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Introduction

Introduction

Basics used OLS regression

» though with potentially rich set of regressors with interactions ....

@ Now consider remaining methods

» for supervised learning (y and x)
» and unsupervised learning (y only).

Again based on the two books by Hastie and Tibsharani and
coauthors.

These slides present many methods for completeness

» the most used method in economics is random forests.
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Introduction

@ The course is broken into three sets of slides.
@ Part 1: Basics

> variable selection, shrinkage and dimension reduction
» focuses on linear regression model but generalizes.

o Part 2: Flexible methods

> nonparametric and semiparametric regression

» flexible models including splines, generalized additive models, neural
networks

> regression trees, random forests, bagging, boosting

> classification (categorical y) and unsupervised learning (no y).

@ Part 3: Microeconometrics

» OLS with many controls, IV with many instruments, ATE with
heterogeneous effects and many controls.

@ Parts 1 and 2 are based on the two books given in the references

» Introduction to Statistical Learning
» Elements of Statistical Learning.

@ While most ML code is in R, these slides use Stata.
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Introduction

Flexible methods

@ These slides present many methods
@ Which method is best (or close to best) varies with the application

> e.g. deep learning (neural nets) works very well for Google Translate.

@ In forecasting competitions the best forecasts are ensembles

> a weighted average of the forecasts obtained by several different
methods
> the weights can be obtained by OLS regression in a test sample
* e.g. given three forecast methods minimize w.r.t. 71 and >
~(1 ~(2 ~(3
i —lei( ) —Tz)/,-( )~ 1-71— Tz))’,-( )}2-
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Introduction

Overview

@ Nonparametric and semiparametric regression
@ Flexible regression (splines, sieves, neural networks,...)
© Regression trees and random forests

@ Regression trees

@ Bagging

©® Random forests

O Boosting
Q Classification (categorical y)

@ Loss function

@ Logit

@ k-nearest neighbors

@ Discriminant analysis
@ Support vector machines

@ Unsupervised learning (no y)

@ Principal components analysis
@ Cluster analysis
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1. Nonparametric and Semiparametric Regression 1.1 Nonparametric Regression

1.1 Nonparametric regression

@ Nonparametric regression is the most flexible approach
> but it is not practical for high p due to the curse of dimensionality.
@ Consider explaining y with scalar regressor x
» we want f(xg) for a range of values xg.
o With many observations with x; = xy we would just use the average
of y for those observations

7z _ 1 vn X 1xi=xolyi
> F0) = 55 Lixmxo ¥i = T o]

@ Rewrite as

?(xo) =Y w(xj, x0)yi, where w(x;, xg) = Z,IEX;TXTOZ}XO]'
e
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1. Nonparametric and Semiparametric Regression 1.1 Nonparametric Regression

Kernel-weighted local regression

@ In practice there are not many observations with x; = xp.

@ Nonparametric regression methods borrow from nearby observations

» k-nearest neighbors
* average y; for the k observations with x; closest to xp.
» kernel-weighted local regression

* use a weighted average of y; with weights declining as |x; — xo
increases.

@ Then the original kernel regression estimate is
f(x0) = Tiey wlxi X0, )i

» where w(x;, xp, A) = w(*:2) are kernel weights
» and A is a bandwidth parameter to be determined.
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1. Nonparametric and Semiparametric Regression 1.1 Nonparametric Regression

Kernel weights

@ A kernel function is continuous and is symmetric at zero

with [ K(z)dz=1and [zK(z)dz =10
eg. K(z)=(1-1z]) x1(]z] < 1)

@ The kernel weights are

w(x, x0,A) = w (Xi —Xo) _ K

A -1 K(572)

@ The bandwidth A is chosen to shrink to zero as n — oo.
o The estimator f(xg) is biased for f(xp).
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Local constant and local linear regression

@ The local constant estimator ?(xo) = ®p where &g minimizes
Y7y w(xi x0, A) (v — o)

> this yields @y = Y. ; w(x;, x0, A)y;.

@ The local linear estimator f(xg) = @y where &g and B, minimize

Y7 w(xi, x0, A){yi — a0 — By(xi — x0) }>.

@ Stata commands

» lpoly uses a plug-in bandwidth value A
» npregress is much richer and uses LOOCV bandwidth A.

@ Can generalize to local maximum likelihood that maximizes over 6

Z:’:l W(X,‘,Xo, /\) In f(}/ini, 90)
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1. Nonparametric and Semiparametric Regression 1.1 Nonparametric Regression

Local linear example
@ lpoly y z, degree(1)

Local poly nomial smooth

15

10

>0

kernel=epanechnikov,degree = 1,bandwidth = .49

A. Colin Cameron U.C.-Davis . presented ati  Machine Learning 2: Flexible methods April 2019 10 / 92



1. Nonparametric and Semiparametric Regression 1.2 Curse of Dimensionality

1.2 Curse of Dimensionality

@ Nonparametric methods do not extend well to multiple regressors.

Consider p-dimensional x broken into bins

» for p =1 we might average y in each of 10 bins of x
» for p =2 we may need to average over 10? bins of (x1, x»)
> and so on.

@ On average there may be few to no points with high-dimensional x;
close to xq

» called the curse of dimensionality.

Formally for local constant kernel regression with bandwidth A
» bias is O(A?) and variance is O(nAP)
» optimal bandwidth is O(n—1/(P*4))

* gives asymptotic bias so standard conf. intervals not properly centered
-0.5

> convergence rate is then n2/(P+4) <<
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1. Nonparametric and Semiparametric Regression 1.3 Semiparametric Models

1.3 Semiparametric Models

@ Semiparametric models provide some structure to reduce the
nonparametric component from K dimensions to 1 dimension.
» Econometricians focus on partially linear models and on single-index
models.

» Statisticians use generalized additive models and project pursuit
regression.

@ Machine learning methods can outperform nonparametric and
semiparametric methods

» so wherever econometricians use nonparametric and semiparametric
regression in higher-dimensional models it may be useful to use ML
methods.
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1.9 Semiperameii el
Partially linear model

@ A partially linear model specifies
yi = f(xizi) + ui = xip+ g(zi) + uj

> simplest case z (or x) is scalar but could be vectors
» the nonparametric component is of dimension of z.

e The differencing estimator of Robinson (1988) provides a root-n
consistent asymptotically normal B as follows
» Ely|z] = E[x|z]'B+ g(z) as E[u|z] = 0 given E[u|x,z] =0
» y — Ely|z] = (x — E[x|z])'B + u subtracting
> so OLS estimate y — m, = (x — M)’ B+ error.
@ Robinson proposed nonparametric kernel regression of y on z for m,
and x on z for My
> recent econometrics articles instead use a machine learner such as

LASSO

> in general need m converges at rate at least n~1/4.
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1. Nonparametric and Semiparametric Regression 1.3 Semiparametric Models

Single-index model

@ Single-index models specify
f(xi) = g(xip)
» with g(-) determined nonparametrically
> this reduces nonparametrics to one dimension.
@ We can obtain B root-n consistent and asymptotically normal

» provided nonparametric g(-) converges at rate n1/4.

@ The recent economics ML literature has instead focused on the
partially linear model.
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1. Nonparametric and Semiparametric Regression 1.3 Semiparametric Models

Generalized additive models and project pursuit

o Generalized additive models specify f(x) as a linear combination of
scalar functions

f(x;) —zx—l—z XU

» where x; is the jth regressor and fi(+) is (usually) determined by the
data

» advantage is interpretability (due to each regressor appearing
additively).

