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1. Introduction

In many economic contexts the dependent or response variable of interest (y) is a nonnegative
integer or count which we wish to explain or analyze in terms of a set of covariates (x). Unlike
the classical regression model, the response variable is discrete with a distribution that places
probability mass at nonnegative integer values only. Regression models for counts, like other
limited or discrete dependent variable models such as the logit and probit, are nonlinear with
many properties and special features intimately connected to discreteness and nonlinearity.
Let us consider some examples from microeconometrics, beginning with samples of inde-

pendent cross-section observations. Fertility studies often model the number of live births
over a specified age interval of the mother, with interest in analyzing its variation in terms of,
say, mother’s schooling, age, and household income (Winkelmann, 1995). Accident analysis
studies model airline safety, for example, as measured by the number of accidents experienced
by an airline over some period, and seek to determine its relationship to airline profitability
and other measures of the financial health of the airline (Rose, 1990). Recreational demand
studies seek to place a value on natural resources such as national forests by modeling the
number of trips to a recreational site (Gurmu and Trivedi, 1996). Health demand studies
model data on the number of times that individuals consume a health service, such as visits
to a doctor or days in hospital in the past year (Cameron, Trivedi, Milne and Piggott, 1986),
and estimate the impact of health status and health insurance.
Examples of count data regression based on time series and panel data are also available.

A time series example is the annual number of bank failures over some period, which may be
analyzed using explanatory variables such as bank profitability, corporate profitability, and
bank borrowings from the Federal Reserve Bank (Davutyan, 1989). A panel data example
that has attracted much attention in the industrial organization literature on the benefits of
research and development expenditures is the number of patents received annually by firms
(Hausman, Hall, and Griliches, 1984).
In some cases, such as number of births, the count is the variable of ultimate interest. In

other cases, such as medical demand and results of research and development expenditure,
the variable of ultimate interest is continuous, often expenditures or receipts measured in
dollars, but the best data available are instead a count.
In all cases the data are concentrated on a few small discrete values, say 0, 1 and 2;

skewed to the left; and intrinsically heteroskedastic with variance increasing with the mean.



In many examples, such as number of births, virtually all the data are restricted to single
digits, and the mean number of events is quite low. But in other cases such as number of
patents the tail can be very long with, say, one-quarter of the sample being awarded no
patents while one firm is awarded 400 patents.
These features motivate the application of special methods and models for count re-

gression. There are two ways to proceed. The first approach is a fully parametric one
that completely specifies the distribution of the data, fully respecting the restriction of y
to nonnegative integer values. The second approach is a mean-variance approach, which
specifies the conditional mean to be nonnegative, and specifies the conditional variance to
be a function of the conditional mean.
These approaches are presented for cross-section data in Sections 2 to 4. Section 2 de-

tails the Poisson regression model. This model is often too restrictive and other, more
commonly-used, fully parametric count models are presented in Section 3. Less-used alter-
native parametric approaches for counts, such as discrete choice models and duration models,
are also presented in this section. The partially parametric approach of modeling the con-
ditional mean and conditional variance is detailed in Section 4. Extensions to other types
of data, notably time series, multivariate and panel data, are given in Section 5. In Section
6 practical recommendations are provided. For pedagogical reasons the Poisson regression
model for cross-section data is presented in some detail. The other models, many superior
to Poisson, are presented in less detail for space reasons. For more complete treatment see
Cameron and Trivedi (1998) and the guide to further reading in Section 7.

2. Poisson Regression

The Poisson is the starting point for count data analysis, though it is often inadequate. In
Sections 2.1-2.3 we present the Poisson regression model and estimation by maximum likeli-
hood, interpretation of the estimated coefficients, and extensions to truncated and censored
data. Limitations of the Poisson model, notably overdispersion, are presented in Section 2.4.

2.1. Poisson MLE

The natural stochastic model for counts is a Poisson point process for the occurrence of the
event of interest. This implies a Poisson distribution for the number of occurrences of the
event, with density

Pr[Y = y] =
e−µµy

y!
, y = 0, 1, 2, ..., (2.1)

where µ is the intensity or rate parameter. We refer to the distribution as P[µ]. The first
two moments are

E[Y ] = µ, (2.2)

V[Y ] = µ.

