Outline of all Lectures

I. Basic cross-section methods:
 - Poisson, GLM, negative binomial

II. More advanced cross-section methods:
 - Hurdle, zero-inflated, finite mixtures, endogeneity

III. Time series and panel methods

IV. Further Topics:
 - multivariate, maximum simulated likelihood

Outline of beyond cross-section count

- Introduction
- Time series data
- Panel data

Time series data

- Data \((y_t, x_t)\) with
- Histories \(y^{(t-1)} = (y_{t-1}, y_{t-2}, \ldots)\) and \(X^{(t)} = (x_t, x_{t-1}, \ldots)\)
- Many different models exist and there is no clear preferred model.
- Distinction between
 - Observation-driven models: time series dependence by direct
 dependence of moments or density on past outcomes
 e.g. \(y_t = \rho y_{t-1} + x_t^\beta + \varepsilon_t\)
 - Parameter-driven models: time series dependence induced by latent
 variable process
 e.g. \(y_t = x_t^\beta + u_t\) and \(u_t = \rho u_{t-1} + \varepsilon_t\)
- Recent surveys:
 - Jung, Kukuk and Liesenfeld (2006)
 - Davis, Dunsmuir, Streett (2003)
Integer-valued ARMA (INARMA)

- Observation-driven approach that is most appealing theoretically
 - extends linear AR(1): \(y_t = \rho y_{t-1} + x'_t \beta + \varepsilon_t \)
 - but difficult to implement
- INAR(1) process (no regressors) for integer counts is
 \[y_t = \rho \circ y_{t-1} + \varepsilon_t, \quad 0 \leq \rho < 1, \]
 - \(\circ \) is the binomial thinning operator with
 \(\rho \circ y = \sum_{j=1}^{y} u_j \) where \(\Pr[u_j = 1] = \rho \) and \(\Pr[u_j = 1] = 1 - \rho \)
 - \(\varepsilon_t \) is an i.i.d. latent count variable, e.g. Poisson
- Properties include
 \[E[y_t|y_{t-1}] = \rho y_{t-1} + E[\varepsilon_t]. \]

Observation-driven approach

- Observation-driven approach that incorporates lags into \(\mu_t \).
- Simplest approaches for AR(1) fail.
- The following model is explosive for \(\rho > 0 \)
 \[y_t \sim \mathcal{P}\left[\exp(x'_t \beta + \rho y_{t-1})\right] \sim \mathcal{P}\left[\exp(x'_t \beta) \times e^{\rho y_{t-1}}\right] \]
- The following model has problem if \(y_{t-1} = 0 \)
 \[y_t \sim \mathcal{P}\left[\exp(x'_t \beta + \rho \ln y_{t-1})\right] \]
 - Zeger and Qaqish (1988) proposed use \(y'_{t-1} = \min(c, y_{t-1}) \).
- Leads to alternative models, including the following.

Regression case

\[y_t = \rho_t \circ y_{t-1} + \varepsilon_t \]
\[\rho_t = \exp(z'_t \gamma)/(1 + \exp(z'_t \gamma)) \]
\[\varepsilon_t \sim \text{Poisson}[\exp(x'_t \beta)] \]
- Estimate by NLS or GMM using moment conditions is fine (Brannas (1995)).
- Estimate by MLE is difficult.
- Can extend to integer ARMA and \(\varepsilon_t \) negative binomial.

Autoregressive conditional Poisson (Heinen (2003))

- Simple example:
 \[y_t|y^{(t-1)} \sim \text{Poisson}[\mu_t] \]
 \[\mu_t = E[y_t|y^{(t-1)}] = \omega + \alpha_1 \mu_{t-1} \]
- Regressors included by replace \(\mu_t \) by \(\mu^*_t = \mu_t \exp(x'_t \beta) \)
- More generally can have ARMA versions and GARCH.
- Generalized linear autoregressive moving average model (Davis (1999))
 - Simple example
 \[y_t|y^{(t-1)} \sim \text{Poisson}[\mu_t] \]
 \[\ln \mu_t = \omega + \alpha_1 (y_{t-1} - \mu_{t-1})/\mu^\rho_{t-1} \]
 - Regressors included by replace \(\mu_t \) by \(\mu^*_t = \mu_t \exp(x'_t \beta) \)
 - More generally can have ARMA versions.
Parameter-driven approach

