted values
> propensity score matching models Pr[d = 1|x]
* then compare y(o) and y(l) for people with similar propensity score
» doubly-robust methods combine the two.

@ Machine learning can help in getting good models for £[y)|x] and
Ely©|x] and Pr[d = 1|x]

» to date the LASSO is used.
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12. Heterogeneous Treatment Effects

Heterogeneous Effects using Random Forests

@ Here the goal is to obtain the treatment effect at a given level of x

> and not just the overall average (ATE)
» e.g. useful for customized treatment.

@ Random forests predict very well

» Susan Athey’s research emphasizes random forests.

o Stefan Wager and Susan Athey (2018), “Estimation and Inference of
Heterogeneous Treatment Effects using Random Forests,” JASA,
1228-1242.

@ Standard binary treatment and heterogeneous effects with
unconfoundness assumption

» use random forests to determine the controls.
> proves asymptotic normality and gives point-wise confidence intervals

* This is a big theoretical contribution.
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12. Heterogeneous Treatment Effects

Heterogeneous Effects using Random Forests (continued)
@ Let L denote a specific leaf in tree b.

o 7(x) = E[y() — y(O|x] in a single regression tree b is estimated by
_ 1 1
Th(x) = F{id=1x€eL} Lidi=1,x€L Yi F{id=0xeL} Lirdi=0,x;eL Vi
=y in leaf L — ¥y in leaf L.
@ Then a random forest with sub-sample size s gives B trees with
~ B -
Tp(x) = % Yp—1Th(x)
T _ 2 ~
Var[Tp(x)] = 21 (-2%5)" iy Cov(Th(x), dip)
» where dj, = 1 if ith observation in tree b and 0 otherwise
» and the covariance is taken over all B trees.
o Key is that a tree is honest.

@ A tree is honest if for each training observation i/ it only uses y; to
> either estimate T(x)within leaf

> or to decide where to place the splits
> but not both.
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13. Double or Debiased Machine Learning

@ Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey and
Robins (2018), “Double/debiased machine learning for treatment and
structural parameters,” The Econometrics Journal.

@ Interest lies in estimation of key parameter(s) controlling for
high-dimensional nuisance parameters.

@ There are two components to double ML or debiased ML and
subsequent inference

» work with orthogonalized moment conditions to estimate
parameter(s) of interest.
> use sample splitting (cross fitting) to remove bias induced by
overfitting.
@ This yields asymptotic normal distribution for parameters of interest
» where a variety of ML methods can be used

* random forests, lasso, ridge, deep neural nets, boosted trees, ensembles.

o Can apply to partial linear model, ATE and ATET under
unconfoundedness, LATE in an IV setting.
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13. Double or Debiased Machine Learning

Orthogonalization defined

o Define B as parameters of interest and # as nuisance parameters.
e Estimate B is obtained following first step estimate 7 of %
> First stage: 7 solves Y. ; w(wj,77) = 0 on 90% (say) of sample
» Second stage: B solves Y7, ¥(wj, B,7) = 0 on the other 10%.
@ The distribution ofB is usually affected by the noise due to
estimating %
» e.g. Heckman's two-step estimator in selection models.
@ But this is not always the case

> e.g. the asymptotic distribution of feasible GLS is not affected by
first-stage estimation of variance model parameters to get ().

@ Result: The distribution ofB is unaffected by first-step estimation of
1 if the function ¥(+) satisfies
> E[oy(w;, B,1)/0n] = 0; see next slide.
@ So choose functions (-) that satisfy the orthogonalization condition

Eloy(w;, B,17)/0y] = 0.
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13. Double or Debiased Machine Learning

Orthogonalization (continued)

@ Why does this work?

