In this chapter, you will learn...

- three models of aggregate supply in which output depends positively on the price level in the short run
- about the short-run tradeoff between inflation and unemployment known as the Phillips curve

Three models of aggregate supply

1. The sticky-wage model
2. The imperfect-information model
3. The sticky-price model

All three models imply:

\[Y = \bar{Y} + \alpha (P - P^e) \]

- \(Y \): aggregate output
- \(\bar{Y} \): natural rate of output
- \(\alpha \): a positive parameter
- \(P \): the actual price level
- \(P^e \): the expected price level
Each of the three models of agg. supply imply the relationship summarized by the SRAS curve & equation.

\[Y = P + a(P - P^*) \]

Suppose a positive AD shock moves output above its natural rate and \(P \) above the level people had expected. Over time, \(P^* \) rises, SRAS shifts up, and output returns to its natural rate.

\[Y = P + a(P - P^*) \]

Inflation, Unemployment, and the Phillips Curve

The Phillips curve states that \(\pi \) depends on
- expected inflation, \(\pi_e \)
- cyclical unemployment: the deviation of the actual rate of unemployment from the natural rate
- supply shocks, \(\nu \) (Greek letter "nu").

\[\pi = \pi_e - \beta(u - u^*) + \nu \]

where \(\beta > 0 \) is an exogenous constant.
Deriving the Phillips Curve from SRAS
(1) \[Y = \bar{Y} + \alpha(P - P^*) \]
(2) \[P = P^* + \left(\frac{1}{\alpha}\right)(Y - \bar{Y}) \]
(3) \[P = P^* + \left(\frac{1}{\alpha}\right)(Y - \bar{Y}) + \nu \]
(4) \[(P - P^*) = \left(\frac{1}{\alpha}\right)(Y - \bar{Y}) + \nu \]
(5) \[\pi = \pi^e + \left(\frac{1}{\alpha}\right)(Y - \bar{Y}) + \nu \]
(6) \[\left(\frac{1}{\alpha}\right)(Y - \bar{Y}) = -\beta(u - u^e) \]
(7) \[\pi = \pi^e - \beta(u - u^e) + \nu \]

The Phillips Curve and SRAS
SRAS: \[Y = \bar{Y} + \alpha(P - P^*) \]
Phillips curve: \[\pi = \pi^e - \beta(u - u^e) + \nu \]

- SRAS curve: Output is related to unexpected movements in the price level.
- Phillips curve: Unemployment is related to unexpected movements in the inflation rate.

Adaptive expectations
- Adaptive expectations: an approach that assumes people form their expectations of future inflation based on recently observed inflation.
- A simple example: Expected inflation = last year’s actual inflation
 \[\pi^e = \pi_{-1} \]
- Then, the P.C. becomes
 \[\pi = \pi_{-1} - \beta(u - u^e) + \nu \]
Inflation inertia

\[\pi = \pi_{-1} - \beta (u - u^n) + \nu \]

In this form, the Phillips curve implies that inflation has inertia:

- In the absence of supply shocks or cyclical unemployment, inflation will continue indefinitely at its current rate.
- Past inflation influences expectations of current inflation, which in turn influences the wages & prices that people set.

Two causes of rising & falling inflation

\[\pi = \pi_{-1} - \beta (u - u^n) + \nu \]

- **cost-push inflation:**
 Inflation resulting from supply shocks
 Adverse supply shocks typically raise production costs and induce firms to raise prices, "pushing" inflation up.

- **demand-pull inflation:**
 Inflation resulting from demand shocks
 Positive shocks to aggregate demand cause unemployment to fall below its natural rate, which "pulls" the inflation rate up.

Graphing the Phillips curve

In the short run, policymakers face a tradeoff between \(\pi \) and \(u \).
Shifting the Phillips curve

People adjust their expectations over time, so the tradeoff only holds in the short run.

\[\pi = \pi^* - \beta(u - u^*) + \nu \]

E.g., an increase in \(\pi \) shifts the short-run P.C. upward.

The sacrifice ratio

- To reduce inflation, policymakers can contract aggregate demand, causing unemployment to rise above the natural rate.
- The **sacrifice ratio** measures the percentage of a year’s real GDP that must be foregone to reduce inflation by 1 percentage point.
- A typical estimate of the ratio is 5.

