Solutions (mostly for odd-numbered exercises)
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1. Chapter 1: Introduction

No exercises.

2. Chapter 2: Causal and Noncausal Models

No exercises.

3. Chapter 3: Microeconomic Data Structures

No exercises.

4. Chapter 4: Linear Models

4-1 (a) For the diagonal entries i = j and E[u?] = 0.

For the first off-diagonal i = j — 1 or i = j + 1 so |i — j| = 1 and E[u;u;] = po?.
Otherwise |i — j| > 1 and E[u;u;] = 0.

(b) BOLS is asymptotically normal with mean 0 and asymptotic variance matrix

ViBors] = (X'X) ' X'QX(X'X)

where _ -
a2 po? 0 0
po?
Q=10 0
: . po?
| 0 0 po? o? ]

(c) This example is a simple departure from the simplest case of £ = o1.



Here 2 depends on just two parameters and hence can be consistently estimated as

N — oo.
So we use L R
ViBors) = (X'X) ' X'QX(X'X) ",
where ~
52 po? 0 0
/p\a\_2
Q=1 o 0
: . . pol
0 - 0 pot |

and Q 5 Qif 52 L 52 auld;(;gpo’2 or p > p.

For 02 =E[u?] the obvious estimate is 6> = N~ S | 42, where ﬂi\: yi — X, 3.

For p we can directly use po? =E[u;u;_1] consistently estimated by po2 = N~} Zi\iz Will—1.
Or use p =E[uu;—1]/v/Elui]E[ui—1] =E[u;u;—1]/E[u?] consistently estimated by p =
NN G 1 /NP N 42 and hence 562 = N~V SN, G .

(d) To answer (d) and (e) it is helpful to use summation notation:

N N N N -1
[Z Xix;] [82 Z XX, + 2p5° Z xix;_ll [Z Xix;]
=1 =1 1=2 =1
N -1 N “1rw N -
52 [Z x;xi| 4 2po? [Z xixgl [Z Xix;_ll [Z Xix;]
=1 =1 =2 =1

-1
ViBors] =

1

(d) No. The usual OLS output estimate 52(X'X)~! is inconsistent as it ignores the
off-diagonal terms and hence the second term above.

(e) No. The White heteroskedasticity-robust estimate is inconsistent as it also ignores
the off-diagonal terms and hence the second term above.

4-3 (a) The error u is conditionally heteroskedastic, since V{u|z] =V[ze|x] = 22V[e|z] =
22V[e] = 22 x 1 = 22 which depends on the regressor .

(b) For scalar regressor N 1X'X =N"135". 22,

Here z? are iid with mean 1 (since E[z?] =E[(z;—E[x;])?] =V[z;] = 1 using E[z;] = 0).
Applying a LLN (here Kolmogorov), N71X'X =N~13Y". 22 2 E[z?] = 1, 50 Myx = 1.
(¢) V[u] =V[ze] =E[(xe)?] — (E[xz])? =E[2*|E[¢?] — (E[z]E[e])* =V[z]V[e] - 0 x 0 =
1 x 1 =1 where use independence of x and ¢ and fact that here E[z] = 0 and E[¢] = 0.



(d) For scalar regressor and diagonal €2,

1 Y 1 Y 1Y
—1~/ _ 4 2.2 1 2.2 _ 1 4
N XQX_N;ini_N;xei_N;mz

using 02 = 22 from (a).N
Here z} are iid with mean 3 (since E[z}] =E[(z;—E[z;])] = 3 using E[z;] = 0 and the
fact that fourth central moment of normal is 30% = 3 x 1 = 3).

Applying a LLN (here Kolmogorov), N"'X'QX =N-13" 2} % E[z4] = 3, so Myax =
3.

(e) Default OLS result

VNBors — B) % N[0, >Ml] =N [0, 1x (1)"1] =N [0,1].

(f) White OLS result

\/N(BOLS - ﬁ) i’ N [0’ M;iMxQngi] = N [07 (1)71 X 3 X (1)71] = N[Oa?’]

(g) Yes. Expect that failure to control for conditional heteroskedasticity when should
control for it will lead to inconsistent standard errors, though a priori the direction of
the inconsistency is not known. That is the case here.

What is unusual compared to many applications is that there is a big difference in this
example - the true variance is three times the default estimate and the true standard
errrors are v/3times larger.

