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Introduction

Introduction

@ Machine learning methods include data-driven algorithms to predict
vy given X.

> there are many machine learning (ML) methods
> the best ML methods vary with the particular data application
» and guard against in-sample overfitting.

@ The main goal of the machine learning literature is prediction of y
and not estimation of pB.
@ For economics prediction of y is sometimes a goal

» e.g. do not provide hip transplant to individuals with low predicted
one-year survival probability
» then main issue is what is the best standard ML method.

@ But often economics is interested in estimation of 8 or estimation of
a partial effect such as average treatment effects

» then new methods using ML are being developed by econometricians.
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Introduction

Econometrics for Machine Learning

@ The separate slides on ML Methods in Economics consider the
following microeconomics examples.

@ Treatment effects under an unconfoundedness assumption

> Estimate B in the model y = Bx; + g(x2) + u
> the assumption that x; is exogenous is more plausible with better g(x»)
» machine learning methods can lead to a good choice of g(x).

@ Treatment effects under endogeneity using instrumental variables

» Now x; is endogenous in the model y = B;x; + g(x2) + u

> given instruments x3 and xp there is a potential many instruments
problem

» machine learning methods can lead to a good choice of instruments.

@ Average treatment effects for heterogeneous treatment

» ML methods may lead to better regression imputation and better
propensity score matching.
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Econometrics for Machine Learning (continued)

@ ML methods involve data mining

» using traditional methods data mining leads to the complications of
pre-test bias and multiple testing.

@ In the preceding econometrics examples, the ML methods are used in
such a way that these complications do not arise

> an asymptotic distribution for the estimates of 3; or ATE is obtained
> furthermore this is Gaussian.

@ These methods can be viewed as semiparametric methods
» without the curse of dimensionality!

@ However, the underlying theory relies on difficult to understand and
evaluate assumptions

» such as “sparsity” - that few of the potential variables matter.

@ Whether these assumptions are reasonable in practice is an open
question.
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Introduction

@ The course is broken into three sets of slides.
o Part 1: Basics

> variable selection, shrinkage and dimension reduction
» focuses on linear regression model but generalizes.

o Part 2: Flexible methods

> nonparametric and semiparametric regression

» flexible models including splines, generalized additive models, neural
networks

> regression trees, random forests, bagging, boosting

> classification (categorical y) and unsupervised learning (no y).

@ Part 3: Microeconometrics

» OLS with many controls, IV with many instruments, ATE with
heterogeneous effects and many controls.

@ Parts 1 and 2 are based on the two books given in the references

» Introduction to Statistical Learning
» Elements of Statistical Learning.

@ While most ML code is in R, these slides use Stata.
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Introduction

Overview

@ Terminology
@ Model Selection

©® Forwards selection, backwards selection and best subsets
@ Goodness-of-fit measures

@ Penalized goodness-of-fit measures

@ Cross-validation

© Shrinkage methods

@ Variance-bias trade-off
@ Ridge regression, LASSO, elastic net

@ Dimension reduction

@ Principal components
@ Partial LS

© High-dimensional data
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1. Terminology

@ The topic is called machine learning or statistical learning or data
learning or data analytics where data may be big or small.

@ Supervised learning = Regression

» We have both outcome y and regressors (or features) x
» 1. Regression: y is continuous
» 2. Classification: y is categorical.

o Unsupervised learning

» We have no outcome y - only several x

» 3. Cluster Analysis: e.g. determine five types of individuals given

many psychometric measures.
@ These slides

» focus on 1.
> briefly mention 2.
> even more briefly mention 3.
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1. Terminology

Terminology (continued)

o Consider two types of data sets
» 1. training data set (or estimation sample)
* used to fit a model.
» 2. test data set (or hold-out sample or validation set)

* additional data used to determine how good is the model fit
* a test observation (xg,yp) is a previously unseen observation.

Machine Learning 1: Basics April 2019
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2. Model Selection 2.1 Forwards selection, backwards selection and best subsets

2.1 Model selection: Forwards, backwards and best subsets

e Forwards selection (or specific to general)
> start with simplest model (intercept-only) and in turn include the
variable that is most statistically significant or most improves fit.
> requiresuptop+ (p—1)+---+1=p(p+1)/2 regressions where p
is number of regressors
@ Backwards selection (or general to specific)
» start with most general model and in drop the variable that is least
statistically significant or least improves fit.
> requires up to p(p + 1)/2 regressions
@ Best subsets
» for k =1, ..., p find the best fitting model with k regressors
> in theory requires () + (7) + -+ () = 2 regressions
» but leaps and bounds procedure makes this much quicker
» p < 40 manageable though recent work suggests p in thousands.
e Hybrid
» forward selection but after new model found drop variables that do not
improve fit.
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2.1 Forwards selection, backwards selection and best subsets
Stata Example

@ These slides use Stata
» most machine learning code is initially done in R.
o Generated data: n =40

@ Three correlated regressors.

X1j X1j 1 05 05
> X0 ~ N X2 , 0.5 1 0.5
X3 X3 05 05 1

@ But only x; determines y
> y =2+ x; + uj where u; ~ N(0,3%).
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2.1 Forwards selection, backwards selection and best subsets
Fitted OLS regression

@ As expected only xj is statistically significant at 5%

> though due to randomness this is not guaranteed.

.0*0oLSOregressionfoflydondx10x3
.0regressOy0x10x20x3,0vce(robust)

LinearOregressiond000000000000000000000000000000Numberdofiobsionnn=

F(3,036)0000000000=
Prob0>0F0000000000=
ROsquared00nooooni=
ROOtOMSEDODNONODO0N=

0000000040
0oooo4.91
00000.0058
00000.2373
03.0907

gooooooooooy

000000000000000Robust
000000Coef.000Std.0Err.000000t0000P>|t|00000[95%0Conf

.0Intervall]

goooooooooxl
0000000000x2
0ooooooooox3
ooooood_cons

0001.555582000.5006152000003.110000.00400000.540287300002.570877
000.4707111000.5251826000000.900000.37600000.594408600001.535831
000.0256025000.6009393000000.040000.966000001.24436400001.193159
0002.531396000.5377607000004.710000.000000001.44076600003.622025
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2. Model Selection 2.2 Statistical Significance

2.2 Selection using Statistical Significance

@ Not recommended as pre-testing changes the distribution ofB but
included for completeness
> instead ML uses predictive ability.

