
Is it Possible to Define Subjective Probabilities in

Purely Behavioral Terms?

A Comment on Epstein-Zhang (2001)

Klaus Nehring

University of California, Davis1

April 20062

1Department of Economics, University of California, Davis, CA 95616.
2This research was undertaken during the author’s stay at the Institute for Advanced

Study, Princeton; the support of the Andrew Mellon Foundation is gratefully acknowledged.



Abstract

It is shown that well-behaved preference orderings may exhibit the Ellsberg paradox

on the set of unambiguous events as defined by Epstein and Zhang (2001). Moreover,

since such counterexamples can be constructed even when the set of unambiguous

events is rich, EZ’s main representation result does not clarify satisfactorily when

the proposed definition delivers probabilistic sophistication on unambiguous events.

We conclude by conjecturing that these problems indicate the existence of inherent

limitations of a strictly behavioral approach to identifying probabilistic beliefs in

the presence of ambiguity, rather than deficiencies in EZ’s implementation of that

approach.
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1. INTRODUCTION

A fundamental question in the theory of decision-making under uncertainty is the

identification of a decision-maker’s probabilistic beliefs from preferences. This has

been addressed in the literature so far mainly under the heading of finding an ap-

propriate definition of “unambiguous events”. The earliest proposals of Ghirardato-

Marinacci (2001), Nehring (1999)1 and Zhang (2002) all imply expected utility max-

imization over unambiguous acts (acts measurable with respect to unambiguous

events), and are therefore inapplicable to decision-makers who depart from SEU not

just for reasons of ambiguity, but also for reasons of probabilistic risk-attitudes as

exemplified by the Allais paradox. Epstein-Zhang’s (2001, henceforth EZ) contribu-

tion is the first and hitherto only contribution to attempt a “behaviorally general”

(“model-free”) definition. This appears to be a big step forward beyond the existing

definitions in that it promises to deliver a generally applicable distinction between

risk and ambiguity. In this note, we ask whether their definition works as intended.

EZ’s principal criterion of the success of a definition of unambiguous events is that it

delivers probabilistic sophistication on unambiguous acts. To demonstrate the success

of their definition, the main representation result in EZ provides sufficient conditions

that entail this property. While these look fairly weak, we show by example that

even when preferences are extremely well-behaved (e.g. of the MEU variety) and the

set of unambiguous events is “rich”, they may exhibit the Ellsberg paradox on the

set of EZ-unambiguous acts; a fortiori, such preferences cannot be probabilistically

sophisticated on unambiguous acts. EZ thus fail to achieve the intended separation

of probabilistic risk from ambiguity.2

1Building in part on Ghirardato et al. (2003), an equivalent definition is also proposed in Ghi-

rardato et al. (2004).
2For a technically deep analysis of EZ unambiguous events in the context of the MEU model that

in part builds on and develops the observations of this note, see Amarante-Filiz (2004).

1



Our counterexamples do not contradict EZ’s representation result at the formal

level. Instead, they reveal that the content of one of their key axioms on preferences

is not what it seems to be; in particular we shall argue that this axiom (“Small

Unambiguous Event Continuity”) cannot interpreted as merely imposing “richness”

on the set of unambiguous events, contrary to what is suggested by EZ. It thus

remains an open question when (that is: under what conditions formulated directly in

terms of preferences) the EZ definition “works” in the sense of delivering probabilistic

sophistication on unambiguous events.3

There are two possible types of responses to our observations. On the one hand,

one may conjecture that EZ’s choice of a particular purely behavioral definition of

unambiguous events was not right one, and try to come up with a better one by

either refining EZ’s or starting from scratch. Alternatively, one may conclude that

the problems identified here are likely to resurface for alternative purely behavioral

definitions, and that some non-behavioral element such as the exogenous identification

of a subfamily of unambiguous events must be assumed to begin with. We have

written this note out of a belief in the second type of response as the more promising,

that is: out of a belief that the limitations of EZ’s proposal are not accidental, but

indicative of a fundamental, deep-seated difficulty in conceptualizing decision making

under ambiguity itself.

