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Abstract

In this paper we survey methods to control for regression model error that is cor-
related within groups or clusters, but is uncorrelated across groups or clusters. Then
failure to control for the clustering can lead to understatement of standard errors and
overstatement of statistical signi�cance, as emphasized most notably in empirical stud-
ies by Moulton (1990) and Bertrand, Du
o and Mullainathan (2004). We emphasize
OLS estimation with statistical inference based on minimal assumptions regarding the
error correlation process. Complications we consider include cluster-speci�c �xed ef-
fects, few clusters, multi-way clustering, more e�cient feasible GLS estimation, and
adaptation to nonlinear and instrumental variables estimators.
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1 Introduction

In this survey we consider regression analysis when observations are grouped in clusters, with

independence across clusters but correlation within clusters. We consider this in settings

where estimators retain their consistency, but statistical inference based on the usual cross-

section assumption of independent observations is no longer appropriate.

Statistical inference must control for clustering, as failure to do so can lead to massively

under-estimated standard errors and consequent over-rejection using standard hypothesis

tests. Moulton (1986, 1990) demonstrated that this problem arises in a much wider range

of settings than had been appreciated by microeconometricians. More recently Bertrand,

Du
o and Mullainathan (2004) and K�ezdi (2004) emphasized that with state-year panel or

repeated cross-section data, clustering can be present even after including state and year

e�ects and valid inference requires controlling for clustering within state. Wooldridge (2003,

2006) provides surveys.

A common solution is to use \cluster-robust" standard errors that rely on weak assump-

tions { errors are independent but not identically distributed across clusters and can have

quite general patterns of within-cluster correlation and heteroskedasticity { provided the

number of clusters is large. This correction generalizes that of White (1980) for indepen-

dent heteroskedastic errors. Additionally, more e�cient estimation may be possible using

alternative estimators, such as feasible GLS, that explicitly model the error correlation.

The loss of estimator precision due to clustering is presented in section 2, while cluster-

robust inference is presented in section 3. The complications of inference given only a few

clusters, and inference when there is clustering in more than one direction, are considered in

sections 4 and 5. Section 6 presents more e�cient feasible GLS estimation when structure

is placed on the within-cluster error correlation. In section 7 we consider adaptation to

nonlinear and instrumental variables estimators. An empirical example in section 8 illustrates

many of the methods discussed in this survey.

2 Clustering and its consequences

Clustering leads to less e�cient estimation than if data are independent, and default OLS

standard errors need to be adjusted.

2.1 Clustered errors

The linear model with (one-way) clustering is

yig = x
0
ig� + uig; (1)

where i denotes the ith of N individuals in the sample, g denotes the gth of G clusters,

E[uigjxig] = 0, and error independence across clusters is assumed so that for i 6= j

E[uigujg0jxig;xjg0 ] = 0, unless g = g0: (2)
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Errors for individuals belonging to the same group may be correlated, with quite general het-

eroskedasticity and correlation. Grouping observations by cluster the model can be written

as yg = Xg� + ug, where yg and ug are Ng � 1 vectors, Xg is an Ng �K matrix, and there

are Ng observations in cluster g. Further stacking over clusters yields y = X� + u, where y

and u are N � 1 vectors, X is an N �K matrix, and N =
P

gNg. The OLS estimator isb� = (X0X)�1X0y. Given error independence across clusters, this estimator has asymptotic

variance matrix

V[b�] = (E[X0X])
�1

 
GX
g=1

E[X0
gugu

0
gXg]

!
(E[X0X])

�1
; (3)

rather than the default OLS variance �2u (E[X
0X])�1, where �2u = V[uig].

2.2 Equicorrelated errors

One way that within-cluster correlation can arise is in the random e�ects model where the

error uig = �g + "ig, where �g is a cluster-speci�c error or common shock that is i.i.d.

(0; �2�), and "ig is an idiosyncratic error that is i.i.d. (0; �
2
"). Then Var[uig] = �2� + �

2
"

and Cov[uig; ujg] = �2� for i 6= j. It follows that the intraclass correlation of the error

�u = Cor[uig; ujg] = �
2
�=(�

2
� + �

2
"). The correlation is constant across all pairs of errors in

a given cluster. This correlation pattern is suitable when observations can be viewed as

exchangeable, with ordering not mattering. Leading examples are individuals or households

within a village or other geographic unit (such as state), individuals within a household, and

students within a school.

If the primary source of clustering is due to such equicorrelated group-level common

shocks, a useful approximation is that for the jth regressor the default OLS variance estimate

based on s2 (X0X)�1, where s is the standard error of the regression, should be in
ated by

� j ' 1 + �xj�u( �Ng � 1); (4)

where �xj is a measure of the within-cluster correlation of xj, �u is the within-cluster error

correlation, and �Ng is the average cluster size. This result for equicorrelated errors is exact

if clusters are of equal size; see Kloek (1981) for the special case �xj = 1, and Scott and

Holt (1982) and Greenwald (1983) for the general result. The e�ciency loss, relative to

independent observations, is increasing in the within-cluster correlation of both the error

and the regressor and in the number of observations in each cluster.

To understand the loss of estimator precision given clustering, consider the sample mean

when observations are correlated. In this case the entire sample is viewed as a single cluster.

Then

V[�y] = N�2
nXN

i=1
V[ui] +

X
i

X
j 6=i
Cov[ui; uj]

o
: (5)

Given equicorrelated errors with Cov[yig; yjg] = ��
2 for i 6= j, V[�y] = N�2fN�2 + N(N �

1)��2g = N�1�2f1 + �(N � 1)g compared to N�1�2 in the i.i.d. case. At the extreme

V[�y] = �2 as �! 1 and there is no bene�t at all to increasing the sample size beyond N = 1.
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Similar results are obtained when we generalize to several clusters of equal size (balanced

clusters) with regressors that are invariant within cluster, so yig = x
0
g�+uig where i denotes

the ith of N individuals in the sample and g denotes the gth of G clusters, and there are

N� = N=G observations in each cluster. Then OLS estimation of yig on xg is equivalent to

OLS estimation in the model �yg = x
0
g�+ �ug, where �yg and �ug are the within-cluster averages

of the dependent variable and error. If �ug is independent and homoskedastic with variance

�2�ug then V[
b�] = �2�ug �PG

g=1 xgx
0
g

��1
, where the formula for �2�ug varies with the within-cluster

correlation of uig. For equicorrelated errors �
2
�ug = N

�1
� [1+�u(N��1)]�2u compared to N�1

� �
2
u

with independent errors, so the true variance of the OLS estimator is (1+ �u(N�� 1)) times
the default, as given in (4) with �xj = 1.

In an in
uential paper Moulton (1990) pointed out that in many settings the adjustment

factor � j can be large even if �u is small. He considered a log earnings regression using

March CPS data (N = 18; 946), regressors aggregated at the state level (G = 49), and

errors correlated within state (b�u = 0:032). The average group size was 18; 946=49 = 387,
�xj = 1 for a state-level regressor, so � j ' 1 + 1� 0:032� 386 = 13:3. The weak correlation
of errors within state was still enough to lead to cluster-corrected standard errors beingp
13:3 = 3:7 times larger than the (incorrect) default standard errors, and in this example

many researchers would not appreciate the need to make this correction.

