Recent Developments in Modeling Financial Intermediation
by Stephen Williamson

Professor Kevin D. Salyer

UC Davis

May 2007
Four equations define the model:

\begin{align*}
 s_t &= e - \frac{p_t}{E_t(p_{t+1})} \\
 \pi_t^* w_t - (1 - \pi_t^*) \beta &= r_t K \\
 L_t &= (1 - \alpha) NK \frac{(\pi_t^u - \pi_t^*)}{(\pi_t^u - \pi_t^l)} \\
 \alpha N s_t &= p_t H + L_t
\end{align*}
Exogenous Uncertainty

- A two-state Markov process with \((z_1, z_2)\) and
 \[\Pr(z_{t+1} = z1|z_t = z_i) = q_i. \]
Exogenous Uncertainty

- A two-state Markov process with \((z_1, z_2)\) and
 \(\Pr(z_{t+1} = z_1 | z_t = z_i) = q_i\).

- Possible realizations:

 \[
 z_1 = \left(\pi^l_1 = 0.1, \pi^u_1 = 0.9, w_1 = 400 \right) \\
 z_2 = \left(\pi^l_2 = 0.08, \pi^u_2 = 0.7, w_2 = 514 \right)
 \]
A two-state Markov process with \((z_1, z_2)\) and
\[\Pr(z_{t+1} = z_1 | z_t = z_i) = q_i. \]

Possible realizations:

\[
\begin{align*}
 z_1 &= \left(\pi^l_1 = 0.1, \pi^u_1 = 0.9, w_1 = 400 \right) \\
 z_2 &= \left(\pi^l_2 = 0.08, \pi^u_2 = 0.7, w_2 = 514 \right)
\end{align*}
\]

Note that \((\pi^l_1 w_1, \pi^u_1 w_1) = (40, 360)\); \((\pi^l_2 w_2, \pi^u_2 w_2) = (41, 360)\) So the same uniform distribution for expected returns.
A two-state Markov process with \((z_1, z_2)\) and
\[
\Pr(z_{t+1} = z_1 | z_t = z_i) = q_i.
\]
Possible realizations:
\[
\begin{align*}
z_1 &= \left(\pi_1^l = 0.1, \pi_1^u = 0.9, w_1 = 400 \right) \\
z_2 &= \left(\pi_2^l = 0.08, \pi_2^u = 0.7, w_2 = 514 \right)
\end{align*}
\]
Note that \((\pi_1^l w_1, \pi_1^u w_1) = (40, 360); (\pi_2^l w_2, \pi_2^u w_2) = (41, 360)\) So the same uniform distribution for expected returns.
But there is change in riskiness of projects.
State 2 implies greater risk relative to State 1

- Consider a project whose expected returns are the same in both states. For example

 \[\text{In state 1: } \pi_1 = 0.5 \text{ so } R_1 = E_1(w) = (0.5)(400) = 200 \]
Consider a project whose expected returns are the same in both states. For example

\[\text{In state 1: } \pi_1 = 0.5 \text{ so } R_1 = E_1(w) = (0.5)(400) = 200 \]

So in state 2 we also want to keep \(R_2 = R_1 = 200 \). Since \(w_2 = 514 \), this requires

\[R_2 = 200 = E_2(w) = \pi_2(514) \Rightarrow \pi_2 = \frac{200}{514} = 0.39 \]
State 2 implies greater risk relative to State 1

But consider the variance:

\[
\begin{align*}
\text{Var}_i (R) &= \text{Var}_i (w) = E_i (w^2) - [E_i (w)]^2 \\
&= \left[\pi_i (w_i)^2 - (1 - \pi_i) 0^2 \right] - R_i^2 \\
\text{Var}_i (R) &= \pi_i w_i - R_i^2 \text{ (since } \pi_i w_i = R_i) \\
\end{align*}
\]

Since \(R_1 = R_2 \) by assumption, then \(\text{Var}_2 (R) > \text{Var}_1 (R) \) since \(w_2 > w_1 \).
By assumption \(\Pr (z_{t+1} = z_1 | z_t = z_1) > \Pr (z_{t+1} = z_1 | z_t = z_2) \)
Equilibrium

- By assumption $\Pr(z_{t+1} = z_1 | z_t = z_1) > \Pr(z_{t+1} = z_1 | z_t = z_2)$
- This implies that, in state 2, the expected monitoring costs are higher so less loans will be made.
Equilibrium

- By assumption \(\Pr (z_{t+1} = z_1 | z_t = z_1) > \Pr (z_{t+1} = z_1 | z_t = z_2) \)
- This implies that, in state 2, the expected monitoring costs are higher so less loans will be made.
- So, even though there is no change in the average level of returns, output will be less following state 2 relative to state 1.
By assumption Pr \((z_{t+1} = z_1 | z_t = z_1) > Pr (z_{t+1} = z_1 | z_t = z_2) \)

This implies that, in state 2, the expected monitoring costs are higher so less loans will be made.

So, even though there is no change in the average level of returns, output will be less following state 2 relative to state 1.

Endogenous business cycles because of financial intermediation.