SECOND-DEGREE PRICE
DISCRIMINATION EXAMPLE

Let \(C \equiv (q, T) \) denote a generic contract, and let \(u(C, \theta) \) denote the utility from the contract \(C \) for a buyer of type \(\theta \), that is, her willingness to pay minus what she has to pay:

\[
u(C, \theta) \equiv v_\theta(q) - T, \quad \text{where } \theta = H, L.
\]

(1)

Finally, let \(C_L \equiv (q_L, T_L) \) and \(C_H \equiv (q_H, T_H) \) denote a pair of contracts.

1 Benchmark analysis: No asymmetric information

If there is no asymmetric information, \(P \) will be able to act as a perfectly discriminating monopolist because, in the adverse selection game, he is the “Stackelberg leader in contracts”: he makes a take-it-or-leave-it offer to the agent \(A \), hence he has all the bargaining power subject only to any information advantage \(A \) may have. So, in the absence of any information advantage, \(P \) offers the contract \(\hat{C}_L \) to the low-valuing buyer and the contract \(\hat{C}_H \) to the high-valuing buyer, where

\[
\begin{align*}
\hat{C}_L &\equiv (\hat{q}_L, \hat{T}_L) \equiv (1, v_L(1)) \\
\hat{C}_H &\equiv (\hat{q}_H, \hat{T}_H) \equiv (2, v_H(2)).
\end{align*}
\]

Call this the first-best outcome for the principal since he cannot hope for more profits than this. In the figure below, \(\hat{T}_L = A \) and \(\hat{T}_H = A + B + C \). Notice that, in the first-best outcome, the monopolist efficiently supplies each type, which is no surprise given that he can fully appropriate the surplus from any quantity he decides to sell.

2 Analysis with asymmetric information

Now \(P \)’s optimization problem becomes:

\[
\max_{\hat{C}_L, \hat{C}_H} E\pi \equiv \lambda T_L + (1 - \lambda) T_H \quad \text{subject to}
\]

\[
\begin{align*}
\mu(C_L, L) &\geq 0 & (IR_L) \\
\mu(C_H, H) &\geq 0 & (IR_H) \\
\mu(C_L, L) &\geq \mu(C_H, L) & (IC_L) \\
\mu(C_H, H) &\geq \mu(C_L, H) & (IC_H)
\end{align*}
\]

Even when there is no asymmetric information, \(P \)’s contracts must satisfy the individual rationality (IR) or participation constraints. But with asymmetric information, his contracts must also satisfy the incentive compatibility (IC)
con-straints. Thus the above two IC constraints are the new con-

straints that asymmetric information imposes. P needs the
agent A to self-select from the menu of contracts he offers be-
cause he cannot identify the type of the buyer by just looking
at her when she walks into his store.

Notice that the first-best contracts \(\hat{C}_L \) and \(\hat{C}_H \) satisfy the
IR constraints, indeed \(IR_L \) is binding for \(\hat{C}_L \) and \(IR_H \) is
binding for \(\hat{C}_H \) because the principal fully appropriates under
these contracts. But the first-best contracts are not incentive
compatible. In particular, the high-valuing buyer \(H \) strictly
prefers \(\hat{C}_L \) to \(\hat{C}_H \) since \(\epsilon > 0 \). Further, provided P sets \(\epsilon \) suffi-
ciently small, the above pair of contracts are a profitable devi-
ation for P: they do not affect his profit from selling to L, but
they increase P’s profit from selling to \(H \) by \(v_H(2) - v_H(q) - \epsilon \).

For example, as illustrated below, if \(T = v_L(q) \equiv A \) (the
highest tariff P could charge for \(q \) and still satisfy \(IR_L \)), then
\(T_H = A + B + C - \epsilon \). So his profit from selling to \(H \) increases by
\(B + C - \epsilon \). Notice that this pair of contracts leaves the high-

valuing buyer with consumer’s surplus equal to the shaded
area in the figure. The principal must give H at least this
much consumer’s surplus to satisfy \(IC_H \), otherwise the H type
would pretend she’s a low type in order to obtain the contract
\(C_L \).

Case 2: \(q = 2 \). In this case, relative to pooling, the fol-

lowing pair of self-selection contracts represent a profitable

definition for P. Let

\[
C_L = \hat{C} \quad \text{and} \quad C_H = (2, T + v_H(2) - v_H(q) - \epsilon),
\]

where \(\epsilon > 0 \). It is easy to check that this pair of contracts sat-
sifies the IR and IC constraints; indeed the high type strictly
prefers \(C_H \) to \(C_L \) since \(\epsilon > 0 \). Further, provided P sets \(\epsilon \) suffi-
ciently small, the above pair of contracts are a profitable devi-
ation for P: they do not affect his profit from selling to L, but
they increase P’s profit from selling to \(H \) by \(v_H(2) - v_H(q) - \epsilon \).

Step 1: No pooling equilibrium

We first show that the equilibrium will not involve pooling, that is, P will not offer the same contract \(\hat{C} = (q, T) \) to both
types. There are 2 cases to consider:

Case 1: \(q < 2 \). In this case, relative to pooling, the follow-
ing pair of self-selection contracts represent a profitable devi-

deviation for P. Let
\[C_L = (1, T) \quad \text{and} \quad C_H = (2, T + v_H(2) - v_H(1) - \epsilon), \]
where $\epsilon > 0$. Again it is easy to check that this pair of contracts satisfies the IR and IC constraints; indeed the high type strictly prefers C_H to C_L since $\epsilon > 0$. Further, provided P sets ϵ sufficiently small, the above pair of contracts are a profitable deviation for P: they do not change his profit from selling to L, but they increase P’s profit from selling to H by $v_H(2) - v_H(1) - \epsilon$.