2.3 Panel Data

A second way that clustering can arise is in panel data. We assume that observations are

independent across individuals in the panel, but the observations for any given individual

are correlated over time. Then each individual is viewed as a cluster. The usual notation

is to denote the data as yit where i denotes the individual and t the time period. But in

our framework (1) the data are denoted yig where i is the within-cluster subscript (for panel

data the time period) and g is the cluster unit (for panel data the individual).

The assumption of equicorrelated errors is unlikely to be suitable for panel data. Instead

we expect that the within-cluster (individual) correlation decreases as the time separation

increases.

For example, we might consider an AR(1) model with uit = �ui;t�1+"it, where 0 < � < 1

and "it is i.i.d. (0; �
2
"). In terms of the notation in (1), uig = �ui�1;g + "ig. Then the

within-cluster error correlation Cor[uig; ujg] = �
ji�jj, and the consequences of clustering are

less extreme than in the case of equicorrelated errors.

To see this, consider the variance of the sample mean �y when Cov[yi; yj] = �ji�jj�2.

Then (5) yields V[�y] = N�1[1 + 2N�1PN�1
s=1 s�

s]�2u. For example, if � = 0:5 and N =

10, then V[�y] = 0:260�2 compared to 0:55�2 for equicorrelation, using V[�y] = N�1�2f1 +
�(N � 1)g, and 0:1�2 when there is no correlation (� = 0:0). More generally with several

clusters of equal size and regressors invariant within cluster, OLS estimation of yig on xg is

equivalent to OLS estimation of �yg on xg, see section 2.2, and with an AR(1) error V[b�] =
5



N�1
� [1+2N�

PN��1
s=1 s�s]�2u

�P
g xgx

0
g

��1
, less than N�1

� [1+�u(N��1)]�2u
�P

g xgx
0
g

��1
with

an equicorrelated error.

For panel data in practice, while within-cluster correlations for errors are not constant,

they do not dampen as quickly as those for an AR(1) model. The variance in
ation formula

(4) can still provide a reasonable guide in panels that are short and have high within-cluster

serial correlations of the regressor and of the error.

3 Cluster-robust inference for OLS

The most common approach in applied econometrics is to continue with OLS, and then

obtain correct standard errors that correct for within-cluster correlation.

3.1 Cluster-robust inference

Cluster-robust estimates for the variance matrix of an estimate are sandwich estimates that

are cluster adaptations of methods proposed originally for independent observations byWhite

(1980) for OLS with heteroskedastic errors, and by Huber (1967) and White (1982) for the

maximum likelihood estimator.

The cluster-robust estimate of the variance matrix of the OLS estimator, de�ned in (3),

is the sandwich estimate bV[b�] = (X0X)�1bB(X0X)�1; (6)

where bB = �XG

g=1
X0
gbugbu0gXg

�
; (7)

and bug = yg�Xg
b�. This provides a consistent estimate of the variance matrix ifG�1PG

g=1X
0
gbugbu0gXg�

G�1
PG

g=1E[X
0
gugu

0
gXg]

p! 0 as G!1.
The estimate of White (1980) for independent heteroskedastic errors is the special case

of (7) where each cluster has only one observation (so G = N and Ng = 1 for all g). It relies

on the same intuition that G�1
PG

g=1E[X
0
gugu

0
gXg] is a �nite-dimensional (K � K) matrix

of averages that can be be consistently estimated as G!1.
White (1984, p.134-142) presented formal theorems that justify use of (7) for OLS with a

multivariate dependent variable, a result directly applicable to balanced clusters. Liang and

Zeger (1986) proposed this method for estimation for a range of models much wider than

OLS; see sections 6 and 7 of their paper for a range of extensions to (7). Arellano (1987)

considered the �xed e�ects estimator in linear panel models, and Rogers (1993) popularized

this method in applied econometrics by incorporating it in Stata. Note that (7) does not

require speci�cation of a model for E[ugu
0
g].

Finite-sample modi�cations of (7) are typically used, since without modi�cation the

cluster-robust standard errors are biased downwards. Stata uses
p
cbug in (7) rather than bug,
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with

c =
G

G� 1
N � 1
N �K ' G

G� 1 : (8)

Some other packages such as SAS use c = G=(G � 1). This simpler correction is also used
by Stata for extensions to nonlinear models. Cameron, Gelbach, and Miller (2008) review

various �nite-sample corrections that have been proposed in the literature, for both standard

errors and for inference using resultant Wald statistics; see also section 6.

The rank of bV[b�] in (7) can be shown to be at most G, so at most G restrictions on the
parameters can be tested if cluster-robust standard errors are used. In particular, in models

with cluster-speci�c e�ects it may not be possible to perform a test of overall signi�cance of

the regression, even though it is possible to perform tests on smaller subsets of the regressors.

3.2 Specifying the clusters

It is not always obvious how to de�ne the clusters.

As already noted in section 2.2, Moulton (1986, 1990) pointed out for statistical inference

on an aggregate-level regressor it may be necessary to cluster at that level. For example, with

individual cross-sectional data and a regressor de�ned at the state level one should cluster at

the state level if regression model errors are even very mildly correlated at the state level. In

other cases the key regressor may be correlated within group, though not perfectly so, such

as individuals within household. Other reasons for clustering include discrete regressors and

a clustered sample design.

In some applications there can be nested levels of clustering. For example, for a household-

based survey there may be error correlation for individuals within the same household, and

for individuals in the same state. In that case cluster-robust standard errors are computed

at the most aggregated level of clustering, in this example at the state level. Pepper (2002)

provides a detailed example.

Bertrand, Du
o and Mullainathan (2004) noted that with panel data or repeated cross-

section data, and regressors clustered at the state level, many researchers either failed to

account for clustering or mistakenly clustered at the state-year level rather than the state

level. Let yist denote the value of the dependent variable for the i
th individual in the sth

state in the tth year, and let xst denote a state-level policy variable that in practice will be

quite highly correlated over time in a given state. The authors considered the di�erence-in-

di�erences (DiD) model yist = 
s+ �t+�xst+z
0
ist
+uit, though their result is relevant even

for OLS regression of yist on xst alone. The same point applies if data were more simply

observed at only the state-year level (i.e. yst rather than yist).

In general DiD models using state-year data will have high within-cluster correlation of

the key policy regressor. Furthermore there may be relatively few clusters; a complication

considered in section 4.
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3.3 Cluster-speci�c �xed e�ects

A standard estimation method for clustered data is to additionally incorporate cluster-

speci�c �xed e�ects as regressors, estimating the model

yig = �g + x
0
ig� + uig: (9)

This is similar to the equicorrelated error model, except that �g is treated as a (nuisance)

parameter to be estimated. Given Ng �nite and G ! 1 the parameters �g, g = 1; :::; G;

cannot be consistently estimated. The parameters � can still be consistently estimated, with

the important caveat that the coe�cients of cluster-invariant regressors (xg rather than xig)

are not identi�ed. (In microeconometrics applications, �xed e�ects are typically included to

enable consistent estimation of a cluster-varying regressor while controlling for a limited form

of endogeneity { the regressor xig may be correlated with the cluster-invariant component

�g of the error term �g + uig).

Initial applications obtained default standard errors that assume uig in (9) is i.i.d. (0; �
2
u),

assuming that cluster-speci�c �xed e�ects are su�cient to mop up any within-cluster error

correlation. More recently it has become more common to control for possible within-cluster

correlation of uig by using (7), as suggested by Arellano (1987). K�ezdi (2004) demonstrated

that cluster-robust estimates can perform well in typical-sized panels, despite the need to

�rst estimate the �xed e�ects, even when Ng is large relative to G.

