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Abstract

This paper surveys panel data methods for count dependent variable that takes
nonnegative integer values, such as number of doctor visits. The focus is on short
panels, as the literature has concentrated on this case. The survey covers both static
and dynamic models with random and �xed e�ects. The paper surveys quasi-ML
methods based on the Poisson, as well as richer more parametric models - negative
binomial models, �nite mixture models, hurdle models and with-zeros models.
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1 Introduction

This paper surveys panel data methods for count dependent variable that takes nonnegative

integer values, such as number of doctor visits. The focus is on short panels, with T �xed

and n!1, as the literature has concentrated on this case.
The simplest panel models specify the conditional mean to be of exponential form, and

specify the conditional distribution to be Poisson or, in some settings, a particular variant

of the negative binomial. Then it can be possible to consistently estimate slope parameters

provided only that the conditional mean is correctly speci�ed, and to obtain standard errors

that are robust to possible misspeci�cation of the distribution. This is directly analogous

to panel linear regression under normality where consistent estimation and robust inference

are possible under much weaker assumptions than normality. In particular, it possible to

consistently estimate the slope parameters in a �xed e�ects version of the Poisson model,

even in a short panel.

Richer models account for special features of count data. In particular, the Poisson is

inadequate in modelling the conditional distribution as it is a one parameter distribution that

imposes variance-mean equality. In most applications the conditional variance exceeds the

conditional mean. Richer parametric models are negative binomial models and �nite mixture

models. Furthermore, even for a given parametric model there can be a bunching or excess

of zeros, leading to modi�ed count models { hurdle models and with-zeros models. These

considerations are especially important for applications that need to model the conditional

distribution, not just the conditional mean. For example, interest may lie in predicting the

probability of an excessive number of doctor visits.

Section 2 brie
y reviews standard cross-section models for count data, the building block

for section 3 that presents standard static models for panel counts with focus on short

panels. Section 4 presents extension to the dynamic case, where the current count depends

on lagged realizations of the count. Again the emphasis is on short panels, and the Arellano-

Bond estimator for linear dynamic models with �xed e�ects can be adapted to count data.

Section 5 considers extensions that address more complicated features of count data.

2 Models for Cross-section Count Data

The main cross-section data models for counts are the Poisson and negative binomial models,

hurdle and zero-in
ated variants of these models, and latent class or �nite mixture models.

2.1 Poisson Quasi-MLE

The Poisson regression model speci�es that yi given xi is Poisson distributed with density

f(yijxi) =
e��i�yii
yi!

; yi = 0; 1; 2; : : : (1)
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and mean parameter

E[yijxi] = �i = exp(x
0
i�): (2)

The exponential form in (2) ensures that �i > 0. It also permits � to be interpreted as a

semi-elasticity, since � = [@E[yijxi]=@xi]=E[yijxi]. In the statistics literature the model is
often called a log-linear model, since the logarithm of the conditional mean is linear in the

parameters: lnE[yijxi] = x0i�.
Given independent observations, the log-likelihood is lnL(�) =

Pn
i=1fyix0i�� exp(x0i�)�

ln yi!g. The Poisson MLE b�P solves the �rst-order conditions
nX
i=1

(yi � exp(x0i�))xi = 0: (3)

These �rst-order conditions imply that the essential condition for consistency of the Poisson

MLE is that E[yijxi] = exp(x0i�), i.e., that the conditional mean is correctly speci�ed { the
data need not be Poisson distributed.

The Poisson quasi-MLE is then asymptotically normally distributed with mean � and

variance-covariance matrix

V[b�P] =  nX
i=1

�ixix
0
i

!�1 nX
i=1

V[yijxi]xix0i

! 
nX
i=1

�ixix
0
i

!�1
; (4)

where �i = exp(x
0
i�). This can be consistently estimated using a heteroskedasticity-robust

estimate

bV[b�P] =  nX
i=1

b�ixix0i
!�1 nX

i=1

(yi � b�i)2xix0i
! 

nX
i=1

b�ixix0i
!�1

: (5)

A property of the Poisson distribution is that the variance equals the mean. Then

V[yijxi] = �i, so (4) simpli�es to V[b�P] = (
Pn

i=1 �ixix
0
i)
�1
. In practice for most count

data, the conditional variance exceeds the conditional mean, a feature called overdispersion.

Then using standard errors based on V[b�P] = (Pn
i=1 �ixix

0
i)
�1
, the default in most Poisson

regression packages, can greatly understate the true standard errors; one should use (5).

The robustness of the Poisson quasi-MLE to distributional misspeci�cation, provided the

conditional mean is correctly speci�ed, means that Poisson regression can also be applied to

continuous nonnegative data. In particular, OLS regression of ln y on x cannot be performed

if y = 0 and leads to a retransformation problem if we wish to predict y. Poisson regression

of y on x (with exponential conditional mean) does not have these problems.

The robustness to distributional misspeci�cation is shared with the linear regression

model with assumed normal errors. More generally, this holds for models with speci�ed

density in the linear exponential family, i.e., f(yj�) = expfa(�) + b(y) + c(�)yg. In the
statistics literature this class is known as generalized linear models (GLM). It includes the

normal, Poisson, geometric, gamma, Bernoulli and binomial.
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2.2 Parametric Models

In practice, the Poisson distribution is too limited as it is a one-parameter distribution,

depending on only the mean �. In particular, the distribution restricts the variance to equal

the mean, but count data used in economic applications generally are overdispersed.

The standard generalization of the Poisson is the negative binomial (NB) model, most

often the NB2 variant that speci�es the variance to equal �+ ��2. Then

f(yij�i; �) =
�(yi + ��1)

�(yi + 1)�(��1)

�
��1

��1 + �i

���1 �
�i

��1 + �i

�yi
; � > 0; yi = 0; 1; 2; ::: (6)

This reduces to the Poisson for �! 0. Specifying �i = exp(x
0
i�), the MLE solves for � and

� the �rst-order conditions

nX
i=1

yi � �i
1 + ��i

xi = 0

nX
i=1

�
1

�2

�
ln(1 + ��i)�

Pyi�1
j=0

1

(j + ��1)

�
+

yi � �i
� (1 + ��i)

�
= 0:

(7)

As for the Poisson, the NB2 MLE for � is consistent provided E[yijxi] = exp(x0i�).
A range of alternative NB models can be generated by specifying V[yjx] = �+��p where

p is speci�ed or is an additional parameter to be estimated. The most common alternative

model is the NB1 that sets p = 1, so the conditional variance is a multiple of the mean. For

these variants the quasi-MLE is no longer consistent { the distribution needs to be correctly

speci�ed. Yet another variation parameterizes � to depend on regressors.

