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ABSTRACT

Imprecise probabilistic beliefs are modelled as incomplete comparative likelihood

relations admitting a multiple-prior representation. We provide an axiomatization of

such relations for the case in which the set of priors is “convex-ranged”, and show

that the multiple-prior representation is unique whenever the set of priors is “almost-

convex-ranged”. Such uniqueness ensures the adequacy of likelihood relations as

models of imprecise probabilistic beliefs. In the final part of the paper, we formulate

behaviorally general axioms relating preferences and probabilistic beliefs. If beliefs

are almost-convex-ranged, these axioms imply that preferences can be represented in

an Anscombe-Aumann-style framework.

Keywords: ambiguity, comparative likelihood, coherence, multiple priors, sto-

chastic dominance, consequentialism.1
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1. INTRODUCTION

It is by now widely recognized that the assumption that decision makers are guided

in their decisions by a well-defined subjective probability measure is questionable em-

pirically as well as normatively. Empirically, this assumption was refuted decisively

by Ellsberg’s (1961) celebrated experiments. While this and much other evidence

provide compelling reasons for abandoning the assumption that behavior can be ex-

plained globally in terms of precise probabilistic beliefs, it does not render the notion

of probabilistic belief useless if it is applied “partially”, that is: if applied to some

events or event comparisons. Indeed, the very formulation of Ellsberg’s original ex-

periment involves a comparison of events with probabilistic beliefs to other potentially

ambiguous ones.

To model such decision making in the context of imprecise probabilistic beliefs, we

shall describe a decision-maker in terms of two entities rather than one representing

preferences and beliefs separately. This departure from the behaviorist tradition fol-

lowing Ramsey and Savage of defining beliefs in terms of preferences is motivated by

the loss of a canonical one-to-one relation between beliefs and preferences. While un-

der expected utility and, more generally, under probabilistic sophistication, a decision

maker’s probabilistic beliefs are canonically “revealed” by his betting behavior, this

no longer holds in the presence of ambiguity, for now there are (at least) two determi-

nants of betting preferences: beliefs —however construed— and ambiguity attitudes.2

2For different reasons, a canonical definition of “revealed subjective probability” from choice-

behavior fails to be possible in the case of state-dependendent preferences; see Karni et al. (1983)

and the subsequent literature.

Even in the context of Savage’s SEU theory, this “canonical” definition has been criticized as

not necessarily capturing the decision maker’s true beliefs (Shervish, Seidenfeld and Kadane (1990),

Karni (1996), Grant-Karni (2000) ); this criticism assumes, however, a non-behaviorist point of view

to begin with.
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Both common sense and the practice of economic modeling support an independent,

non-derived role for beliefs: as real-world actors, we prefer certain acts over others

because we have certain beliefs rather than others; as economic modelers, we typi-

cally attribute to economic agents particular preferences over uncertain acts because

we have some idea about the beliefs that can be plausibly attributed to the agents

in a particular situation. In both cases, we think directly in terms of beliefs rather

than preferences. This is the intuitive substance of including the decision maker’s

probabilistic beliefs among the primitives.3

Two basic, interrelated questions arise:

“How are preferences (rationally) constrained by probabilistic beliefs ?”,

and, more fundamentally,

“How are imprecise probabilistic beliefs themselves to be represented for-

mally?”

Imprecise Probabilistic Beliefs as Comparative Likelihood Relations

Following the lead of Keynes (1921), de Finetti (1931) and Savage (1954), we shall

model “imprecise probabilistic beliefs” formally as comparative likelihood relations

D over events, with “A D B” denoting the judgement “A is at least as likely as

B”. Comparative likelihood relations constrain betting preferences canonically: if

A is judged at least as likely as B, then betting on A must be weakly preferred to

betting on B. More generally, preferences should respect any stochastic dominance

relations entailed by the likelihood relation and the ranking of consequences: if, for

any consequence, some act f is at least as likely to generate this consequences or

3In section 5, we will further comment on the implications of this move, and discuss the extent

to which this paper’s contribution is meaningful from a strictly behaviorist perspective as well.
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a better one than another act g, f should be weakly preferred to g; in this case,

we will simply say that the decision-makers are “compatible” with his beliefs. A

decision maker in the context of probabilistic beliefs is thus formally given as a pair

(%,D) such that his preferences % are compatible with his beliefs D. The likelihood
relation will frequently be referred to as the DM’s explicit probabilistic beliefs; it will

typically be non-exhaustive in the sense that the DM may have further “non-explicit”

probabilistic judgments not listed in D.
An important virtue of using likelihood relations as the epistemic primitive is their

behavioral generality, in that our formulation does not constrain the DM’s risk or

ambiguity attitudes. In particular, respect for Stochastic Dominance accommodates

Allais- and Ellsberg-style choice patterns as well as their converses, and is not tied to

assumptions about functional form. Behavioral generality is important since issues

about the representation of probabilistic beliefs are more fundamental than particular

behavioral assumptions, as argued compellingly by Machina-Schmeidler (1992) and

Epstein-Zhang (2001). The goal of the present paper is a) to provide axiomatic

foundations for incomplete comparative likelihood relations, and b) to demonstrate

that such relations are adequately expressive in sufficiently general circumstances.

Representation by Multiple Priors

The incompleteness of the set of explicit likelihood judgments is naturally reflected

in a representation in terms of a set of admissible probability measures (“priors”)

according to which judging an event A as at least as likely as B is equivalent to

A’s probability weakly exceeding that of B, for any admissible prior in the set. A

comparative likelihood relation for which such a multi-prior representation exists will

be called coherent.

An axiomatization of coherent likelihood relations will rely on conditions of three

kinds; rationality axioms that account for the logical interrelations among various
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judgements, conditions reflecting the real-valued character of the desired represen-

tation, and structural assumptions that are not implied by coherence as such but

that are needed to make the other conditions sufficiently powerful. Savage (1954)

achieved a representation of this kind for complete likelihood relations. In particular,

by an appropriate choice of auxiliary conditions, he was able to make do with one

fundamental rationality axiom, “Additivity”, according to which the judgment that

A is at least as likely as B entails and is entailed by the judgment that “A or C” is

at least as likely as “B or C”, for any event C disjoint from A and B. In exchange,

Savage had to pay the price of restricting attention to non-atomic (strictly speaking:

“convex-ranged”) probability measures.

The main result of this paper, Theorem 2, is a counterpart to Savage’s result for

incomplete comparative likelihood relations; it appears to be the first such result in the

literature. If the completeness assumption is dropped, almost all of Savage’s axioms

need to be modified or augmented. In particular, Additivity is no longer enough to

fully capture the “logical syntax of probability”; a second rationality axiom called

“Splitting” is needed as well. This axiom requires in particular that if two events A

and B are split into two equally likely parts, and if A is judged at least as likely as

B, then any “half” of A must be at least as likely as any “half” of B. “Splitting”

is accompanied by a structural “Equidivisibility” condition that assumes that any

event can indeed be split into two equally likely subevents. Equidivisibility leads to

convex-rangedness of the set of priors. That is, given any non-null event and any value

between 0 and 1, there exists a subevent with that value as its conditional probability

with respect to any prior in the set. Besides non-atomicity, Equidivisibility thus

assumes a minimal degree of completeness of the likelihood relation. It is satisfied,

for example, in the presence of a continuous random device, as assumed in the widely-

used Anscombe-Aumann framework. In an important sense, Equidivisibility is thus

not really restrictive at all since any coherent likelihood relation can be extended to
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a larger one incorporating a hypothetical random-device on a larger state space. See

section 3 for details and further examples.

Uniqueness

Next to providing axiomatic foundations, a second main concern of the paper is

to establish that comparative likelihood relations are adequately expressive as formal

representations of “imprecise probabilistic beliefs” (understood in an intuitive, not

yet formally committed sense). A natural formal criterion for this is the uniqueness

of the multi-prior representation (within the class of closed, convex sets of priors).

Without uniqueness, a representation of imprecise beliefs by sets of priors could be

viewed as more expressive than a representation in terms of comparative likelihood

relations; this would cast doubt on the adequacy of comparative likelihood relations

as the canonical primitive.

Fortunately, Equidivisibility ensures not only the existence of a multi-prior rep-

resentation, but also its uniqueness. In section 3, we investigate to what extent it

is it possible to weaken this assumption while still preserving uniqueness. On the

positive side, we show that uniqueness continues to obtain when Equidivisibility re-

spectively convex-rangedness are only satisfied “arbitrarily closely”. Specifically, the

second major result of the paper, Theorem 3, establishes a one-to-one relation be-

tween “almost-equidivisible” likelihood relations and “almost-convex-ranged” sets of

priors. On the other hand, we also show by example that uniqueness is lost easily

when the likelihood relation is not almost-convex-ranged.

The difference between almost- and strict convex-rangedness can be substantial.

For example, it is frequently appropriate to assume that all admissible priors on

the realization of a real-valued random-variable have a uniformly continuous distri-

bution, as advocated forcefully in an inspired recent paper by Machina (2001) on

“Almost-Objective Uncertainty”. In such cases, the set of priors will be almost but
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not necessarily strictly convex-ranged (Proposition 2). Machina (2001) captures the

imprecise probabilistic belief in “uniform continuity in distribution” by a smoothness

assumption on preferences; we clarify its epistemic substance by explicitly represent-

ing this belief as a comparative likelihood relation (Proposition 3). Machina’s notion

of almost-objective uncertainty can thus be viewed as an important special case of

our model of decision-making in the context of probabilistic beliefs.

Applications to Decision Theory

Comparative likelihood relations represented by (almost) convex-ranged sets of

priors promise to be very fruitful for decision theory itself. From the mathematical

point of view, this happens because convex-ranged beliefs effectively endow the event-

spaces with a mixture-space structure. In particular, we show that if preferences over

multi-valued acts are compatible with a convex-ranged set of priors, they can be

represented within an Anscombe-Aumann framework. The analytical power of this

framework is well-known, even though it is sometimes viewed with suspicion (see, e.g.

Epstein (1999)). Our derivation not only clarifies the assumptions on preferences and

beliefs implicit in the Anscombe-Aumann model, it leads to an even more powerful

structure since all uncertainty is treated at the same level.

In a companion paper (Nehring 2001), we have used this framework to address

three basic issues in the theory of decision making under ambiguity:

1. how to infer beliefs from preferences;

2. how to characterize decision-makers that depart from subjective expected utility

exclusively for reasons of ambiguity; and

3. how to define ambiguity attitudes in terms of betting preferences only to ensure

behavioral generality.
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In each case, the additional structure provided by a convex-ranged sets of priors is

crucial.

Related Literature

1. Our first main result, Theorem 2, is most closely related to, and indeed builds

on, the multiple-prior representations of partial orderings due to Bewley (1986) and

Walley (1991) following Smith (1961). All of these, however, use preferences as their

primitive and derive the multiple-prior representation together with expected-utility

maximization with respect to those priors, and thus fail to be behaviorally gen-

eral. Multiple-prior representations of complete preference orderings have obtained

by Gilboa-Schmeidler (1989), Ghirardato et al. (2002) and Casadesus et al. (2000);

again, these are about preferences, not belief, and are behaviorally quite restrictive.

2. There is a sizeable literature on comparative likelihood relations the great ma-

jority of which focuses on the complete case; see Fishburn (1986) and Regioli (1999)

for surveys. In the incomplete case, one can use standard arguments from the theory

of linear inequalities to obtain a characterization of coherence for likelihood relations

defined on arbitrary families of sets; see Walley (1991 p. 192-3) and related earlier

results by Heath-Suddert (1972) and, in the complete, finite-state case, Kraft et al

(1959). In view of the complexity and epistemic intransparency of the involved con-

ditions, such characterizations have generally not been considered to be of significant

foundational interest. A main contribution of Theorem 2 is precisely to provide an

epistemic counterpart to the algebraic logic of these conditions, for which the Split-

ting axiom (combined with Equidivisibility) is crucial. The uniqueness issue has been

studied so far only in the complete case.4 Likewise, the central notions of convex-

4That comparative likelihood relations can match multi-prior representations in their expressive-

ness at all in non-degenerate situations seems in fact fairly remarkable a priori; we are not aware of
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ranged and almost-convex-ranged sets of priors appear to be novel.

3. Some of the recent literature on decision making under ambiguity can be read

as offering proposals for characterizing a decision maker’s unconditional probabilistic

beliefs directly through definitions of “unambiguous events” revealed by the prefer-

ence relation; see Epstein-Zhang (2001), Ghirardato-Marinacci (2002) and Nehring

(1999)). As further discussed in the companion paper Nehring (2001), the compati-

bility requirements derived from the extant definitions fail to adequately capture the

“syntax of probability” and/or are behaviorally restrictive; the relationship of the

Epstein-Zhang definition to the natural definition of unambiguous events in terms

of explicit beliefs will be specifically discussed in Appendix A.1 below. In fact, the

present paper originated in an attempt to overcome these limitations by defining

“revealed unambiguous beliefs” as a coherent comparative likelihood relation that

respects the logical syntax of probability by construction. This is worked out in

Nehring (2001), where revealed unambiguous beliefs are defined as the maximal co-

herent likelihood relation extending a given convex-ranged belief context with which

betting preferences are compatible; see also Ghirardato-Maccheroni-Marinacci (2002)

for related work in the case “utility sophisticated preferences”.5

4. Machina (2001, 2002) formulates a model which reproduces the power of the

Anscombe-Aumann framework in an enriched Savage setting, with the different but

not unrelated goal of “robustifying” the classical (SEU) analysis of risk preferences

and beliefs. Indeed, the already mentioned Machina (2001) inspired our interest in

almost-convex-ranged sets of priors; otherwise, his contribution arose independently of

any hint of this in the literature (see, for example, the discussion of comparative likelihood relations

in Walley (1991, 191-197).
5The notion of“utility sophisticated preferences” as introduced in Nehring (2001) describes

decision-makers who depart from expected utility only for reasons of ambiguity; in particular, utility

sophisticated decision-makers maximize expected utility when probabilities are known.
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ours. Congenial with our work, Machina imposes epistemically motivated restrictions

on preferences. However, these assumptions are imposed directly in the form of a

continuity condition, while we model the postulated probabilistic beliefs explicitly as

a likelihood relation, and obtain analogous preference restrictions via compatibility.

Our approach can thus be viewed as generalizing and grounding Machina’s. 6 Among

many other things, Machina (2002) defines a global comparative likelihood relation

from preferences, assuming event-differentiability of preferences. Nonetheless, this

paper does not overlap with the present one, as neither it nor Machina (2001) analyze

further the internal structure of comparative likelihood relation it derives.