4-5 (a) Differentiate
0Q(B)  0u'Wu

B 98

ou’ " ou'Wu
0B ou
= X' x 2Wu assuming W is symmetric
= 2X'Wu

by chain rule for matrix differentiation

Set to zero
2X'Wu =0

=  2X'W(y-XB)=0
=  X'Wy=XWXg3
= B= (X'WX)1X'Wy



where need to assume the inverse exists.
Here W is rank r > K =rank(X) = X'Z and Z'Z are rank K = X'Z(Z'Z)"'Z'X is of
full rank K.

(b) For W = I we have B8=(X'IX)"!X'Iy = (X’X)"1X'y which is OLS.
Note that (X'X)~! exists if N x K matrix X is of full rank K.

(c) For W =Q~! we have B=(X'Q 'X)!X'Q "'y which is GLS (see (4.28)).

(d) For W = Z(Z'Z)"'Z' we have B=(X'Z(Z'Z)'Z'X)"'X'Z(Z'Z) 'Z'y which is
2SLS (see (4.53)).

4-7 Given the information, E[z] = 0 and E[z] = 0 and

Viz] = E[2?] = E[(\u + €)?] = \02 + o2

Vel = B[22 = B[y + v)?] = %0 + o2
Cov[z, 2] = E[zz] = E[(Au +¢)(ye +v)] = A\o?
Cov|z,u] = E[zu] = E[(Mu + €)u] = \o2

(a) For regression of y on = we have Bo;g = > 3!:2)71 > ziy; and as usual

e . -1
plim(Bors — B) = (plim >, 27)  plim 3=, wu;
= (E[:pz])_l E[zu] as here data are iid
= (A\202 +02)" )02,

(b) The squared correlation coefficient is

Pxz = [Covlz, 2?|/[V[z]V[2]
= o2/ (Vo + o) (7202 + o})]

(c) For single regressor and single instrument

Brv =0 Zixi)il > i il
= (X ziwi) " X 2B+ ;)
=B+ (3 ziw) ' Yz
=B+ (2 + )Y ziug
=B+ A 2w + Y, ziE) Y,z

N = B + ()\mzu + mze) ! My
/BIV - /6 = mzu/ ()\mzu + mze)



where m,, = N7 Y, ziu; and mye = N71Y, 26,
By a LLN m, 2, E[m..) = E[ziu;] = El(ve;+v;)u;] = 0 since €, u and v are independent
with zero means.

By a LLN m,. % E[m..] = E[zi&i] = E[(vei + vi)ei] = vE[e2] = vo2.

£
Brv =B B 0/Ax0+y02)=0.

(d) If myy = —mye/A then Amyy, = —mge 80 Amyy, — mye = 0 and BIV — B = my,/0
which is not defined.
(e) First
5IV - 6 - mzu/ (Amzu + mza)
=1/( A+ mye/myy).

If m,, is large relative to m.. /A then \ is large relative to m.c/m,y, s0 A+ me /My, iS
close to A and 1/(X + m,e/my,) is close to 1/A.

(f) Given the definition of p% , in part (c), p%, is smaller the smaller is 7, the smaller is
o2, and the larger is \. So in the weak instruments case with small correlation between
z and z (ao p% is small), By — 3 is likely to converge to 1/ rather than 0, and there
is “finite sample bias” in /BIV-

4-11 (a) The true variance matrix of OLS is

ViBors] = (X'X)T'X'BX(X'X)™!
= (X'X)" X2 (Iy+AA)X(X'X) ™!
2(X'X)™ + 22X X)TIXTAA'X(X'X) L
(b) This equals or exceeds o2(X'X) ™! since (X'X) ! X’AA’X(X'X) ! is positive semi-
definite. So the default OLS variance matrix, and hence standard errors, will generally

understate the true standard errors (the exception being if X’AA'X = 0).
(c) For GLS

V[Barsl = (X'z7'X)7
= X[*I+AA)X)™
AX'T+AATIX)
= (X'[Iy - A1, + A'A)TAX) !
A(X'X - XA, + A’A)TA'X) L



(d) o3(X'X)~! < V[Bgys] since

X'X >X'X - X'A(I,, + A/A)"tA’X in the matrix sense
= (X'X)1<(X'X-X'A(I;, + A’/A)"tA’X)~! in the matrix sense.