@ Stepwise forward based on p < 0.05

» Stata add-on command stepwise, pe(.05)
» chooses model with only intercept and x;

.0*0Stepwisedforwardiusingistatisticalisignificancedatifivelpercent
.Ostepwise,Ope(.05):0regressiy0x10x20x3
0000000000000000000000beginOwithiemptyimodel

pO= 0.00200<000.050000adding  x1

0oooooSource |0000000SSO0000000000dfO00000OMSOOO000ONUmberdoflobsin0=0000000040

000F(1,038)00000000= 000011.01
0000000Model 0101.318018000000000100101.318018 Prob0>0F00000000=00000.0020
OJo0O0Residual 0349.5562970000000038009.19884993 ROsquaredi000000=00000.2247

D00AdjOROsquaredi00=00000.2043
pooooooTotal 0450.87431500000000390011.5608799  RootOMSEDONDONOO=  003.033
00000000000y |[D0D0DD0Coef.000Std.0Err.000000t0000P>|t|00000[95%0Conf.0Interval]l
00oooooooox1l |0001.793535000.5404224000003.320000.00200000.699507300002.887563

ooooooo_cons

0002.509313000.5123592000004.900000.000000001.472097000003.54653
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2. Model Selection 2.2 Statistical Significance

@ Stepwise backward based on p < 0.05

» Stata add-on command stepwise, pr(.05)
» chooses model with only intercept and x;

.0*0StepwiselbackwardiusingOstatisticalOsignificancefatifivelpercent
.Ostepwise,Opr(.05):0regressiy0x10x20x3
0000000000000000000000beginOwithofullomodel

pO0= 0.96180>=00.050000removing x3

pO= 0.44100>=00.050000removing x2

gooooosource

0000000SSO0000000000df0000000MSO00000Numberioflobsinn=0000000040
000F(1,038)00000000= 000011.01

0oo0o0oModel
poooResidual

0101.318018000000000100101.318018 Prob0>0F00000000=00000.0020
0349.5562970000000038009.19884993  ROsquareddn00nn00=00000.2247
000AdjOROsquaredddno=00000.2043

oooooooTotal

0450.87431500000000390011.5608799 RootOMSEOOOOODOOO= 003.033

gooooooooooy

pooooocoef.ooostd. OErr.000000t0000P>|t|00000[95%0Conf.0Interval]

goooooooooxl
pooobod_cons

0001.793535000.5404224000003.320000.00200000.699507300002.887563
0002.509313000.5123592000004.900000.000000001.472097000003.54653

@ Option hierarchical allows selection in order of the specified
regressors.
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VIV G ERSE ST 2.3 Goodness-of-fit measures

2.3 Goodness-of-fit measures

e We wish to predict y given x = (xi, ..., Xp).
e A training data set d yields prediction rule (x)

» we predict y at point xg using o = 7 (xo).
» e.g. for OLS Jp = xo(X'X)"1X'y.

e For regression consider squared error loss (y —y)?
» some methods adapt to other loss functions
* e.g. absolute error loss and log-likelihood loss

» and loss function for classification is 1(y # y).

@ We wish to estimate the true prediction error

> Errg = Er[(yo — Y0)?]
» for test data set point (xq, yg) ~ F.
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2.3 Goedlizss-afr-i mezsues
Models overfit in sample

o We want to estimate the true prediction error
> Er[(yo — y0)?] for test data set point (xg, yp) ~ F.
@ The obvious criterion is in-sample mean squared error
» MSE = %Z}’:l(yi —3i)? where MSE = mean squared error.
@ Problem: in-sample MSE under-estimates the true prediction error
> Intuitively models “overfit” within sample.
@ Example: suppose y = X +u
> then i = (y — XBp;s) = (I — M)u where M = X(X'X)~1X
* so |uj| < |uj| (OLS residual is less than the true unknown error)

2 1 - 1 -
» and use 0° = s> = L. Y7 | (y; — $;)? and not £ Y7 (y; — 3i)?

@ Two solutions:

» penalize for overfitting e.g. R2, AIC, BIC, Cp
> use out-of-estimation sample prediction (cross-validation).
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VIRV G EIRSE IS 2.4 Penalized Goodness-of-fit Measures

2.4 Penalized Goodness-of-fit Measures

@ Two standard measures for general parametric model are
> Akaike's information criterion
* AlC= —2InL+ 2k
» BIC: Bayesian information criterion
* BIC= —2InL+ (Inn) x k

Models with smaller AIC and BIC are preferred.
@ AIC has a small penalty for larger model size

» for nested models selects larger model if —A2InL > 2Ak

* whereas LR test= —2AIn L of size a requires —A2In L > x2(k).

BIC has a larger penalty.
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2.4 Penalized Goodness-of-fit Measures
AIC and BIC for OLS

o For classical regression with i.i.d. normal errors
»InL=—4In2m—5Ino? — ;L Y7 (y; — x!B)?
Different programs then get different AIC and BIC.

Econometricians use B and 6° =MSE= Iy (yvi— xfﬁ)z

» then AlIC= 77|n27tf Ina f§+2k.
1

== -1 (yi — Xf’ﬁp)Q

> where BP is obtained from OLS in the largest model under
consideration that has p regressors including intercept

Machine learners use ,B and 7

Furthermore, constants such as —7 In 277 are often dropped.
@ Also a finite sample correction is
» AICC=AIC+2(K +1)(K+2)/(N— K —2).

A. Colin Cameron U.C.-Davis . presented at Machine Learning 1: Basics April 2019

17 / 67



VIRV G EIRSE IS 2.4 Penalized Goodness-of-fit Measures

More measures for OLS

@ For OLS a standard measure is R? (adjusted R?)

> Z (.yl y: 2 Z (YI yr)
R2 —1— o= k i=1 h R2 — 1 nI&i=l
o LTy (Whereas L)
» R? has a small penalty for model complexity

* R2 favors the larger nested model if the subset test F > 1.
@ Machine learners also use Mallows C, measure
» Cp = (nXMSE/G?) — n + 2k
* MSE=1 Y71 (yi —xjB)? and 0 = 5 X7y (vi — 77)?
» and some replace p with “effective degrees of freedom” p = 0% Y
a;/(ﬁi’)’i)-

@ Note that for linear regression AIC, BIC, AICC and Cp are designed
for models with homoskedastic errors.
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VIRV G EIRSE IS 2.4 Penalized Goodness-of-fit Measures

Example of penalty measures

@ We will consider all 8 possible models based on x3, x2 and x3.

