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Introduction

Introduction

Problem: We want data-driven determination of a regression model
that �ts the data well but guards against in-sample over�tting.

Solution:
I Use one of several methods to choose the optimal model for a given
value of a �tuning parameter� that de�nes the level of model
complexity / size

F e.g. Forward stepwise selection for a given number of model parameters
F e.g. Ridge regression or lasso with a given value of the penalty
parameter.

I Then use cross-validation to choose the value of the tuning parameter

F this trades o¤ variance and bias.

Complications: nonlinear models, categorical data, identifying clusters.
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Introduction

Overview

1 Terminology, Statistical Learning (ISL chs.1-2)
2 Linear Regression (ISL ch.3)
3 Cross-Validation (ISL ch.5, ESL 219-235)
4 Subset Selection of Regressors (ISL ch.6.)
5 Shrinkage Methods: ridge, lasso, LAR (ISL ch.6.2 + ESL
73-79,86-93)

6 Dimension Reduction: PCA and partial LS (ISL ch.6.3)
7 High-dimensional data (ISL ch.6.4)
8 Nonlinear models: splines, local regression (ISL ch.7)
9 Tree-based methods, bagging, boosting (ISL ch.8)
10 Classi�cation (ISL chs.4, 9): logit, k-nn, LDA, SVM
11 Unsupervised learning: PCA, clustering (ISL ch.10)
12 Introduction to R (ISL end each chapter)
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1. General Framework Terminology

1. General Framework: Terminology

Supervised learning
I We have both outcome y and regressors x
I 1. Regression: y is continuous
I 2. Classi�cation: y is categorical and we want to predict y

Unsupervised learning
I We have no outcome y - only several x
I 1. Clustering: e.g. principal components analysis or factor analysis.

Two types of data sets
I 1. training data set is used to �t a model
I 2. test data set is additional data used to determine how good the
model �t is

F use to guard against over�tting the training data.
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1. General Framework Statistical Decision Theory

Statistical Decision Theory
From ESL pages 18-19.

We wish to predict Y given X .

We specify a loss function L(Y , f (X )) for penalizing prediction error.

For regression use squared error loss L(Y , f (X )) = (Y � f (X ))2.
Then minimize the expected prediction error

EPE (f ) = EY ,X [(Y � f (X ))2]
= EX [EY jX [(Y � f (X ))2jX ]]

Minimize EPE(f) pointwise

f (x) = argminc [EY jX [(Y � c)2jX = x ]]
∂/∂c = EY jX [�2(Y � c)jX = x ]

= 0 implies c = EY jX [Y jX = x ]

f (x) = E [Y jX = x ] minimizes expected squared error loss.
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1. General Framework Statistical Learning

Statistical Learning
Statistical learning for regression is estimating f (�) in

Y = f (X) + ε

Y = scalar response

X = (X1, ...,Xp)

E [ε] = 0 and ε independent of X

Prediction: predict Y using bY = bf (X )
E [(Y � bY )2] = E [(f (X) + ε� bf (X ))2]

= E [(f (X)� bf (X ))2] + E [ε2] since ε ? X & E [ε] = 0

= Reducible error + Irreducible error

Inference: how does Y change as X changes
I which predictors matter?
I how do they a¤ect Y ?
I is a linear model su¢ cient?
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1. General Framework Types of Models

Types of models

Methods to estimate f (�)
I parametric e.g. linear model

F f (X ) = β0 +X
0β = β0 + β1X1 + � � �+ βpXp

F estimate by least squares

I nonparametric e.g. nearest-neighbors, kernel, splines
F have a smoothness parameter.

Very �exible models may not be the best
I �exible models are generally more di¢ cult to interpret

F ISL Figure 2.7 shows trade-o¤s across di¤erent methods

I and even if interested in just prediction can over�t.
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1. General Framework Mean-squared Error

Mean-squared error

Recall we use squared error loss.

For regression in-sample use mean-squared error

MSE =
1
n ∑n

i=1(yi � bf (xi ))2.
But the goal is out-of-sample performance

I test observation (x0, y0) is a previously unseen test observation
I we want to obtain the lowest test MSE (not training MSE)

Test MSE = Ave(y0 � bf (x0))2 = 1
n0

∑n0
i=1(yi � bf (x0i ))2.

Often test MSE > training MSE
I since estimators aim to minimize training MSE
I called over�tting the data.
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1. General Framework Variance-Bias Trade-o¤

Variance�Bias Trade-o¤

Key result: Expected test MSE

E [(y0 � bf (x0))2] = Var [bf (x0)] + fBias(bf (x0))g2 + Var(ε)
Need to minimize both variance and bias!

In general there is a trade-o¤ with more �exible models having
I less bias and more variance.

Note: MSE (squared error loss is used)
I for tractability
I but many methods such as cross validation extend to other loss
functions

F e.g. absolute error loss E [jy0 � bf (x0)j]
F e.g. 1[y0 = by0 ] for classi�cation of categorical data such as y = 0 or 1.