The sacrifice ratio

- Example: To reduce inflation from 6 to 2 percent, must sacrifice 20 percent of one year’s GDP:
 \[
 \text{GDP loss} = (\text{inflation reduction}) \times (\text{sacrifice ratio}) \\
 = 4 \times 5
 \]
 - This loss could be incurred in one year or spread over several, *e.g.*, 5% loss for each of four years.
 - The cost of disinflation is lost GDP. One could use Okun’s law to translate this cost into unemployment.
Rational expectations

Ways of modeling the formation of expectations:
- **adaptive expectations:**
 People base their expectations of future inflation on recently observed inflation.
- **rational expectations:**
 People base their expectations on all available information, including information about current and prospective future policies.

Painless disinflation?

- Proponents of rational expectations believe that the sacrifice ratio may be very small:
- Suppose $u = u^n$ and $\pi = \pi^e = 6\%$, and suppose the Fed announces that it will do whatever is necessary to reduce inflation from 6 to 2 percent as soon as possible.
- If the announcement is credible, then π^e will fall, perhaps by the full 4 points.
- Then, π can fall without an increase in u.

Calculating the sacrifice ratio for the Volcker disinflation

- 1981: $\pi = 9.7\%$
 1985: $\pi = 3.0\%$
 Total disinflation = 6.7%

<table>
<thead>
<tr>
<th>year</th>
<th>u</th>
<th>u^n</th>
<th>$u - u^n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>9.5</td>
<td>6.0</td>
<td>3.5</td>
</tr>
<tr>
<td>1983</td>
<td>9.5</td>
<td>6.0</td>
<td>3.5</td>
</tr>
<tr>
<td>1984</td>
<td>7.4</td>
<td>6.0</td>
<td>1.4</td>
</tr>
<tr>
<td>1985</td>
<td>7.1</td>
<td>6.0</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Total 9.5%
Calculating the sacrifice ratio for the Volcker disinflation

- From previous slide: Inflation fell by 6.7%, total cyclical unemployment was 9.5%.
- Okun’s law: 1% of unemployment = 2% of lost output.
- So, 9.5% cyclical unemployment = 19.0% of a year’s real GDP.
- **Sacrifice ratio** = (lost GDP)/(total disinflation) = 19/6.7 = 2.8 percentage points of GDP were lost for each 1 percentage point reduction in inflation.

The natural rate hypothesis

Our analysis of the costs of disinflation, and of economic fluctuations in the preceding chapters, is based on the **natural rate hypothesis**:

Changes in aggregate demand affect output and employment only in the short run.
In the long run, the economy returns to the levels of output, employment, and unemployment described by the classical model (Chaps. 3-8).

An alternative hypothesis: Hysteresis

- **Hysteresis**: the long-lasting influence of history on variables such as the natural rate of unemployment.
- Negative shocks may increase u^e, so economy may not fully recover.
Hysteresis: Why negative shocks may increase the natural rate

- The skills of cyclically unemployed workers may deteriorate while unemployed, and they may not find a job when the recession ends.
- Cyclically unemployed workers may lose their influence on wage-setting; then, insiders (employed workers) may bargain for higher wages for themselves.

Result: The cyclically unemployed “outsiders” may become structurally unemployed when the recession ends.

Chapter Summary

1. Three models of aggregate supply in the short run:
 - sticky-wage model
 - imperfect-information model
 - sticky-price model

 All three models imply that output rises above its natural rate when the price level rises above the expected price level.

2. Phillips curve
 - derived from the SRAS curve
 - states that inflation depends on
 - expected inflation
 - cyclical unemployment
 - supply shocks
 - presents policymakers with a short-run tradeoff between inflation and unemployment
Chapter Summary

3. How people form expectations of inflation
 - adaptive expectations
 - based on recently observed inflation
 - implies “inertia”
 - rational expectations
 - based on all available information
 - implies that disinflation may be painless

Chapter Summary

4. The natural rate hypothesis and hysteresis
 - the natural rate hypotheses
 - states that changes in aggregate demand can only affect output and employment in the short run
 - hysteresis
 - states that aggregate demand can have permanent effects on output and employment