5. There is a small literature that attempts to characterize how imprecise prob-

abilistic beliefs determine rational choice under ambiguity (see Jaffray (1989), and

Nehring (1991, 2000), as well as, at a more conceptual level, Levi (1980)). One can

think of the beliefs as described in these works as convex sets of priors. In contrast to

the present paper, the interpretation of such sets (respectively their associated likeli-

hood relations) is an exhaustive one. That is, in the language of the present paper,

the DM’s beliefs D fully summarize all likelihood judgements the DM is willing

to make; event comparisons for which this relation is incomplete reflect deliberate

suspensions of judgement. The necessity of an exhaustive interpretation in these con-

tributions reflects their different decision-theoretic goal, which was to characterize the

implications of substantive rationality assumptions on choice behavior rather than to

provide behaviorally general and thus minimal restrictions on choices.

6There are further differences, for example in the treatment of probabilistic sophistication. In

addition, Machina assumes event-differentiability of preferences which is not unrestrictive, excluding,

for example, MEU and its cousins.
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Overview

Section 2 characterizes coherent likelihood-relations with a convex-ranged multi-

prior representation assuming in particular of the likelihood relation, and illustrates

the notions of equidivisibility/convex-rangedness with a number of examples. In

Section 3, we weaken equidivisibility to almost-equidivisibility, and show that coher-

ent almost-equidivisible likehood-relations have a unique almost-convex-ranged multi-

prior-representation, and show that uniqueness is easily lost when convex-rangedness

is weakened further. Section 4 formulates conditions that relate beliefs to preferences,

and briefly discusses some issues that arise when preferences are state-dependent. If

beliefs are convex-ranged, these conditions yield a subjective version of the Anscombe-

Aumann framework. The concluding section 5 contains a sketchy methodological

discussion of our proposal to consider likelihood relations as independent primitives;

it also points out how epistemic constraints on preferences, formalized in terms of

likelihood relations, can be given a purely behaviorist interpretation. All proofs

can be found in the Appendix, which also contains a discussion of the present work

to Epstein-Zhang (2001) and a derivation of relation of the the Anscombe-Aumann

framework in the almost-convex-ranged case.

2. COHERENT LIKELIHOOD RELATIONS

A decision maker’s probabilistic beliefs shall be modelled in terms of a partial or-

dering D on an algebra of events Σ in a state space Ω, his “comparative likelihood

relation”, with the instance A D B denoting the DM’s judgment that A is at least

as likely as B. We shall denote the symmetric component of D (“is as likely as”) by
≡, and the asymmetric component by B . The comparative likelihood relation can

be viewed as representing a non-exhaustive set of probabilistic judgments attributed

to the DM , his explicit probabilistic beliefs. These judgments, in turn, may reflect
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probabilistic information available to and accepted by him, for example in the form of

statistical frequencies or physical propensities. The likelihood relation may be “non-

exhaustive” in the sense that the DM may be disposed to make further probabilistic

judgments not listed in D. Note that since this interpretation assumes nothing about
the DM’s beliefs where D is incomplete, there is no issue of demarcating a precise

boundary between those comparisons where the DM is prepared to make a likeli-

hood judgment and those where he is not. For now, we shall treat the comparative

likelihood relation D as a non-behavioral primitive; we will consider its relation to

behavior below in sections 4 and 5.

2.1. Savage’s Probability Theorem

As a reference point, we briefly review Savage’s Probability Theorem which deliv-

ers a unique representation of complete comparative likelihood relations in terms of

finitely additive probabilities. The following axioms are canonical for comparative

likelihood in any context; disjoint union is denoted by “+”.

Axiom 1 (Weak Order) D is transitive and complete.

Axiom 2 (Nondegeneracy) Ω B ∅.

Axiom 3 (Nonnegativity) A D ∅ for all A ∈ Σ.

Axiom 4 (Additivity) A D B if and only if A+C D B +C , for any C such that

A ∩ C = B ∩ C = ∅.7

Additivity is the hallmark of comparative likelihood. Normatively, it can be read

as saying that in comparing two events in terms of likelihood, states common to both

events do not matter. It is well-known that, on finite state-spaces, Additivity is far

7In this notation, we quantify over all C disjoint from A and B.
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from sufficient to guarantee the existence of a probability-measure representing the

complete comparative likelihood relation; see Kraft-Pratt-Seidenberg (1959). Savage

(1954) realized, however, that Additivity suffices for the characterization of convex-

ranged probability measures;8 the probability measureπ is convex-ranged if, for any

event A and any α ∈ (0, 1), there exists an event B ⊆ A such that π(B) = απ(A).9

We state a version of his result for the sake of further comparison. It requires two

more axioms; the event A is non-null if A B ∅.

Axiom 5 (Fineness) For any non-null A there exists a finite partition of Ω {C1, ..., Cn}
such that for all i ≤ n, A D Ci .

Axiom 6 (Tightness) For any A,B such that B B A there exist non-null events C

and D such that B\D B A ∪ C.

Theorem 1 (Savage) Let Σ be a σ-algebra. The likelihood relation D satisfies Ax-

ioms 1 through 6 if and only if there exists a (unique) finitely additive, convex-ranged

probability measure π on Σ such that for all A,B ∈ Σ :

ADB if and only if π(A) ≥ π(B).

An important feature of Savage’s result is the uniqueness of the representing proba-

bility. It justifies the view that the comparative likelihood relation captures the DM’s

beliefs fully. This is non-trivial, and holds only rarely in finite state-spaces.

2.2 Dropping Completeness

To allow for imprecision in explicit beliefs, likelihood relations will now allowed to

be incomplete.

8This result was in fact a crucial first step in his famous characterization of SEU maximization,

Addivity of the “revealed likelihood relation” being a consequence of the Sure-Thing Principle.
9In the countably additive case axiomatized by Villegas (1964), convex-rangedness is equivalent

to the absence of probability atoms.
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Axiom 7 (Partial Order)10 D is transitive and reflexive.

It is not immediately obvious how an incomplete likelihood relation is to represented

in order to fully capture the logical syntax of probability. A natural minimal criterion

of the latter is the possibility of extending the given incomplete relation D to a

complete one that is representable by some subjective probability measure:

There exists a finitely additive π such that π(A) ≥ π(B) whenever A D B. (1)

Likelihood relations satisfying (1) will be referred to as non-contradictory, and the

associated probability measures π as admissible, with their set denoted by Π . While

condition (1) rules out inconsistencies among likelihood judgments, it does not entail

“deductive closure”. For example, while it precludes the assertion of “Ac B Bc” given

the judgment that “A D B”, it does not allow one to infer that “Bc D Ac”. Deductive

closure is achieved by requiring that any absence of a comparative likelihood judgment

can be rationalized by the existence of an admissible prior implying the contrary

judgment, as stated by the following condition:

For any A,B such that not A D B, there exists π ∈ Π such that π(B) > π(A).

(2)

It is easily seen that this condition is equivalent to the existence of a set of finitely

additive probability measures Π ⊆ ∆(Ω) of the following form. For all A,B ∈ Σ :

ADB if and only if π(A) ≥ π(B) for all π ∈ Π. (3)

A comparative likelihood relation with the representation (3) will be called coherent.

For any set of priors Π ⊆ ∆(Σ), let DΠ denote the likelihood relation induced by the

unanimity condition (3). Coherence entails deductive closure in the sense that, if

a set of likelihood judgments D0⊆D entails another judgment “C D D” assuming

10Technically, the proper label would be “preorder”.
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completeness, i.e. if π(C) ≥ π(D) for all π ∈ Π 0 , the coherent relation D contains

in fact this judgment. In practice, explicit beliefs will often be given as a non-

contradictory relation D describing the DM’s direct likelihood judgments. From these
he can infer others via coherence; the resulting sum total of likelihood judgements

is given by the smallest coherent superrelation of D, its coherent hull D; it is easily
verified that D =D(Π ) .

Note that if D satisfies (3) for some set of priors Π, then it satisfies (3) also for

the convex hull of Π, as it does for the closure of Π (in the product or “weak∗”-

topology which will be assumed throughout). Thus, it is without loss of generality to

assume Π to be a closed convex set; let the class of closed (hence compact), convex

subsets of ∆(Σ) be denoted by K(∆(Σ)). Given Π ∈ K(∆(Σ)), the lower and upper
probabilities of an event minπ∈Π π(A) and maxπ∈Π π(A) will be denoted by π−(A)

and π+(A), respectively; given D, the lower and upper probabilities are taken to be
those associated with Π .

A main achievement of Savage’s Probability Theorem is its reliance on Additivity

as the sole axiom capturing the logical syntax of probability. If the completeness

assumption is dropped, this seems no longer feasible. For example, while under

completeness, one can use Additivity to infer that if A is at least as likely than

B, B0s complement (“not B”) must be at least as likely than that of A, this no

longer follows without completeness. Yet this implication seems essential to a proper

likelihood interpretation of the relation. Here, it will turn out to be sufficient to

complement Additivity by the following second rationality axiom called “Splitting”.

Axiom 8 (Splitting) If A1+A2 D B1+B2, A1 D A2 and B1 D B2, then A1 D B2.

In words: If two events are split into two subevents each, then the more likely

subevent of the more likely event is more likely than the less likely subevent of the

less likely event. In the following Theorem, we will only make use of the special case

15



in which the two events are split into equally likely subevents. Splitting is made

powerful by the following structural assumption, according to which any event can

be split into two equally likely parts.

Axiom 9 (Equidivisibility) For any A ∈ Σ, there exists B ⊆ A such that B ≡
A\B.

In terms of the multiprior representation, Equidivisibility is satisfied if given any

non-null event A there exists an event B with unambiguous conditional probability

one half; this would happen, for example, if there exists an event T that is viewed as

independent of A and equally likely to its complement, for then A∩T ≡ A∩T c. Note

that the plausibility of this assumption does not depend on A0s being unambiguous

itself.

On σ-algebras, Equidivisibility is equivalent to the following condition of “convex-

rangedness” of the representing set of priors; if Σ is merely an algebra11, it is equivalent

to “dyadic convex-rangedness”. Let D denote the set of dyadic numbers between 0

and 1, i.e. of numbers of the form α = c
2k
, where k and c are non-negative integers

such that c does not exceed 2k.

Definition 1 A set of priors Π is convex-ranged if, for any event A ∈ Σ and any

α ∈ (0, 1), there exists an event B ∈ Σ, B ⊆ A such that π(B) = απ(A) for all π ∈ Π.

The set Π is dyadically convex-ranged if this holds for all α ∈ D.

Note that while range convex-rangedness of Π implies the convex-rangedness of

every π ∈ Π, the converse is far from true. Also note the following Fact.

Fact 1 If Σ is a σ-algebra, Π is convex-ranged if and only if it is dyadically convex-

ranged.

11The generality added by allowing Σ to be an algebra is significant since algebras can often be

described explicitly while σ-algebras typically cannot. In this vein, Savage’s Theorem has recently

been extended by Kopylov (2003).
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Finally, Savage’s Fineness and Tightness axioms are no longer adequate. To ob-

tain a real-valued representation, a condition expressing the notion of “continuity in

probability” is needed. It relies on the following notion of a “small”, “ 1
K
− ”event: A

is a 1
K
−event if there exist K − 1 mutually disjoint events Ai, disjoint from A, such

that A E Ai for all i. Clearly, for coherent D and any π ∈ Π and any 1
K
−event A,

π(A) ≤ 1
K
; if Π is convex-ranged, the converse holds as well.

Axiom 10 (Continuity) If not A D B, then there exists K <∞ such that, for any

1
K
−events C,D, it is not the case that A ∪ C D B\D.

Note that Continuity is entailed by coherence. In particular, Continuity is applica-

ble to any state space, finite or infinite.12 The following is the main result of the

paper.

Theorem 2 A relation D on an event algebra Σ has a multi-prior representation

with a dyadically convex-ranged set of priors Π if and only if it satisfies Partial Order,

Additivity, Nonnegativity, Splitting, Continuity, Equidivisibility, and Nondegeneracy.

The representing Π is unique in K(∆(Σ)).

We shall sketch the proof idea of Theorem 2 with a bit of “reverse engineering”.

The key is the derivation of a “mixture-space” structure of the event-space resulting

12By contrast, neither Tightness nor Fineness are entailed by coherence, or even the existence

of a representing probability measure, as both rule out finite state spaces. On the other hand,

both Fineness and Tightness are implied by Continuity plus Equidivisibility; both in effect mix

non-atomicity and continuity aspects.

Moreover, in the presence of the other Savage axioms (including Fineness), Tightness can directly

be shown to be equivalent to Continuity. Thus, in Savage’s Theorem (Theorem 1), one can replace

Tightness by Continuity. This has the conceptual advantage of having one condition (Continuity)

entailed by the real-valuedness of the probability-representation, leaving Fineness as the condition

solely responsible for the convex-rangedness of the representing measure.

17



from the convex-rangedness of the set of priors. Specifically, one can extend every

coherent likelihood relation represented by the convex-ranged set of priors Π to a

partial ordering on the domain B0(Σ, [0, 1]) of finite-valued functions Z : Ω → [0, 1]

by associating with each function Z an equivalence class [Z] of events A ∈ Σ as

follows. Let A ∈ [Z] if, for some appropriate partition of Ω {Ei}, Z =
P

zi1Ei , and

such that, for all i ∈ I and π ∈ Π : π (A ∩Ei) = ziπ (Ei) . It is easily seen that for

any two A,B ∈ [Z] : π (A) = π (B) for all π ∈ Π, and thus A ≡ B. One therefore

arrives at a well-defined partial ordering on B0(Σ, [0, 1]), denoted by bD, by setting
Y bDZ if A D B for some A ∈ [Y ] and B ∈ [Z].

It is easily verified that this ordering is monotone, continuous and satisfies the fol-

lowing two conditions:

(Additivity) Y bDZ if and only if Y +X bDZ +X for any X,Y, Z , (4)

and

(Homogeneity) Y bDZ if and only if αY bDαZ for any Y,Z and α ∈ (0, 1].

In the sequel, we shall refer to partial orderings on B0(Σ, [0, 1]) satisfying these

four conditions as coherent expectation orderings. By well-known results due to Wal-

ley (1991) and Bewley (1986, for finite state-spaces), coherent expectation orderings

admit a unique representation in terms of a closed, convex set of priors; cf. Theorem

4 in the appendix.