ESL chapter 7.2-7.3 provides much more detail on MSE.
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1. General Framework Variance-Bias Trade-o¤

Aside: Proof

Proof: Let bf0 denote bf (x0)
E [(y0 � bf0)2]

= E [(bf0 � y0)2]
= E [(bf0 � f0 � ε)2] as y0 = f0 + ε

= E [fbf0 � f0g2] + E [ε2] as ε ? X and E [ε] = 0

= E [f(bf0 � E [bf0]) + (E [bf0]� f0)g2] + E [ε2]
= E [(bf0 � E [bf0])2] + (E [bf0]� f0)2 + E [ε2] as cross term = 0

= Var [bf0] + fBias(bf0)g2 + Var(ε).
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1. General Framework 2. Linear Regression

2. Linear Regression

Standard material.

Many methods are based on the linear model and one can make it
quite �exible with polynomials, splines, interactions, ...

And many methods for linear models extend to nonlinear models.
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3. Cross-Validation Validation Set Approach

3. Cross-Validation

Randomly divide available data into two parts
I 1. training set

F model is �t on training set

I 2. validation set or hold-out set

F MSE is computed for consequent predictions in validation set.
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3. Cross-Validation Validation Set Approach

Single-split Validation

E.g. Random half of sample is training and remaining is test data.

Simple example is to choose the degree k of a polynomial in scalar
regressor X

Y = β0 + β1X + β2X
2 + � � �+ βkX

k + ε.

Then
I 1. For each degree k = 0, ..., p

F estimate on the training set to get bβ0k s
F predict on the validation set to get bY 0k s and MSEk

I 2. Choose the degree k with lowest MSEk .

Problems with this single-split validation
I 1. Lose precision due to smaller training set, so may actually
overestimate the test error rate (MSE) of the model.

I 2. And answers depend a lot on the particular single split.
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3. Cross-Validation Leave-one-out Cross-Validation (LOOCV)

Leave-one-out Cross Validation (LOOCV)

Use a single observation for validation and (n� 1) for training
I by(�i ) is byi prediction after OLS on observations 1, .., i � 1, i + 1, ..., n.
I Cycle through all n observations doing this.

Then LOOCV measure is

CV(n) =
1
n ∑n

i=1MSE(�i ) =
1
n ∑n

i=1(yi � by(�i ))2
Requires n regressions in general, except for OLS can show

CV(n) =
1
n ∑n

i=1

�
yi � byi
1� hii

�2
where byi is �tted value from OLS on the full sample
and hii is i th diagonal entry in the hat matrix X(X0X)�1X.
Use for local regression such as k-NN and kernel but not global
regression.
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3. Cross-Validation k-fold Cross-Validation

k-fold Cross Validation

Randomly divide data into K groups or folds of approx. equal size
I First fold is the validation set
I Method is �t in the remaining K � 1 folds
I Compute MSE on the �rst fold
I Repeat K times (drop second fold, third fold, ..) yields

CV(k ) =
1
k ∑K

k=1MSE(j ).

Typically K = 5 or k = 10.

LOOCV is case k = n.
I LOOCV is not as good as the n folds are highly correlated with each
other leading to higher variance

I k = 5 or k = 10 has lower variance with bias still reasonable
I LOOCV used for nonparametric regression where want good local �t.
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3. Cross-Validation k-fold Cross-Validation

k-fold Cross-Validation: one standard error rule

k folds gives k estimates MSE(1), ...,MSE(k )
I this yields standard error of CV(k )

se(CV(k )) =

r
1

k = 1 ∑k
j=1(MSE(j ) � CV(k ))2

.

Consider polynomial model of degree p.
I one standard error rule computes CV and se(CV) for p = 1, 2, ....
I then choose the lowest p for which CV is within one se(CV) of
minimum CV.

ESL Chs.7.4-7.10 has much more detail on cross-validation and on
estimating training error and test error for MSE loss and more general
loss functions.

ESL Chs.7.11 presents the �.632 estimator� that is an adaptation of
the usual bootstrap to correctly estimate test data MSE.
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4. Subset Selection of Regressors

4. Subset Selection of Regressors

General idea is to
I 1. For k = 1, 2, ..., p choose a �best�model with k regressors
I 2. Choose among these p models based on model �t with penalty for
larger models.

Methods include
I best subset
I forwards stepwise
I backwards stepwise
I hybrid.
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4. Subset Selection of Regressors Goodness of �t criteria

Goodness of �t criteria
De�ne residual sum of squares and estimated error variance

RSS = ∑n
i=1(yi � byi )2 and bσ2 = 1

n ∑n
i=1(yi � byi )2.

Model selection criteria for model with k regressors.

Mallows Cp Cp = 1
n (RSS + 2kbσ2p)

Akaike information criteria AIC = n ln bσ2 + 2k + n(1+ ln 2π)

Bayesian information criteria BIC = n ln bσ2 + k ln n+ n(1+ ln 2π)

Adjusted R-squared R
2
= 1� RSS/(n�k�1)

TSS/(n�1)

I IMPORTANT: Here bσ2p is for the full model with p regressors.
Note: Econometrics books use a di¤erent formula for AIC and BIC,
using bσ2 in the �tted model; not bσ2p for the full model with k = p.
Note: k is the e¤ective degrees of freedom which may di¤er from the
number of regressors e.g. ridge, lasso, PCA, .... See ESL 3.4, 5.4.