.0*0Regressorilistsiforoallopossibledmodels
.0globalox1istl

.0globalox1ist20x1

.0globalox1ist30x2

.0globalox1ist40x3

.0globalox1ist50x10x2

.0globalox1ist60x20x3

.0globalox1ist70x10x3

.0globalox11ist80x10x20x3
:D*DFu11Dsamp1eDestimatesDwithDAIC,DBIC,DCp,DRZadepena1ties
.0quietlyOregressOy0$x1ist8

.0Oscalar0s2fulli=0e(rmse)A200//0NeedediforimallowsOCp
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VIRV G EIRSE IS 2.4 Penalized Goodness-of-fit Measures

Example of penalty measures (continued)

e Manually get various measures. All (but MSE) favor model with just

X1.

.0ooforvaluesoko=01/80{
002.000quietlyOregressOyd${xlist k'}

po3.000scalaromse ' k'D
0o04.000scalaror2adj 'k
poS5.o00scalaroaic k'o
0o6.000scalarobic k'o

=0e(rss)/e(N)

'0=0e(r2_a)

=002*e(11)0+02*e(rank)
=002*e(11)0+0e(rank)*Tn(e(N))

po7.000scalardocp k'O=00e(rss)/s2fullonfe(N)0+02*e(rank)
"0"${xTist k'}"0_col1(15)0"OMSE="0%6.3fomse k'0o0///
>0000"0R2adj="0%6.3f0r2adj k' 0"00AIC="0%7.2f0aic k'00///
>0000"0BIC="0%7.2f0bic k'0"0Cp="0%6.3f0cp k'

008.000displayn”Modeln"o

009.0}
Model0000000000MSE=11

Mode10x10000000MSE=08.
Mode10x20000000MSE=09.
Mode10x30000000MSE=10.
Mode10x10x20000MSE=08.
Mode10x20x30000MSE=09.
Mode10x10x30000MSE=08.
Mode10x10x20x30MSE=08.

.2720R2adj=00.00000AIC=0212.410BIC=0214.
7390R2adj=00.20400AIC=0204.230BIC=0207.
9920R2adj=00.09000AIC=0209.580BIC=0212.
8000R2adj=00.01700AIC=0212.700BIC=0216.
5980R2adj=00.19600AIC=0205.580BIC=0210.
8420R2adj=00.08000AIC=0210.980BIC=0216.
7390R2adj=00.18300AIC=0206.230BIC=0211.
5970R2adj=00.17400AIC=0207.570BIC=0214.
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VIRV G EIRSE IS 2.4 Penalized Goodness-of-fit Measures

Example of penalty measures (continued)

@ User-written vselect command (Lindsey and Sheather 2010)

> best subsets gives best fitting model (lowest MSE) with one, two and
three regressors
and for each of these best fitting models gives various penalty measures
all measures favor model with just xi.

.0*0BestOsubsetlselectiondwithluserdwrittenladdionlvselect
.OvselectOynx10x20x3,Obest

Responsen: y
Selectedipredictors: 0x10x20x3

optimalomodels:
000#0PredsO0000R2ADIN00000000COO00000AICOOO000AICCOOONONOBIC
000000000100.2043123 0.5925225 0204.226500204.893200207.6042
0000000002 0.1959877002.00232500205.576100206.718900210.6427
000000003 0.1737073000000000400207.573500209.3382000214.329

predictorsiforfeachimodel:

1 :oox1
2 :00x10x2
3 :00x10x20x3

A. Colin Cameron U.C.-Davis . presented at Machine Learning 1: Basics April 2019 21 / 67



VIRV G EIRSE IS 2.4 Penalized Goodness-of-fit Measures

Example of penalty measures (continued)

@ vselect also does forward selection and backward selection

> then need to specify whether use R2adj, AIC, BIC or AICC
> e.g. vselect y x1 c2 c3, forward aic
> e.g. vselect y x1 c2 c3, backward bic

@ And can specify that some regressors always be included
> e.g. vselect y x2 x3, fix(x1l) best

@ User-written gvselect command (Lindsey and Sheather 2015)
implements best subsets selection for any Stata command that
reports In L

> then best model of any size has highest In L
» and best model size has lowest AIC or BIC.
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i Gl o
2.5 Cross-validation

Begin with single-split validation
» for pedagogical reasons.
@ Then present K-fold cross-validation

> used extensively in machine learning

> generalizes to loss functions other than MSE such as % 1 lyi — il

> though more computation than e.g. BIC.

And present leave-one-out cross validation
» widely used for local fit in nonparametric regression.

@ Given a selected model the final estimation is on the full dataset

» usual inference ignores the data-mining.
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i Gl o
Single split validation

@ Randomly divide available data into two parts

» 1. model is fit on training set
» 2. MSE is computed for predictions in validation set.

@ Example: estimate all 8 possible models with x;, x» and x3

. . ! .
» for each model estimate on the training set to get 8 s, predict on the
validation set and compute MSE in the validation set.
» choose the model with the lowest validation set MSE.

@ Problems with this single-split validation
» 1. Lose precision due to smaller training set
* so may actually overestimate the test error rate (MSE) of the model.

» 2. Results depend a lot on the particular single split.
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VIRV G ERSE ST 2.5 Cross-validation

Single split validation example

@ Randomly form

> training sample (n = 14)
> test sample (n = 26)

.0*0Formindicatorithatideterminesitrainingianditestidatasets
.Osetlseed0110101

.0gentddtraind=0runiform()0>00.500//010for0trainingisetiandiO0foritestidata

.Ocountdifodtraini==01
14
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VIRV G ERSE ST 2.5 Cross-validation

Single split validation example (continued)

@ In-sample (training sample) MSE minimized with x1, x2, x3.

@ Out-of-sample (test sample) MSE minimized with only x;.