The NB models are parameterized to have the same conditional mean as the Poisson. In

theory the NB MLE is more e�cient than the Poisson QMLE if the NB model is correctly

speci�ed, though in practice the e�ciency gains are often small. The main reason for using

the NB is in settings where the desire is to �t the distribution, not just the conditional mean.

For example, interest may lie in predicting the probability of ten or more doctor visits. And

a fully parametric model such as the NB may be necessary if the count is incompletely

observed, due to truncation, censoring and interval-recording (e.g. counts recorded as 0, 1,

2, 3-5, more than 5).

Both the Poisson and NB models are inadequate if zero counts do not come from the

same process as positive counts. Then there are two commonly-used modi�ed count models,

based on di�erent behavioral models. Let f2(y) denote the latent count density. A hurdle or

two-part model speci�es that positive counts are observed only after a threshold is crossed,

with probability 1 � f1(0). Then we observe f(0) = f1(0) and, for y > 0, f(y) = f2(y)(1 �
f1(0))=(1�f2(0)). A zero-in
ated or with-zeros model treats some zero counts as coming from
a distinct process due to, for example, never participating in the activity or mismeasurement.

In that case f2(0), the probability of zero counts from the baseline density, is in
ated by

adding a probability of, say, �. Then we have f(0) = � + (1 � �)f2(0) and, for y > 0,

f(y) = (1� �)f2(y):
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A �nal standard adaptation of cross-section count models is a latent class or �nite mix-

tures model. Then y is a draw from an additive mixture of C distinct populations with

component (subpopulation) densities f1(y); :::; fC(y), in proportions �1; :::; �C , where �j > 0,
j = 1; :::; C, and

PC
j=1 �j = 1. The mixture density is then f(y) =

PC
j=1 �jfj(y). Usually

the �j are not parameterized to depend on regressors, the fj(y) are Poisson or NB models

with regressors, and often C = 2 is adequate.

3 Static Panel Count Models

The standard methods for linear regression with data from short panels { pooled OLS and

FGLS, random e�ects and �xed e�ects { extend to Poisson regression and, to a lesser extent,

to NB regression. Discussion of other panel count models is deferred to section 5.

3.1 Individual E�ects in Count Models

Fixed and random e�ects models for short panels introduce an individual-speci�c e�ect. For

count models, with conditional mean restricted to be positive, the e�ect is multiplicative in

the conditional mean, rather than additive. Then

�it � E[yitjxit; �i] = �i�it = �i exp(x
0
it�); i = 1; :::; n; t = 1; :::; T; (8)

where the last equality speci�es an exponential functional form. Note that the intercept is

merged into �i, so that now the regressors xit do not include an intercept.

In this case the model can also be expressed as

�it � exp(�i + x0it�); (9)

where �i = ln�i. For the usual case of an exponential conditional mean, the individual-

speci�c e�ect can be interpreted as either a multiplicative e�ect or as an intercept shifter. If

there is reason to specify a conditional mean that is not of exponential then a multiplicative

e�ects model may be speci�ed, with �it � �ig(x
0
it�), or an intercept shift model may be

used, with �it � g(�i + x
0
it�).

Unlike the linear model, consistent estimation of � here does not identify the marginal

e�ect. The marginal e�ect given (8) is

MEitj �
@E[yitjxit; �i]

@xitj
= �i exp(x

0
it�)�j = �jE[yitjxit; �i]; (10)

which depends on the unknown �i. Instead, the slope coe�cient �j can be interpreted as a

semi-elasticity, giving the proportionate increase in E[yitjxit; �i] associated with a one-unit
change in xitj. For example, if �j = :06 then a one-unit change in xj is associated with a 6%

increase in yit, after controlling for both regressors and the unobserved individual e�ect �i.
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3.2 Pooled or Population-Averaged Models

Before estimating models with individual-speci�c e�ects, namely �xed and random e�ects

models, we consider pooled regression. A pooled Poisson model bases estimation on the

marginal distributions of the individual counts yit, rather than on the joint distribution of

the counts yi1; :::; yiT for the i
th individual.

The pooled Poisson QMLE is obtained by standard Poisson regression of yit on an inter-

cept and xit. De�ne z
0
it = [1 x0it] and 


0 = [� �0], so exp(z0it
) = exp(� + x0it�). Then the

�rst-order conditions are
nX
i=1

TX
t=1

(yit � exp(z0it
))zit = 0: (11)

The estimator is consistent if

E[yitjxit] = exp(� + x0it�) = � exp(x0it�) (12)

i.e., if the conditional mean is correctly speci�ed. Default standard errors are likely to be

incorrect, however, as they assume that yit is equidispersed and is uncorrelated over time

for individual i. Instead it is standard in short panels to use cluster-robust standard errors,

with clustering on the individual, based on the variance matrix estimate"
nX
i=1

TX
t=1

b�itzitz0it
#�1 nX

i=1

TX
t=1

TX
s=1

buitbuiszitz0is
"

nX
i=1

TX
t=1

b�itzitz0it
#�1

; (13)

where b�it = exp(z0itb
), and buit = yit � exp(z0itb
).
The multiplicative e�ects model (8) for E[yitjxit; �i] leads to condition (12) for E[yitjxit] if

�i is independent of xit and � = E�i [�i]. This condition holds in a random e�ects model, see

below, but not in a �xed e�ects model. The statistics literature refers to the pooled estimator

as the population-averaged estimator, since (12) is assumed to hold after averaging out any

individual-speci�c e�ects. The term marginal analysis, meaning marginal with respect to

�i, is also used.