- Include a multiplicative serially-correlated latent variable to the Poisson mean.
- For example Poisson with AR(1) latent variable

\[y_t = \text{Poisson}[\exp(x_t' \beta) \times u_t] \]
\[\ln u_t = \rho \ln u_{t-1} + \varepsilon_t, \quad |\rho| < 1 \]
\[\varepsilon_t \sim \mathcal{N}[0,1] \]

- Estimate by quasi-likelihood GEE-type approach (Zeger (1988))
 - F.o.c. are \(D' \tilde{V}^{-1} (y - \mu(\beta)) = 0 \) where \(\tilde{V}^{-1} \approx \text{Var}[y]^{-1} \).
- Estimate by MLE is difficult (high-dimensional integral)
 - For example, use Markov Chain with efficient importance sampling (Jung et al. (2006)).

Panel data: linear model review

- Focus is on model with individual-specific effect

\[y_{it} = x_{it}' \beta + \alpha_i + \varepsilon_{it}, \quad i = 1, ..., N, \ t = 1, ..., T. \]
 - So different people have different unobserved intercepts \(\alpha_i \).
- Goal is to consistently estimate slope parameters \(\beta \).
- Focus on short panel with \(N \to \infty \) and \(T \) small
 - observations are uncorrelated across individuals \((i) \)
 - observations may be correlated over time \((t) \) for given individual
 - for most estimators panel can be unbalanced.
- Economics focuses on case that \(\text{Cov}[\alpha_i, x_{it}] \neq 0 \)
 - then pooled OLS is inconsistent.

Linear panel: pooled OLS and pooled FGLS

- Assume \(\alpha_i \) is independent of \(x_{it} \) with mean 0 (so part of error)

\[y_{it} = x_{it}' \beta + (\alpha_i + \varepsilon_{it}). \]

- Pooled OLS of \(y_{it} \) on \(x_{it} \) gives consistent \(\beta \).
 - Get cluster-robust standard errors where cluster on the individual.
- Pooled FGLS
 - Assume a model for \(\text{Cor}[\alpha_i + \varepsilon_{it}, \alpha_j + \varepsilon_{jt}] \) e.g. equicorrelation.
 - Do FGLS of \(y_{it} \) on \(x_{it} \) to improve efficiency
 - Can then get cluster-robust standard errors

\[\hat{V}_{\text{ROB}}[\hat{\beta}] = (XX)^{-1} \left(\sum_t \sum_i (y_{it} - x_{it}' \hat{\beta})^2 x_{it} x_{it}' \right) (XX)^{-1} \]

- Also called population-averaged:
 - essential assumption is \(\text{E}[y_{it} | x_{it}] = x_{it}' \beta \).

Linear panel: random effects estimator

- Again: \(y_{it} = x_{it}' \beta + (\alpha_i + \varepsilon_{it}) \).
- Assume \(\alpha_i \) is i.i.d. \([0, \sigma^2_{\alpha}] \) and \(\varepsilon_{it} \) is i.i.d. \([0, \sigma^2] \).
- Then GLS is OLS in the transformed model (with \(\theta_i = 1 - \sqrt{\sigma^2 / (T \sigma^2_{\alpha} + \sigma^2)} \))

\[(y_{it} - \theta_i \bar{y}_i) = (x_{it} - \theta_i \bar{x}_i)' \beta + \text{i.i.d. error}. \]

- FGLS is OLS of \((y_{it} - \theta_i \bar{y}_i) \) on \((x_{it} - \theta_i \bar{x}_i)' \beta \).
 - Can get cluster-robust standard errors in case \(\alpha_i \) and \(\varepsilon_{it} \) not i.i.d.
 - essential assumption is \(\text{E}[y_{it} | x_{it}] = x_{it}' \beta \).
- Mixed model or hierarchical linear model also allows slopes \(\beta_i \) to be random.
Linear panel: within or fixed effects estimator