I and instead of LOOCV use generalized cross validation (ESL p.244).
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4. Subset Selection of Regressors Subset Selection Procedures

Subset Selection Procedures
Best subset

I For each k = 1, ..., p �nd the model with lowest RSS (highest R2)
I Then use AIC etc. or CV to choose among the p models (want lowest
test MSE)

I Problem: 2p total models to estimate.

Stepwise forwards
I Start with 0 predictors and add the regressor with lowest RSS
I Start with this new model and add the regressor with lowest RSS
I etc.
I Requires p + (p � 1) + � � � 1 = p(p + 1)/2 regressions.

Stepwise backwards
I similar but start with p regressors and drop weakest regressor, etc.
I requires n < p.

Hybrid
I forward selection but after new model found drop variables that do not
improve �t.
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4. Subset Selection of Regressors Subset Selection Procedures

Subset Selection Procedures (continued)

There are algorithms to speed these methods up
I e.g. leaps and bounds procedure.

Near enough may be good enough
I best subsets gives the best model for the training data
I but stepwise methods will get close and are much faster.
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4. Subset Selection of Regressors Subset Selection Procedures

Subset Selection and Cross Validation

Need to correctly combine cross validation and subset selection
I 1. Divide sample data into K folds at random
I 2. For each fold �nd best model with 0, 1, ..., p regressors and
compute test error using the left out fold

I 3. For each model size compute average test error over the K folds
I 4. Choose model size with smallest average test error (or use one
standard error rule)

I 5. Using all the data �nd and �t the best model of this size.
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5. Shrinkage methods

5. Shrinkage Methods

Shrinkage estimators minimize RSS with a penalty
I this shrinks parameter estimates towards zero

The extent of shrinkage is determined by a tuning parameter
I this is determined by cross-validation.

Ridge and lasso are not invariant to rescaling of regressors, so �rst
standardize

I so xij below is actually (xij � x̄j )/sj
I xi does not include an intercept nor does data matrix X
I we can recover intercept β0 as bβ0 = ȳ .

So work with Y = X0β+ ε = β1X1 + β2X2 + � � �+ βpXp + ε

I instead of Y = β0 + β1X1 + β2X2 + � � �+ βpXp + ε.
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5. Shrinkage methods Ridge Regression

Ridge Regression
The ridge estimator bβλ of β minimizes

∑n
i=1(yi � x

0
iβ)

2 + λ ∑p
j=1 β2j = RSS + λ(jjβjj2)2

I where λ � 0 is a tuning parameter
I jjβjj2 =

q
∑pj=1 β2j is L2 norm.

Equivalently the ridge estimator minimizes RSS subject to
∑p
j=1 β2j � s.

The ridge estimator is bβλ = (X
0X+ λI)�1X0y.

Features
I bβλ ! bβOLS as λ ! 0 and bβλ ! 0 as λ ! ∞.
I best when many predictors important with coe¤s of similar size
I best when LS has high variance
I algorithms exist to quickly compute bβλ for many values of λ
I then choose λ by cross validation.
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5. Shrinkage methods Ridge Regression

Ridge Derivation

1. Objective function includes penalty
I Q(β) = (y�Xβ)0(y�Xβ) + λβ0β
I ∂Q(β)/∂β = �2X0(y�Xβ) + 2λβ = 0
I ) X0Xβ+ λIβ = X0y
I ) bβλ = (X

0X+ λI)�1X0y.

2. Form Lagrangian (multiplier is λ) from objective function and
constraint

I Q(β) = (y�Xβ)0(y�Xβ) and constraint β0β � s
I L(β,λ) = (y�Xβ)0(y�Xβ) + λ(β0β� s)
I ∂L(β,λ)/∂β = �2X0(y�Xβ) + 2λβ = 0
I ) bβλ = (X

0X+ λI)�1X0y
I Here λ = ∂Lopt (β,λ, s)/∂s.
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5. Shrinkage methods Lasso

Lasso (Least Absolute Shrinkage And Selection)

The lasso estimator bβλ of β minimizes

∑n
i=1(yi � x

0
iβ)

2 + λ ∑p
j=1 jβj j = RSS + λjjβjj1

I where λ � 0 is a tuning parameter
I jjβjj1 = ∑pj=1 jβj j is L1 norm.

Equivalently the lasso estimator minimizes RSS subject to
∑p
j=1 jβj j � s.

Features
I best when a few regressors have βj 6= 0 and most βj = 0
I leads to a more interpretable model than ridge.

Lasso and ridge are special cases of bridge
I minimize ∑ni=1(yi � x0i β)2 + λ ∑pj=1 jβj jγ for speci�ed γ > 0.
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5. Shrinkage methods Lasso versus Ridge

Lasso versus Ridge
Consider simple case where n = p and X = I.
OLS: bβOLS = (I0I)�1I0y = y

I so bβOLSj = yj

Ridge: bβR = (I0I+ λI)�1I0y = y/(1+ λ)

I so bβRj = yj/(1+ λ)
I shrink towards zero

Lasso shrinks some a bit towards 0 and sets others = 0

bβLj =
8<:
yj � λ/2 if yj > λ/2
yj + λ/2 if yj < �λ/2

0 if jyj j > λ/2

Best subset of size M in this examplebβBSj = bβj � 1[jbβj j � jbβ(M )j]
where bβ(M ) is the M th largest OLS coe¢ cient.
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5. Shrinkage methods Lasso versus Ridge

Lasso versus Ridge
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5. Shrinkage methods Least Angle Regression

Least Angle Regression (LAR)

See ESL p.73-79, 86-93

Lasso is a minor adaptation of LAR
I Lasso is usually estimated using a LAR procedure.
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6. Dimension Reduction

6. Dimension Reduction

Reduce from p regressors to M < p linear combinations of regressors
I Form X� = XA where A is p �M and M < p
I Y = β0 +Xβ+ u reduced to
I Y = β0 +X

�β+ v
= β0 +Xβ� + v where β� = Aβ.