This shows the well-known equality of mean and variance property of the Poisson distribu-
tion.
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By introducing the observation subscript i, attached to both y and µ, the framework
is extended to non-iid data. The Poisson regression model is derived from the Poisson
distribution by parameterizing the relation between the mean parameter µ and covariates
(regressors) x. The standard assumption is to use the exponential mean parameterization,

µi = exp(x
0
iβ), i = 1, ..., n, (2.3)

where by assumption there are k linearly independent covariates, usually including a con-
stant. Because V[yi|xi] = exp(x0iβ), by (2.2) and (2.3), the Poisson regression is intrinsically
heteroskedastic.
Given (2.1) and (2.3) and the assumption that the observations (yi|xi) are independent,

the most natural estimator is maximum likelihood (ML). The log-likelihood function is

ln L(β) =
nX
i=1

{yix0iβ − exp(x0iβ)− ln yi!}. (2.4)

The Poisson MLE, denoted bβP , is the solution to k nonlinear equations corresponding to the
first-order condition for maximum likelihood,

nX
i=1

(yi − exp(x0iβ))xi = 0. (2.5)

If xi includes a constant term then the residuals yi − exp(x0iβ) sum to zero by (2.5). The
log-likelihood function is globally concave; hence solving these equations by Gauss-Newton
or Newton-Raphson iterative algorithm yields unique parameters estimates.
By standard maximum likelihood theory of correctly specified models, the estimator bβP

is consistent for β and asymptotically normal with the sample covariance matrix

V[bβP ] =

Ã
nX
i=1

µixix
0
i

!−1
, (2.6)

in the case where µi is of the exponential form (2.3). In practice an alternative more general
form for the variance matrix should be used; see Section 4.1.

2.2. Interpretation of Regression Coefficients

For linear models, with E[y|x] = x0β, the coefficients β are readily interpreted as the ef-
fect of a one-unit change in regressors on the conditional mean. For nonlinear models this
interpretation needs to be modified. For any model with exponential conditional mean,
differentiation yields

∂E[y|x]
∂xj

= βj exp(x
0β), (2.7)

where the scalar xj denotes the jth regressor. For example, if bβj = 0.25 and exp(x0ibβ) = 3,
then a one unit change in the jth regressor increases the expectation of y by 0.75 units. This
partial response depends upon exp(x0ibβ) which is expected to vary across individuals. It is
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easy to see that βj measures the relative change in E[y|x] induced by a unit change in xj . If
xj is measured on log-scale, βj is an elasticity.
For purposes of reporting a single response value, a good candidate is an estimate of

the average response, 1
n

Pn
i=1 ∂E[yi|xi]/∂xij = bβj × 1

n

Pn
i=1 exp(x

0
i
bβ). For Poisson regression

models with intercept included, this can be shown to simplify to bβjy.
Another consequence of (2.7) is that if, say, βj is twice as large as βk, then the effect of

changing the jth regressor by one unit is twice that of changing the kth regressor by one unit.

2.3. Truncation and Censoring

In some studies, inclusion in the sample requires that sampled individuals have been engaged
in the activity of interest. Then the count data are truncated, as the data are observed only
over part of the range of the response variable. Examples of truncated counts include the
number of bus trips made per week in surveys taken on buses, the number of shopping trips
made by individuals sampled at a mall, and the number of unemployment spells among a
pool of unemployed. In all these cases we do not observe zero counts, so the data are said
to be zero-truncated, or more generally left-truncated. Right truncation results from loss of
observations greater than some specified value.
Truncation leads to inconsistent parameter estimates unless the likelihood function is

suitably modified. Consider the case of zero truncation. Let f(y|θ) denote the density
function and F (y|θ) = Pr[Y ≤ y] denote the cumulative distribution function of the discrete
random variable, where θ is a parameter vector. If realizations of y less than a positive
integer 1 are omitted, the ensuing zero-truncated density is given by

f(y|θ,y ≥ 1) = f(y|θ)
1− F (0|θ) , y = 1, 2, .... (2.8)

This specializes in the zero-truncated Poisson case, for example, to f(y|µ, y ≥ 1) = e−µµy/[y!(1−
exp(−µ))]. It is straight-forward to construct a log-likelihood based on this density and to
obtain maximum likelihood estimates.
Censored counts most commonly arise from aggregation of counts greater than some

value. This is often done in survey design when the total probability mass over the aggre-
gated values is relatively small. Censoring, like truncation, leads to inconsistent parameter
estimates is the uncensored likelihood is mistakenly used.
For example, the number of events greater than some known value c might be aggregated

into a single category. Then some values of y are incompletely observed; the precise value is
unknown but it is known to equal or exceed c. The observed data has density

g(y|θ) =
½

f(y|θ) if y < c,
1− F (c|θ) if y ≥ c,

(2.9)

where c is known. Specialization to the Poisson, for example, is straight-forward.
A related complication is that of sample selection (Terza, 1998). Then the count y

is observed only when another random variable, potentially correlated with y, crosses a
threshold. For example, to see a medical specialist one may first need to see a general
practitioner. Treatment of count data with sample selection is a current topic of research.
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2.4. Overdispersion