It is well-known that there are several alternative ways to obtain the OLS estimator of

� in (9). Less well-known is that these di�erent ways can lead to di�erent cluster-robust

estimates of V[b�]. We thank Arindrajit Dube and Jason Lindo for bringing this issue to our
attention.

The two main estimation methods we consider are the least squares dummy variables

(LSDV) estimator, which obtains the OLS estimator from regression of yig on xig and a set

of dummy variables for each cluster, and the mean-di�erenced estimator, which is the OLS

estimator from regression of (yig � �yg) on (xig � �xg).
These two methods lead to the same cluster-robust standard errors if we apply formula

(7) to the respective regressions, or if we multiply this estimate by G=(G � 1). Di�erences
arise, however, if we multiply by the small-sample correction c given in (8). Let K denote the

number of regressors including the intercept. Then the LSDV model views the total set of

regressors to be G cluster dummies and (K�1) other regressors, while the mean-di�erenced
model considers there to be only (K � 1) regressors (this model is estimated without an
intercept). Then

Model Finite sample adjustment Balanced case
LSDV c = G

G�1
N�1

N�G�(k�1) c ' G
G�1 �

N�
N��1

Mean-di�erenced model c = G
G�1

N�1
N�(k�1) c ' G

G�1 :

In the balanced case N = N�G, leading to the approximation given above if additionally K

is small relative to N .

8



The di�erence can be very large for small N�. Thus if N� = 2 (or N� = 3) then the

cluster-robust variance matrix obtained using LSDV is essentially 2 times (or 3=2 times)

that obtained from estimating the mean-di�erenced model, and it is the mean-di�erenced

model that gives the correct �nite-sample correction.

Note that if instead the error uig is assumed to be i.i.d. (0; �
2
u), so that default standard

errors are used, then it is well-known that the appropriate small-sample correction is (N �
1)=N �G� (K� 1), i.e. we use s2(X0X)�1 where s2 = (N �G� (K� 1))�1

P
ig bu2ig. In that

case LSDV does give the correct adjustment, and estimation of the mean-di�erenced model

will give the wrong �nite-sample correction.

An alternative variance estimator after estimation of (9) is a heteroskedastic-robust esti-

mator, which permits the error uig in (9) to be heteroskedastic but uncorrelated across both

i and g. Stock and Watson (2008) show that applying the method of White (1980) after

mean-di�erenced estimation of (9) leads, surprisingly, to inconsistent estimates of V[b�] if
the number of observations Ng in each cluster is small (though it is correct if Ng = 2). The

bias comes from estimating the cluster-speci�c means rather than being able to use the true

cluster-means. They derive a bias-corrected formula for heteroskedastic-robust standard er-

rors. Alternatively, and more simply, the cluster-robust estimator gives a consistent estimate

of V[b�] even if the errors are only heteroskedastic, though this estimator is more variable
than the bias-corrected estimator proposed by Stock and Watson.

3.4 Many observations per cluster

The preceding analysis assumes the number of observations within each cluster is �xed, while

the number of clusters goes to in�nity.

This assumption may not be appropriate for clustering in long panels, where the number

of time periods goes to in�nity. Hansen (2007a) derived asymptotic results for the standard

one-way cluster-robust variance matrix estimator for panel data under various assumptions.

We consider a balanced panel of N individuals over T periods, so there are NT observations

in N clusters with T observations per cluster. When N !1 with T �xed (a short panel),

as we have assumed above, the rate of convergence for the OLS estimator b� is pN . When
both N ! 1 and T ! 1 (a long panel with N� ! 1), the rate of convergence of b� isp
N if there is no mixing (his Theorem 2) and

p
NT if there is mixing (his Theorem 3). By

mixing we mean that the correlation becomes damped as observations become further apart

in time.

As illustrated in section 2.3, if the within-cluster error correlation of the error diminishes

as errors are further apart in time, then the data has greater informational content. This

is re
ected in the rate of convergence increasing from
p
N (determined by the number of

cross-sections) to
p
NT (determined by the total size of the panel). The latter rate is the

rate we expect if errors were independent within cluster.

While the rates of convergence di�er in the two cases, Hansen (2007a) obtains the same

asymptotic variance for the OLS estimator, so (7) remains valid.
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3.5 Survey design with clustering and strati�cation

Clustering routinely arises in complex survey data. Rather than randomly draw individuals

from the population, the survey may be restricted to a randomly-selected subset of pri-

mary sampling units (such as a geographic area) followed by selection of people within that

geographic area. A common approach in microeconometrics is to control for the resultant

clustering by computing cluster-robust standard errors that control for clustering at the level

of the primary sampling unit, or at a more aggregated level such as state.

The survey methods literature uses methods to control for clustering that predate the

references in this paper. The loss of estimator precision due to clustering is called the design

e�ect: \The design e�ect or De� is the ratio of the actual variance of a sample to the variance

of a simple random sample of the same number of elements" (Kish (1965), p.258)). Kish

and Frankel (1974) give the variance in
ation formula (4) assuming equicorrelated errors in

the non-regression case of estimation of the mean. Pfe�ermann and Nathan (1981) consider

the more general regression case.

The survey methods literature additionally controls for another feature of survey data {

strati�cation. More precise statistical inference is possible after strati�cation. For the linear

regression model, survey methods that do so are well-established and are incorporated in

specialized software as well as in some broad-based packages such as Stata.

Bhattacharya (2005) provides a comprehensive treatment in a GMM framework. He

�nds that accounting for strati�cation tends to reduce estimated standard errors, and that

this e�ect can be meaningfully large. In his empirical examples, the strati�cation e�ect is

largest when estimating (unconditional) means and Lorenz shares, and much smaller when

estimating conditional means via regression.

The current common approach of microeconometrics studies is to ignore the (bene�cial)

e�ects of strati�cation. In so doing there will be some over-estimation of estimator standard

errors.

4 Inference with few clusters

Cluster-robust inference asymptotics are based on G ! 1. Often, however, cluster-robust
inference is desired but there are only a few clusters. For example, clustering may be at the

regional level but there are few regions (e.g. Canada has only ten provinces). Then several

di�erent �nite-sample adjustments have been proposed.

4.1 Finite-sample adjusted standard errors

Finite-sample adjustments replace bug in (7) with a modi�ed residual eug. The simplest iseug =pG=(G� 1)bug, or the modi�cation of this given in (8). Kauermann and Carroll (2001)
and Bell and McCa�rey (2002) use eu�g = [INg�Hgg]

�1=2bug, whereHgg = Xg(X
0X)�1X0

g. This

transformed residual leads to E[bV[b�]] = V[b�] in the special case that 
g = E[ugu0g] = �2I.
10



Bell and McCa�rey (2002) also consider use of eu+g = pG=(G� 1)[INg � Hgg]
�1bug, which

can shown to equal the (clustered) jackknife estimate of the variance of the OLS estimator.

These adjustments are analogs of the HC2 and HC3 measures of MacKinnon and White

(1985) proposed for heteroskedastic-robust standard errors in the nonclustered case.

Angrist and Lavy (2002) found that using eu+g rather than eug increased cluster-robust
standard errors by 10� 50 percent in an application with G = 30 to 40.
Kauermann and Carroll (2001), Bell and McCa�rey (2002), Mancl and DeRouen (2001),

and McCa�rey, Bell and Botts (2001) also consider the case where 
g 6= �2I is of known

functional form, and present extension to generalized linear models.