Two methods
I 1. Principal components

F use only X to form A (unsupervised)

I 2. Partial least squares

F also use relationship between y and X to form A (supervised).

For both should standardize regressors as not scale invariant.

And often use cross-validation to determine M.
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6. Dimension Reduction Principal Components Analysis

Principal Components Analysis (PCA)

Eigenvalues and eigenvectors of X0X
I Let �= Diag[λj ] to be p � p vector of eigenvalues of X0X
I Order so λ1 � λ2 � � � � � λ1
I Let H = [h1 � � � hp ] be p � p vector of corresponding eigenvectors
I X0Xh1 = λ1h1 and X0XH = �H and H0H

Then
I the j th principal component is Xhj
I M�principal components regression uses X� = XA
where A = [h1 � � � hM ].
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6. Dimension Reduction Principal Components Analysis

Principal Components Analysis

The �rst principal component has the largest sample variance among
all normalized linear combinations of the columns of X.
The second principal component has the largest variance subject to
being orthogonal to the �rst, and so on.

PCA is unsupervised so seems unrelated to Y but
I ESL says does well in practice.
I PCA has the smallest variance of any estimator that estimates the
model Y = Xβ+ u with i.i.d. errors subject to constraint Cβ = c
where dim[C] � dim[X].

I PCA discards the p�M smallest eigenvalue components whereas ridge
does not, though ridge does shrink towards zero the most for the
smallest eigenvalue components (ESL p.79).
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6. Dimension Reduction Partial Least Squares

Partial Least Squares

Partial least squares produces a sequence of orthogonal linear
combinations of the regressors.

1. Standardize each regressor to have mean 0 and variance 1.

2. Regress y individually on each xj and let z1 = ∑p
j=1

bθ1jxj
3. Regress y on z1 and let by(1) be prediction of y.
4. Orthogonalize each xj by regress on z1 to give x

(1)
j = xj � z1bτj

where bτj = (z01z1)�1z01x(1)j .
5. Go back to step 1 with xj now x

(1)
j , etc.

I When done by = by(1) + by(2) + � � �
Partial least squares turns out to be similar to PCA

I especially if R2 is low.
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7. High-Dimensional Models

7. High-Dimensional Models

High dimensional simply means p is large relative to n
I in particular p > n
I n could be large or small.

Problems with p > n:

I Cp , AIC, BIC and R
2
cannot be used.

I due to multicollinearity cannot identify best model, just one of many
good models.

I cannot use regular statistical inference on training set

Solutions
I Forward stepwise, ridge, lasso, PCA are useful in training
I Evaluate models using cross-validation or independent test data

F using e.g. R2 or MSE.
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8. Nonlinear Models

8. Nonlinear Models

Models with single regressor
I 1. polynomial regression
I 2. step functions
I 3. regression splines
I 4. smoothing splines
I 5. local regression
I polynomial is global while the others break range of x into pieces.

Model with multiple regressors
I generalized additive models.
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8. Nonlinear Models Basis Functions

Basis Functions

General approach (scalar X for simplicity)

yi = β0 + β1b1(xi ) + � � �+ βK (xi ) + εi

I where b1, ..., bK are basis functions that are �xed and known.

Polynomial regression sets bj (xi ) = x
j
i

I typically K � 3 or 4.
I �ts globally and can over�t at boundaries.

Step functions: separate �ts in each interval (cj , cj+1)
I piecewise constant bj (xi ) = 1[cj � xi < cj+1 ]
I piecewise linear use 1[cj � xi < cj+1 ] and xi � 1[cj � xi < cj+1 ]
I problem is discontinuous at the cut points (does not connect)
I solution is splines.
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8. Nonlinear Models Splines

Splines
Begin with piecewise linear with two knots at c and d

f (x) = α11[x < c ] + α2x1[x < c ] + α41[c � x < d ]
+α4x1[c � x < d ] + α51[x � d ] + α6x1[x � d ].

To make continuous at c (so f (c�) = f (c)) and d we need two
constraints

at c : α1 + α2c = α3 + α4c
at d : α3 + α4d = α5 + α6d .

Alternatively introduce truncated power basis functions

h+(x) = x+ =
�
x x > 0
0 otherwise.

Then the following imposes the two constraints (so have 6� 2 = 4
regressors)

f (x) = β0 + β1x + β2(x � c)+ + β2(x � c)+
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8. Nonlinear Models Cubic Regression Splines

Cubic Regression Splines

This is the standard.

Piecewise cubic model with K knots
I require f (x), f 0(x) and f 00(x) to be continuous at the K knots

Then can do OLS with

f (x) = β0+ β1x+ β2x
2+ β3x

3+ β4(x� c1)3++ � � �+ β(3+K )(x� cK )3+

I for proof when K = 1 see ISL exercise 7.1.

