Estimating user-defined nonlinear regression models in Stata and in Mata

A. Colin Cameron
Univ. of Calif. - Davis

Prepared for 2008 West Coast Stata Users’ Group Meeting,
San Francisco, November 13-14, 2008.
Based on A. Colin Cameron and Pravin K. Trivedi,
Microeconometrics using Stata, Stata Press.

November 14, 2008
1. Introduction

- Consider nonlinear cross-section regression of y_i on x_i.
- Example is $y_i \mid x_i \sim \text{Poisson with mean } \mu_i = \exp(x_i'\beta)$.
- This talk demonstrates various ways to code up the estimator,
 - using Stata command `ml`
 - and Mata command `optimize`
Outline

1. Introduction
2. Built-in command poisson
3. Command ml method lf
4. Checking program by simulation
5. Command ml methods d0, d1, d2
6. Newton-Raphson algorithm in Mata
7. Mata command optimize
8. NL2SLS example
2. Built-in command poisson

- Data from 2002 U.S. Medical Expenditure Panel Survey (MEPS). Data due to Deb, Munkin and Trivedi (2006)
- Aged 25-64 years working in private sector but not self-employed and not receiving public insurance (Medicare and Medicaid)
- Model docvis - annual number of doctor visits.
. use mus10data.dta, clear
. quietly keep if year02==1
. describe docvis private chronic female income

<table>
<thead>
<tr>
<th>variable name</th>
<th>type</th>
<th>format</th>
<th>value label</th>
</tr>
</thead>
<tbody>
<tr>
<td>docvis</td>
<td>int</td>
<td>%8.0g</td>
<td>number of doctor visits</td>
</tr>
<tr>
<td>private</td>
<td>byte</td>
<td>%8.0g</td>
<td>= 1 if private insurance</td>
</tr>
<tr>
<td>chronic</td>
<td>byte</td>
<td>%8.0g</td>
<td>= 1 if a chronic condition</td>
</tr>
<tr>
<td>female</td>
<td>byte</td>
<td>%8.0g</td>
<td>= 1 if female</td>
</tr>
<tr>
<td>income</td>
<td>float</td>
<td>%9.0g</td>
<td>Income in $ / 1000</td>
</tr>
</tbody>
</table>

. summarize docvis private chronic female income

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>docvis</td>
<td>4412</td>
<td>3.95739</td>
<td>7.947601</td>
<td>0</td>
<td>134</td>
</tr>
<tr>
<td>private</td>
<td>4412</td>
<td>.785358</td>
<td>.4106202</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>chronic</td>
<td>4412</td>
<td>.326382</td>
<td>.4689423</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>female</td>
<td>4412</td>
<td>.471894</td>
<td>.4992661</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>income</td>
<td>4412</td>
<td>34.34018</td>
<td>29.03987</td>
<td>-49.999</td>
<td>280.777</td>
</tr>
</tbody>
</table>
Built-in command poisson

```
.poison docvis private chronic female income, vce(robust)
```

Iteration 0: log pseudolikelihood = -18504.413
Iteration 1: log pseudolikelihood = -18503.549
Iteration 2: log pseudolikelihood = -18503.549

Poisson regression

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------------------|--------|-----------|-------|-----|---------------------|
| | Robust | | | | |
| docvis | | | | | |
| private | .7986652 | .1090014 | 7.33 | 0.000 | .5850263 - 1.012304 |
| chronic | 1.091865 | .0559951 | 19.50 | 0.000 | .9821167 - 1.201614 |
| female | .4925481 | .0585365 | 8.41 | 0.000 | .3778187 - 0.6072774 |
| income | .003557 | .0010825 | 3.29 | 0.001 | .0014354 - 0.0056787 |
| _cons | -.2297262 | .1108732 | -2.07 | 0.038 | -.4470338 - .0124186 |
| | | | | | |

Log pseudolikelihood = -18503.549

Number of obs = 4412
Wald chi2(4) = 594.72
Prob > chi2 = 0.0000
Pseudo R2 = 0.1930

Note: Nonrobust standard errors are (erroneously) much smaller.
Marginal effects for nonlinear model: $\frac{\partial E[y|x]}{\partial x_j} = \beta_j \times \exp(x'\beta)$.