4.2 Finite-sample Wald tests

For a two-sided test of H0 : �j = �
0
j against Ha : �j 6= �0j , where �j is a scalar component of

�, the standard procedure is to use Wald test statistic w =
�b�j � �0j� =sb�j , where sb�j is the

square root of the appropriate diagonal entry in bV[b�]. This \t" test statistic is asymptotically
normal under H0 as G!1, and we reject H0 at signi�cance level 0:05 if jwj > 1:960.
With few clusters, however, the asymptotic normal distribution can provide a poor ap-

proximation, even if an unbiased variance matrix estimator is used in calculating sb�j . The
situation is a little unusual. In a pure time series or pure cross-section setting with few

observations, say N = 10, �j is likely to be very imprecisely estimated so that statistical in-

ference is not worth pursuing. By contrast, in a clustered setting we may have N su�ciently

large that �j is reasonably precisely estimated, but G is so small that the asymptotic normal

approximation is a very poor one.

We present two possible approaches: basing inference on the T distribution with degrees of

freedom determined by the cluster, and using a cluster bootstrap with asymptotic re�nement.

Note that feasible GLS based on a correctly speci�ed model of the clustering, see section 6,

will not su�er from this problem.

4.3 T-distribution for inference

The simplest small-sample correction for the Wald statistic is to use a T distribution, rather

than the standard normal. As we outline below in some cases the TG�L distribution might be

used, where L is the number of regressors that are invariant within cluster. Some packages

for some commands do use the T distribution. For example, Stata uses G � 1 degrees of
freedom for t-tests and F�tests based on cluster-robust standard errors.
Such adjustments can make quite a di�erence. For example with G = 10 for a two-sided

test at level 0:05 the critical value for T9 is 2:262 rather than 1:960, and if w = 1:960 the

p-value based on T9 is 0:082 rather than 0:05. In Monte Carlo simulations by Cameron,

Gelbach, and Miller (2008) this technique works reasonably well. At the minimum one

should use the T distribution with G� 1 degrees of freedom, say, rather than the standard
normal.
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Donald and Lang (2007) provide a rationale for using the TG�L distribution. If clusters

are balanced and all regressors are invariant within cluster then the OLS estimator in the

model yig = x
0
g�+ uig is equivalent to OLS estimation in the grouped model �yg = x

0
g�+ �ug.

If �ug is i.i.d. normally distributed then the Wald statistic is TG�L distributed, where bV[b�] =
s2(X 0X)�1 and s2 = (G�K)�1

P
g
b�ug2. Note that �ug is i.i.d. normal in the random e�ects

model if the error components are i.i.d. normal.

Donald and Lang (2007) extend this approach to additionally include regressors zig that

vary within clusters, and allow for unbalanced clusters. They assume a random e�ects model

with normal i.i.d. errors. Then feasible GLS estimation of � in the model

yig = x
0
g� + z

0
ig
 + �s + "is; (10)

is equivalent to the following two-step procedure. First do OLS estimation in the model

yig = �g + z
0
ig
 + "ig, where �g is treated as a cluster-speci�c �xed e�ect. Then do FGLS of

�yg � �z0gb
 on xg. Donald and Lang (2007) give various conditions under which the resulting
Wald statistic based on b�j is TG�L distributed. These conditions require that if zig is a
regressor then �zg in the limit is constant over g, unless Ng !1. Usually L = 2, as the only
regressors that do not vary within clusters are an intercept and a scalar regressor xg.

Wooldridge (2006) presents an expansive exposition of the Donald and Lang approach.

Additionally, Wooldridge proposes an alternative approach based on minimum distance es-

timation. He assumes that �g in yig = �g+ z
0
ig
+ "ig can be adequately explained by xg and

at the second step uses minimum chi-square methods to estimate � in b�g = � + x0g�. This
provides estimates of � that are asymptotically normal as Ng ! 1 (rather than G ! 1).
Wooldridge argues that this leads to less conservative statistical inference. The �2 statistic

from the minimum distance method can be used as a test of the assumption that the �g do

not depend in part on cluster-speci�c random e�ects. If this test fails, the researcher can

then use the Donald and Lang approach, and use a T distribution for inference.

An alternate approach for correct inference with few clusters is presented by Ibragimov

and Muller (2010). Their method is best suited for settings where model identi�cation,

and central limit theorems, can be applied separately to observations in each cluster. They

propose separate estimation of the key parameter within each group. Each group's estimate

is then a draw from a normal distribution with mean around the truth, though perhaps

with separate variance for each group. The separate estimates are averaged, divided by

the sample standard deviation of these estimates, and the test statistic is compared against

critical values from a T distribution. This approach has the strength of o�ering correct

inference even with few clusters. A limitation is that it requires identi�cation using only

within-group variation, so that the group estimates are independent of one another. For

example, if state-year data yst are used and the state is the cluster unit, then the regressors

cannot use any regressor zt such as a time dummy that varies over time but not states.

12



4.4 Cluster bootstrap with asymptotic re�nement

A cluster bootstrap with asymptotic re�nement can lead to improved �nite-sample inference.

For inference based on G ! 1, a two-sided Wald test of nominal size � can be shown
to have true size � + O(G�1) when the usual asymptotic normal approximation is used.

If instead an appropriate bootstrap with asymptotic re�nement is used, the true size is

� + O(G�3=2). This is closer to the desired � for large G, and hopefully also for small G.

For a one-sided test or a nonsymmetric two-sided test the rates are instead, respectively,

�+O(G�1=2) and �+O(G�1).

Such asymptotic re�nement can be achieved by bootstrapping a statistic that is asymp-

totically pivotal, meaning the asymptotic distribution does not depend on any unknown

parameters. For this reason the Wald t-statistic w is bootstrapped, rather than the es-

timator b�j whose distribution depends on V[b�j] which needs to be estimated. The pairs
cluster bootstrap procedure does B iterations where at the bth iteration: (1) form G clusters

f(y�1;X�
1); :::; (y

�
G;X

�
G)g by resampling with replacement G times from the original sample

of clusters; (2) do OLS estimation with this resample and calculate the Wald test statistic

w�b = (
b��j;b � b�j)=sb��j;b where sb��j;b is the cluster-robust standard error of b��j;b, and b�j is the

OLS estimate of �j from the original sample. Then reject H0 at level � if and only if the

original sample Wald statistic w is such that w < w�[�=2] or w > w
�
[1��=2] where w

�
[q] denotes

the qth quantile of w�1; :::; w
�
B.

Cameron, Gelbach, and Miller (2008) provide an extensive discussion of this and related

bootstraps. If there are regressors which contain few values (such as dummy variables),

and if there are few clusters, then it is better to use an alternative design-based bootstrap

that additionally conditions on the regressors, such as a cluster Wild bootstrap. Even then

bootstrap methods, unlike the method of Donald and Lang, will not be appropriate when

there are very few groups, such as G = 2.

4.5 Few treated groups

Even when G is su�ciently large, problems arise if most of the variation in the regressor

is concentrated in just a few clusters. This occurs if the key regressor is a cluster-speci�c

binary treatment dummy and there are few treated groups.