If we ran OLS and GLS and used the incorrect default OLS standard errors we would
obtain the puzzling result that OLS was more effficient than GLS. But this is just an
artifact of using the wrong estimated standard errors for OLS.

(e) GLS requires (X’27'X)~! which from (c) requires (I,, + A’A)~! which is the
inverse of an m x m matrix.

[We also need (X'X — X'A (I, + A’A)"tA’X)~! but this is a smaller k x k marix given
k<m< N]

4-13 (a) Here 8 =[11] and v = [1 0].

From bottom of page 86 the intercept will be 3, + a1 x F-l(q) = 1+ 1 x F-Y(q) =
1+ F- ' (q).

The slope will be 8y +ag x Fo () =1+0x F-1(q) = 1.

The slope should be 1 at all quantiles.

The intercept varies with F-!(g). Here F-1(q) takes values —2.56, —1.68 , —1.05,
—0.51, 0.0, 0.51, 1.05, 1.68 and 2.56 for ¢ = 0.1, 0.2, .... , 0.9. It follows that the
intercept takes values —1.56, —0.68 , —0.05, 0.49, 1.0, 1.51, 2.05, 2.68.

[For example F-1(0.9) is e* such that Pr[e < &*] = 0.9 for ¢ ~ N[0, 4] or equivalently
e* such that Pr[z < e*/2] = 0.9 for z ~ N[0,1]. Then £*/2 = 1.28 so * = 2.56.]

(b) The answers accord quite closely with theory as the slope and intercepts are quite
precisely estimated with slope coefficient standard errors less than 0.01 and intercept
coeflicient standard errors less than 0.04.

(c) Now both the intercept and slope coefficients vary with the quantile. Both intercept
and slope coefficients increase with the quantile, and for 1 = 0.5 are within two standard
errors of the true values of 1 and 1.

(d) Compared to (b) it is now the intercept that is constant and the slope that varies
across quantiles.

This is predicted from theory similar to that in part (a). Now 8 = [1 1] and a = [0 1].
From bottom of page 86 the intercept will be 3, + a1 x F-1(q) =1+0x F-l(q) =1
and the slope will be 8y +az x F-1(q) =1+ 1 x F-(q) = 14+ F-1(q).

4-15 (a) The OLS slope estimate and standard error are 0.05209 and 0.00291, and
the IV estimates are 0.18806 and 0.02614. The IV slope estimate is much larger and



indicates a very large return to schooling. There is a lossin precision with IV standard
error ten times larger, but the coefficient is still statististically significant.

(b) OLS of wage76 on an intercept and col4 gives slope coefficient 0.1559089 and OLS
regression of grade76 on an intercept and cold gives slope coefficient 0.829019. From
(4.46) , dy/dx = (dy/dz)/(dz/dz) = 0.1559089/0.829019 = 0.18806. This is the same
as the IV estimate in part (a).

(c) We obtain Wald = (1.706234 - 1.550325) / ( 13.52703 - 12.69801) = 0.18806. This
is the same as the IV estimate in part (a).

(d) From OLS regression of grade76 on col4, R? = 0.0208 and F' = 60.37. This does
not suggest a weak instruments problem, except that precision of IV will be much lower
than that of OLS due to the relatively low R?.

(e) Including the additional regressors the OLS slope estimate and standard error are
0.03304 and 0.00311, and the IV estimates are 0.09521 and 0.04932. The IV slope
estimate is again much larger and indicates a very large return to schooling. There is a
loss in precision with IV standard error now eighteed ten times larger, but the coefficient
is still statististically significant using a one-tail test at five percent.

Now OLS of wage76 on an intercept and col4 and other regressors gives slope coefficient
0.1559089 and OLS regression of grade76 on an intercept and col4 gives slope coefficient
0.829019. From (4.46) , dy/dx = (dy/dz)/(dz/dz) = 0.1559089/0.829019 = 0.18806.
This is the same as the IV estimate in part (a).

4-17 (a) The average of 8oy over 1000 simulations was 1.502518.
This is close to the theoretical value of 1.5: plim(Borg — 8) = Ao2/ (No? +02) =
(I1x1)/(1x1+1)=1/2and here g = 1.

(b) The average of 31\/ over 1000 simulations was 1.08551.
This is close to the theoretical value of 1: plim(Syy — ) = 0 and here § = 1.

