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Abstract

A decision-maker is utility-sophisticated if he ranks acts according to their expected

utility whenever such comparisons are meaningful. We characterize utility sophistica-

tion in cases in which probabilistic beliefs are not too imprecise, and show that in these

cases utility-sophisticated preferences are completely determined by consequence util-

ities and event attitudes captured by preferences over bets. The Anscombe-Aumann

framework as employed in the classical contributions of Schmeidler (1989) and Gilboa-

Schmeidler (1989) can be viewed as an important special case. For the class of utility

sophisticated preferences with sufficiently precise beliefs, we also propose a definition

of revealed probabilistic beliefs that overcomes the limitations of existing definitions.

Keywords: expected utility, ambiguity, probabilistic sophistication, revealed prob-

abilistic beliefs.
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1. INTRODUCTION

Expected tility theory rests on two pillars of consequentialist rationality: the

existence of a unique subjective probability measure underlying all decisions (the

“Bayes principle”), and the consistent valuation of outcomes by cardinal utilities (the

“Bernoulli principle”). Both of these assumptions have been challenged. On the one

hand, as illustrated by the Ellsberg paradox, it is frequently not possible to represent

a decision-maker’s betting preferences in terms of a well-defined subjective probability

measure; in such cases, decision-makers are said to view certain events as “ambigu-

ous”. On the other hand, faced with given probabilities, utilities and probabilities

may not combine linearly, as in the Allais paradox and related phenomena; such

decision-makers are sometimes referred to as exhibiting “probabilistic risk-attitudes”.

While a descriptively fully adequate model of decision-making will need to incor-

porate both phenomena, for modelling purposes it is often desirable to zoom in on

one of these two departures from the expected utility paradigm. To this purpose,

Machina-Schmeidler (1992) have introduced the notion of probabilistic sophistica-

tion which precludes all phenomena of ambiguity but does not constrain the nature

of probabilistic risk-attitudes. In the present paper, we introduce a complementary

notion of utility sophistication which precludes all phenomena deriving from proba-

bilistic risk-attitudes but does not constrain the decision-maker’s attitudes towards

ambiguity.

Besides this analytical motivation, the notion of utility sophistication has also an

important normative purpose. Since the underlying Bernoulli principle is conceptually

clearly distinct from the Bayes principle, one can formulate a normative position on

which departures from the Bayes principle are rationally justifiable while departures

from the Bernoulli principle are not. Such a position seems in fact quite attractive.

On the one hand, it can be doubted that the precision of beliefs required by the Bayes
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principle is normatively mandated; indeed, it can even be argued that in situations

of partial or complete ignorance rational decision making cannot rationally be based

well-defined subjective probabilities (see the classical literature on complete ignorance

surveyed in Luce-Raiffa (1957) as well the subsequent contributions of Jaffray (1989)

and Nehring (1991,2000)). On the other hand, while it is frequently argued that de-

partures from the Bernoulli principle are rationally permissible, we are not aware of an

argument that would rationally mandate departures from the Bernoulli principle, i.e.

in particular, departures from expected utility in the presence of probabilities. More-

over, the typical examples of departures from the Bernoulli principle such as the Allais

paradox can be interpreted as “real but not rational”, by attributing them to cogni-

tive distortions in the processing of probabilities as in Kahneman-Tversky’s (1979)

prospect theory, or as “rational but merely apparent”, by appealing to the existence

of implicit psychological payoffs (cf. for example Broome (1991) and Caplin-Leahy

(2001)). The present paper articulates this normative “Bernoulli without Bayes”

position axiomatically but will not defend it further.

Broadly speaking, we shall view an agent as “utility-sophisticated” if he compares

acts in terms of their expected utility “whenever possible”. Importantly, since the

possibility of such comparisons depends on the agents’ beliefs, utility sophistication

must be defined relative to a specified set of probabilistic beliefs (at least initially).

We shall thus model probabilistic beliefs as a separate entity, specifically as partial

orderings over events (likelihood relations) represented by a (closed convex) set of

admissible probability measures Π. The specified likelihood relation will be viewed

as describing non-exhaustively some but not necessarily all of the decision maker’s

beliefs; the leading example of such beliefs derives from the existence of a continu-

ous randomization device as implicit in the Anscombe-Aumann (1963) approach to

decision making under uncertainty.
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Given a cardinal utility functionu (obtained from risk preferences), an agent is

utility-sophisticated with respect to the set of admissible priors Π if the agent prefers

any act f over another act g whenever the expected utility of f weakly exceeds

that of g with respect to any admissible prior. Utility sophistication implies expected

utility maximization over unambiguous acts (acts whose induced distribution does not

depend on the prior), but is substantially stronger since it also restricts preferences

over ambiguous acts. This added strength proves crucial for its analytical power.

The first and foremost task of the paper is to provide axiomatic foundations.

The crucial axiom replacing Savage’s Sure-Thing Principle is an axiom of “Trade-off

Consistency”.1 The main result of the paper, Theorem 1, derives utility sophistication

from this axiom in the presence of arguably weak regularity assumptions on prefer-

ences, assuming both a rich set of consequences and a sufficiently rich (specifically:

“equidivisible”) likelihood relation.

Theorem 1 also shows that under these assumptions, utility-sophisticated prefer-

ences over general acts are uniquely determined by preferences over bets and the

decision-maker’s cardinal valuation of outcomes. This powerful reduction property

parallels that of probabilistically sophisticated preferences which are uniquely deter-

mined by preferences over lotteries and the decision-maker’s subjective probability

measure. The reduction property greatly simplifies the task of developing more spe-

cific models of decision-making under ambiguity, since it focusses attention on the

1Its basic idea can be described as follows. Consider two acts f and g whose outcomes differ on

only two equally likely events A and B such that f yields a better outcome in event A and g yields a

better outcome in eventB. Suppose also that we already have obtained a ranking of utility differences

from the decision-maker’s preferences over unambiguous acts. Tradeoff Consistency requires that if

the utility gain from the outcome of f over that of g in the event A exceeds the utility gain from g

over f in the event B, then f is preferred to g. More precisely, Tradeoff Consistency requires that

preferences over acts can be rationalized consistently in this manner by an appropriate ranking of

utility differences .
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relatively simple class of betting preferences.2

By not assuming Savage’s axiom P4, our main representation theorem allows for

betting preferences over events to depend on the “stakes” of the bets involved. This

generality is important since in the presence of ambiguity, P4 cannot be taken to

be a requirement of rationality; indeed, there is a live interest in stake-dependent

preference models (see e.g. Epstein-Le Breton (1993), Klibanoff et al. (2005)). When

betting preferences are stake-dependent, they reflect both event attitudes (beliefs and

ambiguity attitudes) as well as, more indirectly, consequence attitudes (utilities). The

Stake Independence axiom P4 is thus necessary to achieve a separation of consequence

and event attitudes as determinants of overall preferences. In Theorem 2 we show

that it is also sufficient, and characterize the restrictions that betting preferences

must satisfy to be consistent with utility sophistication.

In this analysis, utility sophistication has been defined relative to a hypothetically

or situationally given likelihood relation. Is it possible to eliminate reference to be-

liefs as an independent, non-behavioral construct, and define utility sophistication in

purely behavioral terms? While we suggest that this cannot be done without arbitrari-

ness for preferences that are merely utility-sophisticated relative to sparse likelihood

relations, we propose a definition of “revealed utility sophistication” which implies

that the set of probabilistic beliefs relative to which the given preference ordering is

construed as utility-sophisticated (in the above relative sense) must be “rich” and

show that the proposed definition has attractive properties.

As an important side-benefit, refining and modifying earlier and related work (Ghi-

rardato et al. (2004), Nehring (1996, 2001)), this allows one to define “revealed prob-

2One particularly important type of further specialization is based on the modelling of ambiguity

attitudes (ambiguity aversion versus ambiguity seeking). In a companion paper, we argue that these

can indeed be modelled naturally in terms of assumptions relating betting preferences and partial

proabilistic beliefs (cf. Nehring 2001).
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abilistic beliefs” in a natural manner. We argue that the restriction of this definition

to revealed utility-sophisticated preferences makes it immune to the interpretative

ambiguities that characterized these earlier contributions.

Comparison to the existing literature.–

While the existing literature has not yet attempted to define a distinct notion of util-

ity sophistication, we show in section 5.2 that, after translation into the present frame-

work, many models of decision making under ambiguity in the Anscombe-Aumann

framework give rise to revealed utility-sophisticated preferences, starting from the

seminal contributions of Schmeidler (1989) and Gilboa-Schmeidler (1989).

Other contributions, especially Ghirardato-Marinacci (2002) and Ghirardato et al.

(2004), assume a utility-sophisticated viewpoint by assuming in the interpretation

of their definitions and axioms that all departures from expected utility can be at-

tributed to ambiguity. However, as argued by Epstein-Zhang (2001) and discussed

further in sections 6 and 7, such an interpretational assumption may be arbitrary or

inappropriate.