» can make more nonlinear by including interactions such as xj; X xj» as
a separate regressor.

@ Project pursuit regression is additive in linear combinations of the x’s
M /
F(xi) =) 1 8m(Xiwm)

» additive in derived features x'w,, rather than in the xjs

> the gm(-) functions are unspecified and nonparametrically estimated.
> this is a multi-index model with case M = 1 being a single-index model.
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1.9 Semiperameii el
How can ML methods do better?

In theory there is scope for improving nonparametric methods.

@ k-nearest neighbors usually has a fixed number of neighbors

» but it may be better to vary the number of neighbors with data sparsity

Kernel-weighted local regression methods usually use a fixed
bandwidth

> but it may be better to vary the bandwidth with data sparsity.

There may be advantage to basing neighbors in part on relationship
with y.
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2. Flexible Regression

2. Flexible Regression

@ Basis function models

global polynomial regression

splines: step functions, regression splines, smoothing splines
wavelets

polynomial is global while the others break range of x into pieces.

vy vV VY

@ Other methods

» neural networks.
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VRN S SRRSO 2.1 Basis Functions

2.1 Basis Functions

@ Also called series expansions and sieves.
@ General approach (scalar x for simplicity)
Yi = PBo+ Brbr(xi) + -+ By (xi) +&i

> where by (+), ..., bk (-) are basis functions that are fixed and known.
@ Global polynomial regression sets bj(x;) = xIJ

> typically K <3 or K < 4.

» fits globally and can overfit at boundaries.
@ Step functions: separately fit y in each interval x € (c¢j, ¢j41)

> could be piecewise constant or piecewise linear.
@ Splines smooth so that not discontinuous at the cut points.
@ Wavelets are also basis functions, richer than Fourier series.
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2.1 et [Areene
Global Polynomials Example

o Generated data: y; =1+ 1 X x14+1 X x2+ f(z) + u where
f(z) = z+ 22

.0*0GeneratedOdata: 0y0=010+01*x10+01*x20+0F(2) 0+0ulwherenf(z) 0=0z0+0zA2
.Oclear

.Oset0obs0200
numberndofiobservationsi(_N)Owas00, Inowl200

.Oset0seedn10101

.0generatenxl0=0rnormal ()
.0generatenx20=0rnormal () 0+00.5%x1
.0generatenzi=0rnormal () 0+00.5%x1
.0generatelzsql=0zA2
.0generatelyl=010+0x10+0x20+0z0+0zsq0+02*rnormal ()
.Osummarize

0o00variable |000000000bs00000000Mean0000Std.0Dev.0000000Min00000000Max

0000000000x1 | 000000002000000.030121100001.0141720003.1706360003.093716
0000000000x2 | 000000002000000.022627400001.1582160004.0011050003.049917
00000000000z |000000002000000.066453900001.1464290003.38670400002.77135
000000000zsq |0000000020000001.31214500001.658477000.000018300011.46977
00000000000y |0000000020000002.16440100003.6040610005.46872100014.83116
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VRN S SRRSO 2.1 Basis Functions

Global Polynomials Example (continued)

e Fit quartic in z with (x;and x;) omitted and compare to quadratic

» regress y c.z#ifc.z#itc.z##tc.z, vce(robust)
> quartic chases endpoints.

n |
= . Actual data

—————— Quadratic ,
Quartic .o /
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22 [Reresen Eplines
2.2 Regression Splines

Begin with step functions: separate fits in each interval (¢j, ¢j11)

Piecewise constant

> bi(x;) = 1[g < x < ¢jp1]
@ Piecewise linear

> intercept is 1[¢; < x; < ¢j41] and slope is x; X 1[¢; < x; < ¢j41]

Problem is that discontinuous at the cut points (does not connect)

» solution is splines.
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22 [Reresen Eplines
Piecewise linear spline
@ Begin with piecewise linear with two knots at ¢ and d

f(x) =a1llx < c]+axl[x < c]+a3zlfc < x < d]
+DC4X1[C <x < d] +0¢51[X > d] +0¢6X1[X > d]

@ To make continuous at ¢ (so f(c—) = f(c)) and d (so
f(d—) = f(d)) we need two constraints

atc: war+arc = a3+ wgc
at d: w3+ asd = a5 + apd.

o Alternatively introduce the Heaviside step function
hi(x) = x4 = {

@ Then the following imposes the two constraints (so have 6 —2 = 4
regressors)

f(x) =Byt Byx+By(x—c)+ +By(x—d)+
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22 [Reresen Eplines
Spline Example

@ Piecewise linear spline with two knots done manually.

.0*0Createlthe0basisifunctionimanuallylwithOthreeisegmentsiandiknotsiatinloandil

.0generatelzsegli=0z

.0generatelzseg20=00

.Oreplacedzseg20=0z000(01) 0ifozo>001
(1630realdchangesimade)

.0generatelizseg30=00

.Oreplacedzseg30=0z000104f0z0>01
(470realichangesimade)

.0*0Piecewisellineardregressioniowithithreedsections
.Oregressiylzseglizseg20zseg3

opoooosource

0000000SS00000000000df0000000MSO00000NUmbertofiobsi00=0000000200

0ooooooModel
ooooResidual

000F(3,0196)0000000= 000061.50
001253.365800000000030000417.7886 Prob0>0F00000000=00000.0000
01331.496240000000196006.79334818 ROsquaredd000000=00000.4849

0ooooooTotal

000AdjOROsquareddn0=00000.4770
02584.8620400000001990012.9892565 ROOtOMSENDOOOOODO= 02.6064

0pooooooooony

npoooocoef.000Std. 0Err.000000t0000P>|t|00000[95%0Conf.0Interval]l

0pooooozsegl
opooooozseg2
opopooozseg3
opopooo—cons

0001.629491000.6630041000002.460000.015000002.9370290000.3219535
0002.977586000.8530561000003.490000.001000001.29523900004.659933
0004.594974000.9164353000005.010000.000000002.78763400006.402314
0001.850531000.9204839000002.010000.046000003.6658550000.0352065
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VRN S SNLIEREEEEST M 2.2 Regression Splines

Spline Example (continued)

@ Plot of fitted values from piecewise linear spline has three connected
line segments.

Piecewise linear: y=a+f(z)+u

y and f(z)
5
1
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VRN S SNLIEREEEEST M 2.2 Regression Splines

Spline Example (continued)

@ The mkspline command creates the same spline variables.

.0*0Repeatlpiecewisellineariusingicommandimksplinedtolcreatedthendbasisifunctions
.Omksplinenzmk10010zmk2010zmk30=0z,0marginal

.OsummarizelzseglOzmklOzseg20zmk20zseg30zmk3,0sepd(8)

pooovariable |000000000bsO0000000Mean0000Std. 0Dev.0000000Min00000000Max

0000000zsegl |000000002000000.066453900001.1464290003.38670400002.77135
00000000zmkl |000000002000000.066453900001.1464290003.38670400002.77135
0000000zseg2 |0000000020000001.17111100000.9844930000000000000003.77135
00000000zmk2 |0000DDD020000001.17111100000.9844930000000000000003.77135
0000000zseg3 |0000000020000000.1384410000.31699730000000000000001.77135
00000000zmk3 | 0000000020000000.1384410000.31699730000000000000001.77135

o To repeat earlier results: regress y zmkl zmk2 zmk3

@ And to add regressors: regress y x1 x2 zmkl zmk2 zmk3
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22 it Sl
Cubic Regression Splines

This is the standard.
Piecewise cubic model with K knots

» require f(x), f'(x) and f”(x) to be continuous at the K knots
Then can do OLS with

F(x) = Bo+ Prx+Pox Py By (x —c)d -+ Bras (x— k)L

» for proof when K =1 see ISL exercise 7.1.

o This is the lowest degree regression spline where the graph of f(x) on
x seems smooth and continuous to the naked eye.