(c) The observed values of BIV over 1000 simulations were skewed to the right of 5 =1,
with lower quartile .964185, median 1.424028 and upper quartile 1.7802471. Exercise
4-7 part (e) suggested concentration of BIV — p around 1/A = 1 or concetration of EIV
around 4+ 1 = 2 since here § = 1.

(d) The R? and F statistics across simulations from OLS regression (with intercept) of
z on z do indicate a likely weak instruments problem.

Over 1000 simulations, the average R? was 0.0148093 and the average F was 1.531256.
[Aside: From Exercise 4-7 (b) p%, = [v02?/[(A\202 + 02)(v%02 + 02) = [0.01]%/(1 +
1)(0.012 4 1) = 0.00005.]



5. Chapter 5: Extremum, ML, NLS

5-1 First note that

Elyle] _ 0 -1
e = exp(1 + 0.01z)[1 + exp(1 + 0.01z)]

= 0.0lexp(1 4 0.01z)[1 + exp(1 4 0.01z)]~*
—exp(1 4 0.01z) x 0.01 exp(1 4 0.01z)[1 + exp(1 4 0.01z)] 2
exp(1l + 0.01z)
[1+ exp(l+ 0.01z)]?

= 0.01 x upon simplification

(a) The average marginal effect over all observations.

100

OE[y exp(1 4+ 0.017)
0.01 = 0.0014928.
or 100 Z 1 + exp(1 + 0.017)

(b) The sample mean Z = 155 2100 = 50.5. Then

aﬁa[zjcm =00bxg +e§p((11++06(.)(}12 i0550).5)]2 = 0.0014867.
z
(c) Evaluating at = = 90
(d) Using the finite difference method
S T M—

Comment: This example is quite linear, leading to answers in (a) and (b) being close,
and similarly for (c¢) and (d). A more nonlinear function, with greater variation is
obtained using E[y|z] = exp(0+ 0.04z)/[1 + exp(0 4 0.04z)] for & = 1,...,100. Then the
answers are 0.0026163, 0.0013895, 0.00020268, and 0.00019773.



5-2 (a) Here
Inf(y) = Iny—2In\—y/\ with A = exp(x’83)/2 and In\ = x'3 — In 2

Iny — 2(x'8 —In2) — y/[exp(x'B)/2]
Iny — 2x'8 +2In2 — 2y exp(—x'B)

SO

QN(B):% ZZ In f(y;) = % Zi{ln yi — 2x'B+2In2 — 2y; exp(—x'B)}.

(b) Now using x nonstochastic so need only take expectations wrt y
Qo(B) = plimQn(B)
.1 .1 , .1 .1 ,
= plim N ZZ Iny; — plim N Zl 2x; 6+ plim N Zl 2In2 — plim N Zl 2y; exp(—x;03)

.1 .1 / .1 ,
= lim N ZZ E[lny] — 2lim N Zl X;8+2In2 — 2lim N ZZ E[y;] exp(—x;3)

= lim % ZZ E[lny] — 2lim % ZZ x;3+21In2 — 2lim % ZZ exp(x;8,) exp(—x,03),

where the last line uses E[y;] = exp(x}8) in the dgp and we do not need to evaluate
E[lny;] as the first sum does not invlove 3 and will therefore have derivative of 0 wrt

3.
(c) Differentiate wrt 3 (not By)

QB . 1 L 2 ) e
8 = —2lim N ZZ x;+ lim N ZZ exp(x;08¢) exp(—x;8)x;
= 0 when 8 = 3.
[Also 92Q0(8)/0B0B = —21im N1 Y. exp(x.8,) exp(—x;3)x;x} is negative definite at
B, so local max.]

Since plim Q () attains a local maximum at 3 = 3, conclude that B = argmax Qn(3)
is consistent for 3.

(d) Consider the last term. Since y; exp(—x}/3) is not iid need to use Markov SLLN.
This requires existence of second moments of y; which we have assumed.

