Production, Distribution and Allocation
Roadmap to this Lecture

1. The economy in 3 markets and 3 agents
2. Properties of a production function:
 1. Output is always positive
 2. More inputs more output
 3. Constant returns to scale
 4. Diminishing marginal returns
3. Determining factor demand and factor prices
4. Income distribution
Overview:

- We are interested in describing the production side of the economy
- How are the prices of the factors of production determined?
- How is total income distributed?
The Economy in the Long-Run

- **Basic Assumption:** in the long-run, prices are fully flexible and markets clear.

- This assumption is a basic assumption of the Classical Paradigm.
A Macroeconomy in 3 Markets

- **The Goods and Services Market:** where goods and services are traded
- **The Factors of Production Market:** where labor is hired and capital is rented
- **Financial Market:** where household savings are channeled into investment
A Macroeconomy in 3 Agents

- **Households**: consume goods and services (demand) and provide labor (supply) and savings (supply).
- **Firms**: produced goods and services (supply), hire labor and capital (demand), and invest (demand)
- **Government**: provides goods and services (supply) and also consumes them (demand). It also borrows (demand)
A Flow Matrix

<table>
<thead>
<tr>
<th></th>
<th>Households</th>
<th>Government</th>
<th>Firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goods and Services</td>
<td>Consumption [Demand]</td>
<td>Govt. Expenditures [Demand]</td>
<td>Investment [Demand]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Public Good [Supply]</td>
<td></td>
</tr>
<tr>
<td>Labor</td>
<td>Work [Supply]</td>
<td>Public Employees [Demand]</td>
<td>Employees [Demand]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial</td>
<td>Savings [Supply]</td>
<td>Deficit Financing [Demand]</td>
<td>Investment [Demand]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECN 101 - MACROECONOMICS
Factors of production

\[K = \text{capital, tools, machines, and structures used in production} \]

\[L = \text{labor, the physical and mental efforts of workers} \]
The production function

- The Production function: \(Y = F(K, L) \)
- shows how much output (\(Y \)) the economy can produce from \(K \) units of capital and \(L \) units of labor.
- reflects the economy’s level of technology.
Returns to scale: a review

Initially \(Y_1 = F(K_1, L_1) \)

Scale all inputs by the same factor \(z \):

\[
K_2 = zK_1 \quad \text{and} \quad L_2 = zL_1
\]

(If \(z = 1.25 \), then all inputs are increased by 25%)

What happens to output, \(Y_2 = F(K_2, L_2) \)?

- If *constant returns to scale*, \(Y_2 = zY_1 \)
- If *increasing returns to scale*, \(Y_2 > zY_1 \)
- If *decreasing returns to scale*, \(Y_2 < zY_1 \)
The Cobb-Douglas Production Function

\[F(K, L) = AK^\alpha L^\beta \]

\[A, \alpha, \beta > 0 \]
Properties of Production Functions
1. Output is always Positive

- Mathematically:

\[F(K, L) \geq 0 \text{ for any } K, L \geq 0 \]
Marginal product of labor (MPL)

def:
The extra output the firm can produce using an additional unit of labor (holding other inputs fixed):

\[MPL = F(K, L + 1) - F(K, L) \]
Exercise: *compute & graph MPL*

a. Determine \(MPL \) at each value of \(L \)

b. Graph the production function

c. Graph the \(MPL \) curve with \(MPL \) on the vertical axis and \(L \) on the horizontal axis

<table>
<thead>
<tr>
<th>(L)</th>
<th>(Y)</th>
<th>(MPL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>n.a.</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>34</td>
<td>?</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>?</td>
</tr>
<tr>
<td>6</td>
<td>45</td>
<td>?</td>
</tr>
<tr>
<td>7</td>
<td>49</td>
<td>?</td>
</tr>
<tr>
<td>8</td>
<td>52</td>
<td>?</td>
</tr>
<tr>
<td>9</td>
<td>54</td>
<td>?</td>
</tr>
<tr>
<td>10</td>
<td>55</td>
<td>?</td>
</tr>
</tbody>
</table>
Production function

Output (Y) vs Labor (L)

Marginal Product of Labor

MPL (units of output) vs Labor (L)

 answers:
2. More inputs, more output

- one extra unit of input (either L or K), everything else equal, delivers at worst nothing, at best, more output.