The Poisson regression model is usually too restrictive for count data, leading to alternative
models presented in Sections 3 and 4. The fundamental problem is that the distribution is
parameterized in terms of a single scalar parameter (µ) so that all moments of y are a function
of µ. By contrast the normal distribution has separate parameters for location (µ) and scale
(σ2). (For the same reason the one-parameter exponential is too restrictive for duration data
and more general two-parameter distributions such as the Weibull are superior. Note that
this complication does not arise with binary data. Then the distribution is clearly the one-
parameter Bernoulli, as if the probability of success is p then the probability of failure must
be 1− p. For binary data the issue is instead how to parameterize p in terms of regressors.)
One way this restrictiveness manifests itself is that in many applications a Poisson density

predicts the probability of a zero count to be considerably less than is actually observed in
the sample. This is termed the excess zeros problem, as there are more zeros in the data
than the Poisson predicts.
A second and more obvious way that the Poisson is deficient is that for count data the

variance usually exceeds the mean, a feature called overdispersion. The Poisson instead
implies equality of variance of mean, see (2.2), a property called equidispersion.
Overdispersion has qualitatively similar consequences to the failure of the assumption of

homoskedasticity in the linear regression model. Provided the conditional mean is correctly
specified, that is (2.3) holds, the Poisson MLE is still consistent. This is clear from inspection
of the first-order conditions (2.5), since the left-hand side of (2.5) will have expected value of
zero if E[yi|xi] = exp(x0iβ). (This consistency property applies more generally to the quasi-
MLE when the specified density is in the linear exponential family (LEF). Both Poisson and
normal are members of the LEF.) It is nonetheless important to control for overdispersion
for two reasons. First, in more complicated settings such as with truncation and censoring,
overdispersion leads to the more fundamental problem of inconsistency. Second, even in the
simplest settings large overdispersion leads to grossly deflated standard errors and grossly
inflated t-statistics in the usual ML output.
A statistical test of overdispersion is therefore highly desirable after running a Poisson

regression. Most count models with overdispersion specify overdispersion to be of the form

V[yi|xi] = µi + αg(µi), (2.10)

where α is an unknown parameter and g(·) is a known function, most commonly g(µ) = µ2

or g(µ) = µ. It is assumed that under both null and alternative hypotheses the mean is
correctly specified as, for example, exp(x0iβ), while under the null hypothesis α = 0 so that
V[yi|xi] = µi. A simple test statistic for H0 : α = 0 versus H1 : α 6= 0 or H1 : α > 0 can
be computed by estimating the Poisson model, constructing fitted values bµi = exp(x0ibβ) and
running the auxiliary OLS regression (without constant)

(yi − bµi)2 − yibµi = α
g(bµi)bµi + ui, (2.11)

where ui is an error term. The reported t-statistic for α is asymptotically normal under the
null hypothesis of no overdispersion. This test can also be used for underdispersion, in which
case the conditional variance is less than the conditional mean.

5



3. Other Parametric Count Regression Models

Various models that are less restrictive than Poisson are presented in this section.
First, overdispersion in count data may be due to unobserved heterogeneity. Then counts

are viewed as being generated by a Poisson process, but the researcher is unable to correctly
specify the rate parameter of this process. Instead the rate parameter is itself a random
variable. This mixture approach, presented in Sections 3.1-3.2, leads to the widely-used
negative binomial model.
Second, overdispersion, and in some cases underdispersion, may arise because the process

generating the first event may differ from that determining later events. For example, an
initial doctor consultation may be solely a patient’s choice, while subsequent visits are also
determined by the doctor. This leads to the hurdle model, presented in Section 3.3.
Third, overdispersion in count data may be due to failure of the assumption of indepen-

dence of events which is implicit in the Poisson process. One can introduce dependence so
that, for example, the occurrence of one doctor visit makes subsequent doctor visits more
likely. This approach has not been widely used in count data analysis. (In duration data
analysis this is called true state dependence, to be contrasted with the first approach of un-
observed heterogeneity.) Particular assumptions again lead to the negative binomial; see also
Winkelmann (1995). A discrete choice model that progressively models Pr[y = j|y ≥ j − 1]
is presented in Section 3.4, and issues of dependence also arise in Section 5 on time series.
Fourth, one can refer to the extensive and rich literature on univariate iid count distribu-

tions, which offers intriguing possibilities such as the logarithmic series and hypergeometric
distribution (Johnson, Kotz, and Kemp, 1992). New regression models can be developed by
letting one or more parameters be a specified function of regressors. Such models are not
presented here. The approach has less motivation than the first three approaches and the
resulting models may not be any better.