.mfx

Marginal effects after poisson

$y = \text{predicted number of events (predict)}$

$X = 3.0296804$

| variable | dy/dx | Std. Err. | z | P>|z| | [95% C.I.] | x |
|-----------|---------|-----------|-------|------|-------------|---------|
| private* | 1.978178| .20441 | 9.68 | 0.000| 1.57755 | 2.37881 | .785358 |
| chronic* | 4.200068| .27941 | 15.03 | 0.000| 3.65243 | 4.7477 | .326383 |
| female* | 1.528406| .17758 | 8.61 | 0.000| 1.18036 | 1.87645 | .471895 |
| income | .0107766| .00331 | 3.25 | 0.001| .00428 | .017274 | 34.3402 |

(*) dy/dx is for discrete change of dummy variable from 0 to 1

.margeff

Average marginal effects on $E(\text{docvis})$ after poisson

| docvis | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------|-------|-----------|-------|------|----------------------|
| private| 2.404721| .2438573 | 9.86 | 0.000| 1.926769 2.882672 |
| chronic| 4.599174| .2886176 | 15.94 | 0.000| 4.033494 5.164854 |
| female | 1.900212| .2156694 | 8.81 | 0.000| 1.477508 2.322917 |
| income | .0140765| .004346 | 3.24 | 0.001| .0055585 .0225945 |
3. Command ml method lf

First write a program we call lfpois. This constructs the log-likelihood

\[
\sum_{i=1}^{N} \ln f(y_i | x_i, \beta) = \sum_{i=1}^{N} \{- \exp(x'_i \beta) + y_i x'_i \beta - \ln y_i!\}.
\]

Then give commands

- `ml model lf lfpois (docvis = private chronic female income), vce(robust)`
- `ml check`
- `ml search`
- `ml maximize`

The `ml check` and `ml search` are optional.
1. \(y \) is stored in global macro \(\text{ML}_y1 \). It is referred to as \(\$\text{ML}_y1 \)

2. \(x \) is combined with \(\beta \) as the index \(x' \beta \)
 It is referred to as the program argument \(\theta_1 \)

3. \(\ln f(y|\theta, \beta) \) is referred to as the program argument \(\text{lf} \)

```
. program define lfpois
    1.   version 10.0
    2.   args lnf theta1        // theta1=x'b, lnf=lnf(y)
    3.   tempvar lnyfact mu
    4.   local y "$\text{ML}_y1"    // Define y so program more readable
    5.   generate double `lnyfact' = lnfactorial(`y')
    6.   generate double `mu' = exp(`theta1')
    7.   quietly replace `lnf' = -`mu' + `y'*`theta1' - `lnyfact'
    8.   end
```

Arguments, temporary variables and local variables are local macros, referenced in single quotes.
Stata command ml method lf for Poisson MLE

```
. * Compute the estimator
. ml maximize

| docvis     | Coef.  | Robust Std. Err. | z     | P>|z| | [95% Conf. Interval] |
|------------|--------|------------------|-------|-----|----------------------|
| private    | .7986654 | .1090015         | 7.33  | 0.000| .5850265 - 1.012304  |
| chronic    | 1.091865 | .0559951         | 19.50 | 0.000| .9821167 - 1.201614  |
| female     | .4925481 | .0585365         | 8.41  | 0.000| .3778187 - .6072775  |
| income     | .003557  | .0010825         | 3.29  | 0.001| .0014354 - .0056787  |
| _cons      | -.2297263| .1108733         | -2.07 | 0.038| -.4470339 - .0124188 |
```

Number of obs = 4412
Wald chi2(4) = 594.72
Prob > chi2 = 0.0000
Command `ml` is not restricted to likelihood functions.

e.g. For OLS maximize $-\sum_{i=1}^{N}(y_i - x_i'\beta)^2$.

`quietly replace 'lnf' = -(‘y’-exp(‘theta1’))^2`

But must then use robust standard errors.

Command `ml` can handle models with more than one index.

e.g. For negative binomial have two indexes $x_i'\beta$ and α.