2. THE EPSTEIN-ZHANG DEFINITION FOR BETTING

PREFERENCES

Let (S,Σ) be a measurable space where S is the set of states and the universe of

events Σ is a σ-algebra. Throughout, we will focus on domains with two possible

3Kopylov (2003) has provided an elegant modification of EZ’s representation result. However, as

explained below in section 2, Kopylov’s result does not help address the issues raised in this note.
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outcomes only, win and lose. This case not only allows to simplify the exposition

significantly, it is also central to the intuitive motivation of EZ’s definition of unam-

biguous events. With only two outcomes, one can denote the act [win on A, lose

on A] (“betting on A”) simply by the event A ∈ Σ. Thus, the decision maker is

characterized by a preference ordering over events %; the preference ordering % is

assumed to be monotone and non-degenerate.

Axiom 1 (Monotonicity) A % B whenever A ⊇ B, and A Â B whenever A\B is

non-null, i.e. whenever (A\B) ∪ C Â ∅ for some C ∈ Σ.

Axiom 2 (Non-Degeneracy) S Â ∅.

In the two outcome context, EZ’s definition of an unambiguous event amounts to

the following.

Definition 1 An event T is unambiguous if, for all A,B disjoint from T , A % B

if and only A ∪ T % B ∪ T , and if the same holds for T c instead of T .

The family of all unambiguous events is denoted by A. Intuitively, an event is

unambiguous if it is evaluated separably by the decision maker. As pointed out

by EZ, in the context of the typical ambiguity-averse preferences in the Ellsberg

experiment with one urn with three colors the definition successfully identifyies the

color with known frequency as unambiguous, and the other two as ambiguous.

The question at the center of EZ and of this note is the extent to which this defini-

tion yields well-defined subjective probabilities over the family of unambiguous events

A in general. There are several criteria to determine whether, given a preference or-

dering %, the decision-maker has “well-defined subjective probabilities” over a given
family of events B ⊇ {∅, S}. The central criterion of EZ is the requirement that pref-
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erences over acts measurable with respect to B be “probabilistically sophisticated”.4

In a two-outcome context, this boils down to the following requirement.

(Probabilistic Sophistication on B) There exists a finitely addi-

tive set-function p : B→ [0, 1] with p(S) = 1 such that, for all A,B ∈ B,

A % B if and only if p(A) ≥ p(B). (1)

If it is indeed appropriate to attribute well-defined subjective probabilities to all

events in B, then one should be able to attribute such probabilities to all events whose

probability can be deduced from those in B. This leads to the requirement that B

be a λ-system; a family B is a (finite) λ-system if it is closed under complementation

and disjoint union, i.e. if i) S ∈ B, ii) A ∈ B implies Ac ∈ B, and iii) A,B ∈ B and

A∩B = ∅ implies A∪B ∈ B; B is a countable λ-system if it is closed under countable

disjoint unions, i.e. if ∪∞i=1Ai ∈ B whenever the Ai ∈ B are mutually disjoint.

When does EZ’s definition of unambiguous events A deliver probabilistic sophis-

tication on unambiguous events A, preferably with A a λ-system? It is clear from

the outset that one cannot expect this to happen in full generality, even when all

events are unambiguous (A = Σ); for in this case, % is what is called a “qualitative
probability” in the literature, and Kraft et al. (1959) have shown that qualitative

probabilities on finite state spaces need not be representable in terms of numeric

probabilities.

To support their definition and overcome this difficulty, the main result in EZ

provides assumptions on preferences which ensure that preferences on unambiguous

acts are probabilistically sophisticated. Applied to betting preferences, EZ make the

4Arguably, having beliefs p entails substantially more than condition (1), for example the extend-

ability of p to an additive set-function on all of Σ; however, since the main point of this note con-

cerns the difficulty of guaranteeing Probabilistic Sophistication on A, the family of EZ-unambiguous
events, these additional desiderata are not be discussed here.

4



following assumptions. The first one is central to their result, while the technical is

merely auxiliary.

Axiom 3 (Small Unambiguous Event Continuity) For any A,B ∈ A such that

A Â B, there exist partitions {Ci}i∈N and {Dj}j∈M in A that refine the partitions

{A,Ac} respectively {B,Bc} such that A\Ci Â B for all i ∈ N and A Â B ∪Dj for

all j ∈M.