The actual proof of Theorem 2 proceeds by constructing this extension from the

given likelihood relation and by deriving the properties of the induced relation from

the axioms on the primitive relation. In particular, the Additivity and Homogeneity

properties of the expectation ordering correspond to the Additivity and Splitting

axioms satisfied by the underlying likelihood relation. The proof then invokes the

just-quoted Theorem to obtain the desired (unique) multi-prior representation.
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In principle, one could conceive of coherent expectation orderings as epistemic

primitives. However, such an epistemic interpretation would run into the following

two problems. On the one hand, the meaning of a comparison of random variables in

terms of their expectation seems intuitively not clear; it seems doubtful that a genuine

epistemic primitive can be based on a complex, mathematically structured implicit

expectation operation. Moreover, unless one assumes expected-utility maximization

(at least relative to the specified ordering), as Walley and Bewley do, the link between

expectation orderings and preferences is not clear. Expectation orderings are thus not

viable as a behaviorally general vehicle for describing a decision maker’s imprecise

probabilistic beliefs.

2.3. Examples of Equidivisibility

The key structural assumption behind Theorem 2, Equidivisibility, is not a weak

assumption. While it implies Fineness in the presence of Continuity, the converse is

not close to being true, unless the likelihood relation is complete. Whereas Fineness

is in substance a strong non-atomicity condition, Equidivisibility assumes in addition

that the likelihood relation is sufficiently complete. Besides this broad intuition mo-

tivating it, it is of interest to verify its content in the context of the following specific

examples.

Example 1 (Limited Imprecision). One way to make the intuition of a limited

extent of overall ambiguity precise is to assume that Σ is a σ-algebra and that Π is

the convex hull of a finite set Π0 of non-atomic, countably additive priors. Due to

Lyapunov’s (1940) celebrated convexity theorem, Π is convex-ranged.

The priors π ∈ Π0 can be interpreted as a finite set of hypotheses a decision-maker

deems reasonable without being willing to assign probabilities to them. Finitely

generated sets of priors also occur naturally in social belief aggregation, where DI
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represents the unanimity likelihood ordering induced by the finite set of individuals’

likelihood orderings Di that are assumed to be precise with representing measures μi.

Assume that social decisions are based on a precise likelihood ordering DI represented

by some measure μI that respects unanimity in beliefs. Then Theorem 2 implies that

Π( I) = co{μi}i∈I ; the “social prior” μI must therefore be a convex combination of

individual priors.13

Example 2 (Missing Information).

In some situations, ambiguity may only concern certain aspects of the state-space,

and beliefs conditional on knowing these aspects may be precise. Formally, suppose

that conditional on each event A in some finite partition P of Ω, the DM’s beliefs

are described by a convex-ranged probability measure μA; that is, for any π ∈ Π and

any A ∈ P, π(./A) = μA or π(A) = 0. Then Π is clearly convex-ranged, however

imprecise the DM’s beliefs about the events in P may be.

Example 3 (External Randomization Device)

As a variant of example 2, consider state-spaces with a continuous randomization

device in the manner of Anscombe-Aumann. Specifically, consider a state space that

can be written as Ω = Ω1×Ω2, where the space Ω1 is the space of “generic states” , and
Ω2 that of independent “random states” with associated algebras Σ1 and σ-algebra

Σ2. The “continuity” and stochastic independence of the random device are captured

by a coherent likelihood relation DAA defined on the product algebra Σ = Σ1 × Σ2

that satisfies the following two conditions, noting that any A ∈ Σ1×Σ2 can be written

as A =
P

i Si × Ti, where the {Si} form a finite partition of Ω1.

AA1) The restriction of DAA to {Ω1}×Σ2 satisfies all of Savage’s axioms

13This corollary to Theorem 2 is related to a result by Gilboa-Samet-Schmeidler (2001), who

derive from social respect for unanimous indifferences a representation of the social prior as an affine

linear combination of individual priors.
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(axioms 1 through 6).

AA2)
P

i Si×Ti DAA

P
i Si×T 0i if and only if, for all i ∈ I, Ω1×Ti DAA

Ω1 × T 0i .

While the first condition ensures the existence of a convex-ranged probability mea-

sure π2 over random events, the second describes their stochastic independence. By

AA1 and AA2, it is easily verified that DAA satisfies all the assumptions of Theorem 2

including Equidivisibility. Hence there exists a unique set of priors ΠAA representing

DAA; indeed, ΠAA is simply the set of all product-measures π1 × π2, where π1 can

be any finitely additive measure on Σ1, reflecting the stochastic independence of the

random device.

The example of an external randomization device is important especially because

it counters the potential impression that convex-rangedness is an empirically rather

restrictive assumption, for it is possible to embed any coherent likelihood relation in

any state-space in a larger likelihood relation on a larger state-space that incorporates

the device.

3. WHEN ARE COMPARATIVE LIKELIHOOD RELATION

SUFFICIENTLY EXPRESSIVE?

Intuitively, different closed and convex sets of probabilities convey different impre-

cise probabilistic beliefs. To flesh out this intuition in a decision-making context,

consider a risk-neutral DM with linear utility over monetary outcomes, and think of

random variables as monetary gambles. Then different sets of priors are associated

with different partial preference orderings %Π given by

X %Π Y iff EπX ≥ EπY for all π ∈ Π.14

14This follows from the uniqueness results due to Smith (1961), Bewley (1986), and Walley (1991);

cf. Theorem 4 in the Appendix.
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Since consequence valuations have been fixed, such differences in preference associated

with different sets Π are naturally attributed to differences in beliefs. Thus, for

comparative likelihood relations to fully represent a DM’s beliefs, their multi-prior

representation must be unique.

Furthermore, in general, comparative likelihood relations D are to be understood as
“non-exhaustive”, that is: as admitting for the possibility that the DM may be willing

to endorse further likelihood judgements not listed in D . It is therefore desirable not

merely that the specified relation D has a unique representation, but that all of

its coherent superrelations have unique multi-prior representation as well. We shall

refer to such likelihood relations as guaranteeing uniqueness. Note that a coherent

likelihood relation D guarantees uniqueness if and only if there is a one-to-one relation
between the domain D of all coherent superrelations of the D and the closed, convex
subsets of Π .

Theorem 2 has already shown that Equidivisibility is sufficient for uniqueness.

Since any superrelation of an equidivisible relation is equidivisible as well, Theo-

rem 2 happily shows that Equidivisibility guarantees uniqueness. In this section, we

will conversely ask to what extent Equidivisibility can be weakened while preserving

guaranteed uniqueness. We will show that while this can be done to a limited ex-

tent, uniqueness cannot, in general, be guaranteed without substantial comparability

assumptions.

3.1 Example of Non-Uniqueness

Just like complete likelihood relations, incomplete ones typically do not have a

unique representation in finite state spaces. Without completeness, it is however no

Indeed, in general, the associated preference orderings can easily be mutually incompatible, in

that a likelihood-relation can be represented by two disjoint sets Π,Π0 ∈ K(∆(Σ)) such that, for
some X,Y , X ÂΠ Y and Y ÂΠ0 X).
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longer sufficient to assume non-atomicity in some form as Savage did through his

Fineness and Tightness conditions. This is shown by the following example.

Let Σ denote the Borel-σ-algebra on the unit interval with Lebesgue measure λ,

and fix K > 1, and define a coherent likelihood relation DKas follows:

A DK B if and only if λ(A\B) ≥ Kλ(B\A). (5)

It is easily verified that the associated set of admissible priors Π( K) (which we shall

also denote as ΠK
1 ) consists of all probability measures π with Lebesgue density φ

such that ess supω∈[0,1] φ (ω) ≤ K ess infω∈[0,1] φ (ω);15 in particular, the extreme points

of ΠK
1 consist of all probability measures πD with density φD, where D ranges over Σ

with 0 < λ(D) < 1 , and φD is given by

φD(ω) =

⎧⎨⎩ K
1+(K−1)λ(D) if ω ∈ D,

1
1+(K−1)λ(D) if ω /∈ D.

Let ΠK
2 ⊆ ΠK

1 denote the closed, convex hull of {πD|λ(D) = 1
K+1

}; the following
Fact states that ΠK

2 induces the same likelihood relation DK . On the other hand,

since the set of extreme points of ΠK
2 is a strict subset of that of Π

K
1 , the two sets are

different, demonstrating non-uniqueness. Indeed, ΠK
1 and ΠK

2 even induce different

lower probability functions denoted by π−1,K and π−2,K.

Fact 2 i) D(ΠK
2 )
=DK ;

ii) For all A ∈ Σ : π−1,K(A) =
λ(A)

1+(1−λ(A))(K−1) ;

iii) For all A ∈ Σ : π−2,K(A) =

⎧⎨⎩ K+1
2K

λ(A) if λ(A) ≤ K
K+1

,

1− K+1
2
(1− λ(A)) if λ(A) ≥ K

K+1
.

The lower probabilities π−1,K(A) and π−2,K(A) are shown in the following figure as

functions of λ(A) for K = 3.

15ess sup and ess inf denote the essential supremum and essential infimum, respectively.

23



Fig. 1: Two Different Lower Probabilities

For K > 1, DK clearly satisfies Savage’s Fineness and Tightness conditions. Note

that if K is close to 1, all admissible probabilities are uniformly close to the Lebesgue

measure; nonetheless, uniqueness is lost. Also, if K is close to 1, DK is close to being

equidivisible, and Π( K) is close to being convex-ranged
16, but, for given K, it does

not come “arbitrarily closely”. We will now show that if a coherent likelihood relation

D comes arbitrarily close to being equidivisible, its multi-prior representation comes

arbitrarily close to being convex-ranged, and that this suffices for uniqueness.

3.2 Almost-Equidivisibility Implies Uniqueness

To generalize the one-to-one correspondence between equidivisible coherent likeli-

hood relations and convex-ranged sets of priors, we therefore formulate the following

“approximate” generalizations.

16This can be made formally precise.
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Axiom 11 (Almost-Equidivisibility) For all E ∈ Σ and all n ∈ N, there exists a
partition of E into 2n− 1 sets {A1, ..., A2n−1} such that, for any subfamily of n sets
{Ai1, ..., Ain}, X

j=1,..,n

Aij D E\
Ã X

j=1,..,n

Aij

!
.

Definition 2 A set of priors Π is almost-convex-ranged if, for any event A ∈ Σ

and any α < β ∈ (0, 1), there exists an event B ∈ Σ, B ⊆ A such that απ(A) ≤
π(B) ≤ βπ(A) for all π ∈ Π.

Note that for singleton sets Π = {π} defined on a sigma-algebra Σ, almost-convex-
rangedness and convex-rangedness coincide, since both are equivalent to convex-

rangedness of π (cf. Fact 1); as shown in the next subsection, this ceases to be

the case for non-singleton Π. 17

The following result establishes a one-to-one relation between coherent almost-

equidivisible likelihood relations and almost-convex-ranged sets of priors.

Theorem 3 i) If D is coherent and almost-equidivisible, Π is almost-convex-ranged.

Conversely, if Π is almost-convex-ranged, DΠ is almost-equidivisible.

ii) Any coherent and almost-equidivisible comparative likelihood relation D has a

unique multi-prior representation.

The second part of this result is proved by showing through an approximate lim-

iting mixture-space construction that a coherent and almost-equidivisible likelihood

relation D can be uniquely extended to an expectation ordering bD; since the multi-
prior representation of such orderings is always unique, the multi-prior representation

of D is unique as well. The continued applicability of the mixture-space construction
17If Σ is merely an algebra, {π} is almost-convex ranged if and only if π is dense-ranged in the

sense of Kopylov (2003).
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suggests that it might be possible to generalize Theorem 1 to almost-equidivisible

likelihood relations. We have left such an extension to future research, as it is far

from straightforward.

While the example of section 3.1 suggess that almost-convex rangedness cannot

be greatly weakened in general without losing uniqueness, it is easily seen not to be

strictly necessary18; it is thus another interesting task for future research to determine

exactly the conditions ensuring uniqueness respectively a guarantee of uniqueness.19

3.3 Example of Almost-Convex-Ranged Belief Sets: “Uniformly Con-

tinuous Densities”

In many situations, it is reasonable to assume random quantities to be continuously

distributed. For example, the subjective probability of any reasonable, contemporary

human DM (assuming him to have precise probabilistic beliefs, for the sake of the

argument) over the true temperature (idealized as real-valued magnitude) in Seoul

on August 15, 2006, would be described by a continuous density function. Poincaré

(1912)20 recognized that if one assumes a certain amount of additional regularity,

then one can derive the existence of events with a chance of approximately one half,

whatever the specific probability distribution of the DM within these constraints; in

his important recent contribution by which this section was inspired, Machina (2001)

refers to such events as “almost objective”.

Specifically, suppose that Ω = [0, 1], and let Ak denote the event that the k-th digit

in the decimal expansion of ω is odd; thus Ak is the evenly spaced union of
1
2
10k

18As a simple counterexample in the complete case, consider the likelihood relation that judges

each of a finite number of states equally likely.
19The uniqueness issue has been studied so far only in the complete case; see, for example, Fishburn

(1986) and Cohen (1991).

20Quoted from Machina (2001).
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intervals of length εk := 10
−k, and has Lebesgue measure 1

2
. Poincaré obtained the

following result:

Proposition 1 (Poincaré) For any differentiable density function φ such that |
φ0(.) |≤M on [0, 1], | prob(Ak)− 1

2
|≤ 1

2
Mεk.

In the framework of the present paper, if Π denotes the set of all probability mea-

sures satisfying the assumption of Proposition 1, then 1
2
− 1

2
Mεk ≤ π−(Ak) and

π+(Ak) ≤ 1
2
+ 1

2
Mεk. If one assumes in addition that densities are bounded below

strictly above zero (φ(.) ≥ L > 0), then Π is in fact almost-convex-ranged, as we will

show now as the corollary of a result for general metric spaces.

Let Ω be a compact metric space endowed with metric d and a non-atomic, count-

ably additive “reference-measure” λ on the Borel-σ-algebra Σ; without loss of gener-

ality, assume that λ has full support. To gain some useful generality, take the event

space to be any subalgebra Σ0 containing all open ε-balls. Let ∆(Σ0)cont denote the

set of all measures π with continuous density; for each π ∈ ∆(Σ0)cont, let φπ denote

its unique continuous density function. For example, if Ω is the unit interval, Σ0 may

the set of all finite interval-unions, the case considered in Machina (2001).

Proposition 2 Suppose that Π ⊆ ∆(Σ0)cont has equicontinuous densities
21 that are

uniformly bounded below strictly above zero. Then Π is almost-convex-ranged.