This is the lowest degree regression spline where the graph of bf (x) on
x seems smooth and continuous to the naked eye.

I There is no real bene�t to a higher order spline.
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8. Nonlinear Models Other Splines

Other Splines

Regression splines over�t at boundaries.

A natural spline is an adaptation that restricts the relationship to be
linear past the lower and upper boundaries of the data.

Regression splines and natural splines require choosing the cut points
(e.g. use quintiles of x)

Smoothing splines use all distinct values of x as knots but then add a
smoothness penalty that penalizes curvature.

I The function g(�) minimizes

∑n
i=1(yi � g(xi ))

2 + λ
Z b
a
g 00(t)dt where a � all xi � b.

I λ = 0 connects the data points and λ ! ∞ gives OLS.

B splines are discussed in ESL ch.5 appendix.
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8. Nonlinear Models Local Polynomial Regression

Local Polynomial Regression

Local polynomial at x = x0 of degree d

bf (x0) = ∑d
j=0

bβ0j x ji
I where bβ00, ..., bβ0d minimize the locally weighted least squares

∑n
i=1 Kλ(x0, xi )

�
yi �∑d

j=0 β0j x
j
i

�2
.

The weights Kλ(x0, xi ) are given by a kernel function and are highest
at xi = x0.

The tuning parameter λ determines how far out to average.

d = 0 is local constant (Nadaraya-Watson kernel regression).

d = 1 is local linear.

Can generalize to local ML max ∑n
i=1 Kλ(x0, xi ) ln(f (yi , xi , θ

0).
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8. Nonlinear Models Multiple predictors

Flexible Models with Multiple Predictors

For splines use multivariate adaptive regression splines (MARS) - see
ESL ch.9.4.

For fully nonparametric regression run into curse of dimensionality
problems

I so place some structure.

Economists use single-index models with f (x) = g(x0β) with g(�)
unspeci�ed.

I advantage is interpretability
I project pursuit regression (below) generalizes.

Regression trees are used a lot (next topic).

Here consider
I generalized additive models
I neural networks.
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8. Nonlinear Models Generalized Additive Models

Generalized Additive Models (GAMs)
A linear combination of scalar functions

yi = α+∑p
j=1 fj (xij ) + εi ,

where xj is the j th regressor and fj (�) is (usually) determined by the
data.
Advantage is interpretability (due to each regressor appearing
additively).
Can make more nonlinear by including interactions such as xi1 � xi2
as a separate regressor.
For fj (�) unspeci�ed reduces p�dimensional problem to sequence of
one-dimensional problems.
ESL ch.9.1.1 presents the back�tting algorithm when smoothing
splines are used that minimize the penalized RSS

PRSS(α, f1, ..., fp) = ∑n
i=1

�
yi � α�∑p

j=1 fj (xij )
�2
+∑p

j=1 λj

Z
f 00j (tj )dtj .

Problems implementing if many possible regressors.
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8. Nonlinear Models Project Pursuit Regression

Project Pursuit Regression

See ESL chapter 11.2.

The GAM is additive in functions fj (xj ), j = 1, ..., p, that are distinct
for each regressor.

Instead be additive in functions of x1, ..., xp , m = 1, ...,M.

Project pursuit regression minimizes ∑n
i=1 (yi � f (xi ))

2 where

f (xi ) = ∑M
m=1 gm(x

0
iωm)

I additive in derived features x0ωm rather than in the x 0j s.

Here the gm(�) functions are unspeci�ed.
This is a multi-index model with case M = 1 being a single-index
model.
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8. Nonlinear Models Neural Networks

Neural Networks

See ESL chapter 11.2-11.10.

Neural network is a richer model for f (xi ) than project pursuit, but
unlike project pursuit all functions are speci�ed. Only parameters
need to be estimated.

Consider a neural network with two layers: Y depends on Z0s (a
hidden layer) that depend on X0s.

Zm = σ(α0m +X0αm) m = 1, ...,M
usually σ(v) = 1/(1+ e�v )

T = β0 + Z
0β

f (X) = g(T )
usually g(T ) = T

So f (xi ) = ∑M
m=1 σ(α0m + x0iαm) where σ(v) = 1/(1+ e�v ).

We need to �nd the number M of hidden units and estimate the α0s.
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8. Nonlinear Models Neural Networks

Neural Networks (continued)
Minimize the sum of squared residuals but need a penalty on α0s to
avoid over�tting.

I Since penalty is introduced standardize x 0s to (0,1).
I Best to have too many hidden units and then avoid over�t using
penalty.

Neural nets are good for prediction
I especially in speech recognition, image recognition, ...
I but very di¢ cult (impossible) to interpret.

Estimate iteratively using iterative gradient methods
I initially people used back propagation
I faster is to use variable metric methods (such as BFGS) that avoid
using the Hessian or use conjugate gradient methods

I di¤erent starting values lead to di¤erent estimates (nonconvex
objective function) so use several starting values and average results or
use bagging.

Deep learning uses nonlinear transformations such as neural networks
I deep nets are an improvement on original neural networks.
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9. Tree Based Methods

9. Tree Based Methods

Regression Trees
I sequentially split x0s into rectangular regions in way that reduces RSS
I then byi is the average of y 0s in the region that xi falls in
I with J blocks RSS= ∑Jj=1 ∑i2Rj (yi � ȳRj )

2.