3.1. Continuous Mixture Models

The negative binomial model can be obtained in many different ways. The following justifi-
cation using a mixture distribution is one of the oldest and has wide appeal.
Suppose the distribution of a random count y is Poisson, conditional on the parameter λ,

so that f(y|λ) = exp(−λ)λy/y!. Suppose now that the parameter λ is random, rather than
being a completely deterministic function of regressors x. In particular, let λ = µν, where
µ is a deterministic function of x, for example exp(x0β), and ν > 0 is iid distributed with
density g(ν|α). This is an example of unobserved heterogeneity, as different observations may
have different λ (heterogeneity) but part of this difference is due to a random (unobserved)
component ν.
The marginal density of y, unconditional on the random parameter ν but conditional on

the deterministic parameters µ and α, is obtained by integrating out ν. This yields

h(y|µ, α) =
Z

f(y|µ, ν)g(ν|α)dv, (3.1)

where g(ν|α) is called the mixing distribution and α denotes the unknown parameter of the
mixing distribution. The integration defines an “average” distribution. For some specific
choices of f(·) and g(·), the integral will have an analytical or closed-form solution.
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If f(y|λ) is the Poisson density and g(ν), ν > 0, is the gamma density with E[ν] = 1 and
V[ν] = α we obtain the negative binomial density

h(y|µ, α) = Γ(α−1 + y)

Γ(α−1)Γ(y + 1)

µ
α−1

α−1 + µ

¶α−1 µ
µ

µ+ α−1

¶y

, α > 0, (3.2)

where Γ(·) denotes the gamma integral which specializes to a factorial for an integer argu-
ment. Special cases of the negative binomial include the Poisson (α = 0) and the geometric
(α = 1).
The first two moments of the negative binomial distribution are

E[y|µ, α] = µ, (3.3)

V[y|µ, α] = µ(1 + αµ).

The variance therefore exceeds the mean, since α > 0 and µ > 0. Indeed it can be shown
easily that overdispersion always arises if y|λ is Poisson and the mixing is of the form λ = µν
where E[ν] = 1. Note also that the overdispersion is of the form (2.10) discussed in Section
2.4.
Two standard variants of the negative binomial are used in regression applications. Both

variants specify µi = exp(x0iβ). The most common variant lets α be a parameter to be
estimated, in which case the conditional variance function, µ+ αµ2 from (3.3), is quadratic
in the mean. The log-likelihood is easily obtained from (3.2), and estimation is by maximum
likelihood.
The other variant of the negative binomial model has a linear variance function, V[y|µ, α] =

(1 + δ)µ, obtained by replacing α by δ/µ throughout (3.2). Estimation by ML is again
straightforward. Sometimes this variant is called negative binomial 1 (NB1) in contrast to
the variant with a quadratic variance function which has been called negative binomial 2
(NB2) model (Cameron and Trivedi, 1998).
The negative binomial model with quadratic variance function has been found to be very

useful in applied work. It is the standard cross-section model for counts, which are usually
overdispersed, along with the Quasi-MLE of section 4.1.
For mixtures other than Poisson-gamma, such as those that instead use as mixing distri-

bution the lognormal distribution or the inverse-Gaussian distribution, the marginal distrib-
ution cannot be expressed in a closed form. Then one may have to use numerical quadrature
or simulated maximum likelihood to estimate the model. These methods are entirely fea-
sible with currently available computing power. If one is prepared to use simulation-based
estimation methods, see Gourieroux and Monfort (1997), the scope for using mixed-Poisson
models of various types is very extensive.

3.2. Finite Mixture Models

The mixture model in the previous subsection was a continuous mixture model, as the mixing
random variable ν was assumed to have continuous distribution. An alternative approach
instead uses a discrete representation of unobserved heterogeneity, which generates a class
of models called finite mixture models. This class of models is a particular subclass of latent
class models.
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In empirical work the more commonly used alternative to the continuous mixture is in
the class of modified count models discussed in the next section. However, it is more natural
to follow up the preceding section with a discussion of finite mixtures. Further, the subclass
of modified count models can be viewed as a special case of finite mixtures.
We suppose that the density of y is a linear combination of m different densities, where

the jth density is fj(y|λj), j = 1, 2, ...,m. Thus an m-component finite mixture is

f(y|λ,π) =
mX
j=1

πjfj(y|λj), 0 < πj < 1,
mX
j=1

πj = 1. (3.4)

For example, in a study of the use of medical services with m = 2, the first density may
correspond to heavy users of the service and the second to relatively low users, and the
fractions of the two types in the populations are π1 and π2(= 1− π1) respectively.
The goal of the researcher who uses this model is to estimate the unknown parameters

λj, j = 1, ...,m. It is easy to develop regression models based on (3.4). For example, if
NB2 models are used then fj(y|λj) is the NB2 density (3.2) with parameters µj = exp(x0βj)
and αj, so λj = (βj, αj). If the number of components, m, is given, then under some
regularity conditions maximum likelihood estimation of the parameters (πj, λj), j = 1, ...,m,
is possible. The details of the estimation methods, less straightforward due to the presence
of the mixing parameters πj, is omitted here because of space constraints. See Cameron
and Trivedi (1998, Chapter 4). It is possible also to probabilistically assign each case to
a subpopulation (in the sense that the estimated probability of the case belonging to that
subpopulation is the highest) after the model has been estimated.

