References for Recent Developments in Cluster-Robust Inference A. Colin Cameron Department of Economics, U.C. Davis Douglas L. Miller Brooks School of Public Policy, and Economics, Cornell University December 15, 2021 These references accompany the December 15 2021 webinar to the International Association for Applied Econometrics. They emphasize more recent research. The webinar slides and recording will be available at https://appliedeconometrics.org/iaae-webinars ### 1. Introduction Cameron, A. Colin and Douglas L. Miller (2015), "A Practitioners Guide to Cluster-Robust Inference", *Journal of Human Resources*, 2015, 317-372. MacKinnon, James G., Nielsen, Morten Ø. and Matthew D. Webb (2021), "Cluster-robust inference: A guide to empirical practice", QED Working Paper No. 1456. ### 2. Basics of Cluster-robust Inference Moulton, Brent R (1986), "Random Group Effects and the Precision of Regression Estimates," *Journal of Econometrics*, 32, 385-397. Moulton, Brent R. (1990), "An Illustration of a Pitfall in Estimating the Effects of Aggregate Variables on Micro Units," *Review of Economics and Statistics*, 72, 334-38. Bertrand, Marianne, Esther Duflo, and Sendhil Mullainathan (20040, "How Much Should We Trust Differences-in-Differences Estimates?," Quarterly Journal of Economics, 119, 249-275. White, Halbert (1984), Asymptotic Theory for Econometricians, San Diego: Academic Press. Liang, Kung-Yee, and Scott L. Zeger (1986), "Longitudinal Data Analysis Using Generalized Linear Models." *Biometrika*, 73, 13-22. Arellano, Manuel (1987), "Computing Robust Standard Errors for Within-Group Estimators," Oxford Bulletin of Economics and Statistics, 49, 431-434. Hansen, Christian (2007), "Asymptotic Properties of a Robust Variance Matrix Estimator for Panel Data when T is Large," *Journal of Econometrics*, 141, 597-620. Carter, Andrew V., Kevin T. Schnepel, and Douglas G. Steigerwald (2017), Asymptotic Behavior of a t Test Robust to Cluster Heterogeneity," *Review of Economics and Statistics*, 99(4), 698–709. Hansen, Bruce, and Seojeong Lee (2019), "Asymptotic Theory for Clustered Samples," *Journal of Econometrics*, 210, 268-290. Djogbenou, Antoine, James G. MacKinnon, and Morten Ø. Nielsen (2019), "Asymptotic theory and wild bootstrap inference with clustered errors," *Journal of Econometrics*, 212, 393-412. Abadie, Alberto, Susan Athey, Guido W. Imbens, Jeffrey M. Wooldridge (2017), "When Should You Adjust Standard Errors for Clustering?," NBER Working Paper 24003. Su, Fangzhou and Peng Ding (2021), "Model-assisted Analyses of Cluster-randomized Experiments," J. R. Statistical Society Series B, 83, 994-1015. # 3. Better One-way Cluster-Robust Inference ### Small-cluster bias in standard error MacKinnon, James G., and Halbert White (1985), "Some Heteroskedasticity-Consistent Covariance Matrix Estimators with Improved Finite Sample Properties," *Journal of Econometrics*, 29, 305-325. Bell, Robert M., and Daniel F. McCaffrey (2002), "Bias Reduction in Standard Errors for Linear Regression with Multi-Stage Samples," *Survey Methodology*, 28, 169-179. MacKinnon, James G., Nielsen, Morten Ø. and Matthew D. Webb (2021), "Cluster-robust inference: A guide to empirical practice", QED Working Paper No. 1456. MacKinnon, James G., Morten Ø. Nielsen, and Matthew D. Webb (2022), "The summ-clust package: Leverage and Influence in Clustered Regression Models," forthcoming. Young, Alwyn (2019), "Channeling Fisher: Randomization tests and the statistical insignificance of seemingly significant experimental results," Quarterly Journal of Economics, 134, 557-598. # T with Different Degrees of Freedom Imbens, Guido W., and Michal Kolesar (2016), "Robust Standard Errors in Small Samples: Some Practical Advice," *Review of Economics and Statistics*, 98, 701-712. Pustejovsky, James E., and Elizabeth Tipton (2018), "Small sample methods for cluster-robust variance estimation and hypothesis testing in fixed effects models," *Journal of Business and Economic Statistics*, 36, 672-683. Carter, Andrew V., Kevin T. Schnepel, and Douglas G. Steigerwald (2017), Asymptotic Behavior of a t Test Robust to Cluster Heterogeneity," *Review of Economics and Statistics*, 99(4), 698–709. Lee, Chang Hyung and Douglas G. Steigerwald (2018), "Inference for Clustered Data," Stata Journal, 18(2): 