Proposition 2 goes beyond Machina (2001) by modelling the postulated “uniform

continuity” of probabilistic beliefs explicitly as a likelihood relation. This leads to

behaviorally general restrictions on preferences analogous to his through the notion

of Compatibility introduced in section 4. By contrast, Machina’s formulation re-

stricts preferences directly, and is based on the not unrestrictive assumptions of

21That is, for all a ∈ Ω and � > 0, there exists η > 0 such that, for all π ∈ Π, |φπ(b)− φπ(a)| ≤ �

whenever δ(b, a) ≤ η.
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event-differentiability of preferences22 together with a Euclidean structure of the state

space.

A limitation common to both Proposition 2 and Machina (2001) is their imposition

of a requirement on the set of admissible priors, and not directly on the likelihood

relation as the epistemic primitive. This limitation is not necessarily fatal, in that

for reasons of mathematical tractability, in practice likelihood relations will typically

be specified directly in terms of sets of priors rather than the associated likelihood

relation, just as in the standard complete case subjective uncertainty is typically mod-

eled directly in terms of the subjective probability measure rather than the likelihood

relation. Indeed, in many cases, it will be difficult to describe explicitly the likeli-

hood content of a specified sets of priors. Nonetheless, in the case of fundamental

qualitative assumptions on beliefs, an explicitly description in terms of the epistemic

primitive seems important for a full understanding and assessment; a famous example

in the single-valued case is de Finetti’s (1937) celebrated exchangeability theorem.

In the present case, we will show now that such an explicit description is pos-

sible if the restriction to uniformly continuous densities takes a particular, natural

form. Specifically, we will consider sets Πλ,M ⊆ ∆(Σ)cont consisting of all priors with

uniformly Lipschitz log-densities with modulus of continuity M . Formally, define

Πλ,M := {π ∈ ∆(Σ)cont|for all a, b ∈ Ω : | logφπ (a)− log φπ (b) | ≤Md(a, b)}.

Note that uniform equicontinuity of log-densities implies uniform boundedness of

densities above zero, and is therefore equivalent to the assumption on densities in

Proposition 2 above. Uniform Lipschitz continuity is only slightly stronger; the main

additional restriction on the structure of Πλ,M is thus the requirement that it include

all densities of a given modulus of continuity M, and not just some. This seems

appropriate to capture the “uniform continuity” assumption as such; due to the almost

22This assumption excludes, for example, MEU and its cousins.
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convex-rangedness of Πλ,M , further restrictions on Π ⊂ Πλ,M can be captured by

appropriate enlargements of the likelihood relation Dλ,M generating Πλ,M that is

about to be defined.

Let Ψ(A,B) := supa∈A,b∈B eMd(a,b), and define a comparative likelihood relation

Dλ,M as follows. For any A,B :

A Dλ,M B :⇔ λ(A) ≥ Ψ(A,B)λ(B). (6)

Intuitively, Dλ,M expresses uniform continuity by comparing the likelihood of “small”

events (as measured by their diameter) that are close to each other (in the Hausdorff

metric, say) by their reference measure admitting a small degree of imprecision that

vanishes in the limit. These are substantive likelihood judgments which may or may

not be reasonable in a particular (idealized) setting.23 The following Proposition

shows that Πλ,M is indeed generated by the likelihood relation Dλ,M .

Proposition 3 Πλ,M = Π( λ,M).

It is straightforward to verify thatDλ,M⊆D(Πλ,M), i.e. thatDλ,M contains only com-

parative likelihood judgements induced by Πλ,M ; this evidently implies that Π( λ,M) ⊇
Π

(Πλ,M)

= Πλ,M . The converse, which says that Dλ,M is sufficiently rich to exclude

all priors outside Πλ,M , is not self-evident, and takes some work to prove.

23For instance, if temperature is measured digitally and digits are displayed sequentially, and if

there is a positive lower probability that the diode used malfunctions by not being able to display a

particular number, small events missing that number in their complete decimal expansion may have

positive lower probability but zero Lesbesgue measure, leading to a contradiction of (6) respectively

the non-existence of a Lesbesgue density for any admissible prior. In this modified situation, almost-

convex-ranged beliefs may nonetheless be reasonable.
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4. DECISION MAKING IN THE CONTEXT OF PROBABILISTIC

BELIEFS

4.1. Probabilistic Consequentialism

Consider now a DM described by a preference ordering over acts and explicit beliefs

over events. Let X be a set of consequences. An act is a mapping from states to

consequences, f : Ω→ X that is measurable with respect to an algebra of events Σ;

the set of all acts is denoted by F ; for simplicity, we will assume all acts to be finite-
valued throughout. A preference ordering % is a weak order (complete and transitive
relation) on F . We shall write [x1, A1;x2, A2; ...] for the act with consequence xi in
event Ai; for the act [x,A; y,A

c] we will also use the shorthand xAy. More generally,

the act h that agrees with f on A and with g on Ac will be denoted by fAg. As usual,

constant acts [x,Ω] are typically referred to by their constant consequence x.

The DM also has probabilistic beliefs described non-exhaustively by a coherent

comparative likelihood relation D0 on Σ. This relation represents some of the DM’s

probabilistic beliefs; he may have others not included in it. The relation D0 will be
referred to as the “epistemic context” of the decision situation. Thus, a decision-

maker in an epistemic context is described by the pair (%,D0). We will say that the
context is convex-ranged if it has a convex-ranged multi-prior representation.

We propose as a fundamental principle of consequentialist rationality that conse-

quence valuations and likelihood comparisons, when available, should be decisive in

determining the ranking of acts; put somewhat differently, the judged (comparative)

likelihood of events is teh only attribute of events that should matter in comparing

the consequence incidences f−1({x}) and g−1({x}) of the various consequences of dif-
ferent acts; other conceivable factors such as familiarity with a type of event or felt

competence in assessing it should not matter rationally. We shall refer to this as the

Principle of Probabilistic Consequentialism. The task is to formalize this principle in

30



terms of various axioms on the relation between preferences and beliefs.

The following axiom called “Stochastic Equivalence” does not exploit any informa-

tion about consequence valuations. Say that acts f and g are stochastically equivalent

(“f ∼0 g”) if f−1({x}) ≡0 g−1({x}) for all x ∈ X.

Axiom 12 (Stochastic Equivalence) f ∼ g whenever f and g are stochastically

equivalent.

Stochastic Equivalence presupposes that the same consequence “x” really is the

same in the different states in all relevant aspects (that consequences are “properly

individuated”); it thus does not apply to state-dependent preferences. It is obvious

that Stochastic Equivalence implies probabilistic sophistication of preferences over

unambiguous acts. 24

State-independent preferences are typically event-wise monotone.

Axiom 13 (Eventwise Monotonicity) For all x, y ∈ X, h ∈ F , and A ∈ Σ, x % y

implies xAh % yAh.
25

Again, with proper individuation of consequences, this represents a fundamen-

tal principle of consequentialist rationality. However, Grant (1995) has pointed out

that Eventwise Monotonicity makes an implicit separability assumption that may

be violated in some economic settings26 in which preferences are nonetheless proba-

24Formally, let Λ0 denote the family of unambiguous events associated with Π0 defined in A.1,

and let π0 denote the restriction of π to Λ0, for any π ∈ Π0; by construction, the set-function π0

is finitely additive on Λ0. An act f is unambiguous if f
−1({x}) ∈ Λ0 for all x ∈ X; let F0 denote

their set. Stochastic Equivalence implies the following property:

For all f, g ∈ F0 such that π0 ¡f−1({x})¢ = π0
¡
g−1({x})¢ for all x ∈ X, f ∼ g.

25Note that Eventwise Monotonicity has been formulated uni-directionally for cleaner statements

in the sequel; it is thus slightly weaker than Savage’s axiom P3.

26in which the individuation is coarser than that relevant to the DM.
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bilistically sophisticated. To accommodate such situations, we have formulated the

Stochastic Equivalence axiom above.

If preferences are eventwise monotone, the principle of Probabilistic Consequential-

ism motivates the following monotone strengthening of Stochastic Equivalence. Say

that f stochastically dominates g (“f %0 g”) if, for all x ∈ X, {θ | f(θ) % x} D0 {θ |
g(θ) % x}.

Axiom 14 (Stochastic Dominance) f % g whenever f stochastically dominates

g.27

It is immediate that Stochastic Dominance implies in particular that preferences

over unambiguous acts respect ordinary stochastic dominance and are therefore proba-

bilistically sophisticated in the sense of Machina-Schmeidler (1992). Stochastic Dom-

inance clearly implies Stochastic Equivalence and Eventwise Monotonicity.28 The

converse holds if explicit beliefs satisfy the following solvability condition:

For all A,B such that A D0 B there exists A0 ⊆ A such that A0 ≡0 B. (7)

This condition in turn is satisfied if explicit beliefs are convex-ranged and complete,

but may easily fail otherwise.

27A formally related axiom called “Cumulative Dominance” has been introduced by Sarin-Wakker

(1992); in their axiom, Savage’s revealed likelihood relation takes the place of %0 here. In Sarin-
Wakker (1992), this relation is complete but not necessarily additive. Sarin-Wakker (2000) derive

probabilistic sophistication from cumulative dominance, assuming this relation to be complete and

coherent.
28Indeed, Eventwise Monotonocity is equivalent to Stochastic Dominance with respect to the

set-inclusion relation.

32



4.2 A Subjective Interpretation of the Anscombe-Aumann Framework

Probabilistic Consequentialism will now be combined with the mixture-space con-

structions of sections 2 and 3 to obtain a subjective interpretation of the Anscombe-

Aumann (1963) framework. While this framework is often used in the analysis of

decision making under ambiguity, it is generally viewed as theoretically less funda-

mental and transparent than the Savage framework; sometimes it is even viewed with

outright suspicion (see, e.g., Epstein (1999)). In the body of the text, we will consider

the simpler convex-ranged case, and offer a generalization to the almost-convex-ranged

case in the Appendix.

The Anscombe-Aumann (1963) framework is distinguished by taking acts to be

mappings from states to probability distributions of consequences, rather than simply

as mappings from states to consequences as in the Savage (1954) framework. These

probability distributions are interpreted as objective probabilities of the realizations

of an external random device (“roulette lotteries”) that is not part of the explicitly

modeled state space. We will show that if a preference relation over Savage acts

satisfies Stochastic Equivalence with respect to a convex-ranged likelihood relation,

it can be canonically extended to a preference relation over Anscombe-Aumann (AA-)

acts; this extension is internal, that is: it does not rely on the addition of an external

random device.

Formally, an AA-act F is a finite-valued Σ-measurable mapping from the state

space Ω to the set of probability distributions on X with finite support ∆(X). Let

FAA denote their set. Denoting elements of ∆(X) by q = (qx)x∈X , one can write

F = [q1, A1; q2, A2; ...] in analogy to the notation for Savage acts. Given a convex-

ranged epistemic context D0, any AA-act F can be identified with a class [F ] of

Savage acts by the following stipulation: f ∈ [F ] if, for any x ∈ X, any i such that
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Ai is ≡0-non-null, and all π ∈ Π0,

π(f−1({x}) ∩Ai/Ai) = qxi .

Thus [F ] consists of all Savage acts that yield the consequence probabilities specified

by F as unambiguous conditional probabilities with respect to the given context.

Convex-rangedness of the context ensures that [F ] is non-empty. Moreover, any two

acts in [F ] are easily seen to be stochastically equivalent with respect to the context

D0. Hence Stochastic Equivalence ensures that any two acts in [F ] are indifferent.
Thus one obtains a well-defined weak order on FAA by setting

F %AA G :⇔ f % g for any f ∈ [F ] and g ∈ [G].

Note that, since Savage acts embed in FAA as deterministic AA-acts, %AA contains

exactly the same information as the original preference ordering %, except that acts
are now replicated in multiple copies.

The above construction achieves a justification of the AA-framework in a sub-

jective, epistemically enriched setting analogous to the (purely behavioral) justifica-

tion of the von Neumann-Morgenstern framework by Machina-Schmeidler (1992). It

implies that any assumption on AA preferences can be translated in principle into

an assumption on the underlying Savage preferences; it does not imply, however,

that the Savage counterpart has an obvious interpretation. For example, Eventwise

Monotonicity of AA-preferences is much stronger than Eventwise Monotonicity of

Savage preferences.29

29To see this, one can define for each F−A1 [., A1; q2, A2; q3, A3; ...] preferences over A1−conditional
lotteries q by setting q %F−A1 q0 iff [q,A1; q2, A2; q3, A3; ...] % [q,A1; q2, A2; q3, A3; ...]. If % satisfies

Stochastic Dominance, %F−A1 is monotone with respect to ordinary stochastic dominance; however,

unless the underlying preference relation % is utility sophisticated in the sense of Nehring (2001),

%A1 may well differ from preferences over unconditional lotteries %F−Ω , that is, %AA may not satisfy

Eventwise Monotonicity even though % does.
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Earlier representations of the Anscombe-Aumann framework in a Savage setting

have been obtained by Pratt-Raiffa-Schleifer (1964) and Klibanoff (2001a); in contrast

to ours, the former assumes expected utility maximization, the latter utility sophisti-

cation. Our representation is more general also in that it applies to any convex-ranged

context, and therefore does not assume the existence of a subjective randomization

device as given by the context DAA defined in section 2. If the epistemic context

is almost-convex-ranged rather than convex-ranged, the above construction fails to

work because the equivalence classes [F ] may easily be empty. In Appendix A.2 we

show that it can be rescued by associating with a given AA-act equivalence classes of

convergent sequences of Savage acts; this yields a counterpart to the construction of

Machina (2001).

An altogether different route to mimicking the Anscombe-Aumann framework in a

subjective setting based on a rich set of consequences rather than states is proposed

by Ghirardato et al. (2001); since the mixture operation in their proposal is defined

in utility terms, the implied interpretation of conditions on AA-preferences in their

approach may be very different from that in the present epistemically approach.

4.3. Discussion

Ordinal vs. Cardinal Information about Consequence Valuations.–

From the well-known utility characterization of ordinary stochastic dominance it

follows immediately that f stochastically dominates g if and only if Eπu◦f ≥ Eπu◦g
for all π ∈ Π0 and all u : X → R such that u (x) ≥ u (y) whenever x % y. Stochastic

Dominance is thus the strongest rationality requirement on weak preference that relies

on ordinal information about the valuation of consequences only. Much stronger

normative restrictions can be obtained if one exploits cardinal information about

comparisons of utility differences. A theory of “Expected Utility in the Presence

of Ambiguity” along such lines is developed in Nehring (2001, section 4). It is not
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pursued here, since these stronger constraints on the relation between preferences and

beliefs conflict with the desideratum of behavioral generality adopted in this paper.