`args lnf theta1 a`

and

`ml model lf lfnb (docvis = private chronic female income) ()`

Number of numerical derivatives $=$ number of indexes.
Fast if few indexes.
4. Check program by simulation

- Generate sample of size N from

 \[
 y_i \sim \text{Poisson}[\exp(\alpha + \beta x_i)]
 \]

 \[
 x_i \sim \text{N}[0, 0.5^2]
 \]

 $\alpha = 2$; $\beta = 1$.

- To check consistency

 - Set $N = 100,000$
 - Does $\hat{\alpha} = 2$? Does $\hat{\beta} = 1$?
To check computation of the standard errors $s_{\hat{\alpha}}$ and $s_{\hat{\beta}}$.

- Set $N = 500$.
- Draw 2,000 samples of size N and obtain 2,000 estimates using command `simulate` or command `postfile`.
- Does $\sqrt{\frac{1}{1999} \sum_{s=1}^{2000} (\hat{\beta}^{(s)} - \bar{\beta})^2} = \frac{1}{2000} \sum_{s=1}^{2000} s_{\hat{\beta}}^{(s)}$?
- i.e. Over the simulations:
 Does the st. deviation of $\hat{\beta} =$ the average st. error of $\hat{\beta}$?
5. Command ml methods d0, d1, d2

- More general.
- Computes the log-density for each observation. This then needs to be summed using `mlsum`.
- Enters parameters β directly, rather than via index $x^\prime \beta$.
- Method d0 needs to compute q numerical derivatives if q parameters.
- Can provide first derivatives (method d1) and second derivatives (method d2). This speeds up computation.
For method d0 extra arguments is todo

mleval converts β to $x'\beta$

mlsum converts $x_i'\beta$ to $\sum_{i=1}^{N} x_i'\beta$.

* Method d0: Program d0opois to be called by command ml method d0

program define d0opois
 1. version 10.0
 2. args todo b lnf
 // todo is not used, b=b, lnf=lnL
 3. tempvar theta1
 // theta1=x'b given in eq(1)
 4. mleval `theta1' = `b', eq(1)
 5. local y $ML_y1
 // Define y so program more readable
 6. mlsum `lnf' = -exp(`theta1') + `y'*`theta1' - lnfactorial(`y')
 7. end
Stata command `ml` method `d0` for Poisson MLE

```
.ml model d0 d0pois (docvis = private chronic female income)
.ml maximize

initial:  log likelihood =  -33899.609
alternative: log likelihood =  -28031.767
rescale:   log likelihood =  -24020.669
Iteration 0:  log likelihood =  -24020.669
Iteration 1:  log likelihood =  -18845.464
Iteration 2:  log likelihood =  -18510.257
Iteration 3:  log likelihood =  -18503.552
Iteration 4:  log likelihood =  -18503.549
Iteration 5:  log likelihood =  -18503.549
```

```
Number of obs   =      4412
Wald chi2(4)    =    8052.34
Prob > chi2     =     0.0000
```

Log likelihood = -18503.549

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------|--------|-----------|-------|------|----------------------|
| docvis | | | | | |
| private| .7986653 | .027719 | 28.81 | 0.000 | .7443371 | .8529936 |
| chronic| 1.091865 | .0157985 | 69.11 | 0.000 | 1.060901 | 1.12283 |
| female | .4925481 | .0160073 | 30.77 | 0.000 | .4611744 | .5239218 |
| income | .003557 | .0002412 | 14.75 | 0.000 | .0030844 | .0040297 |
| _cons | -.2297263 | .0287022 | -8.00 | 0.000 | -.2859815 | -.173471 |
Stata command ml method d2 for Poisson MLE

- Preceding gives nonrobust standard errors.
- To get robust standard errors need to use method d1 or d2.

* Method d2: Program d2pois to be called by command ml method d2
* program define d2pois
 1. version 10.0
 2. args todo b lnf g negH // Add g and negH to the arguments list
 3. tempvar theta1 // theta1 = x'b where x given in eq(1)
 4. mleval `theta1' = `b', eq(1)
 5. local y $ML_y1 // Define y so program more readable
 6. mlsum `lnf' = -exp(`theta1') + `y'*`theta1' - lnfactorial(`y')
 7. if (`todo'==0 | `lnf'>=.) exit // d1 extra code from here
 8. tempname d1
 9. mlvecsum `lnf' `d1' = `y' - exp(`theta1')
 10. matrix `g' = (`d1')
 11. if (`todo'==0 | `lnf'>=.) exit // d2 extra code from here
 12. tempname d11
 13. mlmatsum `lnf' `d11' = exp(`theta1')
 14. matrix `negH' = `d11'
 15. end
Iterative algorithms are rules to compute $\hat{\theta}_{s+1}$ given $\hat{\theta}_s$.