- Again: $y_{it} = \mathbf{x}'_{it}\beta + (\alpha_i + \epsilon_{it})$.
- Assume α_i is potentially correlated with \mathbf{x}_{it}
 - e.g. Earnings regression and α_i is time-invariant unobserved ability.
- Eliminate α_i by mean-differencing
 $$(y_{it} - \bar{y}_i) = (\mathbf{x}_t - \bar{\mathbf{x}}_i)'\beta + (u_t - \bar{u}_i).$$
- Within estimator is OLS of $(y_{it} - \bar{y}_i)$ on $(\mathbf{x}_t - \bar{\mathbf{x}}_i)$ (with no intercept).
 - Can get cluster-robust standard errors.

Panel counts: data example

- Data from Rand health insurance experiment.
 - y is number of doctor visits.

```
use mus18data.dta, clear
describe mdu l1coins ndisease female age l1fam child id year
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>mdu</td>
<td>20185</td>
<td>2.850696</td>
<td>4.504765</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>l1coins</td>
<td>20185</td>
<td>2.383588</td>
<td>2.041713</td>
<td>0</td>
<td>4.563488</td>
</tr>
<tr>
<td>ndisease</td>
<td>20185</td>
<td>11.2445</td>
<td>6.741674</td>
<td>0</td>
<td>58.6</td>
</tr>
<tr>
<td>female</td>
<td>20185</td>
<td>.5159424</td>
<td>4.97252</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>age</td>
<td>20185</td>
<td>25.2114</td>
<td>16.76759</td>
<td>0</td>
<td>64.27515</td>
</tr>
</tbody>
</table>

l1fam	20185	1.248404	.5390681	0	2.639057
child	20185	.4804168	.4903972	0	1
id	20185	357971.2	1.808856	125024	632167
year	20185	2.420044	1.217237	1	5

Dependent variable mdu is very overdispersed: $\hat{\text{V}}[y] = 4.50^2 \simeq 7 \times \bar{y}$.
Panel is unbalanced. Most are in for 3 years or 5 years.

```
xtdescribe
   id:  125024, 125025, ..., 632167  n =  906
   year: 1, 2, ..., 5  t =  5
   Delta(year) = 1 unit
   Span(year) = 5 periods
   (10th year uniquely identifies each observation)
Distribution of T_i:  min  5%  25%  50%  75%  95%  max
   1  2  3  3  5  5  5
```

For **mdu** both within and between variation are important.