Organization of the paper.–

The remainder of the paper is organized as follows. In section 2, we introduce

likelihood relations and their multi-prior representation, as well as basic assumptions

on preferences maintained throughout. We then define the notion of utility sophis-

tication and characterize it axiomatically (section 3), paying particular attention to

the case of “stake-independent” (P4) betting preferences (section 4). In section 5, we

study utility sophistication in various preference models in the literature, and estab-

lish a close link to standard models in the Anscombe-Aumann (1963) framework; inter

alia, we show that CEU preferences are never utility-sophisticated with respect to a

rich likelihood relation unless they are SEU. Section 6 quantifies out the likelihood
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relation to arrive at a definition of “revealed utility-sophisticated beliefs” and shows

it to satisfy important desiderata. The definition naturally suggests an accompanying

definition of “revealed probabilistic beliefs” as discussed in section 7. All proofs are

contained in the appendix.

2. BACKGROUND

2.1. Equidivisible Likelihood Relations

Since utility sophistication is to be defined relative to a specified set of probabilistic

beliefs, we shall model a decision maker in terms of two entities, a preference relation

% over Savage acts and a comparative likelihood relation D describing some or all of
his probabilistic beliefs. Formally, a likelihood relation is a partial ordering D on an
algebra of events Σ in a state space Ω, with the instance A D B denoting the DM’s

judgment that A is at least as likely as B.We shall denote the symmetric component

of D (“is as likely as”) by ≡. For now, we shall treat the likelihood relation as an

independent primitive. To emphasize its typically non-exhaustive interpretation, the

likelihood relation is frequently referred to as the decision-maker’s (belief) “context”;

an important example is the existence an independent randomization device as de-

scribed in Example 1 below. The viability of the non-exhaustive interpretation of

D will be formally supported in section 6, Proposition 6; in that section it is also

shown how a fully behavioral definition of utility sophistication can be obtained by

“quantifying out” the context D . For further discussion of the general approach, see

Nehring (2006) where the framework of “decision-making in the context of probabilis-

tic beliefs” has been introduced.

A prior π is a finitely additive, non-negative set-function on Σ such that π (Ω) = 1.
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Given a likelihood relation D, let ΠD denote its set of admissible priors defined by

π ∈ ΠD if and only if, for all A,B ∈ Σ, A D B implies π (A) ≥ π (B) .

For any D, ΠD is a closed convex set in the product (or weak∗) topology. Conversely,
any non-empty set of priors Π induces an associated likelihood relation DΠ given by

the unanimity condition

A DΠ B if and only if π (A) ≥ π (B) for all π ∈ Π.

A likelihood relation D is coherent if there exists Π 6= ∅ such that D=DΠ; in that

case, D is said to be derived from Π. Clearly, if D is derived from Π, it is also derived

from the closed convex hull of Π; it is therefore without loss of generality to assume

sets of priors to be closed and convex. Furthermore, it is easily verified that D is

coherent if and and only if it is derived from the set ΠD; the set ΠD will therefore be

referred to as the multi-prior representation of D .3

A central role in the following will be played by likelihood relations with a convex-

ranged multi-prior representation. The set of priors Π is convex-ranged if, for any

event A ∈ Σ and any α ∈ (0, 1), there exists an event B ∈ Σ, B ⊆ A such that

π(B) = απ(A) for all π ∈ Π. It is easily verified that a coherent likelihood relation D
defined on a σ−algebra is derived from a convex-ranged set of priors if and only if it is

equidivisible, i.e. if and only if, for all events A ∈ Σ, there exists an event B ∈ Σ such

that B ⊆ A and B ≡ A\B. Nehring (2006) contains an axiomatization of coherent

equidivisible likelihood relations, and shows that they are derived from a unique closed

convex set of priors, namely ΠD; the latter result implies that, for any convex-ranged

Π, Π = Π(DΠ). Slightly abusing terminology, we will refer to likelihood relations with

3Note that in general there may exist multiple closed convex sets Π from which a given coherent

likelihood relation is derived; in such cases (which are precluded by the convex-rangedness assump-

tion to follow) there is a loss of information in representing beliefs by likelihood relations rather than

by sets of priors.
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convex-ranged multi-prior representation ΠD as equidivisible, whether or not they are

defined on a σ-algebra.4 Evidently, the superrelation of any equidivisible relation is

equidivisible.

Equidivisible likelihood relations are characterized by a rich set of unambiguous

and conditionally unambiguous events. Say that B ∈ Σ is unambiguous given A if,

for some α ∈ [0, 1], π(B) = απ(A) for all π ∈ ΠD. Let ΛA denote the family of events

that are unambiguous given A; clearly, ΛA is closed under finite disjoint union and

under complementation, but not necessarily under intersection. An event A is null

if A ≡ ∅, or, equivalently, if π (A) = 0 for all π ∈ ΠD. For any non-null A and any

π ∈ ΠD, let π(./A) denote the restriction of π(./A) to ΛA, with π(B/A) denoting the

unambiguous conditional probability of B given A. We will say that B is unambiguous

if it is “unambiguous given Ω”, and write Λ for ΛΩ, as well as π for π(./Ω). As a

matter of further notion, let π−(A) = minπ∈Π π (A) and π+(A) = maxπ∈Π π (A) the

lower and upper probabilities of event A. Also, the indicator function associated with

event A will be denoted by 1A.

Example 1 (Continuous Randomization Device). The following translates

the widely used Anscombe-Aumann (1963) framework as a likelihood relation. Con-

sider a product space Ω = Ω1×Ω2, where Ω1 is a space of “generic states” , and Ω2 a

space of “random states” with associated algebra Σ1 and σ−algebra Σ2, respectively.

Let η denote a convex-ranged5, finitely additive prior over random events Σ2 . The

“continuity” and stochastic independence of the random device are captured by the

following coherent likelihood relationDAA defined on the product algebra Σ = Σ1×Σ2;

note that any A ∈ Σ1 ×Σ2 can be written as A =
P

i Si × Ti, where the {Si} form a
4On an algebra, convex-rangedness is characterized by a bit more than equidivisibility proper;

convex-rangedness on algebras arises naturally in the Anscombe-Aumann context DAA defined in

Example 1 below.

5That is, {η} is convex-ranged in Σ2.
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finite partition of Ω1 :
6

X
i

Si × Ti DAA

X
i

Si × T 0i if and only if η (Ti) ≥ η (T 0i ) for all i.

Clearly, there exists a unique set of priors ΠAA representing DAA; indeed, ΠAA

is simply the set of all product-measures π1 × η where π1 ranges over all finitely

additive measures on Σ1. Note that the convex-rangedness of ΠAA is a straightforward

consequence of the convex-rangedness of η.

In general, a decision-maker will have further probabilistic beliefs captured by a

likelihood relation D that strictly contains the context DAA; this relation evidently

inherits the equidivisibility of DAA .

Example 2 (Limited Imprecision). A particular way to formalize the intuitive

notion of a limited extent of overall ambiguity is to assume that Σ is a σ-algebra and

that Π is the convex hull of a finite set Π0 of non-atomic, countably additive priors.

Due to Lyapunov’s (1940) celebrated convexity theorem, Π is convex-ranged. The

priors π ∈ Π0 can be interpreted as a finite set of hypotheses a decision-maker deems

reasonable without being willing to assign precise probabilities to them. Finitely

generated sets of priors occur naturally, for example, when an individual bases his

beliefs on the views of a finite set of experts who have precise probabilistic beliefs

Di but disagree with each other. The decision maker may naturally want to respect

all instances of expert agreement; these are represented by the unanimity relation

DI= ∩i∈I Di which is evidently finitely generated.

In the following, when it is necessary to refer to asymmetric likelihood compar-

isons, rather than using simply the asymmetric component B of D, it is often more
appropriate to use the “uniformly more likely” relation BB, where A BB B if

6The relation DAA is easily characterized axiomatically; see Nehring (2006).
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minπ∈ΠD (π (A)− π (B)) > 0. In general, BB is a proper subrelation of B. For fur-
ther discussion and a characterization of BB in terms of D for equidivisible contexts,
see Nehring (2006).

2.2 Maintained Assumptions on Preferences

Consider now a DM described by a preference ordering over acts % and a coherent
likelihood relation D; we will typically write Π for ΠD. LetX be a set of consequences.

An act is a finite-valued mapping from states to consequences, f : Ω → X, that is

measurable with respect to the algebra of events Σ; the set of all acts is denoted by

F . A preference ordering % is a weak order (complete and transitive relation) on F .
An act is unambiguous if it is measurable with respect to the system of unambiguous

events Λ; the set of all unambiguous acts is denoted by Fua. The restriction of % to
Fua represents the decision maker’s risk preferences.

We shall write [x1 on A1;x2 on A2; ...] for the act with consequence xi in event

Ai; constant acts [x on Ω] are typically referred to by their constant consequence

x. To prepare the ground for the subsequent analysis, we now introduce the basic

substantive and regularity assumptions that will be maintained throughout.

The belief context constrains most directly preferences over bets. A bet is a pair of

acts with the same two outcomes, i.e. a pair of the form ([x on A; y on Ac], [x on B; y on Bc]) .

Fundamental is the following rationality requirement on the relation between prefer-

ences and probabilistic beliefs.