More e�cient pooled estimation is possible by making assumptions about the correla-

tion between yit and yis, s 6= t, conditional on regressors Xi = [x0i1 � � �x0iT ]0. Let �i(
) =
[�i1 � � ��iT ]0 where �it = exp(z0it
) and let �i be a model for V[yijXi] with tsth entry

Cov[yit; yisjXi]. For example, if we assume data are equicorrelated, so Cor[yit; yisjXi] = � for

all s 6= t, and that data are overdispersed with variance �2it, then �i;ts � Cov[yit; yisjXi] =

��it�is. An alternative model permits more 
exible correlation for the �rst m lags, with

Cor[yit; yi;t�kjXi] = �k where �k = 0 for jkj > m. Such assumptions enable estimation by

more e�cient feasible nonlinear generalized least squares. The �rst-order conditions for 


are
nX
i=1

@�0i(
)

@

b��1
i (yi � �i(
)) = 0; (14)
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where b�i is obtained from initial �rst-stage pooled Poisson estimation of � and consistent

estimation of any other parameters that determine �i.

The statistics literature calls this estimator the Poisson generalized estimating equations

(GEE) estimator. The variance model �i is called a working matrix, as it is possible to

obtain a cluster-robust estimate of the asymptotic variance matrix robust to misspeci�cation

of �i, provided n ! 1. Key references are Zeger and Liang (1986) and Liang and Zeger
(1986). Liang, Zeger and Qaqish (1992) consider generalized GEE estimators that jointly

estimate the regression and correlation parameters. Br�ann�as and Johansson (1996) allow for

time-varying random e�ects �it and estimation by generalized method of moments (GMM).

The preceding pooled estimators rely on correct speci�cation of the conditional mean

E[yitjxit]. In richer parametric models, such as a hurdle model or an NB model other than
NB2, stronger assumptions are needed for estimator consistency. The log-likelihood for

pooled ML estimation is based for individual i on
QT
t=1f(yitjxit), the product of the marginal

densities, rather than the joint density f(yijXi). Consistent estimation generally requires

that the marginal density f(yitjxit) be correctly speci�ed. Since yit is in fact correlated
over t, there is an e�ciency loss. Furthermore, inference should be based on cluster-robust

standard errors, possible given n!1.

3.3 Random E�ects Models and Extensions

A random e�ects (RE) model is an individual e�ects model with the individual e�ect �i (or

�i) assumed to be distributed independently of the regressors. Let f(yitjxit; �i) denote the
density for the itth observation, conditional on both �i and the regressors. Then the joint

density for the ith observation, conditional on the regressors, is

f(yijXi) =

Z 1

0

hQT
t=1f(yitj�i;xit)

i
g(�ij�)d�i; (15)

where g(�ij�) is the speci�ed density of �i. In some special cases there is an explicit solution
for the integral (15). Even if there is no explicit solution, Gaussian quadrature numeri-

cal methods work well since the integral is only one-dimensional, or estimation can be by

simulated maximum likelihood.

The Poisson random e�ects model is obtained by supposing yit is Poisson distributed,

conditional on xit and �i, with mean �i�it, and additionally that �i is gamma distributed

with mean 1, a normalization, and variance 1=
. Then, integrating out �i, the conditional

mean E[yitjxit] = �it, the conditional variance V[yitjxit] = �it + �2it=
, and there is a closed

form solution to (15), with

f(yijXi) =

"Y
t

�it
yit

yit!

#
�
�


P
t �it + 


�

�
 X

t

�it + 


!�Pt yit
� (
P

t yit + 
)

�(
)
: (16)
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For exponential conditional mean the ML �rst-order conditions for b� are
nX
i=1

TX
t=1

xit

�
yit � �it

yi + 
=T

�i + 
=T

�
= 0; (17)

where yi =
1
T

PT
t=1 yit and �i =

1
T

PT
t=1 �it. A su�cient condition for consistency is that

E[yitjXi] = �it. The model has the same conditional mean as the pooled Poisson, but leads

to more e�cient estimation if in fact overdispersion is of the NB2 form.

The Poisson random e�ects model was proposed by Hausman, Hall and Griliches (1984).

They also presented a random e�ects version of the NB2 model, with yit speci�ed to be

i.i.d. NB2 with parameters �i�it and �i, where �it = exp(x
0
it�). Conditional on �it, �i, and

�i, yit has mean �i�it=�i and variance (�i�it=�i) � (1 + �i=�i). A closed form solution to

(15) is obtained by assuming that (1+ �i=�i)
�1 is a beta-distributed random variable with

parameters (a; b):

The preceding examples specify a distribution for �i that leads to a closed-form solution

to (15). This is analogous to specifying a natural conjugate prior in a Bayesian setting. Such

examples are few, and in general there is no closed form solution to (15). Furthermore, the

most obvious choice of distribution for the multiplicative e�ect �i is the lognormal, equivalent

to assuming that �i in exp(�i+x
0
it�) is normally distributed. Since there is then no closed form

solution to (15), Gaussian quadrature or maximum simulated likelihood methods are used.

If �i � N[�; �2� ] then E[yitjxit] = exp(� + �2�=2)�it, a rescaling of the conditional mean in the

Poisson-gamma random e�ects model. This is absorbed in the intercept if �it = exp(x
0
it�).

More generally, slope coe�cients in addition to the intercept may vary across individuals.

A random coe�cients model with exponential conditional mean speci�es E[yitjxit; �i; �i] =
exp(�i + x

0
it�i). Assuming �i � N[�; �2� ] and �i � N[�;��] implies �i + x

0
it�i � N[� +

x0it�; �
2
�+x

0
it��xit]. The conditional mean is considerably more complicated, with E[yitjxit] =

expf� + x0it� + (�2� + x0it��xit)=2g. This model falls in the class of generalized linear latent
and mixed models; see Skrondal and Rabe-Hesketh (2004). Numerical integration methods

are more challenging as the likelihood now involves multi-dimensional integrals.

One approach is to use Bayesian Markov chain Monte Carlo (MCMC) methods. Chib,

Greenberg and Winkelmann (1998) consider the following model. Assume yitj
it is Poisson
distributed with mean exp(
it), where 
it = x0it� + w

0
it�i and �i � N[�;��]. The RE

model is the specialization w0
it�i = �i, and the random coe�cients model sets wit = xit,

though Chib et al. (1998) argue that xit and wit should share no common variables to

avoid identi�cation and computational problems. Data augmentation is used to add 
it
as parameters leading to augmented posterior p(�; �;�; 
jy;X). A Gibbs sampler is used
where draws from p(
j�; �;�;y;X) use the Metropolis-Hastings algorithm, while draws from
the other full conditionals p(�j�;�; 
;y;X), p(�j�;�; 
;y;X), and p(�j�; �; 
;y;X) are
straightforward if independent normal priors for � and � and a Wishart prior for ��1 are

speci�ed.