.0*0splitOsampledvalidationididtraininglanditestOMSEDforOithen80possiblelmodels
.0forvaluesoko=01/80{

0o2.
oo3.
0o4.
.000quidsumdy k'errorsqnifodtraini==01
006.
0o7.
oo8.
009.

oos

pooquietlyOreglyd${x1list k'}oifodtrain==1
pooquitpredictiy k'hat
pooquiogendy k'errorsqOi=0(Cy k'hatoooy)A2

pgooscalaromse k'traino=0r(mean)

pgooquiosumiy k'errorsqoifodtraini==00
pooquidscalaromse k'testO=0r(mean)
poodisplayo"modelo"o"${xTist k'}"0_col(16)00///

>00000"0TrainingOMSEN=0"0%7.3f0mse k'train0"0TestOMSEN=0"0%7.3f0mse k'test

010.
Mode100000000000TrainingidMSED=0010.4960TestOMSEO=0011.
Mode10x100000000TrainingOMSEN=0007.6250TestOMSED=0009.
Mode10x200000000TrainingOMSEN=0010.3260TestOMSEI=0010.
Mode10x300000000TrainingiMSEO=0007.9430TestOMSEO=0013.
Mode10x10x200000TrainingOMSEN=0007.5200TestOMSEN=0010.
Mode10x20x300000TrainingOMSEN=0007.7980TestOMSEOI=0015.
Mode10x10x300000TrainingOMSEN=0007.1380TestOMSED=0010.
Mode10x10x20x300TrainingOMSEN=0006.8300TestOIMSED=0012.

o}
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VIRV G ERSE ST 2.5 Cross-validation

K-fold cross-validation

@ K-fold cross-validation

» splits data into K mutually exclusive folds of roughly equal size
» for j =1,..., K fit using all folds but fold j and predict on fold j
» standard choices are K =5 and K = 10.

@ The following shows case K =5

Fit on folds | Test on fold
j=1 23,45 1

j=2 1,3,4,5
j=3 1,2,4,5
j=4 1,2,3,5
j=5 1,2,3,4

B WN

@ The K-fold CV estimate is
CVk = % Zj'(:l MSE ), where MSE ;y is the MSE for fold j.
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i Gl o
K-fold cross validation example

@ User-written crossfold command (Daniels 2012) implements this

» do so for the model with all three regressors and K =5
» set seed for replicability.

.0*0Fivedfoldiocrossivalidationoexamplenforomodelnowithoalloregressors
.OsetOseed010101

.0crossfoldiregressnynx10x20x3,0k(5)

000000RMSE

0oogoooDestl | 03.739027
0ooononoest2 02.549458
0000oooDest3 | 03.059801
0ooooondest4 | 02.532469
00000000estS | 03.498511
.Omatrix0ORMSEsOO=0r(est)
.OsvmatORMSEs, names (rmse)
.Oquietlyigenerateimsed=0rmseA2
.0quietlyOsumimse

.0displayd_no"cv5n(averageOMSEDin050folds)0=0"0r(mean)0"owithost.0dev.0=0"0r(sd)

cv50(averageIMSENin050folds) 0=09.69908360with0st.0dev.0=03.3885108
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i Gl o
K-fold Cross Validation example (continued)

@ Now do so for all eight models with K =5
» model with only x; has lowest CV/(5)

.0*0FivedfoldiocrossivalidationOmeasuredforialliopossibledmodels
.OdropOrm*00000//0DropOvariablesicreatedibyipreviousicrossfold

.0dropO_est*000//0DropOvariablesicreatedibylpreviousicrossfold

.0forvaluesoko=01/80{

002.000setOseedn10101
po3.000quietlydcrossfoldiregressoyo${xlist k'},ok(5)
004.000matrixORMSEs k'O=0r(est)
005.000svmatORMSEs k', Onames(rmse k')
006.000quietlyldgeneratedmse k'O=0rmse k'A2
007.000quietlydsumimse k'
0o8.000scalardev k' O=0r(mean)

0n9.o00scalardosdev k'O=0r(sd)
010.000display0"Modeln"0"${xTist k'}"0_co1(16)0"00CV50=0"0%7.3f0cv k'0///
>000000"0withOst.Odev.0=0"0%7.3f0sdcv k'

011.0}
Mode1000000000000CVS50=0011.9600withOst.0dev.0=0003.561
Mode1Ux1000000000CV50=0009.1380withist.0dev.0=0003.069
Mode10x2000000000CV50=0010.4070withOst.0dev.0=0004.139
Mode10x3000000000CV50=0011.7760with0st.0dev.0=0003.272
Mode10x10x2000000CV50=0009.1730withOst.0dev.0=0003.367
Mode10x20x3000000CV50=0010.8720with0st.0dev.0=0004.221
Mode10x10x3000000CV50=0009.6390withist.0dev.0=0002.985
Mode10x10x20x3000CV50=0009.6990withOst.0dev.0=0003.389
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Leave-one-out Cross Validation (LOOCV)

@ Use a single observation for validation and (n— 1) for training

> )7(,,-) is y; prediction after OLS on observations 1,..,i —1,i+1,..

» Cycle through all n observations doing this.
@ Then LOOCV measure is

n

CViny = 1y MSEy = 3 100, (v = V=)’
@ Requires n regressions in general

~\2

> except for OLS can show CV,) = %Z,’-’Zl (%)
* where y; is fitted value from OLS on the full training sample

* and hj is it" diagonal entry in the hat matrix X(X'X)~1X.

@ Used for bandwidth choice in local nonparametric regression

> such as k-nearest neighbors, kernel and local linear regression
> but not used for machine learning (see below).
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VIRV G ERSE ST 2.5 Cross-validation

Leave-one-out cross validation example

@ User-written command loocv (Barron 2014)

» slow as written for any command, not just OLS.

.0*0LeaveloneloutOcrossOvalidation
.0loocvOregressiyixl

OLeavedOnenoutOCrossOvalidationOResults

000o00o0ooMethod oooovalue

RootOMeanOSquaredlErrors 3.0989007
MeanOAbsolutelErrors 2.5242994
PseudolR2 .15585569

.0displayn"LOOCVOMSED=0"0r(rmse)A2
LOOCVIMSED=09.6031853
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VIRV G ERSE ST 2.5 Cross-validation

How many folds?

@ LOOCV is the special case of K-fold CV with K = N
> it has little bias
* as all but one observation is used to fit.
» but large variance

* as the n predicted }7(_/) are based on very similar samples
* so subsequent averaging does not reduce variance much.

@ The choice K =5 or K = 10 is found to be a good compromise
> neither high bias nor high variance.