Conley and Taber (2010) examine a di�erences-in-di�erences (DiD) model in which there

are few treated groups and an increasing number of control groups. If there are group-time

random e�ects, then the DiD model is inconsistent because the treated groups random e�ects

are not averaged away. If the random e�ects are normally distributed, then the model of

Donald and Lang (2007) applies and inference can use a T distribution based on the number

of treated groups. If the group-time shocks are not random, then the T distribution may be

a poor approximation. Conley and Taber (2010) then propose a novel method that uses the

distribution of the untreated groups to perform inference on the treatment parameter.
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5 Multi-way clustering

Regression model errors can be clustered in more than way. For example, they might be

correlated across time within a state, and across states within a time period. When the

groups are nested (for example, households within states), one clusters on the more aggregate

group; see section 3.2. But when they are non-nested, traditional cluster inference can only

deal with one of the dimensions.

In some applications it is possible to include su�cient regressors to eliminate error cor-

relation in all but one dimension, and then do cluster-robust inference for that remaining

dimension. A leading example is that in a state-year panel of individuals (with dependent

variable yist) there may be clustering both within years and within states. If the within-year

clustering is due to shocks that are the same across all individuals in a given year, then in-

cluding year �xed e�ects as regressors will absorb within-year clustering and inference then

need only control for clustering on state.

When this is not possible, the one-way cluster robust variance can be extended to multi-

way clustering.

5.1 Multi-way cluster-robust inference

The cluster-robust estimate of V[b�] de�ned in (6)-(7) can be generalized to clustering in mul-
tiple dimensions. Regular one-way clustering is based on the assumption that E[uiujjxi;xj] =
0, unless observations i and j are in the same cluster. Then (7) sets bB =PN

i=1

PN
j=1 xix

0
jbuibuj1[i; j

in same cluster], where bui = yi� x0ib� and the indicator function 1[A] equals 1 if event A oc-
curs and 0 otherwise. In multi-way clustering, the key assumption is that E[uiujjxi;xj] = 0,
unless observations i and j share any cluster dimension. Then the multi-way cluster robust

estimate of V[b�] replaces (7) with bB =PN
i=1

PN
j=1 xix

0
jbuibuj1[i; j share any cluster]:

For two-way clustering this robust variance estimator is easy to implement given software

that computes the usual one-way cluster-robust estimate. We obtain three di�erent cluster-

robust \variance" matrices for the estimator by one-way clustering in, respectively, the �rst

dimension, the second dimension, and by the intersection of the �rst and second dimensions.

Then add the �rst two variance matrices and, to account for double-counting, subtract the

third. Thus bVtwo-way[b�] = bV1[b�] + bV2[b�]� bV1\2[b�]; (11)

where the three component variance estimates are computed using (6)-(7) for the three

di�erent ways of clustering. Similar methods for additional dimensions, such as three-way

clustering, are detailed in Cameron, Gelbach, and Miller (2010).

This method relies on asymptotics that are in the number of clusters of the dimension

with the fewest number. This method is thus most appropriate when each dimension has

many clusters. Theory for two-way cluster robust estimates of the variance matrix is pre-

sented in Cameron, Gelbach, and Miller (2006, 2010), Miglioretti and Heagerty (2006), and
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Thompson (2006). Early empirical applications that independently proposed this method

include Acemoglu and Pischke (2003), and Fafchamps and Gubert (2007).

5.2 Spatial correlation

The multi-way robust clustering estimator is closely related to the �eld of time-series and

spatial heteroskedasticity and autocorrelation variance estimation.

In general bB in (7) has the form
P

i

P
j w (i; j)xix

0
jbuibuj. For multi-way clustering the

weight w (i; j) = 1 for observations who share a cluster, and w (i; j) = 0 otherwise. In

White and Domowitz (1984), the weight w (i; j) = 1 for observations \close" in time to one

another, and w (i; j) = 0 for other observations. Conley (1999) considers the case where

observations have spatial locations, and has weights w (i; j) decaying to 0 as the distance

between observations grows.

A distinguishing feature between these papers and multi-way clustering is that White and

Domowitz (1984) and Conley (1999) use mixing conditions (to ensure decay of dependence) as

observations grow apart in time or distance. These conditions are not applicable to clustering

due to common shocks. Instead the multi-way robust estimator relies on independence of

observations that do not share any clusters in common.

There are several variations to the cluster-robust and spatial or time-series HAC estima-

tors, some of which can be thought of as hybrids of these concepts.

The spatial estimator of Driscoll and Kraay (1998) treats each time period as a cluster,

additionally allows observations in di�erent time periods to be correlated for a �nite time

di�erence, and assumes T ! 1. The Driscoll-Kraay estimator can be thought of as us-
ing weight w (i; j) = 1 � D (i; j) =(Dmax + 1), where D (i; j) is the time distance between

observations i and j, and Dmax is the maximum time separation allowed to have correlation.

An estimator proposed by Thompson (2006) allows for across-cluster (in his example

�rm) correlation for observations close in time in addition to within-cluster correlation at

any time separation. The Thompson estimator can be thought of as using w (i; j) = 1[i; j

share a �rm, or D (i; j) � Dmax]. It seems that other variations are likely possible.

Foote (2007) contrasts the two-way cluster-robust and these other variance matrix es-

timators in the context of a macroeconomics example. Petersen (2009) contrasts various

methods for panel data on �nancial �rms, where there is concern about both within �rm

correlation (over time) and across �rm correlation due to common shocks.

6 Feasible GLS

When clustering is present and a correct model for the error correlation is speci�ed, the

feasible GLS estimator is more e�cient than OLS. Furthermore, in many situations one

can obtain a cluster-robust version of the standard errors for the FGLS estimator, to guard

against misspeci�cation of model for the error correlation. Many applied studies nonetheless

use the OLS estimator, despite the potential expense of e�ciency loss in estimation.
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6.1 FGLS and cluster-robust inference

Suppose we specify a model for 
g = E[ugu
0
gjXg], such as within-cluster equicorrelation.

Then the GLS estimator is (X0
�1X)
�1
X0
�1y, where 
 = Diag[
g]. Given a consistent

estimate b
 of 
, the feasible GLS estimator of � is

b�FGLS = �XG

g=1
X0
g
b
�1
g Xg

��1XG

g=1
X0
g
b
�1
g yg: (12)

The default estimate of the variance matrix of the FGLS estimator,
�
X0 b
�1X��1, is correct

under the restrictive assumption that E[ugu
0
gjXg] = 
g.

The cluster-robust estimate of the asymptotic variance matrix of the FGLS estimator is

bV[b�FGLS] = �X0 b
�1X
��1 �XG

g=1
X0
g
b
�1
g bugbu0g b
�1g Xg

��
X0 b
�1X

��1
; (13)

where bug = yg�Xg
b�FGLS. This estimator requires that ug and uh are uncorrelated, for g 6= h,

but permits E[ugu
0
gjXg] 6= 
g. In that case the FGLS estimator is no longer guaranteed to

be more e�cient than the OLS estimator, but it would be a poor choice of model for 
g

that led to FGLS being less e�cient.

Not all econometrics packages compute this cluster-robust estimate. In that case one

can use a pairs cluster bootstrap (without asymptotic re�nement). Speci�cally B times

form G clusters f(y�1;X�
1); :::; (y

�
G;X

�
G)g by resampling with replacement G times from the

original sample of clusters, each time compute the FGLS estimator, and then compute the

variance of the B FGLS estimates b�1; :::; b�B as bVboot[b�] = (B�1)�1PB
b=1(

b�b� b�)(b�b� b�)0.
Care is needed, however, if the model includes cluster-speci�c �xed e�ects; see, for example,

Cameron and Trivedi (2009, p.421).