Axiom 1 (Compatibility) For all A,B ∈ Σ and x, y ∈ X :

i) [x on A; y on Ac] % [x on B; y on Bc] if A D B and x % y, and

ii) [x on A; y on Ac] Â [x on B; y on Bc] if A BB B and x Â y.

Throughout, preferences will be assumed to be eventwise monotone in the following

weak version of Savage’s axiom P3.
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Axiom 2 (Eventwise Monotonicity) For all acts f ∈ F , consequences x, y ∈ X

and events A ∈ Σ : [x on A; f(ω) elsewhere] % [y on A; f(ω) elsewhere] whenever

x % y.

The following condition ensures that the set of consequences is sufficiently rich.

Axiom 3 (Solvability) For any x, y ∈ X and T ∈ Λ, there exists z ∈ X such that

z ∼ [x, T ; y, T c].

For expositional simplicity, especially in the stake-dependent case, we shall assume

throughout that consequences are bounded in utility.

Axiom 4 (Boundedness) There exist x−,x+ ∈ X such that, for all x ∈ X, x− -
x - x+.

To obtain a real-valued representation, some Archimedean property is usually as-

sumed. The following is sufficiently strong to help deliver the main result, Theorem

1, below. Note that it is defined relative to the belief context and presumes its

equidivisibility. Substantively, as confirmed by the upcoming representation result,

Proposition 1, it asserts that if acts are changed on events of sufficiently small upper

probability, strict preference does not change.

Axiom 5 (Archimedean) For any x, y ∈ X such that x % y and any acts f = [x

on A, y on B; f otherwise] and g such that f Â g (resp. f ≺ g) and such that A is

unambiguous given A+B, there exists an event C that is unambiguous given A+B

such that C CC A and f 0 = [x on C, y on (A+B) \C; f otherwise] Â g (resp.

f 0 ≺ g).

Since axioms 3 through 5 will usually show up together in the following results, it

is convenient to refer to a preference ordering satisfying these three axioms as regular.
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Let Z denote the set of finite-valued, Σ-measurable functions Z : Ω → [0, 1]. Using

the above axioms, we will now establish a basic representation theorem that ensures

the existence of a utility function umappingX onto the unit interval together with an

evaluation functional I: Z → [0, 1] such that f % g if and only if I(u ◦ f) ≥ I(u ◦ g),

for all f, g ∈ F .

I is normalized if I(c1Ω) =c for all c ∈ [0, 1] and I(1T ) = π(T ) for all T ∈ Λ.

Note that for normalized I, u is calibrated in terms of probabilities, i.e. satisfies

u(z) = π(T ) whenever z ∼ [x+, T ;x−, T c].7 I is monotone if I(Y ) ≥ I(Z) whenever

Y ≥ Z (pointwise); I is compatible with D if I(1A) ≥ I(1B) whenever A D B and

I(1A) > I(1B) whenever A BB B; I is event-continuous if, for any x, y ∈ X , Z ∈ Z,

E ∈ Σ, A ∈ ΛE with A ⊆ E and any increasing sequence {An} of events contained

in A such that π (An/E) converges to π (A/E) , I(x1An + y1E\An + Z1Ec) converges

to I(x1A + y1E\A + Z1Ec).

Proposition 1 Let D be a equidivisible belief context. The following two statements
are equivalent:

i) the preference ordering % is compatible with D, eventwise monotone and regular
(Archimedean, solvable, and bounded).

ii) there exist an onto utility-function u : X → [0, 1] and a functional I : Z → [0, 1]

that is monotone, event-continuous and compatible with D such that
f % g if and only if I(u ◦ f) ≥ I(u ◦ g), for all f, g ∈ F .

There is a unique pair (u, I) satisfying ii) such that I is normalized.

In the sequel, preferences over bets will play a special role. We shall frequently but

not always assume that preferences over bets depend only on the events involved, not

on the stakes. This is captured by Savage’s axiom P4.

7To see this, z ∼ [x+, T ;x−, T c] implies I(u(z)1Ω) =I(1T ). Thus by the two normalization con-

ditions u(z) = I(u(z)1Ω) =I(1T ) = π(T ).
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Axiom 6 (Stake Independence, P4) For all x, y, x0, y0 ∈ X such that x Â y and

x0 Â y0 and all A,B ∈ Σ :

[x on A; y on Ac] % [x on B; y on Bc] iff [x0 on A; y0 on Ac] % [x0 on B; y0 on Bc].

We will frequently use the notation A %bet B for the preference [x+ on A;x− on

Ac] % [x+ on B;x− on Bc]. This notation is primarily motivated by the stake-

independent case in which the relation %bet completely summarizes the DM’s beliefs

and ambiguity attitudes.8 If preferences are utility-sophisticated, this turns out to be

the case even when betting preferences are stake-dependent.

Compatibility of betting preferences with a given belief context ensures a ranking

of bets on unambiguous events T according to their unambiguous probability π (T ) .

Under the assumptions of Proposition 1, there exists a unique set-function ρ : Σ →

[0, 1] representing %bet that is additive on unambiguous events and has ρ (Ω) = 1; ρ

assigns to each event the probability π (T ) of any unambiguous event to which it is

indifferent. If I is normalized, clearly ρ (A) = I (1A). The properties on I introduced

above translate naturally into properties of ρ. In particular, ρ is compatible with D
if ρ (A) ≥ ρ (B) whenever A D B and ρ (A) > ρ (B) whenever A BB B ; finally,

ρ is event-continuous if, for any disjoint B,E ∈ Σ, any A ∈ ΛE with A ⊆ E and

any increasing (respectively decreasing) sequence {An} of events contained in (resp.

containing) A such that π (An/E) converges to π (An/E) , ρ (An +B) converges to

ρ (A+B) .

8In the stake-independent case, %bet is formally equivalent to Savage’s “revealed likelihood”

relation; such an interpretation is not warranted in the presence of ambiguity, however, since the

relation incorporates not merely beliefs in this case (however construed) but also ambiguity attitudes.
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3. UTILITY SOPHISTICATED PREFERENCES

The fundamental goal of this paper is to provide axiomatic foundations for the

intuitive notion of a decision-maker who departs from expected-utility only for reasons

of ambiguity. This idea can be formulated transparently with reference to exogenously

specified belief context D in terms of the following property of utility sophistication.

Definition 1 (Utility Sophistication) The preference relation % is utility-sophisticated
with respect to Π if there exists u : X → R such that f % g (resp. f Â g) whenever

Eπu ◦ f ≥ Eπu ◦ g (resp. Eπu ◦ f > Eπu ◦ g) for all π ∈ Π; % is utility-sophisticated
with respect to the context D if it is utility-sophisticated with respect to ΠD.

9

To motivate the key axiom underlying utility sophistication, consider first the rank-

ing of unambiguous (risky) acts for which utility sophistication entails EU maximiza-

tion with respect to the probability measure π. Specifically, consider choices among

unambiguous acts f and g with two outcomes, each of which with subjective prob-

ability one half, and assume that f = [x on A; y on Ac] and g = [x0 on A; y0 on Ac]

with x Â x0 , y0 Â y and A ≡ Ac. According to a classical interpretation of expected

utility theory, a DM should choose f over g exactly if he assesses the utility gain from

x over x0 to exceed the utility loss of obtaining y rather than y0. The preference of f

over g by a DM committed to this principle reveals a greater utility gain from x over

x0 than from y0 over y. Thus, if the DM chooses f = [x on A; y on Ac] over g = [x0 on

A; y0 on Ac], consistency requires that he also choose the act [x on E; y on Ec] over [x0

on E; y0 on Ec], where E is any other event that is equally likely to its complement,

9By the uniqueness of the multi-prior representation of equidivisible contexts mentioned above,

for convex-ranged Π, utility-sophistication with respect to Π is the same as utility-sophistication

with respect to DΠ. However, without equidivisibility, it may be that Π ( Π(DΠ), so that utility-
sophistication with respect to a set of priors cannot be equated to utility-sophistication with respect

to the associated likelihood relation.
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E ≡ Ec.10

The following “Trade-off Consistency” axiom generalizes this consistency require-

ment to choices of the form f = [x on A; y on B; f(ω) elsewhere] versus g = [x0 on

A; y0 on B; f(ω) elsewhere] whenever the events A and B are judged equally likely

(A ≡ B), whether or not they are unambiguous themselves. Since the relative prob-

abilities of the events A and B are judged to be equal, the comparison between the

acts f and g boils down to a comparison of the respective utility gains as the decisive

decision criterion also in this more general case. In order to compare the acts f and

g, the DM simply does not need to consider his (possibly imprecise) assessment of

the likelihood of the union A + B, nor the payoffs in states outside A + B. This

motivates the following rationality axiom according to which the DM’s preferences

must be consistently rationalizable in terms of utility differences in the manner just

described.