```
xpanel summary of dependent variable
xtsuen mdu
Variable | Mean  Std. Dev.  Min  Max  Observations
----------|------|------|------|------|-------------------
        mdu overall | 2.86096  4.504765  0  77  N = 20186
         between | 3.785971  63.33333  0  63.33333  n = 5908
         within | 2.575881  -34.47264  40.0667  T-bar = 3.42672
```

Only time-varying regressors are age, lfin and child
And these have mainly between variation.

This will make within or fixed estimator very imprecise.

Panel Poisson

- Consider four panel Poisson estimators
 - Pooled Poisson with cluster-robust errors
 - Population-averaged Poisson (GEE)
 - Poisson random effects (gamma and normal)
 - Poisson fixed effects

- Can additionally apply most of these to negative binomial.
- And can extend FE to dynamic panel Poisson where \(y_{i,t-1} \) is a regressor.
Panel Poisson method 1: pooled Poisson

- Specify \(y_{it}|x_{it}, \beta \sim \text{Poisson}[\exp(x'_{it}\beta)] \)
- Pooled Poisson of \(y_{it} \) on intercept and \(x_{it} \) gives consistent \(\beta \).
 - But get cluster-robust standard errors where cluster on the individual.
 - These control for both overdispersion and correlation over \(t \) for given \(i \).

Panel Poisson method 2: population-averaged

- Assume that for the \(i^{th} \) observation moments are like for GLM Poisson:
 \[
 E[y_{it}|x_{it}] = \exp(x'_{it}\beta) \\
 V[y_{it}|x_{it}] = \phi \times \exp(x'_{it}\beta).
 \]

- Stack the conditional means for the \(i^{th} \) individual:
 \[
 E[y_{i}|X_{i}] = m_{i}(\beta) = \begin{bmatrix} \exp(x'_{i1}\beta) \\ \vdots \\ \exp(x'_{iT}\beta) \end{bmatrix}.
 \]
 where \(y_{i} = [y_{i1}, \ldots, y_{iT}]' \) and \(X_{i} = [x_{i1}, \ldots, x_{iT}]' \).

- Stack the conditional variances for the \(i^{th} \) individual.
 - With no correlation
 \[
 V[y_{i}|X_{i}] = \phi H_{i}(\beta) = \phi \times \text{Diag}[\exp(x'_{it}\beta)].
 \]

Pooled Poisson with cluster-robust standard errors

- Pooled Poisson estimator with cluster-robust standard errors:
 \[
 \text{poisson mdv lcoins ndisease female age 1fam child, vc(cluster id)}
 \]

 | Iteration 0 | log pseudolikelihood = -62580.248 |
 | Iteration 1 | log pseudolikelihood = -62579.401 |
 | Iteration 2 | log pseudolikelihood = -62579.401 |

 Poisson regression

| mdu | Coef. | Robust Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------|-------|------------------|-------|-----|-----------------------------|
| lcoins | -0.080423 | 0.080693 | -10.10 | 0.000000 | -0.191587 | -0.180241 |
| ndisease | 0.118914 | 0.0 36024 | 11.04 | 0.000000 | 0.100371 | -0.059804 |
| female | 0.177852 | 0.0 34251 | 5.01 | 0.000000 | 0.170637 | -0.020282 |
| age | -0.040585 | 0.018291 | 2.40 | 0.016667 | -0.067860 | 0.007715 |
| 1fam | -1.419981 | 0.234314 | -4.58 | 0.000000 | -2.877534 | -0.962426 |
| child | 0.106045 | 0.050690 | 2.03 | 0.042250 | -0.013844 | -0.233542 |
| _cons | 1.478789 | 0.078573 | 9.53 | 0.000000 | 1.320758 | 1.636822 |

By comparison, the default (non-cluster-robust) s.e.’s are 1/4 as large.
\(\Rightarrow \) The default (non-cluster-robust) t-statistics are 4 times as large!!
The GLM estimator solves: \[\sum_{i=1}^{N} \frac{\partial m_i'(\beta)}{\partial \beta} H_i(\beta)^{-1} (y_i - m_i(\beta)) = 0. \]

Generalized estimating equations (GEE) estimator or population-averaged estimator (PA) of Liang and Zeger (1986) solves

\[\sum_{i=1}^{N} \frac{\partial m_i'(\beta)}{\partial \beta} \hat{\Omega}_i^{-1} (y_i - m_i(\beta)) = 0, \]