State-Dependent Preferences and Intrinsic Event Attitudes.–

While the non-exploitation of cardinal information suggests that Stochastic Domi-

nance may be too weak a rationality requirement, Stochastic Dominance might con-

versely be criticized as to be too strong a rationality requirement, for example for

reasons of state-dependence of preference. In this subsection, we will however argue

that in many (perhaps in all) cases, such objections can be overcome by a more refined

modeling.

Indeed, as formulated above, the Stochastic Equivalence and Stochastic Dominance

axioms presuppose “proper individuation of consequences”, in the sense that conse-

quence x is the same (for the decision-maker) in any state in all valuation-relevant

aspects30; we will refer to this also as the case of “state-independent preferences”31.

State-dependence of preferences can be modeled by including aspects of the state into

the description of the consequences. For example, when states describe the DM’s

health, gaining 1000$ when healthy may not be worth as much as gaining 1000$

when sick; this difference can be accounted for by distinguishing the consequences

(1000$,healthy) and (1000$,sick). In such cases, one needs to abandon the assump-

tion that the set of possible consequences is state-independent; that is, one would

define Savage acts as mappings from f : ω →
Y
ω∈Ω

Xω. Note that Stochastic Equiva-

lence remains meaningful but loses some power; it becomes vacuous only in the case of

“fully subjective” consequence individuation in whichXω∩Xω0 = ∅ whenever ω 6= ω0.

30As argued forcefully by Broome (1991), the validity of any normative axiom hinges on the proper

individuation of consequences.
31This terminology is somewhat misleading, however, as there is no established preference-based

criterion outside SEU defining state-independence; this is further discussed below.
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In this latter case, one arrives at substantive restrictions on preferences by postulat-

ing a non-behavioral judged consequence-ordering %[X] on X = ∪ω∈ΩXω that permits

cross-state comparisons of consequences. A number of works on state-dependent

preferences from Fishburn (1973) to Karni (2003) employ devices that entail such an

ordering. The Stochastic Dominance condition continues to be meaningful, with %[X]
taking the role of %|X .

State-dependence of Preference is of interest in the present context especially since

it allows to capture many — and arguably all — instances of an apparent “intrinsic”

attitude towards events. For instance, Chew and Sagi (2003), suggest that decision

makers may have a taste for betting on particular types of events over others that

override their likelihood assessments. For example, on February 1, 2003, a DM may

have attributed equal probability to Saddam Hussein’s surviving a US led invasion of

Iraq, and to the Iraqui soccer team winning against Brazil. However, the DM may

have preferred to bet on the Iraqui soccer team rather than on Saddam Hussein; he

may, for example, have expected taking special joy from winning a bet on an un-

derdog team, but regretting having profited from an unjust cause. On their face,

such preferences might appear to challenge the normative generality of the principle

of Probabilistic Consequentialism in that non-likelihood features of events seem to

be legitimately valued by the DM. However, this challenge loses its force once one

recognizes that the bets do not really involve the same (properly individuated) con-

sequences. For clearly, the bets entail different psychological outcomes in various

states (the joy, the regret); while these matter to the decision maker, they are not

captured by a description (“individuation”) of consequences in terms of net wealth

alone. Again, Stochastic Equivalence and Dominance continue to apply once acts

that are described in terms of properly individuated consequences.

We have appealed to the informal notion of “proper individuation”/“state-independent

preferences” without characterizing it in behavioral terms. This seems necessary,
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since it is unclear what behavioral conditions could take its place. Clearly, Eventwise

Monotonicity is not sufficient as a behavioral criterion, since it captures at most the

ordinal implications of state independence. In the context of the sure-thing principle,

assuming in addition Savage’s axiom P4 “works”, as shown by Savage’s representa-

tion theorem. However, in situations of ambiguity in which the sure-thing principle

fails, P4 seems neither necessary nor sufficient. It is not necessary because P4 may

fail due to prize-dependent ambiguity attitudes32; it does not seem sufficient, either,

for in the absence of the sure-thing principle, there may be state-dependence effects

that show up in multi- but not two-valued acts. Despite these reservations, it would

appear that the conjunction of Eventwise Monotonicity and P4 represents as reason-

able “prima facie” criterion of proper individuation, and hence of the applicability of

the Stochastic Dominance axiom.33

5. EPISTEMIC VERSUS BEHAVIORIST INTERPRETATION

In this section, we will flesh out the notion of decision-making in the context prob-

abilistic beliefs first in terms of the epistemic interpretation adopted as the “official”

one in this paper, and subsequently point out how this approach can be understood in

purely behaviorist terms. On the latter view, probabilistic beliefs must be definable

in terms of behavior, while on the former, they represent independently meaningful

entities. The purpose of the following discussion is not to settle the deep and long-

standing philosophical disputes around these views, but to clarify what they involve.

32See Klibanoff et al. (2002) for a worked-out model with this feature.
33Adapting a recent argument by Karni (1996), it can be argued that more than a “prima-facie”

criterion can be given in principle, even under expected utility: roughly speaking, Karni argued that

under SEU, preferences identify statewise utilities only up to positive affine transformations state-

by-state; thus, if the “true” consequence utilities are not constant across states, Savage’s “revealed

likelihood” relation differs from the agent’s true likelihood. In the present setting, this amounts to

saying the Stochastic Equivalence will be violated.
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5.1 The Epistemic Interpretation

On a properly epistemic view, the context D0 represents a (non-exhaustive) list of
comparative likelihood judgements attributed to the decision maker. More specifi-

cally, the instance “A D0 B” represents the DMs disposition to judge that A is at

least as likely as B, that is: to affirm this proposition when asked for the comparison.

The epistemic approach therefore presumes that the DM is able to understand and

use the notion of “comparative likelihood”; it would thus appear to exclude rats, for

example, but include humans almost without exception — we are not aware of neu-

rological or anthropological evidence to the contrary. The epistemic approach allows

one to think of beliefs as reasons for choice; the beliefs themselves may in turn be

derived from underlying evidence, or may be taken as subjective judgments without

identified basis. Note, however, that it does not assume beliefs to be temporally or

causally prior to preferences. As formulated, the epistemic framework is atemporal

(in the way Savage’s framework is), and axioms such as Stochastic Equivalence and

Stochastic Dominance are consistency conditions relating beliefs and preferences; if

these axioms are violated, a DM may well come to revise his beliefs in light of his

preferences, concluding, for example, that the former are based on sloppy or wishful

thinking, while the latter reveal his true convictions. Thus the epistemic approach is

entirely consistent with the psychological intuitions that historically have been part

of the appeal — one might even say, of the wisdom — of the behaviorist view, the in-

tuitions that “actions (may) speak louder than words” and that “you may not know

what you believe before you act” .

Is an epistemic approach less “scientific” than a purely behavioral one? While this

is not the place to address this issue in a satisfactory manner, we want to suggest

that the answer is not obviously “yes”, and that indeed a case can be made for the

converse. First of all, since an epistemic context consists in judgments that can be
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recorded in language, that is: consists in speech behavior of a particular kind, it does

not rely on introspection, and is no less verifiable in principle than choice behavior.34

Of course, in practice there are elicitation issues of truthfulness, incentives and correct

understanding, but these issues arise in choice experiments as well, especially if the

stakes are low or moderate.

Moreover, the epistemic approach endeavours to model rational choice and be-

lief; Probabilistic Consequentialism is therefore part and parcel of it. If Probabilis-

tic Consequentialism is adopted as a maintained hypothesis, belief attributions be-

come falsifiable on the basis of choice behavior through their Stochastic Dominance

implications.35 In effect, assumptions about beliefs translate into assumptions about

preferences of the form

%⊇%0=%0 (D) , (8)

where %0=%0 (D) denotes the Stochastic Dominance implications of the epistemic
context D together with the preference ordering over consequences %|X .

5.2 The Behaviorist Interpretation

On the behaviorist view of decision theory, the only meaningful attribute of a de-

cision maker is his choice behavior, captured here by his preferences. Attributions of

belief are considered meaningful only to the extent that they can be formulated in

terms of conditions on agents’ preferences. Evidently, the epistemic constraints on

preferences (8) are of this form. Thus, the notion of decision making in the context

of probabilistic beliefs is meaningful also from a behaviorist viewpoint. In contrast to

the epistemic interpretation, the relation D (or %0=%0 (D)) is no longer an indepen-

34See also Karni (1996) for a defense of the use of verbal testimony in the decision sciences.
35There is likely to be disagreement about how damaging reliance on a “maintained hyposthesis”

is; suffice it here to say that, according to the celebrated if controversial Duhem-Quine thesis, all

testing in science is the testing of joint hypotheses.
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dently meaningful entity about which truth-claims can be made; instead, it plays now

the role of a “parameter” that indexes the purely behavioral conditions “%⊇%0 (D) ”,
whose valueD=D0 is selected by the outside analyst. Examples of behaviorally formu-
lated epistemic constraints on preferences of this type are de Finetti’s (1937) classical

notion of exchangeability and Machina’s (2001) recent notion of “almost-objective

uncertainty”. Indeed, exchangeability which is commonly stated as a symmetry con-

dition on % can easily be reformulated as an epistemic constraint of the form (8),

with the underlying context D=DΠ generated by the set of all exchangeable pri-

ors. Likewise, while Machina formulated his notion of “almost-objective uncertainty”

(“uniformly continuous densities”, cf. section 3.3) as a smoothness-condition on pref-

erences, it follows from our analysis in sections 3.3 and A.2 that one can capture this

notion by conditions of the form (8) as well.

The entailed epistemic constraints (8) serve as a common denominator of the epis-

temic and behavioral interpretations, and show that the difference between them need

not be significant in practice. Instead, the difference seems at heart mainly philosoph-

ical in nature. While behaviorism has the clear advantage of ontological parsimony,

it suffers from an equally clear explanatory deficit: why should one assume that a

decision-maker’s preferences look as-if they were consistent with a particular hypoth-

esized set of likelihood comparisons, if was meaningless in principle to attribute any,

and thus a fortiori these, likelihood comparisons to the DM as his beliefs. It is chiefly

due to this explanatory deficit that we have adopted an epistemic interpretation as

the “official” viewpoint of this paper.

One potential avenue for overcoming the explanatory deficit within a behaviorist

viewpoint is to trydefine a DM’s “revealed beliefs” D∗ from his preferences in an

attempt to generalize Savage (1954). Savage substantially strengthened the force of

the behaviorist view by identifying a DM’s beliefs with a particular aspect of his

preferences. A natural way of trying to achieve the same in the present, more general
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setting is to use condition (8) not merely as a necessary, but as a necessary and

sufficient condition for attributing particular beliefs to the DM, that is, to define D∗

as the union of all contexts such that the given preference relation % is compatible

with that context. This works if % is a Savage-style SEU ordering, and yields exactly
the revealed likelihood relation defined by Savage in this case. In the presence of

ambiguity, however, this definition will often fail, even if preferences are well-behaved,

since D∗ may fail to be coherent or even non-contradictory. This is illustrated by the
following example.

Example. Consider a product space with an external random device Ω = Ω1×Ω2

in the manner of section 2.3 with #Ω1 = {α, β}, and assume that preferences have a
minimum expected-utility representation, with

f % g iff min
π∈Π

Eπ (u ◦ f) ≥ min
π∈Π

Eπ (u ◦ g) ,

taking Π to be any non-singleton subset of ΠAA that is symmetric in α and β. By

construction, % satisfies (8) with respect to DAA. Setting A = {α} × Ω2, clearly

minπ∈Π π(A) = minπ∈Π π(Ac) < 1
2
. It is easily verified that % is satisfies (8) also

with respect to {(A,Ac)}, representing the judgment that A is equally likely to its

complement. The coherent hull of DAA and {(A,Ac)} is complete and represented
by the product measure of π1 = (

1
2
, 1
2
) and π2. However, % clearly violates (8) with

respect to this relation ( DAA ∪{(A,Ac)} ), since % is not even probabilistically

sophisticated. Thus D∗ cannot be coherent.

The example reveals a fundamental difficulty in defining revealed beliefs from pref-

erence information alone. It is precisely this difficulty that motivated the more modest

goal of this paper of formulating epistemic constraints on preferences based on given

epistemic contexts.36 A proposal of how to overcome it is offered in Nehring (2001,

section 3).

36Responding to related issue, Chew-Sagi (2003) argue in a recent paper that it is not possible
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Finally, while it is sometimes argued that a behaviorist approach to decision the-

ory is de rigueur (see, e.g., Epstein/Zhang 2001), it should be kept in mind that its

reach is limited. In particular, there seems to be general agreement (including by

Epstein/Zhang 2001) that the notions of “state” and “act” in the Savage-framework

are not fully behavioral. We would conclude that, whatever its appeal as a method-

ological guideline, the behaviorist view is unlikely to be coherent as an over-arching

philosophical view of what decision theory is or should be.

to identify a canoncial domain of probabilistic beliefs (probabilistically sophisticated behavior), and

argue for the coexistence of multiple domains.
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APPENDIX

A.1 Unambiguous Events

Comparison to Zhang (1999).–

An event A is unambiguous (A ∈ Λ ) if all admissible priors assign the same prob-

ability to it: A ∈ Λ if π(A) = π0(A) for all π, π0 ∈ Π = Π . Clearly, the family of

unambiguous events Λ0 is closed under complementation and finite disjoint union; re-

quiring closure under countable disjoint unions and adopting measure-theoretic termi-

nology , Zhang (1999) called such families “lamba-systems”. Consider the restriction

D|Λ of any likelihood relation D satisfying the assumptions of Theorem 2 on Σ to the
family of unambiguous events D|Λ . By construction, D|Λ is complete (on Λ ) ; The-

orem 2 implies that D|Λ can be represented by a (dyadically) convex-ranged finitely
additive set function π0 on Λ; moreover, π0 can be extended to a finitely additive

probability measure π on all of Σ.