Axiom 7 (Tradeoff Consistency) For all x, y, x0, y0 ∈ X such that x % x0,

acts f, g ∈ F and events A disjoint from B and A0 disjoint from B0 such that A ≡

B BB ∅ and A0 ≡ B0 :

if [x on A; y on B; f(ω) elsewhere] % [x0 on A; y0 on B; f(ω) elsewhere],

then [x on A0; y on B0; g(ω) elsewhere] % [x0 on A0; y0 on B0; g(ω) elsewhere].

Note the restriction to events A and B of strictly positive lower probability; it

ensures that the premise “[x on A; y on B; f(ω) elsewhere] % [x0 on A; y0 on B; f(ω)

elsewhere]” implies that the utility advantage of x over x0 is not smaller than that

of y0 over y if the latter is positive. Note also that, for equidivisible contexts D,
10This consistency requirement is in fact axiom 2 of Ramsey’s (1931) seminal contribution. Con-

ditions requiring consistency of trade-offs across choices have been used elsewhere in the axiomati-

zations of SEU and CEU theory; see in particular Wakker (1989).
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Trade-off Consistency entails Eventwise Monotonicity.11

For Trade-off Consistency to allow for ambiguity, the restriction to equally likely

rather than merely indifferent events A and B respectively A0 and B0 is crucial.

Indeed, if one replaced this clause by a weaker one requiring these events to be

indifferent as bets (A ∼bet B and A0 ∼bet B
0), the resulting stronger axiom would

force betting preferences to satisfy the additivity condition

A ∼bet B if and only if A+ C ∼bet B + C, for any A,B, and C,

and thereby impose SEU.

Trade-off Consistency becomes particularly powerful if the underlying belief context

is equidivisible. For in this case not only does it entail utility sophistication, utility

sophistication itself becomes particularly powerful, as it implies that a DM’s multi-act

preferences are determined by his preferences over unambiguous acts together with

his preferences over bets. Mathematically, this is the consequence of the existence of

a non-linear expectation operator that reflects the DM’s ambiguity attitudes.

The key to deriving this built-in expectation operator is the mixture-space structure

induced by equidivisible belief contexts as introduced in Nehring (2006). With each

Z ∈ Z, one can associate an equivalence class [Z] of events A ∈ Σ as follows. Let

A ∈ [Z] if there exists a partition {Ei} of Ω such that Z =
P

zi1Ei , and such that,

for all i ∈ I and π ∈ Π : π (A ∩Ei) = ziπ (Ei) . Note that [Z] is non-empty by the

convex-rangedness of Π. Moreover, it is easily seen that for any two A,B ∈ [Z] :

π (A) = π (B) for all π ∈ Π, and thus A ≡ B. Hence by Compatibility also A ∼bet B.

One therefore arrives at a well-defined ordering of random variables d%bet on Z by

11Indeed, for equivisible contexts, Eventwise Monotonicity is simply Tradeoff Consistency re-

stricted to cases in which x = y, x0 = y0 , A + B = Ω and A ≡ B, with A0 + B0 ranging over

all events E ∈ Σ. It is for the purpose of enabling this implication that we have not required the
condition y0 % y in the definition of Tradeoff Consistency.
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setting

Y d%betZ if A %bet B, for any A ∈ [Y ] and B ∈ [Z].

Let bρ denote the associated unique extension of ρ to Z given by
bρ(Z) = ρ(A) for any A ∈ [Z]. (1)

Again, by the construction of the mixture-space, this is well-defined, and one has

Y d%betZ if and only if bρ(Y ) ≥ bρ(Z).
Clearly, by Compatibility, bρ is a monotone, normalized evaluation functional on Z.
We shall call bρ(Z) the “intrinsic integral” of Z.
We are now in a position to state the main result of the paper.

Theorem 1 Let D be an equidivisible belief context. The following three statements

are equivalent:

1. The preference ordering % is regular, trade-off consistent and compatible with

D.
2. The preference ordering % is Archimedean and utility-sophisticated with respect

to D, for some onto function u : X → [0, 1].

3. There exists an onto function u : X → [0, 1] and an event-continuous set-

function ρ compatible with D with associated intrinsic integral bρ defined by (1) such
that, for all f, g ∈ F :

f % g iff bρ (u ◦ f) ≥ bρ (u ◦ g) .
Theorem 1 achieves two things. First of all, it delivers an axiomatic foundation

for utility-sophisticated preferences when the underlying belief context is equidivisible

and when the set of consequences is rich; both of these assumptions are used essentially

in the derivation. As a significant surplus value, it shows that utility sophistication
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in the equidivisible case entails the existence of an intrinsic-integral representation.

This implies that multi-act preferences are completely determined by event attitudes

(captured by betting preferences and represented by ρ) and consequence attitudes

(capture by preferences over unambiguous acts and represented by u).12 By conse-

quence, all departures from SEU can be fully explained by non-additivity of betting

preferences.

4. SEPARATING EVENT ATTITUDES FROM CONSEQUENCE

ATTITUDES

As an important dimension of its generality, Theorem 1 does not assume Stake

Independence (Savage’s axiom P4). While in the context of probabilistically sophisti-

cated preferences P4 is typically viewed as a rationality axiom expressing consistency

of revealed likelihood judgements, this interpretation is no longer viable under am-

biguity, since in this more general context betting preferences may reflect not just

likelihood judgments but also ambiguity attitudes.

We submit that, having lost its original rationale, under ambiguity P4 can no longer

be viewed as a rationality condition as there does not seem to be anything genuinely

“inconsistent” or even strange in stake dependence. For example, in the context

of an Ellsberg urn experiment, a decision maker may well prefer a bet of $1 on a

draw from an urn with unknown composition (getting $0 otherwise) over a bet of $1

on an event with an objective probability of 40%, and exhibit at the same time the

opposite preference once the stakes are raised to $10,000 (versus $0). Such preferences

can naturally interpreted as reflecting greater ambiguity aversion at greater possible

12Since bρ is constructed from ρ with reference to the context D, it may appear that the context
also plays a role in determining %. We shall show however below that this is not the case, at least
in the standard case of preferences satisfying P4; this follows immediately from the final assertion

in Proposition 2 below.
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gains. The bottom line is that P4 should be viewed as a well-behavedness rather than

rationality condition.13

In the absence of P4, betting preferences over extreme stakes represented by %bet

fail to describe preferences over bets with intermediate stakes. However, if preferences

are utility-sophisticated, %bet determines the intrinsic integral bρ, and thus all prefer-
ences (in particular: all betting preferences) are determined once consequence / risk

attitudes captured by u are given. As a result, preferences over bets with intermediate

stakes will partly depend on these attitudes. By modus tollens, Stake Independence

P4 is therefore necessary for a clean separation of consequence and pure event at-

titudes (beliefs and ambiguity attitudes). In this section, we will show that Stake

Independence is also sufficient for such a separation and characterize the restrictions

on stake-independent betting preferences imposed by utility sophistication.

First, P4 turns out to be equivalent to the following invariance properties of betting

preferences.

Axiom 8 (Union Invariance) For any T ∈ Λ and any A,B ∈ Σ disjoint

from T : A %bet B if and only if A+ T %bet B + T.

Axiom 9 (Splitting Invariance) For any A,B ∈ Σ and any partitions of A

and B into equally likely subevents {A1, ..., An} and {B1, ..., Bn},with Ai ≡ Aj and

Bi ≡ Bj for all i, j ≤ n, A %bet B if and only if A1 %bet B1.

The two invariance axioms are intuitive and have intrinsic appeal even in the ab-

sence of utility sophistication. In view of their appeal, it is not surprising that both

conditions have some incognito precedents in the literature. On the one hand, Epstein-

Zhang (2001) effectively build Union Invariance into their very definition of an event

13Such a view also resolves the conflict between dynamic consistency and P4 outside SEU observed

by Epstein-Le Breton (1993). Moreover, note that restricted to bets on unambiguous events, P4 still

obtains as an implication of compatibility with the underlying belief context, and does not need to

be assumed independently.
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T as “revealed unambiguous”.14 Splitting Invariance as well is not entirely new, as it

can be reformulated as a restriction on betting preferences over independent events.

Say that events A and B are independent if π (B/A) = π (B/Ac) for all π ∈ Π. If

preferences are compatible with the equidivisible context D as maintained, then it

can be shown easily that they satisfy Splitting Invariance if and only if

ρ(A×B) = ρ(A)ρ(B) (2)

for all A ∈ Σ and B ∈ Λ such that A and B are independent. In defining “product

capacities” for independent events, authors such as Ghirardato (1997) and Hendon

et al. (1996) have appealed to generalizations of (2) that allow both events A and B

to be ambiguous.

Alternatively, P4 can be characterized in terms of “constant-linearity” of the eval-

uation functional I. An evaluation functional I (in particular bρ) is constant-additive
if I(Y + c1Ω) = I(Y ) + c; I is positively homogeneous if I(αY ) = αI(Y ) for any

α ∈ [0, 1]; I is constant-linear if it is constant-additive and positively homogeneous.

Again, this condition is of independent interest and has been studied in the litera-

ture, especially by Ghirardato et al. (2004) . Note that, for two-outcome acts [x on

A; y on Ac] with x % y, a constant-linear intrinsic integral has the following simple

“biseparable” representation (Ghirardato-Marinacci (2001))

bρ (u ◦ f) = u(x)ρ(A) + u(y) (1− ρ(A)) .