Need to determine both the regressor j to split and the split point s.
I For any regressor j and s, de�ne the pair of half-planes
R1(j , s) = fX jXj < sg and R2(j , s) = fX jXj � sg

I Find the value of j and s that minimize

∑
i :xi2R1(j ,s)

(yi � ȳR1)2 + ∑
i :xi2R1(j ,s)

(yi � ȳR1)2

where ȳR1 is the mean of y in region R1 (and similar for R2).
I Once this �rst split is found, split both R1 and R2 and repeat
I Each split is the one that reduces RSS the most.
I Stop when e.g. less than �ve observations in each region.
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9. Tree Based Methods

The following diagram arises if (1) split X1 in two; (2) split the lowest
X1 values on the basis of X2 into R1 and R2; (3) split the highest X1
values into two regions (R3 and R4/R5); (4) split the highest X1
values on the basis of X2 into R4 and R5.
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9. Tree Based Methods

The model is of form f (X ) = ∑J
j=1 cm � 1[X 2 Rj ].

The approach is a topdown greedy approach
I top down as start with top of the tree
I greedy as at each step the best split is made at that particular step,
rather than looking ahead and picking a split that will lead to a better
tree in some future step.

This leads to over�tting, so prune
I use cost complexity pruning (or weakest link pruning)
I this penalizes for having too many terminal nodes
I see ISL equation (8.4).

Regression trees are easy to understand if there are few regressors

But they do not predict as well as chapter 6-7 methods
I due to high variance (e.g. split data in two then can get quite di¤erent
trees).

Better methods (bagging, random forests and boosting) are given
next.
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9. Tree Based Methods Bagging

Bagging (Bootstrap Aggregating)
This method is a general method for improving prediction that works
especially well for regression trees.
Idea is that averaging reduces variance.
So average regression trees over many samples

I where di¤erent samples are obtained by bootstrap (so not completely
independent of each other)

I For each sample obtain a large tree and prediction bfb(x).
I Average all these predictions: bfbag(x) = 1

B ∑Bb=1 bfb(x).
Get test error by using out-of-bag (OOB) observations not in the
bootstrap sample

I Pr[j th obs not in resample] = (1� 1
n )
n ! e�1 = 0.368 ' 1/3.

I this replaces cross validation.

Interpretation of trees is now di¢ cult so
I record the total amount that RSS is decreased due to splits over a
given predictor, averaged over all B trees.

I A large value indicates an important predictor.
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9. Tree Based Methods Random Forests

Random Forests

The B bagging estimates are correlated in part because if a regressor
is important it will appear near the top of the tree in each bootstrap
sample.

I The trees look similar from one resample to the next.

As for boosting get bootstrap samples.

But within each bootstrap sample each time a split in a tree is
considered, use only a random sample of m < p predictors in deciding
the next split.

I usually m ' pp.

This reduces correlation across bootstrap resamples.

Simple bagging is random forest with m = p.
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9. Tree Based Methods Boosting

Boosting

This method is also a general method for improving prediction.

Regression trees use a greedy algorithm.

Boosting uses a slower algorithm to generate a sequence of trees
I each tree is grown using information from previously grown trees
I and is �t on a modi�ed version of the original data set
I boosting does not involve bootstrap sampling.

Speci�cally (with λ a penalty parameter)
I given current model b �t a decision tree to model b0s residuals (rather
than the outcome Y )

I then update bf (x) = previous bf (x) + λbf b(x)
I then update the residuals ri = previous ri � λbf b(xi )
I the boosted model is bf (x) = ∑Bb=1 λbf b(xi ).

A. Colin Cameron Univ. of Calif.- Davis (Based on James, Witten, Hastie and Tibsharani �An Introduction to Statistical Learning" (2013) and Hastie, Tibsharani and Friedman (2009) "The Elements of Statistical Learning")Statistical Learning April 25, 2016 50 / 70



10. Classi�cation Loss Function

10. Classi�cation: Loss Function
y 0s are now categorical (e.g. binary if two categories).
Use (0,1) loss function (ESL pp.20-21).

I 0 if correct classi�cation and 1 if misclassi�ed.

L(G , bG (X )) is 0 on diagonal of K �K table and 1 elsewhere
I where G is actual categories and bG is predicted categories.

Then minimize the expected prediction error

EPE = EG ,X [L(G , bG (X ))]
= EX

h
∑K
k=1 L(G ,

bG (X ))� Pr[Gk jX ]i
Minimize EPE pointwise

f (x) = argming2G
h
∑K
k=1 L(Gk , g)� Pr[Gk jX = x ]

i
∂/∂c = argming2G [1� Pr[g jX = x ]]

= maxg2G Pr[g jX = x ]
Called Bayes classi�er. Classify the most probable class.
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10. Classi�cation Test Error Rate

Test Error Rate
Instead of MSE we use the error rate

Error rate =
1
n ∑n

i=1 1[yi 6= byi ],
where indicator 1[A] = 1 if event A happens and = 0 otherwise.
The test error rate is for the n0 observations in the test sample

Ave(1[y0 6= by0]) = 1
n0

∑n0
i=1 1[y0i 6= by0i ].