Zhang (1999) considered likelihood relations defined on arbitrary lambda-systems

as primitives and characterized those relations that are representable by a convex-

ranged, countably additive set function on Λ. Zhang’s result is a key ingredient in

Epstein-Zhang’s (2001) characterization of revealed unambiguous events discussed

below. His result is not directly comparable to the corollary to Theorem 2 described

in the preceding paragraph, as it derives a weaker conclusion from weaker premises,

speaking broadly. Zhang’s assumptions are weaker in that they apply only to Λ and

not to (and incomplete relation defined on) some super-algebra Σ; on the other hand,

his result conclusion is weaker as well in that it does imply representation by an

additive set-function that can be extended to all of Σ. It is not known under which

conditions such an extension exists;37 Epstein (1999) and Nehring (1999) provide

37Beyond applying the general result of Heath-Suddert (1972), which applies to arbitrary families

of sets and therefore does not exploit the structure of lamba-systems at all.
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counterexamples in finite state-spaces. In cases in which such an extension does

not exist, then the likelihoood relation DΛ (viewed as an incomplete relation on Σ) is

contradictory in the terminology of section 2.2; it stands to reason that such likelihood

relations do not represent a well-defined set of probabilistic beliefs.

Comparison to Epstein-Zhang (2001).–

With this background, we will now compare the definition of unambiguous events

based on explicit beliefs as Λ0 (“explicitly unambiguous events”) to the preference-

based definition proposed by Epstein-Zhang (2001) ΛEZ . A central issue arising from

any behavioral definition is the extent to and sense in which preferences over unam-

biguous acts reveal the decision-maker’s unconditional probabilistic beliefs. Epstein-

Zhang (2001) provide a partial answer by showing under fairly weak assumptions on

preferences and richness assumptions on the endogenously defined family ΛEZ that

preferences over unambiguous acts are probabilistically sophisticated with respect to

an additive set-function on ΛEZ . Note, however, that, the Epstein-Zhang (2001) de-

finition of “revealed unambiguous” applies conceptually (and is meant to apply by

Epstein and Zhang) whether or not the resulting family ΛEZ is rich; in particular, it

applies on finite state-spaces as well.

For expositional simplicity, we shall confine the following discussion to the case of

two consequences (#X = {x, y} with x Â y). In this setting, the act “betting on A”

[x on A, y on Ac] will be denoted simply by the set A. Using this notation, an event

T is EZ-unambiguous (T ∈ ΛEZ) if, for all A,B disjoint from T , A % B if and only

A+ T % B + T , and if the same holds for T c instead of T .

Two questions arise naturally. First, if preferences satisfy Stochastic Dominance

with respect to explict beliefs, are the explicitly unambiguous events also EZ-unambiguous;

in other words: will “truly” unambiguous events be revealed as such by the EZ def-

inition? Not necessarily; indeed, this happens only if betting preferences and beliefs
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are related by the following “Union Invariance” condition: for all T ∈ Λ0 and all

A,B disjoint from T , A % B if and only A+ T % B + T . While this condition looks

appealing, it is clearly a substantive restriction on ambiguity attitudes.38

Conversely, given a preference relation % with EZ-unambiguous events ΛEZ , does

there exist necessarily exist a coherent epistemic context D such that ΛEZ ⊆ Λ0

and such that % respects Stochastic Dominance with respect to D? Again the answer
appears to be negative in general , and is definitively negative in finite settings. First,

in view of the discussion of Zhang (1999) above, the likelihood relation revealed on

ΛEZ may be contradictory, hence there simply may not exist any coherent context

D with associated Λ0 such that ΛEZ ⊆ Λ0. Second, even if such a context exists, it

will contain a large number of likelihood comparisons over ambiguous events, with

entailed restrictions on preferences over bets on ambiguous events. While the EZ

definition entails some restrictions on preferences over bets on ambiguous events,

it seems doubtful that these encompass all of D in general. Thus, it remains an

interesting question for future research to determine under which conditions a DM’s

preferences over EZ-unambiguous events reflect genuine (= coherent) probabilistic

beliefs over these events.

At a broader level, we believe that the limited match between EZ’s behavioral de-

finition of unambiguous ones and the direct epistemic one proposed here indicates

inherent limitations in defining beliefs from preferences directly, rather than inade-

quacies in the particular definition proposes by Epstein-Zhang, or a need to reconsider

the notion of coherence. This conlusion agrees with and confirms the argument in

section 5.2 in favor of a dual preference-belief framework.

38In Nehring (2001), this condition is derived from utility sophistication and Savage’s P4.

In a similar vein, Klibanoff et al. (2002) have pointed out that the Epstein-Zhang definition makes

substantive implicit assumptions about the decision-maker’s ambiguity attitudes.
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A.2 Derivation of the Anscombe-Aumann Framework for Almost-Convex-

Ranged Contexts

If the context D0 is merely almost-convex-ranged, the construction of AA-acts
and preferences given in section 4.2 fails because AA-acts may have no exact Savage

counterpart, that is: [F ] may be empty for some F . The natural remedy is to interpret

AA-acts F = [qi, Ai]i∈I as appropriate limits of sequences of Savage acts {fn} with
the property that, for each i, the (imprecise) conditional distribution of consequences

conditional on the event Ai induced by fn converges to that specified by the AA-act,

qi. To yield a well-defined preference ordering on AA-acts, the underlying preferences

over Savage acts must be continuous in an appropriate sense. We will now make this

construction formally precise.

Let d denote the sup-metric on ∆(X), d(q, q0) := supx∈X | q(x)− q(x0) | . To define
“convergence in distribution” of an sequence of Savage acts to an AA-act, it is helpful

to define the following distance measure on F ×FAA δ0.

δ0(f, F ) := sup
i∈I,π∈Π

d (π(./Ai) ◦ f−1, qi),

where π(./Ai) ◦ f−1 ∈ ∆(X) is given by (π(./Ai) ◦ f−1)(x) := π ({ω|f(ω) = x}/Ai)

for any x.

An AA-“act” F can now formally be defined as the set of all sequences of Savage

acts {fn} converging to F, i.e.

{fn} ∈ [F ] if lim
n→∞

δ0(fn, F ) = 0.

It is easily verified that Almost-Convex-Rangedness ensures the non-emptiness of

[F ] for all F ∈ FAA.

Preferences over AA-acts construed in this manner is are defined naturally by

continuous extension:

F %AA G if there exist {fn} ∈ [F ] and {gn} ∈ [G] such that fn % gn for all n.
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For the associated strict preference relation ÂAA defined as the asymmetric com-

ponent of %AA, this amounts to eventual preference for any pair of approaching se-

quences:

F ÂAA G if, for all {fn} ∈ [F ] and {gn} ∈ [G], fn Â gn for sufficiently large n.

To make this ordering well-behaved, the underlying preference relation % must be

continuous in an appropriate sense. To define such a notion of continuity, consider

the following quasi-metric on Savage acts δ : 39

δ(f, g) := sup
π∈Π

d(π ◦ f−1, π ◦ g−1).

The quasi-metric δ (=δΠ) defines an upper bound on how far the probability dis-

tributions over consequences may be apart. Note that δ(f, g) = 0 if and only if

π ◦ f−1 = π ◦ g−1 for all π ∈ Π, i.e. f is stochastically equivalent to g. Thus,

intuitively, if δ(f, g) is small, then f and g are “almost” stochastically equivalent.

The following continuity condition requires that almost stochastically equivalent are

evaluated similarly by the agent.

Axiom 15 (Continuity in Distribution)

The weak order % has a utility-representation V : F → R that is uniformly con-

tinuous with respect to δΠ.

Proposition 4 If % satisfies Continuity in Distribution and Stochastic Dominance

with respect to an almost-convex-ranged context D, %AA is a continuous40 weak order

extending % .

39For simplicity, this metric is defined in terms of the multi-prior representation Π0 rather than

the associated likelihood relation D0; the latter should be possible, although we have not worked

out the details.

40With respect to the standard metric δ00(F,G) := supω∈Ω d (F (ω), G(ω)).
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The present derivation of the Anscombe-Aumann framework is closely related to

Machina’s (2001) work on “Almost-Objective Uncertainty”, which also reproduces the

power of the Anscombe-Aumann framework in an enriched Savage setting; Proposi-

tion 4 in particular can be viewed as the counterpart of his Theorem 4. We note the

following differences. Congenial with our work, Machina imposes epistemically moti-

vated restrictions on preferences. However, in contrast to our work, these assumptions

are imposed directly in the form of a smoothness condition, while we model the postu-

lated probabilistic belief explicitly as a likelihood relation, and obtain analogous pref-

erence restrictions via Continuity in Distribution and Stochastic Dominance. While

our derivation is behaviorally general, Machina assumes that preferences are “event-

differentiable” which is behaviorally somewhat restrictive; event-differentiability ex-

cludes, for example, the minimum expected-utility model due to Gilboa-Schmeidler

(1989).41 Finally, Machina exploits the specific structure of uniformly continuous

densities on the real line (or, more generally, on Euclidean manifolds) as discussed in

section 3.3; by contrast, our approach applies to arbitrary almost-convex-ranged be-

lief contexts. Machina’s more specific assumptions allow him to mimic quite precisely

the product structure of the original AA-setup “in the limit”; while this aids the in-

tended interpretation in terms of “almost-objective uncertainty”, it seems inessential

for the decision-theoretic purposes pursued here.

A.3 Proofs

Proof of Fact 1.

Take any real number α ∈ (0, 1) and any A ∈ Σ. Write α as the supremum of an

41Indeed, it follows from the analysis in Nehring (2001) that event-differentiability exculdes all

utility-sophisticated preferences satisfying Savage’s P4.
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increasing sequence of dyadic numbers { ck

2k
}k=1,..,∞ such that

ck+1

2k
≥ α. (9)

By dyadic convex-rangedness, there exists a sequence of partitions {Ak} such that
Ak is a refinement of Ak0 whenever k ≥ k0 (i.e. {Ak} is a filtration), and such that
π(A0) = 1

2k
π(A) for all π ∈ Π and all A0 ∈ Ak.

Thus there exists an increasing sequence {Bk}, where each Bk is the union of ck

members of Ak and, taking account of (9), a decreasing sequence {Dk} of members
of Ak such that

Bk0 ⊆ Bk ∪Dk (10)

whenever k0 ≥ k.

Since Σ is a σ−algebra, B := ∪Bk ∈ Σ. We claim that B is the desired event.

Indeed, from the construction of the sequence Bk, it follows immediately that π(B) ≥
απ(A) for any π ∈ Π. Conversely, by (10), B ⊆ Bk ∪Dk for all k, and thus, for any

π ∈ Π, π(B) ≤ π(Bk) + π(Dk) ≤ α+ 1
2k
for all k, whence π(B) ≤ α. ¤

Proof of Theorem 2.

Let E be any non-null event in Σ, and α = c
2k
be any dyadic number. We begin

by defining, from likelihood judgments, a family αE of events A that will, in the

multi-prior representation have the property that, for all π ∈ Π, π (A) = απ (E) .

Specifically, let αE be the set of all A such that there exists a partition of E into 2k

subsets Ai such that Ai ≡ Aj for all i, j and A =
P

i≤cAi.

We have the following lemmas.

Lemma 1 (Strong Additivity) A D B and A0 D B0 implies A+A0 D B +B0.

This Lemma is standard in derivations of Savage’s Theorem; see, e.g. Fishburn

(1970, p. 196). Its proof is therefore omitted.42

42Fishburn’s proof is for B and ≡, but applies equally to D; it is applicable since it does not make

50



Lemma 2 A ∈ 1
2k
E if and only if there exists E0 ∈ 1

2k−1E such that A ∈ 1
2
E0.

The “only-if” part follows directly from Strong Additivity.

The “if-part” holds trivially for k = 1. For k > 1, it is verified by induction.

Suppose it to hold for k0 = k − 1. Assume that there exists E0 ∈ 1
2k−1E such that

A ∈ 1
2
E0. Then by the definition of 1

2k−1E, there exists a partition of E into events

{E1, ..., E2k−1} such that Ei ≡ Ej for all i, j and E1 = E0. By Equidivisibility, for

each i ≥ 1, there exist events Ei,1 and Ei,2 such that Ei,1 ≡ Ei,2, Ei,1 +Ei,2 = Ei and

E1,1 = A. By Splitting, Ei,m ≡ Ej,m0 , and thus A ∈ 1
2k
E.

Lemma 3 αE 6= ∅ for all α ∈ D and all non-null E.

By Equidivisibility and induction on k, the claim follows for α = 1
2k
from Lemma

2, hence indeed for all α = c
2k
by the definition of αE.

Lemma 4 A ∈ αC, B ∈ βD, α ≥ β and C D D imply A D B.

From an argument as in Lemma 2, it is clear that, writing α = c
2k
and β = c0

2k
with

c ≥ c0, there exist partitions of E into 2k elements E =
P

i≤2k Ai and E =
P

i≤2k Bi

such that A =
P

i≤cAi and B =
P

i≤c0 Bi. First, consider the case c = c0 = 1. Then

the claim follows from Splitting and induction on k. In the general case with c ≥ c0,

this implies Ai ≡ Bi for all i ≤ 2k, whence A D B by repeated application of Strong

Additivity.

We are now in a position to construct the mixture- space extension bD of D .

Let D denote the set of dyadic-valued random-variables, D := {Z : Ω → D, Z is

Σ-measurable}. Any finite-valued Z can be canonically written as
P

i zi1Ei , where

Ei = Z−1({zi}). For any Z =
P

zi1Ei ∈ D, define

[Z] := {A : there exist Ai ∈ ziEi such that A =
X
i

Ai},

use of completeness.
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and define the relation bD on D as follows,
X bDY iff, for some A ∈ [X] and B ∈ [Y ], A D B.

To establish various properties of bD, some further auxiliary results are needed.
Lemma 5 For all A,B ∈ [Z] : A ≡ B.

By definition, A =
P

iAi and B =
P

iBi such that Ai, Bi ∈ ziEi. By Lemma 4,

Ai ≡ Bi. Hence A ≡ B by Strong Additivity.

Lemma 6 If Ai ∈ αEi for all i ∈ I,
P

i∈I Ai ∈ α
¡P

i∈I Ei

¢
.

Writing α = c
2k
, by assumption there exist sets Bij for i ∈ I and j ≤ 2k such that

Bij ≡ Bij0 for all i, j, j
0,
P

j≤2k Bij = Ei for all i, and
P

j≤cBij = Ai. For j ≤ 2k, let
Bj :=

P
i∈I Bij. By construction,

P
i∈I Ei =

P
i∈I
P

j≤2k Bij =
P

j≤2k Bj. By Strong

Additivity, Bj ≡ Bj0 for all j, j
0. Since

P
i∈I Ai =

P
i∈I
P

j≤cBij =
P

j≤cBj, thereforeP
i∈I Ai ∈ c

2k

¡P
i∈I Ei

¢
.