- Mathematically:
 - $F_K = \frac{\partial F}{\partial K} \geq 0$, marginal productivity of capital: How much more output if I increase K by 1 unit.
 - $F_L = \frac{\partial F}{\partial L} \geq 0$, marginal productivity of labor: How much more output if I increase labor by 1 unit.
Partial Derivatives

- **Example:** the Cobb-Douglas production function

\[F(K,L) = AK^\alpha L^\beta \]

- \[F_K = A(\alpha K^{\alpha-1}) L^\beta = \alpha Y/K \geq 0 \]

- \[F_L = AK^\alpha (\beta L^{\beta-1}) = \beta Y/L \geq 0 \]
3. Constant Returns to Scale

- Cobb-Douglas production function:
 \[Y = AK^\alpha L^\beta \]
 \[Y^* = A(zK)^\alpha (zL)^\beta = Yz^{(\alpha + \beta)} \]

Hence:
- If \(\alpha + \beta > 1 \) then \(Y^* > F(zK, zL) \), IRS
- If \(\alpha + \beta = 1 \) then \(Y^* = F(zK, zL) \), CRS
- If \(\alpha + \beta < 1 \) then \(Y^* < F(zK, zL) \), DRS
4. Diminishing Marginal Returns

- The marginal productivity of an extra unit of an input declines the more of that input is used in production

- Mathematically:

 \(- F_{KK} \leq 0\)
 \(- F_{LL} \leq 0\)
The MPL and the production function

As more labor is added, \(MPL \downarrow \)

Slope of the production function equals \(MPL \)

Output \(Y \)

Labor \(L \)
Diminishing marginal returns

- As a factor input is increased, its marginal product falls (other things equal).
- Intuition:
 \[\uparrow L \text{ while holding } K \text{ fixed} \]
 \[\Rightarrow \text{fewer machines per worker} \]
 \[\Rightarrow \text{lower productivity} \]
5. Determinants of Output Growth

\[Y \text{ growth} = (MPK \times K \text{ share}) \times K \text{ growth} + (MPL \times L \text{ share}) \times L \text{ growth} \]

Mathematically: \(Y = F(K,L) \)

\[dY = F_K \, dK + F_L \, dL \text{ hence} \]

\[\frac{dY}{Y} = \left(\frac{F_K K}{Y} \right) \frac{dK}{K} + \left(\frac{F_L L}{Y} \right) \frac{dL}{L} \]
Cobb-Douglas Example

F_K = \alpha Y/K; and F_L = \beta Y/L. Hence:

\[\frac{dY}{Y} = \left(\alpha \frac{Y}{K} \right) \frac{dK}{K} + \left(\beta \frac{Y}{L} \right) \frac{dL}{L} \]

or simply

\[\frac{dY}{Y} = \alpha \frac{dK}{K} + \beta \frac{dL}{L} \]

\(\alpha\) is the capital share; \(\beta\) is the labor share
Factor Prices and Quantities of Equilibrium
Assumptions of the model

1. Technology is fixed. $A = \bar{A}$
2. The economy’s supplies of capital and labor are fixed at $K = \bar{K}$ and $L = \bar{L}$
Determining GDP

Output is determined by the fixed factor supplies and the fixed state of technology:

$$\bar{Y} = F(\bar{K}, \bar{L})$$
The distribution of national income

- determined by factor prices, the prices per unit that firms pay for the factors of production.

- The wage is the price of L, the rental rate is the price of K.
Notation

\[W = \text{nominal wage} \]
\[R = \text{nominal rental rate} \]
\[P = \text{price of output} \]
\[\frac{W}{P} = \text{real wage} \]
\[\text{(measured in units of output)} \]
\[\frac{R}{P} = \text{real rental rate} \]
What Real Wage Really Means

- W is measured in $/\text{unit of work}$
- P is measured in $/\text{unit of good}$

Hence

$$\frac{W}{P} = \frac{($/\text{unit of work})}{($/\text{unit of good})} = \frac{\text{units of good}}{\text{units of labor}}$$
How factor prices are determined

- Factor prices are determined by supply and demand in factor markets.
- Recall: Supply of each factor is fixed.
- What about demand?
Survey: Grads finding hot jobs market

Employers set to hire nearly 15% more college grads this spring, survey says; starting salaries up for many business, engineering majors.