Cross validation uses number of misclassi�ed observations. e.g.
LOOCV is

CV(n) =
1
n ∑n

i=1 Erri =
1
n ∑n

i=1 1[yi 6= by(�i )].
Some terminology

I A confusion matrix is a K �K table of counts of (y , by)
I In 2� 2 case with y = 1 or 0

F sensitivity is % of y = 1 with prediction by = 1
F speci�city is % of y = 0 with prediction by = 0
F ROC curve plots sensitivity against 1�sensitivity as threshold for by = 1
changes.
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10. Classi�cation Classi�cation Methods

Classi�cation Methods

Regression methods predict probabilities and then use Bayes classi�er.
I logistic regression, multinomial regression, k nearest neighbors.

Discriminant analysis additionally assumes a distribution for the x�s.

Support vector classi�ers and support vector machines use separating
hyperplanes of X and extensions.
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10. Classi�cation Logit and k-NN

Logit and k-NN

Directly model p(X) = Pr[y jX].
Logistic (logit) regression for binary case obtains MLE for

ln
�

p(X)
1�p(X)

�
= β0 +X

0β.

Statisticians implement using a statistical package for the class of
generalized linear models (GLM)

I logit is in the Bernoulli (or binomial) family with logistic link
I logit is often the default.

k-nearest neighbors KNN for many classes
I Pr[Y = j jX = X0 ] = 1

K ∑i2N0 1[yi = j ]
I where N0 is the K observations on X closest to X0

In both cases we obtain predicted probabilities
I then assign to the class with highest predicted probability.
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10. Classi�cation Linear Discriminant Analysis

Linear Discriminant Analysis
Discriminant analysis speci�es a joint distribution for (Y ,X).
Linear discriminant analysis with K categories

I assume XjY = k is N(µk , ° ) with density fk (X) = Pr[X = xjY = k ]
I and let πk = Pr[Y = k ]

The desired Pr[Y = k jX = x] is obtained using Bayes theorem

Pr[Y = k jX = x] = πk fk (X)
∑K
j=1 πj fj (X)

.

Assign observation X = x to class k with largest Pr[Y = k jX = x].
I Upon simpli�cation this is equivalent to choosing model with largest
discriminant function

δk (x) = x
0° �1µk �

1
2

µk
0° �1µk + lnπk

I use bµk =�xk , b° = cVar[xk ] and bπk = 1
N ∑Ni=1 1[yi = k ].

Called linear discriminant analysis as linear in x.
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10. Classi�cation Quadratic Discriminant Analysis

Quadratic Discriminant Analysis

Quadratic discriminant analysis
I allow di¤erent variances so XjY = k is N(µk , ° k )

Upon simpli�cation, the Bayes classi�er assigns observation X = x to
class k which has largest

δk (x) = �
1
2
x0° �1k x+ x

0° �1k µk �
1
2

µk
0° �1k µk �

1
2
ln j° k j+ lnπk

I called quadratic discriminant analysis as linear in x

Use rather than LDA only if have a lot of data as requires estimating
many parameters.
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10. Classi�cation LDA versus Logit

LDA versus Logit

ESL ch.4.4.5 compares linear discriminant analysis and logit
I Both have log odds ratio linear in X
I LDA is joint model if Y and X versus logit is model of Y conditional
on X .

I In the worst case logit ignoring marginal distribution of X has a loss of
e¢ ciency of about 30% asymptotically in the error rate.

I If X 0s are nonnormal (e.g. categorical) then LDA still doesn�t do too
bad.

A. Colin Cameron Univ. of Calif.- Davis (Based on James, Witten, Hastie and Tibsharani �An Introduction to Statistical Learning" (2013) and Hastie, Tibsharani and Friedman (2009) "The Elements of Statistical Learning")Statistical Learning April 25, 2016 57 / 70



10. Classi�cation Linear and Quadratic boundaries

Linear and Quadratic Boundaries
LDA uses a linear boundary to classify and QDA a quadratic
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10. Classi�cation Support Vector Classi�er

Support Vector Classi�er

Build on LDA idea of linear boundary to classify when K = 2.

Maximal margin classi�er
I classify using a separating hyperplane (linear combination of X )
I if perfect classi�cation is possible then there are an in�nite number of
such hyperplanes

I so use the separating hyperplane that is furthest from the training
observations

I this distance is called the maximal margin.

Support vector classi�er
I generalize maximal margin classi�er to the nonseparable case
I this adds slack variables to allow some y�s to be on the wrong side of
the margin

I Maxβ,εM (the margin - distance from separator to training X�s)
subject to β0β 6= 1, yi (β0 + x0i β) � M(1� εi ), εi � 0 and
∑ni=1 εi � C .
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10. Classi�cation Support Vector Machines

Support Vector Machines

The support vector classi�er has linear boundary
I f (x0) = β0 +∑ni=1 αix00xi , where x

0
0xi = ∑pj=1 x0jxij .

The support vector machine has nonlinear boundaries
I f (x0) = β0 +∑ni=1 αiK (x0, xi ) where K (�) is a kernel
I polynomial kernel K (x0, xi ) = (1+∑pj=1 x0jxij )

d

I radial kernel K (x0, xi ) = exp(�γ ∑pj=1(x0j � xij )2)

Now extend to K > 2 classes (see ISL ch. 9.4).
I one-versus-one or all-pairs approach
I one-versus-all approach.
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11. Unsupervised Learning

11. Unsupervised Learning

Challenging area: no y , only X.
Principal components analysis.