3.3. Modified Count Models

The leading motivation for modified count models is to solve the so-called problem of excess
zeros, the presence of more zeros in the data than predicted by count models such as the
Poisson.
The hurdle model or two-part model relaxes the assumption that the zeros and the posi-

tives come from the same data generating process. The zeros are determined by the density
f1 (·), so that Pr[y = 0] = f1(0). The positive counts come from the truncated density
f2 (y|y > 0) = f2(y)/(1− f2(0)), which is multiplied by Pr[y > 0] = 1− f1(0) to ensure that
probabilities sum to unity. Thus

g(y) =

 f1(0) if y = 0,
1− f1(0)

1− f2(0)
f2(y) if y ≥ 1. (3.5)

This reduces to the standard model only if f1(·) = f2(·). Thus in the modified model the two
processes generating the zeros and the positives are not constrained to be the same. While
the motivation for this model is to handle excess zeros, it is also capable of modeling too few
zeros.
Maximum likelihood estimation of the hurdle model involves separate maximization of

the two terms in the likelihood, one corresponding to the zeros and the other to the positives.
This is straight-forward.
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A hurdle model has the interpretation that it reflects a two-stage decision-making process.
For example, a patient may initiate the first visit to a doctor, but the second and subsequent
visits may be determined by a different mechanism (Pohlmeier and Ulrich, 1995).
Regression applications use hurdle versions of the Poisson or negative binomial, obtained

by specifying f1(·) and f2(·) to be the Poisson or negative binomial densities given earlier.
In application the covariates in the hurdle part which models the zero/one outcome need
not be the same as those which appear in the truncated part, although in practice they are
often the same. The hurdle model is widely used, and the hurdle negative binomial model is
quite flexible. Drawbacks are that the model is not very parsimonious, typically the number
of parameters is doubled, and parameter interpretation is not as easy as in the same model
without hurdle.
The conditional mean in the hurdle model is the product of probability of positives and

the conditional mean of the zero-truncated density. Therefore, using a Poisson regression
when the hurdle model is the correct specification implies a misspecification which will lead
to inconsistent estimates.

3.4. Discrete Choice Models

Count data can be modelled by discrete choice model methods, possibly after some grouping
of counts to limit the number of categories. For example the categories may be 0, 1, 2,
3 and 4 or more if few observations exceed four. Unordered models such as multinomial
logit are not parsimonious and more importantly are inappropriate. Instead one should use
a sequential discrete choice model that recognizes the ordering of the data, such as ordered
logit or ordered probit.

4. Partially Parametric Models

By partially parametric models we mean that we focus on modeling the data via the con-
ditional mean and variance, and even these may not be fully specified. In Section 5.1 we
consider models based on specification of the conditional mean and variance. In Section 5.2
we consider and critique the use of least squares methods that do not explicitly model the
heteroskedasticity inherent in count data. In Section 5.3 we consider models that are even
more partially parametric, such as incomplete specification of the conditional mean.

4.1. Quasi-ML Estimation

In the econometric literature pseudo-ML (PML) or quasi-ML (QML) estimation refers to
estimating by ML, under the assumption that the specified density is correct (Gourieroux et
al. 1984a). PML and QML are often used interchangeably. The distribution of the estimator
is obtained under weaker assumptions about the data generating process than those that led
to the specified likelihood function. In the statistics literature QML often refers to nonlinear
generalized least squares estimation. For the Poisson regression QML in the latter sense is
equivalent to standard maximum likelihood.
From (2.5), the Poisson PML estimator, bβP , has first-order conditions

Pn
i=1(yi−exp(x0iβ))xi =

0. As already noted in Section 2.4, the summation on the left-hand side has expectation zero
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if E[yi|xi] = exp(x0iβ). Hence the Poisson PML is consistent under the weaker assumption
of correct specification of the conditional mean — the data need not be Poisson distributed.
Using standard results, the variance matrix is of the sandwich form, with

VPML[bβP] =
Ã

nX
i=1

µixix
0
i

!−1Ã nX
i=1

ωixix
0
i

!Ã
nX
i=1

µixix
0
i

!−1
(4.1)

and ωi = V[yi|xi] is the conditional variance of yi.
Given an assumption for the functional form for ωi, and a consistent estimate bωi of ωi,

one can consistently estimate this covariance matrix. We could use the Poisson assumption,
ωi = µi, but as already noted the data are often overdispersed, with ωi > µi. Common
variance functions used are ωi = (1+αµi)µi, that of the NB2 model discussed in Section 3.1,
and ωi = (1 + α)µi, that of the NB1 model. Note that in the latter case (4.1) simplifies to
VPML[bβP] = (1 + α) (