There is no real benefit to a higher-order spline.

Regression splines overfit at boundaries.

> A natural or restricted cubic spline is an adaptation that restricts the
relationship to be linear past the lower and upper boundaries of the
data.
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VRN S SNLIEREEEEST M 2.2 Regression Splines

Spline Example

@ Natural or restricted cubic spline with five knots at the 5, 27.5, 50,
72.5 and 95 percentiles
» mkspline zspline = z, cubic nknots(5) displayknots
> regress y zsplinex

Natural cubic spline: y=a+f(z)+u
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Other Splines

@ Regression splines and natural splines require choosing the cut points
> e.g. use quintiles of x.
@ Smoothing splines avoid this

> use all distinct values of x as knots
> but then add a smoothness penalty that penalizes curvature.

@ The function g(-) minimizes
Eln 1( g(xi)) +/\/ t)dt where a < all x; < b.

» A = 0 connects the data points and A — oo gives OLS.
» Stata addon command gam (Royston and Ambler) does this but only
for MS Windows Stata.

@ User-written bspline command (Newson 2012) enables generation of
a range of bases including B splines.

@ For multivariate splines use multivariate adaptive regression splines
(MARS).
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A LS
2.3 Wavelets

@ Wavelets are used especially for signal processing and extraction

> they are richer than a Fourier series basis

» they can handle both smooth sections and bumpy sections of a series.

» they are not used in cross-section econometrics but may be useful for
some time series.

e Start with a mother or father wavelet function (x)

1 0<x<}
» example is the Haar function ¢(x) =< —1 % <x<1
0 otherwise

@ Then both translate by b and scale by a to give basis functions

PP (x) = |a| 2 (232).
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L L
2.4 Neural Networks

@ A neural network is a richer model for f(x;) than project pursuit

» but unlike project pursuit all functions are specified
> only parameters need to be estimated.

A neural network involves a series of nested logit regressions.

A single hidden layer neural network explaining y by x has

» y depends on Z’s (a hidden layer)
» 7's depend on x's.

@ A neural network with two hidden layers explaining y by x has

v

y depends on w’s (a hidden layer)
w’s depend on Z’s (a hidden layer)
Z's depend on x’s.

v

v
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2. Flexible Regression 2.4 Neural Networks

Two-layer neural network

@ y depends on M Z’s and the z's depend on p x's

f(x) =B, +2B is usual choice for g(+)
1

Zm = Trexp[—(womixam)] M T 1,...M

@ More generally we may use

f(x) =h(T) usually h(T) =T
T =B,+7B
Zm = g(aom +Xan) usually g(v) =1/(1+e")

@ This yields the nonlinear model

1
14 exp[—(@wom + X'am)]

F(xi) = Bo+ L om_ B X
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2. Flexible Regression 2.4 Neural Networks

Neural Networks (continued)

@ Neural nets are good for prediction

> especially in speech recognition (Google Translate), image recognition,

> but very difficult (impossible) to interpret.
@ They require a lot of fine tuning - not off-the-shelf

> we need to determine the find the number of hidden layers, the number
of M of hidden units within each layer, and estimate the a's, f's,....

@ Minimize the sum of squared residuals but need a penalty on &’s to
avoid overfitting.

> since penalty is introduced standardize x’s to (0,1).

> best to have too many hidden units and then avoid overfit using
penalty.

> initially back propagation was used

» now use gradient methods with different starting values and average
results or use bagging.

@ Deep learning uses nonlinear transformations such as neural networks

> deep nets are an improvement on original neural networks.
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2. Flexible Regression 2.4 Neural Networks

Neural Networks Example

@ This example uses user-written Stata command brain (Doherr)

.0*0Exampledfromihelpdfiledforouseriwrittenibrainicommand
.0clear

.0set0obs0200
numbertdofiobservationsi(_N)Owas0i0, 0now1200

.0gen0x0=04*_pi/2000%_n
.0genly0=0sin(x)

.Obrainddefine, 0input(x)0output(y)ihidden(20)
DefinedOmatrices:

000input[4,1]

ODOoutput[4,1]

OOneuron[1,22]

poolayer[1,3]

0oobrain[1,61]
.OquietlyObraindtrain,diter(500)0eta(2)
.ObraindthinkOybrain

.Osortix

.Otwowayl (scatternydx)0(1fitoyox)0(Tinelybrainix)
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2. Flexible Regression

Neural Networks Example (continued)

@ We obtain
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2. Flexible Regression

@ This figure from ESL is for classification with K categories
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3. Regression Trees and Random Forests

3. Regression Trees and Random Forests: Overview

@ Regression Trees sequentially split regressors x into regions that best
predict y

> e.g., first split is income < or > $12,000
second split is on gender if income > $12,000
third split is income < or > $30,000 (if female and income > $12,000).

@ Trees do not predict well

> due to high variance
> e.g. split data in two then can get quite different trees
> e.g. first split determines future splits 9a greedy method).

o Better methods are then given

> bagging (bootstrap averaging) computes regression trees for different
samples obtained by bootstrap and averages the predictions.

» random forests use only a subset of the predictors in each bootstrap
sample

» boosting grows trees based on residuals from previous stage

> bagging and boosting are general methods (not just for trees).
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3. Regression Trees and Random Forests 3.1 Regression Trees

3.1 Regression Trees

@ Regression trees

> sequentially split x’s into rectangular regions in way that reduces RSS
> then ¥; is the average of y's in the region that x; falls in
> with J blocks RSS= Y7 Lier,(vi — 7r,)%.

@ Need to determine both the regressor j to split and the split point s.

» For any regressor j and split point s, define the pair of half-planes

R1(j,s) = {X|X; < s} and R2(j,s) = {X|X; > s}
Find the value of j and s that minimize

Y i)+ Y (i m)?

ix;€R1(j,s) ix;€R1(j,s)

where yr1 is the mean of y in region R1 (and similar for R2).
» Once this first split is found, split both R1 and R2 and repeat
» Each split is the one that reduces RSS the most.

Stop when e.g. less than five observations in each region.
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1L ReeEsion T7ess
Tree example from ISL page 308

@ (1) split X1 in two; (2) split the lowest X1 values on the basis of X2
into R1 and R2; (3) split the highest X1 values into two regions (R3
and R4/R5); (4) split the highest X1 values on the basis of X2 into
R4 and R5.

R, 21

Xo
>

Ry
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3.1 Recgression iazs
Tree example from ISL (continued)

@ The left figure gives the tree.
@ The right figure shows the predicted values of y.

Xisth
1

Xa=ty Xy =ty Y

Xo=ty

R, Ry R

Ry R
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3. Regression Trees and Random Forests [ERRHNNEAEESIMIEES

Regression tree (continued)

o The model is of form f(X) = Y./_; cm x 1[X € R}].
@ The approach is a topdown greedy approach

> top down as start with top of the tree
» greedy as at each step the best split is made at that particular step,
rather than looking ahead and picking a split that will lead to a better

tree in some future step.

@ This leads to overfitting, so prune

> use cost complexity pruning (or weakest link pruning)
> this penalizes for having too many terminal nodes
> see ISL equation (8.4).
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3.1 Recgression iazs
Regression tree example

@ The only regression tree add-on to Stata | could find was cart

» for duration data that determined tree using statistical significance.
> | used it just to illustrate what a tree looks like.