Another generalization of the RE model is to model the time-invariant individual e�ect

to depend on the average of individual e�ects, an approach proposed for linear regression
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by Mundlak (1978) and Chamberlain (1982). The conditionally correlated random (CCR)

e�ects model speci�es that �i in (8) can be modelled as

�i = exp(�x
0
i�+ "i); (18)

where �xi denotes the time-average of the time-varying exogenous variables and "i may be in-

terpreted as unobserved heterogeneity that is uncorrelated with the regressors. Substituting

into (8) yields

E[yitjxi1; : : : ;xiT ; �i] = exp(x0it� + �x0i�+ "i): (19)

This can be estimated as an RE model, with �xi as an additional regressor.

3.4 Fixed E�ects Models

Fixed e�ects (FE) models treat the individual e�ect �i in (8) as being random and potentially

correlated with the regressors Xi. In the linear regression model with additive errors the

individual e�ect can be eliminated by mean-di�erencing or by �rst-di�erencing. In the

nonlinear model (8), �i can be eliminated by quasi-di�erencing as follows.

Assume that the regressors xit are strictly exogenous, after conditioning on �i, so that

E[yitjxi1; : : : ;xiT ; �i] � E[yitjXi; �i] = �i�it: (20)

This is a stronger condition than (8) which conditions only on xit and �i. Averaging over time

for individual i, it follows that E[�yijXi; �i] = �i��i, where �yi =
1
T

PT
t=1 yit and

��i =
1
T

PT
t=1 �it.

Subtracting from (20) yields

E
��
yit � (�it=��i)�yi

�
j�i;Xi

�
= 0; (21)

and hence by the law of iterated expectations

E

�
xit

�
yit �

�it
��i
�yi

��
= 0: (22)

Given assumption (20), � can be consistently estimated by the method of moments estimator

that solves the sample moment conditions corresponding to (22):

nX
i=1

TX
t=1

xit

�
yit �

yi
�i
�it

�
= 0: (23)

For short panels a panel-robust estimate of the variance matrix of b� can be obtained using
standard GMM results.

Wooldridge (1990) covers this moment-based approach in more detail and gives more

e�cient GMM estimators when additionally the variance is speci�ed to be of the form  i�i�it.

Chamberlain (1992a) gives semi-parametric e�ciency bounds for models using only speci�ed
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�rst moment of form (8). Attainment of these bounds is theoretically possible but practically

di�cult, as it requires high-dimensional nonparametric regressions.

Remarkably, the method of moments estimator de�ned in (23) coincides with the Poisson

�xed e�ects estimator in the special case that �it = exp(x
0
it�). This estimator in turn can

be derived in two ways.

First, suppose we assume that yitjxit; �i is independently distributed over i and t as Pois-
son with mean �i�it. Then maximizing the log likelihood function

Pn
i=1

PT
t=1 ln f(yitjxit; �i)

with respect to both � and �1; :::; �n leads to �rst-order conditions for � that after some

algebra can be expressed as (23), while b�i = yi=
b�i. This result, given in Blundell, Gri�th,

and Windmeijer (1997, 2002) and Lancaster (1997) is analogous to that for MLE in the

linear regression model under normality with �xed e�ects { in principle the �i introduce an

incidental parameters problem, but in these speci�c models this does not lead to inconsistent

estimation of �, even if T is small.

Second, consider the Poisson conditional MLE that additionally conditions on Tyi =PT
t=1 yit. Then some algebra reveals that �i drops out of the conditional log-likelihood

function
Pn

i=1

PT
t=1 ln f(yitjxit; �i; T yi), and that maximization with respect to � leads to

the �rst-order conditions (23). This is the original derivation of the Poisson FE estimator

due to Palmgren (1981) and Hausman, Hall, and Griliches (1984). Again, a similar result

holds for the linear regression model under normality.

In general it is not possible to obtain consistent estimates of � in a �xed e�ects model with

data from a short panel, due to too many incidental parameters �i; :::; �n. The three leading

exceptions are regression with additive errors, regression with multiplicative errors, including

the Poisson, and the logit model. Hausman, Hall, and Griliches (1984) additionally proposed

a �xed e�ects estimator for the NB1 model, but Guimar~aes (2008) shows that this model

places a very strong restriction on the relationship between �i and the NB1 overdispersion

parameter. One consequence, pointed out by Allison and Waterman (2002), is that the

coe�cients of time-invariant regressors are identi�ed in this model.

One alternative is to estimate a regular NB model, such as NB2, with a full set of

individual dummies. While this leads to inconsistent estimation of � in short panels due to

the incidental parameters problem, Allison and Waterman (2002) and Greene (2004) present

simulations that suggest that this inconsistency may not be too large for moderately small T ;

see also Fern�andez-Val (2009) who provides theory for the probit model. A second alternative

is to use the conditionally correlated random e�ects model presented in (18).

The distinction between �xed and random e�ects is fundamentally important, as pooled

and random e�ects estimators are inconsistent if in fact the data are generated by the

individual-speci�c e�ects model (8) with �i correlated with xit. Let �1 denote the subcom-

ponent of � that is identi�ed in the �xed e�ects model (i.e. the coe�cient of time-varying

regressors), or a subset of this, and let b�1,RE and e�1,FE denote, respectively, the corresponding
RE and FE estimators. The Hausman test statistic is

H = (b�1,RE � e�1,FE)0 hbV[e�1,FE � b�1,RE]i�1 (b�1,RE � e�1,FE): (24)
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If H< �2�(dim(�1)) then at signi�cance level � we do not reject the null hypothesis that the

individual speci�c e�ects are uncorrelated with regressors. In that case there is no need for

�xed e�ects estimation.

This test requires an estimate of V[e�1,FE � b�1,RE]. This reduces to V[e�1,FE]�V[b�1,RE],
greatly simplifying analysis, under the assumption that the RE estimator is fully e�cient

under the null hypothesis. But it is very unlikely that this additional restriction is met.