Axiom 4 (Monotone Continuity) Consider any decreasing sequence {Ai}∞i=1 in

A, B,C in A with B disjoint from A1. Then Ai ∪B % C for all i implies (∩∞i=1Ai)∪

B % C.

Restricted to bets, a corrected version of EZ’s main result is the following:

Theorem 1 Let % a monotone preference order over bets and assume that the cor-

responding set of unambiguous events A is a countable λ-system. Then the following

two statements are equivalent:

1. % satisfies Non-Degeneracy, Small Unambiguous Event Continuity, and Monotone
Continuity.

2. There exists a (unique) convex-ranged and countably additive probability mea-

sure p on A such that, for all A,B ∈ A,

A % B if and only if p(A) ≥ p(B).

In contrast to Theorem 1, in EZ’s original statement (EZ, Theorem 5.2), the λ-

system property of A is derived rather than assumed; however, according to Kopylov

(2003, p. 31), this claim is false.5 Kopylov (2003) shows instead that, in general,

5It is an open question to what extent this property can be derived from intuitively more primitive

assumptions. Amarante-Filiz (2004) show that A is a λ-system whenever preferences have an MEU

representation.
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A is closed under disjoint countable unions of a particular kind, calling the result-

ing generalization of λ-systems “mosaics”. In an elegant extension of EZ’s work, he

also provides a derivation of probabilistic sophistication on A for the general case

of mosaics assuming a strengthened version of Axiom 3 (ibid., Corollary 4.2) while

dispensing with Monotone Continuity. Since we will argue that Axiom 3 is too re-

strictive already, the following analysis applies to Kopylov’s version of EZ’s result as

well.

3. DO EZ UNAMBIGUOUS EVENTS SEPARATE RISK FROM

AMBIGUITY?

Crucial to the assessment of the import of Theorem 1 is an assessment of the domain

of its applicability. The following examples will show that it is substantially smaller

than apparent and, more importantly, not transparently defined.

Example 1. Fix any event T ∈ Σ. Let Π1 and Π2 denote two (weak
∗−)closed

and convex sets of finitely additive probability measures such that π (T ) = 1 for all

π ∈ Π1 and π (T ) = 0 for all π ∈ Π2, and fix α, β such that 0 < α < β < 1. Define

the (weak∗−)closed and convex set Π as follows,

Π := {γπ1 + (1− γ)π2 | α ≤ γ ≤ β, π1 ∈ Π1, π2 ∈ Π2}, (2)

and let preferences over events determined by their lower probability given Π,

A % B if and only if min
π∈Π

π (A) ≥ min
π∈Π

π (B) . (3)

It is easily seen that for any such preference relation, both T and T c are EZ-unambiguous!

Observation 1 For any preference relation defined by (2) and (3), {T, T c} ⊆ A
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Indeed, for any A ⊆ T,

min
π∈Π

π (A) = αmin
π∈Π1

π (A) ,

as well as

min
π∈Π

π (A ∪ T c) = β min
π∈Π1

π (A) + (1− β).

Hence evidently, for all A,B ⊆ T,

A % B if and only if min
π∈Π1

π (A) ≥ min
π∈Π1

π (B) if and only if A ∪ T c % B ∪ T c.

Similarly, for all A,B ⊆ T c

A % B if and only if min
π∈Π2

π (A) ≥ min
π∈Π2

π (B) if and only if A ∪ T % B ∪ T,

establishing that both T and T c are unambiguous.

Since α < β, this classification is clearly counterintuitive. In this example, the fact

that preferences are separable in {T, T c} (that is: {T, T c} ⊆ A) picks up the separa-

bility of Π implied by (2), but has nothing to do with the existence of probabilistic

beliefs with respect to the events T and T c.6

In general, it might be the case that T and T c are the only non-trivial unambiguous

events, in which case preferences are “probabilistically sophisticated on A” in a trivial

way. Consider, however, cases in which the set of events over which the decision-maker

has probabilistic beliefs is rich in an intuitive sense.