Lemma 7 i) For all X,Y, Z ∈ D such that X + Z ∈ D and Y + Z ∈ D, there exist
A ∈ [X], B ∈ [Y ] and C ∈ [Z] such that A+ C ∈ [X + Z] and B + C ∈ [Y + Z].

ii) For all X,Y ∈ D such that X + Y ∈ D and such that Y is measurable w.r.t.

the partition generated by X, and for all A ∈ [X], there exists B ∈ [Y ] such that
A+B ∈ [X + Y ].

iii) For all X,Y ∈ D such that X + Y ∈ D and such that Y is measurable w.r.t.

the partition generated by X + Y , and for all C ∈ [X + Y ], there exists B ∈ [Y ] such
that B ⊆ C and C\B ∈ [X].

To verify part i), write X,Y and Z (non-canonically) as X =
P

i xi1Di ,Y =P
i yi1Di and Z =

P
i zi1Di for an appropriate partition {Di} of Ω, and write xi =

ci
2ki

, yi =
c0i
2ki

, and zi =
c00i
2ki

. Split Di into 2
ki equally likely events {Di1,...,Di2ki}, and
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set Ci :=
P

j≤ci Dij ∈ ziDi, Ai =
Pci+c0i

j=ci+1
Dij ∈ xiDi, and Bi =

Pci+c00i
j=ci+1

Dij ∈
yiDi. Using Lemma 6, one infers that

P
iAi ∈ [X],

P
iBi ∈ [Y ],

P
iCi ∈ [Z],P

iAi+
P

iCi =
P

i (Ai + Ci) ∈ [X+Z], and
P

iBi+
P

iCi =
P

i (Bi + Ci) ∈ [Y +Z]
as desired.

Similar proofs verify parts ii) and iii). As to the former, write X =
P

i xi1Ei

in canonical decomposition. By assumption, Y can be written (non-canonically) asP
i yi1Ei . Take any A =

P
iAi ∈ [X]. Since xi+yi ≤ 1 for all i, one can find Bi ∈ yiEi

such that Ai+Bi ∈ (xi + yi)Ei. Using Lemma 6, one infers that
P

iBi ∈ [Y ], as well
as A+

P
iBi =

P
i (Ai +Bi) ∈ [X + Y ], as desired.

Finally, to verify part iii), write X +Y =
P

i zi1Ei in canonical decomposition. By

assumption, Y can be written (non-canonically) as
P

i yi1Ei . Take any C =
P

iCi ∈
[X + Y ]. Since yi ≤ zi for all i, one can find Bi ∈ yiEi such that Ci\Bi ∈ (zi − yi)Ei.

Using Lemma 6, one infers that
P

iBi ∈ [Y ], as well as C\ (
P

iBi) =
P

i (Ci\Bi) ∈
[X], as desired. ¤

Lemma 8 The relation bD on D is transitive, reflexive and satisfies the following

conditions

1. (Extension) 1AbD1B if and only if A D B.

2. (Positivity) X bD0 for all X.

3. (Non-degeneracy) 1bB0.
4. (Weak Homogeneity) X bDY implies αX bDαY for all α ∈ D.

5. (Additivity) X bDY if and only if X + Z bDY + Z.

6. (Strong Additivity) X bDY and X 0bDY 0 imply X +X 0bDY + Y 0.

7. (Continuity) {(X,Y ) : X bDY } is closed (in D ×D).
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Proof. Reflexivity, Extension, Positivity, and Non-degeneracy are immediate.

To verify Transitivity, consider any X,Y,Z such that X bDY and Y bDZ. By defin-
ition, there exist A ∈ [X], B,B0 ∈ [Y ], C ∈ [Z] such that A D B and B0 D C. By

Lemma 5, B ≡ B0. Hence by the transitivity of D, A D C, and therefore X bDZ as

desired.

Weak Homogeneity is an immediate consequence of Lemmas 3 and 4.

To verify Additivity, consider any X,Y, Z such that X +Z, Y +Z ∈ D. According
Lemma 7i), there exist A ∈ [X], B ∈ [Y ] and C ∈ [Z] such that A + C ∈ [X + Z]

and B + C ∈ [Y + Z]. If X bDY,then A D B by Lemma 5, thus A + C D B + C

by Additivity of D, and thus X + Z bDY + Z. Analogously, one obtains X bDY from

X + Z bDY + Z.

Strong Additivity, in turn, follows straightforwardly from 7i) and the Strong Ad-

ditivity of D .

It remains to verify Continuity. We shall show that {(X,Y ) : not X bDY } is open in
D. Consider any X,Y such that not X bDY . Take any A ∈ [X], B ∈ [Y ]; clearly not
A D B. By the Continuity of D, there exists K < ∞ such that, for any 1

K
−events

C,D, it is not the case that A ∪ C D B\D. It suffices to show that, for any X 0, Y 0

such that k X 0 −X k≤ 1
K
and k Y 0 − Y k≤ 1

K
, it is not the case that X 0bDY 0.

To verify this claim, take any X 0, Y 0 such that k X 0−X k≤ 1
K
and k Y 0−Y k≤ 1

K
.

By the Positivity and Strong Additivity of D, it is without loss of generality to assume
that X 0 (respectively Y 0) is measurable with respect to the partition generated by

X (respectively Y ), and that X 0 ≥ X and Y 0 ≤ Y. Then there exist by Lemma

7ii) A0 ∈ [X 0 − X] such that A + A0 ∈ [X 0]; likewise, by Lemma 7iii), there exist

and B0 ∈ [Y − Y 0] and B00 ∈ [Y 0] such that B0 + B00 = B. Clearly, A0 and B0 are
1
K
−events, and therefore it is not the case that A+ A0 D B\B0 = B00. Therefore, in

view of Lemma 5, it is not the case that X 0bDY 0, as needed to be shown. ¤
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Now embed bD (viewed as a subset of D ×D) in B × B, with B := B(Σ, [0, 1]), the

set of [0, 1]−valued Σ-measurable functions, endowed with the sup-norm. Since B is
the completion of D, and thus B×B of D×D, the closure clbD of bD in B×B restricted
to D × D is simply bD, since bD is closed in D × D. Thus, clbD is an extension of bD,
and will be referred to as “bD on B”, or simply also as “bD” if no misunderstanding
is possible. Clearly X bDY if and only if there exist sequences {Xn} and {Yn} in D
converging to X and Y, respectively, such that Xn

bDYn for all n.
Say that bD on B satisfies Homogeneity if, for all X,Y ∈ B and λ ∈ R++ such that

λX, λY ∈ B : X bDY if and only if λX bDλY.
Lemma 9 The relation bD on B is transitive, reflexive and satisfies Extension, Pos-
itivity, Non-degeneracy, Homogeneity, Strong Additivity, Additivity, and Continuity.

Proof. Extension and Non-degeneracy are immediate. Continuity holds by

construction. Positivity and reflexivity follows therefore from the corresponding prop-

erties of bD on D.
To verify Homogeneity, take X,Y ∈ B and λ ∈ R++ such that λX, λY ∈ B and

X bDY. By definition, there exist sequences {Xn} and {Yn} in D converging to X and

Y, respectively. Write λ = cα, with c ∈ N and α ∈ (0, 1]. Choose some sequence
{αn} in D converging to α such that αn ≤ min

³
kXk
kXnk ,

kY k
kYnk

´
. This ensures that, for

all n, cαnXn ∈ D and cαnYn ∈ D. By Weak Homogeneity of bD on D, αnXn
bDαnYn

for all n. Hence by (c− 1)-fold application of Strong Additivity of bD on D , also

cαnXn
bDcαnYn for all n. By Continuity on B, cαX bDcαY , as desired.

To verify Strong Additivity on B, consider anyX,X 0, Y, Y 0 ∈ B such thatX bDY and
X 0bDY 0, and take sequences {Xn}, {X 0

n}, {Yn} and {Y 0
n} in D converging to X,X 0, Y

and Y 0, respectively, such that Xn
bDYn and X 0

n
bDY 0

n for all n. By Homogeneity on B
(just shown), 1

2
Xn
bD1
2
Yn and

1
2
X 0

n
bD1
2
Y 0
n for all n. Disregarding an initial subsequence

if necessary, 1
2
Xn +

1
2
X 0

n ∈ D as well as 1
2
Yn +

1
2
Y 0
n ∈ D for all n. Hence by Strong

55



Additivity on D, 1
2
Xn+

1
2
X 0

n
bD1
2
Yn+

1
2
Y 0
n. By Continuity on B, 12X + 1

2
X 0bD1

2
Y + 1

2
Y 0,

whence by Homogeneity on B again X +X 0bDY + Y 0 as desired.

One direction of Additivity “X +Z bDY +Z whenever X bDY ” follows directly from
Strong Additivity and reflexivity. For the converse, consider X,Y,Z such that X bDY
and X − Z, Y − Z ∈ B. Take sequences {Xn}, and {Yn} in D converging to X and

Y, respectively, such that Xn
bDYn for all n. Let {Zn} be any sequence in D satisfying

Z−max (k X −Xn k, k Y − Yn k)1−1
n
1 ≤ Zn ≤ Z−max (k X −Xn k, k Y − Yn k)1.

By construction, {Zn} converges to Z; moreover, Xn − Zn ≥ X− k X − Xn k
1−Zn ≥ X −Z ≥ 0, and likewise Yn−Zn ≥ 0. Thus Xn−Zn ∈ D and Yn−Zn ∈ D
for all n. By Additivity on D, Xn −Zn

bDYn −Zn for all n, whence X −Z bDY −Z as

desired.

Finally, to verify Transitivity on B, consider any X,Y, Z ∈ B such that X bDY and

Y bDZ. By Homogeneity on B 1
2
X bD1

2
Y as well as 1

2
Y bD1

2
Z. By Strong Additivity on

B, 1
2
X + 1

2
Y bD1

2
Y + 1

2
Z. Hence by Additivity on B, 1

2
X bD1

2
Z, from which one obtains

X bDZ again by Homogeneity on B. ¤

In a final step, extend bD on B to the set of all bounded random-variables R :=

B(Σ,R) by defining bD on B(Σ,R) as the unique relation eD on B(Σ,R) that coincides
on B with bD on B and that satisfies Additivity and Homogeneity. (The uniqueness
of this extension is immediate; existence follows easily form the Additivity and Ho-

mogeneity properties of bD on B). As in section 2.2, say that a relation bD on R
is a coherent expectation ordering if it satisfies Transitivity, Reflexivity, Positivity,

Non-degeneracy, Homogeneity, Additivity, and Continuity. The following Lemma

summarizes the construction, and follows immediately from Lemma 9.

Lemma 10 The relation bD on R is a coherent expectation ordering satisfying Ex-

tension.
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The following result establishes the existence of a multi-prior representation for

coherent expectation orderings. Its proof is omitted, as it follows from combining

Theorem 3.61 and 3.76 in Walley (1991); for finite state spaces, a similar result has

also been obtained by Bewley (1986).

Theorem 4 A relation eD on R is a coherent expectation ordering if and only if there

exists a closed convex set of priors Π such that, for all X,Y ∈ R,

X eDY if and only if, for all π ∈ Π, EπX ≥ EπY.

The representing Π is unique in K(∆(Σ)).

To complete the proof, apply Theorem 4 to the relation bD onR obtained in Lemma
10. By Extension, for all A,B ∈ Σ,

A D B iff 1AbD1B iff, for all π ∈ Π, Eπ1A ≥ Eπ1B.

Thus Π is indeed a multi-prior representation of D. That it is dyadically convex-
ranged is an immediate consequence of Equidivisibility.

To demonstrate uniqueness, consider any Π0 ∈ K(∆(Σ)) different from Π with

induced expectation ordering bDΠ0 . From the uniqueness part of Theorem 4, there

exist X,Y ∈ R such that X bDY and not X bDΠ0Y , or such that X bDΠ0Y and not

X bDY . Consider the former case; the latter is dealt with symmetrically. Moreover,
by Additivity and Homogeneity, it can be assumed that X,Y ∈ B. By continuity,
monotonicity, and the density of D in [0, 1] it can in fact be assumed that X,Y ∈ D.
Take any A ∈ [X] and B ∈ [Y ]. By Extension, 1Ab≡X and 1B b≡Y, hence AbDB.
By assumption, for some π ∈ Π0, EπX < EπY ; in view of Lemma 11 just below,

π (A) < π (B) , contradicting the assumption that Π0 represents D .

Lemma 11 For any π ∈ Π0 such that bDΠ0 = bD, and any X ∈ D and A ∈ [X] :
EπX = π (A) .
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WriteX =
P

i
ci
2ki
1Ei and A =

P
iAi such that Ai ∈ ci

2ki
Ei. By assumption, one can

split each Ei into 2
ki equally likely events {Ei1,..., Ei2ki} such that Ai =

P
j≤ci Eij. For

any π ∈ Π0 such that bDΠ0 = bD, π (Eij) = π (Eij0) for all i, j, j
0, hence π (Ai) =

ci
2ki

π (Ei)

by additivity of π. Hence π (A) =
P

i
ci
2ki

π (Ei) = EπX. ¤

Proof of Theorem 3.

To verify part i) of the Theorem, take any coherent and almost-equidivisble D . It

suffices to show that, for any E and any n ∈ N, there exists a set A ⊆ E such that

1
2
≤ π−(A/E) and π+(A/E) ≤ 1

2
+ 1

n
.

Fix E and n. By Almost Equidivisibility, there exists a partition of E into 2n− 1
sets {A1, ..., A2n−1} such that, for any subfamily of n sets {Ai1 , ..., Ain},

X
j=1,..,n

Aij D E\
Ã X

j=1,..,n

Aij

!
.

We claim that, for any j ∈ {1, ..., 2n−1}, π+(Aj/E) ≤ 1
n
. This suffices, since then by

assumption π−(
P

i=1,..,nAi/E) ≤ 1
2
as well as π+(

P
i=1,..,nAi/E) ≤ π+(

P
i=1,..,n−1Ai/E)+

π+(An/E) ≤ 1
2
+ 1

n
.

To verify this claim, suppose that, by contradiction, for some π ∈ Π and j ∈
{1, ..., 2n− 1}, π(Aj/E) >

1
n
. W.l.o.g., assume that π(Ai/E) is increasing in i. Then

π(
P

i=1,..,nAi/E) <
n

2n−2(1− 1
n
) = 1

2
, which contradicts the assumption that

P
i=1,..,nAi D

E\
³P

i=1,..,nAi

´
.

Conversely, take an almost-convex-ranged set Π, and consider any event E such

that π+(E) > 0 and any n > 0. By a straightforward inductive argument, there

exists a partition of E into 2n − 1 subevents {A1, ..., A2n−1} such that, for all i,
1
2n

< π−(Ai/E) ≤ π+(Ai/E) <
1

2(n−1) , from which the Almost Equidivisibility of DΠ

is immediate.