CART analysis Periods jobless: two-week intervals - Split if (adjusted) P<.05
With variables: ui logwage reprate age

N F RHR
43-61 ] 567 119 47
1 age at time of survey
20-42 ] 1281 378 .80
1iffiled Ul claim
35 @3 34 .64
36 log weekly earnings
ﬂSQO_LLiqZ‘ 1.33
0 log weekly earnings
6-845 802 383 2.20
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3. Regression Trees and Random Forests [ERRHNNEAEESIMIEES

Tree as alternative to k-NN or kernel regression

e Figure from Athey and Imbens (2019), “Machine Learning Methods

Economists should Know About”

> axes are x1 and xp

> note that tree used explanation of y in determining neighbors
> tree may not do so well near boundaries of region

* random forests form many trees so not always at boundary.

Euclidean neighborhood,

for KNN matching.

Tree-based neighborhood.

A. Colin Cameron U.C.-Davis . presented at

Machine Learning 2: Flexible methods

April 2019

42/ 92



3. Regression Trees and Random Forests [ERRHNNEAEESIMIEES

Improvements to regression trees

@ Regression trees are easy to understand if there are few regressors.
@ But they do not predict as well as methods given so far

> due to high variance (e.g. split data in two then can get quite different
trees).

@ Better methods are given next
> bagging
* bootstrap aggregating averages regression trees over many samples
» random forests
* averages regression trees over many sub-samples

> boosting

* trees build on preceding trees.
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3.2 Bagging
3.2 Bagging (Bootstrap Aggregating)

@ Bagging is a general method for improving prediction that works
especially well for regression trees.
Idea is that averaging reduces variance.

So average regression trees over many samples

> the different samples are obtained by bootstrap resample with

replacement (so not completely independent of each other)

» for each sample obtain a large tree and prediction fj(x).

> average all these predictions: fi,54(x) = % 25:1 fp(x).
o Get test sample error by using out-of-bag (OOB) observations not in
the bootstrap sample

> Pr[ith obs not in resample] = (1 — )" — e~! =0.368 ~ 1/3.

> this replaces cross validation.

Interpretation of trees is now difficult so
> record the total amount that RSS is decreased due to splits over a
given predictor, averaged over all B trees.
> a large value indicates an important predictor.
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3. Regression Trees and Random Forests [ERENEN L[] WETEE

3.3 Random Forests

@ The B bagging estimates are correlated

» e.g. if a regressor is important it will appear near the top of the tree in
each bootstrap sample.
» the trees look similar from one resample to the next.

@ Random forests get bootstrap resamples (like bagging)

> but within each bootstrap sample use only a random sample of m < p
predictors in deciding each split.

> usually m~,/p
> this reduces correlation across bootstrap resamples.

@ Simple bagging is random forest with m = p.
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3. Regression Trees and Random Forests [ERENEN L[] WETEE

Random Forests (continued)

@ Random forests are related to kernel and k-nearest neighbors

> as use a weighted average of nearby observations
> but with a data-driven way of determining which nearby observations

get weight
> see Lin and Jeon (JASA, 2006).

@ Susan Athey and coauthors are big on random forests.
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3. Regression Trees and Random Forests [ERENEN L[] WETEE

Random Forests example: data

.0*0Datanforo650900yeartoldsiondsupplementarydinsurancedindicatoriandiregressors
.OJusedmus203mepsmedexp.dta,iclear

.OdropOifoltotexpli==
(109Dobservat1onste]eted)

.0globalizlistOsuppinsOphylimiactlimitotchriagenfemalelincome

.Odescribedltotexpi$zlist

storagennndisplaydonovalue
variableOnameonoOtypenoooformatooooolabeloooooovariablenlabel

Ttotexp
suppins
phylim
actlim
totchr
age
female
income

0floatnoo%9.0g
0floatnno%9.0g

Odoublenn%12
Odoublenn%12
Odoublenn%12
Odoublenn%12
Odoublenn%12
Ddoublenn%12

.0g
.0g
.0g
.0g
.0g
.0g

Tn(totexp)0ifOtotexpi>00

=101 fohasOsupplpriviinsurance
=101ifohasofunctionaldlimitation
=10ifohasoactivityolimitation
#0ofochronicioproblems

Age

=10ifofemale
annualihouseholdiincome/1000

.OsummarizeDltotexpn$zlist,OIsep(0)

oooovariable

000000000bs00000000Mean0000Std. ODev. 0000000Min00000000OMax

oooooltotexp
po000suppins
gooooophylim
ooooooactlim
pooooototchr
000000000age
popooofemale
0oonodincome

0000002,95500008.05986600001.3675920001.09861200011.74094
0000002,9550000.59153980000.49163220000000000000000000001
0000002,9550000.43620980000.49599810000000000000000000001
0000002,9550000.28798650000.45290140000000000000000000001
0000002,95500001.80879900001.2946130000000000000000000007
0000002,955000074.2453500006.3759750000000006500000000090
0000002,9550000.58409480000.49296080000000000000000000001
0000002,955000022.68353000022.609880000000000100000312.46
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Random Forests example: OLS estimates

3. Regression Trees and Random Forests [ERENEN L[] WETEE

@ Most important are suppins, actlim, totchr and phylim

.00regressOltotexpi$zlist,Ovce(robust)

Lineardregression0000000000000000000000000000000Numbertofiobsn00on= 000002,955
F(7,02947)00000000= 000126.97
Prob0>0F0000000000= 00000.0000
ROsquaredd00000000= 00000.2289
ROOtOMSEDODONODOON0O= 01.2023

gooooltotexp

000000000000000Robust
nooooocoef.o0oStd. DErr.000000t0000P>|t|00000[95%0Conf.0Interval]

joooosuppins
nooooophylim
goooooactlim
pooooototchr
joooooooonage
pooooofemale
0oooooincome
Joooooo_cons

ooo.

ooo

ooo.
ooa.
ooo.
ooo.

ooo

2556428000.0465982000005.490000.00000000.
.30205980000.057705000005.230000.00000000.
3560054000.0634066000005.610000.00000000.
3758201000.0187185000020.080000.00000000.
0038016000.0037028000001.030000.30500000.
08432750000.045654000001.850000.06500000.
.0025498000.0010468000002.440000.01500000.

16427440000.3470112
188913600000.415206
23167970000.4803311
33911750000.4125228
003458700000.011062
17384440000.0051894
00049730000.0046023

0006.703737000.2825751000023.720000.000000006.14967300007.257802
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3. Regression Trees and Random Forests [ERENEN L[] WETEE

Random Forests example: random forest estimation

.0*0RandomOforestsiusingluserowrittendirandomforesticommand
.Orandomforestiltotexpi$zlist,0type(reg)iiter(500)0depth(10)0///
>00001size(5)0seed(10101)

.Oereturndlist

scalars:
gooooooe(observations)= 2955
e(features)i= 7
e(Iterations)i= 500
e(00B_Error)i= .9452256910574954

macros:

pooopoooooooooooe(emd)0:0"randomforest”
poooooooooooe(predict)0:0"randomforest_predict”
pooooooooooode(depvar)0:0"1totexp”
pooooooobe(model_type)0:0"randomiforestiregression”

matrices:
00o0ooo0De(importance)d: 070x01
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3. Regression Trees and Random Forests [ERENEN L[] WETEE

Random Forests example (continued)