Example 2. Specifically, assume that the state space is the product of a space

with two “subjective” states and a continuous state space representing a continuous

random device, S = {b, r} × [0, 1], with Σ = 2{b,r} × Σ2 where Σ2 denotes the Borel-

σ-algebra on [0, 1]. One may think of {b, r} as representing the outcome of a draw
6The example easily extends to multi-outcome domains by adopting, for example, the MEU

model; separability conditions as in (2) arise naturally in dynamic versions of this model, see Ep-

stein/Schneider (2003).
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from an unknown urn with black and red balls. Let µ denote some convex-ranged

probability measure on Σ2, and let T = {b} × [0, 1]. Say that betting preferences

are compatible with independent randomization if and only if, for all A,B ∈ Σ, A %
B whenever µ (A ∩ T ) ≥ µ (B ∩ T ) as well as µ (A ∩ T c) ≥ µ (B ∩ T c) , that is:

whenever A is at least as likely than B, conditional on either T or T c. Independent

randomization gives rise to a class of counterexamples that do not make use of the

MEU functional form.

Observation 2 Whenever the preference ordering % is compatible with independent
randomization, {T, T c} ⊆ A.

Again, as in Example 1, the unambiguity of the events T and T c reflects a separa-

bility structure that has nothing to do with the existence of probabilistic beliefs over

these events. It is thus not very surprising that combining these two examples, one

obtains the 2-color version of the Ellsberg paradox within the family of unambiguous

events.

Example 3. Indeed, let Π1 be the singleton {π1}, with π1 (A) := µ (A ∩ T ) ;

likewise, let Π2 be the singleton {π2}, with π2 (A) := µ (A ∩ T c) . The preference

relation %3 defined by (2) and (3) can be seen as a Gilboa-Schmeidler (1989) MEU
preference relation in a two-state Anscombe-Aumann framework translated into a

Savage setting. Let A3 denote the associated family of unambiguous events. The

following Fact is easily verified.

Fact 1 A ∈ A3 iff

i) µ (A ∩ T ) = µ (A ∩ T c) or

ii) µ (A ∩ T ) = 1 and µ (A ∩ T c) = 0, or µ (A ∩ T ) = 0 and µ (A ∩ T c) = 1.

The family of events satisfying i) (denoted byR) reflects the assumed compatibility

with independent randomization, while those satisfying ii) correspond to Observation

2. Fact 1 immediately entails the following Observation.
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Observation 3 %3 displays the Ellsberg paradox on A3; that is, there exist events
A,B ∈ A3 such that A Â B and Ac Â Bc.

To see this, take any E ∈ Σ2 such that α < µ (E) < β; then by construction

{b} × [0, 1] ≺3 {b, r} ×E and {r} × [0, 1] ≺3 {b, r} ×Ec. (4)

Since in view of Fact 1 all four events are EZ-unambiguous, preferences display the

Ellsberg paradox on A3.

4. IMPLICATIONS FOR THE INTERPRETATION OF EZ’S

REPRESENTATION THEOREM

What is going wrong here? Clearly, Theorem 1 cannot apply since (4) is inconsistent

with Probabilistic Sophistication on A3. As A3 is evidently a λ-system in view of

Fact 1, the culprit must be Axiom 3. Indeed, Axiom 3 fails to hold since the events

{b} × [0, 1] and {r} × [0, 1] cannot be partitioned into strictly smaller unambiguous

subsets. On the other hand, A3 does contain a “rich” subset of unambiguous events,

namely the set of “random” eventsR. Note in particular that Axiom 3, when restricted

to random events R, is satisfied by %3. In view of this, the richness motivation of
Axiom 3 would only justify requiring Small Event Continuity with respect to some

subset B of A, a condition much weaker than Axiom 3. 7

7The surprising strength on Small Event Continuity on λ-systems can be viewed as mirroring

a disanalogy of convex-rangedness of probability measures defined on σ−algebras and those on
countable λ-systems. Specifically, suppose that p is a probability measure on a countable λ-system

D that is convex-ranged on some family B ⊆ D. If D is a closed under intersections (hence

a σ−algebra), p is must be convex-ranged on the larger family D as well; yet as shown by an

appropriate specialization of Example 2, this conclusion does not hold if D is merely a λ-system.

