
Chapter 1

Expectations and Economic
Dynamics

Expectations lie at the core of economic dynamics as they usually determine,

not only the behavior of the agents, but also the main properties of the econ-

omy under study. Although having been soon recognized, the question of

expectations has been neglected for a while, as this is a pretty difficult is-

sue to deal with. In this course, we will mainly be interested by “rational

expectations”

1.1 The rational expectations hypothesis

The term ‘ ‘rational expectations” is most closely associated with Nobel Laure-

ate Robert Lucas of the University of Chicago, but the question of rationality

of expectations came into the place before Lucas investigated the issue (see

Muth [1960] or Muth [1961]). The most basic interpretation of rational ex-

pectations is usually summarized by the following statement:

Individuals do not make systematic errors in forming their expec-

tations; expectations errors are corrected immediately, so that —

on average — expectations are correct.

But rational expectation is a bit more subtil concept that may be defined in

3 ways.

Definition 1 (Broad definition) Rational expectations are such that indi-

viduals formulate their expectations in an optimal way, which is actually com-
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2 CHAPTER 1. EXPECTATIONS AND ECONOMIC DYNAMICS

parable to economic optimization.

This definition actually states that individuals collect information about the

economic environment and use it in an optimal way to specify their expec-

tations. For example, assume that an individual wants to make forecasts on

an asset price, she needs to know the series of future dividends and there-

fore needs to make predictions about these dividends. She will then collect all

available information about the environment of the firm (expected demand, in-

vestments, state of the market. . . ) and use this information in an optimal way

to make expectations. But two key issues emerge then: (i) the cost of collect-

ing information and (ii) the definition of the objective function. Hence, despite

its general formulation, this definition remains weakly operative. Therefore, a

second definition was proposed in the literature.

Definition 2 (mid–definition) Agents do not waste any available piece of

information and use it to make the best possible fit of the real world.

This definition has the great advantage of avoiding to deal with the problem

of the cost of collecting information — we only need to know that agents do

not waste information — but it remains weakly operative in the sense it is

not mathematically specified. Hence, the following weak definition is most

commonly used.

Definition 3 (weak definition) Agents formulate expectations in such a way

that their subjective probability distribution of economic variables (conditional

on the available information) coincides with the objective probability distribu-

tion of the same variable (the state of Nature) in an equilibrium:

xet = E(xt|Ω)

where Ω denote the information set

When the model satisfies a markovian property, Ω essentially consists of past

realizations of the stochastic variables from t=0 on. For instance, if we go back

to our individual who wants to predict the price of an asset in period t, Ω will

essentially consist of all past realizations of this asset price: Ω = {pt−i; i =

1 . . . t}. Beyond, this definition assumes that agents know the model and the
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probability distributions of the shocks that hit the economy — that is what is

needed to compute all the moments (average, standard deviations, covariances

. . . ) which are needed to compute expectations. In other words, and this is

precisely what makes rational expectations so attractive:

Expectations should be consistent with the model
=⇒ Solving the model is finding an expectation function.

Notation: Hereafter, we will essentially deal with markovian models, and will

work with the following notation:

Et−i(xt) = E(xt|Ωt−i)

where Ωt−i = {xk; k = 0 . . . t− i}.

The weak definition of rational expectations satisfies two vary important prop-

erties.

Proposition 1 Rational Expectations do not exhibit any bias: Let x̂t = xt−x
e
t

denote the expectation error:

Et−1(x̂t) = 0

which essentially corresponds to the fact that individuals do not make system-

atic errors in forming their expectations.

Proposition 2 Expectation errors do not exhibit any serial correlation:

Covt−1(x̂t, x̂t−1) = Et−1(x̂tx̂t−1) − Et−1(x̂t)Et−1(x̂t−1)

= Et−1(x̂t)x̂t−1 − Et−1(x̂t)x̂t−1

= 0

Example 1 Let’s consider the following AR(2) process

xt = ϕ1xt−1 + ϕ2xt−2 + εt

such that the roots lies outside the unit circle and εt is the innovation of the

process.
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1. Let’s now specify Ω = {xk; k = 0, . . . , t− 1}, then

E(xt|Ω) = E(ϕ1xt−1 + ϕ2xt−2 + εt|Ω)

= E(ϕ1xt−1|Ω) + E(ϕ2xt−2|Ω) + E(εt|Ω)

Note that by construction, we have xt−1 ∈ Ω and xt−2 ∈ Ω, therefore,

E(xt−1|Ω) = xt−1 and E(xt−2|Ω) = xt−2. Since, εt is an innovation,

it is orthogonal to any past realization of the process, εt⊥Ω such that

E(εt|Ω) = 0. Hence

E(xt|Ω) = ϕ1xt−1 + ϕ2xt−2

2. Let’s now specify Ω = {xk; k = 0, . . . , t− 2}, then

E(xt|Ω) = E(ϕ1xt−1 + ϕ2xt−2 + εt|Ω)

= E(ϕ1xt−1|Ω) + E(ϕ2xt−2|Ω) + E(εt|Ω)

Note that by construction, we have xt−2 ∈ Ω, such that as before E(xt−2|Ω) =

xt−2. Further, we still have εt⊥Ω such that E(εt|Ω) = 0. But now

xt−1 /∈ Ω such that

E(xt|Ω) = ϕ1E(xt−1|Ω) + ϕ2xt−2

and we shall compute E(xt−1|Ω):

E(xt−1|Ω) = E(ϕ1xt−2 + ϕ2xt−3 + εt−1|Ω)

= E(ϕ1xt−2|Ω) + E(ϕ2xt−3|Ω) + E(εt−1|Ω)

Note that xt−2 ∈ Ω, xt−3 ∈ Ω and εt−1⊥Ω, such that

E(xt−1|Ω) = ϕ1xt−2 + ϕ2xt−3

Hence

E(xt|Ω) = (ϕ2
1 + ϕ2)xt−2 + ϕ2xt−3

This example illustrates the so called law of iterated projection.

Proposition 3 (Law of Iterated Projection) Let’s consider two informa-

tion sets Ωt and Ωt−1, such that Ωt ⊃ Ωt−1, then

E(xt|Ωt−1) = E(E(xt|Ωt)|Ωt−1)
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Beyond, the example reveals a very important property of rational expecta-

tions: a rational expectation model is not a model in which the in-

dividual knows everything. Everything depends on the information struc-

ture. Let’s consider some simple examples.

Example 2 (signal extraction) In this example, we will deal with a situa-

tion where the agents know the model but do not perfectly observe the shocks

they face. Information is therefore incomplete because the agents do not know

perfectly the distribution of the “true” shocks.

Assume that a firm wants to predict the demand, d, it will be addressed, but

only observes a random variable x that is related to d as

x = d+ η (1.1)

where E(dη) = 0, E(d2) = σd < ∞, E(η2) = ση < ∞, E(d) = δ, and

E(η) = 0. This assumption amounts to state that x differs from d by a mea-

surement error, η. Note that in this example, we assume that there is a noisy

information, but the firm still knows the overall structure of the model (namely

it knows 1.1). The problem of the firm is then to formulate an expectation for

d only observing x: Ω = {1, x}. In this case, the problem of the entrepreneur

is to determine E(d|Ω). Since the entrepreneur knows the linear structure of

the model, it can guess that

E(d|Ω) = α0 + α1x

From proposition 1, we know that the expectation error exhibits no bias so that

E(d− E(d|Ω)|Ω) = 0

which amounts to

E(d− α0 − α1x|Ω) = 0

or {
E(d− α0 − α1x|1) = 0
E(d− α0 − α1x|x) = 0

These are the two normal equation associated with an OLS estimate, hence we

have

α1 =
Cov(x, d)

V(x)
=

Cov(d+ η, d)

V(d+ η)
=

σ2
d

σ2
d + σ2

η
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and

α0 =
σ2
η

σ2
d + σ2

η

δ

Example 3 (bounded memory) In this example, we deal with a situation

where the agents know the model but have a bounded memory in the sense they

forget past realization of the shocks.

Let’s consider the problem of a firm which demand depends on expected ag-

gregate demand and the price level. In order to keep things as simple as pos-

sible, we will assume that the price is an exogenous i.i.d process with mean p

and variance σ2
p) and that aggregate demand is driven by the following simple

AR(1) process

Yt = ρYt−1 + (1 − ρ)Y + εt

where |ρ| < 1 and εt is the innovation of the process. The demand then takes

the following form

dt = αE(Yt+1|Ω) − βpt

But rather than being defined as Ω = {Yt−i, pt−i, εt−i; i = 0 . . .∞}, Ω now takes

the form Ω = {Yt−i, pt−i, εt−i; i = 0 . . . k, k < ∞}. Computing the rational

expectation is now a bit more tricky. We first have to write down the Wold

decomposition of the process of Y

Yt = Y +
∞∑

i=0

ρiεt−i

Then E(Yt+1|Ω) can be computed as

E(Yt+1|Ω) = E

(
Y +

∞∑

i=0

ρiεt+1−i

∣∣∣∣Ω
)

Since Y is a deterministic constant, E
(
Y
)

= Y , such that

E(Yt+1|Ω) = Y +

∞∑

i=0

ρiE(εt+1−i|Ω)

Since Ω = {Yt−i, pt−i, εt−i; i = 0 . . . k, k < ∞}, we have εt−i⊥Ω ∀i > k, such

that, in this case E(εt−i|Ω) = 0. Hence,

E(Yt+1|Ω) = Y +
k∑

i=0

ρi+1εt−i
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hence

dt = α

(
Y +

k∑

i=0

ρi+1εt−i

)
− βpt

which may be re–expressed in terms of observable variables as

dt = α
(
Y + ρ

(
Yt − Y − ρk+1

(
Yt−(k+1) − Y

)))
− βpt

1.2 A prototypical model of rational expectations

1.2.1 Sketching up the model

In this section we try to characterize the behavior of an endogenous variable

y that obeys the following expectational difference equation

yt = aEtyt+1 + bxt (1.2)

where Etyt+1 ≡ E(yt+1|Ω) where Ω = {yt−i, xt−i, i = 0, . . . ,∞}.

Equation (1.2) may be given different interpretations. We now provide you

with a number of models that suit this type of expectational difference equa-

tion.

Asset–pricing model: Let pt be the price of a stock, dt be the dividend,

and r be the rate of return on a riskless asset, assumed to be held constant

over time. Standard theory of finance teaches us that if agents are risk neutral,

then the arbitrage between holding stocks and the riskless asset should be such

that the expected return on the stock — given by the expected rate of capital

gain plus the dividend/price ratio — should equal the riskless interest rate:

Etpt+1 − pt
pt

+
dt
pt

= r

or equivalently

pt = aEtpt+1 + adt where a ≡
1

1 + r
< 1

The Cagan Model: The Cagan model is a macro model that was designed

to furnish an explanation to the hyperinflation problem. Cagan assumes that

the demand for real balances takes the following form

Md
t

Pt
= exp

(
−απet+1

)
(1.3)



8 CHAPTER 1. EXPECTATIONS AND ECONOMIC DYNAMICS

where πet+1 denotes expected inflation

πet+1 ≡
Et(Pt+1) − Pt

Pt

In an equilibrium, money demand equals money supply, such that

Md
t = M s

t = Mt

hence in an equilibrium, equation (1.3) reduces to

Mt

Pt
= exp

(
−α

Et(Pt+1) − Pt
Pt

)
(1.4)

Taking logs — lowercases will denote logged variables — using the approxi-

mation log(1 + x) ≃ x and reorganizing, we end up with

pt = aEt(pt+1) + (1 − a)mt where a =
α

1 + α

Monopolistic competition Consider a monopolist that faces the following

demand

pt = α− βyt − γEtyt+1 (1.5)

the term in yt accounts for the fact that the greater the greater the price

is, the lower the demand is. The term in Etyt+1 accounts for the fact that

greater expected sells tend to lower the price.1 The firm acts as a monopolist

maximizing its profit

max
yt

ptyt − ctyt

taking the demand (1.5) into account. ct is the marginal cost, which is as-

sumed to follow an exogenous stochastic process. Note that we assume, for the

moment, that the firm adopts a purely static behavior. Profit maximization

— taking (1.5) into account — yields

α− 2βyt − γEtyt+1 − ct = 0

which may be rewritten as

yt = aEt(pt+1) + bct + d where a =
−γ

2β
, b =

−1

2β
and d =

α

2β

1If γ < 0, the model may be given an alternative interpretation. Greater expected sells
lead the firm to raise its price (you may think of goods such as tobacco, alcohol, . . . , each
good that may create addiction).
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At this point we are left with the expectational difference equation (1.2),

which may either be solved “forward” or “backward” looking depending on

the value of a. When |a| < 1 the solution should be forward looking, as it

will become clear in a moment, conversely, when |a| > 1 the model should be

solved backward. The next section investigates this issue.

1.2.2 Forward looking solutions: |a| < 1

The problem that arises with the case |a| < 1 may be understood by looking

at figure 1.1, which reports the dynamics of equation

Etyt+1 =
1

a
yt −

b

a
xt

Holding xt constant — and therefore eliminating the expectation. As can be

seen from the figure, the path is fundamentally unstable as soon as we look at

it in the usual backward looking way. Starting from an initial condition that

differs from y, say y0, the dynamics of y diverges. The system then displays

a bubble.2 A more interesting situation arises when the variable yt represents

a variable such as a price or consumption — in any case a variable that shifts

following a shock and that does not have an initial condition but a terminal

condition of the form

lim
t−→∞

|yt| <∞ (1.6)

In fact such a terminal condition — which is often related to the so–called

transversality condition arising in dynamic optimization models — bounds

the sequence of {yt}
∞
t=0 and therefore imposes stationarity. Solving this

system then amounts to find a sequence of stochastic variable that satisfies

(1.2). This may be achieved in different ways and we now present 3 possible

methods.