Constant Linearity can be viewed as a cardinal stake-invariance property of multi-act

preferences. The following result derives this property from the weaker and arguably

more primitive ordinal P4 property, assuming utility sophistication.

14That is to say, Epstein-Zhang’s definition of revealed unambiguous events is such that Union

Invariance (applied to revealed unambiguous events instead of Λ) holds by definition.
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Theorem 2 Suppose % is regular, trade-off consistent and compatible with the equidi-
visible context D. Then the following three statements are equivalent.
1. % satisfies P4.
2. I is constant-linear.

3. % satisfies Union and Splitting Invariance.

In the Appendix, we demonstrate the implications 2) =⇒ 1), 1) =⇒ 3), and 3) =⇒

2). The first implication 2) =⇒ 1) is valid for any constant-linear evaluation functional

I, without reference to an equidivisible belief context. The second implication 1) =⇒

3) relates two different properties of betting preferences, making essential use of utility

sophistication. Finally, the implication 3) =⇒ 2) mirrors the invariance properties

of betting preferences in corresponding properties of the intrinsic integral bρ; utility
sophistication closes the circle via the identity I = bρ.15
Theorem 2 entails the desired separation of event attitudes from consequence valu-

ations, as formalized by the following result. Note that while Theorem 2 shows that

utility sophistication imposes Union- and Splitting Invariance on stake-independent

betting preferences, the following Proposition 2 adds that these are in fact the only

restrictions on betting preferences imposed by utility sophistication. In this result,

%ua represent given (EU maximizing) risk-preferences while %B represents given bet-
ting preferences; the two must agree on the set of bets on unambiguous events. The

result asserts that these are jointly consistent with utility sophistication if and only

if %B satisfies Union- and Splitting-Invariance, and that in this case they determine
15It may seem a bit surprising that utility sophistication entails non-trivial restrictions on betting

preferences given stake-independence. To see how this is possible, note that while utility sophistica-

tion by iteslf does not restrict betting preferences for given stakes x and y, it does constrain betting

preferences across stakes, even in the absence of P4. The existence of such restrictions explains

how the imposition of further restrictions on betting preferences across stakes such as P4 can entail

restrictions on betting preferences for given stakes.
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the overall preference ordering uniquely.

Proposition 2 Let D be an equidivisible context. Let %ua be a preference ordering

on unambiguous acts Fua that is trade-off consistent, regular, and compatible with D
restricted to Λ. Furthermore, let %B be a complete and transitive relation on Σ that

is Archimedean and compatible with D such that (%ua)bet agrees with the restriction

of %B to Λ× Λ. Then the following two statements are equivalent:

1. %B satisfies Union and Splitting Invariance with respect to D.
2. There exists a preference ordering % on all of F that is stake-independent,

Archimedean and tradeoff-consistent with respect to D and whose restrictions to Fua

and %bet agree with %ua and %B, respectively.
The preference ordering specified in (2) is unique. Furthermore, this ordering does

not depend on the context D.16

5. UTILITY SOPHISTICATION IN PARTICULAR MODELS

5.1 Models with EU aggregators

Note that Utility Sophistication can be reformulated essentially equivalently using

the notion of an aggregator Ψ of the expected-utility values under the admissible

priors in Π. To this purpose, let EΠ : Z → [0, 1]Π denote the evaluation operator

given by EΠ (Z) = (EπZ)π∈Π for Z ∈ Z; for any act f , EΠu◦f is the vector of

expected utilities (Eπu ◦ f)π∈Π induced by f.17 Clearly, EΠ (Z) is a convex subset of

[0, 1]Π. An EU aggregator is simply a monotone mapping Ψ : EΠ (Z)→ [0, 1]. Then,

up to minor technicalities, Utility Sophistication with respect to Π is equivalent to

16The latter statement is made formally precise in the proof of Proposition 2.
17Note also that in view of the Krein-Milman theorem one could restrict attention to the subvector

(Eπu ◦ f)π∈Ext(Π) .
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the existence of an EU aggregator Ψ, an operator EΠ and a utility-function u such

that

f % g if and only if Ψ (EΠ (u ◦ f)) ≥ Ψ (EΠ (u ◦ g)) , for any f, g ∈ F .

A variety of models in the literature can be put in this form. For example, the Mini-

mum Expected Utility (“MEU”) model due to Gilboa-Schmeidler (1989) corresponds

to the aggregator

Ψ (U) = min
π∈Π

Uπ.

A natural generalization admitting ambiguity-seeking is derived from evaluating acts

according to the entire range of expectations under Π, with

Ψ (U) = Υ

µ
min
π∈Π

Uπ,max
π∈Π

Uπ

¶
,

for some monotone functionΥ; see e.g. Jaffray (1989). Such “Interval EU” preferences

satisfy P4 if and only if Υ is linear, i.e. if and only only if Ψ can be written as

Ψ (U) = αmax
π∈Π

Uπ + (1− α)min
π∈Π

Uπ,

which is Hurwicz’s classical optimism-pessimism criterion.18 Dubbed α-MEU, it has

been axiomatized by Ghirardato et al. (2004) and Kopylov (2002).

Klibanoff et al. (2005) study preferences associated with aggregators

Ψ (U) = Eµφ (Uπ) ,

where µ is a probability-measure on Π, and φ : R→ R is strictly increasing and

continuous (typically smooth). If φ is smooth, then bets [x on A; y on Ac] with small

stakes (i.e. with u(x)− u(y) close to zero), are evaluated approximately according to

Eµπ. Thus, such preferences will satisfy P4 if and only if φ is linear, i.e. SEU.

18This follows from Theorem 2 together with Ghirardato et al.’s (2004) demonstration of the

equivalence of the constant-linearity of I and the constant-α representation.
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Another fairly diverse class of preferences with an EU aggregator representation

has been studied in Siniscalchi’s (2003) “plausible priors” model; all of these satisfy

P4 by construction.

Finally, somewhat outside the present framework by considering choice-functions

rather than weak orders, in Nehring’s (1991,2000) “Simultaneous Expected Utility”

model Ψ (U) is the lexicographic minimum of appropriately renormalized expected

utilities; the renormalization allows an interpretation of the solution as a bargaining

solution among alternative selves associated with the extremal priors ext(Π). All

of the above contributions are situated in variants of the Anscombe-Aumann (1963)

framework. This is no accident: indeed, by translating these contributions into the

present setting, we will see that the typical assumptions made there imply utility

sophistication with respect to the AA context DAA.

5.2 Utility Sophistication in the Anscombe-Aumann Framework

The Anscombe-Aumann (1963) framework is distinguished by taking acts to be

mappings from states to probability distributions of consequences, rather than simply

as mappings from states to consequences as in the Savage (1954) framework. These

probability distributions are interpreted as objective probabilities of the realizations

of an external random device (“roulette lotteries”) that is not part of the explicitly

modeled state space. In section 2, we have restated this description as an equidivisible

context DAA. We will begin by showing how a preference relation over Savage acts

can be redescribed as a preference relation over Anscombe-Aumann (AA-) acts and

vice versa.

Formally, an AA-act F is a finite-valued Σ1-measurable mapping from the subjec-

tive state space Ω1 to the set of probability distributions on X with finite support L.

Let FAA denote their set. Denoting elements of L by q = (qx)x∈X , with qx as the

probability of obtaining x under q, one can write F = [q1 on S1; q2 on S2; ...] in analogy

24



to the notation for Savage acts. Note that since Σ is the product algebra of Σ1 and Σ2,

any Savage act f can be written in the form [xi,j on Si × Ti,j]i≤n,j≤ni for appropriate

n and {ni}i≤n. One can thus associate with any Savage act f = [xij on Si × Tij] the

AA-act F (f) = [pi on Si], with p
x
i =

P
j≤ni,xij=x η (Ti,j) ; the AA-act F (f) associates

with any subjective state ω ∈ Ω1 the lottery that yields the consequence x with un-

ambiguous (subjective) probability entailed by the likelihood judgments DAA . By the

equidivisibility of DAA, this mapping is onto, i.e. any AA-act is the image of some

Savage act.

In order to associate with the given preference relation % over Savage acts a well-
defined preference relation over AA acts, one needs to extend the assumption that

preferences are compatible with respect to the context DAA in the following natural

way.19

Axiom 10 (Strong Compatibility) For all f ∈ F , x, y ∈ X and A,B ⊆ C ∈ Σ :

i) [x on A; y on C\A; f elsewhere] % [x on B; y on C\B; f elsewhere] if A D B and x % y, and

ii) [x on A; y on C\A; f elsewhere] Â [x on B; y on C\B; f elsewhere] if A BB B and x Â y.

Note that Compatibility is simply Strong Compatibility restricted to the case of

C = Ω; in turn, Strong Compatibility is entailed by Utility Sophistication.20

The lottery p stochastically dominates the lottery q if, for all y ∈ X,
P

x:x%AAy p
x ≥P

x:x%AAy q
x; p stochastically dominates q strictly if at least one of these inequalities

is strict. The AA-act F = [pi on Si] (strictly) stochastically dominates the AA-act

F = [qi on Si] if pi (strictly) stochastically dominates qi for every i.