.0*0Computelexpectedivaluesiofidep.Ovar. :0thisdalsolcreatesie(MAE)Oandle (RMSE)
.OpredictOyh_rf

.Oereturndlist

scalars:
pooooooe(observations)O= 2955
e(features)o= 7
e(Iterations)i= 500
e(00B_Error)0= .9452256910574954
e(MAE) 0= .7557299298029454
e(RMSE) 0= .9662698028945919

macros:

poooooooooooooode(emd)0:0"randomforest”
pjoooooooooode(predict)o:0"randomforest_predict”
pooooooooooobe(depvar)n:0"1totexp”
pooooooooe(model_type)D:0"randomOforestOregression”

matrices:
gooooooooe(importance)d: 070x01
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3. Regression Trees and Random Forests [ERENEN L[] WETEE

Random Forests example: importance

@ Most important are actlim, totchr and phylim

.0*0RandomiforestsOimportancenofivariables
.Omatrix0listoe(importance)

e(importance)[7,1]

pgoooooooovariabledI~e
suppins 0000.26072259
Ophylim 0000.90198178
Dactlim 0D00000DOODOOOL
Ototchr 0000.98353393
J000age 0000.29094411
Ofemale 0000.13192694
Oincome 0000.38782944
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3. Regression Trees and Random Forests 3.4 Boosting

3.4 Boosting

@ Boosting is also a general method for improving prediction.

@ Regression trees use a greedy algorithm.

@ Boosting uses a slower algorithm to generate a sequence of trees
» each tree is grown using information from previously grown trees
» and is fit on a modified version of the original data set
» boosting does not involve bootstrap sampling.

e Specifically (with A a penalty parameter)

> given current model b fit a decision tree to model b's residuals (rather
than the outcome Y')

» then update f(x) = previous f(x) + AF2(x)

» then update the residuals r; = previous r; — AF2(x;)

» the boosted model is f(x) = Zle AFE(x;).

@ Stata add-on boost includes file boost64.d11 that needs to be
manually copied into c:\ado\plus
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3. Regression Trees and Random Forests [SCRINEITE -4

Boosting example

@ Most important are totchr and phylim

.0*0Boostinglusingluseriwritteniboosticommand
.Oset0seedn10101

.Ocapturedprogramiboost_plugin,Oplugindusing("c:\ado\personal\boost64.d11")

.OboostOTtotexpi$zlist,0influenceddistribution(normal)dtrainfraction(0.8)0///
>0000maxiter(1000)0predict(yh_boost)
influence

Distribution=normal

predict=yh_boost
Trainfraction=.80Shrink=.010Bag=.50maxiter=10000Interaction=>5
FittingO...

AssessingOInfluencerl...
PredictingO...

bestiter=0862

TestOR2=0.23428402

trainn=02364

TrainOR2=0.3122529
InfluencelofieachiOvariableno(Percent):
5.77943520suppins

2.439540phyTim

3.20756460actTim

36.6865620totchr

11.3467840age

1.76928240female

38.77083201ncome
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3. Regression Trees and Random Forests [SCRINEITE -4

Comparison of in-sample predictions

.0*0ComparedvariousOpredictionsOindsample
.0quietlyOregressiltotexpn$zlist

.Opredictiyh_ols
(option xbOassumed;0fittedOvalues)

.OsummarizeOTltotexpOyh*

oooovariable |000000000bs00000000Mean0000Std.O0Dev.0000000Min00000000Max

000007Ttotexp |0000002,95500008.05986600001.3675920001.09861200011.74094
nooooooyh_rf |0000002,95500008.0603930000.723203900005.2912500010.39143
0oyh_rf_half |0000002,95500008.0535120000.70617420005.5402890009.797389
00o00yh_boost |0000002,95500007.6679660000.49746540005.0455720008.571422
0oooooyh_ols | 0000002,95500008.05986600000.6543230006.86651600010.53811

.OcorrelatedTtotexpOyh*
(obs=2,955)

00ltotexpoo0Oyh_rfoyh_rf_~fOyh_boostoooyh_ols

pooooltotexp |0001.0000
yh_rf |0000.73770001.0000
yh_rf_half |0000.61780000.92120001.0000
yh_boost |0000.54230000.87690000.83810001.0000
yh_ols |0000.47840000.86150000.85800000.86660001.0000
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4. Classification

4. Classification: Overview

@ y's are now categorical
» example: binary if two categories.

o Interest lies in predicting y using y (classification)
» whereas economists usually want Prly = j|x]

@ Use (0,1) loss function rather than MSE or In L

» 0 if correct classification
» 1 if misclassified.

@ Many machine learning applications are in settings where can classify
well

» e.g. reading car license plates
> unlike many economics applications.
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4. Classification

4. Classification: Overview (continued)

@ Regression methods predict probabilities

> logistic regression, multinomial regression, k-nearest neighbors
> assign to class with the highest predicted probability (Bayes classifier)

* in binary case y =1if p>05and y =0if p <0.5.
@ Discriminant analysis additionally assumes a normal distribution for
the x's
> use Bayes theorem to get Pr[Y = k|X = x].
@ Support vector classifiers and support vector machines

» directly classify (no probabilities)
» are more nonlinear so may classify better
» use separating hyperplanes of X and extensions.
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4.1 Lass Fumeion
4.1 A Different Loss Function: Error Rate

@ Instead of MSE we use the error rate

» the number of misclassifications
Error rate = —1 E ! 1[ P # A-]
i=1 Yi Yilh

* where for K categories y; =0,...., K —1and y; =0,...,K — 1.
* and indicator 1{A] = 1 if event A happens and = 0 otherwise.

@ The test error rate is for the ny observations in the test sample

Ave(1lyo # %)) = %02721 1[yoi # Yoil-

@ Cross validation uses number of misclassified observations. e.g.
LOOCV is

1 n ]. n ~
CVim == Dy Emi=—3 i i # V)
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CINGECHIHENMN 4.1 Loss Function

Classification Table

@ A classification table or confusion matrix is a K x K table of counts
of (y,¥)
@ In 2 X 2 case with binary y =1 or 0
> sensitivity is % of y = 1 with prediction y = 1
» specificity is % of y = 0 with prediction y = 0
> receiver operator characteristics curve (ROC) curve plots sensitivity
against 1—sensitivity as threshold for y = 1 changes.
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CINGECHIHENMN 4.1 Loss Function

Bayes classifier

@ The Bayes classifier selects the most probable class
» the following gives theoretical justification.

L(G, G(x)) = 1]y; # i
» L(G,G(x)) is 0 on diagonal of K x K table and 1 elsewhere
» where G is actual categories and G is predicted categories.

@ Then minimize the expected prediction error
EPE = Egx[L(G G(x))]
= [Zk L(G,G(x)) xpr[ck|x]}
@ Minimize EPE pointwise
f(x) =argmingeg [Zszl L(Gk, g) % Pr[Gk|x]}

d/0dc = argmingeg |l — Prg|x]]
= maxgcc Pr(g|x]

@ So select the most probable class.
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4. Classification 4.2 Logit

4.2 Logit
e Directly model p(x) = Pr[y|x].
o Logistic (logit) regression for binary case obtains MLE for
px) \ _
In (m) =X ﬁ
@ Statisticians implement using a statistical package for the class of
generalized linear models (GLM)

> logit is in the Bernoulli (or binomial) family with logistic link

> logit is often the default.
@ Logit model is a linear (in x) classifier

> y=1ifp(x) > 05
» e if X' >0.
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42 Logit
Logit Example

@ Example considers supplementary health insurance for 65-90 year-olds.