Instead in short panels one can do a panel bootstrap that resamples over individuals. In the

bth resample compute e�(b)1,FE � b�(b)1,RE and, given B bootstraps, compute the variance of these

B di�erences.

4 Dynamic Panel Count Models

An individual-speci�c e�ect �i induces dependence over time in yit. An alternative way to

introduce dependence over time is a dynamic model that speci�es the distribution of yit to

depend directly on lagged values of yit.

4.1 Speci�cations for Dynamic Models

We begin by considering the Poisson model in the time series case, with yt Poisson dis-

tributed with mean that is a function of yt�1 and regressors xt. Then a much wider range

of speci�cations for a dynamic model have been proposed than in the linear case; Cameron

and Trivedi (2013, chapter 7) provide a survey.

One obvious time series model, called exponential feedback, is that yt is Poisson with

mean exp(�yt�1 + x
0
t�), but this model is explosive if � > 0. An alternative is to specify the

mean to be exp(� ln yt�1 + x
0
t�), but this model implies that if yt�1 = 0 then yt necessarily

equals zero. A linear feedback model speci�es the mean to equal �yt�1 + exp(x
0
t�). This

model arises from a Poisson integer-valued autoregressive model of order 1 (INAR(1)), a

special case of the more general class of INARMA models.

For panel data we allow for both dynamics and the presence of an individual speci�c

e�ect. De�ne the conditional mean to be

�it = E[yitjX(t)
i ;Y

(t�1)
i ; �i]; (25)

where X
(t)
i = fxit;xi;t�1; :::g and Y(t�1)

i = fyi;t�1; yi;t�2; :::g. Blundell, Gri�th and Wind-
meijer (1997, 2002) discuss various forms for �it and emphasize the linear feedback model

�it = �yi;t�1 + �i exp(x
0
it�); (26)

where for simplicity we consider models where �it depends on just the �rst lag of yit. The

exponential feedback model instead speci�es

�it = �i exp(�yi;t�1 + x
0
it�): (27)

12



Yet another model, proposed by Crepon and Duguet (1997), is that

�it = h(yi;t�1; 
)�i exp(x
0
it�); (28)

where the function h(yit�1; 
) parameterizes the dependence of �it on lagged values of yit. A

simple example is h(yi;t�1; 
) = exp(
1[yi;t�1 > 0]) where 1[�] is the indicator function. More
generally a spline-type speci�cation in which a set of dummies determined by ranges taken

by yit�1 might be speci�ed.

4.2 Pooled Dynamic Models

Pooled dynamic models assume that all regression coe�cients are the same across individuals,

so that there are no individual-speci�c �xed or random e�ects. Then one can directly

apply the wide range of methods suggested for time series data, even for small T provided

n!1. This approach is given in Diggle, Heagarty, Liang and Zeger (2002, chapter 10), who
use autoregressive models that directly include yi;t�k as regressors. Br�ann�as (1995) brie
y

discusses a generalization of the INAR(1) time series model to longitudinal data.

Under weak exogeneity of regressors, which requires that there is no serial correlation in

(yit��it), the models can be estimated by nonlinear least squares, GEE, method of moments,
or GMM based on the sample moment condition

P
i

P
t zit(yit � �it) where zit can include

yi;t�1 and xit and, if desired, additional lags in these variables.

This approach leads to inconsistent estimation if �xed e�ects are present. But inclusion

of lagged values of yit as a regressor may be su�cient to control for correlation between yit
and lagged yit, so that there is no need to additionally include individual-speci�c e�ects.

4.3 Random E�ects Dynamic Models

A random e�ects dynamic model is an extension of the static RE model that includes lagged

yit as regressors. However, the log-likelihood will depend on initial condition yi0, this con-

dition will not disappear asymptotically in a short panel, and most importantly it will be

correlated with the random e�ect �i (even if �i is uncorrelated with xit). So it is important

to control for the initial condition.

Heckman (1981) writes the joint distribution of yi0; yi1; :::; yiT ; �ijxit as

f(yi0;yi1; : : : ; yiT ; �ijXi) = f(yi1; : : : ; yiT jXi; yi0; �i)f(yi0jXi; �i)f(�ijXi): (29)

Implementation requires speci�cation of the functional forms f(yi0jXi; �i) and f(�ijXi) and,

most likely, numerical integration; see Stewart (2007).

Wooldridge (2005) instead proposed a conditional approach, for a class of nonlinear

dynamic panel models that includes the Poisson model, based on the decomposition

f(yi1; : : : ; yiT ; �ijXi; yi0) = f(yi1; : : : ; yiT jXi; yi0; �i)f(�ijyi0;Xi): (30)
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This simpler approach conditions on yi0 rather than modelling the distribution of yi0. Then

the standard random e�ects conditional ML approach identi�es the parameters of interest.

One possible model for f(�ijyi0;Xi) is the CCR model in (18) with yi0 added as a regressor,

so

�i = exp(�0yi0 + �x
0
i�+ "i); (31)

where �xi denotes the time-average of the time-varying exogenous variables, and "i is an

i.i.d. random variable. Then the model (30)-(31) can be estimated using RE model software

commands. Note that in a model with just one lag of yi;t�1 as a regressor, identi�cation in

the CCR model requires three periods of data (yi0; yi1; yi2).

4.4 Fixed E�ects Dynamic Models

The Poisson FE estimator eliminates �xed e�ects under the assumption that E[yitjXi] =

�i�it; see (20). This assumption rules out predetermined regressors. To allow for predeter-

mined regressors that may be correlated with past shocks, we make the weaker assumption

that regressors are weakly exogenous, so

E[yitjX(t)
i ] = E[yitjxit; : : : ;xi1] = �i�it; (32)

where now conditioning is only on current and past regressors. Then, de�ning uit = yit��i�it,
E[uitjxis] = 0 for s � t, so future shocks are indeed uncorrelated with current x, but there

is no restriction that E[uitjxis] = 0 for s > t.

For dynamic models, lagged dependent variables also appear as regressors, and we assume

E[yitjX(t)
i ;Y

(t�1)
i ] = E[yitjxit; : : : ;xi1; yi;t�1; :::; yi1] = �i�it; (33)

where conditioning is now also on past values of yit. (For the linear feedback model de�ned

in (26), �i�it in (33) is replaced by �yi;t�1 + �i�it.)