Pn
i=1 µixix

0
i)
−1, so with overdispersion (α > 0) the usual ML variance

matrix given in (2.6) is understating the true variance.
If ωi = E[(yi− x0iβ)2|xi] is instead unspecified, a consistent estimate of VPML[bβP] can be

obtained by adapting the Eicker-White robust sandwich variance estimate formula to this
case. The middle sum in (4.1) needs to be estimated. If bµi p→ µi then n

−1Pn
i=1(yi−bµi)2xix0i

p→ limn−1
Pn

i=1 ωixix
0
i. Thus a consistent estimate of VPML[bβP ] is given by (4.1) with ωi

and µi replaced by (yi − bµi)2 and bµi.
When doubt exists about the form of the variance function, the use of the PML esti-

mator is recommended. Computationally this is essentially the same as Poisson ML, with
the qualification that the variance matrix must be recomputed. The calculation of robust
variances is often an option in standard packages.
These results for Poisson PML estimation are qualitatively similar to those for PML esti-

mation in the linear model under normality. They extend more generally to PML estimation
based on densities in the linear exponential family. In all cases consistency requires only cor-
rect specification of the conditional mean (Nelder and Wedderburn, 1972; Gourieroux et al.,
1984a). This has led to a vast statistical literature on generalized linear models (GLM), see
McCullagh and Nelder (1989), which permits valid inference providing the conditional mean
is correctly specified and nests many types of data as special cases — continuous (normal),
count (Poisson), discrete (binomial) and positive (gamma). Many methods for complica-
tions, such as time series and panel data models, are presented in the more general GLM
framework rather than specifically for count data.
Many econometricians find it more natural to use the generalized methods of moments

(GMM) framework rather than GLM. Then the starting point is the conditional moment
E[yi − exp(x0iβ)|xi] = 0. If data are independent over i and the conditional variance is a
multiple of the mean it can be shown that the optimal choice of instrument is xi, leading
to the estimating equations (2.5); for more detail, see Cameron and Trivedi (1998, 37-44).
The GMM framework has been fruitful for panel data on counts, see Section 5.3, and for
endogenous regressors. Fully specified simultaneous equations models for counts have not
been yet developed, so instrumental variables methods are used. Given instruments zi,
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dim(z) ≥ dim(x), satisfying E[yi − exp(x0iβ)|zi] = 0, a consistent estimator of β minimizes

Q(β) =

Ã
nX
i=1

(yi − exp(x0iβ))zi
!0
W

Ã
nX
i=1

(yi − exp(x0iβ))zi
!
,

whereW is a symmetric weighting matrix.

4.2. Least Squares Estimation

When attention is focused on modeling just the conditional mean, least squares methods are
inferior to the approach of the previous subsection.
Linear least squares regression of y on x leads to consistent parameter estimates if the

conditional mean is linear in x. But for count data the specification E[y|x] = x0β is inade-
quate as it permits negative values of E[y|x]. For similar reasons the linear probability model
is inadequate for binary data.
Transformations of y may be considered. In particular the logarithmic transformation

regresses ln y on x. This transformation is problematic if the data contain zeros, as is often
the case. One standard solution is to add a constant term, such as 0.5, and to model
ln(y + .5) by OLS. This method often produces unsatisfactory results, and complicates the
interpretation of coefficients. It is also unnecessary as software to estimate basic count
models is widely available.

4.3. Semiparametric Models

By semiparametric models we mean partially parametric models that have an infinite-
dimensional component.
One example is optimal estimation of the regression parameters β, when µi = exp(x

0
iβ)

is assumed but V[yi|xi] = ωi is left unspecified. The infinite-dimensional component arises
because as n→∞ there are infinitely many variance parameters ωi. An optimal estimator
of β, called an adaptive estimator, is one that is as efficient as that when ωi is known.
Delgado and Kniesner (1997) extend results for the linear regression model to count data
with exponential conditional mean function, using kernel regression methods to estimate
weights to be used in a second-stage nonlinear least squares regression. In their application
the estimator shows little gain over specifying ωi = µi(1 + αµi), overdispersion of the NB2
form.
A second class of semiparametric models incompletely specifies the conditional mean.

Leading examples are single-index models and partially linear models. Single-index models
specify µi = g(x0iβ) where the functional form g(·) is left unspecified. Partially linear models
specify µi = exp(x0iβ+g(zi)) where the functional form g(·) is left unspecified. In both
cases root−n consistent asymptotically normal estimators of β can be obtained, without
knowledge of g(·).