To verify part ii) of the Theorem, we shall show that DΠ, viewed as a relation

on indicator-functions, has a unique extension to an expectation ordering cDΠ on

58



F(Σ, [0, 1]), and thus also F(Σ,R). Since by Theorem 4 of the Appendix, for any Π0
different from Π, bDΠ0 6= bDΠ = cDΠ, this implies that in fact DΠ0 6=DΠ .

Consider an almost-convex-ranged set of priors Π and any extension to a coherent

expectation ordering on F(Σ, [0, 1]) bD . The following Lemma ensures the possibility
of an approximate mixture-space construction.

Lemma 12 i) For any A ⊆ E such that π+(A/E) < 1
m
, 1AbE 1

m
1E.

ii) For any A ⊆ E such that π−(A/E) > 1
m
, 1AbD 1

m
1E.

iii) For any α < β ∈ [0, 1], and any E ∈ Σ, there exists A ⊆ E such that

α1E bE1AbEβ1E.
iv) For any Y,Z ∈ F(Σ, [0, 1]) such that Y ≥ Z and Y (ω) > Z(ω) whenever

Y (ω) > 0 and Z(ω) < 1, there exists A ∈ Σ such that Y bD1AbDZ.
Proof of Lemma.

i) Take any A ⊆ E such that π+(A/E) < 1
m
. It is easily verified that by almost-

convex-rangedness there exist m − 1 disjoint sets Bi such that A +
P

iBi = E and

AbEBi for all i. By Strong Additivity, m1AbE1A +Pi 1Bi
= 1E. By Homogeneity, one

infers that 1AbE 1
m
1E as desired.

ii) is verified analogously.

To show iii), take any m and n such that α < m
n+1

< m
n

< β. One can easily

establish from almost-convex-rangedness that there exist m disjoint subsets Ai of E

such that 1
n+1

< π−(Ai/E) and π+(Ai/E) <
1
n
. By parts i) and ii), 1

n+1
1E bE1Ai

bE 1
n
1E

for all i. Setting A =
P

iAi, it follows by Strong Additivity that

α1E ≤ m

n+ 1
1E bE1AbEm

n
1E ≤ β1E,

which suffices in view of the monotonicity of bD.
Finally, to verify iv), take any Y,Z ∈ F(Σ, [0, 1]) such that Y ≥ Z and Y (ω) > Z(ω)

whenever Y (ω) > 0 and Z(ω) < 1. Write Y =
P

i yi1Ei and Z =
P

i zi1Ei . By part
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iii), for each i, there exists Ai ⊆ Ei such that

yi1Ei bE1Ai bEzi1Ei .
Note that if yi = 0, then also zi = 0, and one can set Ai = ∅; similarly, if zi = 1, then
also yi = 1, and one can set Ai = Ei. Setting A = Ai, the desired conclusion follows

from Strong Additivity. ¤

To conclude the proof of part ii) of the Theorem, fix any Y,Z ∈ F(Σ, [0, 1]). Take
a decreasing sequence {Yn} in F(Σ, [0, 1]) converging to Y such that Yn(ω) > Y (ω)

whenever Y (ω) < 1, as well as an increasing sequence {Zn} in F(Σ, [0, 1]) converging
to Z such that Zn(ω) > Z(ω) whenever Z(ω) > 0. By part iv) of Lemma 12, there

exist sequences of events {An} and {Bn} in Σ such that, for all n,

YnbD1An
bDY and Z bD1Bn

bDZn.

We claim that Y bDZ if and only if 1An bD1Bn for all n. Indeed, the only-if part is

immediate from Transitivity, while the if-part follows directly from Continuity. This

clearly suffices to establish uniqueness of the extension bD, which suffices as argued
above. ¤

Proof of Fact 2.

Parts ii) and iii) are verified by elementary computation. To verify part i), it

evidently suffices to show that for any disjoint A,B such that λ(A) < Kλ(B), there

exists π ∈ ΠK
2 such that π(A) < π(B). To see this, note first that since λ(A)+λ(B) ≤

1, λ(A) < K
K+1

. Therefore by the convex-rangedness of λ, there exists D ⊆ Ac such

that λ(D) = 1
K+1

and a) D ⊇ B or b) B ⊇ D. In the first case, πD(B) =
K+1
2
λ(B);

in the second case, that is, whenever λ(B) ≥ 1
K+1

, πD(B) ≥ πD(D) =
1
2
. On the other

hand, πD(A) =
K+1
2K

λ(A), which is less than 1
2
since λ(A) < K

K+1
. Thus, in either case,

πD(A) < πD(B), as needed to be shown.
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Proof of Proposition 2.

Consider any (non-null) event A ∈ Σ0 and any γ ∈ (0, 1) and δ > 0; we will

show that there exists an event B ∈ Σ0, B ⊆ A such that 1
(1+δ)3

γπ(A) ≤ π(B) ≤
(1 + δ)3γπ(A) for all π ∈ Π.

Since Φ := {φπ|π ∈ Π} is equicontinuous and Ω is compact, Φ is uniformly equicon-
tinuous. Since Φ is also uniformly bounded below above zero, there exists ε > 0 such

that
φ(a)

φ(b)
≤ 1 + δ for all φ ∈ Φ and all a, b such that d(a, b) ≤ 2ε. (11)

By compactness, Ω can be covered by a finite number of open ε-balls; let A = {Di} ⊆
Σ0 denote the finite partition generated by these balls.

As a non-atomic, countably-additive measure, λ is convex-ranged (see, for example,

Aliprantis-Border (1999, p. 357) on Σ. Since the Borel algebra Σ is generated by

Σ0 by the compactness (hence second-countability) of Ω, one can thus infer from

Carathéodory’s extension procedure (cf., for example, Aliprantis-Border (1999, p.

343)), that, for each i, there exists a set Bi ∈ Σ0 with Bi ⊆ A ∩Di and γi such that

λ(Bi) = γiλ(A ∩Di), and (12)

γ

1 + δ
≤ γi ≤ γ (1 + δ) .

We claim that B =
P

iBi is the desired set.

By construction, the diameter of each Di is no greater than 2ε. Hence, by (11),

taking any xi ∈ Di, one has

φ (xi)λ(Bi)

1 + δ
≤ π(Bi) =

Z
Bi

φ (x) dλ ≤ (1 + δ)φ (xi)λ(Bi), (13)

and similarly

φ (xi)λ(A ∩Di)

1 + δ
≤ π(A ∩Di) ≤ (1 + δ)φ (xi)λ(A ∩Di),
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which implies

1

(1 + δ)φ (xi)
π(A ∩Di) ≤ λ(A ∩Di) ≤ (1 + δ)

φ (xi)
π(A ∩Di). (14)

Combining equations (12), (13) and (14) therefore

1

(1 + δ)3
γπ(A ∩Di) ≤ π(Bi) ≤ (1 + δ)3γπ(A ∩Di).

Summing over i, one obtains

1

(1 + δ)3
γπ(A) ≤ π(B) ≤ (1 + δ)3γπ(A),

as desired. ¤

Proof of Proposition 3.

As indicated in the text, to show thatΠλ,M ⊇ Π, it suffices to show thatDλ,M⊆D(Πλ,M).
To see this, take any A,B and such that λ(A) ≥ Ψ(A,B)λ(B) and any π ∈ Πλ,M ; we

need to verify that π (A) ≥ π (B). Indeed,

π (A) =

Z
A

φ (ω) dλ ≥ λ (A) inf
ω∈A

φ (ω) ≥ λ (B)Ψ(A,B)
supω∈B φ (ω)

Ψ(A,B)
≥
Z
B

φ (ω) dλ = π (B) .

To complete the proof, we need to show conversely that any probability measure π

admissible with respect to Dλ,M is in fact contained in Πλ,M . We will prove this in a

sequence of steps.

Step 1. π is absolutely continuous with respect to λ as a finitely additive measure;

hence, in particular, π is in fact countably additive.

Fix any natural number L such that L ≥ eM supa,b∈Ω d(a,b). For any natural number

K, we will show that π(A) ≤ 1
K
for any A such that λ(A) ≤ 1

KL
, which suffices.

Take any K and A such that λ(A) ≤ 1
KL

. By the convex-rangedness of λ, there exists

a partition {Ai}i≤KL of Ω such that A1 ⊇ A and λ (Ai) =
1
KL

. By combining L
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members {Ai} each, one obtains a partition of Ω {Bj}j≤K that is coarser than {Ai}
and satisfies λ (Bj) =

1
K
for all j. Since L ≥ Ψ(Ai, Bj) by construction, one has for

all i, j that Bj Dλ,M Ai, which implies π(A) ≤ π(A1) ≤ minj≤K π(Bj) ≤ 1
K
.

By step 1, π has a Radon-Nikodym derivative φ with respect to λ. Let Bε (a) denote

the open ε-ball around a.

Step 2. For all a, b and all ε > 0, ess supω∈Bε(a) φ (ω) ≤ Ψ (Bε (a) , Bε (b)) ess infω∈Bε(b) φ (ω) .

We verify the claim by contradiction. If the claim is false, then, in view of the full

support of λ, there exist λ-non-null sets A ⊆ Bε (a) , B ⊆ Bε (b) such that

inf
ω∈A

φ (ω) > sup
ω∈B

φ (ω)Ψ (Bε (a) , Bε (b)) . (15)

By the convex-rangedness of λ, taking appropriate subsets if necessary, it can more-

over be assumed that

λ (B) = Ψ (Bε (a) , Bε (b))λ (A) . (16)

By the definition of Dλ,M and the admissibility of π with respect to Dλ,M,(16)

implies π (B) ≥ π (A) . On the other hand, from (15) and (16) one obtains

π (A) ≥ λ (A) inf
ω∈A

φ (ω) > λ (A)Ψ (Bε (a) , Bε (b)) sup
ω∈B

φ (ω) = λ (B) sup
ω∈B

φ (ω) ≥ π (B) ,

the desired contradiction.

Step 3. π has a density eφ such that log eφ is Lipschitz with modulus of continuity
M.

For n ∈ N, define functions φn− and φn+ as follows:

φn− (a) : = ess inf
ω∈B 1

n (a)
φ (ω) for a ∈ Ω;

φn+ (a) : = ess sup
ω∈B 1

n (a)
φ (ω) for a ∈ Ω.
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By step 2,

φn+ (a) ≥ φn− (a) ≥ φn+ (a) e
− 2
n
M . (17)

Hence the increasing and decreasing sequences {φn−} and {φn+} converge pointwise to
the same function eφ. Now, for any A ∈ Σ,Z

A

φn− (ω) dλ ≤
Z
A

φ (ω) dλ = π (A) ≤
Z
A

φn+ (ω) dλ. (18)

Since by the Monotone Convergence Theorem
R
A
φn− (ω) dλ and

R
A
φn+ (ω) dλ converge

to
R
A
eφ (ω) dλ, one obtains R

A
eφ (ω) dλ = π (A) from (18), for any A ∈ Σ. Thus eφ is a

density for π.

To verify that eφ has the asserted property, consider any a, b ∈ Ω.

By step 2, for any n,

eφ(a) ≤ φn+(a) ≤ Ψ(B
1
n (a) , B

1
n (b))φn−(b) ≤ eφ(b).

Since by the triangle inequality,

sup
a0∈B 1

n (a),b0∈B 1
n (b)

d(a0, b0) ≤ d(a, b) +
2

n
,

this implies log eφ(a) − log eφ(b) ≤ M
¡
d(a, b) + 2

n

¢
. Likewise log eφ(b) − log eφ(a) ≤

M
¡
d(a, b) + 2

n

¢
by interchanging a and b, and therefore¯̄̄

log eφ(a)− log eφ(b)¯̄̄ ≤M

µ
d(a, b) +

2

n

¶
.

Since n is arbitrary, this establishes the claim. ¤

Proof of Proposition 4.

Let F denote the set of Cauchy-sequences in F viewed as a superset of F endowed
with the canonical extension of δ, δ({fn}, {gn}) = lim supn→∞ δ(fn, gn). Since F is

dense in F , by a classical result on metric spaces (see, e.g. Aliprantis/Border (1999),
Lemma 3.8, p. 77), V has a unique, uniformly continuous extension to F likewise

denoted by V .
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Lemma 13 For any f, f 0 ∈ F and F ∈ FAA, δ(f, f 0) ≤ δ0(f, F ) + δ(f 0, F ).

The verification of the lemma is routine. Indeed, for any π ∈ Π0, d(π◦f−1, π◦g−1) ≤
supi∈I d (π(./Fi)◦f−1, π(./Fi)◦g−1) ≤ supi∈I (d (π(./Fi) ◦ f−1, qi) + d (π(./Fi) ◦ g−1, qi)) ≤
supi∈I d (π(./Fi) ◦ f−1, qi) + supi∈I d (π(./Fi) ◦ g−1, qi) ≤ δ0(f, F ) + δ(f 0, F ). ¤
It is immediate from the lemma that any sequence {fn} ∈ [F ] is a δ-Cauchy se-

quence, and, for any two sequences {fn}, {gn} ∈ [F ] δ({fn}, {gn}) = 0, whence by

the continuity of V, V ({fn}) = V ({gn}); hence one can define V (F ) := V ({fn}) for
any {fn} ∈ [F ].

Lemma 14 F %AA G if and only if V (F ) ≥ V (G).

To verify the if-part, if F %AA G then there exists by definition {fn} ∈ [F ] and
{gn} ∈ [G] such that fn % gn for all n. By continuity,

V (F ) = V ({fn}) = lim
n→∞

V (fn) ≥ lim
n→∞

V (gn) ≥ V ({fn}) = V (G).

Conversely, suppose that V (F ) ≥ V (G). By Almost-Convex-Rangedness, one can

find a sequence {fn} ∈ [F ] such that fm stochastically dominates fn whenever m <

n, and therefore by Stochastic Dominance such that V (fn) does not increase and

converges to V (F ). By the same token, using Almost-Convex-Rangedness, one can

find a sequence {gn} ∈ [G] such that gm stochastically dominates gn whenever m >

n, and therefore by Stochastic Dominance such that V (gn) does not decrease and

converges to V (G). It follows that, for all n, V (fn) ≥ V (F ) ≥ V (G) ≥ V (gn), whence

F %AA G. ¤
This lemma implies immediately that %AA is a weak order extending %. Continuity

with respect δ00 follows from the inequality

δ00(F,G) ≥ δ({fn}, {gn}) for any {fn} ∈ [F ] and {gn} ∈ [G].
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