Gradient methods use a rule of the form

$$
\hat{\theta}_{s+1} = \hat{\theta}_s + A_s g_s
$$

where g_s is the gradient of the objective function evaluated at $\hat{\theta}_s$.

Newton-Raphson (NR) method approximates the objective function at $\hat{\theta}_s$ by a quadratic function. It chooses $\hat{\theta}_{s+1}$ to maximize this approximation. Then

$$
\hat{\theta}_{s+1} = -H_s^{-1} g_s
$$

where H_s is the Hessian evaluated at $\hat{\theta}_s$.
Poisson objective function, gradient and Hessian are:

\[
Q(\beta) = \sum_{i=1}^{N} \{- \exp(x_i'\beta) + y_i x_i' \beta - \ln y_i! \}
\]

\[
g(\beta) = \sum_{i=1}^{N} (y_i - \exp(x_i'\beta)) x_i
\]

\[
H(\beta) = \sum_{i=1}^{N} - \exp(x_i'\beta) x_i x_i'
\]

So NR is

\[
\hat{\beta}_{s+1} = \hat{\beta}_s - H(\hat{\beta}_s)^{-1} \times g(\hat{\beta}_s)
\]

\[
= \hat{\beta}_s + \left[\sum_{i=1}^{N} \exp(x_i'\hat{\beta}_s) x_i x_i' \right]^{-1} \times \sum_{i=1}^{N} (y_i - \exp(x_i'\hat{\beta}_s)) x_i.
\]
Core Mata code is

```mata
> mata
> cha = 1                      // initialize stopping criterion
> do {
>     mu = exp(X*b)
>     grad = X'(y-mu)            // kx1 gradient vector
>     hes = makesymmetric((X:*mu)'X) // negative of the kxk hessian matrix
>     bold = b
>     b = bold + cholinv(hes)*(grad)
>     cha = (bold-b)'(bold-b)/(b'b)
>     iter = iter + 1
> } while (cha > 1e-16)         // end of iteration loops
> end
```
1. Define y and x in Stata
   ```stata
   generate cons = 1
   local y docvis
   local xlist private chronic female income cons
   ```

2. Read these in to Mata using `st_view`
   ```stata
   : st_view(y=., ., "'y'")
   : st_view(X=., ., tokens("'xlist'"))
   ```

3. Do the analysis in Mata and compute b and V

4. Pass these back to Stata using `st_matrix`
   ```stata
   st_matrix("b", b')
   st_matrix("V", vb)
   ```
 Post results using command `ereturn`
Do the NR iterations to compute $\hat{\beta}$.

.* Complete Mata code for Poisson MLE NR iterations
.mata

: st_view(y=., ., "`y'") // read in stata data to y and x
: st_view(x=., ., tokens("`xlist'"))
: b = J(cols(X),1,0) // compute starting values
: n = rows(X)
: iter = 1 // initialize number of iterations
: cha = 1 // initialize stopping criterion
: do {
> mu = exp(X*b)
> grad = X'(y-mu) // kx1 gradient vector
> hes = makesymmetric((X:*mu)'X) // negative of the kxk hessian matrix
> bold = b
> b = bold + cholinv(hes)*(grad)
> cha = (bold-b)'(bold-b)/(b'b)
> iter = iter + 1
> } while (cha > 1e-16) // end of iteration loops
Compute the variance-covariance matrix of $\hat{\beta}$.

```
    mu = exp(x*b)
    hes = (x:*mu)'x
    vgrad = ((x:*y-mu))'((x:*y-mu))
    vb = cholinv(hes)*vgrad*cholinv(hes)*n/(n-cols(x))

    iter // num iterations
    13

    cha // stopping criterion
    1.11465e-24

    st_matrix("b",b') // pass results from Mata to Stata
    st_matrix("V",vb) // pass results from Mata to Stata
    end
```
Present results nicely formatted.

```
. * Present results, nicely formatted using Stata command ereturn
. matrix colnames b = `xlist'
. matrix colnames V = `xlist'
. matrix rownames V = `xlist'
. ereturn post b V
. ereturn display
```