If regressors are predetermined then the Poisson FE estimator is inconsistent, since quasi-

di�erencing subtracts (�it=��i)�yi from yit, see (21), but �yi includes future values yis, s > t.

This problem is analogous to the inconsistency (or Nickell bias) of the within or mean-

di�erenced �xed e�ects estimator in the linear model.

Instead GMM estimation is based on alternative di�erencing procedures that eliminate

�i under the weaker assumption (33). These generalize the use of �rst di�erences in linear

dynamic models with �xed e�ects. Chamberlain (1992b) proposed eliminating the �xed

e�ects �i by the transformation

qit(�) =
�i;t�1
�it

yit � yi;t�1; (34)

where �it = �it(�). Wooldridge (1997) instead proposed eliminating the �xed e�ects using

qit(�) =
yi;t�1
�i;t�1

� yit
�it
: (35)
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For either speci�cation of qit(�) it can be shown that, given assumption (33),

E[qit(�)jzit] = 0; (36)

where zit can be drawn from xi;t�1;xi;t�2; ::: and, if lags up to yi;t�p appear as regressors, zit
can also be drawn from yi;t�p�1;yi;t�p�2; ::: Often p = 1, so yi;t�2; yi;t�3; ::: are available as

instruments.

In the just-identi�ed case in which there are as many instruments as parameters, the

method of moments estimator solves
nX
i=1

TX
t=1

zitqit(�) = 0: (37)

In general there are more instruments zit than regressors and the GMM estimator of �

minimizes  
nX
i=1

TX
t=1

zitqit(�)

!0
Wn

 
nX
i=1

TX
t=1

zitqit(�)

!
: (38)

Given two-step GMM estimation, model adequacy can be tested using an over-identifying

restrictions test.

It is also important to test for serial correlation in qit(�), using qit(b�), as correct model
speci�cation requires that Cor[qit(�); qis(�)] = 0 for jt � sj > 1. Blundell, Gri�th and

Windmeijer (1997) adapt serial correlation tests proposed by Arellano and Bond (1991) for

the linear model. Crepon and Duguet (1997) and Br�ann�as and Johansson (1996) apply serial

correlation tests in the GMM framework.

Windmeijer (2008) provides a broad survey of GMM methods for the Poisson panel

model, including the current setting. Two-step GMM estimated coe�cients and standard

errors can be biased in �nite samples. Windmeijer (2008) proposes an extension of the

variance matrix estimate of Windmeijer (2005) to nonlinear models. In a Monte Carlo

exercise with predetermined regressor he shows that this leads to improved �nite sample

inference, as does the Newey and Windmeijer (2009) method applied to the continuous

updating estimator variant of GMM.

Blundell, Gri�th, and Windmeijer (2002) proposed an alternative transformation, the

mean-scaling transformation

qit(�) = yit �
yi0
�i0

�it; (39)

where yi0 is the presample mean value of yi and the instruments are (xit�xi0). This estimator
is especially useful if data on the dependent variable are available farther back in time than

data on the explanatory variables. The transformation leads to inconsistent estimation,

but in a simulation this inconsistency is shown to be small and e�ciency is considerably

improved.

The GMM methods of this section can be adapted to estimate FE models with endoge-

nous regressors. Suppose the conditional mean of yit with exogenous regressors is

�it = �i exp(x
0
it�): (40)
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Due to endogeneity of regressor(s), however, E[yit��itjxit] 6= 0, so the standard Poisson FE
estimator is inconsistent. Windmeijer (2000) shows that in the panel case, the individual-

speci�c �xed e�ects �i can only be eliminated if a multiplicative errors speci�cation is as-

sumed and if the Wooldridge transformation is used. Then nonlinear IV or GMM estimation

is based on qit(�) de�ned in (35), where the instruments zit satisfy E[(yit � �it)=�itjzit] = 0
and zit can be drawn from xi;t�2;xi;t�3; :::

5 Extensions

In this section we survey recent developments that extend to the panel setting complications

for counts that were introduced brie
y in section 2.2 on cross-section data models. We

consider panel versions of hurdle models, latent class models, and dynamic latent class

models.

5.1 Hurdle Models

The panel count models covered in previous sections specify the same stochastic process for

zero counts and for positive counts. Both the hurdle model and the zero-in
ated model relax

this restriction. Here we focus on panel versions of the hurdle or two-part model; similar

issues arise for the zero-in
ated model.

We specify a two-part data generating process. The split between zeros and positives

is determined by a Bernoulli distribution with probabilities of, respectively, f1(0jzit) and
1 � f1(0jzit). The distribution of positives is determined by a truncated-at-zero variant of
the count distribution f2(yitjxit). Then

f(yitjxit; zit) =

8<: f1(0jzit) if yit = 0

(1� f1(0jzit))
f2(yitjxit)
1� f2(0jxit)

if yit � 1;
(41)

which specializes to the standard model only if f1(0jzit) = f2(0jxit), and zit = xit: In

principle, zit and xit may have distinct and/or overlapping elements, though in practice

they are often the same. This model can handle both excess zeros in the count distribution

f2(yitjxit), if f1(0) > f2(0), and too few zeros if f2(0) > f1(0).

This model is simply a pooled version of the standard cross-section hurdle model. Its

implementation involves no new principles if the cross section assumptions are maintained,

though cluster-robust standard errors analogous to those in (13) for pooled Poisson should be

used. Because the two parts of the model are functionally independent, maximum likelihood

estimation can be implemented by separately maximizing the two terms in the likelihood.