@ Remember: For replicability set the seed as this determines the folds.
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VIRV G ERSE ST 2.5 Cross-validation

One standard error rule for K-fold cross-validation

@ K folds gives K estimates I\/ISE(I), MSE(K)

> so we can obtain a standard error of CV(K)

1 K
se(CV(K)) = \/K—l J:]_(MSE(J) — CV(K))2

@ A further guard against overfitting that is sometimes used

» don't simply choose model with minimum CV/x

> instead choose the smallest model for which CV is within one se(CV)
of minimum CV

> clearly could instead use e.g. a 0.5 standard error rule.

@ Example is determining degree p of a high order polynomial in x

> if CV(K) is minimized at p = 7 but is only slightly higher for p = 3 we
would favor p = 3.
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3. Shrinkage Estimation

@ Consider linear regression model with p potential regressors where p is
too large.
@ Methods that reduce the model complexity are

» choose a subset of regressors
» shrink regression coefficients towards zero

* ridge, LASSO, elastic net
> reduce the dimension of the regressors

* principal components analysis.

@ Linear regression may predict well if include interactions and powers
as potential regressors.

@ And methods can be adapted to alternative loss functions for
estimation.
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SIS O UET-CN =SBV 3.1 Variance-bias trade-off

3.1 Variance-bias trade-off

Consider regression model

y = f(x)+ u with E[u] =0 and v L x.

For out-of-estimation-sample point (yp, Xg) the true prediction error

El(yo — 7 (x0))?] = Var[F(xo)] + {Bias(f(x0)) }* + Var(u)

The last term Var(u) is called irreducible error
» we can do nothing about this.
@ So need to minimize sum of variance and bias-squared!

> more flexible models have less bias (good) and more variance (bad).
» this trade-off is fundamental to machine learning.
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SIS O UET-CN =SBV 3.1 Variance-bias trade-off

Variance-bias trade-off and shrinkage

@ Shrinkage is one method that is biased but the bias may lead to lower
squared error loss

> first show this for estimation of a parameter
» then show this for prediction of y.

@ The mean squared error of a scalar estimator B is

= E[(B-B)*]

= E[{(B— E[B]) + (E[B] — B)}*]

= E[(B—E[B])?) + (E[B] — B)*+2 %0
Var(,B) + Bias?(B)

MSE(B)

» as the cross prgduct term 2 X E[(B — E[B])(E[B] -B)] =
constantx E[(B — E[B])] = 0.
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SIS O UET-CN =SBV 3.1 Variance-bias trade-off

Bias can reduce estimator MSE: a shrinkage example
@ Suppose scalar estimator B is unbiased for B with
» E[B] = B and Var[B] = v so MSE(B) =
@ Consider the shrinkage estimator
> B—anhereO<a<1

o Bias: Bias(B) = E[p] — B =aPf— B :A(a —1)B.
o Variance: Var[B] = Var[aﬁ] = a*Var(B) = a°v.

MSE(B) = Var[B]+ Bias?(B) = a*v + (a—1)?p>

MSE(B) < MSE[B] if B2 <1+z

o So MSE(B) <MSE[B] for a=0if B2 < v (and for a = 0.9 if
B < 19v).

@ The ridge estimator shrinks towards zero.

@ The LASSO estimator selects and shrinks towards zero.
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SIS O UET-CN =SBV 3.1 Variance-bias trade-off

James-Stein estimator

This remarkable 1950's/1960's result was a big surprise

» an estimator has lower MSE than the maximum likelihood estimator.

Suppose y; ~ N(p;, 1), i=1,...,n.
The MLE is Ji; = y; with MSE(ji;) = 1.
The James-Stein estimator is ji; = (1 — ¢)y; + ¢y

> where ¢ = ,11732,’-’:1(%- —y)?and n>4
> this has MSE(j;) < MSE(ji;) for n > 4!

The estimator can be given an empirical Bayes interpretation.
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SIS O UET-CN =SBV 3.1 Variance-bias trade-off

Bias can therefore reduce predictor MSE

Now consider prediction of yp = Bxo + u where E[u] =0

> using yp = on where treat scalar xp as fixed.
Bias: Bias(yo) = E[x0B] — Bxo = xo(E[B] — B) = xoBias(B).
Variance: Var[yo] = Var[xB] = x¢ Var(B).

@ The mean squared error of a scalar estimator B is

MSE(yo) = Var(y) + Bias?(yo) + Var(u)
=x} Var(ﬁl—k (xoBias(~ﬁ))2 + Var(u)
= x3{Var(B) + Bias*(B)} + Var(u)

= x3 Bias?(B) + Var(u).

So bias in B that reduces MSE(p) also reduces MSE (7).

A. Colin Cameron U.C.-Davis . presented at Machine Learning 1: Basics April 2019 39 / 67



32 Biniihage s
3.2 Shrinkage Methods

Shrinkage estimators minimize RSS (residual sum of squares) with a
penalty for model size

> this shrinks parameter estimates towards zero.
@ The extent of shrinkage is determined by a tuning parameter

> this is determined by cross-validation or e.g. AIC.

Ridge, LASSO and elastic net are not invariant to rescaling of
regressors, so first standardize

so xj; below is actually (xj; — X;) /s

and demean y; so below y; is actually y; — y

x; does not include an intercept nor does data matrix X
we can recover intercept B; as By = y.

o So work with y =x'B+e = Bx1 + Bxo+ -+ + B, x +¢

v vV VY
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32 Biniihage s
Demeaning data

@ The commands below do this automatically

» but for completeness following code demeans.

.0*0Standardizelregressorsiandidemeandy
.0foreachovaroofivarlistix10x20x30{
002.0000quilegennz var'O=0std( var')
003.0000}

.OquietlyOsummarizely
.0quietlydgeneratelydemeanedi=0y000r(mean)
.Osummarizelydemeanediz*

pooovariable |000000000bs00000000Meand000Std.O0Dev.0000000Min00000000Max

O00ydemeaned (0000000004000001.71e00800003.4001290006.6506330007.501798
000000000zx1 |0000000004000002.05e0090000000000010001.5945980002.693921
000000000zx2 |0000000004000002.79e01000000000000100002.3421100002.80662
000000000zx3 |0000000004000002.79e0090000000000010001.6889120002.764129

@ The original variables x; to x3 had standard deviations 0.89867,
0.94222 and 1.03462

» means differ from zero due to single precision rounding error.
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3. Shrinkage Estimation 3.3 Ridge Regression

3.3 Ridge Regression

The ridge estimator BA of B minimizes

°
n 2 P p2 2
QuB) = Y0, (i — X + AN B = RSS + A(][B]]2)

» where A > 0 is a tuning parameter to be determined

> ||Bll2 = ,/Zle ﬁjz is L2 norm.
@ Equivalently the ridge estimator minimizes

27:1 (y; — x:B)? subject to Zj'):l /312 <s.
@ The ridge estimator is
By = (X'X+ Al"IXy.

o Features

> BA_’BOLS aS/\—>0andB/\—>0asA—>oo.