.0*0Dbatablfor0650900yearioldsiondsupplementarydinsurancedindicatoriandiregressors
.OuseOmus203mepsmedexp.dta,lclear

.0globalox1istOoincomeleducyriagerdfemalelwhitenhispomarryi///
>0000totchrophylimiactlimihvgg

.Odescribedsuppinsi$xlist

storagendOddisplaydooovalue
variableOnamenOOtypenoooformationoolabeloooonovariabledlabel

suppins 0floatonn%9.0g =101ifohasOsuppOpriviinsurance

income Odoublenn%l12.0g annualUhouseholddincome/1000

educyr Odoublen0n%12.0g Yearsnofieducation

age Odoublenn%12.0g Age

female Odoublen0n%12.0g =1pifofemale

white OdoubTledn%12.0g =101ifowhite

hisp Odoublenn%12.0g =107 fOHispanic

marry OdoubTledn%12.0g =10ifomarried

totchr Odoublenn%l12.0g #0ofOchronicioproblems

phylim OdoubTlel0%12.0g =10ifohasOfunctionalolimitation

actlim Odoublenn%12.0g =101ifohasDactivitydolimitation

hvgg 0floatnon%9.0g =107 fohealthOstatusiisiexcellent,
goodiorOveryngood
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42 lagii
Logit Example (continued)

@ Summary statistics

.0*0SummaryOdstatistics
.OsummarizeOdsuppinsO$xTist

fooovariable |000000000bsO0000000Mean0000Std.ODev.0000000Min00000000Max

00o0o00suppins |0000003,0640000.58126630000.49343210000000000000000000001
000000income |0000003,064000022.47472000022.534910000000000100000312.46
nooonoeducyr |0000003,064000011.7754600003.4358780000000000000000000017
00o0onoooDage |0000003,064000074.1716700006.3729380000000006500000000090
nooonofemale |0000003,0640000.57963450000.49369820000000000000000000001

0000000white |0000003,0640000.97421670000.15851410000000000000000000001
00000000hisp |0000003,0640000.08485640000.27871340000000000000000000001
goooooomarry |0000003,0640000.55580940000.49695670000000000000000000001
ooooodtotchr |0000003,06400001.75424300001.3071970000000000000000000007
nooooophylim |0000003,0640000.42558750000.49451250000000000000000000001

oooooCdactlim |0000003,0640000.28361620000.45082630000000000000000000001
0o0o0oooohvgg | 0000003,0640000.60541780000.48884060000000000000000000001

A. Colin Cameron U.C.-Davis . presented at,  Machine Learning 2: Flexible methods April 2019 62 /92



42 Logit
Logit Example

@ Logit model estimates

.0*%07ogitOmodel
.0TogitOsuppinsi$xlist,nolog

LogisticOregressioni0000000000000000000000000000Numberiofiobso0nnl= 000003,064
000000000000000000000000000000000000000000000000LROchi2(11)0000000= 0000345.23
000000000000000000000000000000000000000000000000Prob0>0chi20000000= 00000.0000
LogoTikelihoodo= 01910.5353000000000000000000000PseudolR2000000000= 00000.0829

00000suppins |000000Coef.000Std.0Err.000000Z0000P>|2z|00000[95%0Conf.0Interval]

000o000income |[000.0180677000.0025194000007.170000.00000000.01312980000.0230056
000000educyr |000.0776402000.0131951000005.880000.00000000.05177820000.1035022
000000000age |000.02658370000.006569000004.050000.00000000.03945860000.0137088
oooooofemale [000.0946782000.0842343000001.120000.26100000.259774400000.070418
0000000white |000.7438788000.2441096000003.050000.00200000.265432700001.222325
0000000Chisp |000.9319462000.1545418000006.030000.000000001.2348430000.6290498
ooooooOmarry |000.3739621000.0859813000004.350000.000000000.2054420000.5424823
00o0000totchr |000.0981018000.0321459000003.050000.00200000.03509710000.1611065
000000phylim |000.2318278000.1021466000002.270000.02300000.03162420000.4320315
ooooboactlim [000.1836227000.1102917000001.660000.09600000.39979040000.0325449
0000000Chvgg | 00000.17946000.0811102000002.210000.02700000.02048680000.3384331
0000000_cons |000.10282330000.577563000000.180000.859000001.23482600001.029179
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42 lagii
Logit Example (continued)

@ Classification table

.0*0ClassificationOtable
.ODestaticlassification

LogisticOmodelOforOsuppins

0True
Classified |000000000DOOOOOOOO00O00~D ooooooTotal
ooooo+ 00000143400000000000737 0oooo2171
oooooo 00000034700000000000546 0o0ooo893
oooTotal 00000178100000000001283 000003064

Classifiedo+oifopredictedoPr(D)0>=0.5

TrueODOdefinedlasOsuppinsd!=00

Sensitivityl00000000000000000000Pr(0+|0D)00080.52%
Specificity000000000000000000000Pr(00|~D)00D42.56%
PositiveOpredictivedvaluend0oooooPr(0D|0+)00066.05%
NegativeOpredictivedvalueooooooopr(~D|00)00061.14%

FalseO+Oratedfordtrued~D00000000Pr(0+|~D)00057.44%
FalsedOOrateOfordtruedD0O00D00O0Pr(00|0D)00019.48%
FalseO+Oratedforioclassifiedi+000Pr(~D|0+)00033.95%
FalsennoratedforodclassifiednoonopPr(op|0o0)00038.86%

Correctlydclassified

00064.62%
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42 lagii
Logit Example (continued)

@ Classification table manually
> error rate = (737 + 347) /3064 = 0.354

.0*0ClassificationOtabledmanually

.Opredictiph_logit

(option proOassumed;0Pr(suppins))

.0generatedyh_logit0=0ph_logit0>=00.5
.0generatelerr_logitO=0(suppins==00&0yh_logit==1)0|0(suppins==10&0yh_logit==0)
.OsummarizeOsuppinsiph_logitlyh_logitlerr_logit

pgooovariable |000000000bs00000000Meand000Std.0Dev.0000000Min00000000Max

00000suppins |0000003,0640000.58126630000.49343210000000000000000000001
poooph_logit |o0000003,0640000.58126630000.1609388000.0900691000.9954118
ooooyh_logit |0000003,0640000.70855090000.45450410000000000000000000001
0o0C0err_logit |0000003,0640000.35378590000.47822180000000000000000000001

.OtabulateOsuppinsiyh_logit
=10ifrohas

OsuppOpriv [0000000yh_logit
Oinsurance |000000000000000000001 |00000Total

0000000000 |000000054600000000737 |000001,283
0000000001 |00000003470000001,434 (000001,781

gooooTotal |0O0000008930000002,171 |000003,064
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SR R
4.3 k-nearest neighbors

@ k-nearest neighbors (K-NN) for many classes

> Pr[Y = jjx = xo] = % Lien, 1lyi = J]
» where Nj is the K observations on x closest to xg.