19Strong Compatibility is called “Likelihood Consequentialism” in Nehring (2006) where it has

been introduced and discussed in greater detail.
20The second, strict part of Strong Compatibility plays no role in the following; we have included

it only to ensure that Stong Compatibility entails Compatibility.

25



Fact 1 The following two conditions are equivalent for a weak order % on F :
i) % is strongly compatible with DAA

ii) For all f, g such that F (f) stochastically dominates F (g) (resp. strictly stochas-

tically dominates) f % g (resp. f Â g).

It is immediate from part ii) that if % is strongly compatible with DAA, any f, f 0

such that F (f) = F (f
0
) must be indifferent. One thus obtains a well-defined weak

order on FAA by setting

F %AA G :⇔ f % g for any f and g such that F = F (f) and G = F (g).

Furthermore, %AA respects stochastic dominance. The following result is therefore

a straightforward corollary of Fact 1; it implies that preferences over Savage acts that

are strongly compatible with the context DAA and preferences over AA-acts that

respect AA Stochastic Dominance are essentially the same object.

Proposition 3 If the preference ordering over Savage acts are strongly compatible

with the context DAA, the associated preference ordering %AA respects AA stochastic

dominance. Conversely, if the preference ordering % over AA-acts respects stochastic
dominance, there exists a unique preference ordering % that is strongly compatible

with DAA such that % = %AA .

We will now show that the standard assumptions on AA preferences in contri-

butions such as Schmeidler (1989) and Gilboa-Schmeidler (1989) amount to utility

sophistication of the corresponding preferences over Savage acts. These assumptions

are summarized by the following three axioms.

Axiom 11 (Monotonicity) For all acts F ∈ FAA, lotteries p, q ∈ L and events

S ∈ Σ1 : [p on S;F (ω) elsewhere] %AA [q on S;F (ω) elsewhere] whenever p % q.
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Axiom 12 (Lottery Independence) For all lotteries p, q, r ∈ L and all α ∈ (0, 1] :

p %AA q if and only if αp+ (1− α)r %AA αq + (1− α)r.

Axiom 13 (Certainty Independence) For all acts F,G ∈ FAA, constant acts

(lotteries) H ∈ FAA
const = L and all α ∈ (0, 1] : F %AA G if and only if αF +

(1− α)H %AA αG+ (1− α)H.21

The two main results of the paper, Theorem 1 and 2 yield the following result.

Proposition 4 Suppose that the preference ordering % is regular and strongly com-

patible with the context DAA. Let %AA denote the associate preference ordering over

AA-acts. Then

i) % satisfies Trade-off Consistency if and only if %AA satisfies Monotonicity and

Lottery Independence. Furthermore,

ii) % satisfies Trade-off Consistency and Stake Independence (P4) if and only if

%AA satisfies Monotonicity and Certainty Independence.

Proposition 4 yields a subjective, epistemic foundation of the standard modelling

of ambiguity in the AA framework. All axioms are conditions on preferences over

Savage acts, some of them formulated in relation to a given belief context. Since all

uncertainty is treated on par as part of a single state space, all purely behavioral

assumptions carry their usual, transparent meaning. By contrast, the original AA

framework treats objective and subjective uncertainty differently; while the trick of

including the objective uncertainty in the consequences is mathematically neat, it

rather drastically changes the meaning of standard assumptions such as Monotonicity

which turns out to be much stronger than usual.22 On the other hand, Certainty

21As usual, this mixture-operation is defined pointwise.
22This intransparency potentially affects assumptions made within this framework to characterize

specific preference models. Epstein (1999), for example, criticizes Schmeidler’s (1989) and Gilboa-
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Independence, which looks rather ad hoc and has no direct counterpart in the Savage

framework, can be replaced by the transparent and standard assumption of stake

independence.

The above epistemic subjective rendering of the AA setup is different from the

recent preference-based translation by Ghirardato et al. (2003). The key to their

work is a preference-based definition of utility-mixtures. It allows them to appeal in

a Savage setting to axioms and results that are mathematically analogous to those

formulated originally in an AA setting. However, since these axioms and results now

refer to different objects, namely Savage rather than Anscombe-Aumann acts, they

have rather different content.

5.3 Choquet Expected Utility

A main contribution of Theorem 1 was to show that utility sophistication with

respect to an equidivisible context implies the determination of preferences over gen-

eral multi-valued acts from preferences over unambiguous (risky) acts and preferences

over bets expressed by the intrinsic integral bρ. The Choquet Expected Utility (CEU)
model which ranks acts according to the Choquet integral of utilities

R
u ◦ fdν is the

main alternative model in the literature with this property.23 In contrast to utility

Schmeidler’s (1989) definition of ambiguity aversion as too restrictive and/or inapplicable in a Savage

setting. In Nehring (2001), we have formulated a definition of ambiguity aversion in terms of betting

preferences, and show that it yields Schmeidler’s in the utility-sophisticated case. In the absence of

utility-sophistication, for example in the context of the CEU model, the new definition has however

none of the restrictive and undesirable implications critized by Epstein.

Likewise, one obtains Schmeidler’s (1989) “mixed CEU” model by imposing “Comonotonic Inde-

pendence” restricted to non-random (Σ1-measurable) acts; this simple observation throws light on

the well-known fact that Schmeidler’s model is quite distinct from proper CEU models as formulated

in a Savage framework (Gilboa 1987, Sarin-Wakker 1992).
23This property comes out especially clearly in Sarin-Wakker’s (1992) axiomatization based on

a Cumulative Dominance axiom which explicitly constructs multi-act preferences from preferences
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sophistication, the CEU model is designed to also allow for departures from expected

utility in the absence of ambiguity, accommodating for example the Allais (1953)

paradox. If one writes the non-normalized capacity ν as φ ◦ ρ, such departures are

reflected in the non-linearity of φ.

When are Choquet preferences utility-sophisticated? While this can happen when

the underlying context is not equidivisible, it never happens under equidivisibility in

the presence of any ambiguity.

Proposition 5 Suppose that a CEU preference ordering % is utility-sophisticated

relative to the equidivisible context D; then % is in fact SEU.

To illustrate the incompatibility of CEU preferences with utility sophistication,

consider a decision-maker with CEU preferences ordering who is an EU maximizer

over unambiguous acts (i.e. with φ = id). Let A be an “ambiguous” event with

respect to which the decision-maker is ambiguity averse a la Ellsberg, i.e. for which

ρ (A)+ρ (Ac) < 1. Denote consequences in (non-normalized) utiles, and take B ⊆ Ac

such that B ≡ Ac\B. Let T be any unambiguous event such that T ≡ T c. At issue

is the comparison of the constant act 1Ω, and the act f given as

[1 on A, 2 on B, 0 on Ac\B].

Conditional on Ac, this act entails an unambiguous 50-50 lottery with utility-payoffs

2 or 0. Since 1Ω ∼ [2 on T, 0 on T c] by assumption, Trade-off Consistency implies

f ∼ 1Ω.

Since the act f has therefore expected utility of 1 for every prior π ∈ Π, on the

Bernoulli Principle, the act f has a certainty equivalent of 1 irrespective of the

over bets.
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DM’s ambiguity attitudes, even though the probabilities of its outcomes are am-

biguous. By contrast, a CEU maximizer evaluates the act f as if its valuation (cer-

tainty equivalent) was ambiguous. Indeed, one easily computes that
R
u ◦ fdν =

2ρ (B)+1 [ρ (A+B)− ρ (B)] = ρ (A+B)+ρ (B) . If one assumes for simplicity that

betting preferences are based on lower probabilities (i.e. ρ (E) = minπ∈Ξ π (E) for all

E, for some Ξ ⊆ Π), this implies24 that in factZ
u ◦ fdν = 1 + 1

2
(ρ (A) + ρ (Ac)− 1) = 1− 1

2

µ
max
π∈Ξ

π (A)−min
π∈Ξ

π (A)

¶
, (3)

and therefore

f ≺ 1Ω. (4)

Thus the ambiguity of the individual outcomes leads the ambiguity-averse CEU

decision maker to discount the act f relative to its unambiguous expected util-

ity. Moreover, this discount is proportional to the ambiguity of A measured by

maxπ∈Ξ π (A)−minπ∈Ξ π (A), and can be large (up to 1
2
).