» best when many predictors important with coeffs of similar size
> best when LS has high variance R

> algorithms exist to quickly compute B, for many values of A

> then choose A by cross validation.
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2.9 32 [egressien
Ridge Derivation

@ 1. Objective function includes penalty
> Q(B) = (y—XB)'(y = XB) + AB'B
> 9Q(B)/9p = —2X'(y — XB) +2Ap =0
» = X'XB+AIB =Xy
> = By = (X'X+ A1) IXly.

@ 2. Form Lagrangian (multiplier is A) from objective function and
constraint

» Q(B) = (y—XB)'(y — XB) and conftraint BB<s
> L(B.A) = (y—XB)'(y —XB) + A(B'B —s)

AL(B,A) /3B = —2X'(y — XB) + 218 = O

= B, = (XX +A1)~IXy

Here A = dLopt(B. A, s)/0s.

v

v

v
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2.9 32 [egressien
More on Ridge

@ Hoerl and Kennard (1970) proposed ridge as a way to reduce MSE of
B.
o We can write ridge as B, = (X'X 4+ Al)"IX'Xx B, s
> so shrinkage of OLS
Y X

@ For scalar regressor and no intercept f, = a5 where a = YA

i

> like earlier example of B = ap.

o Ridge is the posterior mean for y ~ N(Xp, o1) with prior
B~ N(0,71)

» though <y is a specified prior parameter whereas A is data-determined.

o Ridge is estimator in model y ~ (XB, ¢?1) with stochastic constraints
B~ (0.7%).
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3. Shrinkage Estimation 3.4 LASSO

3.4 LASSO (Least Absolute Shrinkage And Selection)

@ The LASSO estimator B/\ of B minimizes
QB =Y (vi—xiB)*+ ?\Zle |B;| = RSS + Al|Bl]1

» where A > 0 is a tuning parameter to be determined
> ||ﬁ||1 = ZJ[?:]. |ﬁj| is L1 norm.

@ Equivalently the LASSO estimator minimizes

27:1 (yi— Xf-,B)2 subject to Zf:l ],BJ| <s.

o Features

> best when a few regressors have ; # 0 and most f; =0
> leads to a more interpretable model than ridge.
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3. Shrinkage Estimation

LASSO versus Ridge (key figure from ISL)

@ LASSO is likely to set some coefficients to zero.

FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-
gions, |B1] + |Bz| < s and BT + 57 < s, while the red ellipses are the contours of
the RSS.
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3. Shrinkage Estimation 3.4 LASSO

LASSO versus Ridge

o Consider simple case where n = p and X = 1.

e OLS: BOLS = (lll)_llly =1y so BJQLS =y

o Ridge shrinks all B's towards zero
B = (M+A) Wy=y/(1+A)
~R
B = i/ (1+A)

@ LASSO shrinks some a bit towards 0 and sets others = 0
yi—A/2 ify; > A/2

B, =9 ¥ tA/2 ify; <—=A/2
0 if |yl <A/2
@ Aside: best subset of size M in this example

~BS

B =By < 1Bl = 1Bl

where B(M) is the M largest OLS coefficient.
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3. Shrinkage Estimation 3.4 LASSO

Computation of LASSO estimator

@ Most common is a coordinate wise descent algorithm

> also called a shooting algorithm due to Fu (1998)
» exploits the special structure in the nondifferentiable part of the LASS
objective function that makes convergence possible.

@ The algorithm for given A (A is later chosen by CV)
> denote B = (B;, B/) and define S;(B;, B/) = IRSS/ap;
> start with B = By, s
» at step mforeach j=1,...,plet Sp = Sj(O,Eij) and set

A% if Sy > A

2x}xj
R — —A=Sy
B 2 1 S0 >A
0 if S§p > A

> form new Bm = [ﬁl - ~Bp] after updating all BJ-.
o Alternatively LASSO is a minor adaptation of least angle regression

» so estimate using the forward-stagewise algorithm for LAR.

A. Colin Cameron U.C.-Davis . presented at Machine Learning 1: Basics April 2019 48 / 67



3. Shrinkage Estimation 3.4 LASSO

LASSO extensions

o Can weight each B differently

» Belloni, Chernozhukov et al. do this
> Implemented in lassopack package.

@ The group lasso allows to include regressors as groups (e.g. race
dummies as a group)

> with L groups minimize over 8

Y (y,- B Z/L=1 X;'ﬁl)2 Jr)\Z/L=1 Y <Zf1=1 |'B/j|> :

@ There are other extensions - LASSO is popular.
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3. Shrinkage Estimation 3.5 Elastic net

3.5 Elastic net

@ Elastic net combines ridge regression and LASSO with objective
function

QA,a(ﬁ) :Z, 1( _xlﬁ +/\ij 1{DC|‘B ’+(1_‘X>,B }

> ridge penalty A averages correlated variables
» LASSO penalty aleads to sparsity.

@ Here | use the elasticregress package (Townsend 2018)

» ridgeregress (alpha=0)
» lassoregress (alpha=1)
> elasticregress.

o K-fold classification is used with default K = 10

» set seed for replicability.

@ In part 3 | instead use the lassopack package.
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s
3.6 Examples: Ridge

@ For ridge regression | needed to set epsilon to a low value to avoid
warning message.

@ OLS was y = 1.556x; + 0.471x, — 0.026x3 + 2.532

.0*0Ridgelregressioniwith0lambdaddeterminedibydcrossivalidation
.Osetlseed010101

.0ridgeregressiyix10x20x3,0epsilon(0.00001)0numfolds(5)

Ridgelregression00000000000000000000000Numberdofiobservationsiniio= 0000000040
ROsquared0d00000000000000000= 00000.2283
alphal0oo000000000000000000= 00000.0000
Tambda0nOo000000000000000000= 00000.2914
CrossivalidationOMSEDODOOO0= 00009.5405
NumberDofofoldsOo0000000000= 0000000005
NumberDofolambdaOtestedonoo= 0000000100

00000000000y |D00000Coef.