Forward substitution

This method proceeds by iterating forward on the system, making use of the

law of iterated projection (proposition 3). Let us first recall the expectational

difference equation at hand:

yt = aEtyt+1 + bxt

2We will come back to this point later on.
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Figure 1.1: The regular case
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Iterating one step forward — that is plugging the value of yt evaluated in t+1

in the expectation, we get

yt = aEt (Et+1(ayt+2 + bxt+1)) + bxt

The law of iterated projection implies that Et(Et+1(yt+2)) = Etyt+2, so that

yt = a2Et(yt+2) + abEt(xt+1) + bxt

Iterating one step forward, we get

yt = a2Et(Et+2(ayt+3 + bxt+2)) + abEt(xt+1) + bxt

Once again making use of the law of iterated projection, we get

yt = a3Et(yt+3) + a2bEt(xt+2) + abEt(xt+1) + bxt

Continuing the process, we get

yt = b lim
k−→∞

k∑

i=0

aiEt(xt+i) + lim
k−→∞

ak+1Et(yt+k+1)
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For the first term to converge, we need the expectation Et(xt+k) not to increase

at a too fast pace. Then provided that |a| < 1, a sufficient condition for the

first term to converge is that the expectation explodes at a rate lower than

|1/a− 1|.3 In the sequel we will assume that this condition holds.

Finally, since |a| < 1, imposing that lim
t−→∞

|yt| <∞ holds, we have

lim
k−→∞

ak+1Et(yt+k+1) = 0

and the solution is given by

yt = b
∞∑

i=0

aiEt(xt+i) (1.7)

In other words, yt is given by the discounted sum of all future expected values

of xt. In order to get further insight on the form of the solution, we may be

willing to specify a particular process for xt. We shall assume that it takes

the following AR(1) form:

xt = ρxt−1 + (1 − ρ)x+ εt

where |ρ| < 1 for sake of stationarity and εt is the innovation of the process.

Note that

Etxt+1 = ρxt + (1 − ρ)x

Etxt+2 = ρEtxt+1 + (1 − ρ)x = ρ2xt + (1 − ρ)(1 + ρ)x

Etxt+3 = ρEtxt+2 + (1 − ρ)x = ρ3xt + (1 − ρ)(1 + ρ+ ρ2)x

...

Etxt+i = ρixt + (1 − ρ)(1 + ρ+ ρ2 + . . .+ ρi)x = ρixt + (1 − ρi+1)x

Therefore, the solution takes the form

yt = b
∞∑

i=0

ai(ρixt + (1 − ρi)x)

= b

(
∞∑

i=0

(aρ)i(xt − x) +

∞∑

i=0

aix

)

= b

(
xt − x

1 − aρ
+

x

1 − a

)

=
b

1 − aρ
xt +

ab(1 − ρ)

(1 − a)(1 − aρ)
x

3This will actually be the case with a stationary process.
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Figure 1.2 provides an example of the process generated by such a solution, in

the deterministic case and in the stochastic case. In the deterministic case, the

economy always lies on its long–run value y⋆, which is the only stable point.

We then talk about steady state — that is a situation where yt = yt+k = y⋆.

In the stochastic case, the economy fluctuates around the mean of the process,

and it is noteworthy that any change in xt instantaneously translates into a

change in yt. Therefore, the persistence of yt is given by that of xt.

Figure 1.2: Forward Solution
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Note: This example was generated using a = 0.8, b = 1, ρ = 0.95, σ = 0.1 and x = 1.

Matlab Code: Forward Solution

\simple

%

% Forward solution

%

lg = 100;

T = [1:long];

a = 0.8;

b = 1;

rho = 0.95;

sx = 0.1;

xb = 1;

%

% Deterministic case

%

y=a*b*xb/(1-a);

%

% Stochastic case

%

%

% 1) Simulate the exogenous process

%

x = zeros(lg,1);

randn(’state’,1234567890);
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e = randn(lg,1)*sx;

x(1) = xb;

for i=2:long;

x(i) = rho*x(i-1)+(1-rho)*xb+e(i);

end

%

% 2) Compute the solution

%

y = b*x/(1-a*rho)+a*b*(1-rho)*xb/((1-a)*(1-a*rho));

Factorization

The method of factorization was introduced by Sargent [1979]. It amounts to

make use of the forward operator F , introduced in the first chapter.4 In a first

step, equation (1.2) is rewritten in terms of F

yt = aEtyt+1+bxt ⇐⇒ Et(yt) = aEt(yt+1)+bEt(xt) ⇐⇒ (1−aF )Etyt = bEtxt

which rewrites as

Etyt = b
Etxt

1 − aF

since |a| < 1, we have

1

1 − aF
=

∞∑

i=0

aiF i

Therefore, we have

Etyt = yt = b
∞∑

i=0

aiF iEtxt = b
∞∑

i=0

aiEtxt+i

Note that although we get, obviously, the same solution, this method is not

as transparent as the previous one since the terminal condition (1.6) does not

appear explicitly.

Method of undetermined coefficients

This method proceeds by making an initial guess on the form of the solution.

An educated guess for the problem at hand would be

yt =
∞∑

i=0

αiEtxt+i

4Recall that the forward operator is such that F iEt(xt) = Et(xt+i).
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Plugging the guess in (1.2) leads to

∞∑

i=0

αiEtxt+i = aEt

(
∞∑

i=0

αiEt+1xt+1+i

)
+ bxt

Solving the model then amounts to find the sequence of αi, i = 0, . . . ,∞ such

that the guess satisfies the equation. We then proceed by identification.

i = 0 α0 = b
i = 1 α1 = aα0

i = 2 α2 = aα1
...

such that αi = aαi−1, with α0 = b. Note that since |a| < 1, this sequence

converges toward 0 as i tends toward infinity. Therefore, the solution writes

yt = b

∞∑

i=0

aiEtxt+i

The problem with such an approach is the we need to make the “right” guess

from the very beginning. Assume for a while that we had specified the follow-

ing guess

yt = γxt

Then

γxt = aEtγxt+1 + bxt

Identifying term by terms we would have obtained γ = b or γ = 0, which is

obviously a mistake.

As a simple example, let us assume that the process for xt is given by the same

AR(1) process as before. We therefore have to solve the following dynamic

system {
yt = aEtyt+1 + bxt
xt = ρxt−1 + (1 − ρ)x+ εt

Since the system is linear and that xt exhibits a constant term, we guess a

solution of the form

yt = α0 + α1xt

Plugging this guess in the expectational difference equation, we get

α0 + α1xt = aEt(α0 + α1xt+1) + bxt
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which rewrites, computing the expectation5

α0 + α1xt = aα0 + aα1ρxt + aα1(1 − ρ)x+ bxt

Identifying term by term, we end up with the following system of equations

α0 = aα0 + aα1(1 − ρ)xα1 = aα1ρ+ b

The second equation yields

α1 =
b

1 − aρ

the first one gives

α0 =
ab(1 − ρ)

(1 − a)(1 − aρ)
x

One advantage of this method is that it is particularly simple, and it requires

the user to know enough on the economic problem to formulate the right guess.

This latter property precisely constitutes the major drawback of the method

as if formulating a guess is simple for linear economies it may be particularly

tricky — even impossible — in all other cases.

1.2.3 Backward looking solutions: |a| > 1

Until now, we have only considered the case of a regular economy in which

|a| < 1, which — provided we are ready to impose a non–explosion condition

— yields a unique solution that only involves fundamental shocks. In this

section we investigate what happens when we relax the condition |a| < 1

and consider the case |a| > 1. This fundamentally changes the nature of the

solution, as can be seen from figure 1.3. More precisely, any initial condition

y0 for y is admissible as any leads the economy back to its long–run solution

y. The equilibrium is then said to be indeterminate.

From a mathematical point of view, the sum involved in the forward solution

is unlikely to converge. Therefore, the solution should be computed in an

alternative way. Let us recall the expectational difference equation

yt = aEtyt+1 + bxt

5Note that this is here that we make use of the assumptions on the process for the
exogenous shock.



16 CHAPTER 1. EXPECTATIONS AND ECONOMIC DYNAMICS

Figure 1.3: The irregular case
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Note that, by construction, we have

yt+1 = Et(yt+1) + ζt+1

where ζt+1 is the expectational error, uncorrelated — by construction — with

the information set, such that Etζt+1 = 0. The expectational difference equa-

tion then rewrites

yt = a(yt+1 − ζt+1) + bxt

which may be restated as

yt+1 =
1

a
yt +

b

a
xt + ζt+1

Since |a| > 1 this equation is stable and the system is fundamentally backward

looking. Note that ζt+1 is serially uncorrelated, and not necessarily correlated

with the innovations of xt. In other words, this shock may not be a funda-

mental shock and is alike a sunspot. For example, I wake up in the morning,

look at the weather and decides to consume more. Why? I don’t know! This

is purely extrinsic to the economy!
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Figure 1.4 reports an example of such an economy. We have drawn the solution

to the model for different values of the volatility of the sunspot, using the

same draw. As can be seen, although each solution is perfectly admissible,

the properties of the economy are rather different depending on the volatility

of the sunspot variable. Besides, one may compute the volatility and the first

Figure 1.4: Backward Solution
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Note: This example was generated using a = 1.8, b = 1, ρ = 0.95, σ = 0.1 and x = 1.

order autocorrelation of yt:
6

σ2
y =

b2(ρ+ a)

(a2 − 1)(a− ρ)
σ2
x +

a2

a2 − 1
σ2
ζ

ρy(1) =
1

a

[
1 +

b2ρ(a2 − 1)σ2
x

b2(a+ ρ)σ2
x + a2(a− ρ)σ2

ζ

]

Therefore, as should be expected, the overall volatility of y is an increasing

function of the volatility of the sunspot, but more important is the fact that

its persistence is lower the greater the volatility of the sunspot. Hence, there

6We leave it to you as an exercize.
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may be many candidates to the solution of such a backward looking equation,

each displaying totally different properties.

Matlab Code: Backward Solution

%

% Backward solution

%

lg = 200;

T = [1:lg];

a = 1.8;

b = 1;

rho = 0.95;

sx = 0.1;

xb = 1;

se = 0.1;

%

% 1) Simulate the exogenous process

%

x = zeros(lg,1);

randn(’state’,1234567890);

e = randn(lg,1)*sx;

x(1) = xb;

for i=2:lg;

x(i) = rho*x(i-1)+(1-rho)*xb+e(i);

end

%

% 2) Compute the solution

%

randn(’state’,1234567891);

es = randn(lg,1);

y1 = zeros(lg,1); % without sunspot

y2 = zeros(lg,1); % with sunspot (se=0.1)

y3 = zeros(lg,1); % with sunspot (se=0.5)

y4 = zeros(lg,1); % with sunspot (se=1)

y1(1) = 0;

y2(1) = es(1)*0.1;

y3(1) = es(1)*0.5;

y4(1) = es(1);

for i=2:lg;

y1(i) = y1(i-1)/a+b*x(i-1)/a;

y2(i) = y2(i-1)/a+b*x(i-1)/a+0.1*es(i);

y3(i) = y3(i-1)/a+b*x(i-1)/a+0.5*es(i);

y4(i) = y4(i-1)/a+b*x(i-1)/a+es(i);

end

1.2.4 One step backward: bubbles

Let’s now go back to the forward looking solution. The ways we dealt with it

led us to eliminate any bubble — that is we imposed condition (1.6) to bound

the sequence. By doing so, we restricted ourselves to a particular class of
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solution, but there may exist a wider class of admissible solution that satisfy

(1.2) without being bounded.

Let us now assume that such an alternative solution of the form does exist

ỹt = yt + bt

where yt is the solution (1.7) and bt is a bubble. In order for ỹt to be a solution

to (1.2), we need to place some additional assumption on its behavior.

If ỹt = yt + bt it has to be the case that Etỹt+1 = Etyt+1 + Etbt+1, such that

plugging this in (1.2), we get

yt + bt = aEtyt+1 + aEtbt+1 + bxt

Since yt is a solution to (1.2), we have that yt = aEtyt+1 + bxt such that the

latter equation reduces to

bt = aEtbt+1 ⇐⇒ Etbt+1 = a−1bt

Therefore, any bt that satisfies the latter restriction will be such that ỹt is a

solution to (1.2). Note that since |a| < 1 in the case of a forward solution,

bt explodes in expected values — therefore referring directly to the common

sense of a speculative bubble. Up to this point we have not specified any

particular functional form for the bubble. Blanchard and Fisher [1989] provide

two examples of such bubbles:

1. The ever–expanding bubble: bt then simply follows a deterministic trend

of the form:

bt = b0a
−t

It is then straightforward to verify that bt = aEtbt+1. How should we

interpret such a behavior for the bubble? In order to provide with some

insights, let’s consider the case of the asset–pricing equation:

Etpt+1 − pt
pt

+
dt
pt

= r

where dt = d⋆ (for simplicity). It is straightforward to check that the

no–bubble solution (the fundamental solution) takes the form:

pt = p⋆ =
d⋆

r



20 CHAPTER 1. EXPECTATIONS AND ECONOMIC DYNAMICS

which sticks to the standard solution that states that the price of an asset

should be the discounted sum of expected dividends (you may check that

d⋆/r =
∑∞

i=0(1+r)−id⋆). If we now add a bubble of the kind we consider

— that is bt = b0a
−t = b0(1 + r)t — provided b0 > 0 the price of the

asset will increase exponentially though the dividends are constant. The

explanation for such a result is simple: individuals are ready to pay a

price for the asset greater than expected dividends because they expect

the price to be higher in future periods, which implies that expected

capital gains will be able to compensate for the low price to dividend

ratio. This kind of anticipation is said to be self–fulfilling. Figure 1.5

reports an example of such a bubble.

Figure 1.5: Deterministic Bubble
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Note: This example was generated using d⋆ = 1, r = 0.04.