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|---------|-----------|------|--------|----------------------|
| private | .7986654| .1090509 | 7.32 | 0.000 | .5849295 - 1.012401 |
| chronic | 1.091865| .0560205 | 19.49| 0.000 | .9820669 - 1.201663 |
| female | .4925481| .058563 | 8.41 | 0.000 | .3777666 - 0.6073295|
| income | .003557 | .001083 | 3.28 | 0.001 | .0014344 - .0056796 |
| cons | -.229726| .1109236 | -2.07| 0.038 | -.4471325 - -.0123202|
7. Mata command optimize

- Mata command optimize uses same optimizer as command ml, but different syntax.
- Minimal syntax is

  ```c
  void evaluator(todo, p, v, g, H)
  ```

 where
 - `p` is parameter vector
 - `v` defines objective function, and
 - if `todo = 0` then gradient `g` and Hessian `H` are optional.
- Type `v` evaluator provides formula for `1 × N` vector `v`, where

 \[e'v = f(p) \]

 Suited to m-estimators (MLE, LS, just-identified NLIV).
- Type `d` evaluator provides formula for scalar `v` where `v = f(p)`.
 Suited to over-identified generalized method of moments (GMM).
Declare the function `poissonmle` and `st_view` data

```mata
void poissonmle(todo, b, y, X, lndensity, g, H)
{
    xb = X*b'
    mu = exp(xb)
    lndensity = -mu + y:*xb - lnfactorial(y)
    if (todo == 0) return
    g = (y-mu):*X
    if (todo == 1) return
    H = - cross(X, mu, X)
}

st_view(y=., ., "y")
st_view(X=., ., tokens("xlist"))
```
Initialize command `optimize` and optimize using v2 evaluator.

```
: S = optimize_init()
: optimize_init_evaluator(S, &poissonmle())
: optimize_init_evaluatortype(S, "v2")
: optimize_init_argument(S, 2, X)
: optimize_init_argument(S, 1, y)
: optimize_init_params(S, J(1, cols(X), 0))

: b = optimize(S)
Iteration 0:  f(p) = -33899.609
Iteration 1:  f(p) = -19668.697
Iteration 2:  f(p) = -18585.609
Iteration 3:  f(p) = -18503.779
Iteration 4:  f(p) = -18503.549
Iteration 5:  f(p) = -18503.549
```
Compute variance covariance matrix and list results.

: \texttt{Vbrob = optimize_result_V_robust(S)}
: \texttt{serob = (sqrt(diagonal(Vbrob)))'}
: \texttt{b \ serob}

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.7986653788</td>
<td>1.091865108</td>
<td>.4925480693</td>
<td>.0035570127</td>
<td>-.2297263376</td>
</tr>
<tr>
<td>2</td>
<td>.1090014507</td>
<td>.0559951312</td>
<td>.0585364746</td>
<td>.0010824894</td>
<td>.1108732568</td>
</tr>
</tbody>
</table>

: \texttt{end}

Note: Can \texttt{st_matrix} back to Stata and \texttt{ereturn display} results. Results are the same as from command Poisson.
8. NL2SLS example

- Poisson MLE inconsistent if $E[y - \exp(x'\beta)|x] \neq 0$, due to endogenous regressors.
- Assume there are instruments z such that

 $$E[z_i(y_i - \exp(x'\beta))] = 0.$$

- Define the $r \times 1$ vector

 $$h(\beta) = \left[\sum_i z_i(y_i - \exp(x'_i\beta)) \right].$$

- In just-identified case: \# instruments = \# regressors ($r = K$) use the nonlinear instrumental variabels (NLIV) estimator that solves

 $$h(\hat{\beta}) = 0.$$

- In over-identified case ($r > K$) the GMM estimator minimizes

 $$Q(\beta) = h(\beta)'Wh(\beta).$$
GMM estimator minimizes

\[Q(\beta) = h(\beta)'W h(\beta). \]