5-3 (a) Differentiating Qn(8) wrt 3

9 1 /
8QﬁN = 5 ZZ (—2x; + 2y; exp(—x;8)x;)

1 .
- N ZZ 2 x {y;exp(—x)8) — 1}x; rearranging

1 Z 9y Yi~ exp(x;03)

o exp(x;0)
;  multipl b .
N exp(x;3) x WHPLYING BY o

p(x;3)



(b) Then

. QN _ —eXp(X Bo) N ] /
ImE [8,3 ,3()] Z 2 X —exp 0 B,) x; = 0 if E[y;|x;] = exp(x;00)-

So essential condition is correct specification of E[y;|x;].
(c) From (a)

QN — exp(x;8)
VN =25 —Ux,.
35 |~ 78 2 i
Apply CLT to average of the term in the sum.
Now y;|x; has mean exp(x}8,) and variance (exp(x}3))?/2.

So X; =2 x %(zﬁ;o)xi has mean 0 and variance 4 x %xlx = 2%;X].

Thus for Zy = (V[VNX]))"2(VNX — VNE[X]) = (4 5, VX)) (A5, X))
1 ol eXp(Xﬂo)x d
(o) < (G e M a4 a0

—exp(x Bo) x; 5 im — XX,
» T e A e 3 2

(d) Here y; is not iid. Use Liapounov CLT.
This will need a (2 4 §)** absolute moment of y;. e.g. 4" moment of y;.

—-1/2

e) Differentiating (a) wrt 3’ yields
(e) g y

*Qn exp Bo) N\ p .. 1 ,
NZ( exp(x )xixi Hllmﬁzi—%(ixi.

(f) Combining
VN(B — By) % N0, A(By) 'B(8y)A(B,) "]

—1 -1
<N o [ <hm — Z —2x%;X > <lim % ZZ 2xix2> <lim % Zz —2xix2> ]

-1
4N [O, <limi{2i 2xix;> ] .



(g) Test Hp : By; > B against H, : B; < 3} at level .05.

B SN {,3, (Zl 2xix§)_1}

zj = (ﬁjs_ﬂ]) A N[0,1], where s; is 5 diag entry in <ZZ 2xix;>
j

-1

Reject Hy at level 0.05 if z; < —z 5 = —1.645.

5-5 (a) t = 01 /se[f1] = 5/2 = 2.5. Since [2.5| > %05 = 1.645 we reject Hy.
(b) Rewrite as Hy : 01 — 2602 = 0 versus Hy : 61 — 205 # 0.
Use (5.32). Test Hy: RO =17 where R =[1 —2] and r =0 and 6’ = [0, 03].

Hereb\:[g} soRa—r:[l —2][2]:1.

Also V[8] = N-1C = [ L ] using Cov[1,05] = (Cor[f1, B2 2V[B1]V[Bs] = 0.52 x
22 x12=1.

Then RN-ICR’ = [1 —2][‘1L H [_12]:4

~ ~ -1
so W = (RO —r)’ <R(N*10)R’> (RO —1)=1x4"1x1.
Since W = 0.25 < X%;-05 = 3.84 do not reject Hy.

[Alternatively as only one restriction here, note that 6, — 205 has variance V[6;] +
4V1[01] — 4Cov[f1,02] =4 +4 x 1 —4 x 1 = 4, leading to

6120, 5-3

= = = =0.5
se[91 — 2«92] \/ZI

and do not reject as [0.5| < z05 = 1.96. Note that t2 =W.]

(c) Use (5.32) TestHg:ReerhereR:[é (1)} andr:[g} andez[el }

menrd—x=[ 0 0] [5]=[3]

. 1 0][4 171 0 41
—1 ! __ _
and RN CR_[O 1“1 1“0 1]_[1 1}

soW:(R@—r)’(R(N*lé)R')_l(Ré—r):[5 2][‘11 1“2]_124.

Since W =124 < X%;.os = 5.99 reject Hp.



5-7 Results will vary as uses generated data. Expect Bl ~ —1 and 32 ~ 1 and standard
errors similar to those below.

(a) For NLS got Bl = —1.1162 and 3, = 1.1098 with standard errors 0.0551 and 0.0256.

(b) Yes, will need to use sandwich errors due to heteroskedasticity as V[y|z] = exp(S; +
Bsx)?/2. Note that standard errors given in (a) do not correct for heteroskedasticity.

(c) For MLE got 3; = —1.0088 and 3, = 1.0262 with standard errors 0.0224 and 0.0215.

(d) Sandwich errors can be used but are not necessary since the ML simplification that
A = —B is appropriate here.