Step 2: IR_L and IC_H are binding

So far we know the equilibrium contract will be separating, that is, P will offer a (non-degenerate) pair of screening contracts to A. What will they be?

Observe that either IR_L or IC_L must bind. Otherwise P would have a profitable deviation: increase T_L by an epsilon, ϵ. This deviation will increase his profit from the low type and still satisfy all constraints provided he chooses ϵ sufficiently small. Similarly, either IR_H or IC_H must bind. We first show that to solve his optimization problem, P will choose his contracts so that IR_L and IC_H will be binding.

To show IC_H will bind, suppose the contrary, that in the solution the P’s problem IC_H is not binding, that is:
\[v_H(C_H) - T_H > v_H(C_L) - T_L. \]
We will show a contradiction. From the above we know that IR_H will be binding, that is,
\[v_H(C_H) - T_H = 0. \]
Substituting into the inequality we conclude
\[v_H(C_L) - T_L < 0. \]
But $v_L(C_L) < v_H(C_L)$, hence $v_L(C_L) - T_L < 0$, contradicting IR_L.

Now to show IR_L will bind, suppose the contrary that it is not binding. Then we know IC_L will bind, that is
\[v_L(q_L) - T_L = v_L(q_H) - T_H, \]
or in other words
\[v_L(q_H) - v_L(q_L) = T_H - T_L. \]
We will show a contradiction. Since IC_H is binding, $T_H - T_L = v_H(q_H) - v_H(q_L)$, hence
\[v_L(q_H) - v_L(q_L) = v_H(q_H) - v_H(q_L). \]
But since H’s demand curve lies strictly above L’s demand curve, this is possible only if $q_H = q_L$, that is if there is pooling. But we have already seen that the solution to P’s problem does not involve pooling, so we have arrived at a contradiction. To illustrate, in the figure below, $v_L(q_H) - v_L(q_L) = A$ while $v_H(q_H) - v_H(q_L) = A + B$.

Step 3: The high-valuing buyer is efficiently supplied, but the low-valuing buyer is under-supplied

We can now conclude our analysis. Since IR_L is binding and IC_H is binding:
\[T_L = v_L(q_L) \quad \text{and} \quad T_H(q_H) = v_L(q_L) + v_H(q_H) - v_H(q_L). \]
Hence P’s optimization problem becomes:

$$\max_{q_H,q_L} \lambda v_L(q_L) + (1 - \lambda)\left[v_L(q_L) + v_H(q_H) - v_H(q_L)\right].$$

The first-order conditions for an interior solution are:

$$v'_H(q_H) = 0$$

$$\lambda v'_L(q_L) + (1 - \lambda)\left[v'_L(q_L) - v'_H(q_L)\right] = 0.$$

The first condition implies $q_H^* = 2$, so the high valuing buyer is efficiently supplied. But the second condition implies

$$v'_L(q_L) = (1 - \lambda)v'_H(q_L) > 0,$$

so the low-valuing buyer is under-supplied. In particular, using our assumption that $\lambda = 2/3$, the second condition implies $q_L^* = 1/2$.

Putting it together, the solution to P’s problem is:

$$C_L^* \equiv (q_L^*, T_L^*) = (1/2, 3/8) \quad \text{and} \quad C_H^* \equiv (q_H^*, T_H^*) = (2, 3/2).$$

This solution is illustrated below, with $T_L^* = A$ in the figure and $T_H^* = A + B + C$. Notice the consumer’s surplus of the high type equals the shaded area. As already mentioned, the principal must give H this much consumer’s surplus to keep him from envying C_L^*. In this equilibrium the monopolist is offering neither a quantity discount nor a quantity premium since the price per unit that L is paying (namely 3/4) is the same as the price per unit that H is paying. But this is not a general result. Depending on the height of H’s demand curve relative to L’s, H may end up paying less per unit than L (a quantity discount) or more per unit (a quantity premium).¹

¹Note: In the current example, even though both types end up paying the same amount per unit, the seller is nevertheless earning more money acting as a second-degree price discriminator than he would earn as a simple nondiscriminating monopolist who sets his price at 3/4.
The intuition for the under-supply result is shown graphically below. Starting from the efficient first-best contracts, notice that if P sells a bit less than 1 unit to L, his revenue from selling to L decreases by the area A — which is very tiny if \(q_L \) is very close to 1 — but gains the area B from selling to H, which is not tiny. Putting it together, his expected profit would increase by \((1 - \lambda)B - \lambda A\). The idea is that by decrease \(q_L \), P relaxes the incentive compatibility constraint \(IC_H \), allowing him to charge H a higher tariff \(T_H \) for \(q_H = 2 \) units. Relative to \(\hat{C}_L \), the contract \(C_L \) with \(q_L < 1 \) is less attractive to H, that’s why \(IC_H \) is relaxed. The first order condition for \(q_L \) tells P to keep reducing \(q_L \) until the expected loss from selling a bit less to L equals the expected gain from increasing the tariff to H.

To conclude our analysis, let’s check for a corner solution. If P only serves one market, he will clearly only sell to H, offering \(C_L = (0,0) \) and \(C_H = \hat{C}_H \). The advantage of only serving H is that the principal does not have to leave H with any consumer’s surplus: by offering \(C_L = (0,0) \), he relaxes the incentive compatibility constraint \(IC_H \). It is easy to check that with \(\lambda = 2/3 \), as we have assumed, there will not be a corner solution: P’s expected profit is greater if he serves both types. But if the probability of a low type, \(\lambda \), were sufficiently small (less than 1/2), there would be a corner solution; the principal would write off buyer L and prefer to only sell to H.