447-460. ### Exact Distribution other than T Meiselman, Akiva Y. (2021), "An Exact Hypothesis Test for Samples with Few Effective Clusters," November 10, JMP UT-Austin. # Wild Cluster Bootstrap Cameron, A. Colin, Jonah G. Gelbach, and Douglas L. Miller (2008), "Bootstrap-Based Improvements for Inference with Clustered Errors," *Review of Economics and Statistics*, 90, 414-427. Roodman, David, James G. MacKinnon, Morten Ø. Nielsen, and Matthew D. Webb (2019), "Fast and Wild: Bootstrap Inference in Stata using boottest," *Stata Journal*, 19(1), 4-60. MacKinnon, James G. (2022), "Fast cluster bootstrap methods for linear regression models," *Econometrics and Statistics*, forthcoming. Webb, Matthew D. (2014), "Reworking Wild Bootstrap Based Inference for Clustered Errors," QED WP 1315. MacKinnon, James G. and Matthew D. Webb (2017b), "Wild Bootstrap Inference for Wildly Different Cluster Sizes", *Journal of Applied Econometrics*, 32, 233–254. Djogbenou, Antoine, James G. MacKinnon, and Morten Ø. Nielsen (2019), "Asymptotic theory and wild bootstrap inference with clustered errors," *Journal of Econometrics*, 212, 393-412. Canay, Ivan A., Andres Santos and Azeem M. Shaikh (2021), "The Wild Bootstrap with a Small Number of Large Clusters," *Review of Economics and Statistics*, 103, 343-363. # Few Treated Clusters MacKinnon, James G. and Matthew D. Webb (2017b), "Pitfalls when Estimating Treatment Effects with Clustered data," *The Political Methodologist*, QED WP 1387. MacKinnon, James G. and Matthew D. Webb (2017b), "The Wild Bootstrap for Few (Treated) Clusters," Econometrics Journal, 21, 114-135. Ibragimov, Rustam and Ulrich K. Müller (2010), "t-Statistic based Correlation and heterogeneity Robust inference," JBES, 28, 453-468. Ibragimov, Rustam and Ulrich K. Müller (2016), "Inference with few heterogeneous clusters", Review of Economics and Statistics, 98(1), 83-96. Conley, Timothy G. and Christopher R. Taber (2011), "Inference with 'Difference in Differences' with a Small Number of Policy Changes," *Review of Economics and Statistics*, 93(1), 113-125. Ferman, Bruno and Cristine Pinto (2019), "Inference in Differences-in-Differences with Few Treated Groups and Heteroskedasticity," *Review of Economics and Statistics*, 101, 452-467. #### Randomization Inference Young, Alwyn (2019), "Channeling fisher: Randomization tests and the statistical insignificance of seemingly significant experimental results," Quarterly Journal of Economics, 134, 557-598. MacKinnon, James G. and Matthew D. Webb (2020), "Randomization inference for difference-in-differences with few treated clusters", *Journal of Econometrics*, 218, 435-450. MacKinnon, James G. and Matthew D. Webb (2019), "Wild bootstrap randomization inference for few treated clusters," in *The Econometrics of Complex Survey Data: Theory and Applications*, eds. Kim P. Huynh, David Tomás Jacho-Chávez, and Gautam Tripathi, Vol. 39 of Advances in Econometrics, Emerald Group, 2019, 61-85. QED WP 1404. Canay, Ivan A., Joseph P. Romano, and Azeem M. Shaikh (2017), "Randomization tests under an approximate symmetry assumption," *Econometrica*, 85(3), 1013-1030. Hagemann, Andreas (2019), "Placebo inference on treatment effects when the number of clusters is small," *Journal of Econometrics*, 213, 190-209. Hagemann, Andreas (2020), "Inference with a single treated cluster," WP, https://hgmn.github.io/. Hagemann, Andreas (2021), "Permutation inference with a finite number of heterogeneous clusters," WP, https://hgmn.github.io/. # Beyond Oneway Clustering ## Multiway Clustering Cameron, A. Colin, Jonah G. Gelbach, and Douglas L. Miller. (2006, 2011), "Robust Inference with Multi-Way Clustering." NBER Technical Working Paper 0327 and Review of Economics and Statistics. 