0o0ooooooox1l |0001.152362
0000000000x2 |000.4876821
0000000000x3 | 000.0929504
0oooob0_cons |00002.65541
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3. Shrinkage Estimation 3.6 Examples

Ridge example (continued)

o If instead regress on the standardized coefficients

> set seed 10101
» ridgeregress ydemeaned zx1l zx2 zx3, ///
epsilon(0.00001) numfolds(5)

@ Then find

same R-squared and lambda and Cross-validation MSE
_cons is zero

b_zxl = b_x1 * st.dev.(x1)

similar for xo and x/3

>
>
>
>
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s
LASSO example

@ OLS was y = 1.556x; + 0.471x, — 0.026x3 + 2.532
@ OLS on xq and x, is y = 1.554x; + 0.468x, + 2.534.

.0*0LASSOOwithoTambdaodeterminedibyOcrossivalidation
.OsetOseedn10101

.07lassoregressiyix10x20x3,0numfolds(5)

LASSOOregression00000000000000000000000Numberdoflobservationsioniii= 0000000040
ROsquaredi00000000000000000= 00000.2293
alphanooooooo00000000000000= 00001.0000
Tambdan00o000000000000000000= 00000.2594
CrossOvalidationOMSEQOOOOOO= 00009.3871
Numbertdofifoldsi00000000000= 0000000005
NumberDofOlambdaltesteddinO0= 0000000100

00000000000y |D0000O0Coef.

0ooooooooox1l |oooool. 3505
00oooooooox2 (000.2834002
0000000000x3 |00000000000
0000o00_cons |0002.621573
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30 Eemple
Elastic net example

@ OLS was y = 1.556x; + 0.471x, — 0.026x3 + 2.532
@ OLS on x; and x, is y = 1.554x; + 0.468x, + 2.534.

.0*0ElasticOnetOwithOlambdalandialphaddeterminedibydcrossivalidation
.OsetOseed010101

.0elasticregressiyix10x20x3,0numalpha(50)0epsilon(0.00001)00numfolds(5)

ElasticOnetOregressiond0000000000000000Numberiofliobservationsiiooo= 0000000040
ROsquared0i00000000000000000= 00000.2293
alphanoo0000000000000000000= 00000.9388
Tambda0noooo0000000000000000= 00000.2637
CrossivalidationOMSEDDOOOO0= 00009.3929
Numbertofifoldsi00000000000= 0000000005
NumberDofialphatitestedionnon= 0000000050
NumberDofOlambdaltesteddinOO= 0000000100

00000000000y |D00000Coef.

0000000000x1 |0001.333747
0000000000x2 |000.2993508
00000000003 |00000000000
0ooooo0_cons |00002.62516
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3. Shrinkage Estimation 3.7 Other Stata commands for LASSO

3.7 Other Stata commands for LASSO

@ User-written command lassoshooting (Christian Hansen)

> uses the coordinate descent (called lasso shooting) algorithm of Fu
(1998)

> with theoretical or user-choice of A (no cross validation)

> now superseded by the lassopack package.

e Lassopack package of Ahrens, Hansen and Schaffer (2019)
https://arxiv.org/abs/1901.05397

» cvlasso for A chosen by K-fold cross-validation and h-step ahead
rolling cross-validation for cross-section, panel and time-series data

» rlasso for theory-driven (‘rigorous’) penalization for the lasso and
square-root lasso for cross-section and panel data

> lasso2 for information criteria choice of A

» used in later set of slides.

@ User-written command lars (Mander)

» lars ydemeaned zxl zx2 zx3 zx4, a(lasso)
> at each step minimizes Mallows Cp
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4. Dimension Reduction

4. Dimension Reduction

@ Reduce from p regressors to M < p linear combinations of regressors

» Form X* = XA where Ais px M and M < p
> y = By + X*J + u after dimension reduction
> y =By + XB+uwhere g =AJ.

@ Two methods mentioned in ISL
» 1. Principal components

* use only X to form A (unsupervised)

» 2. Partial least squares
* also use relationship between y and X to form A (supervised)
* | have not seen this used in practice.

@ For both should standardize regressors as not scale invariant.

@ And often use cross-validation to determine M.
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C1L Prifnefpz) Companenis Aaeligs
4.1 Principal Components Analysis (PCA)

@ Suppose X is normalized to have zero means so ij" entry is Xji — Xj.

@ The first principal component has the largest sample variance among
all normalized linear combinations of the columns of n X p matrix X

the first component is Xh; where hy is p x 1

normalize hy so that hih; =1

then h; max Var(Xh;) = hiX'Xh; subject to hjh; =1
the maximum is the largest eigenvalue of X’X and hy is the
corresponding eigenvector.

vV VY VvV VY

@ The second principal component has the largest variance subject to
being orthogonal to the first, and so on.
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C1L Prifnefpz) Companenis Aaeligs
Formulas for PCA

o Eigenvalues and eigenvectors of X’'X

> Let A = Diag[A;] be p x p vector of eigenvalues of X'X
» Orderso Ay > Ap > - > Ay

» Let H=[h; --- hp] be p X p vector of corresponding eigenvectors
» X’Xh; = A1hy and X’XH = AH and H'H
@ Then

» the j principal component is Xh;
» M—principal components regression uses X* = XA
where A = [hy --- hy].
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CRIT EETNAEC TS 4.1 Principal Components Analysis

Principal Components Analysis Example

@ Command pca default is to standardize the data.

@ Given d.g.p. for x1, x2, x3 we expect eigenvalues 2,0.5,0.5 as n — o

.0*0Principaliocomponentsiwithidefaulticorrelationfoptionithatistandardizesidata

.Opcaldx10x20x3

Principalicomponents/correlation00000000000000000Numberiofiobsi000= 0000000040
NumberoofOcomp.00= 0000000003

Trace000000000000=

pooooooo3

Rotation:0(unrotatedi=0principal)000000000000Rho0DOODOOD0NON0O00= 00001.0000

0000000Component

Do0EigenvaluednobifferencendnooonooProportiondidCumulative

00000000000Compl
00000000000Comp2
00000000000Comp3

0000001.816680000001.0891900000000000000.605600000000.6056
000000.7274860000000.2716500000000000000.242500000000.8481
000000.455836000000000000.00000000000000.151900000001.0000

Principaliocomponentsi(eigenvectors)

pooooooovariable

0000ComplO0n000Comp200000Comp3

Ounexplained

00000000000000Xx1
00000000000000x2
00000000000000%3

000.6306 000.1063 000.7688
000.5712 000.6070 000.5525
000.5254 000.7876 000.3220

00000000000
00000000000
00000000000
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CRIT EETNAEC TS 4.1 Principal Components Analysis

Principal Components Analysis Example (continued)

@ First principal component is 0.6306zx; + 0.5712zx; 4 0.52542x3
» where zx; are standardized

» and has variance 1.8618 that explains 1.8618/3 = 0.6056 of the
variance.

