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Abstract

Coherent imprecise probabilistic beliefs are modelled as incomplete comparative likelihood relations

admitting a multiple-prior representation. Under a structural assumption of Equidivisibility, we

provide an axiomatization of such relations and show uniqueness of the representation. In the second

part of the paper, we formulate a behaviorally general “Likelihood Compatibility” axiom relating

preferences and probabilistic beliefs and characterize its implications for the class of “invariant

biseparable” preferences that includes the MEU and CEU models among others.



1. INTRODUCTION

In the wake of Ellsberg’s (1961) celebrated experiments, it is by now widely recognized that

decision makers are not always guided by a well-defined subjective probability measure. Ellsberg’s

challenge to received decision theory is particularly profound in that it puts into question not so much

particular assumptions on decision makers’ preference attitudes towards uncertainty, but the very un-

derstanding of uncertainty itself. Even though much effort has gone into modelling of Ellsberg-style

“ambiguity”, the nature and role of probabilistic beliefs in such contexts is not yet well understood.

This issue is central not just from the point of view of decision theory itself, but also from that of its

economic applications, since, in large part, economic models are models of agents’ beliefs, whether

in macroeconomics, finance, game theory or elsewhere.

The modelling of an agents’ probabilistic beliefs under ambiguity can be approached in at least

two ways. On the one hand, one might try to define beliefs from preferences following Savage (1954).

While Savage’s own definition can be invoked at a purely formal level even under ambiguity, it is

in general no longer associated with well-defined probabilistic beliefs, as will be illustrated shortly

in the context of the Ellsberg paradox. The canonical relation between probabilistic beliefs and

(betting) preferences that obtains under expected utility breaks down, since betting preferences are

now determined by beliefs —however construed— and ambiguity attitudes.1 It is an open question

whether and under what circumstances Savage’s definition can be generalized satisfactorily. And, in

any case, it seems likely that even the “best possible” definition will be less canonical, that it will

come with more strings attached than Savage’s. In this paper, we therefore want to pursue a less

ambitious goal:

“Suppose that we know that the decision-maker entertains a specified set of probabilistic

beliefs, and possibly others. What is the structure of such beliefs, and how do they

constrain his preferences?”

In addressing these questions, we shall strive for behavioral generality: any satisfactory answer

must be applicable to a wide range of choice behavior including for example Allais- and Ellsberg-

1For different reasons, a canonical definition of “revealed subjective probability” from choice-behavior fails to be

possible in the case of state-dependendent preferences; see Karni et al. (1983) and the subsequent literature.

Even in the context of Savage’s SEU theory, this “canonical” definition has been criticized as not necessarily

capturing the decision maker’s true beliefs (Shervish, Seidenfeld and Kadane (1990), Karni (1996), Grant-Karni

(2004) ); this criticism assumes, however, a non-behaviorist point of view to begin with.
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style choice patterns, and should not be tied to assumptions about specific functional forms. As

argued compellingly by Machina-Schmeidler (1992) and Epstein-Zhang (2001), behavioral generality

is important since issues about the representation of probabilistic beliefs are more fundamental than

particular behavioral assumptions.

Neither of the two questions has been answered satisfactorily in the literature. To the extent

that a “default answer” is available regarding the structure of imprecise probabilistic beliefs, it is

presumably given by a representation in terms of sets of priors. However, the existing justifications

all assume expected-utility maximization with respect to risk (as in Bewley (1986), Walley (1991)),

or Gilboa-Schmeidler (1989)), and, in the latter case, also very specific attitudes towards ambiguity.

As far as we can tell, the second issue of how imprecise probabilistic beliefs (rationally) constrain

preferences has not been explicitly addressed in the literature. And, indeed, even in simple cases,

the answer is not completely obvious, as we illustrate in section 4 in the context of the α-Minimum

Expected Utility and Choquet expected utility models.

To address the two questions in behavioral generality, we propose to model probabilistic beliefs as

a comparative likelihood relation D over events, with “A D B” denoting the judgement “A is at least

as likely as B”. In this we follow the lead of the classical contributions by Keynes (1921), de Finetti

(1931) and Savage (1954). The likelihood relation shall be taken as an independent, non-behavioral

datum, leaving open the question whether/under what circumstances it can in turn be derived from

preferences. The likelihood relation can represent either “objective” probabilistic information or

purely subjective beliefs; these interpretations are fleshed out at the beginning of section 2.

Imprecise Probabilistic Beliefs in the Ellsberg Paradox

While preferences will be assumed to be complete as usual, the likelihood relation will assumed to

be incomplete in order to make room for ambiguity. To illustrate the role of incompleteness, let us

consider the classical two-color version of the Ellsberg paradox. One ball is drawn from each of two

urns both of which are composed of red and black balls only. The decision maker is told that the first

(“known”) urn contains as many red as black balls, but is told nothing about the composition of the

second (“unknown”) urn. We will focus here on the four events associated with the colors of each

draw: Rkn and Bkn (the ball drawn from the known urn is red / black), as well as Run and Bun (the

ball drawn from the unknown urn is red / black). There is one fundamental piece of probabilistic

information, namely that the events Rkn and Bkn are equally likely (Rkn ≡ Bkn). According to the
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typically observed choice pattern, betting on any color of the known urn is preferred to betting on

any color of the unknown urn2:

Rkn ∼ Bkn Â Run ∼ Bun. (1)

Comparative likelihood relations constrain betting preferences canonically: if A is at least as likely

as B, then betting on A must be weakly preferred to betting on B. If this condition is satisfied

for arbitrary events A and B, preferences and the specified information/beliefs will be said to be

compatible with each other. We shall refer to the underlying rationality principle that extends to

multi-valued acts as “Likelihood Compatibility”.

In the above example, preferences are evidently compatible with the specified information that

Rkn ≡ Bkn. One may wonder, however, whether it is possible to attribute to the decision maker in

addition a belief that red and black from the unknown urn are equally likely, Run ≡ Bun, as would

be implied by Savage’s definition of revealed likelihood. Yet this can be done only at the price of

sacrificing the fundamental coherence properties that characterize the “logic of probability”. For this

logic evidently implies that if a red and black draw from the unknown urn were judged equally likely,

then all four possible draws must be equally likely. But such a judgment would be incompatible

with the observed preference for betting on the known urn exhibit by (1). A similar argument shows

that the specified preferences are not compatible with attributing a belief that Run is strictly more,

or strictly less, likely than Bun. Thus any coherent likelihood relation that is compatible with the

specified preferences must be incomplete even though the preference relation itself is complete.

Incompleteness of the likelihood relation alongside a complete preference relation yields an intu-

itive account of the Ellsberg paradox, in that the absence of a likelihood comparison between the

colors from the unknown urn captures precisely the epistemic difference between the two urns that

motivates the preference for betting on the known urn. Indeed, this is not a novel interpretation at

all, but simply fleshes out formally the common verbal interpretation starting with Ellsberg (1961)

and Schmeidler (1989).

This beliefs-based explanation of the Ellsberg paradox is not the only possible explanation . A

frequently proposed alternative is derived from the claim that the decision maker has well-defined

global subjective probabilities, but simply “dislikes” betting on the unknown urn relative to betting

on the known urn.3 This alternative, preference-based account allows to maintain completeness of

the likelihood relation at the price of sacrificing Likelihood Compatibility. This is a high price to

2In this notation, an event E is preferred to another event E0 if betting on E (receiving the better of two conse-

quences on E, and the worse on Ec) is preferred to betting on E0.
3Segal (1990), Ergin-Gul (2004) and Chew-Sagi (2003) can be interpreted in this vein, as well as perhaps Tversky-
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pay as it severs radically the connection between belief and preference, whereas in the belief-based

account at least a unidirectional version of the classical relationship is preserved.

Representation of Coherent Likelihood Relations by Multiple Priors

The example also illustrates that the content and power of the restrictions induced by a set of

likelihood judgements depends critically on the nature of entailment relationships among them. The

first key task of the present paper is therefore the characterization of “coherent” likelihood relations,

that is, of likelihood relations that incorporate all entailments from the logic of probability. For the

limiting case of complete relations, Savage (1954) achieved a characterization of this kind leading to

a representation by a numerical probability measure. This result was in fact a key step in deriving his

celebrated Subjective Expected Utility Theorem. Remarkably, by an appropriate choice of auxiliary

conditions, Savage was able to make do with a single rationality axiom, “Additivity”, according to

which the judgment that A is at least as likely as B entails and is entailed by the judgment that

“A or C” is at least as likely as “B or C”, for any event C disjoint from A and B. In exchange,

Savage had to pay the price of restricting attention to atomless (more precisely: “convex-ranged”)

probability measures.

The first main result of the present paper, Theorem 2, offers a counterpart to Savage’s result

for incomplete comparative likelihood relations; it appears to be the first result of its kind in the

literature. Without completeness, Additivity is no longer enough to fully capture the “logical syntax

of probability”; a second rationality axiom called “Splitting” is needed as well. This axiom requires

in particular that if two events A and B are each split into a more and a less likely “subevent”, and

if A is judged at least as likely as B, then the more likely subevent of A must be at least as likely

as the less likely subevent of B. Under appropriate auxiliary conditions, Theorem 2 shows that a

likelihood relation satisfies Additivity and Splitting if and only if it has a representation in terms of

a set of admissible probability measures (“priors”); according to this representation, an event A as

at least as likely as B if and only if A’s probability is at least as large as that of B, for any admissible

prior in the set. Theorem 2 justifies a formal identification of coherence with the existence of such

a multi-prior representation.

As in Savage, and indeed in a somewhat more pronounced form, there is a price to be paid

for the simplicity in the rationality axioms underlying coherence due to the need for substantive

Wakker’s (1995) notion of “source preference”.
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structural assumptions. Specifically, we assume that any event can indeed be split into two equally

likely subevents (roughly as in De Finetti 1931). Besides non-atomicity, Equidivisibility assumes a

minimal degree of completeness of the likelihood relation. It is satisfied, for example, in the presence

of a continuous random device, as assumed in the widely-used Anscombe-Aumann framework. In an

important sense, Equidivisibility is not really restrictive at all since any coherent likelihood relation

can be extended to a larger one incorporating a hypothetical random-device on a larger state space.

See section 2 for details and further examples.

Importantly, Equidivisibility ensures uniqueness of the multi-prior representation (within the class

of closed, convex sets of priors). We show by example (see section 2.4) that this assumption cannot

be greatly weakened without losing uniqueness. Without uniqueness, a representation of imprecise

beliefs by sets of priors could be viewed as more expressive than a representation in terms of com-

parative likelihood relations; this would cast doubt on the adequacy of such likelihood relations as

the canonical primitive representing probabilistic beliefs.

Preferences Constrained by Imprecise Probabilistic Beliefs

In the second part of the paper, we consider how specified imprecise probabilistic beliefs ratio-

nally constrain preferences. To do so, we propose an axiom called “Likelihood Compatibility” that

extends the compatibility requirement formulated above for betting preferences to acts with multi-

ple outcomes. It represents a minimal, generally applicable criterion of consequentialist rationality

relating preferences to probabilistic beliefs expressed as likelihood relations. It is minimal in that it

does not constrain the DM’s risk or ambiguity attitudes in any substantive way, thereby ensuring

behavioral generality.

We view the existence of behaviorally general yet substantive rationality restrictions on preferences

captured by this axiom as a crucial advantage of using likelihood relations as the epistemic primi-

tive in contrast to, for example, a direct use of sets of priors. In particular, we show that, given a

likelihood relation satisfying the assumptions of Theorem 2, Likelihood Compatibility entails prob-

abilistic sophistication in the sense of Machina-Schmeidler (1992) over risky (unambiguous) acts,

that is: acts whose outcomes have well-defined probabilities derived from the likelihood relation. 4

4Taking this argument further, in the working paper version of this paper we show that any such preference

ordering can be represented as a preference ordering over Anscombe-Aumann (1963) acts with a mixture-operation

that is defined in terms of the given likelihood relation. This construction can be viewed as a decision-theoretic, belief-

based foundation for the Anscombe-Aumann (1963) framework. This derivation not only clarifies the assumptions on
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In applications, it is obvious importance to determine when preferences belonging to a particular

preference model are compatible with a specified likelihood relation. This need not be straightforward

even in very simple cases such as the MEU preferences. In the MEU model, for example, one would

like to be able to determine compatibility by comparing the set of priors representing the preference

relation Ψ to the set of priors representing the likelihood information Π, checking for set inclusion.

While this criterion need not always work, we show that it does work whenever preferences maximize

expected utility over risky (unambiguous) acts. This result is obtained as a corollary to the main

result of the second part of the paper, Theorem 1, which shows for a large class of preferences

under which conditions Likelihood Compatibility can be characterized in terms of a generalized

multi-prior criterion that is based on Ghirardato et al.’s (2004) and Nehring’s (1996) definition of

perceived ambiguity.5

Related Literature

1. Our main result, Theorem 2, builds on and can be viewed as the likelihood counterpart of

the multiple-prior representations of partial orderings due to Bewley (1986/2002) and Walley (1991)

following Smith (1961). All of these, however, use preferences as their primitive6 and derive the

multiple-prior representation together with expected-utility maximization with respect to those pri-

ors, and thus fail to be behaviorally general. Mathematically, the objects of the present paper

(orderings over sets) have much less structure a priori than the objects in these contributions (or-

derings over random variables). This difference probably explains why, in spite of the suggestive

parallelism, there do not exist counterpart results for likelihood relations in the literature up to

now. The key technical insight of the present paper is the realization that it is possible to formulate

simple, epistemically well-motivated axioms that allow to canonically extend a likelihood ordering

over events to an ordering over real-valued functions, thereby making the existing characterizations

and the associated vector-space techniques such as separation theorems applicable; the construction

of the extension itself is non-trivial.7

preferences and beliefs implicit in the Anscombe-Aumann model, it leads to an even more powerful structure since all

uncertainty is treated at the same level.
5For a subclass of these preferences, this definition is closely related to Siniscalchi’s (2006) notion of “plausible

priors”.

6Walley and Smith do so by taking “acceptable gambles” as their primitive notion.
7Multiple-prior representations of complete preference orderings have been obtained by Gilboa-Schmeidler (1989),

Ghirardato et al. (2004) and Casadesus et al. (2000); again, these are about preferences, not belief, and are behav-
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2. In terms of overall motivation of axiomatizing an epistemic primitive, a closely related contri-

bution in the literature is Koopman (1940a and b). Koopman presents an axiomatic treatment of

comparative conditional likelihood relations, whose primitive compares event pairs (“A given B is

at least as likely as C given D”). Koopman’s results are much weaker, however, than the results

of the present paper: while Koopman provides sufficient conditions for the existence of lower- and

upper-probability functions that are additive on the class of events where the two coincide, he has

no representation theorem and no characterization of coherence. It is also not clear how conditional

likelihood comparisons are to be related to behavior.

3. There is a sizeable literature on comparative likelihood relations that is mainly focused on

the complete case; see Fishburn (1986) and Regoli (1998) for surveys. In the incomplete case, one

can use standard arguments from the theory of linear inequalities to obtain a characterization of

coherence for likelihood relations defined on arbitrary families of sets; see Walley (1991 p. 192-3)

and related earlier results by Heath-Suddert (1972) and, in the complete, finite-state case, Kraft et

al. (1959). In view of the combinatorial complexity and algebraic character of the conditions, such

characterizations have generally not been considered to be of significant foundational interest (c.f.

e.g. Regoli 1998).

Furthermore, the important uniqueness issue has not been addressed before outside the complete

case. Indeed, it seems fairly remarkable a priori that likelihood relations can match multi-prior

representations in their expressiveness at all; we are not aware of any hint of this in the literature;

see, for example, the discussion in Walley (1991, pp. 191-197) which appears to suggest the opposite.

In sum, in spite of the existence of the multi-prior representation results dating back to Smith (1961),

the extant results in the literature on likelihood relations do not come close to those of the present

paper.

4. Somewhat related to the second part of the paper is a literature in which imprecise probabilistic

beliefs (co-)determine rather than merely constrain preferences, as assumed here and alluded to by

the word context; see Jaffray (1989), Nehring (1991, 1992, 2000), Gajdos et al. (2004, 2006), Wang

(2003) and others8. As explained in more detail in section 3.2, these models rely on a much stronger,

exhaustive interpretation of the given probabilistic beliefs. By contrast, the present approach as-

iorally quite restrictive.
8Other, more distantly related contributions include in particular those that model preferences over sets of lotteries

such as Olsziewski (2002), Stinchcombe (2003) and Ahn (2005).
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sumes only an incomplete interpretation of the likelihood relation as describing only some but not

necessarily all of the DM’s probabilistic beliefs, for example beliefs derived from probabilistic infor-

mation such as the existence of a random device, the composition of an Ellsberg urn, information

about frequencies in large populations; see Walley (1991, sections 2.10.3 and 9.7.4) for more on the

fundamental distinction between exhaustive and incomplete interpretations of imprecision. Typ-

ically, contributions relying on an exhaustive interpretation relate preferences/choices in different

epistemic situations or even allow for preferences over such situations.9 Such frameworks allow sub-

stantially stronger conclusions on the basis of substantially stronger and presumably conceptually

more controversial assumptions. Their goal is typically to characterize specific, epistemically inter-

pretable models of decision making under ambiguity, a goal that is quite different from the present

goal of determining the constraints imposed by the existence of probabilistic beliefs/information in

behaviorally general manner.

2. COHERENT LIKELIHOOD RELATIONS

A decision maker’s probabilistic beliefs shall be modelled in terms of a partial ordering D on

an algebra of events Σ in a state space Ω, his “comparative likelihood relation”, with the instance

A D B denoting the DM’s judgment that A is at least as likely as B.We shall denote the symmetric

component of D (“is as likely as”) by ≡, and the asymmetric component by B .

2.1 The Likelihood Relation as Information and as (Partial) Belief

The inclusion of beliefs among the primitives is a likely source of controversy, as it goes against

the grain of the reigning Ramsey-De Finetti-Savage tradition. Precisely because we do not want to

belittle the methodological and philosophical issues at stake, we defer their discussion to future work.

In its place, we submit that both common sense and the practice of economic modeling support an

independent, non-derived role for beliefs: as real-world actors, we prefer certain acts over others

because we have certain beliefs rather than others; as economic modelers, we typically attribute to

economic agents particular preferences over uncertain acts because we have some idea about the

beliefs that can be plausibly attributed to the agents in a particular situation. In both cases, we

think directly in terms of beliefs rather than preferences. This is the intuitive substance of including

9An exception is Kopylov (2006).
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the decision maker’s probabilistic beliefs among the primitives.

The likelihood relation can be given two primary interpretations. First, the likelihood relation may

summarize information about the unconditional, conditional or comparative probabilities available

to the decision maker. Such information arises naturally in various contexts. For example, as we shall

explain in section 2.5, the notion of an independent random device with known objective probabilities

that is at the heart of the Anscombe-Aumann (1963) framework can be usefully modeled in this

way. Similarly, information about the composition of urns in the context of Ellsberg experiments

represents important probabilistic information. Likewise, if the decision maker observes independent,

identical repetitions of a sampling experiment with unknown parameters (e.g. tosses of the same coin

with unknown bias), this information about the structure of the sampling process can be captured by

a comparative likelihood relation that embodies “exchangeability” a la de Finetti (1937))10. On the

information interpretation, a likelihood relation will be almost always incomplete, since the decision

maker will possess information only about the likelihood of some events but not of others.

Secondly and more generally, the likelihood relation can serve to represent the decision maker’s

subjective beliefs, whether or not these are based on “given” information. Here, beliefs as an in-

dependent (non-behavioral) datum are to be understood as “propositional attitudes”, that is: as

dispositions to affirm certain likelihood-judgments in thought or in speech, in addition to preferences

which can be viewed as dispositions to act. Importantly, the beliefs need not be specified exhaus-

tively. That is, the decision maker may “have” further beliefs that have not yet been elicited and

recorded in D, but which may be verified either by further elicitation (e.g. via interrogation) or rev-
elation through preferences. Indeed, probabilistic information in the sense above can be understood

as a special case of non-exhaustively specified probabilistic beliefs.

2.2 Savage’s Probability Theorem

As a reference point, we briefly review Savage’s Probability Theorem which delivers a unique

representation of complete comparative likelihood relations in terms of finitely additive probabilities.

The following axioms are canonical for comparative likelihood in any context; disjoint union is

denoted by “+”.

Axiom 1 (Weak Order) D is transitive and complete.

Axiom 2 (Nondegeneracy) Ω B ∅.
10Roughly, this likelihood relation takes any event to be equally likely to any permutation of it.
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Axiom 3 (Positivity) A D ∅ for all A ∈ Σ.

Axiom 4 (Additivity) A D B if and only if A+C D B+C , for any C such that A∩C = B∩C = ∅.

Additivity is the hallmark of comparative likelihood. Normatively, it can be read as saying that

in comparing two events in terms of likelihood, states common to both do not matter. It is well-

known that, on finite state-spaces, Additivity is far from sufficient to guarantee the existence of

a probability-measure representing the complete comparative likelihood relation; see Kraft-Pratt-

Seidenberg (1959). Refining an earlier seminal result by de Finetti (1931), Savage (1954) provided

assumptions which, together with Additivity, gave rise to a characterization of convex-ranged proba-

bility measures;11 the probability measureπ is convex-ranged if, for any event A and any α ∈ (0, 1),
there exists an event B ⊆ A such that π(B) = απ(A). Evidently, convex-ranged probability mea-

sures exist only when the state-space is infinite. We state a version of his result for the sake of

comparison. It requires two more axioms; the event A is non-null if A B ∅.

Axiom 5 (Fineness) For any non-null A there exists a finite partition of Ω {C1, ..., Cn} such that
for all i ≤ n, A D Ci .

Axiom 6 (Tightness) For any A,B such that B B A there exist non-null events C and D such

that B\D B A ∪C.

Theorem 1 (Savage) Let Σ be a σ-algebra. The likelihood relation D satisfies Axioms 1 through

6 if and only if there exists a (unique) finitely additive, convex-ranged probability measure π on Σ

such that for all A,B ∈ Σ :
ADB if and only if π(A) ≥ π(B).

An important feature of Savage’s result is the uniqueness of the representing probability. It justifies

the view that the comparative likelihood relation captures the DM’s beliefs fully. Uniqueness is non-

trivial and holds only rarely in finite state-spaces.

2.3 Dropping Completeness

To allow for imprecision, likelihood relations will now be allowed to be incomplete.

Axiom 7 (Partial Order) D is transitive and reflexive.

11This result was in fact a crucial first step in his famous characterization of SEU maximization, Addivity of the

“revealed likelihood relation” being a consequence of the Sure-Thing Principle.
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A main achievement of Savage’s Probability Theorem is its reliance on Additivity as the sole

axiom capturing the logical syntax of probability. If the completeness assumption is dropped, this

is no longer feasible. For example, while under completeness, one can use Additivity to infer that

if two events are equally likely to their respective complements, they must be equally likely to each

other, this no longer follows without completeness. Yet such an implication seems necessary for

a proper likelihood interpretation of the relation. More generally, the following second rationality

axiom called “Splitting” seems intuitively compelling.

Axiom 8 (Splitting) If A1 +A2 D B1 +B2, A1 D A2 and B1 D B2, then A1 D B2.

In words: If two events are split into two subevents each, then the more likely subevent of the

more likely event is more likely than the less likely subevent of the less likely event. In the proof of

the following Theorem, we will only make use of the special case in which the two events are split

into equally likely subevents.

Significantly, Splitting is not a conceptually independent addition to Additivity, but merely com-

pensates for the missing completeness of the likelihood relation, in that any additive completion of

a given likelihood relation satisfies Splitting automatically.

Fact 1 For any weak order D, Additivity implies Splitting.

Fact 1 shows that Splitting appeals to the same ordinal, qualitative intuition that makes the

Additivity axiom so compelling. By contrast, the linear-programming inspired conditions of Heath-

Suddert (1972) and Walley (1991 p. 192-3) already appeal to a cardinal notion of subjective proba-

bility, as a result of which their foundational value seems to be rather limited.

By themselves, Additivity plus Splitting are not enough to deliver an interesting representation,

as the case of complete likelihood relations on a finite state-space shows. We thus make the following

structural assumption, according to which any event can be split into two equally likely parts.

Axiom 9 (Equidivisibility) For any A ∈ Σ, there exists B ⊆ A such that B ≡ A\B.

Very broadly, Equidivisibility can be viewed as an assumption that the likelihood relation is

sufficiently rich in comparisons. The axiom can be motivated, for example, by the existence of a rich

set of independent random events. To see this, let T be an event with an unambiguous probability

of 0.5, i.e. such that T ≡ T c. Then A is naturally viewed as independent from T if this judgment is

maintained conditional on the occurrence of A, that is if A∩T ≡ A∩T c. Clearly A∩T and A∩T c
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split A into two equally likely parts. Note that the plausibility of the existence of such events does

not depend on whether or not the event A itself is unambiguous.

Finally, Savage’s Fineness and Tightness axioms are no longer adequate to obtain a real-valued

representation. In their stead, a condition expressing the notion of “continuity in probability” is

needed. It relies on the following notion of a “small”, “ 1K − ”event: A is a 1
K−event if there exist

K mutually disjoint events Ai such that A E Ai for all i. A sequence of events {An}n=1,..,∞ is

converging in probability to the event A if, for all K ∈ N there exists nK ∈ N such that for all

n ≥ nK the symmetric difference An4A is a 1
K−event.

Axiom 10 (Continuity) For any sequences {An}n=1,..,∞ and {Bn}n=1,..,∞ converging in proba-

bility to A and B respectively,

An D Bn for all n implies A D B.

These axioms ensure the existence of a multi-prior representation, i.e. the existence of a set

of finitely additive probability measures Π ⊆ ∆(Σ) such that, for all A,B ∈ Σ :

ADB if and only if π(A) ≥ π(B) for all π ∈ Π. (2)

Likelihood relations for which such a representation exists will be called coherent.

Note that if D satisfies (2) for some set of priors Π, then it satisfies (2) also for the closed convex
hull of Π (in the product or “weak∗”-topology which will be assumed throughout). Thus, it is

without loss of generality to assume Π to be a closed convex set; let the class of all closed (hence

compact), convex subsets of ∆(Σ) be denoted by K(∆(Σ)).

Note also that all axioms except Equidivisibility but including Continuity12 are implied by the

existence of a multi-prior representation. Equidivisibility imposes further constraints on the set of

priors Π. On σ-algebras, it is equivalent to the following “range-convexity” condition on Π; if Σ is

merely an algebra, it is equivalent to “dyadic range-convexity”.13 Let D denote the set of dyadic

12The necessity of Continuity follows from observing that, for any D with representing set Π, any π ∈ Π and any

1
K
−event A, π(A) ≤ 1

K
; if Π is convex-ranged as defined just below, the converse holds as well.

In contrast to Continuity, neither Tightness nor Fineness are entailed by coherence, even under completeness.

While Tightness is implied by coherence and Equidivisibility, Fineness is not; indeed, it is not difficult to verify that

a coherent and equidivisible relation is fine if and only if, for all A ∈ Σ : minπ∈Π π (A) = 0 implies maxπ∈Π π (A) = 0,

which in turn is equivalent to the condition that all admissible priors π ∈ Π have the same null-events. While vacuously

satisfied in the precise case of a singleton set Π, this condition is clearly quite restrictive when beliefs are imprecise.
13The generality added by allowing Σ to be an algebra is significant since algebras can often be described explicitly

while σ-algebras typically cannot. We note that Savage’s Theorem has only very recently been extended to algebras

by Kopylov (2003).
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numbers between 0 and 1, i.e. of numbers of the form α = c
2k
, where k and c are non-negative

integers such that c does not exceed 2k.

Definition 1 A set of priors Π is convex-ranged if, for any event A ∈ Σ and any α ∈ (0, 1), there
exists an event B ∈ Σ, B ⊆ A such that π(B) = απ(A) for all π ∈ Π. The set Π is dyadically
convex-ranged if this holds for all α ∈ D.

Note that while range-convexity of Π implies the range-convexity of every π ∈ Π, the converse is
not true in general unless Π has a finite number of extreme points (see example 2 below). Moreover,

as established by Fact 5 in the Appendix, on σ-algebras dyadic range-convexity and range-convexity

coincide.

The following is the main result of the paper.

Theorem 2 A relation D on an event algebra Σ has a multi-prior representation with a dyadically
convex-ranged set of priors Π if and only if it satisfies Partial Order, Positivity, Nondegeneracy,

Additivity, Splitting, Equidivisibility and Continuity.

If the set of priors Π ⊆ ∆(Σ) represents D (i.e. satisfies (2)), then Π0 ⊆ ∆(Σ) represents D as

well if and only if Π and Π0 have the same closed convex hull.

By the final statement of the characterization, the likelihood ordering D has always a unique

closed convex set of priors representing it (in the product or “weak∗”-topology which will be assumed

throughout). This will henceforth be taken to be the canonical representation of D and denoted by
ΠD or Π for short.14

We shall sketch the proof idea of Theorem 2 with a bit of “reverse engineering”. The key is the

derivation of a vector-space-like structure of the event-space resulting from the range-convexity of

the set of priors. Specifically, one can extend every coherent likelihood relation represented by the

convex-ranged set of priors Π to a partial ordering on the domain Z of finite-ranged, Σ-measurable

functions Z : Ω → [0, 1] by associating with each function Z an equivalence class [Z] of events

A ∈ Σ as follows. Let A ∈ [Z] if, for some appropriate partition of Ω {Ei}, Z =
P

zi1Ei , and

such that, for all i ∈ I and π ∈ Π : π (A ∩Ei) = ziπ (Ei) . It is easily seen that for any two

A,B ∈ [Z] : π (A) = π (B) for all π ∈ Π, and thus A ≡ B. One therefore arrives at a well-defined

14In view of the Krein-Milman theorem, an alternative candidate for a canonical representation would be the set of

extreme points of this closed convex set Π.
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partial ordering on Z, denoted by bD, by setting
Y bDZ if and only if A D B for some A ∈ [Y ] and B ∈ [Z]. (3)

It is easily verified that this ordering satisfies the following two conditions:

(Additivity) Y bDZ if and only if Y +X bDZ +X for any X,Y,Z , (4)

and

(Homogeneity) Y bDZ if and only if αY bDαZ for any Y,Z and α ∈ (0, 1].

Moreover, it is positive, non-degenerate and continuous.15 In the sequel, we shall refer to partial

orderings on Z satisfying these five conditions as coherent expectation orderings. By well-known

results due to Walley (1991) and Bewley (1986, for finite state-spaces), coherent expectation order-

ings admit a unique representation in terms of a closed, convex set of priors; cf. Theorem 4 in the

appendix.

The actual proof of Theorem 2 proceeds by constructing this extension from the given likelihood

relation and by deriving the properties of the induced relation from the axioms on the primitive

relation. In a final step, we invoke the just-quoted Theorem to obtain the desired multi-prior

representation. The proof is non-trivial and requires a surprising amount of work due to the gap

between the ordinally formulated axioms and the cardinal character of the derived conditions.

2.4 Fully Expressive Likelihood Relations

Analogously to the complete case in which uniqueness of the representing prior is a natural heuris-

tic yardstick of the expressive adequacy of likelihood relations as an epistemic primitive, in the more

general incomplete case uniqueness of the representing closed and convex set of priors is again a

natural criterion of adequate expressiveness. Thus we shall refer to coherent likelihood relations

with a unique multi-prior representation as fully expressive.

The uniqueness statement in Theorem 2 is thus significant by ensuring that there is a large

and interesting class of imprecise likelihood relations that is fully expressive and thus viable as an

epistemic primitive. The existence of such a class is not at all obvious a priori. Indeed, in finite state

spaces, likelihood relations seem to lack full expressivity ‘generically’, and there is no indication in

15See Appendix, Lemma 9, for formal definitions.
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the existing literature that this situation can be remedied in a systematic fashion in infinite state

spaces.16

While Equidivisibility is not strictly necessary for full expressivity, it does not seem possible to

weaken this assumption greatly and still obtain full expressivity in a robust manner. In particular,

non-atomicity-like conditions akin to Savage’s Fineness condition are not nearly enough.

Example 1. Let Σ denote the Borel-σ-algebra on the unit interval with Lebesgue measure λ,

and fix K > 1, and define a coherent likelihood relation DKas follows:

A DK B if and only if λ(A\B) ≥ Kλ(B\A). (5)

If K > 1, DK is not equidivisible; in particular, DK does not admit any event with unambiguous

probability 1
2 .
17 In Appendix A.1, we exhibit two distinct multiple-prior representations for each

DK , falsifying uniqueness and thus full expressivity.

Note that, for K > 1, DK satisfies Savage’s Fineness and Tightness conditions. Moreover, if K is

close to 1, all admissible priors are uniformly close to the Lebesgue measure which is convex-ranged.

Thus, even though such DK are close to being convex-ranged and close to being complete, uniqueness

is lost.

Example 1 suggests that Equidivisibility is not far from necessary for full expressivity. This is

further confirmed by asking whether a likelihood relation can capture a particular kind of probability

judgment, such as the judgment that “my subjective probability of A conditional on E is 3
4”.

Suppose that the DM has already specified a (non-exhaustive) equidivisible likelihood ordering D,
and wants to express this judgment by adding some appropriate likelihood comparisons capturing

this judgment. If D is equidivisible, he can achieve this by picking any event B with unambiguous

conditional probability 0.75 given E, i.e. any B such that π (B) = 0.75π (E) for all π ∈ Π, and
adding the judgment “A ≡ B”. But if D is not equidivisible, the DM will not in general be able

to capture the judgment in terms of a comparative probability comparison, a significant failure in

expressivity. In particular, note that it is not sufficient to assume that D possesses a rich set of

16See, for example, the discussion of comparative probability orderings in Walley (1991, section 4.5). Levi (1980,

p. 207) goes as far as asserting that “the serious trouble is that there does not seem to be any way in which one can

obtain complete information about X’s credal state from data about comparative probability when that state is one

which violates strict Bayesian requirements [i.e. precision]”.
17To see this, suppose that there is an event E such that E ≡K Ec; by (5), this would imply that both λ(E) ≥

Kλ(Ec) and λ(Ec) ≥ Kλ(E), contradicting the assumption that K > 1.
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unambiguous events; what matters is a sufficiently rich set of conditionally unambiguous events, i.e.

range-convexity.

2.5 Examples of Equidivisibility

The key structural assumption behind Theorem 2, Equidivisibility, in effect assumes a sufficiently

rich set of conditionally unambiguous events. Its content is further illuminated by means of the

following two specific examples.

Example 2 (Limited Imprecision, Social Belief Aggregation). The first example is based

on the intuitive notion of a limited extent of overall ambiguity. One way to make this intuition

precise is to assume that Σ is a σ-algebra and that Π is the convex hull of a finite set Π0 of non-

atomic, countably additive priors. Due to Lyapunov’s (1940) celebrated convexity theorem, Π is

convex-ranged. The priors π ∈ Π0 can be interpreted as a finite set of hypotheses a decision-maker
deems reasonable without being willing to assign probabilities to them.

Finitely generated sets of priors also occur naturally in social belief aggregation, where DI repre-

sents the unanimity likelihood ordering induced by the finite set of individuals’ likelihood orderings

Di that are assumed to be precise with representing measures µi. Assume that social decisions are

based on a precise likelihood ordering DI represented by some measure µI that respects unanimity

in beliefs. Then Theorem 2 implies that ΠDI = co{µi}i∈I ; the “social prior” µI must therefore be a
convex combination of individual priors.18

Example 3 (External Randomization Device)

In the manner of Anscombe-Aumann (1963), consider state spaces with a continuous extraneous

randomization device. Specifically, consider a state space that can be written as Ω = Ω1 × Ω2,
where the space Ω1 is the space of “generic states” , and Ω2 that of independent “random states”

with associated algebras Σ1 and σ-algebra Σ2. The “continuity” and stochastic independence of the

random device are captured by a coherent likelihood relation Drand defined on the product algebra
Σ = Σ1×Σ2 that satisfies the following two conditions, noting that any A ∈ Σ1×Σ2 can be written
as A =

P
i Si × Ti, where the {Si} form a finite partition of Ω1.

18This corollary to Theorem 2 is related to results by Mongin (1995) and Gilboa-Samet-Schmeidler (2004), who

derive from social respect for unanimous indifferences a representation of the social prior as an affine linear combination

of individual priors.
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AA1) The restriction of Drand to {Ω1} × Σ2 satisfies all of Savage’s axioms (axioms 1
through 6).

AA2)
P

i Si×Ti Drand
P

i Si×T 0i if and only if, for all i ∈ I, Ω1×Ti Drand Ω1×T 0i .

While the first condition ensures the existence of a convex-ranged probability measure η over

random events, the second describes their stochastic independence. In view of AA1 and AA2, it is

easily verified that Drand satisfies all the assumptions of Theorem 2 including Equidivisibility. Hence
there exists a unique set of priors Πrand representing Drand; indeed, Πrand is simply the set of all
product-measures of the form π1×η, where π1 can be any finitely additive measure on Σ1, reflecting

the stochastic independence of the random device.

The example shows that, in an important sense, Equidivisibility is completely unrestrictive in

that any coherent likelihood ordering can be extended to an equidivisible one after embedding in

a larger state space. Moreover, such an embedding is imaginatively and operationally achievable.

Thus, at bottom, range-convexity merely requires that the domain of beliefs (and, later, preferences)

be sufficiently comprehensive.19 Assuming the domains of preference/belief to be sufficiently rich is

a standard strategy of theoretical modelling, and there seems to exist no particular reason in the

present case that would appear to make this strategy unworkable or irrelevant.

3. DECISION MAKING IN THE CONTEXT OF PROBABILISTIC BELIEFS

3.1 Likelihood Compatibility: Definition

Consider now a decision maker described by a preference ordering over acts and a likelihood or-

dering over events. Let X be a set of consequences. An act is a mapping from states to consequences,

f : Ω→ X that is measurable with respect to an algebra of events Σ; the set of all acts is denoted

by F ; for simplicity, we will assume all acts to be finite-valued throughout. A preference ordering %
is a weak order (complete and transitive relation) on F . We shall write [x1 on A1;x2 on A2; ...] for

the act with consequence xi in event Ai; for the act [x on A; y on A
c] we will also use the shorthand

xAy. More generally, the act h that agrees with f on A and with g on Ac will be denoted by fAg.

As usual, constant acts [x,Ω] are typically referred to by their constant consequence x.

The DM also has probabilistic beliefs described non-exhaustively by a coherent comparative like-

19Note, in particular, that we have not appealed to objective probabilities, which could be viewed as a heterogeneous

and philosophically controversial element.
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lihood relation D on Σ. The relation D will be referred to as the epistemic context of the decision

situation. Thus, a decision-maker in an epistemic context is described by the pair (%,D). A coherent
context D will be referred to as convex-ranged if it has a convex-ranged multi-prior representation

Π on the event-algebra Σ.20

We propose as a fundamental principle of consequentialist rationality that consequence valuations

and likelihood comparisons, when available, should be decisive in determining the ranking of acts;

put somewhat differently, the judged (comparative) likelihood of events is the only attribute of events

that should matter in comparing the incidence sets f−1(x) and g−1(x) of the various consequences

of different acts; other conceivable factors such as familiarity with a type of event or felt competence

in assessing it should not matter rationally. We shall refer to this as the Principle of Likelihood

Consequentialism.

The task is to formalize this principle in terms of axioms on the relation between preferences and

beliefs in maximal behavioral generality, that is in particular: without imposing restrictions on risk-

preferences. By way of motivation, begin by considering preferences over bets, i.e. comparisons of

pairs of the form ([x on A; y on Ac], [x on B; y on Bc]) . Here, Likelihood Consequentialism implies

canonically that betting on the weakly more likely event is to be weakly preferred, as expressed by

the following condition. For all A,B ∈ Σ and x, y ∈ X such that x Â y :

[x on A; y on Ac] % [x on B; y on Bc] whenever A D B. (6)

Note that condition (6) can be viewed as a unidirectional version of Savage’s behavioral definition

of revealed likelihood. Condition (6) asks to be complemented by an analogous condition entailing

strict rather than weak preferences. At first sight it seems natural to formulate such a condition by

simply replacing D with its asymmetric component B. However, if D is incomplete, the resulting

condition would however be overly restrictive, as illustrated by the following example.21

Example 4. Let X = {x, y} with x Â y, and assume that acts (bets) are ranked according to

the lower probability minπ∈Π π(f
−1 (x)) of the superior outcome, i.e. that

[x on A; y on Ac] % [x on B; y on Bc] iff min
π∈Π

π(A) ≥ min
π∈Π

π(B).

20Range-convexity can be derived from Theorem 2 if Σ is a σ-algebra. It may also follow from the specific structure

of the likelihood relation; for example, any superrelation of the “Anscombe-Aumann relation” Drand in example 3 has
a convex-ranged representation, even though the domain of Drand, the product-algebra Σ1 × Σ2, is not a σ-algebra

if the generic state space Ω1 is infinite.

21I thank Simon Grant for emphasizing this point.
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Suppose that D is such that there exists an event E with maxπ∈Π π(E) > 0 while minπ∈Π π(E) = 0.

In this case [x on E; y on Ec] ∼ [x on ∅; y on Ω] even though E B ∅, violating the envisaged
asymmetric counterpart to condition (6).

The difficulty illustrated in Example 4 can be overcome by making use of the uniform (rather

than merely asymmetric) component BB of a coherent likelihood relation defined as follows.

Definition 2 (Uniformly More Likely) A BB B (“A is uniformly more likely than B”) if and

only if there exists finite partitions of A and Bc, A = Σi∈IAi and Bc = Σj∈JBj , such that A\Ai D
B ∪Bj for all i ∈ I and j ∈ J.

The following Fact shows that the definition indeed captures the notion of “uniformly more likely

events” if the context is in fact coherent and equidivisible.

Fact 2 For any likelihood ordering D, A BB B implies minπ∈Π [π (A)− π (B)] > 0. The converse

holds if D is equidivisible.

Definition 2 leads to the following asymmetric counterpart of condition (6). For all A,B ∈ Σ and
x, y ∈ X such that x Â y :

[x on A; y on Ac] Â [x on B; y on Bc] whenever A BB B. (7)

The following axiom called “Likelihood Compatibility” (LC) extends these conditions to multi-

valued acts. The idea is that if two acts differ only in the states in which two particular consequences

are realized, then the likelihood comparison of the corresponding events is a decisive criterion for

their preference comparison.

Axiom 11 (Likelihood Compatibility) For all f ∈ F , x, y ∈ X and events A,B ∈ Σ :
i) A D B and x % y imply

[x on A\B; y on B\A; f(ω) elsewhere] % [x on B\A; y on A\B; f(ω) elsewhere], and
ii) A BB B and x Â y imply

[x on A\B; y on B\A; f(ω) elsewhere] Â [x on B\A; y on A\B; f(ω) elsewhere].

If (%,D) satisfies LC, we shall also say that preferences are compatible with the context D. Note
that, considering the case B = ∅ and exploiting transitivity, LC entails the following weak version
of Savage’s axiom P3.22

22Also, since coherence entails Additivity, the events A,B ∈ Σ could have been assumed disjoint.
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Axiom 12 (Eventwise Monotonicity) For all acts f ∈ F , consequences x, y ∈ X and events

A ∈ Σ :
i) [x on A; f(ω) elsewhere] % [y on A; f(ω) elsewhere] whenever x % y, and

ii) [x on A; f(ω) elsewhere] Â [y on A; f(ω) elsewhere] whenever x Â y and A BB ∅.

3.2 Likelihood Compatibility: Discussion

1. Unidirectional Constraint on Preferences vs. Bidirectional Definition of Revealed

Likelihood The unidirectionality in the statement of the Likelihood Compatibility axiom is es-

sential. It cannot be made bidirectional, and thereby transformed into a behavioral definition of

“revealed likelihood” D∗, without sacrificing coherence. To see this, define D∗ as follows:

A D∗ B iff, for all f ∈ F and x, y ∈ X such that x % y :

[x on A\B; y on B\A; f(ω) elsewhere] % [x on B\A; y on A\B; f(ω) elsewhere].

Note that, in particular, A D∗ Ac iff, for all x, y ∈ X : [x on A; y on Ac] % [x on Ac; y on A].

Example 5. Return to the 2-color Ellsberg paradox discussed in the introduction, with X =

{0, 1} and 1 Â 0, and

[1 on Rkn, 0 on Bkn] ∼ [1 on Bkn, 0 on Rkn] Â [1 on Run, 0 on Bun] ∼ [1 on Bun, 0 on Run].

Evidently,

Rkn ≡∗ Bkn and Run ≡∗ Bun, but not Rkn ≡∗ Run.

Thus D∗ is not coherent, as it violates the Splitting axiom. Likewise, preferences % are not com-

patible with any coherent superrelation D0 of D∗, since for any such relation Rkn ≡0 Run which is

incompatible with the preference [1 on Rkn, 0 on Bkn] Â [1 on Run, 0 on Bun]. Thus D∗ does not
identify well-defined probabilistic beliefs that can be meaningfully attributed to the decision-maker.

Since any interesting model of preferences under ambiguity needs to accommodate the Ellsberg

paradox, and since Example 5 pertains to any preference ordering satisfying Savage’s axiom P4, the

example shows that there is no hope to make D∗ a viable definition of revealed probabilistic beliefs
under ambiguity by appropriate behavioral assumptions on preferences. It is exactly this failure of

D∗ that motivates our treatment of probabilistic beliefs as an independent entity.
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Also, since D∗ would appear to be the most natural candidate for such a direct definition, its
failure suggests that a workable, behaviorally general definition of a coherent revealed likelihood

ordering Drev from preferences will not be easy to attain. Likelihood Compatibility of preferences

with Drev is necessary but not sufficient. A natural line of attack is to focus on maximal coherent

relations D with which % is compatible.23

2. Minimal Behavioral Interpretation of Likelihood Orderings Likelihood Compatibility

can be viewed as a rationality axiom relating independently given beliefs and preferences, or, al-

ternatively, as part of the very meaning of asserting a likelihood comparison in the first place. On

the latter interpretation (to which the author is inclined himself), a DM cannot make a likelihood

judgment without an attendant commitment to the preference rankings described by LC. Note,

however, that in view of the discussion 3.2.1, a likelihood judgment cannot be identified with such

a behavioral commitment.

On either of these two views, LC endows likelihood orderings with a direct (unidirectional) be-

havioral correlate, a “minimal behavioral interpretation” in the spirit (but not implementation) of

Walley (1991, section 1.4.4). This constitutes an important decision-theoretic justification for taking

likelihood orderings as primitive representations of beliefs.

By contrast, the behavioral interpretation of sets of priors is not clear, especially if behavioral

generality is desired. This deficiency is in fact Walley’s (1991, section 3.8.6) main argument against

taking sets of priors as primitive representations of imprecise probabilistic beliefs.24

Similarly, it is sometimes suggested in discussion that one might model beliefs as complete but

non-additive orderings of events. To the extent that “beliefs” in this context are more than a mere

relabeling of preferences and are taken to have genuine epistemic content, the question arises how

to formulate counterpart conditions to coherence. But even if this question is resolved (or bracketed

or dissolved), it is not clear how such non-additive orderings of events would constrain behavior.25

23For a concrete proposal in this direction, see Nehring (2001, section 3).
24Siniscalchi (2006) makes an interesting proposal to behaviorally identify individual priors in the representing set.

His work can be seen as a refined of the notion of “perceived ambiguity” proposed by Ghirardato et al. (2004)

discussed in section 4.2 below, and relies on significant additional behavioral assumption which rule out, for example,

probabilistically sophisticated preferences that are not SEU.
25Consider, for example, “lower probability orderings” ≥ on Σ with a representation A ≥ B iff minπ∈Π π (A) ≥

minπ∈Π π (B) ; the natural constraint on behavior would be to require LC relative to D (Π) , but this fails to provide
specific behavioral restrictions associated with single ≥-comparisons.
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3. Behavioral Generality vs. Bernoullian Rationality To maintain behavioral generality,

Likelihood Compatibility exploits ordinal information about consequences only, and entails no re-

strictions on preferences over unambiguous (risky) acts besides monotonicity with respect to stochas-

tic dominance; see the next subsection for details. Much stronger and potentially more controversial

normative restrictions can be obtained if one exploits cardinal information about comparisons of

utility differences. A theory of “utility sophisticated preferences” along such lines is developed in

the companion paper Nehring (2007); some relevant connections are established in section 4.2 below.

4. Incomplete vs. Exhaustive Interpretation of the Likelihood Relation Besides ‘ordi-

nality’, a second important aspect of the minimalism of LC is its “hereditariness”, i.e. the property

that compatibility of % with D implies compatibility of % with any subrelation D0⊆D. This makes
it possible to interpret D “incompletely” (non-exhaustively) as describing only some of the DM’s

probabilistic beliefs, for example beliefs derived from probabilistic information such as the existence

of a random device, the composition of an Ellsberg urn, information about frequencies in large pop-

ulations. In many cases, such information can plausibly be attributed to the DM from the outside,

without eliciting them from the DM directly, and LC provides a behavioral criterion that allows to

test (falsify) such an attribution.

By contrast, almost all of the other literature that appeals to independently given beliefs attempts

to provide models in which beliefs (co-)determine preferences respectively final choices; see Jaffray

(1989), Nehring (1991, 1992, 2000), Gajdos et al. (2004, 2006) and others quoted in the introduction.

A simple example is any model which implies that, given a set of priors Π, the DM maximizes the

minimal expected utility minπ∈ΠEπu◦f relative to the given set Π; clearly, going from Π to a larger
set Π0 representing less information would typically reverse some preference comparisons. Any such

model thus fails to be hereditary. It follows that for such non-hereditary models to be meaningful,

it must be assumed that the set Π represents the DM’s probabilistic beliefs exhaustively; that is,

if two events are not compared in terms of D, they must be interpreted as non-comparable. An
exhaustive interpretation of D is clearly much more demanding; for example, the “parametric”, fully
behavioral use of likelihood relations described in the following paragraphs does not seem sensible

on an exhaustive interpretation.

The wider applicability of incompletely interpreted likelihood relation seems especially valuable

if the likelihood relation is supposed to capture objective probabilistic information. For in that

case, an exhaustive interpretation would amount to assuming not merely that the DM’s information
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has been exhaustively described (which will already be hard to achieve in practice), but that the

DM has no subjective beliefs whatever beyond those that are directly entailed by this objective

information. This assumption seems quite strong and restrictive, and need not be made on an

incomplete interpretation.

5. First-Person vs. Third-Person Point of View: The Likelihood Relation as a Primitive

or as a Parameter In the above discussion, we have interpreted the likelihood relation D as

describing a (possibly non-exhaustive) list of the decision-maker’s dispositions to affirm particular

likelihood comparisons. From the first-person point of view of the decision-maker himself, it seems

eminently sensible to posit probabilistic beliefs as distinct entities in this way, for otherwise it is

difficult to see how the decision-maker can invoke particular beliefs as grounds for the evaluation of

uncertain prospects. Indeed, a substantial part of the discipline of “decision analysis” is devoted to

articulating the decision-maker’s beliefs and bringing them to bear on the decision-problem at hand.

By contrast, economics as an empirical discipline takes the point of view of an outside observer. We

would submit that also from this “third-person” point of view, the study of a decision-maker’s beliefs

via direct questioning should not be taboo, notwithstanding its clear limitations26. Nonetheless, in

contrast to this position, many economists subscribe to the behaviorist view according to which

statements about beliefs as independent propositional attitudes are non-observable and thus lack

empirical content. Does a behaviorist position render the notion of decision-making in an epistemic

context empirically empty?

Evidently Likelihood Compatibility as a relation between preferences and likelihood judgements

loses empirical content once the latter cease to be an empirically meaningful entity on their own.

Empirical content can be regained, however, if Likelihood Compatibility is absorbed into a behavioral

definition of compatibility with an epistemic context: simply say that a preference relation % satisfies
Compatibility-with-D if the pair (%,D) satisfies LC. Here the likelihood relation is “imputed” by the
analyst without any truth-claims regarding the beliefs as such.

The analogy with continuity conditions on preferences may be helpful. Just as “Compatibility-

with-D” conditions, continuity conditions refer in their statement to an “imputed” topology τ that
is itself not derived from behavior. Just like the truth-value of “continuity-relative-to τ”, that of

“Compatibility-with-D” is determined by preferences alone; the behavioral content of either type of
26See also Karni (1996) for a defense of the use of verbal testimony in the decision sciences.
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condition is therefore clear-cut.27

One can summarize this behaviorist use of likelihood relations by saying that the context D
represents an epistemic parameter constraining preferences rather than an independent epistemic

primitive. From this point of view, results on likelihood relations such as Theorem 2 can be viewed

as meta-propositions that demarcate for which relations D the preference condition “Compatibility-
with-D” is epistemically meaningful.
A parametric interpretation matches quite well the role played by probabilistic constraints in

economic applications. In existing applied work, be it in microeconomics, macroeconomics, finance

or game theory, such constraints are motivated mostly by direct appeal to intuitive descriptions

of the probabilistic uncertainty faced by the agents, often with a strikingly free use of frequentist

language that refers to randomly drawn types, underlying process of asset returns, etc. to the distress

of anyone raised in the Savage tradition. The resulting model then makes behavioral predictions

that can be confronted with empirical data. (Only in very rare cases will the model be motivated

directly by informed assumptions about preferences over Savage acts or something similar.) In

the same way, the imputation of likelihood relations can be understood parametrically to entail

falsifiable predictions about an agent’s behavior without the need to ascertain the truth-value of

these imputations in themselves.

3.3 Probabilistic Sophistication on Unambiguous Events

Of particular interest are preferences over acts whose outcomes have well-defined probabilities;

such acts will be called unambiguous. Compatibility of preferences with a convex-ranged likelihood

relation implies probabilistic sophistication of preferences over unambiguous acts in the sense of

Machina-Schmeidler (1992). To make this precise, we need the following definitions. Say that

B ∈ Σ is unambiguous given A if, for some α ∈ [0, 1], π(B) = απ(A) for all π ∈ Π. Let ΛA denote
the family of events B ∈ Σ that are unambiguous given A; clearly, ΛA is closed under finite disjoint

union and complementation, but not necessarily under intersection. In the terminology of Zhang

(1999), each ΛA is a λ-system with the property that B ∈ ΛA iff B ∩ A ∈ ΛA. An event A is null

if A ≡ ∅, or, equivalently, if π (A) = 0 for all π ∈ Π. For any non-null A and any arbitrary π ∈ Π,
27Indeed, it is easily verified that, given an ordering over outcomes (constant acts), “Compatibility-with-D” boils

down to the requirement that the preference relation % contain a partial ordering %D that mirrors the structure of

D.
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let π(.|A) denote the restriction of the conditional probability measure π(.|A) to ΛA. We will say
that B is unambiguous if it is “unambiguous given Ω”, and write Λ for ΛΩ, as well as π for π(.|Ω).
An act f ∈ F is unambiguous if, for all x ∈ X, {ω ∈ Ω | f (ω) = x} is unambiguous; let Fua

denote their set. A “lottery” q is a probability distribution on X with finite support, and will be

written as q = (qx)x∈X , where q
x denotes the probability of obtaining x under q; let L denote their

set. The unambiguous act f induces the lottery π ◦ f−1 with
¡
π ◦ f−1

¢x
= π ({ω ∈ Ω | f (ω) = x}) .

The lottery p stochastically dominates the lottery q if, for all y ∈ X,
P

x:x%y p
x ≥

P
x:x%y q

x; p

stochastically dominates q strictly if at least one of these inequalities is strict. An ordering %L is
monotone (with respect to stochastic dominance) if, for all p, q ∈ L, p %L q whenever p stochastically

dominates the lottery q, and p ÂL q whenever p stochastically dominates the lottery q strictly.

Definition 3 (Probabilistic Sophistication on Unambiguous Events) The preference order-

ing % is probabilistically sophisticated on unambiguous events if there exists a monotone ordering

%L on L such that, for all f, g ∈ Fua,

f % g if and only if π ◦ f−1 %L π ◦ g−1.

Note that, by the range-convexity of D, the mapping f 7→ π ◦ f−1 is onto; the ordering %L in
this representation is therefore uniquely defined. Following Machina-Schmeidler (1992), %L can be
viewed as capturing the decision-makers’ risk preferences that become analytically separate from his

beliefs and, in the present more general context, from his preferences over non-unambiguous acts.

Proposition 1 If the weak order % is compatible with the coherent and convex-ranged likelihood

relation D , it is probabilistically sophisticated on unambiguous events.

If the set of unambiguous events was an algebra rather than a λ-system, Proposition 1 could be

derived straightforwardly by copying from the proof of Machina-Schmeidler’s (1992) main result.

Their proof does not apply as is, since the set of unambiguous events is not necessarily closed under

intersection. However, range-convexity entails “enough” intersection closedness to make use of their

proof nonetheless.28

28Proposition 1 and its proof have sigificant parallels to a recent (and prior) purely behavioral result of Kopylov

(2003).
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4. MULTI-PRIOR CHARACTERIZATION OF LIKELIHOOD COMPATIBILITY

The implications of Likelihood Compatibility are non-trivial, even in the case of very well-behaved

preferences. Consider, for example, the Minimum EU model with preferences given by

f % g iff min
π∈Ψ

Eπu ◦ f ≥ min
π∈Ψ

Eπu ◦ g, (8)

for some utility function u : X → R and some closed, convex set of probability measures Ψ; for

axiomatizations of MEU preferences over Savage acts (as pertinent here), see Casadesus et al. (2000)

and Ghirardato et al. (2003). When are MEU preferences with representation (u,Ψ) compatible with

imprecise probabilistic beliefs represented by the set Π? The answer to this question is not obvious,

either on direct “intuitive grounds”, nor given the formal definition of compatibility proposed in this

paper; whatever the correct answer is, it cannot be taken ready-made from the literature.

In particular, while the inclusion Ψ ⊆ Π implies compatibility of preferences with the associated
likelihood relation DΠ, the converse may fail. To see this, consider the case of a singleton Π = {π},
with π convex-ranged. According to Proposition 1, compatibility with the associated likelihood

relation D{π} is equivalent to probabilistic sophistication with respect to π. On the other hand, if

Ψ ⊆ Π = {π}, that is if Ψ = {π}, MEU preferences must maximize expected utility. But it is

well-known that in the MEU model probabilistic sophistication with respect to π does not entail

expected utility maximization.29

So when does the eminently applicable and heuristically attractive multi-prior characterization of

Likelihood Compatibility as equivalent to the inclusion Ψ ⊆ Π hold? We shall obtain the answer as
a corollary of a characterization result on the much broader class of “invariant biseparable” (i.b.)

preferences to be introduced shortly, Theorem 3. To facilitate the reader’s orientation, it helps to

give away the punchline for the MEU case. Here, the characterization turns out to be particularly

simple. Indeed, it is straightforward from the definition of the set of unambiguous events Λ that

for the desired characterization Ψ ⊆ Π to obtain in the MEU model, preferences must maximize

expected utility maximizer under “risk” (i.e. with respect to unambiguous acts); more interestingly,

it follows from 3 that this condition is also sufficient.

As indicated, the main goal of this section will be a characterization of Likelihood Compatibility

for the class of preferences over Savage acts with an “invariant biseparable” (i.b.) representation

which has been introduced axiomatically by Ghirardato et al. (2003,2004) and includes, for example,

29See in particular Marinacci (2002).
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the CEU and the α-MEU models.30 A preference ordering over F is invariant biseparable if there

exists an onto utility function u : X → [0, 1] and an evaluation functional I : Z → [0, 1] that

is monotone, positively homogeneous (I(cZ) = cI(Z) for all c ∈ [0, 1]), and constant additive

(I(Z + b1Ω) = I(Z) + b for all applicable b ∈ [0, 1]) such that, for all f, g ∈ F ,

f % g if and only if I(u ◦ f) ≥ I(u ◦ g). (9)

The class of invariant biseparable preferences is a natural choice for the study of Likelihood

Comparability since it is the largest known class for which an associated set of priors can be defined.

Specifically, in earlier work (Nehring 1996), and subsequently in Nehring (2001) and Ghirardato et

al. (2004, henceforth: GMM), it has been shown that, with preference in this class, there exists

a maximal independent subrelation a la Bewley (1986/2002) with an associated set of priors Ψ∗ ∈
K (∆ (Σ)).31 For expository economy, here we define this set directly using the following notion of
utility sophistication that has been given an axiomatic behavioral foundation in Nehring (2001,2007)

and that expresses a notion of Bernoullian rationality in the presence of ambiguity.32 An invariant

biseparable preference ordering % with representation (I, u) is utility sophisticated with respect to

a set of priors Π ∈ K (∆ (Σ)) if, f % g whenever Eπu ◦ f ≥ Eπu ◦ g for all π ∈ Π. Note that
utility sophistication with respect to Π implies Likelihood Compatibility with respect to DΠ, but
the converse is far from true. For example, % is utility-sophisticated with respect to a singleton set
{µ} if and only if it maximizes expected utility with respect to µ.
We define the set of Bernoulli priors associated with % Ψ∗ as the unique minimal setΠ ∈ K (∆ (Σ))

such that % is utility-sophisticated with respect to Π. Propositions 4 and 5 in GMM imply that

such a unique minimal set Ψ∗ exists for any i.b. preference ordering. GMM further characterize Ψ∗

as the Clarke derivative of I at 0. To illustrate, in the MEU model, it is easily seen that Ψ∗ = Ψ33.

30Preference models that violate Invariant Biseparability such as the smooth preferences of Klibanoff et al. (2005)

and the variational preferences of Maccheroni et al. (2006) typically violate Savage’s axiom P4 which requires that

preferences over bets do not depend on the prizes associated with those bets.
31Nehring (1996) used the traditional Anscombe-Aumann (1963) framework, while Nehring (2001) reformulated the

original proposal in the present setting, demonstrating applicability to a finite setting via an embedding argument

similar to that behind Proposition 4 below; GMM formulate their treatment assuming a general convex consequence

space with an associated mixture operation. Our formal definition ofΨ∗ in this section corresponds to an interpretation

of this mixture operation as a mixture of utitilities as described in Ghirardato et al. (2003) rather than as a mixture

of lotteries.
32Gajdos et al. (2006) formulate a Dominance axiom relative to a set Π, which in the context of their other axioms

amounts to utility sophistication relative to Π as defined here.

33Cf. GMM (p. 151).
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The situation is somewhat more complicated in the case of α-MEU preferences; these are given by

an (I, u) representation of the form

I(Z) = αmin
π∈Ψ

EπZ + (1− α)max
π∈Ψ

EπZ,

with α ∈ [0, 1]. Here it is easily verified that Ψ∗ ⊆ Ψ. Yet, as pointed out by Eichberger et al.
(2006), the converse implication fails frequently if α /∈ {0, 1}.
We want to know when it is possible to determine whether a preference ordering is compatible

with some likelihood relation DΠ by looking at its set of Bernoulli priors Ψ∗. Specifically, under
which conditions Likelihood Compatibility is equivalent to the inclusion Ψ∗ ⊆ Π? To the extent that
the literature suggests a method to impose probabilistic constraints on preferences, it is probably

captured by this inclusion.

From the definition of Ψ∗, it follows immediately that if Ψ∗ ⊆ Π, then preferences maximize EU
under risk. Thus EU maximization under risk is necessary for the multi-prior characterization of

Likelihood Compatibility as equivalent to the inclusion Ψ∗ ⊆ Π to hold. In the MEU and, more

generally, α-MEU models with α 6= 1
2 , this is also sufficient. More generally, for example in the case

of CEU preferences, EU maximization under risk may fail to ensure the multi-prior characterization

to be valid. Nonetheless, in those cases, a somewhat stronger condition still suffices.

This condition requires that all unambiguous events be unambiguous with respect toΨ∗ (“Bernoulli

unambiguous”). An event A is Bernoulli unambiguous iff all Bernoulli priors agree on its probabil-

ity: π (A) = π0 (A) for all π, π0 ∈ Ψ∗; their class is denoted by Λ∗.34 The sufficiency of this stronger
condition is asserted by the following result; it also provides for a second sufficient condition for the

multi-prior characterization to apply whose usefulness will be explained further below.

Theorem 3 Let % be an invariant biseparable preference ordering with a set of Bernoulli priors

Ψ∗. Let D be a coherent and convex-ranged likelihood relation. Then the following four statements

are equivalent:

1. Ψ∗ ⊆ Π ;

2. % is utility-sophisticated with respect to D;

3. % is compatible with D, and all unambiguous events are Bernoulli unambiguous (Λ ⊆ Λ∗);
34The class of Bernoulli unambiguous events has been introduced in Nehring (1999) under a different definition;

that definition is shown to be equivalent to the one given here in Nehring (2001). Bernoulli unambiguous events are

further studied in the companion paper to GMM Ghirardato et al. (2005).

28



4. % is compatible with D and utility-sophisticated relative to some convex-ranged subrelation D0 .

The equivalence 1)⇐⇒2) and the implication 2)=⇒3) are definitional. By contrast, the implica-
tions 3)=⇒4) and 4)=⇒2) are substantive and not obvious; in both, range-convexity plays a crucial
role.35

Criterion 1: EU maximization under risk.–

The characterization in terms of Bernoulli unambiguous events is especially useful if the latter

have a simple characterization themselves. A particularly simple and useful one is given by the

definition of unambiguous events proposed by Ghirardato-Marinacci (2002); in terms of the (I, u)-

representation, an event A is GM unambiguous (A ∈ ΛGM ) if I (1A) + I (1Ac) = 1, or, equivalently,

if preferences maximize expected utility on {A,Ac}-measurable acts.36 Say that an i.b. preference
ordering % has the GM property if ΛGM = Λ∗. The usefulness of this definition emerges from the

following observation.

Observation 1 If % maximizes expected utility under risk and has the GM property, Λ ⊆ Λ∗.

To see this, simply note that if % maximizes EU under risk, then Λ ⊆ ΛGM . Hence Λ ⊆ Λ∗ by
the GM property. The observation yields the following immediate corollary to Theorem 3:

Proposition 2 Let % be an invariant biseparable preference ordering satisfying the GM property,

and let D be a coherent and convex-ranged likelihood relation. Then Ψ∗ ⊆ Π if and only if % is

compatible with D and % maximizes expected utility under risk.

It is obvious that the GM property holds for MEU preferences: simply note that minπ∈Ψ π (A) +

minπ∈Ψ π (A
c) = 1 if and only if π (A) = π0 (A) for all π ∈ Ψ. More generally, the following

Fact shows that the GM property holds for α-MEU preferences whenever α is different from 1
2 . By

contrast, if α = 1
2 , Λ

GM = Σ, and the GM property fails to hold.

Fact 3 For any α-MEU preference with α 6= 1
2 , Λ

GM = ΛΨ = Λ
∗.

Ghirardato et al. (2005) have shown before that ΛGM = Λ∗ for the subset of α-MEU preferences

that satisfy the fix-point propertyΨ = Ψ∗.37 The validity of the more generally valid Fact 3 hinges on

35The last is in fact derived from a basic result in the companion paper Nehring (2007).

36Inspite of this notation, ΛGM need not be a λ-system.
37This is the class of α-MEU preferences axiomatized in GMM. Ghirardato et al. (2005) obtained their result as a

consequence of a more general result on i.b. preferences that however does not imply Fact 3.
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the insight — which is interesting in its own right— that Ψ-unambiguous events are faithfully revealed,

i.e. that ΛΨ = Λ
∗, even when Ψ∗ is contained in Ψ strictly, violating the fix-point property.

In the absence of the GM property, EU maximization under risk will not, in general, be enough

to ensure validity of the multi-prior characterization. Consider, for instance, CEU preferences that

are compatible with some convex-ranged D (and maximize EU under risk) but are not SEU overall.
The set of Bernoulli priors associated with such preferences Ψ∗ can never be contained in Π: indeed,

if it was, Ψ∗ would inherit the range-convexity of Π, i.e. % would be utility-sophisticated relative

to some convex-ranged set of priors; but by Proposition 6 in Nehring (2007), % would be SEU. So

the multi-prior characterization of Likelihood Compatibility is never applicable to CEU preferences,

whether or not they maximize EU under risk.38

Criterion 2: Utility Sophistication under Randomization.–

The second characterization in Theorem 3 is especially useful in the case of D0=Drand, since
many ambiguity models that have been proposed in the literature within the Anscombe-Aumann

framework, when appropriately translated into the present setting,39 are utility-sophisticated with

respect to Drand.
In this setting, the multi-prior characterization can be sharpened further, enhancing its applica-

bility substantially. Let F1 denote the set of acts that depend on the uncertainty about generic
states only (Σ1-measurable or “primary” acts). Note first that any Π ⊆ Πrand can be written as
Π1 × η := {π1 × η : π1 ∈ Π1}, where Π1 ∈ K (∆ (Σ1)) is a set of priors on generic events. In like
manner, if % is utility-sophisticated with respect to Πrand (% is“ utility-sophisticated under random-
ization”, we shall say), Ψ∗ can be written as Ψ1× η. The following Proposition 3 shows that in fact

38The natural diagnosis is that for such CEU preferences, Ψ∗ necessarily overstates the ‘true’ ambiguity. Range-

convexity of D is not essential for the thrust of this conclusion, only for its sharpness. Example 6 below may serve as

an illustration.

In the case of CEU preferences, the inapplicability of the multi-prior characterization is not bothersome in any

case since Likelihood Compatibility can easily be read off the representing capacity ν. Indeed it is easily verified that

a CEU preference with representing capacity ν is compatible with the likelihood ordering D if and only if, for all

A,B ∈ Σ, ν (A) ≥ ν (B) whenever A D B.

39In one translates preferences formulated for the standard AA-model into the present framework, utility sophisti-

cation under randomization is equivalent to satisfaction of Monotonicity and Lottery Independence of the original AA

preferences; see Nehring (2007b). These assumptions are satisfied by almost all models of preferences under ambiguity

formulated in this framework; an exception is Seo (2006). For utility sophisticated preferences in this setting, Invariant

Biseparabilty is equivalent to Savage’s P4.
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Ψ1 = Ψ
∗
1, where Ψ

∗
1 is the set of priors revealed by the restriction of the given preference relation

%|F1 to the set of “primary acts”.

Proposition 3 Let % be an invariant biseparable preference ordering that is utility-sophisticated

under randomization. Then % is compatible with D if and only if Ψ∗1 ⊆ Π1.

Proposition 3 provides a usable criterion of compatibility that can be employed in arbitrary (in

particular: in finite) state spaces. To illustrate, assume that preferences over the set of primary acts

%|F1 are observed ‘in practice’ (in the field), but that preferences over general acts % are observable
‘in principle’ (in the lab, say). Moreover, suppose that it is known (or hypothesized) that the DM

is utility-sophisticated with respect to Πrand. Proposition 3 then provides then a usable criterion to

check on the basis of the observed preferences %|F1 alone whether these are compatible with some
attributed likelihood relation D.
As an example illuminating the force of Proposition 3, consider the special case in which pref-

erences over primary acts are CEU. Indeed, such preferences are the counterpart in the present

framework to Schmeidler’s (1989) model of CEU preferences in the Anscombe-Aumann setting. By

Proposition 3, the set of Bernoulli priors over generic events Ψ∗1 can be used to characterized Like-

lihood Compatibility. This is useful especially since this set can be explicitly using the general

characterization of sets of Bernoulli priors for CEU preferences stated in GMM (example 17)40. As

shown in Nehring (1999), the CEU functional form severely restricts the range of values that the

set of Bernoulli priors may take. In particular, it has been shown there that the associated set of

Bernoulli unambiguous events must necessarily be an algebra. This severely constrains the type of

ambiguity situations that can be accommodated by Schmeidlerian CEU preferences, as illustrated

by the following example.

Example 6. Consider a four-color urn with 100 balls.41 The decision-maker knows that 50 balls

are white or yellow, and that 50 balls are white or red. The generic states are given by the color

of the drawn ball, Ω1 = {W,Y,R,B} and Σ1 = 2Ω1 . This probabilistic information is captured by
the set of priors Π1 = {π ∈ ∆ (Σ1) : π (W ∪ Y ) = π (W ∪R) = 1

2}. In particular, the associated set
of unambiguous events Λ1 is given by the family of events {{W,Y } , {R,B} , {W,R} , {Y,B} , ∅,Ω1}.
Suppose, conterfactually, that the DM had proper (non-SEU) Schmeidlerian preferences that were

compatible with the likelihood ordering DΠ1×η. By Proposition 3, Ψ∗1 ⊆ Π1, hence Λ∗1 ⊇ Λ1. By
40GMM’s result extends an earlier result reported in Nehring (1996).

41Cf. Zhang (1999) and Nehring (1999).
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Theorem 2 in Nehring (1999), Λ∗1 is an algebra, and must thus be equal to Σ1; but this means that

% must be SEU, the desired contradiction.

5. OUTLOOK

In the second part of the paper, we have then explored the implications of coherent convex-ranged

probabilistic beliefs for decision making in a behaviorally general, hence minimalistic spirit. Not

just in this case but quite a bit more generally, it may well turn out that richness assumptions

such as range-convexity are unavoidable in the clarification of fundamental issues in the theory of

decision-making under ambiguity. Paraphrasing Aliprantis and Border’s (1999, p.13) justification of

the Axiom of Choice, life without them may well prove to be nasty, brutish and short.

The proposed framework promises to be fruitful setting for further decision theoretic analyses.

Indeed, in companion papers (Nehring 2001, 2007), this framework is used to address three basic

issues in the theory of decision making under ambiguity:

1. how to infer beliefs from preferences;

2. how to characterize decision-makers that depart from subjective expected utility exclusively

for reasons of ambiguity; and

3. how to define ambiguity attitudes in terms of betting preferences only to ensure behavioral

generality.

Other uses seem likely. In particular, since the Anscombe-Aumann framework can be viewed as

a reduced form of the present one as shown in an earlier working paper version (Nehring 2007c),

much of the existing work on decision making under ambiguity can be translated into the present

framework of decision-making in the context of probabilistic beliefs. This translation alone will

frequently entail gains in clarity and insight.42

42In the companion paper Nehring (2007), we illustrate this in the context of Gilboa-Schmeidler’s original MEU

model.
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APPENDIX

A.1 Counterexample to Full Expressivity

Let Σ denote the Borel-σ-algebra on the unit interval with Lebesgue measure λ, fix K > 1, and

define a coherent likelihood relation DK as in section 2.4 as follows:

A DK B if and only if λ(A\B) ≥ Kλ(B\A). (10)

It is easily verified that the associated set of admissible priors ΠDK (which we shall also denote

as ΠK1 ) consists of all probability measures π with Lebesgue density φ such that
43

ess sup
ω∈[0,1]

φ (ω) ≤ K ess inf
ω∈[0,1]

φ (ω) . (11)

To see the necessity, if it is not the case that ess supω∈[0,1] φ (ω) ≤ K ess infω∈[0,1] φ (ω) , there

exists � > 0 and ω0, ω00 ∈ [0, 1] such thatZ ω0+�

ω0
φ (ω) dω ≥ � (K − �) ess sup

ω∈[0,1]
φ (ω) > � (K + �) ess inf

ω∈[0,1]
φ (ω) ≥

Z ω00+K�

ω00
φ (ω) dω.

Setting A := [ω0, ω0 + �] and B := [ω00, ω00 +K�] , λ(B\A) ≥ λ(A\B)K, hence B DK A.

But for the prior π ∈ ΠDK associated with φ,

π (A) =

Z ω0+�

ω0
φ (ω) dω >

Z ω00+K�

ω00
φ (ω) dω = π (B) ,

implying A BK B, a contradiction.

Sufficiency is straightforward.

By (11), the extreme points of ΠK1 consist of all probability measures πD with density φD, where

D ranges over Σ with 0 < λ(D) < 1, and φD is given by

φD(ω) =

⎧⎨⎩ K
1+(K−1)λ(D) if ω ∈ D,

1
1+(K−1)λ(D) if ω /∈ D.

Let ΠK2 ⊆ ΠK1 denote the closed, convex hull of {πD|λ(D) = 1
K+1}; the following Fact states that

ΠK2 induces the same likelihood relation DK . Yet, as described in the following Fact that is easily

verified, ΠK1 and ΠK2 induce different lower probability functions denoted by π−1,K and π−2,K .

43ess sup and ess inf denote the essential supremum and essential infimum, respectively.
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Fact 4 i) D(ΠK2 )=D
K ;

ii) For all A ∈ Σ : π−1,K(A) =
λ(A)

1+(1−λ(A))(K−1) ;

iii) For all A ∈ Σ : π−2,K(A) =

⎧⎨⎩ K+1
2K λ(A) if λ(A) ≤ K

K+1 ,

1− K+1
2 (1− λ(A)) if λ(A) ≥ K

K+1 .

The lower probabilities π−1,K(A) and π−2,K(A) are shown in the following figure as functions of

λ(A) for K = 3, with π−1,K above π−2,K and touching at λ = 3
4 .
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Fig. 1: Two Different Lower Probabilities
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A.2 Proofs

Proof of Fact 1.

Take any events A1,A2, B1, B2 such that A1 + A2 D B1 + B2, A1 D A2 and B1 D B2, while not

A1 D B2. By completeness, B2 B A1, and thus by transitivity, B2 B A2 and B1 B A1. Thus by

Strong Additivity (Lemma 1), B1 +B2 B A1 +A2, the desired contradiction.

Lemma 1 (Additivity implies Strong Additivity) A D B and C D D such that A ∩ C = B ∩D = ∅
implies A+ C D B +D; moreover, A+ C B B +D if in addition A B B or C B D.

This Lemma is standard in derivations of Savage’s Theorem; our proof is an adaptation of Fishburn

(1970, p. 196). From Additivity, one infers immediately that

A+ (C\B) D B + (C\B) = B ∪ C = C + (B\C) D D + (B\C) ,

hence A+(C\B) D D+(B\C) by transitivity. Applying Additivity and transitivity once more and
noting that B ∩C is disjoint from both A and D, one obtains the desired conclusion:

A+ C = A+ (C\B) + (B ∩ C) D D + (B\C) + (B ∩ C) = D +B.

The second part of the Lemma follows from an exactly parallel argument. ¤

Proof of Theorem 2.

Necessity of all axioms is straightforward. For sufficiency, let E be any non-null event in Σ, and

α = c
2k
be any dyadic number. We begin by defining, from likelihood judgments, a family αE of

events A that in the multi-prior representation to be obtained will have the property that, for all

π ∈ Π, π (A) = απ (E) . Specifically, let αE be the set of all A such that there exists a partition of

E into 2k subsets Ai ∈ Σ such that Ai ≡ Aj for all i, j and A =
P

i≤cAi.

We have the following lemmas.

Lemma 2 A ∈ 1
2k
E if and only if there exists E0 ∈ 1

2k−1E such that A ∈ 1
2E

0.

The “only-if” part follows directly from Strong Additivity (Lemma 1).

The “if-part” holds trivially for k = 1. For k > 1, it is verified by induction. Suppose it to hold

for k0 = k − 1. Assume that there exists E0 ∈ 1
2k−1E such that A ∈ 1

2E
0. Then by the definition of

1
2k−1E, there exists a partition of E into events {E1, ..., E2k−1} such that Ei ≡ Ej for all i, j and

E1 = E0. By Equidivisibility, for each i ≥ 1, there exist events Ei,1 and Ei,2 such that Ei,1 ≡ Ei,2,

Ei,1 +Ei,2 = Ei and E1,1 = A. By Splitting, Ei,m ≡ Ej,m0 , and thus A ∈ 1
2k
E.
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Lemma 3 αE 6= ∅ for all α ∈ D and all non-null E.

By Equidivisibility and induction on k, the claim follows for α = 1
2k
from Lemma 2, hence indeed

for all α = c
2k
by the definition of αE.

Lemma 4 A ∈ 1
2k
C, B ∈ 1

2k
D, and C D D imply A D B.

For k = 0, the claim is trivial. Suppose it to hold for all k0 < k. By Lemma 2, there exist events

A0 ∈ 1
2k−1C such that A ∈ 1

2A
0 and B0 ∈ 1

2k−1D such that B ∈ 1
2B

0. By induction assumption

A0 D B0, hence by Splitting A D B.

Lemma 5 For all α, β ∈ D, A ∈ αC, B ∈ βD : α ≥ β and C D D imply A D B.

Write α = c
2k
and β = c0

2k
with c ≥ c0. By definition, there exist partitions {Ai}i≤2k and {Bi}i≤2kof

C respectively D into 2k equally likely elements such that A =
P

i≤cAi and B =
P

i≤c0 Bi. Since

Ai ∈ 1
2k
C and Bi ∈ 1

2k
D, one has Ai D Bi by Lemma 4. The assertion follows therefore from

repeated application of Strong Additivity.

We are now in a position to construct the mixture-space extension bD of D . Let D denote the

set of dyadic-valued random-variables, D := {Z : Ω→ D, Z is Σ-measurable and has finite range}.
Any finite-ranged Z can be canonically written as

P
i zi1Ei , where Ei = Z−1({zi}) for all i. For any

Z =
P

zi1Ei ∈ D, define

[Z] := {A : there exist Ai ∈ ziEi such that A =
X
i

Ai},

and define the relation bD on D as follows,

X bDY iff, for some A ∈ [X] and B ∈ [Y ], A D B.

To establish various properties of bD, some further auxiliary results are needed.
Lemma 6 For all A,B ∈ [Z] : A ≡ B.

By definition, A =
P

iAi and B =
P

iBi such that Ai, Bi ∈ ziEi. By Lemma 5, Ai ≡ Bi. Hence

A ≡ B by Strong Additivity.

Lemma 7 For all α ∈ D, families of mutually disjoint events {Ei}i∈I and families {Ai}i∈I such
that Ai ∈ αEi for all i ∈ I,

P
i∈I Ai ∈ α

¡P
i∈I Ei

¢
.
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Writing α = c
2k
, by assumption there exist sets Bij for i ∈ I and j ≤ 2k such that Bij ≡ Bij0

for all i, j, j0,
P

j≤2k Bij = Ei for all i, and
P

j≤cBij = Ai. For j ≤ 2k, let Bj :=
P

i∈I Bij . By

construction,
P

i∈I Ei =
P

i∈I
P

j≤2k Bij =
P

j≤2k Bj . By Strong Additivity, Bj ≡ Bj0 for all j, j
0.

Since
P

i∈I Ai =
P

i∈I
P

j≤cBij =
P

j≤cBj , therefore
P

i∈I Ai ∈ c
2k

¡P
i∈I Ei

¢
.

Lemma 8 i) For all X,Y,Z ∈ D such that X+Z ∈ D and Y +Z ∈ D, there exist A ∈ [X], B ∈ [Y ]
and C ∈ [Z] disjoint from A and B such that A+ C ∈ [X + Z] and B + C ∈ [Y + Z].

ii) For all X,Y ∈ D such that X + Y ∈ D and such that Y is measurable w.r.t. the partition

generated by X, and for all A ∈ [X], there exists B ∈ [Y ] disjoint from A such that A+B ∈ [X+Y ].

iii) For all X,Y ∈ D such that X + Y ∈ D and such that Y is measurable w.r.t. the partition

generated by X+Y , and for all C ∈ [X+Y ], there exists B ∈ [Y ] such that B ⊆ C and C\B ∈ [X].

To verify part i), write X,Y and Z (non-canonically) as X =
P

i xi1Di
,Y =

P
i yi1Di

and

Z =
P

i zi1Di
for an appropriate partition {Di} of Ω, and write zi = ci

2ki
, xi =

c0i
2ki

, and yi =
c00i
2ki

.

Split Di into 2
ki equally likely events {Di1,...,Di2ki }, and set Ci :=

P
j≤ci Dij ∈ ziDi, Ai =Pci+c

0
i

j=ci+1
Dij ∈ xiDi, and Bi =

Pci+c
00
i

j=ci+1
Dij ∈ yiDi. Note that the sets Ai and Bi are well-defined

since ci + c0i ≤ 2ki and ci + c00i ≤ 2ki because X + Z ∈ D and Y + Z ∈ D. Using Lemma 7, one
infers that

P
iAi ∈ [X],

P
iBi ∈ [Y ],

P
i Ci ∈ [Z],

P
iAi +

P
i Ci =

P
i (Ai + Ci) ∈ [X + Z], andP

iBi +
P

i Ci =
P

i (Bi + Ci) ∈ [Y + Z] as desired.

Similar proofs verify parts ii) and iii). As to the former, write X =
P

i xi1Ei in canonical

decomposition. By assumption, Y can be written (non-canonically) as
P

i yi1Ei . Take any A =P
iAi ∈ [X]. Since xi + yi ≤ 1 for all i, one can find Bi ∈ yiEi such that Ai + Bi ∈ (xi + yi)Ei.

Using Lemma 7, one infers that
P

iBi ∈ [Y ], as well as A +
P

iBi =
P

i (Ai +Bi) ∈ [X + Y ], as

desired.

Finally, to verify part iii), write X+Y =
P

i zi1Ei in canonical decomposition. By assumption, Y

can be written (non-canonically) as
P

i yi1Ei . Take any C =
P

i Ci ∈ [X+Y ]. Since yi ≤ zi for all i,

one can find Bi ∈ yiEi such that Ci\Bi ∈ (zi − yi)Ei. Using Lemma 7, one infers that
P

iBi ∈ [Y ],
as well as C\ (

P
iBi) =

P
i (Ci\Bi) ∈ [X], as desired. ¤

Lemma 9 The relation bD on D is transitive, reflexive and satisfies the following conditions

1. (Extension) 1AbD1B if and only if A D B.

2. (Positivity) X bD0 for all X.

3. (Non-degeneracy) 1bB0.
37



4. (Weak Homogeneity) X bDY implies αX bDαY for all α ∈ D.

5. (Additivity) X bDY if and only if X + Z bDY + Z.

6. (Strong Additivity) X bDY and X 0bDY 0 imply X +X 0bDY + Y 0.

7. (Continuity) {(X,Y ) : X bDY } is closed (in D ×D) with respect to the sup-norm topology.

Proof. Reflexivity, Extension, Positivity, and Non-degeneracy are immediate.

To verify Transitivity, consider any X,Y,Z such that X bDY and Y bDZ. By definition, there exist
A ∈ [X], B,B0 ∈ [Y ], C ∈ [Z] such that A D B and B0 D C. By Lemma 6, B ≡ B0. Hence by the

transitivity of D, A D C, and therefore X bDZ as desired.

Weak Homogeneity is an immediate consequence of Lemmas 3 and 5.

To verify Additivity, consider any X,Y,Z such that X +Z, Y +Z ∈ D. According to Lemma 8i),
there exist A ∈ [X], B ∈ [Y ] and C ∈ [Z] such that A + C ∈ [X + Z] and B + C ∈ [Y + Z]. If

X bDY,then A D B by Lemma 6, thus A+ C D B + C by Additivity of D, and thus X + Z bDY + Z.

Analogously, one obtains X bDY from X + Z bDY + Z.

Strong Additivity, is proved similarly. In view of Lemma 8i), there exist events A ∈ [X], A0 ∈ [X 0]

such that A + A0 ∈ [X + X 0], and events B ∈ [Y ], B0 ∈ [Y 0] such that B + B0 ∈ [Y + Y 0]. By

Lemma 6, A D B and A0 D B0, whence by Strong Additivity of D, A+A0 D B +B0, and therefore

X +X 0bDY + Y 0.

It remains to verify Continuity. We shall show that {(X,Y ) : not X bDY } is open in D. Consider
any X,Y such that not X bDY . Take any A ∈ [X], B ∈ [Y ]; clearly not A D B. By the Continuity of

D, there exists K <∞ such that, for any 1
2K−events C,D, it is not the case that A ∪C D B\D. It

suffices to show that, for any X 0, Y 0 such that k X 0 −X k≤ 1
2K and k Y 0 − Y k≤ 1

2K , it is not the

case that X 0bDY 0.

To verify this claim, take any X 0, Y 0 ∈ D such that k X 0−X k≤ 1
2K
and k Y 0− Y k≤ 1

2K
. By the

Positivity and Strong Additivity of D, it is without loss of generality to assume that X 0 (respectively

Y 0) is measurable with respect to the partition generated by X (respectively Y ), and that X 0 ≥ X

and Y 0 ≤ Y. Then there exist by Lemma 8ii) A0 ∈ [X 0 −X] such that A + A0 ∈ [X 0]; likewise, by

Lemma 8iii), there exist B0 ∈ [Y − Y 0] and B00 ∈ [Y 0] such that B0 +B00 = B.

Now, A0 and B0 are 1
2K−events. — Indeed, since X 0 −X ≤ 1

2K 1Ω (respectively Y − Y 0 ≤ 1
2K 1Ω),

using Lemma 8ii), one can infer the existence of a partition of Ω into 2K equally likely events such

that one of them contains A0 (respectively B0) — It is thus not the case that A+A0 D B\B0 = B00.

Therefore, in view of Lemma 6, it is not the case that X 0bDY 0, as needed to be shown. ¤
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Now embed bD (viewed as a subset of D×D) in B×B, with B := B(Σ, [0, 1]), the set of [0, 1]−valued
Σ-measurable functions, endowed with the sup-norm. Since bD is closed in D×D, the closure clbD ofbD in B ×B restricted to D ×D is simply bD. Thus, clbD is an extension of bD, and will be referred to
as “bD on B”, or simply also as “bD” if no misunderstanding is possible. Clearly X bDY if and only if

there exist sequences {Xn} and {Yn} in D converging to X and Y, respectively, such that Xn
bDYn

for all n.

Say that bD on B satisfies Homogeneity if, for all X,Y ∈ B and λ ∈ R++ such that λX, λY ∈ B :
X bDY if and only if λX bDλY.
Lemma 10 The relation bD on B is transitive, reflexive and satisfies Extension, Positivity, Non-
degeneracy, Homogeneity, Strong Additivity, Additivity, and Continuity.

Proof. Extension and Non-degeneracy are immediate. Continuity holds by construction.

Positivity and reflexivity follows therefore from the corresponding properties of bD on D.
To verify Homogeneity, take X,Y ∈ B and λ ∈ R++ such that λX,λY ∈ B and X bDY. By

definition, there exist sequences {Xn} and {Yn} in D converging to X and Y, respectively. Write

λ = cα, with c ∈ N and α ∈ (0, 1]. Choose some sequence {αn} in D converging to α such

that αn ≤ αmin
³
kXk
kXnk ,

kY k
kYnk

´
. This ensures that, for all n, cαnXn ∈ D and cαnYn ∈ D. By Weak

Homogeneity of bD onD, αnXn
bDαnYn for all n. Hence by (c− 1)-fold application of Strong Additivity

of bD on D , also cαnXn
bDcαnYn for all n. By Continuity on B, cαX bDcαY , as desired.

To verify Strong Additivity on B, consider any X,X 0, Y, Y 0 ∈ B such that X bDY and X 0bDY 0, and

take sequences {Xn}, {X 0
n}, {Yn} and {Y 0

n} in D converging to X,X 0, Y and Y 0, respectively, such

that Xn
bDYn and X 0

n
bDY 0

n for all n. By Homogeneity on B (just shown), 12Xn
bD1
2Yn and

1
2X

0
n
bD1
2Y

0
n

for all n. Disregarding an initial subsequence if necessary, 12Xn +
1
2X

0
n ∈ D as well as 12Yn +

1
2Y

0
n ∈

D for all n. Hence by Strong Additivity on D, 1
2Xn +

1
2X

0
n
bD1
2Yn +

1
2Y

0
n. By Continuity on B,

1
2X + 1

2X
0bD1

2Y +
1
2Y

0, whence by Homogeneity on B again X +X 0bDY + Y 0 as desired.

One direction of Additivity “X+Z bDY +Z wheneverX bDY ” follows directly from Strong Additivity
and reflexivity. For the converse, consider X,Y,Z such that X bDY and X − Z, Y − Z ∈ B. Take
sequences {Xn}, and {Yn} in D converging to X and Y, respectively, such that Xn

bDYn for all n.
Let {Zn} be any sequence in D satisfying

Z −max (k X −Xn k, k Y − Yn k)1−
1

n
1 ≤ Zn ≤ Z −max (k X −Xn k, k Y − Yn k)1.

By construction, {Zn} converges to Z; moreover, Xn−Zn ≥ X− k X−Xn k 1−Zn ≥ X−Z ≥ 0,
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and likewise Yn − Zn ≥ 0. Thus Xn − Zn ∈ D and Yn − Zn ∈ D for all n. By Additivity on D,
Xn − ZnbDYn − Zn for all n, whence X − Z bDY − Z as desired.

Finally, to verify Transitivity on B, consider any X,Y,Z ∈ B such that X bDY and Y bDZ. By
Homogeneity on B 1

2X
bD1
2Y as well as 1

2Y
bD1
2Z. By Strong Additivity on B,

1
2X + 1

2Y
bD1
2Y +

1
2Z.

Hence by Additivity on B, 1
2X

bD1
2Z, from which one obtains X bDZ again by Homogeneity on B.

¤

In a final step, extend bD on B to the set of all bounded random-variables R := B(Σ,R) by

defining bD on B(Σ,R) as the unique relation eD on B(Σ,R) that coincides on B with bD on B and
that satisfies Additivity and Homogeneity. (The uniqueness of this extension is immediate; existence

follows easily form the Additivity and Homogeneity properties of bD on B). As in section 2.2, say that
a relation bD on R is a coherent expectation ordering if it satisfies Transitivity, Reflexivity, Positivity,

Non-degeneracy, Homogeneity, Additivity, and Continuity. The following Lemma summarizes the

construction, and follows immediately from Lemma 10.

Lemma 11 The relation bD on R is a coherent expectation ordering satisfying Extension.

The following result establishes the existence of a multi-prior representation for coherent expecta-

tion orderings. Its proof is omitted, as it follows from combining Theorem 3.61 and 3.76 in Walley

(1991); for finite state spaces, a similar result has also been obtained by Bewley (1986).

Theorem 4 A relation eD on R is a coherent expectation ordering if and only if there exists a closed

convex set of priors Π such that, for all X,Y ∈ R,

X eDY if and only if, for all π ∈ Π, EπX ≥ EπY.

The representing Π is unique in K(∆(Σ)).

To complete the proof, apply Theorem 4 to the relation bD on R obtained in Lemma 11. By

Extension, for all A,B ∈ Σ,

A D B iff 1AbD1B iff, for all π ∈ Π, Eπ1A ≥ Eπ1B .

Thus Π is indeed a multi-prior representation of D. That it is dyadically convex-ranged is an

immediate consequence of Equidivisibility.

To demonstrate uniqueness, consider any Π0 ∈ K(∆(Σ)) different from Π with induced expectation
ordering bDΠ0 . From the uniqueness part of Theorem 4, there exist X,Y ∈ R such that X bDY and
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not X bDΠ0Y , or such that X bDΠ0Y and not X bDY . Consider the former case; the latter is dealt with
symmetrically. By Additivity and Homogeneity of bD, it can be assumed thatX,Y ∈ B. By continuity
and monotonicity of bD and the density of D in [0, 1] it can in fact be assumed that X,Y ∈ D. Take
any A ∈ [X] and B ∈ [Y ]. By Extension, 1Ab≡X and 1B b≡Y, hence AbDB. By assumption, for some
π ∈ Π0, EπX < EπY ; in view of Lemma 12 just below, π (A) < π (B) , contradicting the assumption

that Π0 represents D .

Lemma 12 For any π ∈ Π0 such that bDΠ0 = bD, and any X ∈ D and A ∈ [X] : EπX = π (A) .

Write X =
P

i
ci
2ki
1Ei and A =

P
iAi such that Ai ∈ ci

2ki
Ei. By assumption, one can split each

Ei into 2
ki equally likely events {Ei1,..., Ei2ki } such that Ai =

P
j≤ci Eij . For any π ∈ Π0 such

that bDΠ0 = bD, π (Eij) = π (Eij0) for all i, j, j
0, hence π (Ai) =

ci
2ki

π (Ei) by additivity of π. Hence

π (A) =
P

i
ci
2ki

π (Ei) = EπX. ¤

Proof of Fact 2.

Suppose that there exists finite partitions of A and Bc, A = Σi∈IAi and Bc = Σj∈JBj such that

A\Ai D B ∪Bj for all i ∈ I, j ∈ J . By consistency, ΠD 6= ∅. For all π ∈ ΠD , π (A\Ai) ≥ π (B) for

all i ∈ I, hence

π (A) =
1

#I − 1Σi∈Iπ (A\Ai) ≥
#I

#I − 1π (B) . (12)

By the same reasoning, for all π ∈ ΠD , π (Bc) ≥ #J
#J−1π (A

c) , and therefore

min
π∈ΠD

π (A) ≥ 1

#J
. (13)

By (12), π (B) ≤ #I−1
#I π (A) for all π ∈ ΠD , and thus by (13)

min
π∈ΠD

[π (A)− π (B)] ≥ 1

#I
min
π∈ΠD

π (A) ≥ 1

#I

1

#J
.

Conversely, suppose that minπ∈Π [π (A)− π (B)] ≥ 1
2n for some n ∈ N. By Equidivisibility, there

exists partitions of A and Bc into 2n+1 equally likely events {Ai} and {Bj}, respectively. Clearly,
for any π ∈ Π and any i, j, π (A\Ai)− π (B ∪Bj) ≥ π (A)− π (B)− 1

2n ≥ 0, hence A\Ai D B ∪Bj

by coherence. ¤

Fact 5 If Σ is a σ-algebra, Π is convex-ranged if and only if it is dyadically convex-ranged.

41



Proof. The only-if part is immediate; to verify the if-part, take any non-null event A ∈ Σ, and
α ∈ (0, 1). By Lemma 13 below applied to the λ-system ΛA, there exists an event B ∈ ΛA such that
π (B|A) = α, verifying range-convexity. ¤

Lemma 13 If Σ is a σ-algebra and π on Λ is dyadically convex-ranged, then Λ contains an algebra

A on which π is convex-ranged.

Proof. By dyadic range-convexity, there exists a nested sequence of algebras {Ak} such that
Ak ⊆ Ak0 whenever k ≤ k0 and such that π(A) = 1

2k
for each atom of Ak.

For any A ∈ Σ, let A[k] denote the largest subset of A that is an element of Ak, and write A
c
[k]for

(Ac)[k] . Let A denote the set of all events A ∈ Σ such that

supkπ(A[k]) + supkπ(A
c
[k]) = 1. (14)

We need to show A is an algebra contained in Λ on which π is convex-ranged.

1. For any A ∈ A, A ∈ Λ with π (A) = supkπ(A[k]).

By definition, for any π ∈ Π, π(A[k]) ≤ π (A) = 1−π (Ac) ≤ 1−π(Ac
[k]). Taking sup’s and account

of (14), it follows that π (A) = supkπ(A[k]), as desired.

2. A is an algebra

Closure under complementation is immediate. To verify closure under intersection, consider A,B ∈
A.
Clearly (A ∩B)[k] = A[k] ∩B[k] and (A ∩B)c[k] = (Ac ∪Bc)[k] ⊇ Ac

[k] ∪Bc
[k].

Therefore in particular
³
(A ∩B)[k] ∪ (A ∩B)

c
[k]

´c
⊆
³¡
A[k] ∩B[k]

¢
∪
³
Ac
[k] ∪Bc

[k]

´´c
⊆
³
A[k] ∪Ac

[k]

´c
∪³

B[k] ∪Bc
[k]

´c
.

By assumption, limk→∞ π
³
A[k] ∪Ac

[k]

´c
= 0 and limk→∞ π

³
B[k] ∪Bc

[k]

´c
= 0. Therefore also

limk→∞ π
³
(A ∩B)[k] ∪ (A ∩B)

c
[k]

´c
, as needs to be shown.

3. π is convex-ranged on A.
Take any A ∈ A and any real number α ∈ (0, 1) and any A ∈ Σ. Write α as the supremum of an

increasing sequence of dyadic numbers {αj =
cj

2j }j=1,..,∞ such that

cj+1

2j
≥ α. (15)
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For any k > 1, let A0[k] = A[k]\A[k−1], and let A0[1] = A[1]. Note that since the A[k] are nested,

A[k] =
P

j≤k A
0
[j]; moreover, A

0
[k] is either empty or an atom of Ak.

For each k ≥ 1, and each j ≥ 1, split A0[k] (if non-empty) into 2j equally likely atoms of Ak+j , and

let Bjk be a union of cj such atoms, and Cjk a disjoint union of 2
j − cj − 1 such atoms. Clearly, for

given k, the Bjk and Cjk and be chosen to be increasing in k.

Let Bj =
P

k≤j Bjk, B = ∪j=1,..,∞Bj , and likewise Cj =
P

k≤j Cjk, C = ∪j=1,..,∞Cj . Note that

the sequences {Bj} and {Cj} are increasing in j. Now

π (Bj) =
X
k≤j

π (Bjk) =
X
k≤j

αjπ
³
A0[k]

´
= αjπ

¡
A[j]

¢
.

Therefore, using step 1,

sup
j→∞

π (Bj) = απ (A) .

Since for any j, Bj ∈ A2j , B[2j] ⊇ Bj , and therefore

sup
j→∞

π
¡
B[j]

¢
≥ sup

j→∞
π (Bj) = απ (A) . (16)

By analogous reasoning, π (Cj) =
¡
1− αj − 1

2j

¢
π
¡
A[j]

¢
and therefore supj→∞ π (Cj) = (1− α)π (A) .

Moreover,

Bc
[2j] ⊇ Cj +Ac

[2j].

Hence

sup
j→∞

π
³
Bc
[j]

´
≥ sup

j→∞
π (Cj) + sup

j→∞
π
³
Ac
[j]

´
= (1− α)π (A) + (1− π (A)) = 1− απ (A) . (17)

Combining (16) and (17), it follows that B ∈ A and π (B) = απ (A) , demonstrating range-

convexity. ¤

Proof of Proposition 1.

If Λ is a σ-algebra, or if more generally Λ is an algebra with π convex-ranged, then LC restricted

to betting preferences implies that the revealed likelihood relation %c agrees with D on Λ, and LC
for multi-valued acts entails Machina-Schmeidler’s Strong Comparative Probability axiom. Thus

the proof of Machina-Schmeidler’s (1992) Theorem 1, step 5, and Theorem 2, step 2, can be used

verbatim to obtain the desired conclusion.

This can be generalized to the general case in which Λ may fail to be an algebra as follows.

Take any f, g ∈ Fua such that π ◦ f−1 stochastically dominates π ◦ g−1 (weakly or strictly). Let
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Bf (respectively Bg or Bf,g) denote the smallest algebra containing all sets of the form f−1(x)

(respectively g−1(x) or both f−1(x) and g−1(x)), and let B0f ,B0g and B0f,g denote the families of
their respective atoms. Clearly, all these are finite due to the assumed finite-rangedness of f and g.

For each B ∈ B0f,g, Lemma 13 delivers the existence of an algebra AB contained in ΛB such that

π (.|B) is convex-ranged on AB. Let A denote the algebra generated by their union, i.e. the family

of all sets of the form
P

B∈B0f,g
AB, where AB ∈ AB. Let A⊥ the subalgebra of events A ∈ A defined

by the additional condition that π (A|B) = π (A|B0) for all B,B0 ∈ B0f,g; similarly, let A⊥f and A⊥g
subalgebras of events A ∈ A defined by the weaker condition that π (A|B) = π (A|B0) for all those

B,B0 ∈ B0f,g that are contained in the same atom of B0f (respectively B0g). By construction clearly
A⊥f ⊇ Bf ∩A⊥ and A⊥g ⊇ Bg ∩A⊥.
Moreover, since Bf∪Bg∪A⊥ ⊆ Λ, elementary reasoning shows that bothA⊥f andA⊥g are contained

in Λ, and that π is convex-ranged on both of these and on A⊥. By the latter, there exists an A⊥-
measurable act h such that π ◦ h−1 = π ◦ g−1, and such that by implication π ◦ f−1 stochastically
dominates π ◦ h−1. By the Machina-Schmeidler argument for algebras (the first part of the proof),
h ∼ g and f % h (respectively f Â h if the stochastic dominance is strict). Hence by transitivity

f % g respectively f Â g. ¤

Proof of Theorem 3.

1) equivalent to 2). Immediate from the definition of Ψ∗.

1) implies 3).

Again, immediate from the definitions.

3) implies 4).

Let eΠ := {π ∈ ∆ (Σ) : π (A) = π (A) for all A ∈ Λ}, and likewise eΨ := {π ∈ ∆ (Σ) : π (A) = ψ (A)

for all A ∈ Λ∗}, where ψ denote the unambiguous probability measure on Λ∗ induced by Ψ∗.
The assertion follows from the following two Lemmas.

Lemma 14 % is utility-sophisticated with respect to eΠ.
By definition of Ψ∗, ψ (A) = I(1A) for all A ∈ Λ∗, hence by the assumption that Λ∗ ⊇ Λ,

ψ (A) = I(1A) for all A ∈ Λ. (18)
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By compatibility of % with D, I(1A) is a monotone transform of π (A) on Λ. Since π is convex-ranged
and both π and ψ are additive on Λ, by (18) in fact

π(A) = ψ (A) for all A ∈ Λ.

Combining this with the assumption that Λ∗ ⊇ Λ, we can infer that eΠ ⊇ eΨ. Since eΨ ⊇ Ψ∗ by
definition of eΨ, eΠ ⊇ Ψ∗; by the definition of Ψ∗, % is utility-sophisticated relative to eΠ as claimed.
¤

Lemma 15 eΠ is convex-ranged.
We will show that, for all non-null A ∈ Σ, B ∈ ΛA and all π ∈ eΠ,

π (B|A) = π (B|A) . (19)

In fact, we will demonstrate (19) directly in the special case of π (B|A) = 1
2 . This implies immediately

the validity of (19) in the case of dyadic-valued π (B|A). Validity for arbitrary π (B|A) ∈ [0, 1] then
follows from the range-convexity of π (.|A) .
Take any non-null A ∈ Σ and B ∈ ΛA such that π (B|A) = 1

2 . If A
c is null, A ∈ Λ, and the

claim follows from the definition of eΠ. Assume thus that Ac is non-null. By the range-convexity of

Π, there exists C ∈ ΛAc contained in Ac such that π (C|Ac) = 1
2 .

By construction, for any π ∈ eΠ, π (B + C) = 1
2 = π ((A\B) + C) , hence by additivity of π also

π (B) = π (A\B), i.e. π (B|A) = 1
2 . ¤

4) implies 2).

This is a straightforward consequence from the following Corollary to Proposition 2 in Nehring

(2007).44

Proposition 4 Let % be an invariant biseparable preference ordering that is utility-sophisticated

relative to the convex-ranged likelihood ordering D0. Let D be any coherent superrelation. Then %
is utility-sophisticated with respect to D if it is compatible with respect to D.

Suppose that % is compatible with D and % is utility-sophisticated relative to D0 . Then by

Proposition 4, % is utility-sophisticated relative to D respectively Π. ¤¥
44The “regularity” condition assumed in the statement of Propostion 2 in Nehring (2007) is implied by invariant

biseparability.
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Proof of Fact 3.

Suppose that A ∈ ΛGM , i.e. that απ− (A) + (1− α)π+ (A) + απ− (Ac) + (1− α)π+ (Ac) = 1.

Since π− (Ac) = 1− π+ (A) and π+ (Ac) = 1− π− (A) , we obtain by elementary transformations,

απ− (A) + (1− α)π+ (A) + απ− (Ac) + (1− α)π+ (Ac)− 1

= απ− (A) + (1− α)π+ (A) + α
¡
1− π+ (A)

¢
+ (1− α)

¡
1− π− (A)

¢
− 1

= (1− 2α)
¡
π+ (A)− π− (A)

¢
.

Evidently, with α 6= 1
2 , the latter can be equal to zero only if π

+ (A) = π− (A) , i.e. if A ∈ ΛΨ.
Thus we have shown that ΛGM ⊆ ΛΨ. Now % is utility-sophisticated with respect to Ψ by

construction. Hence Ψ∗ ⊆ Ψ, and thus ΛΨ ⊆ Λ∗. Since finally for any i.b. preference, Λ∗ ⊆ ΛGM ,

we conclude that ΛGM = ΛΨ = Λ
∗. ¤

Proof of Proposition 3.

In view of Theorem 3, it remains to show that Ψ1 = Ψ
∗
1.

Since % is utility sophisticated with respect to Drand, Ψ∗ ⊆ Πrand, whence Ψ1 × η. Trivially %|F1
is utility sophisticated with respect to Ψ1, hence Ψ

∗
1 ⊆ Ψ1. Conversely, suppose that %|F1 is utility

sophisticated relative to Ψ01. We need to show that Ψ01 ⊇ Ψ1. Consider any f, g ∈ F and any

f 0, g0 ∈ F1 such that f 0, g0 are measurable with respect to some finite partition {Si} ⊆ Σ1 and such
that Eπ(u ◦ f |Si) = Eπ(u ◦ f 0|Si) and Eπ(u ◦ g|Si) = Eπ(u ◦ g0|Si) for all i and all π ∈ Πrand. Given
f, g ∈ F , such f 0, g0 ∈ F1 by the definition of Πrand. By utility sophistication with respect to Πrand,

f ∼ f 0 and g ∼ g0.

Suppose that Eπu ◦ f ≥ Eπu ◦ g for all π ∈ Ψ01 × η. Since Ψ01 × η ⊆ Πrand, for all π ∈ Ψ01 × η

Eπu ◦ f 0 = Eπu ◦ f ≥ Eπu ◦ g = Eπu ◦ g0.

By the assumed utility sophistication of %|F1 with respect to Ψ01, f 0 % g0 and thus

f ∼ f 0 % g0 ∼ g,

verifying utility sophistication of % with respect to Ψ01×η. By the minimality property characterizing
Ψ∗, Ψ01 × η ⊇ Ψ∗ = Ψ1 × η and thus Ψ01 ⊇ Ψ1. ¤
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