@ There are many measures of closeness

» default is Euclidean distance between observations i and j

p 5 1/2
{Zazl(xa,- - Xja) } where there are p regressors

@ Obtain predicted probabilities
> then assign to the class with highest predicted probability.
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SR R
k-nearest neighbors example

@ Here use Euclidean distance and set K = 11

.0*0KOnearestOneighbors
.0discrimoknnio$x1ist, 0group(suppins)ik(1ll)Onotable

KthiOnearestOneighboridiscriminantianalysis

.Opredictiyh_knn
(optionOclassificationiassumed;igrouplclassification)

.DestatOclasstable,Onototalsdnopercentsilooclass

LeaveloneDoutlclassificationOtable

Key

Number

pgLoodclassified
TrueOsuppins |000000000000001

0oooooooooo0 |[000075900000524

0ooooooooool |oooo7110001,070

0ooooopPriors |00.5000000.5000
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4. Classification 4.3 k-nearest neighbors

k-nearest neighbors example (continued)

o Classification not as good if use leave-one-out cross validation

much better if don't use LOOCV

.0*0KonnoclassificationotableOwithOleaveloneloutdcrossivalidationnotiasigood
.DestatOclasstable,OnototalsOnopercentsin//OwithoutdLOOCVY

Resubstitutioniclassificationitable

Key

Number

OClassified
Truelsuppins |000000000000001

000000000000 |000088900000394

gooooooooool |oooo5840001,197

poooooPriors |00.5000000.5000
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4. Classification 4.4 Discriminant Analysis

4.4 Linear Discriminant Analysis

Developed for classification problems such as is a skull Neanderthal or
Homo Sapiens given various measures of the skull.

Discriminant analysis specifies a joint distribution for (Y, X).

Linear discriminant analysis with K categories

» assume X|Y = k is N(p;, X) with density f(x) = Pr[X = x|Y = k|
> and let 71, = Pr[Y = k]

The desired Pr[Y = k|X = x] is obtained using Bayes theorem

fi (x
Pr[Y = k|X = x] = 72532(@)(@'

Assign observation X = x to class k with largest Pr[Y = k|X = x].
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4. Classification 4.4 Discriminant Analysis

Linear Discriminant Analysis (continued)

@ Upon simplification assignment to class k with largest
Pr[Y = k|X = x] is equivalent to choosing model with largest
discriminant function

1
Sk(x) =Xy, — E,uk’Z_lyk + In 714

> use fi, =%, & = Var[x,] and 7, = FEN 1y = 4]

o Called linear discriminant analysis as dx(x) linear in x.
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4. Classification 4.4 Discriminant Analysis

Linear Discriminant Analysis Example

@ We have

.0*0Linearndiscriminantianalysis
.Odiscrimoldan$xT1ist,O0group(suppins)inotable

.OpredictOyh_lda
(optioniclassificationiassumed;igroupiclassification)

.OestatOclasstable,Onototalsinopercents

Resubstitutioniclassificationitable

Key

Number

OClassified
Truelsuppins |000000000000001

000000000000 |000077000000513

0ooooooooool |o0o006380001,143

goooooPriors |00.5000000.5000
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4. Classification 4.4 Discriminant Analysis

Quadratic Discriminant Analysis

@ Quadratic discriminant analysis

> now allow different variances so X|Y = k is N(p;, Z¢)

@ Upon simplification, the Bayes classifier assigns observation X = x to
class k which has largest

1 1 1
Sk (x) = —EX’Z;1x+x’Z;1yk — Eyk'Z;lyk -5 In |2y | + In 7k

» called quadratic discriminant analysis as linear in x

@ Use rather than LDA only if have a lot of data as requires estimating
many parameters.
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4. Classification 4.4 Discriminant Analysis

Quadratic Discriminant Analysis Example

@ We have

.0*0Quadraticiodiscriminantianalysis
.0discrimogdan$xlist,0group(suppins)inotable

.Opredictiyh_qda
(optioniclassificationiassumed;dgroupiclassification)

.OestatOclasstable,Onototalsinopercents

Resubstitutioniclassificationitable

Key

Number

OClassified
Truelsuppins |000000000000001

000000000000 |000046800000815

0oo0oooooool |00002920001,489

poooooPriors |00.5000000.5000

A. Colin Cameron U.C.-Davis . presented at,  Machine Learning 2: Flexible methods April 2019

73/ 92



e L
LDA versus Logit

@ ESL ch.4.4.5 compares linear discriminant analysis and logit

» Both have log odds ratio linear in X

» LDA is joint model if Y and X versus logit is model of Y conditional
on X.

> In the worst case logit ignoring marginal distribution of X has a loss of
efficiency of about 30% asymptotically in the error rate.

» If X’s are nonnormal (e.g. categorical) then LDA still doesn't do too
bad.
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4. Classification

ISL Figure 4.9: Linear and Quadratic Boundaries
o LDA uses a linear boundary to classify and QDA a quadratic

FIGURE 4.9. Left: The Bayes (purple dashed). LDA (black dotted), and QDA
(green solid) decision boundaries for a two-class problem with X1 = Xo. The
shading indicates the QDA decision rule. Since the Bayes decision boundary is
linear, it is more accurately approvimated by LDA than by QDA. Right: Details
are as given in the left-hand panel, except that 31 # 3. Since the Bayes decision
boundary is non-linear, it is more accurately approzimated by QDA than by LDA.

[m] = =

il
it
N
0
o)
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45 Supperi: Yesier Mediiizs
4.5 Support Vector Classifier

@ Build on LDA idea of linear boundary to classify when K = 2.
@ Maximal margin classifier

> classify using a separating hyperplane (linear combination of X)

» if perfect classification is possible then there are an infinite number of
such hyperplanes

> so use the separating hyperplane that is furthest from the training
observations

> this distance is called the maximal margin.

@ Support vector classifier

> generalize maximal margin classifier to the nonseparable case

» this adds slack variables to allow some y's to be on the wrong side of
the margin

» Maxg M (the margin - distance from separator to training X's)
subject to B'B # 1, y;(By +X;B) > M(1—¢;), & >0 and
Y& <C.
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L e Ueizer el
Support Vector Machines

@ The support vector classifier has a linear boundary
» f(x0) = By + L1 aixpX;, where x(x; = Zle X0jXij-
@ The support vector machine has nonlinear boundaries

f(x0) = By + L1 @iK(xg,x;) where K(-) is a kernel
polynomial kernel K(xg,x;) = (1 —I—Zj-’:l x0j%ij)?
radial kernel K(xg,x;) = exp(—7y Zj?:l(xoj —x;j)?)

o Can extend to K > 2 classes (see ISL ch. 9.4).

v

v

v

> one-versus-one or all-pairs approach
» one-versus-all approach.
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4. Classification

ISL Figure 9.9: Support Vector Machine

@ In this example a linear or quadratic classifier won't work whereas
SVM does.

Xz

X; -YI

FIGURE 9.9. Left: An SVM with a polynomial kernel of degree 3 is applied to
the non-linear data from Figure 9.8, resulting in a far more appropriate decision
rule. Right: An SVM with a radial kernel is applied. In this example, either kernel
is capable of capturing the decision boundary.
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L e Ueizer el
Support Vector Machines Example

@ Use Stata add-on svmachines (Guenther and Schonlau)

.0*0SupportivectorimachinesidiOneeddyltolbelbyteinotifloatlandimatsizel>0n
.OsetOmatsizen3200

.0globalox1listshortiincomeleducyriageifemaleimarryitotchr
.0generatelbytelinsOi=0suppins

.OsvmachinesOinsOincome

.OsvmachinesOinsO$x1ist

.Opredictiyh_svm

.0tabulateninsioyh_svm

Jooo0ooooyh_svm
0o0o0000ins [000000000000000000001 |00000Total

0000000000 [0o000oo82000000000463 |000001,283
0000000001 (oooO0ooo2240000001,557 |000001,781

oooodTotal |000001,0440000002,020 |000003,064
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UINGELHITENMN 4.5 Support Vector Machines

Comparison of model predictions

@ The following compares the various category predictions.