5. Time Series, Multivariate and Panel Data

In this section we very briefly present extension from cross-section to other types of count
data (see Cameron and Trivedi, 1998, for further detail). For time series and multivariate
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count data many models have been proposed but preferred methods have not yet been
established. For panel data there is more agreement in the econometrics literature on which
methods to use, though a wider range of models is considered in the statistics literature.

5.1. Time Series Data

If a time series of count data is generated by a Poisson point process then event occurrences
in successive time intervals are independent. Independence is a reasonable assumption when
the underlying stochastic process for events, conditional on covariates, has no memory. Then
there is no need for special time series models. For example, the number of deaths (or births)
in a region may be uncorrelated over time. At the same time the population, which cumulates
births and deaths, will be very highly correlated over time.
The first step for time series count data is therefore to test for serial correlation. A

simple test first estimates a count regression such as Poisson, obtains the residual, usually
(yt − exp(x0tbβ)) where xt may include time trends, and tests for zero correlation between
current and lagged residuals, allowing for the complication that the residuals will certainly
be heteroskedastic.
Upon establishing the data are indeed serially correlated, there are several models to

choose from. An esthetically appealing model is the INAR(1) model (integer autoregressive
model of order one (INAR(1)) and its generalization to the negative binomial and to higher
orders of serial correlation. This model specifies yt = ρt ◦ yt−1 + εt, where ρt is a correlation
parameter with 0 < ρt < 1, for example ρt = 1/[1 + exp(−z0tγ)]. The symbol ◦ denotes
the binomial thinning operator, whereby ρt ◦ yt−1 is the realized value of a binomial random
variable with probability of success ρt in each of yt−1 trials. One may think of each event as
having a replication or survival probability of ρt in the following period. As in a linear first
order Markov model, this probability decays geometrically. A Poisson INAR(1) model, with
a Poisson marginal distribution for yt arises when εt is Poisson distributed with mean, say,
exp(x0tβ). A negative binomial INAR(1) model arises if εt is negative binomial distributed.
An autoregressive model, or Markov model, is a simple adjustment to the earlier cross-

section count models that directly enters lagged values of y into the formula for the condi-
tional mean of current y. For example, we might suppose yt conditional on current and past
xt and past yt is Poisson distributed with mean exp(x0tβ+ρ ln y

∗
t−1), where y

∗
t−1 is an adjust-

ment to ensure a non-zero lagged value, such as y∗t−1 = ln(yt−1+0.5) or y
∗
t−1 = max(0.5, yt−1).

Serially correlated error models induce time series correlation by introducing unobserved
heterogeneity, see Section 3.1, and allowing this to be serially correlated. For example, yt is
Poisson distributed with mean exp(x0tβ)νt where νt is a serially correlated random variable,
(Zeger, 1988).
State space models or time-varying parameters models allow the conditional mean to be

random variable drawn from a distribution whose parameters evolve over time. For example,
yt is Poisson distributed with mean µt where µt is a draw from a gamma distribution, (Harvey
and Fernandes, 1989).
Hidden Markov models specify different parametric models in different regimes, and in-

duce serial correlation by specifying the stochastic process determining which regime cur-
rently applies to be an unobserved Markov process (MacDonald and Zucchini, 1997).
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5.2. Multivariate Data

In some data sets more than one count is observed. For example, data on the utilization
of several different types of health service, such as doctor visits and hospital days, may be
available. Joint modeling will improve efficiency and provide richer models of the data if
counts are correlated.
Most parametric studies have used the bivariate Poisson. This model, however, is too

restrictive as it implies variance-mean equality for the counts and restricts the correlation to
be positive. Development of better parametric models is a current area of research.

5.3. Panel Data

One of the major and earliest applications of count data methods in econometrics is to panel
data on the number of patents awarded to firms over time (Hausman, Hall, and Griliches,
1984). The starting point is the Poisson regression model with exponential conditional mean
and multiplicative individual-specific term

yit ∼ P[αi exp(x
0
itβ)], i = 1, ..., n, t = 1, ..., T, (5.1)

where we consider a short panel with T small and n→∞. As in the linear case, both fixed
effects and random effects models are possible.
The fixed effects model lets αi be an unknown parameter. This parameter can be elimi-

nated by quasi-differencing and modeling the transformed random variable yit − (λit/λ̄i)ȳi,
where λ̄i and ȳi denote the individual-specific means of λit and yit. By construction this
has zero mean, conditional on xi1, ...,xiT . A moments-based estimator of β then solves the
sample moment condition

Pn
i=1

PT
t=1 xit(yit − (λit/λ̄i)ȳi) = 0.