A binary logit speci�cation is usually used to model the positive outcome, and a Poisson or

negative binomial speci�cation is used for f2(yitjxit).
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A random e�ects variant of this model introduces individual-speci�c e�ects, so

f(yitjxit; zit; �1i; �2i) =

8<: f1(yitjzit; �1i) if yit = 0

(1� f1(0jzit; �1i))
f2(yitjxit; �2i)
1� f2(0jxit; �2i)

if yit � 1;
(42)

where �1i and �2i are individual-speci�c e�ects for the �rst and second part of the model,

respectively. Under the assumption of exogeneity of xit and zit; and given the bivariate

density of (�1i; �2i) denoted by h(�1i; �2i), the marginal distribution of yit is given byZ Z
f(yitjxit; zit; �1i; �2i)h(�1i; �2i)d�1id�2i: (43)

This calculation can be expected to be awkward to implement numerically. First, the likeli-

hood no longer splits into two pieces that can be maximized individually. Second, it seems

plausible that the individual-speci�c e�ects in the two distributions should not be indepen-

dent. In some cases the assumption of a bivariate normal distribution is appropriate, perhaps

after transformation such as for ln�2i rather than �2i. Experience with even simpler prob-

lems of the same type suggest that more work is needed on the computational aspects of

this problem; see Olsen and Schafer (2001).

Consistent estimation of a �xed e�ects variant of this model in a short panel is not

possible. Conditional likelihood estimation is potentially feasible for some special choices of

f1(�), but a su�cient statistic for �2i in a zero-truncated model is not available. Given T
su�ciently large, individual-speci�c dummy variables may be added to the model. Then the

pro�le likelihood approach (Dhaene and Jochmans, 2011) is potentially appealing, but there

is no clear guidance from the literature. Yet another approach is to specify a conditionally

correlated random e�ects model, introduced in (18).

5.2 Latent Class Models

Latent class models, or �nite mixture models (FMM), have been used e�ectively in cross-

section analysis of count data. They are generally appealing because they o�er additional


exibility within a parametric framework. In this section we consider their extension to

panel counts.

The key idea underlying latent class modeling is that an unknown distribution may be

parsimoniously approximated by a mixture of parametric distributions with a �nite and

small number of mixture components. For example, a mixture of Poissons may be used to

approximate an unknown distribution of event counts. Such models can provide an e�ective

way of handling both excess zeros and overdispersion in count models (Deb and Trivedi,

2002).

The general expression for a panel latent class model in which all parameters are assumed

to vary across latent classes is

f(yitjxit; �1; ::; �C ; �1; :::; �C�1) =
CX
j=1

�jfj(yitjxit; �j); (44)
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where 0 � �j � 1, �1 > �2:::: > �C ,
P

j �j = 1, xit is a vector of K exogenous variables,

and �j denotes the vector of unknown parameters in the j
th component. For simplicity the

component probabilities �j in (44) are time-invariant and individual-invariant, an assumption

that is relaxed below.

The estimation objective is to obtain consistent estimates of (�j; �j), j = 1; :::; C, where

C also should be determined from the data. For simplicity the analysis below concentrates

on modeling issues that are speci�c to panel models, avoiding some general issues that arise

in identi�cation and estimation of all latent class models, and just a two-component mixture

is considered, so we assume C = 2 is adequate.

We begin by considering a pooled panel latent class model. Introduce an unobserved

variable dit that equals j if individual i in period t is in the j
th latent class, and let

f(yitjdit = j;xit) = P(�
(j)
it ); j = 1; 2;

where P(�
(j)
it ) is the density of a Poisson distribution with mean �

(j)
it = exp(x

0
it�j). For the

case C = 2, dit is a Bernoulli random variable. Let Pr[dit = 1] = �, for the moment constant

over i and t. Then the joint density of (dit; yit) is

f(yit; ditjxit; �1; �2; �) =
h
�P(�

(1)
it )
i1[dit=1] h

(1� �)P(�
(2)
it )
i1[dit=2]

; (45)

where 1[A] = 1 if event A occurs and equals 0 otherwise. The marginal density of yit is

f(yitjxit; �1; �2; �) = �P(�
(1)
it ) + (1� �)P(�

(2)
it ): (46)

Let � = (�1; �2). Under the assumption that the observations are independent across indi-

viduals and over time, the complete-data (joint) likelihood, conditioning on both yit and dit
for all i and t, is

Lc(�; �) =

nY
i=1

TY
t=1

h
�P(�

(1)
it )
i1[dit=1] h

(1� �)P(�
(2)
it )
i1[dit=2]

; (47)

and the marginal likelihood, conditioning on yit and dit for all i and t, is

Lm(�; �) =
nY
i=1

TY
t=1

hn
�P(�

(1)
it ) + (1� �)P(�

(2)
it )
oi

: (48)

ML estimation may be based on an EM algorithm applied to (47) or, more directly, a

gradient-based algorithm applied to (48). These expressions, especially the marginal like-

lihood, have been used to estimate a pooled panel model; see Bago d'Uva (2005). When

following this pooled approach, the modeling issues involved are essentially the same as those

for the cross-section latent class models.

In a panel with su�ciently long time series dimension there is some motivation for con-

sidering transitions between classes (states). One way to do so is to allow the mixture
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proportion �, assumed constant in the above exposition, to vary over time (and possibly

individuals). This can be done by specifying � as a function of some time-varying regressors.

Let Pr[dit = 1jzit] = F (z0it
) where F denotes a suitable c.d.f. such as logit or probit, and

� = (
; �1; �2). Then the complete-data likelihood is

Lc(�; 
) =

nY
i=1

TY
t=1

h
F (z0it
)P(�

(1)
it )
i1[dit=1] h

(1� F (z0it
))P(�
(2)
it )
i1[dit=2]

: (49)

This speci�cation was used by Hyppolite and Trivedi (2012).

If, in the interests of parsimonious speci�cation C is kept low, then some latent class

components may still show substantial within-class heterogeneity. This provides motivation

for adding individual-speci�c e�ects to improve the �t of the model. A multiplicative random

e�ects model variant of (47), with individual-speci�c e�ects �i and Poisson component means

�i�
(j)
it where �

(j)
it = exp(x

0
it�j), has the following form:

Lc(�; �j�1; :::; �n) =
nY
i=1

TY
t=1

h
�P(�i�

(1)
it )
i1[dit=1] h

(1� �)P(�i�
(2)
it )
i1[dit=2]

: (50)

Assuming that the parametric distribution g(�iv) for the individual-speci�c e�ects is the

same for both latent classes, the individual-speci�c e�ects can be integrated out, analytically

or numerically, yielding the likelihood function

Lc(�; �; �) =
nY
i=1

Z ( TY
t=1

h
�P(�i�

(1)
it )
i1[dit=1] h

(1� �)P(�i�
(2)
it )
i1[dit=2])

g(�ij�)d�i: (51)

For a popular speci�cation of g(�ij�) such as the gamma, the integral will be a mixture of
two negative binomial distributions (Deb and Trivedi, 2002); for the log-normal speci�cation

there is no closed form but a suitable numerical approximation can be used. Under the more


exible assumption that the two classes have di�erent distributions for the �i, likelihood es-

timation is potentially more complicated. More generally the slope coe�cients may also vary

across individuals; Greene and Hensher (2013) estimate a latent class model with random

coe�cients for cross-section multinomial data.