@ Generate all three principal components and summarize
.0*0Generatedthen30principalicomponentsianditheiriomeans,Ost.devs.,0correlations
.OquietlyOpredictipclipc2ipc3
.OsummarizeOpclOpc20pc3

pooovariable |000000000bs00000000Meand000Std.O0Dev.0000000Min00000000Max

000000000pcl |(0000000004000003.35e00900001.34784200002.529270002.925341
000000000pc2 (0000000004000003.63e0090000.85292810001.85447500001.98207
000000000pe3 |0000000004000002.08e0090000.67515640001.5042790001.520466

.Ocorrelatedpclipc20pc3
(obs=40)

|DDDDDDpchDDDDDpCZDDDDDDpC3

000000000pel (0001.0000
pc2 |0000.00000001.0000
pc3 [0000.00000000.00000001.0000
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CRIT EETNAEC TS 4.1 Principal Components Analysis

Principal Components Analysis Example (continued)

@ Compare correlation coefficient from OLS on first principal
component (r = 0.4444) with OLS on all three regressors
(r =0.4871) and each single regressor.

.0*0ComparedROfromooLSOonnallithreedregressors, dondpcl,0ondx1,0on0x2,0on0x3
.OquietlyOregressiydx10x20x3

.OpredictOyhat
(option xbOassumed;0fittedOvalues)

.OcorrelatedyOyhatOpcliox10x20x3
(obs=40)

00000000yD0000yhat000000pclonon000x10000000x20000000%3

0ooooooooooy |0001.0000
yhat |0000.48710001.0000
pcl |0000.42190000.86610001.0000
x1 |0000.47400000.97320000.80860001.0000
x2 |0000.33700000.69190000.73220000.50770001.0000
x3 |0000.20460000.42000000.78240000.42810000.27860001.0000
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C1L Prifnefpz) Companenis Aaeligs
Principal Components Analysis (continued)

@ PCA is unsupervised so seems unrelated to y but

» Elements of Statistical Learning says does well in practice.

» PCA has the smallest variance of any estimator that estimates the
model y = X8 + u with i.i.d. errors subject to constraint C8 = c
where dim[C] < dim[X].

» PCA discards the p — M smallest eigenvalue components whereas ridge
does not, though ridge does shrink towards zero the most for the
smallest eigenvalue components (ESL p.79).

@ For completeness next give partial least squares which is supervised.
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.2 eyl Lzest Sqreres
4.2 Partial Least Squares

@ Partial least squares produces a sequence of orthogonal linear
combinations of the regressors.

o 1. Standardize each regressor to have mean 0 and variance 1.
@ 2. Regress y individually on each x; and let z; = Zle §1jxj

@ 3. Regress y on z; and let ?(1) be prediction of y.
(1)

@ 4. Orthogonalize each x; by regress on z; to give X, =X —21T;
= (5 =150 (1)
where T; = (zjz1) 'zix; .

(1)

@ 5. Go back to step 1 with x; now x;’, etc.
» When done y =y 432 ...

@ Partial least squares turns out to be similar to PCA

> especially if R? is low.

A. Colin Cameron U.C.-Davis . presented at Machine Learning 1: Basics April 2019 63 / 67



5. High-Dimensional Models

@ High dimensional simply means p is large relative to n

> in particular p > n
» n could be large or small.

@ Problems with p > n:

-2
» Cp, AIC, BIC and R cannot be used.
> due to multicollinearity cannot identify best model, just one of many

good models.
» cannot use regular statistical inference on training set
@ Solutions

» Forward stepwise, ridge, lasso, PCA are useful in training
» Evaluate models using cross-validation or independent test data

* using e.g. MSE or R2.
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6. Some R Commands

6. Some R Commands

@ These are from An Introduction to Statistical Learning: with
Applications in R. There may be better newer commands.
@ Basic regression
» OLS is Im.fit
> cross-validation for OLS uses cv.gim()
> bootstrap uses boot() function in boot library
@ Variable selection
> best subset, forward stepwise and backward stepwise: regsubsets() in
leaps library
@ Penalized regression

> ridge regression: glmnet(,alpha=0) function in glmnet library
> lasso: glmnet(,alpha=1) function in glmnet library
» CV to get lambda for ridge/lasso: cv.glmnet() in glmnet library

@ Dimension reduction

> principal components: pcr() function in pls library
» CV for PCA: pcr(,validation="CV")

> partial least squares: plsr() function in pls library
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7. References

e Undergraduate / Masters level book

» |SL: Gareth James, Daniela Witten, Trevor Hastie and Robert
Tibsharani (2013), An Introduction to Statistical Learning: with
Applications in R, Springer.

> free legal pdf at http://www-bcf.usc.edu/~gareth/ISL/

» $25 hardcopy via
http://www.springer.com/gp/products/books/mycopy

e Masters / PhD level book

» ESL: Trevor Hastie, Robert Tibsharani and Jerome Friedman (2009),
The Elements of Statistical Learning: Data Mining, Inference and
Prediction, Springer.

> free legal pdf at
http://statweb.stanford.edu/~tibs/ElemStatLearn/index.html

» $25 hardcopy via
http://www.springer.com/gp/products/books/mycopy
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References (continued)

@ A recent book is

» EH: Bradley Efron and Trevor Hastie (2016), Computer Age Statistical
Inference: Algorithms, Evidence and Data Science, Cambridge
University Press.

@ Interesting book: Cathy O’'Neil (2016), Weapons of Math
Destruction: How Big Data Increases Inequality and Threatens
Democracy.

@ My website has some material including these slides

> http://cameron.econ.ucdavis.edu/e240f/machinelearning.html
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