Proposition 5 reveals a fundamental incompatibility between rank-dependence and

the Bernoulli principle.25 This incompatibility extends to non-P4 generalizations of

CEU such as Cumulative Prospect Theory, and does not hinge on equidivisibility of

the context. If the context is not equidivisible, there often exist some non-degenerate

utility-sophisticated CEU preferences, but their set will in many cases still be fairly

degenerate.26

24Indeed, one easily computes that ρ (A+B) = 1
2 (1 +minπ∈Ξ π (A)) and ρ (B) =

1
2 minπ∈Ξ π (A

c) .
25At first glance, Proposition 5 might seem to conflict with a well-known result of Schmeidler

(1989) who showed that the CEU and MEU models coincide for convex capacities. Proposition 5

thus implies that capacities that are compatible with an equidivisible context cannot be convex,

which can also be easily verified directly.
26For example, let µ1 and µ2 denote probability measures on two distinct subalgebras A1,A2 ⊆ Σ,

and let A denote the smallest algebra containing both A1 and A2. Let Π denote the set of priors π
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5.4. A Two-Way Classification of Preference Models

The above discussion allows one to classify a variety of preference models proposed

in the literature according to their utility sophistication and stake-independence. To

tie in directly with the literature, we assume that all models are situated in the epis-

temized version of the traditional AA model analyzed in section 5.2 using Proposition

4. In particular, utility sophistication is taken to properly mean “utility sophistication

relative to the context DAA”.

Note that on this understanding, the MEU model due to Gilboa-Schmeidler (1989)

does not coincide with the class of multi-prior preferences over Savage acts (as axiom-

atized by Casadesus et al. (2000) and Ghirardato et al. (2003)) that are strongly com-

patible with DAA.
27 As noted in section 5.3, CEU preferences (and rank-dependent

more generally) can be compatible with the DAA as an equidivisible context only

when they are degenerate (SEU). We have discussed various stake-dependent (non-

P4) preference models and their utility sophistication above. In particular, we noted

that utility-smooth preferences will in general violate P4. By contrast, event-smooth

preferences (i.e. preferences that are locally linear in events) as in the work of

Machina (2004) and Epstein (1999) do not conflict with P4 per se; for example, event-

smoothness imposes only mild conditions on CEU preferences. However, in view of

the identity of utility-evaluation functional I and the implicit integral bρ under util-
ity sophistication, event-smoothness and utility-smoothness are essentially the same

thing for utility-sophisticated preferences; this implies the absence event-smooth pref-

that agree with µi on Ai. It follows from the analysis in Nehring (1999) that if a CEU preference

relation is utility-sophisticated with respect to Π, the representing capacity must be additive on all

of A. Of course, utility-sophistication by itself carries no such implication, as evidenced by the MEU
model; nor does the assumption of CEU preferences: in general, many CEU preferences are strongly

compatible with DΠ, without eliminating ambiguity about events in A\(A1 ∪A2).
27Example 3 below illustrates the difference.
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erences that are utility-sophisticated as well as stake-independent but do not coincide

with SEU.28 Finally, while stake-independence is generally lost under conditioning,

utility sophistication is preserved.

— Utility Sophistication

Non-P4

Cumulative Prospect Theory (KT 92)

Utility-Smooth Preferences

Event-Smooth Preferences (Machina 04)

Conditional Pref. (Epstein-Le Breton 93)

Interval Expected Utility (Jaffray 89)

Utility-Smooth Preferences (KMM 05)

Event-Smooth Preferences (Machina 04)

Conditional Util. Soph. Preferences

P4
CEU (Gilboa 89, Sarin-Wakker 92)

Event-Smooth Preferences (Machina 04)

CEU (Schmeidler 89)

MEU (Gilboa-Schmeidler 89)

α-MEU (GMM 02, Kopylov 02)

Plausible Priors (Siniscalchi 03)

Simultaneous EU (Nehring 91, 00)

Prob. Soph. Machina-Schmeidler (92) Subjective EU (Savage 54)

Table 1: Two-Way Classification of Preference Models

6. UTILITY SOPHISTICATION DE-RELATIVIZED

Utility Sophistication has been defined relative to an exogenously specified set of

likelihood comparisons D. A priori, it is quite possible, however, that a DM may be

utility-sophisticated relative to a non-exhaustive likelihood relation D0 while at the
same time failing to be utility-sophisticated relative to a richer, apparently equally

28This claim would appear to be robust to the particular formalization of event-smoothness

adopted. Epstein (1999) and Machina (2004) define event-smoothness relative to an additive refer-

ence measure; in the present setting, it would be natural to use the sub-additive upper-probability

π+AA for this purpose.
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appropriate belief relation D. Indeed, this possibility arises trivially in the case of
the “vacuous relation” D0=D∅ given by A D∅ B iff A ⊇ B. For a richer example,

consider CEU preferences % that are SEU on unambiguous acts but not globally, and
that are strongly compatible with respect to some equidivisible context D. Then % is
utility-sophisticated relative to the restriction D0 of D to unambiguous events, but,

in view of Proposition 5, % cannot be utility-sophisticated with respect to D itself.
Such examples may create the impression that one needs to know his “true,” ex-

haustively described beliefs D> in order to meaningfully ascertain whether a decision
maker is genuinely utility-sophisticated. This would raise obvious conceptual and/or

pragmatic issues, especially in view of the fact that there is no generally accepted

notion of how to infer these beliefs from his preferences, and would thus seriously

threaten the applicability of the entire notion of utility sophistication.

Importantly, however, the problem does not arise when the set of non-exhaustively

ascribed beliefsD0 is sufficiently rich, specifically: when it is equidivisible, for example
when D0 is the AA context. Suppose that preferences are utility-sophisticated with
respect to DAA, and consider any superrelation D⊇DAA that is consistent with the

decision-maker’s preferences in that % is strongly compatible with D. We will show
that preferences must then be utility-sophisticated not just with respect to D0=DAA,

but with respect to D, whatever D may be! In the language of “true beliefs”, this

means that if it is known that the decision maker’s true beliefs D> contain an equidi-
visible likelihood relation D0, it suffices to check for utility sophistication with respect
to D0 to determine whether the decision maker is utility-sophisticated with respect
to the true beliefs D>. This is established by the following result.

Proposition 6 i) Suppose % is trade-off consistent with respect to the equidivisible

context D0 and strongly compatible with D⊇D0. Then % is trade-off consistent with

respect to D as well.
ii) Suppose % is regular and utility-sophisticated with respect to the equidivisible
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context D0 and strongly compatible with D⊇D0. Then % is regular and utility-

sophisticated with respect to D as well.

A Fully Behavioral Definition of Utility Sophistication

While Proposition 6 successfully dispenses with the need to identify the decision

maker’s true beliefs, it still leaves utility sophistication relative to the belief context

D0 . Is it possible to overcome this belief-relativity completely and provide a useful
notion of “revealed utility sophistication” that is well-defined in terms of preferences

alone? More specifically, is it possible to ascertain in terms of preferences alone

whether a decision maker behaves in accordance with the Bernoulli principle?

What is sought is a behavioral definition roughly on par with the definition of prob-

abilistic sophistication as a behavioral criterion of satisfaction of the Bayes principle.

The following example — discussed before in Epstein-Zhang (2001) and Ghirardato-

Marinacci (2002) — shows that satisfaction of the Bernoulli principle cannot always

be inferred unambiguously from observed behavior, hence that one cannot hope to

arrive at a satisfactory definition of revealed utility sophistication that is decisive in

all cases.

Example 3 (Probabilistic Sophistication or Utility Sophistication?) Let

µ be a convex-ranged probability measure on some event space (Ω,Σ), and φ : [0, 1]→

[0, 1] an increasing, strictly convex function mapping the unit interval onto itself. Sup-

pose that preferences have a CEU representation with capacity φ ◦ µ, and are thus

probabilistically sophisticated in the sense of Machina-Schmeidler (1992). One nat-

ural explanation of these preferences is that the DM has probabilistic beliefs given by

µ (in line with the Bayes principle) and is “probabilistically risk-averse”. However,

there is a competing explanation, namely that the decision-maker behaves according
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to the Bernouilli priniciple but is ambiguity-averse, evaluating acts according to the

minimum expected utility of the core of the capacity ν, Ξ = {π : π ≥ ν}29; such pref-

erences are utility-sophisticated relative to any Π ⊇ Ξ. There seems to be no basis

for privileging one explanation over the other on the basis of preferences alone. At

most, one could argue in favor of a “convention” by postulating the primacy of one

criterion over the other a priori, for example by declaring probabilistic sophistication

to reveal absence of ambiguity by definition.30

A key feature of Example 3 is sparseness of the beliefs relative to which utility

sophistication can be attributed. But as Proposition 6 has just shown, the illus-

trated conflict could not arise if the decision maker was utility-sophisticated relative

to a sufficiently rich (equidivisible) likelihood relation. In addition, richness in the

form of equidivisibility of beliefs is crucial for the full analytical power of utility so-

phistication due to the entailed reduction property asserted by the main result of

the paper, Theorem 1. Indeed, this reduction property entails that multi-act pref-

erences can be fully explained as utility-sophisticated evaluation determined by risk-

and betting-preferences. Preferences are, one might say, as utility-sophisticated as

they can possibly be; any remaining gap to SEU is fully accounted for by the ambigu-

ity revealed in betting preferences. The crucial role of the richness of the underlying

belief context motivates the following definition of “revealed utility sophistication”.