The �xed e�ects model is very popular in econometric studies as it allows the individual

speci�c e�ects to be correlated with the regressors. Until recently, however, there has been

no attempt to combine �nite mixtures and �xed e�ects. In a recent paper, Deb and Trivedi

(2013) take the �rst steps in this direction. They use the conditional likelihood approach

to eliminate the incidental parameters �i from the likelihood. The resulting likelihood is a

complete-data form likelihood which is maximized using an EM algorithm.

For the one-component Poisson panel model with yit � P(�i�it) and �it = exp(x0it�);

the incidental parameters can be concentrated out of the likelihood using the �rst-order

conditions with respect to �i. Then b�i =Pt yit=
P

t �it, leading to the following concentrated

likelihood function, ignoring terms not involving �:

lnLconc(�) _
nX
i=1

TX
t=1

h
yit ln�it � yit ln

�XT

s=1
�is

�i
: (52)

19



We wish to extend this conditional maximum likelihood approach to Poisson �nite mix-

ture models. The above conditioning approach will not work for the mixture of Poissons

because in this case a su�cient statistic for the �i is not available. However, the approach

can work if the incidental parameters �i are �rst concentrated out of the mixture compo-

nents and the mixture is expressed in terms of the concentrated components. Denote by si
the su�cient statistic for �i. Then the mixture representation after conditioning on si is

f(yitjxit; si; �1; ::; �C ; �1; :::; �C�1) =
CX
j=1

�jf(yitjxit; si; �j): (53)

Specializing to the Poisson mixture, the complete-data concentrated likelihood is

Lconc(�; �1; :::; �C) =

nY
i=1

TY
t=1

CX
j=1

"
�jP

 PT
s=1 yisPT
s=1 �

(j)
is

� �
(j)
it

!#1[dit=j]
: (54)

Because in this case the su�cient statistic si =
P

t yit=
P

t �
(j)
it depends on model parameters

and not just on data, the EM algorithm needs to be applied to the full-data likelihood. For

a Monte Carlo evaluation and an empirical application, see Deb and Trivedi (2013).

5.3 Dynamic Latent Class Models

Dynamics can be introduced into the general model (44) in several ways. One way is to intro-

duce dynamics into the component densities, such as using fj(yitjxit; yi;t�1; �j). B�ockenholt
(1999) does this using a pooled version of the Poisson with conditional mean �jyi;t�1 +

exp(x0it�j) for the j
th component.

Alternatively dynamics can be introduced through the latent class membership probabil-

ities. Speci�cally, the class to which an individual belongs may evolve over time, depending

on class membership in the previous period. If we assume that all unobserved past informa-

tion useful in predicting class membership is contained in the most recent class membership,

the process that determines the class of an individual can be characterized by a �rst-order

Markov Chain.

First assume that the chains for each individual are characterized by the same time-

homogeneous transition matrix and the same initial probability vector. Let pkl denote the

probability that an individual in state k switches to state l in the next period, where there

are two possible states in a two-component model. Then

pkl = Pr[dit = ljdi;t�1 = k]; k; l = 1; 2; (55)

and, since
P2

l=1 pkl = 1, there are two free parameters, say p11 and p21. The corresponding

transition matrix is

P =

�
p11 1� p12
p21 1� p22

�
: (56)
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We additionally need to specify the probabilities at initial time t = 1, and let

� = Pr[di1 = 1]; (57)

and 1 � � = Pr[di1 = 2]. The bivariate discrete-time process (dit; yit), where dit is an

unobserved Markov chain and yitj(dit; �(1)it ; �
(2)
it ) is independent, is known as a hidden Markov

model. The hidden Markov model is a mixture whose mixing distribution is a Markov chain.

The joint density for (dit; yit) is given by

f(yit; ditjxit; �; Ii;t�1) =
�
Pr[dit = 1jIi;t�1]� P(�(1)it )

�1[dit=1] �
Pr[dit = 2jIi;t�1]� P(�(2)it )

�1[dit=2]
;

(58)

where � = (�1; �2; p11; p12; �) and Iit denotes information about individual i available up to
time t. Because time dependence is modeled as a �rst-order Markov chain, the probability

of being in a given state at a given point in time now depends on the previous history of the

bivariate process. The di�erence between (58) and (45) is that in (58) the whole history of

the process matters.

The corresponding marginal density is then

f(yitjxit; �; Ii;t�1) =
2X
j=1

Pr(dit = jjIi;t�1)P(�(j)it ): (59)

Again the di�erence between (46) and (59) is that the history of the process enters the

marginal density of the hidden Markov model.

The exact expression for the full-data likelihood depends upon whether or not the path

of each individual chain is observed. For a detailed discussion of di�erent assumptions, as

well as estimation algorithms, see Hyppolite and Trivedi (2012).

The restriction that the transition matrix is time invariant can be relaxed. A more 
exible

model results if we parametrize the transition matrix. One such model speci�es

Pit =

�
F (z0it
) 1� F (z0it
)
F (z0it
 + �) 1� F (z0it
 + �)

�
;

where F is a suitable c.d.f. such as the logit and the probit. The complete-data likelihood

and the marginal likelihood for this model are obtained the same way as for previous models.

For details see Hyppolite and Trivedi (2012).

6 Conclusion

The methods of sections 2 to 4 are well established, and many of the methods have been

integrated into the leading econometrics packages. Many econometrics textbooks provide

discussion of count data models, though the treatment of panel counts is generally brief.

The specialized monograph of Cameron and Trivedi (2013) provides a more comprehensive

presentation. The richer parametric models of section 5 seek to model features of the data

not well captured in some applications by the simpler panel models. These richer models are

computationally more demanding, and eliminating �xed e�ects in these models is challenging.
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