6.2 E�ciency gains of feasible GLS

Given a correct model for the within-cluster correlation of the error, such as equicorrelation,

the feasible GLS estimator is more e�cient than OLS. The e�ciency gains of FGLS need

not necessarily be great. For example, if the within-cluster correlation of all regressors is

unity (so xig = xg) and �ug de�ned in section 2.3 is homoskedastic, then FGLS is equivalent

to OLS so there is no gain to FGLS.

For equicorrelated errors and general X, Scott and Holt (1982) provide an upper bound

to the maximum proportionate e�ciency loss of OLS compared to the variance of the FGLS

estimator of 1=
h
1 + 4(1��u)[1+(Nmax�1)�u

(Nmax��u)2

i
; Nmax = maxfN1; :::; NGg. This upper bound is

increasing in the error correlation �u and the maximum cluster size Nmax. For low �u the

maximal e�ciency gain for can be low. For example, Scott and Holt (1982) note that for

�u = :05 and Nmax = 20 there is at most a 12% e�ciency loss of OLS compared to FGLS.

But for �u = 0:2 and Nmax = 50 the e�ciency loss could be as much as 74%, though this

depends on the nature of X.
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6.3 Random e�ects model

The one-way random e�ects (RE) model is given by (1) with uig = �g+"ig, where �g and "ig
are i.i.d. error components; see section 2.2. Some algebra shows that the FGLS estimator

in (12) can be computed by OLS estimation of (yig � b��yi) on (xig � b��xi) where b� = 1�b�"=qb�2" +Ngb�2�. Applying the cluster-robust variance matrix formula (7) for OLS in this
transformed model yields (13) for the FGLS estimator.

The RE model can be extended to multi-way clustering, though FGLS estimation is then

more complicated. In the two-way case, yigh = x
0
igh�+�g+ �h+ "igh. For example, Moulton

(1986) considered clustering due to grouping of regressors (schooling, age and weeks worked)

in a log earnings regression. In his model he allowed for a common random shock for each

year of schooling, for each year of age, and for each number of weeks worked. Davis (2002)

modelled �lm attendance data clustered by �lm, theater and time. Cameron and Golotvina

(2005) modelled trade between country-pairs. These multi-way papers compute the variance

matrix assuming 
 is correctly speci�ed.

6.4 Hierarchical linear models

The one-way random e�ects model can be viewed as permitting the intercept to vary ran-

domly across clusters. The hierarchical linear model (HLM) additionally permits the slope

coe�cients to vary. Speci�cally

yig = x
0
ig�g + uig; (14)

where the �rst component of xig is an intercept. A concrete example is to consider data

on students within schools. Then yig is an outcome measure such as test score for the i
th

student in the gth school. In a two-level model the kth component of �g is modelled as

�kg = w
0
kg
k + vkg, where wkg is a vector of school characteristics. Then stacking over all K

components of � we have

�g =Wg
 + vj; (15)

whereWg = Diag[wkg] and usually the �rst component of wkg is an intercept.

The random e�ects model is the special case �g = (�1g;�2g) where �1g = 1�
1+v1g and
�kg = 
k+0 for k > 1, so v1g is the random e�ects model's �g. The HLM model additionally

allows for random slopes �2g that may or may not vary with level-two observables wkg.

Further levels are possible, such as schools nested in school districts.

The HLM model can be re-expressed as a mixed linear model, since substituting (15)

into (14) yields

yig = (x
0
igWg)
 + x

0
igvg + uig: (16)

The goal is to estimate the regression parameter 
 and the variances and covariances of

the errors uig and vg. Estimation is by maximum likelihood assuming the errors vg and uig
are normally distributed. Note that the pooled OLS estimator of 
 is consistent but is less

e�cient.
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HLM programs assume that (15) correctly speci�es the within-cluster correlation. One

can instead robustify the standard errors by using formulae analogous to (13), or by the

cluster bootstrap.

6.5 Serially correlated errors models for panel data

If Ng is small, the clusters are balanced, and it is assumed that 
g is the same for all g, say


g = 
, then the FGLS estimator in (12) can be used without need to specify a model for


. Instead we can let b
 have ijth entry G�1
PG

g=1 buigbujg, where buig are the residuals from
initial OLS estimation.

This procedure was proposed for short panels by Kiefer (1980). It is appropriate in this

context under the assumption that variances and autocovariances of the errors are constant

across individuals. While this assumption is restrictive, it is less restrictive than, for example,

the AR(1) error assumption given in section 2.3.

In practice two complications can arise with panel data. First, there are T (T � 1) =2
o�-diagonal elements to estimate and this number can be large relative to the number of

observations NT . Second, if an individual-speci�c �xed e�ects panel model is estimated,

then the �xed e�ects lead to an incidental parameters bias in estimating the o�-diagonal

covariances. This is the case for di�erences-in-di�erences models, yet FGLS estimation is

desirable as it is more e�cient than OLS. Hausman and Kuersteiner (2008) present �xes for

both complications, including adjustment to Wald test critical values by using a higher-order

Edgeworth expansion that takes account of the uncertainty in estimating the within-state

covariance of the errors.

A more commonly-used model speci�es an AR(p) model for the errors. This has the

advantage over the preceding method of having many fewer parameters to estimate in 
,

though is a more restrictive model. Of course, one can robustify using (13). If �xed e�ects are

present, however, then there is again a bias (of order N�1
g ) in estimation of the AR(p) coef-

�cients due to the presence of �xed e�ects. Hansen (2007b) obtains bias-corrected estimates

of the AR(p) coe�cients and uses these in FGLS estimation.

Other models for the errors have also been proposed. For example if clusters are large,

we can allow correlation parameters to vary across clusters.

7 Nonlinear and instrumental variables estimators

Relatively few econometrics papers consider extension of the complications discussed in this

paper to nonlinear models; a notable exception is Wooldridge (2006).

7.1 Population-averaged models

The simplest approach to clustering in nonlinear models is to estimate the same model as

would be estimated in the absence of clustering, but then base inference on cluster-robust
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standard errors that control for any clustering. This approach requires the assumption that

the estimator remains consistent in the presence of clustering.

For commonly-used estimators that rely on correct speci�cation of the conditional mean,

such as logit, probit and Poisson, one continues to assume that E[yigjxig] is correctly-speci�ed.
The model is estimated ignoring any clustering, but then sandwich standard errors that

control for clustering are computed. This pooled approach is called a population-averaged

approach because rather than introduce a cluster e�ect �g and model E[yigjxig; �g], see
section 7.2, we directly model E[yigjxig] = E�g [E[yigjxig; �g]] so that �g has been averaged
out.

This essentially extends pooled OLS to, for example, pooled probit. E�ciency gains

analogous to feasible GLS are possible for nonlinear models if one additionally speci�es a

reasonable model for the within-cluster correlation.