Matlab Code: Deterministic Bubble

%

% Example of a deterministic bubble

% The case of asset pricing (constant dividends)

%

d_star = 1;
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r = 0.04;

%

% Fundamental solution p*

%

p_star = d_star/r;

%

% bubble

%

long = 20;

T = [0:long];

b = (1+r).^T;

p = p_star+b;

2. The bursting–bubble: A problem with the previous example is that the

bubble is ever–expanding whereas observation and common sense sug-

gests that sometimes the bubble bursts. We may therefore define the

following bubble:

bt+1 =

{
(aπ)−1bt + ζt+1 with probability π
ζt+1 with probability 1 − π

with Etζt+1 = 0. So defined, the bubble keeps on inflating with probabil-

ity π and bursts with probability (1− π). Let’s check that bt = aEtbt+1

bt = aEt(π((aπ)−1bt + ζt+1) + (1 − π)ζt+1) taking bursting into account

= aEt(π(aπ)−1bt) + ζt+1) grouping terms in ζt+1

= aEt(a
−1bt) since Etζt+1 = 0

= bt since bt is known in t

Figure 1.6 reports an example of such a bubble (the vertical lines in

the upper right panel of the figure corresponds to time when the bubble

bursts). The intuition for the result is the same as before: individuals are

ready to pay a higher price for the asset than the expected discounted

dividends because they expect with a sufficiently high probability that

the price will be high enough in subsequent periods to generate sufficient

capital gains to compensate for the lower price to dividend ratio. The

main difference with the previous case is that this bubble is now driven

by a stochastic variable, labelled as sunspot in the literature.
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Figure 1.6: Bursting Bubble
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Matlab Code: Bursting Bubble

%

% Example of a bursting bubble

% The case of asset pricing (constant dividends)

%

d_star = 1;

r = 0.04;

%

% Fundamental solution p*

%

p_star = d_star/r;

%

% bubble

%

long = 200;

prob = 0.95;

randn(’state’,1234567890);

e = randn(long,1);

rand(’state’,1234567890);

ind = rand(long,1);

b = zeros(long,1);

dum = zeros(long,1);

b(1) = 0;

for i = 1:long-1;

dum(i)= ind(i)<prob;

b(i+1)= dum(i)*(b(i)*(1+r)/prob+e(i+1))+(1-dum(i))*e(i+1);

end;

p = p_star+b;

Up to this point we have been dealing with very simple situations where the

problem is either backward looking or forward looking. Unfortunately, such

a case is rather scarce, and most of economic problems such as investment

decisions, pricing decisions . . . are both backward and forward looking. We

examine such situations in the next section.

1.3 A step toward multivariate Models

We are now interested in solving a slightly more complicated problem involving

one lag (for the moment!) of the endogenous variable:

yt = aEtyt+1 + byt−1 + cxt (1.8)

This equation may be encountered in many different models, either in macro,

micro, IO. . . as we will see later on. For the moment, let us assume that this

is obtained from whatever model we may think of and let us take it as given.
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We are now willing to solve this expectational equation. As before, there exist

many methods.

1.3.1 The method of undetermined coefficients

Let us recall that solving the equation using undetermined coefficients amounts

to formulate a guess for the solution and find some restrictions on the coeffi-

cients of the guess such that equation (1.8) is satisfied. An educated guess in

this case is given by

yt = µyt−1 +
∞∑

i=0

αiEtxt+i

Where does this guess come from? Experience! and this is precisely why

the method of undetermined coefficients, although it may appear particularly

practical in a number of (simple) problems, is not always appealing.

Plugging this guess in equation (1.8) yields

µyt−1 +
∞∑

i=0

αiEtxt+i = aEt

[
µyt +

∞∑

i=0

αiEt+1xt+1+i

]
+ byt−1 + cxt

= aµ

(
µyt−1 +

∞∑

i=0

αiEtxt+i

)
+ aEt

[
∞∑

i=0

αiEt+1xt+1+i

]

+byt−1 + cxt

= (aµ2 + b)yt−1 + aµ

∞∑

i=0

αiEtxt+i + a

∞∑

i=0

αiEtxt+1+i + cxt

Everything is then a matter of identification (term by term):

µ = aµ2 + b (1.9)

α0 = aµα0 + c (1.10)

αi = aµαi + aαi−1 ∀i > 1 (1.11)

Solving (1.9) for µ amounts to solve the second order polynomial

µ2 −
1

a
µ+

b

a
= 0

which admits two solutions such that
{
µ1 + µ2 = 1

a

µ1µ2 = b
a

Three configurations may emerge from the above equation
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1. the two solutions lie outside the unit circle: the model is said to be a

source and only one particular point — the steady state — is a solution

to the equation.

2. One solution lie outside the unit circle and the other one inside: the

model exhibits the saddle path property.

3. The two solutions lie inside the unit circle: the model is said to be a sink

and there is indeterminacy.

Here, we will restrict ourselves to the situation where an extended version of

the condition |a| < 1 we were dealing with in the preceding section holds,

namely one root will be of modulus greater than one and the other less than

one. The model will therefore exhibit the so–called saddle point property, for

which we will provide a geometrical interpretation in a moment. To sum up,

we consider a situation where |µ1| < 1 and |µ2| > 1. Since we restrict ourselves

to the stationary solution, we necessarily have |µ| < 1 so that µ = µ1.

Once µ has been obtained, we can solve for αi, i = 0, . . .. α0 is obtained from

(1.10) and takes the value

α0 =
c

1 − aµ1

We then get αi, i > 1, from (1.11) as

αi =
a

1 − aµ1
αi−1 =

1
1
a
− µ1

αi−1

Since µ1 + µ2 = 1/a, the latter equation rewrites

αi = µ−1
2 αi−1

where |µ2| > 1, such that this sequence converges toward zero. Therefore the

solution is given by

yt = µ1yt−1 +
c

1 − aµ1

∞∑

i=0

µ−i2 Etxt+i

Example 4 In the case of an AR(1) process for xt, the solution is straightfor-

ward, as all the process may be simplified. Indeed, let us consider the following

problem {
yt = aEtyt+1 + byt−1 + cxt
xt = ρxt−1 + εt
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with εt ; N (0, σ). An educated guess for the solution of this equation would

be

yt = µyt−1 + αxt

Let us then compute the solution of the problem, that is let us find µ and

α. Plugging the guess for the solution in the expectational difference equation

leads to

µyt−1 + αxt = aEt(µyt + αxt+1) + byt−1 + cxt

= aµ2yt−1 + aµαxt + aαρxt + byt−1 + cxt

= (aµ2 + b)yt−1 + (c+ aα(µ+ ρ))xt

Therefore, we have to solve the system

{
µ = aµ2 + b
α = c+ aα(µ+ ρ)

Like in the general case, we select the stable root of the first equation µ1, such

that |µ1| < 1, and α = c
1−a(µ1+ρ) Figure (1.7) reports an example of such an

economy for two different parameterizations.

Matlab Code: Backward–Forward Solution

%

% Solve for

%

% y(t)=a E y(t+1) + b y(t-1) + c x(t)

% x(t)= rho x(t-1)+e(t) e iid(0,se)

%

% and simulate the economy!

%

a = 0.25;

b = 0.7;

c = 1;

rho = 0.95;

se = 0.1;

mu = roots([a -1 b]);

[m,i] = min(mu);

mu1 = mu(i);

[m,i] = max(mu);

mu2 = mu(i);

alpha = b/(1-a*(mu1+rho));

%

% Simulation

%
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Figure 1.7: Backward–forward solution
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lg = 200;

randn(’state’,1234567890);

e = randn(lg,1)*se;

x = zeros(lg,1);

y = zeros(lg,1);

x(1) = 0;

y(1) = alpha*x(1);

for i = 2:lg;

x(i) = rho*x(i-1)+e(i);

y(i) = mu1*y(i-1)+alpha*x(i);

end

Note that contrary to the simple case we considered in the previous section, the

solution does not only inherit the persistence of the shock, but also generates its

own persistence through µ1 as can be seen from the first order autocorrelation

ρ(1) =
µ1 + ρ

1 + µ1ρ

1.3.2 Factorization

The method of factorization proceeds into 2 steps.

1. Factor the model (1.8) making use of the leading operator F :

(aF 2 − F + b)Etyt−1 = −cEtxt

which may be rewritten as

(
F 2 −

1

a
F +

b

a

)
Etyt−1 = −

c

a
Etxt

which may also be rewritten as

(F − µ1)(F − µ2)Etyt−1 = −
c

a
Etxt

Note that µ1 and µ2 are the same as the ones obtained using the method

of undetermined coefficients, therefore the same discussion about their

size applies. We restrict ourselves to the case |µ1| < 1 (backward part)

and |µ2| > 1 (forward part) — that is to saddle path solutions.

2. Derive a solution for yt: Starting from the last equation, we can rewrite

it as

(F − µ1)Etyt−1 = −
c

a
(F − µ2)

−1Etxt
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or

(F − µ1)Etyt−1 =
c

aµ2
(1 − µ−1

2 F )−1Etxt

Since |µ2| > 1, we know that

(1 − µ−1
2 F )−1 =

∞∑

i=0

µ−i2 F i

so that

(F − µ1)Etyt−1 =
c

aµ2

∞∑

i=0

µ−i2 F iEtxt =
c

aµ2

∞∑

i=0

µ−i2 Etxt+i

Now, applying the leading operator on the left hand side of the equation

and acknowledging that µ2 = 1/a− µ1, we have

yt = µ1yt−1 +
c

1 − aµ1

∞∑

i=0

µ−i2 Etxt+i

1.3.3 A matricial approach

In this section, we would like to provide you with some geometrical intuition of

what is actually going on when the saddle path property applies in the model.

To do so, we will rely on a matricial approach. First of all, let us recall the

problem we have in hands:

yt = aEtyt+1 + byt−1 + cxt

Introducing the technical variable zt defined as

zt+1 = yt

the model may be rewritten as7

(
Etyt+1

zt+1

)
=

(
1
a

− b
a

1 0

)(
yt
zt

)
−

(
−c
1

)
xt

Remember that Etyt+1 = yt+1 − ζt+1 where ζt+1 is an iid process which rep-

resents the expectation error, therefore, the system rewrites

(
yt+1

zt+1

)
=

(
1
a

− b
a

1 0

)(
yt
zt

)
−

(
−c
1

)
xt −

(
1
0

)
ζt+1

7In the next section we will actually pool all the equations in a single system, but for
pedagogical purposes let us separate exogenous variables from the rest for a while.
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In order to understand the saddle path property let us focus on the homoge-

nous part of the equation

(
yt+1

zt+1

)
=

(
1
a

− b
a

1 0

)(
yt
zt

)
= W

(
yt
zt

)

Provided b 6= 0 the matrix W can be diagonalized and may be rewritten as

W = PDP−1

where D contains the two eigenvalues of W and P the associated eigenvectors.

Figure 1.8 provides a way of thinking about eigenvectors and eigenvalues in

dynamical systems. The figure reports the two eigenvectors, P1 and P2, as-

sociated with the two eigenvalues µ1 and µ2 of W . µ1 is the stable root and

µ2 is the unstable root. As can be seen from the graph, displacements along

Figure 1.8: Geometrical interpretation of eigenvalues/eigenvectors
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P1 are convergent, in the sense they shift either x1 or x4 toward the center of

the graph (x′1 and x′4), while displacements along P2 are divergent (shift of x2

and x3 to x′2 and x′3). In fact the eigenvector determines the direction along
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which the system will evolve and the eigenvalue the speed at which the shift

will take place.

The characteristic equation that gives the eigenvalues, in the case we are study-

ing, is given by

det(W − µI) = 0 ⇐⇒ µ2 −
1

a
µ+

b

a
= 0

which exactly corresponds to the equations we were dealing with in the previ-

ous sections. We will not enter the formal resolution of the model right now,

as we will undertake an extensive treatment in the next section. However, we

will just try to understand what may be going on using a phase diagram like

approach to understand the dynamics. Figures 1.9–1.11 report the different

possible configuration we may encounter solving this type of model. The first

one is a source (figure 1.9), which is such that no matter the initial condition

we feed the system with — except y0 = y⋆, z0 = z⋆ — the system will explode.

Both y and z will not be bounded. The second one is a sink (figure 1.10), all

trajectories converge back to the steady state of the economy, one is then free

to choose whatever trajectory it wants to go back to the steady state. The

equilibrium is therefore indeterminate.

Figure 1.9: A source
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Figure 1.10: A sink: indeterminacy
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In the last situation (figure 1.11) — this corresponds to the most commonly

encountered situation in economic theory — the economy lies on a saddle: one

branch of the saddle converges to the steady state, the other one diverges. The

problem is then to select where to start from. It should be clear to you that in

t, zt is perfectly known as zt = yt−1 which was selected in the earlier period.

zt is then said to be predetermined: the agents is endowed with its value when

she enters the period. This is part of the information set. Solving the system

therefore amounts to select a value for yt, given that for zt and the structure

of the model. How to proceed then? Let us assume for a while that at time

0, the economy is endowed with z0, and assume that we impose the value y1
0

as a starting value for y. In such a case, the economy will explode: in other

words a solution including a bubble has been selected. If, alternatively, y2
0 is

selected, then the economy will converge to the steady state (z⋆, y⋆) and all

the variables will be bounded. In other words, we have selected a trajectory

such that

lim
t−→∞

|yt| <∞

holds. Otherwise stated, bubbles have been eliminated by imposing a terminal

condition. In the sequel, we will be mostly interested by situation were the
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Figure 1.11: The saddle path
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economy either lies on a saddle path or is indeterminate. In the next section,

we will show you how to solve an expectational multivariate system of the

kind we were considering up to now.