An alternative to the quasi-differencing approach is the conditional likelihood approach
that was followed By Hausman et al. (1984). In this approach the fixed effects are eliminated
by conditioning the distribution of counts on

PT
t=1 yit.

The random effects model lets αi be a random variable with specified distribution that
depends on parameters, say δ. The random effects are integrated out, in a similar way to
the unobserved heterogeneity in Section 3.1, and the parameters β and δ are estimated by
maximum likelihood. In some cases, notably when αi is gamma distributed, a closed form
solution is obtained upon integrating out αi. In other cases, such as normally distributed
random effects, a closed form solution is not obtained, but ML estimation based on numerical
integration is feasible.
Dynamic panel data models permit the regressors x to include lagged values of y. Several

studies use the fixed effects variant of (5.1), where xit now includes, for example, yit−1.
This is an autoregressive count model, see Section 5.1, adapted to panel data. The quasi-
differencing procedure for the non-dynamic fixed effects case can be adapted to the dynamic
case.

6. Practical Considerations

Those with experience of nonlinear least squares will find it easy to use packaged software for
Poisson regression, which is a widely available option in popular econometrics packages like
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LIMDEP, STATA and TSP. One should ensure, however, that reported standard errors are
based on (4.1) rather than (2.6). Many econometrics packages also include negative binomial
regression, also widely-used for cross-section count regression, and the basic panel data
models. Statistics packages such as SAS and SPSS include count regression in a generalized
linear models module. Standard packages also produce some goodness-of-fit statistics, such
as the G2-statistic and pseudo-R2 measures, for the Poisson (see Cameron and Windmeijer,
1996).
More recently developed models, such as finite mixture models, most time series models

and dynamic panel data models, require developing one’s own programs. A promising route
is to use matrix programming languages such as GAUSS, MATLAB, SAS/IML or SPLUS
in conjunction with software for implementing estimation based on user-defined objective
functions. For simple models packages such as LIMDEP, STATA and TSPmake it possible to
implement maximum likelihood estimation and (highly desirable) robust variance estimation
for user-defined functions.
In addition to reporting parameter estimates it is useful to have an indication of the

magnitude of the estimated effects, as discussed in Section 2.2. And as noted in Section 2.4,
care should be taken to ensure that reported standard errors and t-statistics for the Poisson
regression model are based on variance estimates robust to overdispersion.
In addition to estimation it is strongly recommended that specification tests are used to

assess the adequacy of the estimated model. For Poisson cross-section regression overdisper-
sion tests are easy to implement. For time series regression tests of serial correlation should
be used. For any parametric model one can compare the actual and fitted frequency distri-
bution of counts. Formal statistical specification and goodness-of-fit tests based on actual
and fitted frequencies are available.
In most practical situations one is likely to face the problem of model selection. For

likelihood-based models that are nonnested one can use selection criteria, such as the Akaike
and Schwarz criteria, which are based on the fitted log-likelihood but with degrees of freedom
penalty for models with many parameters.

7. Further reading

All the topics dealt with in this chapter are treated at greater length and depth in Cameron
and Trivedi (1998) which also provides a comprehensive bibliography. Winkelmann (1997)
also provides a fairly complete treatment of the econometric literature on counts. The
statistics literature generally analyzes counts in the context of generalized linear models
(GLM). The standard reference is McCullagh and Nelder (1989). The econometrics literature
generally fails to appreciate the contributions of the GLM literature on generalized linear
models. Fahrmeier and Tutz (1994) provide a recent and more econometric exposition of
GLMs.
The material in Section 2 is very standard and appears in many places. A similar obser-

vation applies to the negative binomial model in section Section 3.1. Cameron and Trivedi
(1986) provide an early presentation and application. For the finite mixture approach of Sec-
tion 3.2 see Deb and Trivedi (1997). Applications of the hurdle model in Section 3.3 include
Mullahy (1986), who first proposed the model, Pohlmeier and Ulrich (1995), and Gurmu
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and Trivedi (1996). The quasi-MLE of section 4.1 is presented in detail by Gourieroux et al.
(1984a, 1984b) and by Cameron and Trivedi (1996).
Regression models for the types of data discussed in Section 5 are in their infancy. The

notable exception is that (static) panel data count models are well established, with the
standard reference being Hausman et al. (1984). See also Brannas and Johansson (1996).
For reviews of the various time series models see MacDonald and Zucchini (1997, chapter
2) and Cameron and Trivedi (1998, chapter 7). Developing adequate regression models for
multivariate count data is currently an active area. For dynamic count data models there
are several recent references, including Blundell et al. (1995)
For further discussion of diagnostic testing, only briefly mentioned in Section 6, see

Cameron and Trivedi (1998, chapter 5).
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