The generalized estimating equations (GEE) approach, due to Liang and Zeger (1986),

introduces within-cluster correlation into the class of generalized linear models (GLM). A

conditional mean function is speci�ed, with E[yigjxig] = m(x0ig�), so that for the gth cluster

E[ygjXg] =mg(�); (17)

wheremg(�) = [m(x
0
1g�); :::;m(x

0
Ngg
�)]0 and Xg = [x1g; :::;xNgg]

0. A model for the variances

and covariances is also speci�ed. First given the variance model V[yigjxig] = �h(m(x0ig�)

where � is an additional scale parameter to estimate, we form Hg(�) = Diag[�h(m(x
0
ig�)], a

diagonal matrix with the variances as entries. Second a correlation matrix R(�) is speci�ed

with ijth entry Cor[yig; yjgjXg], where � are additional parameters to estimate. Then the

within-cluster covariance matrix is


g = V[ygjXg] = Hg(�)
1=2R(�)Hg(�)

1=2 (18)

R(�) = I if there is no within-cluster correlation, and R(�) = R(�) has diagonal entries 1

and o� diagonal entries � in the case of equicorrelation. The resulting GEE estimator b�GEE
solves XG

g=1

@m0
g(�)

@�
b
�1
g (yg �mg(�)) = 0; (19)

where b
g equals 
g in (18) with R(�) replaced by R(b�) where b� is consistent for �. The
cluster-robust estimate of the asymptotic variance matrix of the GEE estimator is

bV[b�GEE] = �bD0 b
�1 bD��1 �XG

g=1
D0
g
b
�1g bugbu0g b
�1g Dg

��
D0 b
�1D��1 ; (20)

where bDg = @m0
g(�)=@�

��b�, bD = [bD1; :::; bDG]
0, bug = yg�mg(b�), and now b
g = Hg(b�)1=2R(b�)Hg(b�)1=2.

The asymptotic theory requires that G!1.
The result (20) is a direct analog of the cluster-robust estimate of the variance matrix for

FGLS. Consistency of the GEE estimator requires that (17) holds, i.e. correct speci�cation

of the conditional mean (even in the presence of clustering). The variance matrix de�ned in
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(18) permits heteroskedasticity and correlation. It is called a \working" variance matrix as

subsequent inference based on (20) is robust to misspeci�cation of (18). If (18) is assumed

to be correctly speci�ed then the asymptotic variance matrix is more simply (bD0 b
�1 bD)�1.
For likelihood-based models outside the GLM class, a common procedure is to perform

ML estimation under the assumption of independence over i and g, and then obtain cluster-

robust standard errors that control for within-cluster correlation. Let f(yigjxig;�) denote
the density, sig(�) = @ ln f(yigjxig;�)=@�, and sg(�) =

P
i sig(�). Then the MLE of � solvesP

g

P
i sig(�) =

P
g sg(�) = 0. A cluster-robust estimate of the variance matrix isbV[b�ML] = �X

g
@sg(�)=@�

0jb�
��1 �X

g
sg(b�)sg(b�)0��X

g
@sg(�)=@�

0jb�
��1

: (21)

This method generally requires that f(yigjxig;�) is correctly speci�ed even in the presence
of clustering.

In the case of a (mis)speci�ed density that is in the linear exponential family, as in

GLM estimation, the MLE retains its consistency under the weaker assumption that the

conditional mean E[yigjxig;�] is correctly speci�ed. In that case the GEE estimator de�ned
in (19) additionally permits incorporation of a model for the correlation induced by the

clustering.

7.2 Cluster-speci�c e�ects models

An alternative approach to controlling for clustering is to introduce a group-speci�c e�ect.

For conditional mean models the population-averaged assumption that E[yigjxig] = m(x0ig�)
is replaced by

E[yigjxig; �g] = g(x0ig� + �g); (22)

where �g is not observed. The presence of �g will induce correlation between yig and yjg,

i 6= j. Similarly, for parametric models the density speci�ed for a single observation is

f(yigjxig;�; �g) rather than the population-averaged f(yigjxig;�).
In a �xed e�ects model the �g are parameters to be estimated. If asymptotics are that

Ng is �xed while G ! 1 then there is an incidental parameters problem, as there are Ng
parameters �1; :::; �G to estimate and G!1. In general this contaminates estimation of �
so that b� is a inconsistent. Notable exceptions where it is still possible to consistently esti-
mate � are the linear regression model, the logit model, the Poisson model, and a nonlinear

regression model with additive error (so (22) is replaced by E[yigjxig; �g] = g(x0ig�) + �g).

For these models, aside from the logit, one can additionally compute cluster-robust standard

errors after �xed e�ects estimation.

We focus on the more commonly-used random e�ects model that speci�es �g to have

density h(�gj�) and consider estimation of likelihood-based models. Conditional on �g, the
joint density for the gth cluster is f(y1g; :::; jxNgg;�; �g) =

QNg
i=1 f(yigjxig;�; �g). We then

integrate out �g to obtain the likelihood function

L(�;�jy;X) =
YG

g=1

�Z �YNg

i=1
f(yigjxig;�; �g)

�
dh(�gj�)

�
: (23)

20



In some special nonlinear models, such as a Poisson model with �g being gamma distributed,

it is possible to obtain a closed-form solution for the integral. More generally this is not the

case, but numerical methods work well as (23) is just a one-dimensional integral. The usual

assumption is that �g is distributed as N [0; �2�]. The MLE is very fragile and failure of any
assumption in a nonlinear model leads to inconsistent estimation of �.

The population-averaged and random e�ects models di�er for nonlinear models, so that

� is not comparable across the models. But the resulting average marginal e�ects, that

integrate out �g in the case of a random e�ects model, may be similar. A leading exam-

ple is the probit model. Then E[yigjxig; �g] = �(x0ig� + �g), where �(�) is the standard
normal c.d.f. Letting f(�g) denote the N [0; �2�] density for �g, we obtain E[yigjxig] =R
�(x0ig� + �g)f(�g)d�g = �(x0ig�=

p
1 + �2�); see Wooldridge (2002, p.470). This di�ers

from E[yigjxig] = �(x0ig�) for the pooled or population-averaged probit model. The di�er-
ence is the scale factor

p
1 + �2�. However, the marginal e�ects are similarly rescaled, since

@ Pr[yig = 1jxig]=@xig = �(x0ig�=
p
1 + �2�)� �=

p
1 + �2�, so in this case PA probit and ran-

dom e�ects probit will yield similar estimates of the average marginal e�ects; see Wooldridge

(2002, 2006).

7.3 Instrumental variables

The cluster-robust formula is easily adapted to instrumental variables estimation. It is

assumed that there exist instruments zig such that uig = yig � x0ig� satis�es E[uigjzig] =
0. If there is within-cluster correlation we assume that this condition still holds, but now

Cov[uig; ujgjzig; zjg] 6= 0.
Shore-Sheppard (1996) examines the impact of equicorrelated instruments and group-

speci�c shocks to the errors. Her model is similar to that of Moulton, applied to an IV

setting. She shows that IV estimation that does not model the correlation will understate

the standard errors, and proposes either cluster-robust standard errors or FGLS.

Hoxby and Paserman (1998) examine the validity of overidenti�cation (OID) tests with

equicorrelated instruments. They show that not accounting for within-group correlation can

lead to mistaken OID tests, and they give a cluster-robust OID test statistic. This is the

GMM criterion function with a weighting matrix based on cluster summation.