1.4 Multivariate Rational Expectations Models (The
simple case)

1.4.1 Representation

Let us assume that the model writes

MccYt = McsMcsSt (1.12)

Mss0EtSt+1 +Mss1St = Msc0EtYt+1 +Msc1Yt +MseEt+1 (1.13)

where Yt is a ny × 1 vector of endogenous variables, εt is a ℓ × 1 vector of

exogenous serially uncorrelated random disturbances. A fairly natural inter-

pretation of this dynamic system may be found in the state–space form liter-

ature: equation (1.17) corresponds to the standard measurement equation. It

relates variables of interest Yt to state variables St. (1.13) is the state equa-
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tion that actually drives the dynamics of the economy under consideration:8 it

relates future values of states St+1 to current and expected values of variables

of interest, current state variables and shocks to fundamentals Et+1. In other

words, (1.13) furnishes the transition from one state of the system to another

one. Our problem is then to solve this system.

As a first step, it would be great if we were able to eliminate all variables

defined by the measurement equation and restrict ourselves to a state equation,

as it would bring us back to our initial problem. To do so, we use (1.17) to

eliminate Yt.

Yt = M−1
cc McsSt

Plugging this expression in (1.13), we obtain:

EtSt+1 = WS St +WEEt+1

where

WS = −
(
Mss0 −Msc0M

−1
cc Mcs

)−1 (
Mss1 −Msc1M

−1
cc Mcs

)

WE =
(
Mss0 −Msc0M

−1
cc Mcs

)−1
Mse

We are then back to our expectational difference equation. But it needs ad-

ditional work. Indeed, Farmer proposes a method that enables us to forget

about expectations when solving for the system. He proposes to replace the

expectation by the actual variable minus the expectation error

EtSt+1 = St+1 −Zt+1

where EtZt+1 = 0. Then the system rewrites

St+1 = WS St +WEEt+1 + Zt+1 (1.14)

This is the system we will be dealing with.

8Let us accept that statement for the moment, things will become clear as we will move
to examples.
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1.4.2 Solving the system

? have shown that the existence and uniqueness of a solution depends funda-

mentally on the position of the eigenvalues of WS relative to the unit circle.

Denoting by NB and NF the number of, respectively, predetermined and jump

variables, and by NI and NO the number of eigenvalues that lie inside and

outside the unit circle, we have the following proposition.

Proposition 4

(i) If NI = NB and NO = NF , then there exists a unique solution path for

the rational expectation model that converges to the steady state;

(ii) If NI > NB (and NO < NF ), then the system displays indeterminacy;

(iii) If NI > NB (and NO > NF ), then the system is a source.

Hereafter we will deal with the two first situations, the last one being never

studied in economics.

The diagonalization of WS leads to

WS = P DP−1

where D is the matrix that contains the eigenvalues of WS on its diagonal and

P is the matrix that contains the associated eigenvectors. For convenience,

we assume that both D and P are such that eigenvalues are sorted in the

ascending order. We shall then consider two cases

1. The model satisfies the saddle path property (NI = NB and NO = NF )

2. The model exhibit indeterminacy (NI > NB and NO < NF )

The saddle path

In this section, we consider the case were the model satisfies the saddle path

property (NI = NB andNO = NF ). For convenience, we consider the following

partitioning of the matrices

D =

(
DB 0
0 DF

)
, P =

(
PBB PBF
PFB PFF

)
, P−1 =

(
P ⋆BB P ⋆BF
P ⋆FB P ⋆FF

)
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This partition conforms the position of the eigenvalues relative to the unit

circle. For instance, a B stands for the set of eigenvalues that lie within the

unit circle, whereas B stands for the set of eigenvalues that lie out of it.

We then apply the following modification to the system in order to make it

diagonal:

S̃t = P−1St

so that

P−1St+1 = P−1WSP P
−1St + P−1WEEt+1 + P−1Zt+1

or

S̃t+1 = D S̃t +R Et+1 + P−1Zt+1

The same partitioning is applied to R

R =

(
RB.
RF.

)

and the state vector

S̃t =

(
S̃B,t
S̃F,t

)

The system then rewrites as
(

S̃B,t+1

S̃F,t+1

)
=

(
DB 0
0 DF

)(
S̃B,t
S̃F,t

)
+

(
RB.
RF.

)
Et+1 +

(
P ⋆B.
P ⋆F.

)
Zt+1

Therefore, the law of motion of forward variables is given by

S̃F,t+1 = DF S̃F,t +RF.Et+1 + P ⋆F.Zt+1

Taking expectations on both side of the equation

EtS̃F,t+1 = DF S̃F,t ⇐⇒ S̃F,t = D−1
F EtS̃F,t+1

since DF is a diagonal matrix, forward iteration yields

S̃F,t = lim
j→∞

D−j
F EtS̃F,t+j

Provided EtS̃F,t+j is bounded — which amounts to eliminate bubbles — we

have

lim
j→∞

D−j
F EtS̃F,t+j = 0 ⇐⇒ S̃F,t = 0
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Then by construction, we have

S̃F,t = P ⋆FBSB,t + P ⋆FFSF,t

which furnishes a restriction on SB,t and SF,t

P ⋆FBSB,t + P ⋆FFSF,t = 0

This condition expresses the relationship that relates the jump variables to the

predetermined variables, and therefore defined the initial condition SF,t which

is compatible with (i) the initial conditions on the predetermined variables

and (ii) the stationarity of the solution:

SF,t = −(P ⋆FF )−1P ⋆FBSB,t = ΓSB,t

Plugging this result in the law of motion of backward variables we have

SB,t+1 = (WBB +WBFΓ)SB,t +RBEt+1 + ZB,t+1

but by definition, no expectation error may be done when predicting a prede-

termined variable, such that ZBt+1 = 0. Hence, the solution of the problem is

given by

SB,t+1 = MSSSB,t +MSEEt+1 (1.15)

where MSS = (WBB +WBFΓ) and MSE = RB.

As far as the measurement equation is concerned, thing are then rather simple.

Let us define Φ = M−1
cc Mcs = (ΦB

... ΦF ), we have

Yt = ΦBSB,t + ΦFSF,t = ΠSB,t

where Π = (ΦB + ΦFΓ).

The system is therefore solved and may be represented as

SB,t+1 = MSSSB,t +MSEEt+1 (1.16)

Yt = ΠSB,t (1.17)

SF,t = ΓSB,t (1.18)
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1.5 Multivariate Rational Expectations Models (II)

In this section we present a method to solve for multivariate rational expecta-

tions models, “a” because there are many of them (almost as many as authors

that deal with this problem).9 The one we present was introduced by Sims

[2000] and recently revisited by Lubik and Schorfheide [2003]. It has the ad-

vantage of being general and explicitly dealing with expectation errors. This

latter property makes it particularly suitable for solving sunspot equilibria.

1.5.1 Preliminary Linear Algebra

Generalized Schur Decomposition: This is a method to obtain eigenval-

ues from a system which is not invertible. One way to think of this approach is

to remember that when we compute the eigenvalues of a diagonalizable matrix

A, we want to find a numberλ and an associated eigenvector V such that

(A− λI)V = 0

The generalized Schur decomposition of two matrices A and B attempts to

compute something similar, but rather than considering (A−λI), the problem

considers (A − λB). A more formal, and — above all — a more rigorous

statement of the Schur decomposition is given by the following definitions and

theorem.

Definition 4 Let P ∈ C −→ C
n×n be a matrix–valued function of a complex

variable (a matrix pencil). Then the set of its generalized eigenvalues λ(P ) is

defined as

λ(P ) = {z ∈ C : |P (z) = 0}

When P (z) writes as Az−B, we denote this set as λ(A,B). Then there exists

a vector V such that BV = λAV .

Definition 5 Let P (z) be a matrix pencil, P is said to be regular if there

exists z ∈ C such that |P (z)| 6= 0 — i.e. if λ(P ) 6= C.

9In the appendix we present an alternative method that enables you to solve for singular
systems.
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Theorem 1 (The complex generalized Schur form) Let A and B belong

to C
n×n and be such that P (z) = Az − B is a regular matrix pencil. Then

there exist unitary n× n matrices of complex numbers Q and Z such that

1. S = Q′AZ is upper triangular,

2. T = Q′BZ is upper triangular,

3. For each i, Sii and Tii are not both zero,

4. λ(A,B) = {Tii/Sii : Sii 6= 0}

5. The pairs (Tii, Sii), i = 1 . . . n can be arranged in any order.

A formal proof of this theorem may be found in Golub and Van Loan [1996].

Singular Value Decomposition: The singular value decomposition is used

for non–square matrices and is the most general form of diagonalization. Any

complex matrix A(n×m) can be factored into the form

A = UDV ′

where U(n × n), D(n ×m) and V (m ×m), with U and V unitary matrices

(UU ′ = V V ′ = I(n×n)). D is a diagonal matrix with positive values dii,

i = 1 . . . r and 0 elsewhere. r is the rank of the matrix. dii are called the

singular values of A.

1.5.2 Representation

Let us assume that the model writes

A0Yt = A1Yt−1 +Bεt + Cηt (1.19)

where Yt is a n × 1 vector of endogenous variables, εt is a ℓ × 1 vector of

exogenous serially uncorrelated random disturbances, and ηt is a k× 1 vector

of expectation errors satisfying Et−1ηt = 0 for all t. A0 and A1 are both n×n

coefficient matrices, while B is n× ℓ and C is n× k.
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As an example of a model, let us consider the simple macro model

Etyt+1 + θEtπt+1 = yt + θRt

βEtπt+1 = πt − αyt

Rt = ψπt + gt

gt = ρgt−1 + εt

Let us then recall that by definition of an expectation error, we have

πt = Et−1πt + ηπt

yt = Et−1yt + ηyt

Plugging the definition of Rt into the first two equations, and making use of

the definition of expectation errors, the system rewrites

yt = Et−1yt + ηyt

πt = Et−1πt + ηπt

Etyt+1 + θEtπt+1 − yt − θψπt − θgt = 0

βEtπt+1 − πt + αyt = 0

gt = ρgt−1 + εt

Now defining Yt = (yt, πt, Etyt+1, Etπt+1, gt)
′, the system may be writte10




1 0 0 0 0
0 1 0 0 0
−1 −θψ 1 θ 1
α −1 0 β 0
0 0 0 0 1



Yt =




1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 ρ



Yt−1+




0
0
0
0
1



εt+




1 0
0 1
0 0
0 0
0 0




(
ηyt
ηπt

)

A nice feature of this representation is that it makes full use of expectation

errors and therefore may be given a fully interpretable economic meaning.

1.5.3 Solving the system

We now turn to the resolution of the system (1.19). Since, A0 is not necessarily

invertible, we will make full use of the generalized Schur decomposition of

(A0, A1). There therefore exist matrices Q, Z, T and S such that

Q′TZ ′ = A0, Q
′SZ ′ = A1, QQ

′ = ZZ ′ = In×n

10Note that Yt−1 = (yt−1, πt−1, Et−1yt, Et−1πt, gt−1)
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and T and S are upper triangular. Let us then define Xt = Z ′Yt and pre–

multiply (1.19) by Q to get

(
T11 T12

0 T22

)(
W1,t

W2,t

)
=

(
S11 S12

0 S22

)(
W1,t−1

W2,t−1

)
+

(
Q1

Q2

)
(Bεt + Cηt)

(1.20)

Let us assume, without loss of generality that the system is ordered and par-

titioned such that the m× 1 vector W2,t is purely explosive. Accordingly, the

remaining n −m × 1vector W1,t is stable. Let us first focus on the explosive

part of the system

T22W2,t = S22W2,t−1 +Q2(Bεt + Cηt)

For this particular block, the diagonal elements of T22 can be null, while S22

is necessarily full rank, as its diagonal elements must be different from zero if

the model is not degenerate. Therefore, the model may be written

W2,t = MW2,t+1 − S−1
22 Q2(Bεt+1 + Cηt+1) where M ≡ S−1

22 T22

Iterating forward, we get

W2,t = lim
t−→∞

M sW2,t+s −
∞∑

s=1

M s−1S−1
22 Q2(Bεt+s + Cηt+s)

In order to get rid of bubbles, we have to impose limt−→∞M sW2,t+s = 0, such

that

W2,t = −
∞∑

s=1

M s−1S−1
22 Q2(Bεt+s + Cηt+s)

Note that by definition of the vector Yt which does not involve any variable

which do not belong to the information set available in t, we should have

EtW2,t = W2,t. But,

EtW2,t = −Et

∞∑

s=1

M s−1S−1
22 Q2(Bεt+s + Cηt+s) = 0

This therefore imposes a restriction on εt and ηt. Indeed, if we go back to the

recursive formulation of W2,t and take into account that W2,t = 0 for all t, this

imposes

Q2B︸︷︷︸ εt︸︷︷︸ + Q2C︸︷︷︸ ηt︸︷︷︸ = 0︸︷︷︸
(m× ℓ) (ℓ× 1) (m× k) (k × 1) (m× 1)

(1.21)
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Our problem is now to know whether we can pin down the vector of expecta-

tion errors uniquely from that set of restrictions. Indeed, the vector ηt may

not be uniquely determined. This is the case for instance when the number

of expectation errors k exceeds the number of explosive components m. In

this case, equation (1.21) does not provide enough restrictions to determine

uniquely the vector ηt. In other words, it is possible to introduce expectation

errors which are not related with fundamental uncertainty — the so–called

sunspot variables.

Sims [2000] shows that a necessary and sufficient condition for a stable solution

to exist is that the column space of Q2B be contained in the column space of

Q2C:

span(Q2B) ⊂ span(Q2C)

Otherwise stated, we can reexpress Q2B as a linear function of Q2C (Q2B =

Q2CΘ), implying that k > m. This is actually a generalization of the so–called

Blanchard and Khan condition that states that the number of explosive eigen-

values should be equal to the number of jump variables in the system. Lubik

and Schorfheide [2003] complement this statement by the following lemma.

Lemma 1 Statements (i) and (ii) are equivalent

(i) For every εt ∈ R
ℓ, there exists an ηt ∈ R

k such that Q2Bεt+Q2Cηt = 0.