1 n
ﬁ ,E’llp(w"ﬁ 1)
= L e Ip(wi, B.17) G
= \/ﬁlgw i By o) + = - I; 2p - x v/n(B— By)
g BBy
ni=1 U Bo 1o

e By a law of large numbers 1 Y7 W‘

070
expected value which is zero if E[dy(w;, B,1)/0y] = 0.
@ So the term involving 7 drops out.

converges to its

@ For more detail see e.g. Cameron and Trivedi (2005, p.201).
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Orthogonalization in partially linear model

@ Recall OLS of y; = Bx; + u;

> solves sample moment condition Y_; xju; = Y_; x;(y; — Bx;) =0
» with underlying population moment condition E[x(y; — px)] = 0.

Partial linear model y = Bx; + g(x2) + u.
Robinson estimator is OLS in
» (y — Ely|x2]) = B(x1 — E[x1|x2]) + error.
So solve population moment condition E[p(-)] = 0 where
» (1) = (a — Ealxe]){y — Ely[xe] — B(xa — E[xa[x2]) }-
Define 17; = E[x1|x2] and 17, = E[y|x2], so
> p(w,Boy) = o =)y =1, — BOa —p)}
@ This satisfies the orthogonalization condition

> E[oy(w, B.y)/0n,] = E[2(xq —11)p] = 0 as 7y = Elx |x]
> E[oy(w, B.1)/0,] = E[=(xa —11)] = 0 as 7y = Epaxo].
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Orthogonalization for doubly robust ATE (continued)

@ Doubly-robust ATE solves E[¢(w, T,7)] = 0 where
1[d=1](y—1;) 1[d=0](y—1,)

> Plw.T) = 11— —MtT
> 1y = py(x) = Elyilx], 75 = o (x) = Elyolx], 173 = Prly = 1|x].
@ This satisfies the orthogonalization condition

> E[oy(w, 7,9) /3] = E[-HH +1] =0

* as E[1[d =1]] = p(x) =175
X _ (ld=0) 4 _
Eloy(w, T.9)/9n,] = E[5{=> —1] =0
* as E[][d:O]]:l—P(X):1_773

» E[0y(w, T1)/9n,] = E[-HE=m)  Hedbonl) — 0o
* as E[1[d = 1](y —n)] = Eln|x]— 7, =0
* and E[1[d = 0](y — )] = Elyolx]— 1o = 0.
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14. Conclusions

14. Conclusions

@ Guard against overfitting

» use K-fold cross validation or penalty measures such as AlIC.
@ Biased estimators can be better predictors

> shrinkage towards zero such as Ridge and LASSO.

For flexible models popular choices are

» neural nets
» random forests.

Though what method is best varies with the application
» and best are ensemble forecasts that combine different methods.
@ Machine learning methods can outperform nonparametric and
semiparametric methods
> so wherever econometricians use nonparametric and semiparametric
regression in higher dimensional models it may be useful to use ML

methods
> though the underlying theory still relies on assumptions such as sparsity.
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15. References

15. References

e Undergraduate / Masters level book

» |SL: Gareth James, Daniela Witten, Trevor Hastie and Robert
Tibsharani (2013), An Introduction to Statistical Learning: with
Applications in R, Springer.

> free legal pdf at http://www-bcf.usc.edu/~gareth/ISL/

» $25 hardcopy via
http://www.springer.com/gp/products/books/mycopy

e Masters / PhD level book

» ESL: Trevor Hastie, Robert Tibsharani and Jerome Friedman (2009),
The Elements of Statistical Learning: Data Mining, Inference and
Prediction, Springer.

> free legal pdf at
http://statweb.stanford.edu/~tibs/ElemStatLearn/index.html

» $25 hardcopy via
http://www.springer.com/gp/products/books/mycopy
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15. References

References (continued)

@ A recent book is

» EH: Bradley Efron and Trevor Hastie (2016), Computer Age Statistical
Inference: Algorithms, Evidence and Data Science, Cambridge
University Press.

@ Interesting book: Cathy O’'Neil (2016), Weapons of Math
Destruction: How Big Data Increases Inequality and Threatens
Democracy.

e My website has some material (including these slides)

> http://cameron.econ.ucdavis.edu/e240f/machinelearning.html
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