A recent series of developments in applied econometrics deals with the complication of

weak instruments that lead to poor �nite-sample performance of inference based on asymp-

totic theory, even when sample sizes are quite large; see for example the survey by Andrews

and Stock (2007), and Cameron and Trivedi (2005, 2009). The literature considers only the

non-clustered case, but the problem is clearly relevant also for cluster-robust inference. Most

papers consider only i.i.d. case errors. An exception is Chernozhukov and Hansen (2008)

who suggest a method based on testing the signi�cance of the instruments in the reduced

form that is heteroskedastic-robust. Their tests are directly amenable to adjustments that

allow for clustering; see Finlay and Magnusson (2009).
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7.4 GMM

Finally we consider generalized methods of moments (GMM) estimation.

Suppose that we combine moment conditions for the gth cluster, so E[hg(wg;�)] = 0

wherewg denotes all variables in the cluster. Then the GMM estimator b�GMM with weighting
matrixW minimizes

�P
g hg

�0
W
�P

g hg

�
, where hg = hg(wg;�). Using standard results

in, for example, Cameron and Trivedi (2005, p.175) or Wooldridge (2002, p.423), the variance

matrix estimate is

bV[b�GMM] = �bA0WbA��1 bA0WbBWbA�bA0WbA��1
where bA =

P
g @hg=@�

0jb� and a cluster-robust variance matrix estimate uses bB =Pg
bhgbh0g.

This assumes independence across clusters and G ! 1. Bhattacharya (2005) considers
strati�cation in addition to clustering for the GMM estimator.

Again a key assumption is that the estimator remains consistent even in the presence for

clustering. For GMM this means that we need to assume that the moment condition holds

true even when there is within-cluster correlation. The reasonableness of this assumption

will vary with the particular model and application at hand.

8 Empirical Example

To illustrate some empirical issues related to clustering, we present an application based on

a simpli�ed version of the model in Hersch (1998), who examined the relationship between

wages and job injury rates. We thank Joni Hersch for sharing her data with us. Job injury

rates are observed only at occupation levels and industry levels, inducing clustering at these

levels. In this application we have individual-level data from the Current Population Survey

on 5,960 male workers working in 362 occupations and 211 industries. For most of our

analysis we focus on the occupation injury rate coe�cient.

In column 1 of Table 1, we present results from linear regression of log wages on oc-

cupation and industry injury rates, potential experience and its square, years of schooling,

and indicator variables for union, nonwhite, and 3 regions. The �rst three rows show that

standard errors of the OLS estimate increase as we move from default (row 1) to White

heteroskedastic-robust (row 2) to cluster-robust with clustering on occupation (row 3). A

priori heteroskedastic-robust standard errors may be larger or smaller than the default. The

clustered standard errors are expected to be larger. Using formula (4) yields in
ation factorp
1 + 1� 0:207� (5960=362� 1) = 2:05, as the within-cluster correlation of model residuals

is 0:207, compared to an actual in
ation of 0:516=0:188 = 2:74.

Column 2 of Table 1 illustrates analysis with few clusters, when analysis is restricted to

the 1,594 individuals who work in the ten most common occupations in the dataset. From

rows 1-3 the standard errors increase, due to fewer observations, and the variance in
ation

factor is larger due to a larger average group size, as suggested by formula (4). Our concern
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is that with G = 10 the usual asymptotic theory requires some adjustment. The Wald two-

sided test statistic for a zero coe�cient on occupation injury rate is �2:751=0:994 = 2:77.

Rows 4-6 of column 2 report the associated p-value computed in three ways. First, p = 0:006

using standard normal critical values (or the T with N � K = 1584 degrees of freedom).

Second, p = 0:022 using a T-distribution based on G � 1 = 9 degrees of freedom. Third,

when we perform a pairs cluster percentile-T bootstrap, the p-value increases to 0:110. These

changes illustrate the importance of adjusting for few clusters in conducting inference. The

large increase in p-value with the bootstrap may in part be because the �rst two p-values

are based on cluster-robust standard errors with �nite-sample bias; see section 4.1.This may

also explain why the RE model standard errors in rows 8-10 of column 2 exceed the OLS

cluster-robust standard error in row 3 of column 2.

We next consider multi-way clustering. Since both occupation-level and industry-level

regressors are included we should compute two-way cluster-robust standard errors. Compar-

ing row 7 of column 1 to row 3, the standard error of the occupation injury rate coe�cient

changes little from 0.516 to 0.515. But there is a big impact for the coe�cient of the industry

injury rate. In results not reported in the table, the standard error of the industry injury

rate coe�cient increases from 0.563 when we cluster on only occupation to 1.015 when we

cluster on both occupation and industry.

If the clustering within occupations is due to common occupation-speci�c shocks, then

a random e�ects (RE) model may provide more e�cient parameter estimates. From row

8 of column 1 the default RE standard error is 0.308, but if we cluster on occupation this

increases to 0.536 (row 10). For these data there is apparently no gain compared to OLS

(see row 3).

Finally we consider a nonlinear example, probit regression with the same data and re-

gressors, except the dependent variable is now a binary outcome equal to one if the hourly

wage exceeds twelve dollars. The results given in column 3 are qualitatively similar to those

in column 1. Cluster-robust standard errors are 2-3 times larger, and two-way cluster robust

are slightly larger still. The parameters � of the random e�ects probit model are rescalings

of those of the standard probit model, as explained in section 7.2. The rescaled coe�cient

is �5:119, as b�g has estimated variance 0:279. This is smaller than the probit coe�cient,
though this di�erence may just re
ect noise in estimation.

9 Conclusion

Cluster-robust inference is possible in a wide range of settings. The basic methods were

proposed in the 1980's, but are still not yet fully incorporated into applied econometrics,

especially for estimators other than OLS. Useful references on cluster-robust inference for the

practitioner include the surveys by Wooldridge (2003, 2006), the texts by Wooldridge (2002)

and Cameron and Trivedi (2005) and, for implementation in Stata, Nichols and Scha�er

(2007) and Cameron and Trivedi (2009).
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Table 1 - Occupation injury rate and Log Wages
Impacts of varying ways of dealing with clustering

1 2 3

Main Sample 
Linear

10 Largest 
Occupations 

Linear
Main Sample 

Probit

OLS (or Probit) coefficient on Occupation Injury Rate -2.158 -2.751 -6.978
1 Default (iid) std. error 0.188 0.308 0.626
2 White-robust std. error 0.243 0.320 1.008
3 Cluster-robust std. error (Clustering on Occupation) 0.516 0.994 1.454
4 P-value based on (3) and Standard Normal 0.006
5 P-value based on (3) and T(10-1) 0.022
6 P-value based on Percentile-T Pairs Bootstrap (999 replications) 0.110
7 Two-way (Occupation and Industry) robust std. error 0.515 1.516

Random effects Coefficient on Occupation Injury Rate -1.652 -2.669 -5.789
8 Default std. error 0.357 1.429 1.106
9 White-robust std. error 0.579 2.058

10 Cluster-robust std. error (Clustering on Occupation) 0.536 2.148

Number of observations (N) 5960 1594 5960
Number of Clusters (G) 362 10 362
Within-Cluster correlation of errors (rho) 0.207 0.211

N t C ffi i t d t d d lti li d b 100 R i i t i l d O tiNotes:  Coefficients and standard errors multiplied by 100.  Regression covariates include Occupation 
Injurty rate, Industry Injury rate, Potential experience, Potential experience squared, Years of 
schooling, and indicator variables for union, nonwhite, and three regions.  Data from Current 
Population Survey, as described in Hersch (1998).  Std. errs. in rows 9 and 10 are from bootstraps with 
400 replications.  Probit outcome is wages >= $12/hour.