(ii) There exists a (real) k × ℓ matrix Θ such that Q2B = Q2CΘ

Endowed with this lemma, we can compute the set of all solutions (fully de-

terminate and indeterminate solutions), reported in the following proposition.

Proposition 5 (Lubik and Schorfheide [2003]) Let ξt be a p × 1 vector

of sunspot shocks, satisfying Et−1ξt = 0. Suppose that condition (i) of lemma

1 is satisfied. The full set of solutions for the forecast errors in the linear

rational expectations model is

ηt = (−V1D
−1
11 U

′
1Q2B + V2M1)εt + V2M2ξt

where M1 is a (k − r) × ℓ matrix and M2 is a (k − r) × p matrix.
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Proof: First of all, we have to find a solution to equation (1.21). The prob-
lem is that the rows of matrix Q2C can be linearly dependent. Therefore,
we will use the Singular Value Decomposition of Q2C

Q2C = U︸︷︷︸ D︸︷︷︸ V ′

︸︷︷︸
m×m m× k k × k

which may be partitioned as

Q2C = (U1 U2)

(
D11 0
0 0

)(
V ′

1

V ′

2

)
= U1D11V

′

1

where D11 is a r×r matrix, where r is the number of linearly independent
rows in Q2C — therefore the actual number of restrictions. Accordingly,
U1 is m× r, and V1 is k × r.

Given that we are looking for a solution that satisfies Q2B = Q2CΘ,
equation (1.21) rewrites

U1D11︸ ︷︷ ︸ (V ′

1
Θεt + V ′

1
ηt︸ ︷︷ ︸) = 0︸︷︷︸

m× r r × 1 m× 1

We therefore now have r restrictions to identify the k–dimensional vector
of expectation errors.

We guess that the solution implies that forecast errors are a linear func-
tion of (i) fundamental shocks and (ii) a p× 1 vector of sunspot shocks
ξt, satisfying Et−1ξt = 0:

ηt = Γεεt + Γξξt

where Γε is k × ℓ and Γξ is k × p.

Plugging this guess in the former equation, we get

U1D11(V
′

1
Θ + V ′

1
Γε)εt + U1D11V

′

1
Γξξt = 0

for all εt and ξt. This triggers that we should have

U1D11(V
′

1
Θ + V ′

1
Γε) = 0 (1.22)

U1D11V
′

1
Γξ = 0 (1.23)

Let us first focus on equation (1.22). Since V is an orthonormal matrix,
it satisfies V V ′ = I — otherwise stated V1V

′

1
+V2V

′

2
= I — and V ′V = I,

implying that V ′

1
V2 = 0. A direct consequence of the first part of this

statement is that

Γε = V1(V
′

1
Γε) + V2(V

′

2
Γε) = V1Γ̃ε + V2M1

with Γ̃ε ≡ V ′

1
Γε and M1 ≡ V ′

2
Γε. Since V ′

1
V1 = I and V ′

1
V2 = 0, (1.22)

therefore rewrites
U1D11(V

′

1
Θ + Γ̃ε) = 0

from which we get
Γ̃ε = −V ′

1
Θ
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We still need to identify Θ to determine Γ̃ε and therefore Γε. To do so,
we use the fact that Q2B = Q2CΘ and Q2C = U1D11V

′

1
, to get

Q2B = Q2CΘ = U1D11V
′

1
Θ

Since U is orthonormal, we have U ′

1
U1 = I, such that

V ′

1
Θ = U ′

1
D−1

11
Q2B

Therefore, plugging this result in the determination of Γ̃ε, we get

Γ̃ε = −D−1

11
U ′

1
Q2B

Since Γε = V1Γ̃ε + V2M1, we finally get

Γε = −V1D
−1

11
U ′

1
Q2B + V2M1

where M1 is left totally undetermined and therefore arbitrary.

We can now focus on (1.23) to determine Γξ. This is actually straight-
forward as it simply triggers that Γξ be orthogonal to V1. But since
V1V

′

2
= 0, the orthogonal space of V1 is spanned by the columns of the

k × (k − r) matrix V2. In other words, any linear combination of the
column of V2 would do the job. Hence

Γξ = V2M2

where once again M2 is left totally undetermined and therefore arbitrary.

2

This last result tells us how to solve the model and under which condition

the system is determined or not. Indeed, let us recall that k is the number

of expectation errors, while r is the number of linearly independent expec-

tation errors. According to this proposition, if k = r, all expectation errors

are linearly independent, and the system is therefore totally determinate. M1

and M2 are identically zeros. Conversely, if k > r expectation errors are not

linearly independent, meaning that the system does not provide enough re-

strictions to uniquely pin down the expectation errors. We therefore have to

introduce extrinsic uncertainty in the system — the so–called sunspot vari-

ables. We will deal first with the determinate case, before considering the case

of indeterminate system.

Determinacy

This case occurs when the number of expectation errors exactly matches the

number of explosive components (k = m), or otherwise stated in the case
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where k = r. As shown in proposition 5, the expectation errors are then just

a linear combination of fundamental disturbances for all t since both M1 and

M2 reduce to nil matrices. Therefore, in this case, we have

ηt = −V1D
−1
11 U

′
1Q2Bεt

such that the overall effect of fundamental shocks on Wt is

(Q1B −Q1CV1D
−1
11 U

′
1Q2B)εt

while that of purely extrinsic expectation errors is nil. To get such an effect

in the first part of system (1.20), we shall pre–multiply by the matrix [I
...−Φ]

where Φ ≡ Q1CV1D
−1
11 U

′
1. Then, taking into account that W2t = 0, we have

(
T11 T12 − ΦT22

0 I

)(
W1,t

W2,t

)
=

(
S11 S12 − ΦS22

0 0

)(
W1,t−1

W2,t−1

)

+

(
Q1 − ΦQ2

0

)
Bεt

Noting that the inverse of the matrix

(
T11 T12 − ΦT22

0 I

)

is (
T−1

11 −T−1
11 (T12 − ΦT22)

0 I

)

we have

(
W1,t

W2,t

)
=

(
T−1

11 S11 T−1
11 (S12 − ΦS22)

0 0

)(
W1,t−1

W2,t−1

)
+

(
T−1

11 (Q1 − ΦQ2)
0

)
Bεt

Now recall that Wt = Z ′Yt and that ZZ ′ = I. Therefore, pre–multiplying the

last equation by Z, we end up with a solution of the form

Yt = MyYt−1 +Meεt (1.24)

with

M = Z

(
T−1

11 S11 T−1
11 (S12 − ΦS22)

0 0

)
Z ′ and Me = Z

(
T−1

11 (Q1 − ΦQ2)
0

)
B
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Indeterminacy

This case arises as soon as the number of expectation errors is greater than the

number of explosive components (k > m), which translates into the fact that

k > r. As shown in proposition 5, the expectation errors are then not only

linear combinations of fundamental disturbances for all t but also of purely

extrinsic disturbances called sunspot variables. Then, the expectation errors

are shown to be of the form

ηt = (−V1D
−1
11 U

′
1Q2B + V2M1)εt + V2M2ξt

where both M1 and M2 can be freely chosen. This actually raises several ques-

tions. The first one is how to select M1 and M2? They are totally arbitrary

the only restriction we have to impose is that M1 is a (k−r)×ℓ matrix and M2

is a (k− r)× p matrix. A second one is then how to interpret these sunspots?

In order to partially circumvent these difficulties, it is useful to introduce the

notion of beliefs. For instance, this amounts to introduce new shocks — the

sunspots — beside the standard expectation error. In such a case, a variable

yt will be determined by its expectation at time t − 1, a shock on the beliefs

that leads to a revision of forecasts, and the expectation error

yt = Et−1yt + ζt + ηt

where ζt is the shock on the belief, that satisfies Et−1ζt = 0, and ηt is the

expectation error. ζt is a k × 1 vector. Then the system 1.19 rewrites

A0Yt = A1Yt−1 +Bεt + C(ζt + ηt)

which can be restated in the form

A0Yt = A1Yt−1 +B

(
εt
ζt

)
+ Cηt

where B = [B C]. Implicit in this rewriting of the system is the fact that the

belief shock be treated like a fundamental shock, therefore condition (1.21)

rewrites

Q2B

(
εt
ζt

)
+Q2Cηt = 0

which leads, according to proposition 5, to an expectation error of the form

ηt = (−V1D
−1
11 U

′
1Q2B + V2M

ε
1 )εt + (−V1D

−1
11 U

′
1Q2C + V2M

ζ
1 )ζt
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But, since Q2C = U1D11V
′
1 and V1V

′
1 + V2V

′
2 = I, this rewrites

ηt = (−V1D
−1
11 U

′
1Q2B + V2M

ε
1 )εt + V2(V

′
2 +M ζ

1 )ζt

This shows that the expectation error is a function of both the fundamental

shocks and the beliefs.

If this latter formulation furnishes an economic interpretation to the sunspots,

it leaves unidentified the matrices M ε
1 and M ζ

1 . From a practical point of view,

we can, arbitrarily, set these matrices to zeros and then proceed exactly as in

the determinate case, replacing B by B in the solution. This leads to

Yt = MyYt−1 +Me

(
εt
ζt

)
(1.25)

with

M = Z

(
T−1

11 S11 T−1
11 (S12 − ΦS22)

0 0

)
Z ′ and Me = Z

(
T−1

11 (Q1 − ΦQ2)
0

)
B

Note however, that even if we know the form of the solution, we know nothing

about the statistical properties of the ζt shocks. In particular, we do not know

their covariance matrix that can be set arbitrarily.

1.5.4 Using the model

In this section, we will show you how the solution may be used to study the

dynamic properties of the model from a quantitative point of view. We will

basically address two issues

1. Impulse response functions

2. Computation of moments

Impulse response functions

As we have already seen in the preceding chapter, the impulse response func-

tion of a variable to a shock gives us the expected response of the variable to

a shock at different horizons — in other words this corresponds to the best

linear predictor of the variable if the economic environment remains the same

in the future. For instance, and just to remind you what it is, let us consider

the case of an AR(1) process:

xt = ρxt−1 + (1 − ρ)x+ εt



48 CHAPTER 1. EXPECTATIONS AND ECONOMIC DYNAMICS

Assume for a while that no shocks occurred in the past, such that xt remained

steady at the level x from t = 0 to T . A unit positive shock of magnitude σ

occurs in T , xT is then given by

xT = x+ σ

Figure 1.12: Impulse Response Function (AR(1))
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-
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

xt

In T + 1, no other shock feeds the process, such that xT+1 is given by

xT+1 = ρxT + (1 − ρ)x = x+ ρσ

XT+2 is then given by

xT+2 = ρxT+1 + (1 − ρ)x = x+ ρ2σ

therefore, as reported in figure 1.12, we have

xT+i = ρxT+i−1 + (1 − ρ)x = x+ ρiσ ∀i > 1

In our system, obtaining impulse response functions is as simple as that, pro-

vided the solution has already been computed. Assume we want to compute
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the response to one of the fundamental shocks (εi,t ∈ Et). On impact the

vector of endogenous variables (Yt)responds as

Yt = ME × ei with eik =

{
1 if i = k
0 otherwise

The response as horizon j is then given by:

Yt+j = MyYt+j−1 j > 0

Computation of moments

Let us focus on the computation of the moments for this economy. We will

describe two ways to do it. The first one uses a direct theoretical computation

of the moments, while the second one relies on Monte–Carlo simulations.

The theoretical computation of moments can be achieved in a straightforward

way. Let us focus for a while on the covariance matrix of the state variables:

Σyy = E(YtY
′
t )

Recall that in the most complicated case, we have

Yt = MyYt−1 +MEεt

with E(εtε
′
t) = Σee.

Further, recall that we only consider stationary representations of the economy,

such that ΣSS = E(St+jS
′
t+j) whatever j. Hence, we have

Σyy = MyΣyyM
′
y +MyE(Yt−1ε

′
t)ME + +MeE(εtY

′
t−1)M

′
y +MeΣeeM

′
E

Since both εt are innovations, they are orthogonal to Yt, such that the previous

equation reduces to

Σyy = MyΣyyM
′
y +MeΣeeM

′
E

Solving this equation for ΣSS can be achieved remembering that vec(ABC) =

(A⊗ C ′)vec(B), hence

vec(Σyy) = (I −My ⊗My)−1vec(Σee)
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The computation of covariances at leads and lags proceeds the same way. For

instance, assume we want to compute Σj
SS = E(StS

′
t−j). From

Yt = MyYt−1 +Meεt

we know that

Yt = M j
yYt−j +Me

j∑

i=0

M i
yεt−i

Therefore,

E(YtY
′
t−j) = M j

yE(Yt−jY
′
t−j) +Me

j∑

i=0

M i
yE(εt−iY

′
t−j)

Since ε are innovations, they are orthogonal to any past value of Y , such that

E(εt−iY
′
t−j) =

{
0 if i < j
ΣeeM

′
e if i = j

Then, the previous equation reduces to

E(YtY
′
t−j) = M j

yΣyy +MeM
j
yΣeeM

′
e

The Monte–Carlo simulation is as simple as computing Impulse Response

Functions, as it just amounts to simulate a process for ε, impose an initial

condition for Y0 and to iterate on

Yt = MyYt−1 +Meεt for t = 0, . . . , T

Then moments can be computed and stored in a matrix. The experiment is

conducted N times, as N −→ ∞ one can compute the asymptotic distribution

of the moments.

1.6 Economic examples

This section intends to provide you with some economic applications of the set

of tools we have described up to now. We will consider three examples, two of

which may be thought of as micro examples. In the first one a firm decides on

its labor demand, the second one is a macro model — and endogenous growth

model à la Romer [1986] — which allows to show that even a non–linear model

may be expressed in linear terms and therefore may be solved in a very simple

way. The last one deals with the so–called Lucas critique which has strong

implications on the econometric side.
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1.6.1 Labor demand

We consider the case of a firm that has to decide on its level of employment.