@ SVM does best but we did in-sample predictions here

» especially for SVM we should have training and test samples.

.0*0ComparedvariousOinOsamplelpredictions
.OcorrelatedsuppinsOyh_TogitOyh_knnOyh_Tdaoyh_gdaoyh_svm

(obs=3,064)

D0suppinsOyh_logitoooyh_knnooOyh_Tdadodyh_qdadooyh_svm

goooosuppins
yh_logit
yh_knn
yh_1da
yh_qda
yh_svm

oool.
0ooo.
0ooo.
0ooo.
0ooo.
0ooo.

A. Colin Cameron U.C.-Davis

0000

25050001.0000

36040000.35750001.0000
23950000.69550000.37760001.0000
22940000.69260000.27620000.58500001.0000
53440000.39660000.60110000.39410000.32060001.0000
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UINGELHIEIT M 4.6 Regression trees and random forests

@ Regression trees, bagging, random forests and boosting can be used
for categorical data.
> user-written boost applies to Gaussian (normal), logistic and Poisson

regression.
» user-written randomforest applies to regression and classification.
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5. Unsupervised Learning

5. Unsupervised Learning

o Challenging area: no y, only x.

@ Example is determining several types of individual based on responses
to many psychological questions.

@ Principal components analysis.
o Clustering Methods

> k-means clustering.
> hierarchical clustering.
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LI VIS S WRCETOTS 5.1 Principal Components

5.1 Principal Components

o Initially discussed in section on dimension reduction.
@ Goal is to find a few linear combinations of X that explain a good
. : p 1
fraction of the total variance Y_P_; Var(X;) = Y, ;- X7y xj for
mean 0 X's.
° 7, = EJ’.’ZI ¢ Xj Where Zp =1l and ¢, are called factor
loadings.

A useful statistic is the proportion of variance explained (PVE)

> a scree plot is a plot of PVE,, against m

» and a plot of the cumulative PVE by m components against m.
» choose m that explains a “sizable” amount of variance

> ideally find interesting patterns with first few components.

Easier when used PCA earlier in supervised learning as then observe
Y and can treat m as a tuning parameter.

@ Stata pca command.
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o2 (Clleier (e
5.2 Cluster Analysis: k-Means Clustering

@ Goal is to find homogeneous subgroups among the X.
@ K-Means splits into K distinct clusters where within cluster variation
is minimized.
e Let W(Ck) be measure of variation
> Minimizec, ¢, Z,}le W(Cy)
> Euclidean distance W(Cy) = A~ Y fec, £F_; (5 — xi)?
@ Global maximum requires K" partitions.
o Instead use algorithm 10.1 (ISL p.388) which finds a local optimum

> run algorithm multiple times with different seeds
» choose the optimum with smallest ZkK:1 W(Cx).
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5. Unsupervised Learning

ISL Figure 10.5

e Datais (x1.x2) with K = 2,3 and 4 clusters identified.

K=2 K=3 K=4
- L4 -
o .e K e -
'.:..u 4 0....!.”’2 !.:.ou -4
e s & LI B & L R e
™ . . .i . . = '. . . . - .
. . .
L] * e . . " . . L]
] | 1]
o <, < <, S
-"\' o M 0"" 'Y Lt v""
oo f? BRI ., :.*"%’ oo
LA e oy L .
- -.'...a et s -.'...p o F4 -.'...a ot
N . ':. . . % .

FIGURE 10.5. A simulated data set with 150 observations in two-dimensional
space. Panels show the results of applying K -means clustering with different val-
ues of K, the number of clusters. The color of each observation indicates the clus-
ter to which it was assigned using the K-means clustering algorithm. Note that
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VLIS N RCETOTE 5.2 Cluster Analysis

k-means clustering example

@ Use same data as earlier principal components analysis example.

.0*0kOmeansOclusteringOwithidefaultsiandithreedclusters
.OuseOmachlearn_part2_spline.dta,0Oreplace

.OgraphOmatrix0x10x20z00000//0matrixOplotiofithedthreedvariables

.Oclusternkmeansix10x20z,0k(3)0name(myclusters)

.0tabstatix10x20z,0by(myclusters)Ostat(mean)

Summarylistatistics:Omean
OO0byOcategoriesiof:Omyclusters

myclusters

00000000x100000000x2000000000Z

pooooooool 0.8750554000.5031660001.34776
0oooooooo2 0.8569585001.12034400.5772717
goooooooo3 0.169163100.672064800.3493614
oooooTotal 0.030121100.022627400.0664539
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VLIS N RCETOTE 5.2 Cluster Analysis

Hierarchical Clustering

Do not specify K.

Instead begin with n clusters (leaves) and combine clusters into
branches up towards trunk

> represented by a dendrogram
> eyeball to decide number of clusters.

@ Need a dissimilarity measure between clusters

» four types of linkage: complete, average, single and centroid.

For any clustering method

> it is a difficult problem to do unsupervised learning
> results can change a lot with small changes in method
> clustering on subsets of the data can provide a sense of robustness.
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6. Conclusions

6. Conclusions

@ Guard against overfitting

» use K-fold cross validation or penalty measures such as AlIC.
@ Biased estimators can be better predictors

> shrinkage towards zero such as Ridge and LASSO.

For flexible models popular choices are

» neural nets
» random forests.

Though what method is best varies with the application
» and best are ensemble forecasts that combine different methods.
@ Machine learning methods can outperform nonparametric and
semiparametric methods
> so wherever econometricians use nonparametric and semiparametric
regression in higher dimensional models it may be useful to use ML

methods
> though the underlying theory still relies on assumptions such as sparsity.
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7. Some R Commands used in ISL

7. Some R Commands used in ISL

@ Splines

> regression splines: bs(x,knots=c()) in Im() function
> natural spline: ns(x,knots=c()) in Im() function
» smoothing spline: function smooth.spline() in spline library

@ Local regression

> loess: function loess
> generalized additive models: function gam() in gam library

@ Tree-based methods

classification tree: function tree() in tree library
cross-validation: cv.tree() function

pruning: function prune.tree()

random forest: randomForest() in randomForest library
bagging: function randomForest()

boosting: gbm() function in library gbm

YV Y VYV VvV VY
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7. Some R Commands used in ISL

Some R Commands (continued)

@ Basic classification

> logistic: glm function
> discriminant analysis: Ida() and qda functions in MASS library
> k nearest neighbors: knn() function in class library

@ Support vector machines

> support vector classifier: svm(... kernel="linear") in e1071 library

> support vector machine: svm(... kernel="polynomial") or svm(...
kernel="radial") in €1071 library

> receiver operator characteristic curve: rocplot in ROCR library.

@ Unsupervised Learning

» principal components analysis: function prcomp()
> k-means clustering: function kmeans()
> hierarchical clustering: function hclust()
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e Undergraduate / Masters level book
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> free legal pdf at http://www-bcf.usc.edu/~gareth/ISL/
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e Masters / PhD level book
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> free legal pdf at
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» $25 hardcopy via
http://www.springer.com/gp/products/books/mycopy
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References (continued)

@ A recent book is

> EH: Bradley Efron and Trevor Hastie (2016), Computer Age Statistical
Inference: Algorithms, Evidence and Data Science, Cambridge
University Press.

@ Interesting book: Cathy O'Neil, Weapons of Math Destruction: How
Big Data Increases Inequality and Threatens Democracy.

o My website has some material

> http://cameron.econ.ucdavis.edu/e240f/machinelearning.html
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