90: 414-427. Miglioretti, D. L., and P. J. Heagerty (2006), "Marginal Modeling of Nonnested Multilevel Data using Standard Software," *American Journal of Epidemiology* 165: 453-463. Thompson, Samuel (2006, 2011), "Simple Formulas for Standard Errors that Cluster by Both Firm and Time." SSRN paper. http://ssrn.com/abstract=914002 and Journal of Financial Economics 99(1): 1-10. Davezies, Laurent, Xavier D'Haultfoeuille and Yannick Guyonvarch (2021), "Empirical Process Results for Exchangeable Arrays," *Annals of Statistics*, 49, 845-862. Menzel, Konrad (2021), "Bootstrap with cluster-dependence in two or more dimensions," *Econometrica*, 89, 2143–2188. MacKinnon, James G., Morten Ø. Nielsen, and Matthew D. Webb (2021), "Wild Bootstrap and asymptotic inference with multiway clustering," *Journal of Business and Economic Statistics*, 39, 505-519. Chiang, Harold D., Kengo Kato and Yuya Sasaki (2021), "Inference for high-dimensional exchangeable arrays," *Journal of the American Statistical Association*, forthcoming. Chiang, Harold D., Bruce E. Hansen and Yuya Sasaki (2021), "Standard Errors for Two-Way Clustering with Serially Correlated Time Effects," WP available soon. Powell, David (2020), "Panel Data Inference with Dependent Clusters," April 2020, WP. Chiang, Harold D., Kengo Kato, Yukun Ma and Yuya Sasaki (2022), "Multiway Cluster Robust Double/debiased Machine Learning Inference for high-dimensional exchangeable arrays," *Journal of Business and Economic Statistics*, forthcoming. Verdier, Valentin (2020), "Estimation and Inference for Linear Models with Two-way Fixed Effects and Sparsely Matched Data", Review of Economics and Statistics, 102(1), 1-6. # Dyadic Fafchamps, Marcel, and Flore Gubert (2007), "The Formation of Risk Sharing Networks." Journal of Development Economics 83: 326-350. Cameron, A. Colin and Douglas L. Miller (2014), "Robust Inference for Dyadic Data," WP, http://cameron.econ.ucdavis.edu/research/papers.html Aranow, Peter M., Cyrus Samii and Valentina A. Assenova (2015), "Cluster–Robust Variance Estimation for Dyadic Data," *Political Analysis*, 23(4), 564-577. Tabord-Meehan, Max (2019), "Inference with dyadic data: Asymptotic behavior of the dyadic-robust t-statistic," *Journal of Business and Economic Statistics*, 37(4), 671-680. Graham, Bryan, Fengshi Niu and James L. Powell (2019), Kernel Density Estimation for undirected dyadic data," WP. ### **Spatial** Driscoll, John C. and Arrt C. Kraay (1998), "Consistent Covariance Matrix Estimation with Spatially Dependent Data," *Review of Economics and Statistics*, 549-560. Cao, Jainfei, Christian Hansen, Lucciano Villacorta and Damian Kozbur (2021), "Inference for Dependent Data with Learned Clusters," WP. ### **Estimators Other than OLS** ### Feasible GLS Brewer, Mike, Thomas F. Crossley and Robert Joyce (2017), "Inference with Difference-in-Differences Revisited," *Journal of Econometric Methods*, 7(1), 1-16. ## **Instrumental Variables** Chernozhukov, Victor, and Christian Hansen. 2008. "The Reduced Form: A Simple Approach to Inference with Weak Instruments." *Economics Letters* 100: 68-71. Olea, Carolin and Jose Luis Montiel Olea (2013), "A Robust Test for Weak Instruments," *Journal of Business and Economic Statistics*, 31, 358-369. Magnusson, Leandro (2010), "Inference in limited dependent variable models robust to weak identification," *Econometrics Journal*, 13, S56–S79. Finlay, Keith and Leandro M. Magnusson (2019), "Two applications of wild bootstrap methods to improve inference in cluster-IV models," *Journal of Applied Econometrics*, 34, 911-923. Young, Alwyn (2021), "Leverage, Heteroskedasticity and Instrumental Variables in Practical Applications," WP. ### Nonlinear Estimators Kline, Patrick, and Andres Santos. 2012. "A Score Based Approach to Wild Bootstrap Inference." *Journal of Econometric Methods*:1(1): 23-41. ### $\mathbf{G}\mathbf{M}\mathbf{M}$ Hansen, Bruce, and Seojeong Lee (2019), "Asymptotic Theory for Clustered Samples," *Journal of Econometrics*, 210, 268-290. Hansen, Bruce, and Seojeong Lee (2021), "Inference for Iterated GMM under Misspecification," *Econometrica*, 89(3), 1419-1447. Hansen, Bruce, and Seojeong Lee (2020), "Inference for GMM under Misspecification and Clustering," WP. Hwang, Jungbin (2019), "Simple and Trustworthy Cluster-Robust GMM Inference," *Journal of Econometrics*, 222(2), 923-1023. # Quantile Parente, Paulo M.D.C. and João M.C. Santos Silva (2016), "Quantile regression with clustered data," *Journal of Econometric Methods*, 5(1), 1-15. Yoon, Jungmo and Galvao, Antonio F. (2020), "Cluster robust covariance matrix estimation in panel quantile regression with individual fixed effects," *Quantitative Economics*, 11(2), 579-608. Hagemann, Andreas (2017), "Cluster-robust bootstrap inference in quantile regression models", Journal of the American Statistical Association, 112(517), 446-456.