The firm is infinitely lived and produces a good relying on a decreasing returns

to scale technology that essentially uses labor — another way to think of it

would be to assume that physical capital is a fixed–factor. This technology is

represented by the production function

Yt = f0nt −
f1

2
n2
t with f0, f1 > 0.

Using labor incurs two sources of cost

1. The standard payment for labor services: wtnt where wt is the real wage,

which positive sequence {wt}
∞
t=0 is taken as given by the firm

2. A cost of adjusting labor which may be justified either by appealing to

reorganization costs, training costs, and that takes the form

ϕ

2
(nt − nt−1)

2 with ϕ > 0

Labor is then determined by maximizing the expected intertemporal profit

max
{nτ}∞τ=0

Et

∞∑

s=0

(
1

1 + r

)s(
f0nt+s −

f1

2
n2
t+s − wt+snt+s −

ϕ

2
(nt+s − nt+s−1)

2

)

First order conditions: Finding the first order conditions associated to

this dynamic optimization problem may be achieved in various ways. Here,

we will follow Sargent [1987] and will adopt the Lagrangean approach. Let

us fix s for a while and make some accountancy in order to find all the terms

involving nt+s

in s− i, i = 2, . . . none

in s− 1 none

in s Et

(
1

1 + r

)s(
f0nt+s −

f1

2
n2
t+s − wt+snt+s −

ϕ

2
(nt+s − nt+s−1)

2

)

in s+ 1 Et

(
1

1 + r

)s+1 (
−
ϕ

2
(nt+s+1 − nt+s)

2
)

in s+ i, i = 2, . . . none
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Hence, finding the optimality condition associated to nt+s reduces to maxi-

mizing

Et

(
1

1 + r

)s [
f0nt+s −

f1

2
n2
t+s − wt+snt+s −

ϕ

2
(nt+s − nt+s−1)

2 −

(
1

1 + r

)
ϕ

2
(nt+s+1 − nt+s)

2

]

which yields the following first order condition

Et

(
1

1 + r

)s [
f0 − f1nt+s − wt+s − ϕ(nt+s − nt+s−1) +

(
1

1 + r

)
ϕ(nt+s+1 − nt+s)

]
= 0

since r is a constant this reduces to

Et

[
f0 − f1nt+s − wt+s − ϕ(nt+s − nt+s−1) +

(
1

1 + r

)
ϕ(nt+s+1 − nt+s)

]
= 0

Now remark that this relationship holds whatever s, such that we may restrict

ourselves to the case s = 0 which then yields — noting that nt−i, i > 0 belongs

to the information set

f0 − f1nt − wt − ϕ(nt − nt−1) +
ϕ

1 + r
(Etnt+1 − nt) = 0

rearranging terms

Etnt+1 −

(
2 + r +

f1(1 + r)

ϕ

)
nt + (1 + r)nt−1 +

1 + r

ϕ
(f0 − wt) = 0

Finally we have the transversality condition

lim
T→+∞

(1 + r)−Tϕ(nT − nT−1)nT = 0

Solving the model: In this example, we will apply all three methods that

we have described previously. Let us first start with factorization.

The preceding equation may be rewritten using the forward operator as

P (F )nt−1 ≡

(
F 2 −

(
2 + r +

f1(1 + r)

ϕ

)
F + 1 + r

)
nt−1 =

1 + r

ϕ
(wt − f0)

P (F ) may be factorized as

P (F ) = (F − µ1)(F − µ2)

Let us compute the discriminant of this second order polynomial

∆ ≡

(
2 + r +

f1(1 + r)

ϕ

)2

− 4(1 + r) = (1 + r)
f1

ϕ

(
(1 + r)

f1

ϕ
+ 2(2 + r)

)
> 0
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Hence, since ∆ > 0, we know that the two roots are real. Further

P (1) = −
f1(1 + r)

ϕ
< 0

P (−1) = (1 + r)
f1

ϕ
+ 2(2 + r) > 0

P (0) = 1 + r > 0

P ′(x) = 0 ⇐⇒ x =
1

2

(
2 + r +

f1(1 + r)

ϕ

)
> 1

P (0) being greater than 0 and since P(1) is negative, one root lies between

0 and 1, and the other one is therefore greater than 1 since lim
x−→∞

P (x) = ∞.

The system therefore satisfies the saddle path property.

Let us assume then that µ1 < 1 and µ2 > 1. The expectational equation

rewrites

(F − µ1)(F − µ2)nt−1 = wt − f0 ⇐⇒ (F − µ1)nt−1 =
1 + r

ϕ

wt − f0

F − µ2

or

nt = µ1nt−1 +
1 + r

µ2ϕ

f0 − wt

1 − µ−1
2 F

= µ1nt−1 +
1 + r

µ2ϕ

∞∑

i=0

µ−i2 Et(f0 − wt+i)

Since µ1µ2 = (1 + r), this rewrites

nt = µ1nt−1 +
µ1

ϕ

∞∑

i=0

µ−i2 Et(f0 − wt+i)

or developing the series

nt =
f0(1 + r)

ϕ(µ2 − 1)
+ µ1nt−1 −

µ1

ϕ

∞∑

i=0

µ−i2 Etwt+i

For practical purposes let us assume that wt follows an AR(1) process of the

form

wt = ρwt−1 + (1 − ρ)w + εt

we have

Etwt+i = ρiwt + (1 − ρi)w

such that nt rewrites

nt =
f0(1 + r)

ϕ(µ2 − 1)
−

(1 + r)(1 − ρ)

ϕ(µ2 − 1)(µ2 − ρ)
w + µ1nt−1 −

1 + r

ϕ(ρ− µ2)
wt
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We now consider the problem from the method of undetermined coefficients

point of view, and guess that the solution takes the form

nt = α0 + α1nt−1 +
∞∑

i=0

γiEtwt+i

Plugging the guess in t+ 1 in the Euler equation, we get

Et

(
α0 + α1

(
α0 + α1nt−1 +

∞∑

i=0

γiEtwt+i

)
+

∞∑

i=0

γiEt+1wt+i+1

)

−

(
2 + r +

f1(1 + r)

ϕ

)(
α0 + α1nt−1 +

∞∑

i=0

γiEtwt+i

)

+(1 + r)nt−1 +
1 + r

ϕ
(f0 − wt) = 0

which rewrites

α0(1 + α1) + α2
1nt−1 + α1

∞∑

i=0

γiEtwt+i +
∞∑

i=0

γiEtwt+i+1

−

(
2 + r +

f1(1 + r)

ϕ

)(
α0 + α1nt−1 +

∞∑

i=0

γiEtwt+i

)

+(1 + r)nt−1 +
1 + r

ϕ
(f0 − wt) = 0

Identifying term by term, we get the system





α0(1 + α1) −
(
2 + r + f1(1+r)

ϕ

)
α0 + 1+r

ϕ
f0 = 0

α2
1 −

(
2 + r + f1(1+r)

ϕ

)
α1 + (1 + r) = 0

γ0

(
α1 −

(
2 + r + f1(1+r)

ϕ

))
− 1+r

ϕ
= 0

γi

(
α1 −

(
2 + r + f1(1+r)

ϕ

))
+ γi−1 = 0

The second equation of the system exactly corresponds to the second order

polynomial we solved in the factorization method. The system therefore ex-

hibits the saddle path property so that µ1 ∈ (0, 1) and µ2 ∈ (1,∞). Let us

recall that µ1 + µ2 = 2 + r + f1(1 + r)/ϕ, such that the system for α0 and γi

rewrites 



α0(1 + α1) −
(
2 + r + f1(1+r)

ϕ

)
α0 + 1+r

ϕ
f0 = 0

−γ0µ2 −
1+r
ϕ

= 0

γi = µ−1
2 γi−1
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Therefore, we have

γ0 = −
1 + r

ϕµ2
= −

µ1

ϕ

and γi = µ−i2 γ0. Finally, we have

α0 =
f0(1 + r)

ϕ(µ2 − 1)

We then find the previous solution

nt =
f0(1 + r)

ϕ(µ2 − 1)
+ µ1nt−1 −

µ1

ϕ

∞∑

i=0

µ−i2 Etwt+i

As a final “exercise”, let us adopt the matricial approach to the problem. To

do so, and because this approach is essentially numerical, we need to assume a

particular process for the real wage. We will assume that it takes the preceding

AR(1) form. Further, we do not need to deal with levels in this approach such

that we will express the model in terms of deviation from its steady state. We

thus first compute this quantity, which is defined by

n⋆−

(
2 + r +

f1(1 + r)

ϕ

)
n⋆+(1+r)n⋆+

1 + r

ϕ
(f0−w) = 0 ⇐⇒ n⋆ =

f0 − w

f1

Denoting n̂t = nt − n⋆ and ŵt = wt − w, and introducing the “technical

variable” ẑt+1 = n̂t, the Labor demand re–expresses as

Etn̂t+1 −

(
2 + r +

f1(1 + r)

ϕ

)
n̂t + (1 + r)ẑt −

1 + r

ϕ
ŵt = 0

We define the vector Yt = {ẑt+1, n̂t, ŵt, Etn̂t+1}. Remembering that n̂t =

Et−1n̂t + ηt, the system expresses as




1 −1 0 0
0 1 0 0
0 0 1 0

1 −

�
2 + r + f1(1+r)

ϕ

�
−

1+r
ϕ

0







bzt+1bntbwt
Etbnt+1


 =




0 0 0 0
0 0 0 1
0 0 ρ 0

−(1 + r) 0 0 0







bztbnt−1bwt−1

Et−1bnt 
+




0
0
1
0


 εt +




0
1
0
0


 ηt

We now provide you with an example of the type of dynamics this model

may generate. Figure 1.13 reports the impulse response function of labor to
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Table 1.1: Parameterization: labor demand

r f0 f1 ϕ w ρ

0.01 1 0.2 0.001/1 0.6 0.95

a positive shock on the real wage (table 1.1 reports the parameterization).

As expected, labor demand shifts downward instantaneously, but depending

on the size of the adjustment cost, the magnitude of the impact effect dif-

fers. When adjustment costs are low, the firm drastically cuts employment,

which goes back steadily to its initial level as the effects of the shock van-

ish. Conversely, when adjustment costs are high, the firm does not respond as

Figure 1.13: Impulse Response to a Wage Shock
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“High” adjustment costs (ϕ = 1)
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much as before since it wants to avoid paying the cost. Nevertheless, it remains

optimal to cut employment, so in order to minimize the cost, the firm spreads

it intertemporally by smoothing the employment profile, therefore generating

a hump shaped response of employment.
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Matlab Code: Labor Demand

%

% Labor demand

%

clear all

%

% Structural Parameters

%

r = 0.02;

f0 = 1;

wb = 0.6;

f1 = 0.2;

phi = 1;

rho = 0.95;

nb = (f0-wb)/f1;

A0=[

1 -1 0 0

0 1 0 0

0 0 1 0

0 -(2+r+f1*(1+r)/phi) -(1+r)/phi 1

];

A1=[

0 0 0 0

0 0 0 1

0 0 rho 0

-(1+r) 0 0 0

];

B=[0;0;1;0];

C=[0;1;0;0];

% Call Sims Routine

[MY,ME] = sims_solve(A0,A1,B,C);

%

% IRF

%

nrep = 20;

SHOCK = 1;

YS = zeros(4,nrep);

YS(:,1)= ME*SHOCK;

for i = 2:nrep;

YS(:,i)=MY*YS(:,i-1);

end

T=1:nrep;

subplot(221);plot(T,Y(3,:));

subplot(222);plot(T,Y(2,:));
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1.6.2 The Real Business Cycle Model

We consider an economy that consists of a large number of dynastic house-

holds and a large number of firms. Firms are producing a homogeneous final

product that can be either consumed or invested by means of capital and labor

services. Firms own their capital stock and hire labor supplied by the house-

holds. Households own the firms. In each and every period three perfectly

competitive markets open — the markets for consumption goods, labor ser-

vices, and financial capital in the form of firms’ shares. Household preferences

are characterized by the lifetime utility function:

Et

∞∑

s=0

βs log(ct+s) − Ψ
h1+ψ
t+s

1 + ψ

where 0 < β < 1 is a constant discount factor, ct is consumption in period

t, ht is the fraction of total available time devoted to productive activity in

period t, Ψ > 0 and ψ > 0. We assume that there exists a central planner

that determines hours, consumption and capital accumulation maximizing the

household’s utility function subject to the following budget constraint

ct + it = yt (1.26)

where it is investment, and yt is output. Investment is used to form physical

capital, which accumulates in the standard form as:

kt+1 = it + (1 − δ)kt with 0 6 δ 6 1 (1.27)

where δ is the constant physical depreciation rate.

Output is produced by means of capital and labor services, relying on a con-

stant returns to scale technology represented by the following Cobb– Douglas

production function:

yt = atk
α
t h

1−α
t with 0 < α < 1 (1.28)

at represents a stochastic shock to technology or Solow residual, which evolves

according to:

log(at) = ρ log(at−1) + (1 − ρ) log(a) + εt (1.29)
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The unconditional mean of at is a, |ρ| < 1 and εt is a gaussian white noise

with standard deviation of σ. Therefore, the central planner solves

max
{ct+s,kt+1+s}∞s=0

Et

∞∑

s=0

βs log(ct+s) − Ψ
h1+ψ
t+s

1 + ψ

s.t.

kt+1 =yt = atk
α
t h

1−α
t − ct + (1 − δ)kt

log(at) =ρ log(at−1) + (1 − ρ) log(a) + εt

The set of conditions characterizing the equilibrium is given by

Ψhψt ct =(1 − α)
yt
ht

(1.30)

yt =atk
α
t h

1−α
t (1.31)

yt =ct + it (1.32)

kt+1 =it + (1 − δ)kt (1.33)

1 =βEt

(
ct
ct+1

(
α
yt+1

kt+1
+ 1 − δ

))
(1.34)

and the transversality condition

lim
s→∞

βs
kt+1+s

ct+s
= 0

The problem with this dynamic system is that it is fundamentally non–linear

and therefore the methods we have developed so far are not designed to handle

it. The usual way to deal with this type of system is then to take a linear

or log–linear approximation of each equation about the deterministic steady

state. Therefore, the first step is to find the deterministic steady state.