where \(\hat{\Omega}_i \) equals \(\Omega_i \) in with \(R(\alpha) \) replaced by \(R(\hat{\alpha}) \) where \(\text{plim} \hat{\alpha} = \alpha \).

Cluster-robust estimate of the variance matrix of the GEE estimator is

\[
\hat{V}_{\text{GEE}} = \left(\hat{D}' \hat{\Omega}^{-1} \hat{D} \right)^{-1} \left(\sum_{g=1}^{G} \hat{D}' \hat{\Omega}_g^{-1} \hat{u}_g \hat{u}_g' \hat{\Omega}_g^{-1} \hat{D}_g \right) \left(\hat{D}' \hat{\Omega}^{-1} \hat{D} \right)^{-1},
\]

where \(\hat{D}_g = \frac{\partial m_g'(\beta)}{\partial \beta} |_{\hat{\beta}}, \hat{D} = [\hat{D}_1, \ldots, \hat{D}_G]', \hat{u}_g = y_g - m_g(\hat{\beta}), \)

and now \(\hat{\Omega}_g = H_g(\hat{\beta})^{-1/2} R(\hat{\rho}) H_g(\hat{\beta})^{1/2} \).

- The asymptotic theory requires that \(G \to \infty \).

Population-averaged Poisson with unstructured correlation

<table>
<thead>
<tr>
<th>GEE population-averaged model</th>
<th>Number of obs</th>
<th>20,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group and time vars:</td>
<td>id: year</td>
<td>3098</td>
</tr>
<tr>
<td>Link: log</td>
<td>Obs per group</td>
<td>1</td>
</tr>
<tr>
<td>Family: Poisson</td>
<td>avg</td>
<td>3.4</td>
</tr>
<tr>
<td>Correlation: unstructured</td>
<td>max</td>
<td>508.61</td>
</tr>
<tr>
<td>Scale parameter:</td>
<td></td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

	Coef.	Semi-robust	Std. Err.	z	P>	z		[95% Conf. Interval]
lnc	-0.09444	0.007782	-10.24	0.000	<.0596	-0.0652	0.0094	
ncdise	0.0346	0.00242	14.28	0.000	<.0288561	0.0327	0.0366	
female	0.1585	0.0334	4.74	0.000	<.0929649	0.2424	0.0756	
	0.0099	0.0015	2.01	0.000	<.0001083	0.0001	0.0002	
	-0.1465	0.0293	-4.99	0.000	<.0182135	0.0360	0.0166	
	0.1013677	0.04301	2.36	0.008	<.0170966	0.0343	0.1758	
	-0.7764	0.0712	-10.83	0.000	<.0001083	0.065897	0.917054	

Generally s.e.'s are within 10% of pooled Poisson cluster-robust s.e.'s. The default (non cluster-robust) t-statistics are 3.5 – 4 times larger, because do not control for overdispersion.

Panel Poisson method 3: random effects

- Poisson random effects model is

\[
y_{it} | x_{it}, \beta, \alpha_i \sim \text{Pois}[\exp(x_{it}'\beta)] \sim \text{Pois}[\exp(\ln \alpha_i + x_{it}'\beta)]
\]

where \(\alpha_i \) is unobserved but is not correlated with \(x_{it} \).

- RE estimator 1: Assume \(\alpha_i \) is \(\text{Gamma}[1, \eta] \) distributed
 - closed-form solution exists (negative binomial)
 - \(E[y_{it}|x_{it}, \beta] = \exp(x_{it}'\beta) \)

- RE estimator 2: Assume \(\ln \alpha_i \) is \(\mathcal{N}[0, \sigma^2] \) distributed
 - closed-form solution does not exist (one-dimensional integral)
 - can extend to slope coefficients (higher-dimensional integral)
 - \(E[y_{it}|x_{it}, \beta] = \exp(x_{it}'\beta) \) aside from translation of intercept.
Poisson random effects (gamma) with panel bootstrap se’s

Random-effects Poisson regression
Number of obs: 20186
Number of groups: 5908

Random effects u_i ~ Gamma
Obs per group: min: 1
avg: 3.4
max: 5

Log likelihood: -43240.556
Wald chi2(6) = 529.10
Prob > chi2: 0.0000

(Replications based on 5908 clusters in id)

| mdu | Observed Coef. | Bootstrap Std. Err. | z | P>|z| | Normal-based 95% Conf. Interval |
|-----|----------------|---------------------|---|------|-------------------------------|
| Licon | -0.0687258 | 0.0060972 | -10.20 | 0.000 | -0.1047004, -0.078511 |
| female | 0.191807 | 0.0269294 | 7.14 | 0.000 | 0.138929, 0.244886 |