Clustering Methods
I k means clustering.
I hierarchical clustering.
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11. Unsupervised Learning Principal Components

Principal Components

Initially discussed in section 6 on dimension reduction.

Goal is to �nd a few linear combinations of X that explain a good
fraction of the total variance ∑p

j=1 Var(Xj ) = ∑p
j=1

1
n ∑n

i=1 x
2
ij for

mean 0 X�s.

Zm = ∑p
j=1 φjmXj where ∑p

j=1 φ2jm = 1 and φjm are called factor
loadings.

A useful statistic is the proportion of variance explained (PVE)
I a scree plot is a plot of PVEm against m
I and a plot of the cumulative PVE by m components against m.
I choose m that explains a �sizable�amount of variance
I ideally �nd interesting patterns with �rst few components.

Easier when used PCA earlier in supervised learning as then observe
Y and can treat m as a tuning parameter.
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11. Unsupervised Learning K-Means Clustering

K-Means Clustering

Goal is to �nd homogeneous subgroups among the X .

K-Means splits into K distinct clusters where within cluster variation
is minimized.

Let W (Ck ) be measure of variation

I MinimizeC1,...,Ck ∑Kk=1W (Ck )
I Euclidean distance W (Ck ) =

1
nk ∑Ki ,i 02Ck ∑pj=1(xij � xi 0j )2

Global maximum requires K n partitions.

Instead use algorithm 10.1 (ISL p.388) which �nds a local optimum
I run algorithm multiple times with di¤erent seeds
I choose the optimum with smallest ∑Kk=1W (Ck ).
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11. Unsupervised Learning Hierarchical Clustering

Hierarchical Clustering

Do not specify K .

Instead begin with n clusters (leaves) and combine clusters into
branches up towards trunk

I represented by a dendrogram
I eyeball to decide number of clusters.

Need a dissimilarity measure between clusters
I four types of linkage: complete, average, single and centroid.

For any clustering method
I it is a di¢ cult problem to do unsupervised learning
I results can change a lot with small changes in method
I clustering on subsets of the data can provide a sense of robustness.
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12. Introduction to R
Chapter 2 (Statistical Learning)

I de�ne: A=matrix(data=c(1,2,3,4), nrow=2, ncol=2)
I list subcomponent: A[1,2]
I remove: rm()
I import: read.table() or read.csv
I set the dataset for analysis: �x()
I graphics: plot(x,y,xlab="x-axis",ylab-"y-axis",main="plot y xs x")
I draw line: abline()
I summary statistics: summary()

Chapter 3 (Regression)
I install package on computer: install.packages("package")
I call package for this run: library(package)
I OLS: lm.�t = lm(y~x,data)
I se results: summary(lm.�t)
I con�dence interval: con�nt(lm.�t)
I predict: predict()
I write functions: Loadlibraries=function()
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Introduction to R (continued)

Chapter 4 (Classi�cation)
I logistic: glm(...,family=binomial)
I LDA: lda() function in MASS library
I QDA: qda() function in MASS library
I kNN: knn() function in class library

Chapter 5 (Cross-Validation and Bootstrap)
I set seed: set.seed()
I training set: sample(n,m) where n=#totalobs and m<n is #training
I LOOCV: glm() and cv.glm() for and GLM
I loops: for (in in 1:10){ + ... + ... + }
I bootstrap: boot() function in boot library
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Introduction to R (continued)

Chapter 6 (Lienar Selection and Regularization)
I best subset: regsubsets() in leaps library
I forward stepwise: regsubsets(,method=�forward�)
I backward stepwise: regsubsets(,method=�backward�)
I ridge: glmnet(,alpha=0) function in glmnet library
I lasso: glmnet(,alpha=1) function in glmnet library
I CV for ridge/lasso: cv.glmnet()
I principal components: pcr() function in pls library
I CV for PCA: pcr(,validation="CV")
I partial least squares: plsr() function in pls library
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Introduction to R (continued)

Chapter 7 (Nonlinear)
I regression splines: bs(x,knots=c()) in lm() function
I natural spline: ns(x,knots=c()) in lm() function
I smoothing spline: function smooth.spline() in spline library
(This does not use data frames. It needs data matrices.)

I loess: function loess
I generalized additive models: function gam() in gam library

Chapter 8 (Tree-Based methods)
I classi�cation tree: function tree() in tree library
I cross-validation: cv.tree() function
I pruning: function prune.tree()
I random forest: randomForest() in randomForest library
I bagging: function randomForest()
I boosting: gbm() function in library gbm
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Introduction to R (continued)

Chapter 9 (Support Vector Machines)
I support vector classi�er: svm(... kernel="linear") in e1071 library
I support vector machine: svm(... kernel="polynomial") or svm(...
kernel="radial") in e1071 library

I receiver operator characteristic curve: rocplot in ROCR library.

Chapter 10 (Unsupervised Learning)
I principal components analysis: function prcomp()
I k-means clusterning: function kmeans()
I hierarchical clustering: function hclust()
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