If one interprets B as an exogeneously given set of unambiguous events, and D as the “true” set of
unambiguous events (however defined) this observation suggests that in general, one cannot expect

convex-rangedness of p to extend to the endogeneously defined “true” set of unambiguous events.
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Requiring Small Event Continuity with respect to A itself yields an assumption

that lacks transparent intuitive content and is more and intransparently restrictive

strong. The lack of transparency of the Small Event Continuity axiom is attributable

in part to its reliance on the endogeneously defined family of unambiguous events A,

a notion whose content EZ’s main result, Theorem 1, was meant to clarify with the

crucial help of this axiom itself.

It thus remains an open question whether there are sufficient conditions of rea-

sonable generality that are formulated directly in terms of preferences and ensure

Probabilistic Sophistication over unambiguous acts. Indeed, it is not obvious that

such conditions exist. As Example 2 shows, even the presence of a continuous inde-

pendent random device is not enough.

Examples 1 through 3 also raise questions concerning the conceptual interpretation

of the EZ definition. EZ view their definition of unambiguous events as meaningful

whenever preferences are monotone (satisfy P3), including, for example, situations in

which the state space is finite. This conceptual assumption appears to be necessary

if the definition is used in some of the preference axioms (such as Axiom 3); furtm

hermore, there is nothing in the behavioral pattern identified by the EZ definition that

would warrant a restriction to particular kinds of monotone preference relations. The

existence of even one preference relation within its domain of legislation displaying

the Ellsberg paradox on unambiguous events suggests that the EZ definition does not

capture absence of ambiguity in a consistent, conceptually primitive manner.8

8Thus, the upshot of our examples is that the EZ definition is “too weak”. Conversely, one

may ask whether it always finds all “truly” unambiguous events. In this regard, it has been argued

before by Klibanoff et al. (2003) that the EZ definition may sometimes be “too strong” by classifying

genuinely unambiguous events as ambiguous; put differently, their criticism is to point out that the

EZ definition builds in assumptions on preferences over unambiguous acts that do not follow from

the existence of probabilistic beliefs over unambiguous events per se.
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5. CONCLUSION

We conclude from the above observations, reinforced by those of Kopylov (2003)

and Klibanoff et al. (2003), that EZ’s definition of “unambiguous” events fails to

deliver a satisfactory separation between risk and ambiguity,

There are two basic responses to this state of affairs. On the one hand, it may

be the case that the EZ definition is basically on the right track, but needs to be

“fixed” somehow. For example, in the context of Example 2, one feels that the event

{b}× [0, 1] (“black”) cannot really be unambiguous unless events of the from {b}×E

representing conjunctions of the original event {b} × [0, 1] with independent random

events [0, 1] × E are unambiguous as well. A natural approach to fixing the EZ

definition would therefore be to try to refine it by building in closure with respect

to such conjunctions. While such a move may have some appeal at a formal level, it

is not clear whether it can made without losing the intuitive behavioral motivation

that makes the EZ definition attractive in the first place; furthermore, it raises the

question of how to identify the existence of a rich set of independent random events

in purely behavioral terms (as opposed to fixing it exogeneously as done here in the

definition of “compatible with independent randomization”), a question that may not

be more easily solvable than that of identifying unambiguous events in the first place.

Alternatively, one may conclude that a non-epistemic definition of “unambiguous”

events is unlikely to yield probabilistic sophistication on unambiguous acts, and, even

more so, epistemically motivated properties such as the closure under disjoint unions

characteristic of λ-system. In other words, one needs to put in more epistemic content

into the definition of “unambiguous” from the very beginning.

More drastically, it may be necessary to exogeneously specify some events as un-

ambiguous, in order to infer the unamiguity of others behaviorally. This could be

justified by imputing certain probabilistic beliefs to the agent on the basis of ver-
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bal testimony or a hypothesized and behaviorally falsifiable shared understanding of

certain aspects of the decision situation, an approach developed in detail in Nehring

(2001,2006). Beliefs of this kind are, in fact, already imputed implicitly in appli-

cations of the Anscombe-Aumann (1963) framework to the modeling of preferences

under ambiguity.

While such a move has a lot going for it, it represents a break with the strictly

behaviorist revealed preference approach to decision theory pioneered by Ramsey

and Savage, an approach that continues to dominate much of decision theory and

that centrally inspired the Epstein and Zhang’s contribution. We conjecture that its

limitations do not reflect limitations of the authors in implementing their behaviorist

approach but instead reflect deep-seated limitations of that approach itself.
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