The \(K \times 1 \) gradient vector is

\[g(\beta) = \partial Q(\beta)/\partial \beta = G(\beta)'W h(\beta). \]

The \(K \times K \) expected Hessian is

\[H(\beta) = \partial^2 Q(\beta)/\partial \beta \partial \beta' = G(\beta)'W G(\beta)'. \]

Where

\[
\begin{align*}
G(\beta) &= - \sum_i \exp(x_i'\beta)z_ix_i' \\
h(\beta) &= \sum_i z_i(y_i - \exp(x_i'\beta)) \\
W &= (Z'Z)^{-1} = \left(\sum_i z_i z_i'\right)^{-1}
\end{align*}
\]
Application treats private as endogenous with single instrument firmsize:
local zlist firmsize chronic female income cons

Declare the function pgmm and st_view data

```plaintext
.mata
void pgmm(todo, b, y, X, Z, Qb, g, H)
{ 
    xb = X*b'
    mu = exp(xb)
    h = Z'(y-mu)
    w = cholinv(cross(Z,Z))
    Qb = h'w*h
    if (todo == 0) return
    G = -(mu:*Z)'X
    g = (G'w*h)'
    if (todo == 1) return
    H = G'w*G
    _makesymmetric(H)
}

st_view(y=., ., "y")
st_view(X=., ., tokens("xlist"))
st_view(Z=., ., tokens("zlist"))
```

A. Colin Cameron Univ. of Calif. - Davis Prepared for 2008 West Coast Stata Users' Group Meeting, San Francisco, November 13-14, 2008. Based on A. Colin Cameron and Pravin K. Trivedi, Microeconometrics using Stata, Stata Press. November 14, 2008 31 / 36
Initialize command `optimize` and optimize using `d2` evaluator.

```plaintext
: S = optimize_init()
: optimize_init_which(S,"min")
: optimize_init_evaluator(S, &pgmm())
: optimize_init_evaluatoretype(S, "d2")
: optimize_init_argument(S, 1, y)
: optimize_init_argument(S, 2, X)
: optimize_init_argument(S, 3, Z)
: optimize_init_params(S, J(1,cols(X),0))
: optimize_init_technique(S,"nr")
: b = optimize(S)
Iteration 0:  f(p) =  71995.212
Iteration 1:  f(p) =  9259.0408
Iteration 2:  f(p) = 1186.8103
Iteration 3:  f(p) =  3.4395408
Iteration 4:  f(p) = .00006905
Iteration 5:  f(p) =  5.672e-14
Iteration 6:  f(p) = 1.953e-27
```
Compute variance covariance matrix (manually) and list results.

: // Compute robust estimate of VCE and se's
: Xb = x*b'
: mu = exp(Xb)
: h = Z'(y-mu)
: W = cholinv(cross(Z,Z))
: G = -(mu:*Z)'X
: Shat = ((y-mu):*Z)((y-mu):*Z)*rows(X)/(rows(X)-cols(X))
: Vb = luinv(G'W*G)*G'W*Shat*W*G*luinv(G'W*G)
: seb = (sqrt(diagonal(Vb)))'
: b \ seb

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.340291853</td>
<td>1.072907529</td>
<td>.477817773</td>
<td>.0027832801</td>
<td>-.6832461817</td>
</tr>
<tr>
<td>2</td>
<td>1.559899278</td>
<td>.0763116698</td>
<td>.0690784466</td>
<td>.0021932119</td>
<td>1.350370916</td>
</tr>
</tbody>
</table>

: end

Coefficient of private of 0.799 becomes 1.340 and standard error of 0.109 becomes 1.559.
Book Outline

1. Stata basics
2. Data management and graphics
3. Linear regression basics
4. Simulation
5. GLS regression
6. Linear instrumental variable regression
7. Quantile regression
8. Linear panel models: Basics
9. Linear panel models: Extensions
10. Nonlinear regression methods
11. Nonlinear optimization methods
12. Testing methods
13. Bootstrap methods
14. Binary outcome models
15. Multinomial models
16. Tobit and selection models
17. Count models
18. Nonlinear panel models
 A. Programming in Stata
 B. Mata