| age | 0.0915159 | 0.0065242 | 1.41 | 0.000 | 0.078675, 0.104955 |
| child | 0.108927 | 0.0495487 | 2.19 | 0.029 | 0.011151, 0.205186 |

/lnalpha | 0.0251258 | 0.0202518 | -0.12 | 0.898 | 0.009754, 0.05909 |

alpha | 1.025444 | 0.027175 | 3.82 | 0.000 | 0.918326, 1.13256 |

Likelihood-ratio test of alpha=0: chi2(1) = 3.9e+04 Prob=chibar2 = 0.000

The default (non cluster-robust) t-statistics are 2.5 times larger
because default do not control for overdispersion.

Panel Poisson method 4: fixed effects

- Poisson fixed effects model is
 \[y_{it} | x_{it}, \beta, \alpha_i \sim \text{Pois} [\alpha_i \exp(x'_{it}\beta)] \sim \text{Pois} [\exp(\ln \alpha_i + x'_{it}\beta)] \]
 where \(\alpha_i \) is unobserved and is possibly correlated with \(x_{it} \).
- In theory need to estimate \(\beta \) and \(\alpha_1, \ldots, \alpha_N \).
 - potential incidental parameters problem \(N + K \) parameters and \(NT \) observations with \(N \to \infty \).
 - but no problem as can eliminate \(\alpha_i \).
- Eliminate \(\alpha_i \) by quasi-differencing as follows
 \[
 \begin{align*}
 E[y_{it} | x_{i1}, \ldots, x_{iT}, \alpha_i] & = \alpha_i \lambda_t \\
 \lambda_t & = \exp(x'_{it}\beta) \\
 \Rightarrow & \ E[y_{it} | x_{i1}, \ldots, x_{iT}, \alpha_i] = \alpha_i \lambda_t \\
 \Rightarrow & \ E \left[\left(y_{it} - \frac{\lambda_t}{\bar{\lambda}_i} \bar{y}_i \right) | x_{i1}, \ldots, x_{iT} \right] = 0
 \end{align*}
 \]
 - The first line assumes regressors \(x_{it} \) are strictly exogenous.
 - This is stronger than weakly exogenous.

- This estimator for \(\beta \) can also be obtained in the following ways under
 fully parametric assumption that
 \[y_{it} | x_{it}, \beta, \alpha_i \sim \text{Pois} [\alpha_i \exp(x'_{it}\beta)] \]
 - 1. Obtain the MLE of \(\beta \) and \(\alpha_1, \ldots, \alpha_N \).
 - 2. Obtain the conditional MLE based on the conditional density
 \[
 f(y_{i1}, \ldots, y_{iT} | \bar{y}_i, x_{i1}, \ldots, x_{iT}, \beta, \alpha_i) = \frac{\prod_{t=1}^T f(y_{it} | x_{it}, \beta, \alpha_i)}{f(\bar{y}_i | x_{i1}, \ldots, x_{iT}, \beta, \alpha_i)}
 \]
 - But should then use cluster-robust standard errors and not default ML se’s.
Poisson fixed effects with panel bootstrap s.e.'s

. xtpoisson mdumoons ndisease female age t1fam child, fe vce(boot, reps(100) seed(10)
(running xtpoisson on estimation sample)

Bootstrap replications (100)

<table>
<thead>
<tr>
<th>Replication</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
</table>

| Number of obs | 1791 |
| Number of groups | 4977 |

| Obs per group | min | 2 | avg | 3.6 | max | 5 |

Log likelihood = -24173.211

H0: chi2(2) = 1.64
Prob > chi2 = 0.2002

(Replications based on 4977 clusters in id)

| Variable | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------|-------|-----------|---|-----|-----------------|
| age | -0.012009 | 0.009077 | -1.18 | 0.239 | -0.028169 | 0.004739 |
| t1fam | 0.0877134 | 0.1125783 | 0.78 | 0.436 | -0.132936 | 0.3083627 |
| child | 0.159867 | 0.0738452 | 1.44 | 0.151 | -0.038747 | 0.250706 |

The default (non cluster-robust) t-statistics are 2 times larger.

Panel Poisson: estimator comparison

- Strength of fixed effects versus random effects
 - Allows a_i to be correlated with x_{it}.
 - So consistent estimates if regressors are correlated with the error provided regressors are correlated only with the time-invariant component of the error
 - An alternative to IV to get causal estimates.

- Limitations:
 - Coefficients of time-invariant regressors are not identified
 - For identified regressors standard errors can be much larger
 - Marginal effect in a nonlinear model depend on a_i:

$$ME_j = \partial E[y_{it}/x_{it}, j = a_i \exp(x_{it}'B)\beta_j$$

and a_i is unknown.

Comparison of different Poisson panel estimators with cluster-robust s.e.'s

<table>
<thead>
<tr>
<th>Variable</th>
<th>POOLED</th>
<th>POPAVE</th>
<th>RE_GAMMA</th>
<th>RE_NOR-L</th>
<th>FIXED</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1coins</td>
<td>-0.0809</td>
<td>-0.0804</td>
<td>-0.0797</td>
<td>-0.0115</td>
<td></td>
</tr>
<tr>
<td>ndisease</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0073</td>
<td></td>
</tr>
<tr>
<td>female</td>
<td>0.0339</td>
<td>0.0346</td>
<td>0.0368</td>
<td>0.0469</td>
<td></td>
</tr>
<tr>
<td>age</td>
<td>0.1718</td>
<td>0.1585</td>
<td>0.1667</td>
<td>0.2084</td>
<td></td>
</tr>
<tr>
<td>t1fam</td>
<td>0.0041</td>
<td>0.0031</td>
<td>0.0019</td>
<td>0.0027</td>
<td></td>
</tr>
<tr>
<td>child</td>
<td>0.0087</td>
<td>0.0015</td>
<td>0.0016</td>
<td>0.0012</td>
<td></td>
</tr>
<tr>
<td>_cons</td>
<td>-0.1462</td>
<td>-0.1467</td>
<td>-0.1352</td>
<td>-0.1443</td>
<td></td>
</tr>
<tr>
<td>_cons</td>
<td>-0.0375</td>
<td>-0.0304</td>
<td>0.0069</td>
<td>0.0261</td>
<td></td>
</tr>
<tr>
<td>_cons</td>
<td>0.1039</td>
<td>0.1014</td>
<td>0.1033</td>
<td>0.0757</td>
<td></td>
</tr>
<tr>
<td>_cons</td>
<td>0.0507</td>
<td>0.0430</td>
<td>0.0092</td>
<td>0.0945</td>
<td></td>
</tr>
<tr>
<td>_cons</td>
<td>0.7488</td>
<td>0.7765</td>
<td>0.7574</td>
<td>0.2873</td>
<td></td>
</tr>
<tr>
<td>_cons</td>
<td>0.0708</td>
<td>0.0717</td>
<td>0.0755</td>
<td>0.0642</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistic</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>20136</td>
<td>-625.9</td>
</tr>
<tr>
<td>20136</td>
<td>-43241</td>
</tr>
<tr>
<td>20136</td>
<td>-43227</td>
</tr>
<tr>
<td>20136</td>
<td>-24173</td>
</tr>
</tbody>
</table>

Legend: b/s.e.
Panel negative binomial

- Fixed and random effects for negative binomial also exist.
 - But efficiency gains may not be great.
- Simplest to work with Poisson
 - but make sure get cluster-robust standard errors to control for overdispersion.

Panel dynamic

- Individual effects model allows for time series persistence via unobserved heterogeneity (α_i)
 - e.g. High α_i means high doctor visits each period
- Alternative time series persistence is via true state dependence (y_{t-1})
 - e.g. Many doctor visits last period lead to many this period.
- Linear model:
 $$y_{it} = \alpha_i + \rho y_{i,t-1} + x_i' \beta + u_{it}.$$
- Poisson model: One possibility is
 $$\mu_{it} = \alpha_i \lambda_{it-1} = \alpha_i \exp(\rho y_{i,t-1}^{*} + x_i' \beta),$$
 $$y_{i,t-1}^{*} = \min(c, y_{i,t-1}).$$

Panel dynamic: fixed effects

- In fixed effects case Poisson FE estimator is now inconsistent.
- Instead assume weak exogeneity
 $$E [y_{it} | y_{i,t-1}, \ldots, y_{i1}, x_{i1}, \ldots, x_{it}] = \alpha_i \lambda_{it-1}.$$
- And use an alternative quasi-difference
 $$E \left[(y_{it} - \lambda_{it-1} / \lambda_{it}) y_{i,t-1} | y_{i,t-1}, \ldots, y_{i1}, x_{i1}, \ldots, x_{it} \right] = 0.$$
- So MM or GMM based on
 $$E \left[z_{it} \left(y_{it} - \frac{\lambda_{it-1}}{\lambda_{it}} y_{i,t-1} \right) \right] = 0$$
 where e.g. $z_{it} = (y_{i,t-1}, x_{i,t})$ in just-identified case.
- Windmeijer (2008) has recent discussion.

References

- Time Series:
- Panel Data: