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1 Introduction

In the companion paper “A Theory of Diversity I” (Nehring and Puppe (1999a)),
henceforth: TD I, we have studied three paradigmatic classes of diversity functions:
hierarchies, lines and the hypercube. They exemplify the primary strategy to endow the
general multi-attribute model of diversity with structure while keeping it manageable:
single out a subset of all conceivable attributes as relevant by setting the weight of
the others to zero. In this paper, we will develop this strategy in generality using
the language and tools of abstract convexity theory. The methodology allows one to
characterize a variety of naturally patterned families of relevant attributes in terms
of conditional independence properties of the corresponding diversity function. The
characterization of the line model in terms of the Line Independence condition provided
in TD I is in fact an application of this methodology.

Abstract convexity theory supplies also a sound way to construct complex structures
from simple ones as their “qualitative product.” A product setting offers yet another
natural way of imposing structure: independence across dimensions, leading to the
definition and characterization of an “independent product” of which the independent
hypercube studied in TD I is an instance.

2 Background: Convex Structures Described by
Ternary Relations

Our goal is to give a rigorous foundation of a general view of diversity as “overall”
dissimilarity. Intuitively, different contexts will be characterized by different patterns
of similarity and dissimilarity to be captured by different models. As in TD I, define
a dissimilarity (pseudo-)metric d from a given diversity function v : 2X → R by
d(x, y) := v({x, y}) − v({y}). The notion of a “pattern” of similarity is naturally
described by a ternary relation T with the following interpretation. For all objects
x, y, z in a given universe X, (x, y, z) ∈ T if y is more similar to x than z is to x.
Hence, in contrast to the quantitative notion of dissimilarity expressed by d, the ternary
relation T describes a qualitative concept of comparative similarity between objects.

The relation T and the quantitative dissimilarity metric d(·, ·) jointly determine the
“conceptual geometry” of the object space. The analogy to the geometry of physical
space may be useful, where d corresponds to distance and T corresponds to between-
ness of objects in the sense that (x, y, z) ∈ T whenever y lies between x and z. While
helpful, the analogy is imperfect, e.g. dissimilarity is not symmetric in general.1

Example 1 Consider a set (X,≥) of objects linearly ordered by some characteristic,
such as temperature or geographic altitude. Here, qualitative similarity (“line between-
ness”) is naturally given by

(x, y, z) ∈ TL :⇔ [x ≥ y ≥ z or z ≥ y ≥ x],

i.e. y is more similar than z to x whenever y is between x and z in terms of the
characteristic.

Example 2 As another example of how ternary relations can be used to represent
1Indeed, as observed in TD I, the quantitative dissimilarity (pseudo-)metric d is symmetric only in

the uniform case where v({x}) = v({y}) for all x, y ∈ X.
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qualitative information about objects, consider the following segment of an evolutionary
tree (as displayed in the Museum of Natural History, New York City)

Figure 1: A segment of an evolutionary tree

The qualitative similarity information in this tree is described by a ternary relation
Tev as follows: (x, y, z) ∈ Tev if species2 y branched off later than (or at the same
time as) species z from species x. It is easily seen that evolutionary trees are uniquely
determined by their induced similarity relation. In the example, one has the follow-
ing (non-trivial) instances of qualitative similarity: (salmon, human, shark), (shark,
human, salmon), (shark, salmon, human) and (human, salmon, shark).

In the context of the multi-attribute approach presented in TD I, the conceptual
space is described in terms of a family A ⊆ 2X of relevant attributes. Any such family
of subsets naturally induces a notion of qualitative similarity as follows.

(x, y, z) ∈ TA :⇔ [ for all A ∈ A : {x, z} ⊆ A ⇒ y ∈ A]. (2.1)

The definition expresses an understanding of similarity as commonality of attributes:
For y to be more similar to than z to x, y must possess every attribute shared by x
and z. As an example, consider whales (wh) and sharks (sh) in the company of rhinos
(rh). Suppose that the only relevant attribute is “being a mammal” corresponding
to the case where A consists only of the subset {wh, rh} of all mammals (see TD I,
Sect. 2.1, for a discussion of the extensional interpretation of attributes). One has
{(wh, rh, sh), (rh,wh, sh)} ⊆ TA and {(wh, sh, rh), (rh, sh, wh)} ∩ TA = ∅, i.e. whales
and rhinos are strictly more similar to each other than they are to sharks. Observe that
judgements on qualitative similarity will typically change with the inclusion of further
attributes. For instance, suppose that in addition to “being a mammal” the attribute
{wh, sh} (“living in the ocean”) is deemed relevant, so that A′ = {{wh, rh}, {wh, sh}}.
In this case, one obtains (wh, rh, sh) 6∈ TA′ , i.e. rhinos are no longer more similar to
whales than sharks are. The example thus also illustrates the general fact that more
relevant attributes typically entail fewer qualitative similarity judgements. Of course,
this is already apparent from (2.1) since each attribute can be viewed as a “test” that
has to be passed by any triple in TA.

In the case of a line, selecting the intervals L := {[x, y] : x, y ∈ X, y ≥ x} as the
family of relevant attributes amounts to exactly the direct definition of TL given in
Example 1 above. Also observe that a family A satisfies the Interval Property IP with
respect to the line structure (cf. TD I, Sect. 4) if and only if TA ⊇ TL.

2As in TD I, the term “species” is used as a layman’s, not a biologist’s notion.

3



In the context of an evolutionary tree, Tev as specified in Example 2 is derived from
a family of attributes Aev as follows. For any set of species A, let A ∈ Aev if and only
if A is a singleton or A is the set of all successors of some node (= point of branching).
Then, Tev = TAev . In the above example, Aev thus consists of all singletons, the uni-
versal set, and the set {salmon, human}.
Example 3 Consider the hypercube {0, 1}K . The canonical ternary relation TC asso-
ciated with the hypercube (“cube betweenness”) is

(x, y, z) ∈ TC :⇔ [ for all k : xk = zk ⇒ yk = xk = zk],

that is, y is more similar to x than z is if and only if y shares every property that
is shared by x and z. Clearly, this definition of qualitative similarity in the hyper-
cube corresponds to selecting the family C of all subcubes as the family of relevant
attributes. In particular, a family A satisfies the Subcube Property SP with respect to
the hypercube structure (cf. TD I, Sect. 5) if and only if TA ⊇ TC .

For any family A, the ternary relation TA satisfies the following three properties.

T1 (Reflexivity) y ∈ {x, z} ⇒ (x, y, z) ∈ T .
T2 (Symmetry) (x, y, z) ∈ T ⇔ (z, y, x) ∈ T .
T3 (Transitivity) [(x, x′, z) ∈ T and (x, z′, z) ∈ T and (x′, y, z′) ∈ T ] ⇒ (x, y, z) ∈ T .

Properties T1 and T2 follow immediately from the definition of TA. T1 is largely a
matter of convention. The most forceful condition is perhaps T2 which justifies the
geometric interpretation of T as betweenness relation.3 The ternary relation induced by
the line structure in Example 1 is in fact the classic instance of a betweenness relation.
This example also illustrates well the intuitive content of property T3: If both x′ and
z′ are between x and z, and moreover y is between x′ and z′, then y must also lie
between x and z. The validity of T3 in general can be verified without much difficulty.

In the following we will refer to ternary relations satisfying T1, T2 and T3 as ternary
similarity orderings (TSOs). One has the following result which we state without proof
(cf. Nehring (1997)).

Fact 2.1 T = TA for some attribute family A if and only if T is a TSO.

For given T and x, denote by T x the induced binary similarity relation with respect to
x, i.e. yT xz :⇔ (x, y, z) ∈ T . It is easily verified that for any TSO T and all x ∈ X, T x

is reflexive and transitive. On the other hand, binary similarity comparisons according
to T x are typically incomplete, since often y and z will share attributes with x that
are not shared with each other. For instance with “being a mammal” and “ocean-
living” as relevant attributes, neither are sharks more similar than rhinos to whales,
nor are rhinos more similar than sharks to whales. The following result shows that
completeness of T x for all x in fact characterizes the class of all hierarchies.4

Proposition 2.1 A family A of subsets of X is a hierarchy if and only if, for all
x ∈ X, T x

A is complete.

3In the literature, symmetric ternary relations are often simply called “betweenness relations.”
Betweenness relations in this sense have been introduced into the axiomatic foundations of geometry
by Pasch [1882] and frequently employed since then (see, e.g. Hilbert [1899], Suppes [1972], Fishburn
[1985, ch.4]).

4Recall that A is a hierarchy if and only if, for all A, B ∈ A, A ∩B 6= ∅ ⇒ [A ⊆ B or B ⊆ A].
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So far, we have studied the properties of the qualitative similarity relation TA induced
by a given family of relevant attributes. Our purpose is to characterize different diver-
sity models in terms of the associated TSO. To this end one also needs to consider the
converse problem: Which attributes are compatible with a given TSO? Formally, an
attribute A will be called compatible with the ternary relation T if for all x, y, z,

(x, y, z) ∈ T ⇒ [{x, z} ⊆ A ⇒ y ∈ A]. (2.2)

Under a betweenness interpretation of T , compatibility in this sense can be viewed as
“convexity” with respect to T : a set A is compatible with T if, for any x, z ∈ A, the
set A also contains any point that is T -between x and z. For given T , let AT denote
the family of all A ∈ 2X that are compatible with T . For instance, the families of all
subsets compatible with the line betweenness TL and the cube betweenness TC are the
family L of all intervals and the family C of all subcubes, respectively. Any family AT

derived from some ternary relation T satisfies the following three properties.

A1 (Boundedness) A ⊇ {∅, X}.
A2 (Closedness under Intersections) A,B ∈ A implies A ∩B ∈ A.
A3 (2-arity) A ∈ A whenever, for all x, y ∈ A, there exists B ∈ A such that
{x, y} ⊆ B ⊆ A.

In a finite setting, families of sets satisfying A1, A2 are commonly called “convex
structures” in the literature on abstract convexity (see, e.g. van de Vel (1993)). Those
satisfying A3 in addition are called “2-ary” convex structures. For brevity, we omit
explicit reference to “2-arity” speaking of the latter simply as convex structures (CVS).
Note that, due to A1 and A2, any convex structure forms a lattice with intersection
defining the meet and in which the join of two attributes is defined as the smallest
common super-attribute. A3 can be paraphrased as saying that a set A is “convex”
(i.e. belongs to A) whenever, for any two of its elements, A contains their join which
can be viewed as the “segment” spanned by them.

Intersection-closedness A2 is a natural property of classes of relevant attributes, as
it corresponds to conjunction-closedness of the attribute-defining features; for example,
if “being a mammal” and “living in the ocean” are features deemed relevant, so will
be presumably the feature “being an ocean-living mammal.” This also explains the
intuitive “uniqueness” of objects as due to their possessing a unique combination of
features, while they may share any particular feature with many objects. By contrast,
closedness under union (or under complementation) is not desirable as a general prop-
erty as it would generate many artificial attributes such as “being a mammal or living
in the ocean.” The philosopher Gärdenfors has argued in a series of papers in a related
vein (see, e.g. Gärdenfors (1990)) that legitimate inductive inference needs to be based
on convex predicates.5

To illustrate the role of condition A3 (2-arity), consider the family A of all line
segments in RK . The induced TSO TRK := TA according to (2.1) is given by the
standard notion of Euclidean betweenness in RK : (x, y, z) ∈ TRK ⇔ y = βx+(1−β)z
for some β ∈ [0, 1]. The family of all subsets that are compatible with TRK in the sense
of (2.2) is the set of all convex sets in RK in the usual sense. In particular, the set of
all convex sets in RK is the smallest 2-ary convexity that contains all line segments.

5For readers familiar with the relevant philosophical literature, Goodman’s provocative predicate
“grue” (= green before date t, blue after t), for instance, is construed by Gärdenfors as non-convex.
Similarly, in Hempel’s paradox the predicate “non-raven” is identified as non-convex, but “non-black”
as convex.
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For a proof of the following two results, see Nehring (1997).

Fact 2.2 A = AT for some ternary relation T if and only if A is a CVS.

TSOs and CVSs are related by an order-inverting isomorphism:

Fact 2.3 The mapping A• : T 7→ AT is an order-inverting bijection6 between TSOs
and CVSs whose inverse is given by T• : A 7→ TA. In particular, TAT

= T for any
TSO T , and ATA = A for any CVS A.

3 The Geometry of Similarity

3.1 Conditional Independence as the Qualitative Structure of
Diversity Functions

What is the qualitative structure of a diversity function v : 2X → R? An indirect
answer to this suggests itself in the form of the induced family of relevant attributes,
i.e. the support Λ of its conjugate Moebius inverse λ. This has been one major theme of
TD I.7 We will now show that one can formally describe the qualitative structure of a
diversity function in terms of properties of the function itself. A characteristic property
of diversity functions is their submodularity, and significant qualtitative information is
obtained by determining where submodularity is degenerate. Recall that, in terms of
the distinctiveness function d : X × 2X → R, defined as

d(x, S) := v(S ∪ {x})− v(S) = λ({A : x ∈ A,A ∩ S = ∅},

submodularity is the requirement that, for all x, d(x, S) is non-increasing in its second
argument. In particular, distinctiveness of x from S cannot increase with the inclusion
of z: for all x, z, S, d(x, S) ≥ d(x, S ∪ {z}). Submodularity is degenerate at x, z, S if
d(x, S) = d(x, S ∪ {z}), i.e. if the distinctiveness of x from S is not diminished by the
inclusion of z. One has,

d(x, S)− d(x, S ∪ {z})
= λ({A : x ∈ A,A ⊆ Sc})− λ({A : x ∈ A,A ⊆ Sc, z 6∈ A})
= λ({A : {x, z} ⊆ A ⊆ Sc}),

where Sc denotes the complement of S in X. Hence, by non-negativity of λ, strict
submodularity at x, z, S results from the existence of relevant attributes that jointly
distinguish x and z from S; equivalently,

d(x, S) = d(x, S ∪ {z}) ⇔ [ for no A ∈ Λ : {x, z} ⊆ A ⊆ Sc]. (3.1)

This motivates the following definition. Let v be a diversity function on 2X . We say that
x is independent from z conditional on (the inclusion of) y, denoted by (x, y, z) ∈ Tv,

6i.e. T ′ ⊆ T ⇒ AT ′ ⊇ AT , and conversely, A′ ⊆ A ⇒ TA′ ⊇ TA.
7Recall that, by definition, v : 2X → R is a diversity function if there exists a non-negative measure

λ on 2X , referred to as the conjugate Moebius inverse, such that, for all S, v(S) = λ({A : A∩S 6= ∅}).
The support Λ := {A : λA 6= 0} is referred to as the corresponding family of relevant attributes.
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if the distinctiveness of x from any set S that includes y does not change with the
addition of z to S. Formally,

(x, y, z) ∈ Tv :⇔ for all S 3 y, d(x, S) = d(x, S ∪ {z}). (3.2)

Observe that (x, y, z) ∈ Tv ⇔ d(x, y) = d(x, {y, z}), hence by (3.1),

(x, y, z) ∈ Tv ⇔ [ for all A ∈ Λ : {x, z} ⊆ A ⇒ y ∈ A],

i.e. Tv = TΛ. Summarizing, we have established the following result.

Theorem 3.1 For any diversity function v : 2X → R, Tv = TΛ.

By Theorem 3.1, the “geometry” of the family of relevant attributes Λ = suppλ de-
scribed by TΛ according to (2.1) is mirrored in the conditional independence relation
Tv derived from v. In particular, by Fact 2.1, for any diversity function v, Tv is a TSO.8

3.2 Adapting a Model to a Geometry

Suppose a modeller accepts a certain geometric description T of qualitative similarity
between objects. What restrictions on her diversity assessments does this entail? Say
that a diversity function v is compatible with T if Tv ⊇ T , i.e. x is independent from z
conditional on the inclusion of y whenever y is more similar than z to x. This makes
sense since, in view of Theorem 3.1, Tv can be read as the qualitative similarity implicit
in v. Compatibility in this sense means that any similarity given by T is respected by v.
For instance, in the case of a line with TL defined as in Example 1 above, compatibility
of a diversity function v translates into the following condition,

y ∈ [x, z] ⇒ for all S 3 y, d(x, S) = d(x, S ∪ {z}).

Noting that the equality on the right hand side can be rewritten as

v(S ∪ {x}) + v(S ∪ {z}) = v(S) + v(S ∪ {x, z}),

this condition is easily seen to be equivalent to the “Line Equation”

v({x1, ..., xm}) = v({x1}) +
m∑

i=2

d(xi, xi−1),

where x1 < x2 < ... < xm (cf. TD I (4.1)).
Compatibility in the sense that Tv ⊇ T makes essential use of the fact that the

function v : 2X → R is cardinally scaled. In a decision making context, this is justified
by viewing v as a von-Neumann-Morgenstern utility function as in TD I. In such
contexts, one can go further and define conditional independence and thus compatibility
in terms of the ultimate primitive, the decision maker’s preference relation over set-
lotteries (cf. TD I, Sect. 2.4) as follows. Define a ternary relation T� by

(x, y, z) ∈ T� :⇔ for all S 3 y :
[
1
2
· 1S∪{x} +

1
2
· 1S∪{z}

]
∼

[
1
2
· 1S +

1
2
· 1S∪{x,z}

]
.

From the above discussion, one immediately obtains the following result.
8In fact, it can be shown that Theorem 3.1 generalizes to arbitrary set functions, see Nehring and

Puppe (1999b).
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Fact 3.1 For any von-Neumann-Morgenstern utility function v corresponding to �,
T� = Tv.

Observe that the condition LI (Line Independence) in TD I, Sect. 4, is nothing but the
statement “T� ⊇ TL.”

The restriction on the family of relevant attributes induced by compatibility of v
with a certain geometry are characterized by the following result.

Theorem 3.2 Let T be a TSO. Then v is compatible with T , i.e. Tv ⊇ T , if and only
if Λ ⊆ AT .

In the line example, with T = TL as defined above, the equivalence of the Interval
Property “Λ ⊆ L” and the Line Independence condition “T� ⊇ TL” (cf. TD I, Th. 4.1)
thus follows as a corollary from Theorem 3.2 using Fact 3.1.

The characterization of the hypercube in terms of risk-neutrality properties of the
underlying preferences follows in an analogous way: By Theorem 3.2 and Fact 3.1, the
Subcube Property Λ ⊆ C is equivalent to T� ⊇ TC (“Cube Independence”).

Returning to Example 2 of an evolutionary tree, one obtains from Theorem 3.2
that Λ ⊆ {{shark, salmon, human}, {salmon, human}, {shark}, {salmon}, {salmon}}
for any diversity function that is compatible with Tev. Thus, given uniformity (i.e. equal
valuation of singletons), accepting Tev as the qualitative similarity relation entails that
the set {salmon, human} is (weakly) less diverse than the set {shark, salmon}. The
decision maker may feel this to be inappropriate, which shows that, on reflection, she
cannot really accept Tev as the “right” description of qualitative similarity. The obvi-
ous resolution is that there has to be an attribute jointly shared by sharks and salmons
(“being a fish”) that is not shared by humans. Including such attribute removes qual-
itative similarities from Tev.9

In view of Fact 2.3, Theorem 3.2 can be restated as follows.

Theorem 3.2′ Let A be a CVS. Then Λ ⊆ A if and only if v is compatible with TA,
i.e. Tv ⊇ TA.

Theorem 3.2 starts with a geometric description given by some TSO T and, using con-
ditional independence, arrives at restrictions on the set of relevant attributes. Theorem
3.2′, in contrast, starts from such restrictions and specifies the TSO needed to obtain
them via conditional independence.

To illustrate, consider a hierarchical family H of attributes and a diversity function
v. By Theorem 3.2′, Λ ⊆ H implies Tv ⊇ TH. The latter condition is easily seen to
imply the recursion formula d(x, S) = miny∈S d(x, y) (cf. TD I, Sect. 3): Let y∗ ∈ S
be the “TH-nearest” element of S to x, i.e. y∗T x

Hy for all y ∈ S. Such y∗ exists by
completeness of T x

H in the hierarchical case (cf. Proposition 2.1 above). Since Tv ⊇ TH,
one obtains d(x,W ) = d(x, W ∪{y}) for all W 3 y∗ and all y ∈ S. Hence, by induction,
d(x, y∗) = d(x, S). By submodularity, d(x, y∗) = miny∈S d(x, y).

3.3 Attribute Structure Revealed

By Theorems 3.2 and 3.2′, the conditional independence relation Tv entails information
on the family Λ of relevant attributes, but constrains Λ only “approximately.” The

9Observe, that including biological taxa in the set of relevant attributes may destroy the hierarchical
structure of the evolutionary tree model. Given certain compatibility assumptions, the resulting
structure may nevertheless be compatible with the line model.
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reason is that different families Λ may induce the same qualitative similarity relation
TΛ. As an example, consider the three families: Λ1 = 2X , Λ2 = {X \ {x} : x ∈ X} and
Λ3 = {{x, y} : x, y ∈ X}. As is easily verified, one has TΛ1 = TΛ2 = TΛ3 = T ∅, where
T ∅ := {(x, y, z) : y ∈ {x, z}} is the trivial similarity relation that only accounts for the
reflexivity condition T1.

The extent to which the family of relevant attributes is determined by the asso-
ciated conditional independence relation can be made precise. Specifically, it will be
shown that Tv reveals the support Λ of the conjugate Moebius inverse up to “abstract
convexification.” To define the latter, one needs to introduce the notion of CVS-closure
of a family of attributes. For any A ⊆ 2X , let A∗ denote the smallest CVS containing
A. This is well-defined due to the following fact whose verification is straightforward.

Fact 3.2 The class of CVSs is closed under intersection.

The following is the key observation of this subsection.

Theorem 3.3 For any diversity function v, Λ∗ = ATv
.

To illustrate the content of Theorem 3.3, consider a given hypercube and assume that
for a diversity function v satisfying the Subcube Property SP one has Tv = TC , i.e. Tv

coincides with the cube betweenness (cf. Example 3 above). It can be verified that in
this case, the corresponding Λ must contain all half-spaces. By intersection-closedness,
this implies Λ∗ = C = ATv

, as asserted by the theorem.
While the hypercube illustrates the typical case in which there is a range of inde-

terminacy of the support, in the special case of a hierarchy the independence relation
Tv fully reveals the support (up to the inclusion of ∅ and X). In fact, this property
characterizes the hierarchy.

Proposition 3.1 A family A ⊇ {∅, X} has the property that, for any family A′ ⊇
{∅, X}, [TA′ = TA ⇒ A′ = A] if and only if A is a hierarchy.

3.4 Qualitative and Quantitative Similarity

Intuitively, the relation Tv (= TΛ) induced by a diversity function v can be viewed as
the “qualitative core” of the corresponding quantitative dissimilarity metric d. The
following result is an immediate consequence of submodularity of a diversity fuction.

Fact 3.3 The dissimilarity metric associated with v is adapted to Tv in the sense that

(x, y, z) ∈ Tv ⇒ d(x, y) ≤ d(x, z). (3.3)

Hence, greater qualitative dissimilarity implies greater quantitative dissimilarity.
In the context of “physical” geometry, the canonical way to obtain a ternary be-

tweenness relation from a given distance function is as geodesic betweenness: y is
geodesically between x and z if d(x, z) = d(x, y) + d(y, z), which has the interpre-
tation of y lying on a shortest path from x to z (see Menger (1928)). In the context of
similarity, i.e. conceptual rather than physical geometry, additivity holds only excep-
tionally, as we have argued in TD I (Sect. 4.3). A natural definition of betweenness Td

induced by a dissimilarity metric is as follows,

(x, y, z) ∈ Td :⇔ [d(x, y) ≤ d(x, z) and d(z, y) ≤ d(z, x)].
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Thus, y is metrically between x and z if, quantitatively, y is both less dissimilar than z
to x, and less dissimilar than x to z. In the definition of Td we view d as derived from
a function v that is defined on a domain containing the family B := {{x, y} : x, y ∈ X}
of all subsets with at most two elements.

It is obvious that d is adapted to Td in the sense of (3.3); in fact, Td is the largest
symmetric ternary relation to which d is adapted. While reflexive and symmetric, for
general d (derived from some v), Td need not be transitive, and hence is not necessarily
a TSO. Note further that Td can be equivalently described in terms of quantitative
similarity σ(x, y) := v({x})− d(x, y) (cf. TD I, Sect. 2.2):

(x, y, z) ∈ Td ⇔ σ(x, z) ≤ min{σ(x, y), σ(y, z)}. (3.4)

The equivalence follows at once from the observation that, in contrast to d, the similar-
ity function σ is always symmetric. In particular, (3.4) shows that Td is triple-connected
in the sense that at least one of the three triples (x, y, z), (y, z, x), (z, x, y) is in Td.

Since Tv is a TSO, one always has Tv ⊆ Td. Indeed, (x, y, z) ∈ Tv implies (z, y, x) ∈
Tv by symmetry (T2), hence (x, y, z) ∈ Td by Fact 3.3. Since Td is triple-connected,
a necessary condition for Td to coincide with Tv is that Tv is triple-connected as well.
The following result shows that this condition is also sufficient.

Proposition 3.2 Let v : 2X → R be a diversity function; then Td = Tv if and only if
Tv is triple-connected.

Hence, if Tv is triple-connected, Td is the canonical notion of betweenness described by
Tv (= TΛ); in particular, Td is a TSO in that case. The hypercube as an instance of
the general case in which Tv is not triple-connected, and hence a proper subrelation of
Td. On the other hand, it is easily verified that Tv derived from a diversity function on
a line is triple-connected. One thus obtains the following corollary.

Corollary 3.1 Let v : 2X → R be a diversity function satisfying the Interval Property
(Tv ⊇ TL) with respect to some linear order ≥ on X. Then, Td = Tv.

3.5 Dissimilarity Metrics Consistent with the Line and
Hierarchy Models

In Section 4 of TD I, we have characterized the restrictions on a dissimilarity metric for
it to be consistent with a given line model associated with a particular linear ordering
of the object space. A more fundamental question would address the restrictions of the
line model as such: Under what conditions on a dissimilarity metric d is there some
linear ordering ≥ of the object space such that d is the dissimilarity associated with
a diversity function v that is compatible with the betweenness induced by ≥? This is
a complex problem, and we provide an answer for the two polar and most interesting
cases of hierarchies and “exact” lines, i.e. the case where every interval corresponds to
a relevant attribute (Λ = L). We consider the case of hierarchies first.

Theorem 3.4 A function vB : B → R can be uniquely extended to a hierarchical
diversity function on 2X if and only if the induced dissimilarity metric d is non-negative,
bounded (in the sense that d(x, y) ≤ v({x})) and, for all x, T x

d is complete.
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Theorem 3.4 generalizes a classical result (Johnson (1967), Benzecri et al. (1973)) on
the representation of ultrametric distance functions by not assuming symmetry of d.
A symmetric distance function d is called ultrametric if, for all x, y, z,

mid{d(x, y), d(y, z), d(x, z)} = max{d(x, y), d(y, z), d(x, z)}, (3.5)

i.e. if the two greatest distances between any three points are equal. The notion of
ultrametricity can be generalized to the case where d is not necessarily symmetric. Say
that the quantitative similarity function σ associated with vB is ultrametric if

mid{σ(x, y), σ(y, z), σ(z, y)} = min{σ(x, y), σ(y, z), σ(z, y)}. (3.6)

In the symmetric case, one has v({x}) = v({y}) for all x, y, hence (3.6) and (3.5) are
equivalent. It is also easily verified that, in the general case, (3.6) is equivalent to
completeness of T x

d , for all x.
For the polar case of an exact line one has the following result. Say that a ternary

relation T is line-transitive if, for all x, y, z, w with y 6= z,

[(x, y, z) ∈ T and (y, z, w) ∈ T ] ⇒ (x, y, w) ∈ T.

Furthermore, a dissimilarity metric d is line-submodular with respect to T if the follow-
ing condition holds (cf. TD I, Sect. 4.4). For all x1, x2, x3, x4 such that (xi, xj , xl) ∈ T
whenever 1 ≤ i < j < l ≤ 4,

d(x1, x4)− d(x1, x3) ≤ d(x2, x4)− d(x2, x3).

Theorem 3.5 A function vB : B → R can be uniquely extended to a diversity function
v on 2X such that Tv = TL for L associated with some linear order ≥ on X if and only
if Td is line-transitive, and d is bounded, strictly positive (i.e. d(x, y) > 0 whenever
x 6= y), and line-submodular with respect to Td.

The condition that drives the result is line-transitivity. Line-transitivity as a condition
on Tv is already quite restrictive, for instance, it is satisfied neither in the hypercube,
nor in hierarchies. Line-transitivity is even more powerful when applied to the less
regular Td.

In order to prove Theorem 3.5 one wishes to make use of Theorem 4.3 of TD I, the
Line Extension Theorem for a given line structure. In view of Corollary 3.1 it remains
to find conditions on a ternary relation that are necessary and sufficient for its being the
betweenness of a linear ordering. These can be found in the literature (see Krantz, Luce,
Suppes and Tversky (1979), Suppes (1972)). The additional contribution of Theorem
3.5 and its proof consists in obtaining several of these conditions from the definition
of Td (in particular, triple-connectedness and transitivity of all T x

d ). The insight of
Theorem 3.5 is thus the appropriateness of Td as the “right” notion of betweenness
derived from d in the context of the line structure.

4 Constructing Complex Structures: Taking
Products

In many applications the specified models presented so far will be too restrictive; while
very well behaved and tractable, the line and hierarchy models cannot adequately

11



describe complex situations. However, they will be suitable to describe certain aspects,
or dimensions. Therefore, one needs tools for constructing complex structures from
simple ones. If objects can be described in terms of qualities in several dimensions as
vectors of characteristics, a natural way to achieve this is by defining an appropriate
product operation. An example of product is the hypercube which has the simplest
possible constituent structure, namely a binary distinction along each dimension.

4.1 Qualitative Products

4.1.1 Weak Product

Suppose that X =
∏

k∈K Xk, and let, for each coordinate k, T k be a given qualitative
similarity relation on Xk. A minimal notion of a product of the T ks is the weak product
×k∈KT k, defined as follows. For all x, y, z ∈ X,

(x, y, z) ∈ ×k∈KT k :⇔ [ there exists k : (xk, yk, zk) ∈ T k and x−k = y−k = z−k],

where xk denotes the k-th coordinate of x, and x−k is the vector with the k-th coor-
dinate deleted. The weak product thus declares y as more similar than z to x if and
only if these three objects differ only in one coordinate and y is more similar than z to
x in that coordinate. It is easily verified that the weak product, which we also denote
by Tweak := ×k∈KT k, is a TSO whenever all T k are. A set A ⊆ X is compatible with
the weak product (A ∈ ATweak) if and only if every one-dimensional section of A is
compatible with the corresponding T k, i.e. if and only if, for every k and every fixed
z−k, A∩ (Xk × {z−k}) ∈ AT k . As an example consider the weak product of two lines,
as depicted in Figure 2.

Figure 2: Weak product of two lines

More concretely, think of the coordinates as representing gender, g ∈ {female, male},
and age, t ∈ R+. Denote by T ∅ the trivial TSO (i.e. (x, y, z) ∈ T ∅ ⇔ y ∈ {x, z}),
and consider Tweak = T ∅ × TL. The readership of “Gone with the Wind” (GwW)
presumably depends on gender and age interactively; an empirically plausible specifi-
cation of its extension is the following, AGwW = {(g, t) : t ≥ tg} with tfemale < tmale. The
assumption is thus that females enjoy “Gone with the Wind” at an earlier age than
males. Obviously, AGwW is compatible with Tweak.

4.1.2 Separable Product

As illustrated by the above examples the weak product allows for interaction of char-
acteristics. A stronger notion of product would rule this out. To express this idea of
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separability across dimensions, assume away for the moment any similarity informa-
tion along coordinates. The absence of interaction between dimensions means that all
attributes have to be rectangles, i.e. elements of

Asep := {A : A =
∏
k

Ak for some Ak ⊆ Xk}.

A family A ⊆ 2X will be called separable if A ⊆ Asep. For instance, separability of
the set AGwW in the above example would require that tfemale = tmale, i.e. that females
and males enjoy “Gone with the Wind” from the same age on. One might argue that
separability is tautologically applicable provided that characteristics are exhaustively
specified. For instance, the interaction between dimensions in the example is due to a
relevant characteristic that has been omitted in the description (“latent sentimental-
ity”).

It follows from Fact 4.1 below that Asep is a CVS. The corresponding TSO T sep =
TAsep is given by

(x, y, z) ∈ T sep ⇔ [ for all k : yk ∈ {xk, zk}].

Note that in the case of a hypercube, T sep coincides with the cube betweenness TC
defined above (Sect. 2, Example 3).

A set function v : 2X → R will be called separable whenever the corresponding
family Λ of relevant attributes is separable. In view of Theorem 3.2, the suitability
of the notion of separability in applications can be tested through the conditional
independence properties of v induced by T sep. Generalizing the hypercube example,
these are given by requiring d(x, S) = d(x, S ∪ {z}), for all S 3 y, whenever, for all
k ∈ K, xk = zk ⇒ yk = xk = zk. By Theorem 3.2 the class of diversity functions
satisfying this is precisely the class of all separable ones.

As an example in the biodiversity context, consider X = X1 × X2, where X1

is a set of species and X2 a set of “habitats”;10 thus, x = (x1, x2) ∈ X is inter-
preted as “species in habitat.” Specifically, assume that X1 consists of the species
gorilla (go) and chimpanzee (ch), and that X2 = {1, 2} with 1 standing for “fenced”
and 2 for “wild.” Consider, for instance, x = (go, 1) (“fenced gorilla”), y = (go, 2)
(“wild gorilla”) and z = (ch, 2) (“wild chimpanzee”). Since separability clearly entails
(x, y, z) ∈ T sep, the associated conditional independence conditions thus require that
d(x, {y}) = d(x, {y, z}), i.e. the distinctiveness of “fenced gorilla” from {“wild gorilla”}
does not change with the addition of “wild chimpanzee,” which seems reasonable.

The combination of this notion of separability with coordinatewise similarity infor-
mation is achieved as follows. For any ternary relation T , let T ∗ denote the smallest
TSO containing T .11 The separable product, henceforth simply: product, ⊗k∈KT k of a
set of TSOs T k on Xk is defined as the smallest TSO containing both Tweak = ×k∈KT k

and T sep, formally,
⊗k∈KT k := (Tweak ∪ T sep)∗.

10“Habitat” can of course be given a variety of other interpretations, besides the one in the text. In
particular, the interpretations “geographic location” and “ecological habitat” seem to be of significant
bio-economical interest; note that in both of these, the universe of habitats is fairly naturally endowed
with a convex structure.

11This is well defined since, obviously, TSOs are closed under intersection.
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Proposition 4.1 For all x, y, z,

(x, y, z) ∈ ⊗k∈KT k ⇔ [ for all k : (xk, yk, zk) ∈ T k].

The proof in the appendix constructs ⊗kT k from Tweak and T sep using the transitivity
condition T3.

Fact 4.1 For k ∈ K, let T k be a qualitative similarity relation on Xk. Denote by Ak

the corresponding CVS, i.e. Ak := AT k . Then,

A(⊗k∈KT k) = ⊗k∈KAk := {A : A =
∏
k∈K

Ak, Ak ∈ Ak}.

Note that T sep = T ∅ ⊗ ... ⊗ T ∅, hence it follows from Fact 4.1 that Asep is a CVS
as claimed above. Also observe that, by definition of ⊗kT k and the fact that Tv is a
TSO (cf. Th. 3.1 above), compatibility of v with the product similarity is equivalent
to compatibility of v with the weak product plus separability.

Proposition 4.1 and Fact 4.1 together show that the canonical notion of a product
in abstract convexity theory ⊗k∈KAk combines the purely mathematical notion of
“embedding” captured by the weak product with the substantive notion of “separability
across dimensions” captured by the separable convexity Asep.

In the above species-in-habitat example, suppose that the marginal qualitative simi-
larity structure on X2 is described by T 2 = {(1, 2, 1)}∗, i.e. the smallest TSO containing
the triple (1, 2, 1), corresponding to the case in which the habitat “wild” is valued more
highly than the habitat “fenced”; thus, the two relevant attributes are “existing at all”
({1, 2}) and “existing in the wild” ({2}). Compatibility of v : 2X1×X2 → R with the
product is easily seen to be equivalent to the existence of two functions wk : 2X1 → R,
k = 1, 2, such that for all S ⊆ X1 ×X2,

v(S) = w1(proj1S) + w2({x1 ∈ X1 : (x1, 2) ∈ S}). (4.1)

Intuitively, w1 gives the value of mere existence of species, while w2 values existence of
species in the wild on top of their mere existence.

4.2 Independent Product

Quantitatively, a natural notion of absence of interaction between dimensions is de-
scribed as follows.12 Say that a set function v : X1 × X2 → R is the independent
product of v1 : 2X1 → R and v2 : 2X2 → R if v is separable and for all rectangular sets
S = S1 × S2 ⊆ X1 ×X2,

v(S1 × S2) = v1(S1) · v2(S2). (4.2)

That separability and (4.2) indeed uniquely determine a set function v is asserted by
the following result.

Theorem 4.1 Given two set functions v1 and v2 on X1 and X2, respectively, there
is a unique separable v : 2X1×X2 → R such that v(S1 × S2) = v1(S1) · v2(S2) for all

12All what follows readily extends to the case of the product of an arbitrary (finite) number of
coordinates. For expository convenience, we restrict our analysis to the case of two coordinates.
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rectangular S = S1 × S2. The independent product v is a diversity function if v1 and
v2 are diversity functions.13

Theorem 4.1 is an immediate corollary of the following characterization of the conjugate
Moebius inverse (for the definition of the latter, see TD I, Sect. 2.3).

Proposition 4.2 Let v : 2X1×X2 → R be a separable set function. For all rectangular
sets S1 × S2,

v(S1 × S2) = v1(S1) · v2(S2)

for some set functions vk : 2Xk → R if and only if for all A1 ×A2,

λA1×A2 = λ1
A1 · λ2

A2 ,

where λ, λ1, λ2 are the conjugate Moebius inverses of v, v1, v2, respectively.

The first part of Theorem 4.1 follows since separability is equivalent to λA = 0 for
all non-rectangular sets A. For the second part of Theorem 4.1, recall that diversity
functions are characterized by non-negativity of the conjugate Moebius inverse.

To illustrate the notion of independent product in a sociodiversity context (cf. TD
I, Sect. 2.5), let X be a set of individuals, and denote by B be the set of books read by
someone. For each b ∈ B, let ∅ 6= Ab ⊆ X denote the readership (extension) of book b.
For each A ⊆ X, set

λA =
#{b : Ab = A}

#B
.

Hence, λA is the fraction of books read exactly by the set A of individuals; alternatively,
λA may be interpreted as the probability that a randomly chosen book is read exactly
by the individuals in A. For S ⊆ X, v(S) = λ({A : A∩S 6= ∅}) is the fraction of books
read by someone in S, or, alternatively, the probability that a randomly chosen book
is read by someone in S.

Now suppose that readers x ∈ X are described by a profile of qualities x = (x1, x2),
say their age x1 and their level of education x2 (measured in years of schooling), so
that X = X1 ×X2. Consider the readership Ab ⊆ X1 ×X2 of book b. The projection
proj1Ab ⊆ X1 can be interpreted as the “readership according to age,” in the sense
that b appeals to (is read by) someone of age x1 ∈ proj1Ab; analogously, proj2Ab ⊆ X2

gives the readership according to level of education.
Separability of v, i.e. the condition that supp λ ⊆ Asep, is the requirement that for

all A ∈ Λ (equivalently, for all Ab, b ∈ B), A = proj1A×proj2A; hence, a book appeals
to a reader if and only if it appeals to her age and her education. In the separable case,
a relevant attribute A ∈ Λ can thus be viewed as a multi-dimensional “test”: given
an individual x = (x1, x2), a book passes the test (x ∈ Ab) if and only if it passes the
“age”-test (x1 ∈ proj1Ab) and the “education”-test (x2 ∈ proj2Ab).

Independence amounts to λ being a product measure, i.e. λ = λ1 · λ2 for some λk

on Xk. By Proposition 4.2, this is equivalent to v(S1 × S2) = v1(S1) · v2(S2) for all
S1, S2, where vk(Sk) := λk({Ak ⊆ Xk : Ak ∩ Sk 6= ∅}). Thus, the probability that
someone in S1×S2 reads the randomly chosen book b, i.e. the probability that b passes
for some individual in S1×S2 both component tests jointly, equals the probability that

13Conversely, if v is a diversity function, either both v1 and v2, or both −v1 and −v2, are diversity
functions.
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b passes the “age”-test for some age x1 ∈ S1 times the probability that b passes the
“education”-test for some x2 ∈ S2. This is intuitive.

Now assume uniformity, i.e. v({x}) = v({y}) for all x, y ∈ X, and the normalization
v({x}) = 1. The following is a general property of the associated quantitative similarity
function σ under independence and uniformity.

Fact 4.2 Suppose that v is an independent product satisfying v({x}) = 1 for all x ∈ X.
Then,

σ((x1, x2), (y1, y2)) = σ((x1, x2), (y1, x2)) · σ((y1, x2), (y1, y2)).

Under the sociodiversity interpretation, quantitative similarity can be interpreted in
terms of conditional probability; indeed, σ(x, y) is the conditional probability that a
randomly chosen book is read by y given that it is read by x. Fact 4.2 asserts that
in the independent case these conditional probabilities have a particularly simple mul-
tiplicative structure. To illustrate, consider the following three distinguished readers
(with at least 15 years of schooling), x = (50, 15), y = (75, 20) and z = (75, 15). The
conditional probability that a book read by (50, 15) is also read by (75, 20) equals the
conditional probability that a book read by (50, 15) is also read by (75, 15) times the
conditional probability that a book read by (75, 15) is also read by (75, 20).

The independent product can be characterized in terms of the underlying preference
relation over set-lotteries (cf. TD I, Sect. 2.4). For any fixed S1 ∈ X1, a function
v : 2X1×X2 → R induces a function v2

S1 on 2X2
according to v2

S1(·) := v(S1 × ·).
Observe that v2

S1 is a diversity function whenever v is a diversity function. Denote

by �2
S1 the corresponding von-Neumann-Morgenstern preference on ∆2(X2)

, i.e. the
preference over lotteries of subsets of X2 that arises from taking the expectation of
v2

S1 . The induced functions v1
S2 and their corresponding preference relations �1

S2 are
defined analogously. The following result characterizes functions v on 2X1×X2

that
satisfy (4.2) as those for which the induced marginal preferences �2

S1 and �1
S2 are

independent of S1 and S2, respectively.

Theorem 4.2 Let v : 2X1×X2 → R be a set function. There exist two functions
v1 : 2X1 → R and v2 : 2X2 → R such that (4.2) holds if and only if, for all non-empty
S1,W 1 ⊆ X1 and all non-empty S2,W 2 ⊆ X2,

�2
S1=�2

W 1 and/or �1
S2=�1

W 2 . (4.3)

In the above species-in-habitat example, the diversity function (4.1) is an independent
product if and only if the function w1 is proportional to w2. In preference terms, this
means that, for each set of species S1 ⊆ X1, the probability π that satisfies

π · 1S1×{2} + (1− π) · 1∅ ∼ 1S1×{1}

does not depend on S1. I.e., the probability π that makes one indifferent between
having all species in S1 surviving in the wild with probability π (or none at all) and
having all species in S1 surviving in fences and none in the wild is the same for all S1.

Remark In the literature on non-additive belief representations, the independent prod-
uct of “belief functions” (conjugate diversity functions) and, more generally, of capac-
ities (see Ghirardato (1997)) has been studied. In particular, Hendon et al. (1996)
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present a six-fold characterization of the independent product of belief functions, in-
cluding the product formula for the non-conjugate Moebius inverse which we use in the
proof of Proposition 4.2. While the literature assumes throughout (4.2), it does not
have a notion of separability to uniquely determine the extension to non-rectangles,
nor an analogue to the independence condition (4.3) on induced marginal preferences.

4.3 Application: The Independent Product of Real Lines

We want to apply the analysis to the case of the product of (continuous) real lines.
Denote by F and K the family of all finite and the family of all compact subsets of
X = R, respectively. A monotonic real-valued function v defined on F can be extended
to the domain K as follows. For all S ∈ K,

v(S) := sup
F∈F,F⊆S

v(F ),

where we allow for the possibility that v(S) = ∞. The function v will be called a
diversity function if, for all F ∈ F , the restriction v|F of v to 2F is a diversity function
on 2F . Throughout, we assume that v conforms to the line model in the sense that,
for any F ∈ F , v|F satisfies the Interval Property, i.e. any element of the support of
the conjugate Moebius inverse of v|F is an interval. In this case, v : K → (R∪ {∞}) is
uniquely determined by vB, the restriction of v to all subsets with at most two elements
(cf. TD I, Sect. 4).14

As in TD I, Sect. 4.5, the function v will be called translation invariant if, for all
S and all t ∈ R, v(S) = v(S + t), where S + t := {x + t : x ∈ S}. In the translation
invariant case, v is uniform in the sense that v({x}) = v({y}) for all x, y ∈ R, and we
assume the normalization v({x}) = 1 throughout. Define a function f : R → R by

f(t) := d(0, t) = v({0, t})− 1.

The quantitative similarity relation σ corresponding to v is then given by

σ(x, y) = 1− f(|x− y|).

The following result is an immediate consequence of TD I, Corollary 4.1.

Fact 4.3 A translation invariant function v is a diversity function if and only if f is
bounded by 1, non-decreasing and concave.

The value of v on compact intervals admits a simple formula as follows.

Fact 4.4 Let v be a translation invariant diversity function. For all x ≤ y,

v([x, y]) = 1 + f ′(0) · (y − x),

where f ′(0) is the right-hand derivative of f at 0.

Observe that, by Fact 4.4, v is finite-valued if and only if f ′(0) is finite.15 Of special
interest is the case f(t) = 1− e−β|t| with β > 0, which we refer to as the homogeneous

14In fact, it follows from TD I, Th. 4.1, that for each S ∈ K, v(S) is determined by the values of vB

on all one- and two-element subsets of S.
15Either of these conditions is equivalent to the ordinal ranking of finite (or compact) sets being

continuous in the Vietoris topology as defined in Nehring and Puppe (1996).
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translation invariant case (cf. TD I, Sect. 4.5). Let TR denote the canonical qualitative
similarity relation associated to the real line, i.e.

(x, y, z) ∈ TR ⇔ [x ≥ y ≥ z or z ≥ y ≥ x].

The following result characterizes the homogeneous translation invariant case in terms
of the associated quantitative similarity relation.

Proposition 4.3 In the translation invariant case, f(t) = 1 − e−β|t| if and only if f
is non-decreasing and, for all x, y, z,

(x, y, z) ∈ TR ⇒ σ(x, z) = σ(x, y) · σ(y, z).

Now consider the independent product of #K homogeneous translation invariant
lines, i.e. suppose that for any rectangular set S =

∏
k∈K Sk ⊆ RK , one has v(S) =∏

k∈K vk(Sk), where each vk is a homogeneous translation invariant diversity function
on the real line corresponding to fk(t) = 1− e−βk|t|.

Fact 4.5 Let v be the independent product of #K homogeneous translation invariant
diversity functions on the real line, and let σ be the associated quantitative similarity
relation. Then,

σ(x, y) = e
−
(∑

k∈K
βk|yk−xk|

)
.

Since d(x, y) = 1 − σ(x, y), one thus obtains the following picture for the set of all
points equi-distant to the origin.

Figure 3: Locus of points equi-distant to 0

In particular, up to multiplicative rescaling of coordinates, there is a unique diversity
function on RK that is the independent product of homogeneous translation invariant
lines.

Let δ denote negative logarithmic quantitative similarity, i.e.

δ(x, y) := − log σ(x, y) = − log(1− d(x, y)),

and define a corresponding “logarithmic geodesic betweenness” Tδ as follows. For all
x, y, z ∈ RK ,

(x, y, z) ∈ Tδ :⇔ δ(x, y) + δ(y, z) = δ(x, z).

Proposition 4.4 Let v be the independent product of homogenous translation invari-
ant real lines. Then, δ is a metric and Tδ = ⊗k∈KTR.16

16The converse statement also holds: If δ is a translation invariant metric and Tδ = ⊗k∈KTR, then
v is the independent product of homogeneous translation invariant real lines.
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Similarity is non-Euclidean in two respects here. First, distances are additive only
after logarithmic transformation; secondly, the coordinate axes play a distinguished
role, in particular, the “circles” of equi-distant points have kinks along the axes. The
first difference to the Euclidean paradigm is explained by the general strict subaddi-
tivity of dissimilarity, as already discussed in TD I in the context of the line model
(cf. TD I, Sect. 4.3). The second is due to the different underlying convex structure.
In the independent (separable) product, the convexity is constructed from the com-
ponent convexities; by contrast, under the Euclidean convexity, all directions are on
equal footing, and coordinate axes are chosen as a matter of convention. As a further
illustration of the difference in the underlying geometry, consider the value of rectan-
gles in the independent homogeneous product. It follows from Fact 4.4 above that, for
all rectangles

∏
k∈K [xk, yk],

v(
∏
k∈K

[xk, yk]) =
∏
k∈K

(1 + βk|yk − xk|).

Thus, at very small scales (all |yk − xk| close to zero), rectangles are ordered approx-
imately according to their “circumference”

∑
k βk|yk − xk|; at very large scales (all

|yk − xk| large), on the other hand, rectangles are ordered approximately according
to their “volume”

∏
k |yk − xk|). Thus, contrary to spatial orderings of physical size,

diversity comparisons appear to be fundamentally scale-dependent.

5 Conclusion

A key theme of both this paper and TD I and, as we have argued, of any adequate
theory of diversity, has been the interrelation of diversity and (dis)similarity. On the
multi-attribute approach, the relation is very tight in that diversity can be viewed
as the “integral” of point-set dissimilarity, as we argued in TD I, Sect. 2.2. On the
other hand, point-set dissimilarity is reducible to point-point dissimilarity using the
standard geometric definition of point-set distance only in the case of hierarchical
attribute structure (TD I, Sect. 3). In general, for example in the hypercube, point-set
dissimilarity is not reducible in this way.

While conventional geometric intuition can mislead at times, geometric concepts
and intuitions prove nonetheless to be pervasively helpful. At a qualitative level, we
have argued that comparative similarity can be formalized as a betweenness relation
that describes the “similarity geometry” of the object space. At a quantitative level,
the analogy of the notions of dissimilarity and distance is also helpful, but has to be
employed with care. Dissimilarity functions always satisfy the triangle inequality, and
are symmetric if and only if all singletons have identical diversity value. While cer-
tainly restrictive, the latter assumption is frequently a natural one to make, or may
even be entailed by global symmetries (as, e.g., in the case of the translation invariant
line). Probably the most significant dis-analogy between dissimilarity and geometric
distances is in their link to the underlying qualitative geometry: while geometrically
it is almost canonical to require additivity on the line (and, more generally, on “linear
betweenness segments”), this condition will only exceptionally be satisfied by dissimi-
larity functions (TD I, Sect. 4.3). In the context of diversity, the link is weaker: while
the dissimilarity metric is always adapted to the underlying qualitative similarity ge-
ometry, the qualitative geometry cannot always be recovered in a canonical way from
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the metric. In special cases, however, we have shown that this can be done: if the
underlying convexity is triple-connected, it can be recovered from the metric as “met-
ric betweenness” (Prop. 3.2 above), and in the independent product of homogeneous
translation invariant lines as “logarithmic geodesic betweenness” (Prop. 4.4).

Although geometric intuitions are pervasive in the literature on similarity, the extent
of their validity within a multi-attribute approach seems quite remarkable in view of
the abstract, prima facie non-geometric spirit of that approach.

Appendix: Proofs

Proof of Proposition 2.1 Suppose that (x, y, z) 6∈ TA, i.e. for some A′ ∈ A, {x, z} ⊆
A′ and y 6∈ A′. If A is a hierarchy, there cannot exist a set A ∈ A such that {x, y} ⊆ A
and z 6∈ A. Hence, for all A ∈ A, {x, y} ⊆ A ⇒ z ∈ A, i.e. (x, z, y) ∈ TA. This
demonstrates completeness of T x

A, for all x, in the hierarchical case.
Conversely, if A is not hierarchical, there exist A,B ∈ A such that A \ B, A ∩ B

and B \A are all non-empty. This implies that for any y ∈ A\B, x ∈ A∩B, z ∈ B \A
neither yT x

Az, nor zT x
Ay.

Proof of Theorem 3.1 in text.

Proof of Theorem 3.2 Let T ⊆ Tv; by Theorem 3.1 this is equivalent to T ⊆ TΛ.
By Fact 2.3, this implies ATΛ ⊆ AT . By definition, one has for any family D ⊆ 2X ,
D ⊆ ATD . In particular, Λ ⊆ ATΛ , hence Λ ⊆ AT .

Conversely, suppose that Λ ⊆ AT . By definition of the associated TSO, this implies
TAT

⊆ TΛ. By Fact 2.3 and Theorem 3.1, T ⊆ TΛ = Tv.

Proof of Theorem 3.3 It suffices to show that TΛ∗ = TΛ since then ATΛ∗ = ATΛ and,
by Fact 2.3 and Theorem 3.1, ATΛ∗ = Λ∗ and TΛ = Tv, respectively. By definition,
Λ ⊆ Λ∗ implies TΛ∗ ⊆ TΛ, hence it remains to show that TΛ∗ ⊇ TΛ. Clearly, Λ ⊆ ATΛ ,
hence Λ∗ ⊆ ATΛ since ATΛ is a CVS. Applying Fact 2.3 twice, one obtains TΛ∗ ⊇
TATΛ

= TΛ, and hence the desired conclusion.

Proof of Proposition 3.1 Suppose that A is a hierarchy, and let A′ ⊇ {∅, X} be any
family such that TA = TA′ . First, observe that any hierarchical family A containing ∅
and X is a CVS. Since A′ ⊆ ATA′ , and since A is a CVS, one obtains by Fact 2.3,

A′ ⊆ ATA′ = ATA = A.

Now observe that A′ as a subset of a hierarchy is itself a hierarchy, hence a CVS.
Consequently, by a symmetric argument, A ⊆ A′.

In order to verify the converse implication, let A be any non-hierarchical family,
i.e. there exist A,B ∈ A such that A\B, A∩B and B \A are all non-empty. It is easy
to verify that in this case the families A ∪ {A ∩B} and A \ {A ∩B} induce the same
TSO according to (2.1), i.e. TA∪{A∩B} = TA\{A∩B}.

Proof of Proposition 3.2 It has already been observed in the main text that Tv ⊆ Td.
For the converse to hold, triple-connectedness of Tv is clearly necessary. It remains to
show that triple-connectedness is also sufficient. Let (x, y, z) ∈ Td, i.e. d(x, y) ≤ d(x, z)
and d(z, y) ≤ d(z, x), and assume, by way of contradiction, that (x, y, z) 6∈ Tv. By
definition of Tv and submodularity of v, one has d(x, {y, z}) < d(x, y), and hence
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d(x, {y, z}) < d(x, z). This implies (x, z, y) 6∈ Tv, and therefore by the symmetry
condition T2, (y, z, x) 6∈ Tv. Now (x, y, z) 6∈ Tv also implies, again by T2, that (z, y, x) 6∈
Tv. A completely symmetric argument as before shows that from this one obtains
(z, x, y) 6∈ Tv. Hence, none of (x, y, z), (y, z, x), and (z, x, y) are in Tv, contradicting
triple-connectedness of Tv.

Proof of Theorem 3.4 Necessity of the stated conditions is obvious. The proof of
sufficiency combines a series of results that have already been established. Right below
we show that under the assumptions made, Td is a TSO. Given this, define H := ATd

;
by Fact 2.3, Td = TH. Hence, by the assumed completeness of T x

d and Proposition 2.1,
H is a hierarchy. Since by definition, d is adapted to Td, and hence also to TH, one
can apply the Hierarchy Extension Theorem (TD I, Th. 4.4) to the given H in order
to obtain a unique extension v : 2X → R of vB such that Λ ⊆ H. This demonstrates
existence.

To verify uniqueness (of H), let v′ be an extension, and let H′ denote the support
of its attribute weighting function. By Theorem 3.1, Tv′ = TH′ ; by Corollary 3.1,
Tv′ = Td. Hence, TH′ = TH, which by Proposition 3.1 implies H = H′ up to the
inclusion of the universal attribute X. However, the weight of X is uniquely determined
by λX = minx,y∈X σ(x, y), which is non-negative by boundedness of d.

It remains to be shown that Td is a TSO. Obviously, Td is reflexive and symmetric,
i.e. satisfies T1 and T2, respectively. Hence, we only have to establish the transitivity
condition T3. This is done in two steps. First, we show that completeness of T x

d implies
(standard) transitivity of T x

d , i.e. all relations T x
d are weak orders. We then show that,

for any symmetric ternary relation T such that all T x are weak orders, T satisfies the
transitivity condition T3.

Hence, suppose that (x, y, z) ∈ Td and (x, z, w) ∈ Td. We have to show that
(x, y, w) ∈ Td. Using (3.4), one has σ(x,w) ≤ σ(x, z) (from (x, z, w) ∈ Td) and
σ(x, z) ≤ σ(x, y) (from (x, y, z) ∈ Td), hence σ(x, w) ≤ σ(x, y). Now assume that
(x, y, w) 6∈ Td; by completeness of T x, this implies (x,w, y) ∈ Td, in particular σ(x, y) ≤
σ(w, y) = σ(y, w). Thus, σ(x, w) ≤ σ(x, y) and σ(x, w) ≤ σ(y, w), which by (3.4) im-
plies (x, y, w) ∈ Td, a contradiction.

We now show that symmetry, completeness and transitivity of all T x together im-
ply transitivity of T . Take x, x′, y, z, z′ such that (x, x′, z) ∈ T , (x, z′, z) ∈ T and
(x′, y, z′) ∈ T . By completeness, (x, x′, z′) ∈ T or (x, z′, x′) ∈ T ; without loss of gen-
erality, assume (x, x′, z′) ∈ T . By symmetry, (z′, x′, x) ∈ T as well as (z′, y, x′) ∈ T .
By transitivity of T z′ , (z′, y, x) ∈ T , hence by symmetry, (x, y, z′) ∈ T . Finally, by
transitivity of T x, (x, y, z) ∈ T .

Proof of Theorem 3.5 We only prove sufficiency of the stated conditions. By Krantz,
Luce, Suppes and Tversky (1979), a ternary relation T can be represented as T = TL
for L associated to some unique (up to reversal) linear order ≥ on X if and only if
T satisfies the following five conditions. (i) symmetry, (ii) triple-connectedness, (iii)
antisymmetry (in the sense that [(x, y, z) ∈ T and (x, z, y) ∈ T ] ⇒ y = z), (iv) line-
transitivity, and (v) (standard) transitivity of T x for all x. We show that under the
assumptions stated in Theorem 3.5, Td satisfies all five conditions. It has already been
observed in the main text that Td satisfies (i) and (ii). Condition (iv) holds by assump-
tion. To verify (iii), assume by way of contradiction, that (x, y, z) ∈ Td, (x, z, y) ∈ Td

and y 6= z. By symmetry, (y, z, x) ∈ Td, hence by line-transitivity, (x, y, x) ∈ Td. Since
d is adapted to Td, d(x, y) ≤ d(x, x) = 0. By strict positivity of d, this implies y = x
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and hence, by (x, z, x) ∈ Td, also z = x, the desired contradiction.
In order to verify (v), observe first that for antisymmetric Td, (3.4) can be strength-

ened to
(x, y, z) ∈ Td ⇔ σ(x, z) < min{σ(x, y), σ(y, z)},

whenever y 6= x, z. Now let (x, y, z) ∈ Td and (x, z, w) ∈ Td, and assume without
loss of generality that x, y, z, w are pairwise different. We derive a contradiction from
the assumption that (x, y, w) 6∈ Td. By triple-connectedness, either (y, w, x) ∈ Td or
(w, x, y) ∈ Td. In the former case, one obtains using symmetry, σ(x, y) < σ(x,w) <
σ(x, z) < σ(x, y), a contradiction. In the latter case, one obtains by line-transitivity
(applied to (w, x, y) and (x, y, z)) that (w, x, z) ∈ Td. Hence, σ(w, z) < σ(w, x) =
σ(x, w) < σ(z, w) = σ(w, z), again a contradiction. This shows (v).

Let ≥ be the linear order on X such that Td = TL. The dissimilarity metric d
satisfies all requirements in order to apply the Line Extension Theorem 4.3 of TD I.
Hence, there exists a unique extension of vB to a diversity function v on X that satisfies
the Interval Property with respect to ≥. By Corollary 3.1, Tv = Td = TL.

Proof of Proposition 4.1 It is clear that the relation T̂ defined by

(x, y, z) ∈ T̂ :⇔ [ for all k : (xk, yk, zk) ∈ T k],

is a TSO that contains both, Tweak and T sep.
Conversely, suppose that (x, y, z) ∈ T̂ , and denote by T̃ (x, z) the segment spanned

by x and z with respect to the product similarity, T̃ (x, z) := {x′ : (x, x′, z) ∈ ⊗kTk}.
We show that y ∈ T̃ (x, z). For simplicity, we assume two coordinates only; the gen-
eral case follows along the same lines. Since the product similarity contains T sep,
one obtains (x1, z2) ∈ T̃ (x, z) and (z1, x2) ∈ T̃ (x, z). Since the product similarity
contains Tweak, one has ((x1, w), (y1, w), (z1, w)) ∈ ⊗kT k for w = x2 and w = z2,
and ((y1, x2), (y1, y2), (y1, z2)) ∈ ⊗kT k. Using this, repeated application of T3 yields
y ∈ T̃ (x, z), i.e. (x, y, z) ∈ ⊗kT k.

Proof of Fact 4.1 The proof uses the following result which is well-known in the
literature on abstract convexity theory (see Jamison (1974), van de Vel (1993, p. 87)).
For any family {Ak}k∈K of CVSs, the product

⊗k∈KAk := {A : A =
∏
k∈K

Ak, Ak ∈ Ak}

is a CVS.
By Proposition 4.1, ⊗kT k = T(⊗kAk), where Ak = AT k is the CVS corresponding to

T k. Hence, A(⊗kT k) = AT(⊗kAk)
. By the above result and Fact 2.3, AT(⊗kAk)

= ⊗kAk.

Proof of Proposition 4.2 Let v be separable and suppose that v(S1×S2) = v1(S1) ·
v2(S2) for some functions v1, v2 and all S1, S2. We use the following formula which
is based on a standard result in combinatorics (see, e.g. Cameron (1994, Prop. 12.7.5,
p.201), Hendon et al. (1996)). For any rectangular A =

∏
k Ak, the value of the

conjugate Moebius inverse λ of a separable v at A is given by

λA =
∑

B=
∏

k
Bk⊆A

(−1)
∑

k
(#Ak−#Bk) · v̂(B), (A.1)
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where v̂(B) := v(X)− v(Bc) denotes the loss function associated to v (recall that Bc

denotes the complement of B in X). Furthermore, for all B1 ×B2 ⊆ X1 ×X2,

v((B1 ×B2)c) = v(X1 × (B2)c) + v((B1)c ×X2)− v((B1)c × (B2)c). (A.2)

Indeed, (A.2) is easily verified by considering the conjugate Moebius inverse λ of v and
distinguishing A1 × A2 ∈ Λ according to whether for k = 1, 2, Ak ∩ (Bk)c is empty or
not. Using (A.1) and (A.2), one thus obtains for all A1 ×A2,

λA1×A2

=
∑

B1×B2⊆A1×A2

(−1)
∑

k
(#Ak−#Bk)v̂(B1 ×B2)

=
∑

B1×B2⊆A1×A2

(−1)
∑

k
(#Ak−#Bk) [

v(X1 ×X2)− v((B1 ×B2)c)
]

=
∑

B1×B2⊆A1×A2

(−1)(#A1−#B1) · (−1)(#A2−#B2)
[
v1(X1) · v2(X2)

−v1(X1) · v2((B2)c)− v1((B1)c) · v2(X2) + v1((B1)c) · v2((B2)c)
]

=
∑

B1⊆A1,B2⊆A2

(−1)(#A1−#B1) · (−1)(#A2−#B2)
[
v1(X1)− v1((B1)c)

]
·
[
v2(X2)− v2((B2)c)

]

=

 ∑
B1⊆A1

(−1)(#A1−#B1)v̂1(B1)

 ·

 ∑
B2⊆A2

(−1)(#A2−#B2)v̂2(B2)


= λ1

A1 · λ2
A2 .

Conversely, it is straightforward to verify that any separable diversity function
v : 2X1×X2 → R defined from v1 and v2 according to λA1×A2 := λ1

A1 · λ2
A2 has the

required product form.

Proof of Fact 4.2 Denote by σk(xk, yk) = λk({Ak : {xk, yk} ⊆ Ak}. By Proposition
4.2, σ(x, y) = σ1(x1, y1)·σ2(x2, y2). From this, the claim follows at once since v({x}) =
σ(x, x) = 1.

Proof of Theorem 4.2 Suppose that v : 2X1×X2 → R is normalized so that v(∅) = 0.
If v satisfies (4.2), v2

S1(·) := v(S1×·) = v1(S1)·v2(·). Hence, for any non-empty S1,W 1,
v2

S1 equals v2
W 1 up to multiplication by a positive scalar. Consequently, v2

S1 and v2
W 1

represent the same von-Neumann-Morgenstern preference on ∆2(X2)
. An analogous

argument shows that �1
S2=�1

W 2 .
Conversely, suppose that for all non-empty S1,W 1, the preferences �2

S1 and �2
W 1

coincide. This implies that for all S1,W 1, v2
S1 equals v2

W 1 up to multiplication by a
positive scalar. Define a function v1 : 2X1 → R as follows. For S1 ∈ X1,

v1(S1) :=
v2

S1(S2)
v2

X1(S2)
. (A.3)
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Observe that the thus defined v1 does not depend on the choice of S2 in (A.3). By
construction, v(S1 × S2) = v1(S1) · v2

X1(S2), for all S1, S2.

Proof of Fact 4.4 Without loss of generality, take x = 0. Consider, for each n, the
set Sn := {l · y

n : l = 0, 1, ..., n}. From the Line equation (cf. TD I, (4.1)) it follows that
v(Sn) = 1 + n · f(y/n). Hence,

v([0, y]) ≥ lim
n→∞

1 + n · f(y/n) = 1 + f ′(0) · y.

Observe that the limit exists because f is concave (it may take the value ∞). On
the other hand, v([0, y]) ≤ limn 1 + n · f(y/n), because for any finite subset F =
{x1, ..., xm} ⊆ [0, y] with x1 < x2 < ... < xm,

v(F ) = 1 +
m∑

i=2

f(xi − xi−1) ≤ 1 + f ′(0)
m∑

i=2

(xi − xi−1) = 1 + f ′(0) · (xm − x1),

by concavity of f .

Proof of Proposition 4.3 Define a function g : R+ → R by g(t) := log σ(x, y), where
|y − x| = t. The stated condition on σ implies g(t + t′) = g(t) + g(t′) for all t, t′. By
Aczél (1966, Th. 1, p.34), g must be linear.

Proof of Fact 4.5 As in the proof of Fact 4.2, Proposition 4.2 implies

σ(x, y) = λ({
∏
k

Ak : {x, y} ⊆
∏
k

Ak})

=
∏
k

λk({Ak : {xk, yk} ⊆ Ak}) =
∏
k

σk(xk, yk),

which immediately implies the desired result.

Proof of Proposition 4.4 The proof is straightforward, noting that in the homoge-
neous case, δ(x, y) =

∑
k βk|yk − xk| by Fact 4.5.
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