[...]accounting degree graduates are receiving an average starting salary of $46,188, up 5.4 percent from a year ago. Right behind are economics/finance graduates, who are getting average offers of $45,058, up 5.3 percent, and business administration/management majors, who are seeing average offers 3.9 percent higher than a year ago at $40,976.

Source: CNNMoney.com
Demand for labor

- Assume markets are competitive: each firm takes \(W, R, \) and \(P \) as given.

- Basic idea: A firm hires one extra unit of labor if the cost does not exceed the benefit.

 cost = real wage \((W/P)\)

 benefit = marginal product of labor \((MPL)\)
Check your understanding:

Which of these production functions have diminishing marginal returns to labor?

a) \[F(K, L) = 2K + 15L \]

b) \[F(K, L) = \sqrt{KL} \]

c) \[F(K, L) = 2\sqrt{K} + 15\sqrt{L} \]
Exercise (part 2)

Suppose \(W/P = 6 \).

\[L \quad Y \quad MPL \]
\[0 \quad 0 \quad \text{n.a.} \]
\[1 \quad 10 \quad 10 \]
\[2 \quad 19 \quad 9 \]
\[3 \quad 27 \quad 8 \]
\[4 \quad 34 \quad 7 \]
\[5 \quad 40 \quad 6 \]
\[6 \quad 45 \quad 5 \]
\[7 \quad 49 \quad 4 \]
\[8 \quad 52 \quad 3 \]
\[9 \quad 54 \quad 2 \]
\[10 \quad 55 \quad 1 \]

d. If \(L = 3 \), should firm hire more or less labor? Why?

e. If \(L = 7 \), should firm hire more or less labor? Why?
Each firm hires labor up to the point where \(MPL = \frac{W}{P} \).
The equilibrium real wage

Units of output

Labor supply

MPL, Labor demand

\(\bar{L} \)

Units of labor, \(L \)

The real wage adjusts to equate labor demand with supply.
Determining the rental rate

We have just seen that \(MPL = \frac{W}{P} \)

The same logic shows that \(MPK = \frac{R}{P} \):

- diminishing returns to capital: \(MPK \downarrow \) as \(K \uparrow \)
- The \(MPK \) curve is the firm’s demand curve for renting capital.
- Firms maximize profits by choosing \(K \) such that \(MPK = \frac{R}{P} \).
The equilibrium real rental rate adjusts to equate demand for capital with supply.

Units of output

Supply of capital

equilibrium \(R/P \)

MPK, demand for capital

Units of capital, \(K \)

The real rental rate
The Neoclassical Theory of Distribution

- states that each factor input is paid its marginal product
- accepted by most economists
How income is distributed:

- total labor income $= \frac{W}{P} \bar{L} = MPL \times \bar{L}$
- total capital income $= \frac{R}{P} \bar{K} = MPK \times \bar{K}$

If production function has constant returns to scale, then

$$\bar{Y} = MPL \times \bar{L} + MPK \times \bar{K}$$

- national income
- labor income
- capital income
Euler’s Theorem and Income Distribution

- Euler’s theorem states that if $F(X,Y)$ is a homogenous function of degree one such that $F(zX, zY) = zF(X,Y)$. Then:

$$F(X,Y) = F_X X + F_Y Y$$

- An implication of Euler’s theorem is that for any production function with CRS, then

$$F(K,L) = F_K K + F_L L$$
A Cobb-Douglas Example

- When $\alpha + \beta = 1$, we know that the Cobb-Douglas production function has CRS. Hence, a direct application of Euler’s theorem or direct application of the economic arguments presented above:

$$\text{MPK} \times K + \text{MPL} \times L = \alpha Y + (1-\alpha)Y = Y$$
Recap: Assumptions Made

- **CRS technology**: even when some industries seem to violate this assumption, it holds true for entire economies fairly well.

- **Perfect Competition**: is a good approximation to long-run behavior even if it is violated often.

- **Profit Maximization**: hardly needs justification...
Outline of model

A *closed economy, market-clearing model*

Supply side
- factor markets (supply, demand, price)
- determination of output/income

Demand side

Next
- determinants of C, I, and G

Equilibrium
- goods market
- loanable funds market