Deterministic steady state Recall that the steady state value of a vari-

able, x, is the value x⋆ such that xt = x⋆ for all t. Therefore, the steady state

of the RBC model is characterized by the set of equations:

Ψh⋆ψc⋆ =(1 − α)
y⋆

h⋆
(1.35)

y⋆ =ak⋆αh⋆1−α (1.36)

y⋆t =c⋆ + i⋆ (1.37)

k⋆ =i⋆ + (1 − δ)k⋆ (1.38)

1 =βEt

((
α
y⋆

k⋆
+ 1 − δ

))
(1.39)
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From equation (1.38), we get

i⋆ = δk⋆ ⇐⇒
i⋆

y⋆
= δ

k⋆

y⋆

Then, equation (1.39) implies

y⋆

k⋆
=

1 − β(1 − δ)

αβ

such that from the previous equation and (1.37)

si ≡
i⋆

y⋆
=

αβδ

1 − β(1 − δ)
=⇒ sc =≡

c⋆

y⋆
= 1 − si

Then, from (1.35), we obtain

h⋆ =

(
1 − α

Ψsc

) 1
1+ψ

Finally, it follows from the production function and the definition of y⋆/k⋆

that

y⋆ = a

(
αβ

1 − β(1 − δ)

) α
1−α

h⋆, c⋆ = scy
⋆, i⋆ = y⋆ − c⋆.

We are now in position to log–linearize the dynamic system.

Log–linearization: A common practice in the macro literature is to take a

log–linear approximation to the equilibrium. Such an approximation is usually

taken because it delivers a natural interpretation of the coefficients in front of

the variables: these can be interpreted as elasticities. Indeed, let’s consider

the following onedimensional function f(x) and let’s assume that we want to

take a log–linear approximation of f around x. This would amount to have,

as deviation, a log–deviation rather than a simple deviation, such that we can

define

x̂ = log(x) − log(x⋆)

Then, a restatement of the problem is in order, as we are to take an approxi-

mation with respect to log(x):

f(x) ≃ f(exp(log(x)))

which leads to the following first order Taylor expansion

f(x) ≃ f(x⋆) + f ′(exp(log(x⋆)))exp(log(x⋆))x̂ = f(x⋆) + f ′(x⋆)x⋆x̂
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Now, remember that by definition of the deterministic steady state, we have

f(x⋆) = 0, such that the latter equation reduces to

f(x) ≃ f ′(x⋆)x⋆x̂

Applying this technic to the system (1.30)–(1.34), we end up with the system

(1 + ψ)ĥt + ĉt − ŷt (1.40)

ŷt − (1 − α)ĥt − αĥt − ât = 0 (1.41)

ŷt − scĉt − sîit = 0 (1.42)

k̂t+1 − δ̂it − (1 − δ)k̂t = 0 (1.43)

Etĉt+1 − ĉt − (1 − β(1 − δ))(Etŷt+1 − Etk̂t+1) (1.44)

ât − ρât−1 − ε̂t (1.45)

Note that only the last three equations of the system involve dynamics, but

they depend on variables that are defined in the first three equations. Either

we solve the first three equations in terms of the state and co–state variables,

or we adapt a little bit the method. We choose the second solution.

Let us define Yt = {k̂t+1, ât, Etĉt+1} and Xt = {ŷt, ĉt, ît, ĥt}. The system can

be rewritten as a set of two equations. The first one gathers static equations

ΓxXt = ΓyYt−1 + Γεεt + Γηηt

where ηt is the vector of expectation errors, which actually reduces to that

attached on ĉt, and

Γx =




1 0 0 α− 1
0 1 0 0
1 −sc −si 0
−1 1 0 1


 Γy =




α ρ 0
0 0 1
0 0 0
0 0 0


 Γε =




1
0
0
0


 Γη =




0
1
0
0




The second one gathers the dynamic equations

Υ0
yYt + Υ0

xEtXt+1 = Υ1
yYt−1 + Υ1

x + Υεεt + Υηηt
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with

Υ0
y =




1 0 0
0 1 0

1 − β(1 − δ) 0 1


 Υ0

x =




0 0 0 0
0 0 0 0

−(1 − β(1 − δ)) 0 0 0




Υ1
y =




1 − δ 0 0
0 ρ 0
0 0 0


 Υ1

x =




0 0 δ 0
0 0 0 0
0 1 0 0




Γε =




0
1
0


 Γη =




0
0
0




From the first equation, we obtain

Xt = ΠyYt−1 + Πεεt + Πηηt

where Πj = Γ−1
x Γj , j = {y, ε, η}. Furthermore, remembering that Etεt+1 =

Etηt+1 = 0, we have EtXt+1 = ΠyYt. Hence, plugging this result and the first

equation in the second equation we get

A0Yt = A1Yt+1 +Bεt + Cηt

where A0 = Υ0
y+Υ0

xΠy, A1 = Υ1
y+Υ1

xΠy, B = Υε+Υ0
xΠε and C = Υη+Υ0

xΠη.

We then just use the algorithm as described previously.

Then, we make use of the result in proposition 5, to get ηt. Since it turns

out that the model is determinate, the expectation error is a function of the

fundamental shock εt

ηt = −V1D
−1
11 U

′
1Q2Bεt

Plugging this result in the equation governing static equations, we end up with

Xt = ΠyYt−1 + (Πe − ΠηV1D
−1
11 U

′
1Q2B)εt

Figure 1.14 then reports the impulse response function to a 1% technology

shock. These IRFs are obtained using the set of parameters reported in table

1.2.

Matlab Code: The RBC Model

clear all % Clear memory

%

% Structural parameters

%

alpha = 0.4;
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Table 1.2: The Real Business Cycle Model: parameters

α β δ ρ ψ

0.4 0.988 0.025 0.95 0

delta = 0.025;

rho = 0.95;

beta = 0.988;

%

% Deterministic Steady state

%

ysk = (1-beta*(1-delta))/(alpha*beta);

ksy = 1/ysk;

si = delta/ysk;

sc = 1-si;

% Define:

%

% Y=[k(t+1) a(t+1) E_tc(t+1)]

%

% X=[y,c,i,h]

%

ny = 3; % # of variables in vector Y

nx = 4; % # of variables in vector X

ne = 1; % # of fundamental shocks

nn = 1; % # of expectation errors

%

% Initialize the Upsilon matrices

%

UX=zeros(nx,nx);

UY=zeros(nx,ny);

UE=zeros(nx,ne);

UN=zeros(nx,nn);

G0Y=zeros(ny,ny);

G1Y=zeros(ny,ny);

G0X=zeros(ny,nx);

G1X=zeros(ny,nx);

GE=zeros(ny,ne);

GN=zeros(ny,nn);

%

% Production function

%

UX(1,1)=1;

UX(1,4)=alpha-1;

UY(1,1)=alpha;

UY(1,2)=rho;

UE(1)=1;

%

% Consumption c(t)=E(c(t)|t-1)+eta(t)

%
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UX(2,2)=1;

UY(2,3)=1;

UN(2)=1;

%

% Resource constraint

%

UX(3,1)=1;

UX(3,2)=-sc;

UX(3,3)=-si;

%

% Consumption-leisure arbitrage

%

UX(4,1)=-1;

UX(4,2)=1;

UX(4,4)=1;

%

% Accumulation of capital

%

G0Y(1,1)=1;

G1Y(1,1)=1-delta;

G1X(1,3)=delta;

%

% Productivity shock

%

G0Y(2,2)=1;

G1Y(2,2)=rho;

GE(2)=1;

%

% Euler equation

%

G0Y(3,1)=1-beta*(1-delta);

G0Y(3,3)=1;

G0X(3,1)=-(1-beta*(1-delta));

G1X(3,2)=1;

%

% Solution

%

% Step 1: solve the first set of equations

%

PIY = inv(UX)*UY;

PIE = inv(UX)*UE;

PIN = inv(UX)*UN;

%

% Step 2: build the standard System

%

A0 = G0Y+G0X*PIY;

A1 = G1Y+G1X*PIY;

B = GE+G1X*PIE;

C = GN+G1X*PIN;

%

% Step 3: Call Sims’ routine

%

[MY,ME,ETA,MU_]=sims_solve(A0,A1,B,C);

%
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% Step 4: Recover the impact function

%

PIE=PIE-PIN*ETA;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% Impulse Response Functions %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nrep = 20; % horizon of responses

YS = zeros(3,nrep);

XS = zeros(4,nrep);

Shock = 1;

YS(:,1) = ME*Shock;

XS(:,1) = PIE;

for t=2:nrep;

YS(:,t) = MY*YS(:,t-1);

XS(:,t) = PIY*YS(:,t-1);

end

subplot(221);plot(XS(1,:));title(’Output’);xlabel(’Time’)

subplot(222);plot(XS(2,:));title(’Consumption’);xlabel(’Time’)

subplot(223);plot(XS(3,:));title(’Investment’);xlabel(’Time’)

subplot(224);plot(XS(4,:));title(’Hours worked’);xlabel(’Time’)

1.6.3 A model with indeterminacy

Let us consider the simplest new keynesian model, with the following IS curve

yt = Etyt+1 − α(it − Etπt+1) + gt

where yt denotes output, πt is the inflation rate, it is the nominal interest rate

and gt is a stochastic shock that follows an AR(1) process of the form

gt = ρggt−1 + εgt

the model also includes a Phillips curve that relates positively inflation to the

output gap

πt = λyt + βEtπt+1 + ut

where ut is a supply shock that obeys

ut = ρuut−1 + εut

For stationarity purposes, we have |ρg| < 1 and |ρu| < 1.

The model is closed by a simple Taylor rule of the form

it = γππt + γyyt
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Figure 1.14: IRF to a technology shock
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Plugging this rule in the first equation, and remembering the definition of

expectation errors, the system rewrites

yt =Et−1yt + ηyt

πt =Et−1πt + ηπt

gt =ρggt−1 + εgt

ut =ρuut−1 + εut

(1 + αγy)yt =Etyt+1 − αγππt + αEtπt+1 + gt

πt =λyt + βEtπt+1 + ut

Defining Yt = {yt, πt, gt, ut, Etyt+1, Etπt+1} and ηt = {ηyt , η
π
t }, the system

rewrites



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

1 + αγy +αγπ −1 0 −1 −α
−λ 1 0 −1 0 −β



Yt =




0 0 0 0 1 0
0 0 0 0 0 1
0 0 ρg 0 0 0
0 0 0 ρu 0 0
0 0 0 0 0 0
0 0 0 0 0 0



Yt−1

+




0 0
0 0
1 0
0 1
0 0
0 0



εt +




1 0
0 1
0 0
0 0
0 0
0 0



ηt

The set of parameter used in the numerical experiment is reported in table

1.3. As predicted by theory of Taylor rules, a coefficient γπ below 1 yields

indeterminacy.

Table 1.3: New Keynesian model: parameters

α β λ ρg ρu γy γπ
0.4 0.9 1 0.9 0.9 0.25 1.5/0.5

Matlab Code: A Model with Real Indeterminacy

clear all % Clear memory

%

% Structural parameters
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%

alpha = 0.4;

gy = 0.25;

gp = 0.5;

rho_g = 0.9;

rho_u = 0.95;

lambda = 1;

beta = 0.9;

% Define:

%

% Y=[y(t),pi(t),g(t),u(t),E_t y(t+1),E_t pi(t+1)]

%

ny = 6; % # of variables in vector Y

ne = 2; % # of fundamental shocks

nn = 2; % # of expectation errors

%

% Initialize the matrices

%

A0 = zeros(ny,ny);

A1 = zeros(ny,ny);

B = zeros(ny,ne);

C = zeros(ny,nn);

%

% Output

%

A0(1,1) = 1;

A1(1,5) = 1;

C(1,1) = 1;

%

% Inflation

%

A0(2,2) = 1;

A1(2,6) = 1;

C(2,2) = 1;

%

% IS shock

%

A0(3,3) = 1;

A1(3,3) = rho_g;

B(3,1) = 1;

%

% Supply shock

%

A0(4,4) = 1;

A1(4,4) = rho_u;

B(4,2) = 1;

%

% IS curve

%

A0(5,1) = 1+alpha*gy;

A0(5,2) = alpha*gp;

A0(5,3) = -1;

A0(5,5) = -1;

A0(5,6) = -alpha;
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%

% Phillips Curve

%

A0(6,1) = -lambda;

A0(6,2) = 1;

A0(6,4) = -1;

A0(6,6) = -beta;

%

% Call Sims’ routine

%

[MY,ME,ETA,MU_]=sims_solve(A0,A1,B,C);

1.6.4 AK growth model

Up to now, we have considered quadratic objective function in order to get

linear expectational difference equations. This may seem to be very restrictive.

However, there is a number of situations, where the dynamics generated by the

model is characterized by a linear expectational difference equation, despite

the objective function is not quadratic. We provide you with such an example

in this section.

We consider an endogenous growth model à la Romer [1986] extended to a

stochastic environment. The economy consists of a large number of dynastic

households and a large number of firms. Firms are producing a homogeneous

final product that can be either consumed or invested by means of capital, but

contrary to the standard optimal growth model, returns to factors that can

be accumulated (namely capital) are exactly constant.

Household decides on consumption, Ct, and capital accumulation (or savings),

Kt+1, maximizing her lifetime expected utility

maxEt

∞∑

s=0

βs log(Ct+s)

subject to the resource constraint in the economy

Yt = Ct + It

and the law of motion of capital

Kt+1 = It + (1 − δ)Kt with δ ∈ [0; 1]

It is investment, Yt denotes output, which is produced using a linear technology

of the form Yt = AtKt. At is a stochastic shock that we leave unspecified for
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the moment. We may think of it as a shift on the technology, such that it

represents a technology shock.

