Exercise 1.1

Exercise 1.2 (a beneficial real externality)

a. $PB(q) = q - \frac{3}{2}q^2$, $EXT(q) = \frac{1}{2}q^2$, and $SB(q) = q - q^2$, where the last equation is the sum of the previous two. Differentiating shows: $MPB(q) = 1 - 3q$, $M-EXT(q) = q$ and $MSB(q) = 1 - 2q$, where again the last equation is the sum of the previous two. Graphically, it’s a case of Specimen 1. See RIGHT top.

b. The MSB of additional production (bees) is still positive at q^* because additional production would increase the apple grower’s profit. But the beekeeper is only interested in his own profit, so he stops producing when $MPB = 0$, rather than when $MSB = 0$.

c. Since $MPB = -1/2$ at \dot{q}, $\ddot{q} = 1/2$. Graphically, this shifts the beekeeper’s MPB curve upward so that it equals zero at \dot{q}.

d. Now: $PB(q) = \frac{3}{2}q - \frac{3}{2}q^2$, $EXT(q) = \frac{1}{2}q^2 - \frac{1}{2}q$, and $SB(q) = q - q^2$. Differentiating shows that now: $MPB(q) = \frac{3}{2} - 3q$, $M-EXT(q) = q - \frac{1}{2}$, and $MSB(q) = 1 - 2q$. Graphically, it’s now a case of Specimen 4.

e. Now the MSB of additional production is zero at q^*, that is, $MPB = MSB$ at q^*; so at the margin the beekeeper creates no additional externalities for his
neighbor. In appropriation terms, he fully appropriates the marginal social contribution of his bees.

Exercise 1.3 The key is to take account of the budget constraint that someone must pay any subsidy given the beekeeper. So:

a. If \(q^\uparrow \), there is a positive marginal real externality for the beekeeper's neighbor AND a negative marginal pecuniary externality for taxpayers.

b. In particular, at \(\hat{q} \), the positive marginal real externality for his neighbor EQUALS the negative marginal pecuniary externality for taxpayers. So, the net marginal externality equals 0 at \(q = \hat{q} \).

Exercise 1.4 (a beneficial pecuniary externality)

Since \(\pi(q) = (1 - q)q - \frac{1}{2}q^2 = q - \frac{3}{2}q^2, \) \(PB(q) \) is the same as in Exercise 1.2. Similarly, since \(CS(q) = \frac{1}{2}q^2, \) \(EXT(q) \) is the same as in Exercise 1.2; so \(SB(q) \) is also the same. So the answer is the same!

Exercise 1.5 (the efficiency of price-taking equilibrium)

\[PB(q) = \pi(q) = p^Wq - c(q) = \frac{1}{2}q - \frac{1}{2}q^2, \]
\[EXT(q) = CS(q) = \frac{1}{2}q - \frac{1}{2}q^2, \]
\[SB(q) = \pi(q) + CS(q) = q - q^2. \] Differentiating shows:
\[MPB(q) = \frac{1}{2} - q, \]
\[MSB(q) = 1 - 2q, \]
\[M - EXT(q) = \frac{1}{2} - q. \] It's an example of Specimen 4: By increasing his production \(q \), the price-taking seller creates a positive and then negative marginal; pecuniary externality for consumers. [Why is it a pecuniary rather than real externality? Think of it this way. By increasing his production, the seller expands his customers' trading opportunities: they can buy more units at the price \(p^W = 1/2 \), which increases their consumers' surplus.] Since \(CS'(q) = 0 \) when \(q = q^* \), the seller fully appropriates his marginal social contribution, which suffices for the efficiency of his choice. It fits into Specimen 4: The picture looks very similar to FIGURE 1.4 in Chapter 1, except that the MPB and M-EXT curves happen to coincide in this example (I won't bother to graph it). The incentive scheme underlying the efficiency of price-taking: In a price-taking equilibrium, each individual's MPB is aligned with MSB.

Exercise 2.1

a.

\[MRS = \frac{\partial u_i(q, m_i)}{\partial m_j} = v_i'(q_k) = 1 - q_i, \]

which is independent of \(m_i \). See FIGURE below.
b. Maximizing the sum of utilities over all feasible allocations is equivalent to maximizing $v_1(q_1) + v_2(q_2)$ subject to the feasibility condition $q_1 + q_2 \leq 1$—then distributing the 1 available unit of money any way one likes. The FOC’s show that $q_1 = q_2 = 1/2$. So the set of all PO allocations x satisfy $x_1 = (1/2, m_1)$ and $x_2 = (1/2, m_2)$, with $m_1 + m_2 = 1$. See FIGURE below. The contract curve is a vertical line because the indifference curves are vertically parallel.