First order conditions: We now present the derivation of the optimal be-

havior of the consumer. The first order condition associated to the consump-

tion/savings decisions may be obtained forming the following Lagrangean,

where Λt is the multiplier associated to the resource constraint

Lt = Et

∞∑

s=0

βs log(Ct+s) + Λt (AtKt + (1 − δ)Kt − Ct −Kt+1)

Terms involving Ct:

max
{Ct}

Et (log(Ct) − ΛtCt) = max
{Ct}

(log(Ct) − ΛtCt)

Therefore, the FOC associated to consumption writes

1

Ct
= Λt

Likewise for the saving decision, terms involving Kt+1:

max
{Kt+1}

−ΛtKt+1 + βEt [Λt+1 (At+1Kt+1 + (1 − δ)Kt+1)]

such that the FOC is given by

Λt = βEt [Λt+1 (At+1 + 1 − δ)]

Finally, we impose the so–called transversality condition

lim
T−→∞

βTEt

(
KT+1

CT

)
= 0

Solving the dynamic system: Plugging the first order condition on con-

sumption in the Euler equation, we get

1

Ct
= βEt

[
1

Ct+1
(At+1 + 1 − δ)

]

This system seems to be non–linear, but we can make it linear very easily.

Indeed, let us multiply both sides of the Euler equation by Kt+1, we get

Kt+1

Ct
= βEt

[
Kt+1

Ct+1
(At+1 + 1 − δ)

]
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But the resource constraint states that

Kt+1 + Ct = Kt (At + 1 − δ) ⇐⇒ Kt+2 + Ct+1 = Kt+1 (At+1 + 1 − δ)

such that the Euler equation rewrites

Kt+1

Ct
= βEt

[
Kt+2 + Ct+1

Ct+1

]
= βEt

[
1 +

Kt+2

Ct+1

]

Let us denote Xt = Kt+1/Ct, the latter equation rewrites

Xt = βEt(1 +Xt+1)

which has the same form as (1.2). As we have already seen, the solution for

such an equation can be easily obtained iterating forward. We then get

Xt = β lim
T→∞

T∑

k=0

βk + lim
T→∞

βTEt(XT+1)

The second term in the right hand side of the latter equation corresponds

precisely to the transversality condition. Hence, Xt reduces to

Xt =
β

1 − β
⇐⇒ Kt+1 =

β

1 − β
Ct

Plugging this relation in the resource constraint, we get

Kt+1 = β(At + 1 − δ)Kt

and

Ct = (1 − β)(At + 1 − δ)Kt

Time series properties Let us consider the solution for capital accumula-

tion. Taking logs, we get

log(Kt+1) = log(Kt) + log(β(At + 1 − δ))

since At is an exogenous stochastic process, we immediately see that the pro-

cess may be rewritten as

log(Kt+1) = log(Kt) + ηt

where ηt ≡ log(β(At + 1 − δ)). Such that we see that capital is an non–

stationary process (an I(1) process) — more precisely a random walk. Since
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consumption, output and investment are just a linear function of capital, the

non–stationarity of capital translates into the non stationarity of these vari-

ables. Nevertheless, as can be seen from the law of motion of consumption, for

example, log(Ct) − log(Kt) is a stationary process. Kt and Ct are then said

to be cointegrated with a cointegrating vector (1,−1).

This has extremely important economic implications, that may be analyzed

in the light of the impulse response functions, reported in figure 1.15. In fact,

figure 1.15 reports two balanced growth paths for each variable: The first one

corresponds to the path without any shock, the second one corresponds to

the path that includes a non expected positive shock on technology in period

10. As can be seen, this shock yields a permanent increase in all variables.

Therefore, this model can account for the fact that countries may not converge.

Why is that so? The answer to this question is actually simple and may be

Figure 1.15: Impulse response functions
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understood if we go back to the simplest Solow growth model. Assume there

is a similar shock in the Solow growth model, output increases on impact

and since income increases so does investment yielding higher accumulation.

Because the technology displays decreasing returns to capital in the solow

growth model, the marginal efficiency of capital decreases reducing incentives
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to investment so that capital accumulation slows down. The economy then

goes back to its steady state. Things are different in this model: Following

a shock, income increases. This triggers faster accumulation, but since the

marginal productivity of capital is totally determined by the exogenous shock,

there is no endogenous force that can drive the economy back to its steady

state. Therefore, each additional capital is kept forever.

This implies that following shocks, the economy will enter an ever growing

regime. This may be seen from figure 1.16 which reports a simulated path for

each variable. These simulated data may be used to generate time moments on

Figure 1.16: Simulated data
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the rate of growth of each variable, which estimates are reported in table (1.4)

and which distributions are represented in figures 1.17–1.20. It is interesting

to note that all variables exhibit — when taken in log–levels — a spurious

correlation with output that just reflects the existence of a common trend due

to the balanced growth path hypothesis.
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Table 1.4: Monte–Carlo Simulations

∆Y ∆C ∆I ∆K

E 0.40 0.40 0.40 0.40
σ 0.79 0.09 1.06 0.09
Corr(.,∆Y ) 1.00 0.30 0.99 -0.08
ρ -0.01 0.93 -0.02 0.93

Y C I K

Corr(.,Y ) 0.99 0.99 0.99 0.99

Figure 1.17: Rates of growth: distribution of mean
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Figure 1.18: Rates of growth: distribution of standard deviation
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Figure 1.19: Rates of growth: distribution of correlation with ∆Y
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Figure 1.20: Rates of growth: distribution of first order autocorrelation
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Matlab Code: AK growth model

%

% AK growth model

%

long = 200;

nsim = 5000;

nrep = 50;

%

% Structural parameters

%

gx = 1.004;

beta = 0.99;

delta = 0.025;

rho = 0.95;

se = 0.0079;

ab = (gx-beta*(1-delta))/beta;

K0 = 1;

%

% IRF

%

K1(1) = K0;

K2(1) = K0;

a2 = zeros(nrep,1);

K1 = zeros(nrep,1);

K2 = zeros(nrep,1);

K1(1) = K0;

K2(1) = K0;

a2(1) = log(ab);

e = zeros(nrep,1);

e(11) = 10*se;

T=[1:nrep];

for i = 2:nrep;

a2(i)= rho*a2(i-1)+(1-rho)*log(ab)+e(i);

K1(i)= beta*(ab+1-delta)*K1(i-1);

K2(i)= beta*(exp(a2(i-1))+1-delta)*K2(i-1);

end;

C1 = (1-beta)*(ab+1-delta).*K1;

Y1 = ab*K1;

I1 = Y1-C1;

C2 = (1-beta)*(exp(a2)+1-delta).*K2;

Y2 = exp(a2).*K2;

I2 = Y2-C2;

Y=[Y1(:) Y2(:)];

C=[C1(:) C2(:)];

K=[K1(:) K2(:)];

I=[I1(:) I2(:)];

%

% Simulations

%

cx=zeros(nsim,4);

mx=zeros(nsim,4);

sx=zeros(nsim,4);

rx=zeros(nsim,4);
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for s = 1:nsim;

disp(s)

randn(’state’,s);

e = randn(long,1)*se;

a = zeros(long,1);

K = zeros(long,1);

a(1) = log(ab)+e(1);

K(1) = K0;

for i = 2:long;

a(i)= rho*a(i-1)+(1-rho)*log(ab)+e(i);

K(i)= beta*(exp(a(i-1))+1-delta)*K(i-1);

end;

C = (1-beta)*(exp(a)+1-delta).*K;

Y = exp(a).*K;

I = Y-C;

X = [Y C I K];

dx = diff(log(X));

mx(s,:) = mean(dx);

sx(s,:) = std(dx);

tmp = corrcoef(dx);cx(s,:)=tmp(1,:);

tmp = corrcoef(dx(2:end,1),dx(1:end-1,1));ry=tmp(1,2);

tmp = corrcoef(dx(2:end,2),dx(1:end-1,2));rc=tmp(1,2);

tmp = corrcoef(dx(2:end,3),dx(1:end-1,3));ri=tmp(1,2);

tmp = corrcoef(dx(2:end,4),dx(1:end-1,4));rk=tmp(1,2);

rx(s,:) = [ry rc ri rk];

end;

disp(mean(mx))

disp(mean(sx))

disp(mean(cx))

disp(mean(rx))

1.6.5 Announcements

In the last two examples, we will help you to give an answer to this crucial

question:

“Why do these two guys annoy us with rational expectations?”

In this example we will show you how different may the impulse response to a

shock be different depending on the fact that the shock is announced or not.

To illustrate this issue, let us go back to the problem of asset pricing. Let pt

be the price of a stock, dt be the dividend — which will be taken as exogenous

— and r be the rate of return on a riskless asset, assumed to be held constant

over time. As we have seen earlier, standard theory of finance states that when

agents are risk neutral, the asset pricing equation is given by:

Etpt+1 − pt
pt

+
dt
pt

= r
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or equivalently

pt =
1

1 + r
Etpt+1 +

1

1 + r
dt

Let us now consider that the dividend policy of the firm is such that from

period 0 on, the firm serves a dividend equal to d0. The price of the asset is

therefore given by

pt =
1

1 + r

∞∑

i=0

(
1

1 + r

)i
Etdt+i =

d0

r

If, in period T , the firm unexpectedly decides to serve a dividend of d1 > d0,

the price of the asset will be given by

pt =
d1

r
∀t > T

In other words, the price of the asset shifts upward to its new level, as shown

in the upper–left panel of figure 1.21. Let us now assume that the firm an-

Figure 1.21: Asset pricing behavior
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nounces in t0 < T that it will raise its dividend from d0 to d1 in period T .

This dramatically changes the behavior of the asset price, as the structure of

information is totally modified. Indeed, before the shock is announced by the

firm, the level of the asset price establishes at

pt =
d0

r
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as before. In period t0 things change as the individuals now know that in

T − t0 period the price will be different, this information is now included in

the information set they use to formulate expectations. Hence, from period

t0 to T , they take this information into account in their calculation, and the

asset price is now given by

pt =
1

1 + r

T−1∑

i=t

(
1

1 + r

)i−t
d0 +

1

1 + r

∞∑

i=T

(
1

1 + r

)i−t
d1

=
1

1 + r

T−1∑

i=t

(
1

1 + r

)i−t
d0 +

1

1 + r

∞∑

i=T

(
1

1 + r

)i−t
(d1 − d0 + d0)

=
1

1 + r

∞∑

i=t

(
1

1 + r

)i−t
d0 +

1

1 + r

∞∑

i=T

(
1

1 + r

)i−t
(d1 − d0)

Denoting j = i− t in the first sum and ℓ = i− T in the second, we have

pt =
1

1 + r

∞∑

j=0

(
1

1 + r

)j
d0 +

1

1 + r

∞∑

ℓ=0

(
1

1 + r

)ℓ+T−t
(d1 − d0)

=
d0

r
+

(
1

1 + r

)T−t(d1 − d0

r

)

Finally, from T on, the shock has taken place, such that the value of the asset

is given by

pt =
d1

r

Hence, the dynamics of the asset price is given by

pt =





d0
r

for t < t0
d0
r

+
(

1
1+r

)T−t (
d1−d0
r

)
for t0 6 t 6 T

d1
r

for t > T

Hence, compared to the earlier situation, there is now a transition phase that

takes place as soon as the individuals has learnt the news and exploits this

additional piece of information when formulating her expectations. This dy-

namics is depicted in figure 1.21 for different dates of announcement.

1.6.6 The Lucas critique

As a last example, we now have a look at the so–called Lucas critique. One

typical answer to the question raised in the previous section may be found
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in the so–called Lucas critique (see e.g. Lucas [1976]) , or the econometric

policy evaluation critique, which asserts that because the apparently (for old–

fashioned econometricians) structural parameters of a model may change when

policy changes, standard econometrics may not be used to study alternative

regimes. In order to illustrate this point, let us go back to the simplest example

we were dealing with:

yt = aEtyt+1 + bxt

xt = ρxt−1 + εt

which solution is given by

yt =
b

1 − aρ
xt

Now let us assume for a while that yt denotes output and xt is money, which is

discretionary provided by a central bank. An econometrician that has access

to data on output and money would estimate the reduced form of the model

yt = αxt

where α̂ should converge to b/(1 − aρ). Now the central banker would like to

evaluate the implications of a new monetary policy from t = T on

xt = θxt−1 + εt with θ > ρ

What should be done then? The old–fashioned econometrician would do the

following:

1. Take the estimated reduced form: yt = α̂xt

2. Simulate paths for the new xt process

3. Analyse the properties of the time series

Stated like that all seems OK. But such an approach is totally false. Indeed,

underlying the rational expectations hypothesis is the fact that the agents

know the overall structure of the model, therefore, the agents know that from

t = T on the new monetary policy is

xt = θxt−1 + εt with θ > ρ
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Figure 1.22: The Lucas Critique
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the model needs then to be solved again to yield

yt =
b

1 − aθ
xt

Therefore the econometrician should re–estimate the reduced form to get

yt = β̂xt

Keeping the old reduced form implies a systematic bias of

ab(θ − ρ)

(1 − aρ)(1 − aθ)

To give you an idea of the type of mistake one may do, we report in figure

1.22 the impulse response to a monetary shock in the second monetary rule

when the old reduced form (misspecified) and the new one (correct) are used.

As it should be clear to you using the wrong rule leads to a systematic bias

in policy evaluation since it biases — in this case — the impact effect of the

policy. Why is that so? Because the rational expectations hypothesis implies

that the expectation function is part of the solution of the model.Keep in mind

that solving a RE model amounts to find the expectation function.

Hence, from an econometric point of view, the rational expectations hypothesis

has extremely important implications since they condition the way we should
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think of the model, solve the model and therefore evaluate and test the model.

This will be studied in the next chapter.
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