Definition 2 (Revealed Utility Sophistication) The preference relation % is re-
29The capacity ν is easily seen to be convex; the existence of an equivalent MEU representation

follows therefore from a result by Schmeidler (1989).
30This seems to be the line taken by Epstein-Zhang (2001). Ghirardato-Marinacci (2002), on the

other hand, argue for the convention aligned with the second interpretation, explaining very clearly

the unavoidability of a conventional element in the absence of non-behavioral information. They also

point out how the existence of exogeneously identified unambiguous events allows one to distinguish

between the two possible interpretations of a probabilistically sophisticated DM.
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vealed utility-sophisticated if it is utility-sophisticated relative to some equidivisible

context D .

If preferences satisfy Revealed Utility Sophistication, this can be taken to indicate

satisfaction of the Bernoulli principle. By contrast, if preferences violate this con-

dition, this may be due either to a genuine violation of the Bernoulli principle, or

to insufficiently rich beliefs, or both. As there is evidently a provisional element in

the proposed definition in that equidivisibility is merely sufficient, but not strictly

necessary to obtain the conclusions of Theorem 1 and Proposition 6; improvements of

the definition by weakenings of the equidivisibility assumption are thus imaginable.

To make the proposed definition applicable, an operational criterion of its satis-

faction is highly desirable. We will now provide such a criterion for the special case

of stake-independent preferences. The assumption of stake-independence is helpful

since it can be shown to imply the existence of a unique maximal likelihood relation

%∗bet relative to which a given preference ordering is utility-sophisticated;31 from this

one immediately the equivalence of revealed utility sophistication to equidivisibility

of the relation %∗bet.
For preparation, a bit of further background is needed. If preferences are P4, then

in order to be utility-sophisticated relative to an equidivisible context, they must be

constant-linear in view of Theorem 2 . If they are indeed constant-linear, the ex-

istence of such a context can be determined via the following notion of a maximal

independent subrelation %∗ of the given preference relation %. Define the following
mixture-operation αf ⊕ (1 − α)g on the space of acts: for α ∈ [0, 1], αf ⊕ (1 − α)g

denotes any act h such that, for all ω ∈ Ω, u(hω) = αu(fω)+(1−α)u(gω); note that by

Eventwise Monotonicity the choice of the act h is immaterial. Since utility functions in

a constant-linear representation are unique up to positive affine transformation, this

31While we believe the provided criterion to be applicable also in the stake-dependent case, this

needs to be verified in future research.
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mixture-operation is well-defined in terms of preferences; Ghirardato et al. (2003) pro-

vide a directly behavioral definition. A (possibly incomplete) relation %0 is indepen-
dent if, for all f, g, h and α ∈ (0, 1], f %0 g if and only if αf⊕(1−α)h %0 αg⊕(1−α)h.
In Nehring (2001), we have obtained (a version of) the following result, a version of

which can also be found in Ghirardato et al. (2004, Propositions 4 and 5).32 The

step from i) to ii) follows from Bewley’s (1986) Theorem.

Proposition 7 Suppose that the preference ordering % has a constant-linear repre-

sentation I ◦ u such that u (X) is convex.

i) Then there exists a unique maximal independent subrelation %∗, with

f %∗ g if and only for all h and all α ∈ (0, 1], αf ⊕ (1− α)h % αg ⊕ (1− α)h.

ii) There exists a unique closed, convex set of priors Π∗ such that

f %∗ g if and only Eπu ◦ f ≥ Eπu ◦ g for all π ∈ Π∗. (5)

In particular, Π∗ is the unique minimal set of closed, convex of priors Π such that %
is utility-sophisticated with respect to Π and u.

Furthermore, %∗bet is the unique maximal coherent likelihood relation D such that

% is utility-sophisticated with respect to D and u.33

Proposition 7 entails the following operational characterization of revealed utility

sophistication.

32A first version of this result was presented in the talk Nehring (1996) which made use of a

different version of condition i); the exact version of the characterization of %∗ in i) was arrived at
independently by Ghirardato et al. (2004).
33The last claim has no counterpart in Ghirardato et al. (2004). To verify it, note that %∗bet=D(Π∗)

by the representation (5). Since by the definition of coherence for any coherent context D such that
D*%∗bet, one has ΠD + Π∗ (for otherwise D=D(ΠD )⊆D(Π∗)=%

∗
bet), and the claim follows.
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Proposition 8 Suppose that the preference ordering % has a constant-linear repre-

sentation I ◦ u such that u (X) is convex. Then the following three conditions are

equivalent:

1. % is revealed utility-sophisticated;
2. Π∗ is convex-ranged;

3. %∗bet is equidivisible.

In the case of multi-prior (MEU) preferences with set of priors Ξ, Π∗ is easily verified

to be equal to Π∗ = Ξ; see Ghirardato et al. (2004, Proposition 16) for a published

proof. Thus the preferences in example 3 are not revealed utility-sophisticated, since

Ξ fails to be convex-ranged there.

7. REVEALED UNAMBIGUOUS BELIEFS

Proposition 8 suggests a natural definition of “revealed probabilistic beliefs”, namely

%∗bet. Not only are these beliefs the largest (most precise) likelihood relation that is
consistent with assuming utility sophistication with respect to them, by Proposition

6 it is not possible to impute a strictly larger, more precise likelihood relation relative

with which preferences are at least strongly compatible.34

Definition 3 (Revealed Probabilistic Beliefs) Suppose that the preference or-

dering % is revealed utility-sophisticated and satisfies P4, with constant-linear rep-

resentation I ◦ u such that u (X) is convex. Then %∗bet defines the decision maker’s
revealed probabilistic beliefs.

Consider, for example, the counterpart to certainty-independent preferences in the

AA-framework. In view of Proposition 4, such preferences are utility-sophisticated

34These two claims require %∗bet to be regular.
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with respect to DAA as well as stake-independent. They are thus revealed utility-

sophisticated, with revealed probabilistic beliefs %∗bet⊇DAA. The existence of an in-

dependent randomization device is thus revealed through preferences rather than

postulated on a non-behavioral basis.

In earlier work (Nehring (1996), see also Nehring (1999) and Nehring (2001)) as well

as in the rich contribution by Ghirardato et al. (2004), analogous definitions (with

%∗ instead of %∗bet) have been put forward without restriction to revealed utility-
sophisticated preferences. These earlier definitions are subject to the criticism that

they somewhat arbitrarily attribute to ambiguity what could be attributed with equal

legitimacy to failures of utility sophistication; in Example 3, for instance, in view

the agent’s “probabilistic sophistication”, a strong case can be made for attributing

complete probabilistic beliefs to the agent. This position is consistent with Definition

3, since %∗bet fails to be equidivisible and is therefore not viewed as identifying the
DM’s probabilistic beliefs.

Could one conceive of cases in which the proposed definition gives a questionable,

or even the intuitively wrong answer? To seriously compete with %∗bet as a candidate
for belief attribution, such counterexamples would presumably have to exhibit beliefs

D# with which preferences are strongly compatible and which are as rich or “richer”
than %∗bet. While there is evidently some latitude in determining what should count
as “rich” in this context, an obvious natural candidate is equidivisibility. We have

not yet been able to come up with an example of this kind in which there exists

a competing, equidivisible D# with which % is strongly compatible but not utility-

sophisticated; note in particular that, by Proposition 6, D# can never strictly include
%∗bet . It seems likely that such examples exist only in exceptional circumstances, if
they exist at all.

Furthermore, even if such examples can be produced, with D# broadly on par with
%∗bet in terms of its richness as a likelihood relation, there remain strong grounds for
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privileging the %∗bet as the more compelling representation of the decision maker’s
probabilistic beliefs. First of all, since %∗bet is the unique maximal relation relative to
which preferences are utility-sophisticated, preferences cannot be utility-sophisticated

relative to D# at the same time. Imputing the beliefs %∗bet rather than D# thus

renders the decision maker’s behavior overall more rational. And secondly, due to the

reduction property associated with utility sophistication relative to an equidivisible

context, the likelihood relation %∗bet, together with the revealed utility sophistication,
explains the decision maker’s preferences globally (without gap, as it were), while

D#, tied to preferences merely via Strong Compatibility, constrains and thus explains
preferences only partially.

Restricting the domain of the definition of revealed probabilistic beliefs as proposed

has significant implications for the understanding of some of the major models of

decision making under ambiguity. For example, as noted already, for MEU preferences

with set of priors Ξ, the set of revealed priors given in Proposition 7 is Π∗ = Ξ.

However, examples such as Example 3 interfere with a straightforward interpretation

of this set as the decision maker’s beliefs. Yet such an interpretation constitutes a

large part of the intuitive appeal of the MEU model in the first place. Here, the

proposed domain restriction comes to rescue, by salvaging this interpretation for

the case of multi-prior preferences associated with convex-ranged sets of priors Ξ. In

particular, it salvages this interpretation for the original MEU model axiomatized by

Gilboa-Schmeidler (1989) as reformulated here along the lines of section 5.

The proposed domain restriction also affects the analysis of CEU preferences, for

the simple reason that, as evident from Proposition 5, it never applies to them.

Thus, the unqualified claim in earlier work (Nehring (1999)) that “the” CEU model

suffers from serious epistemic handicaps loses its basis. It can only be maintained for

Schmeidler’s (1989) version of the CEU model.
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APPENDIX: PROOFS

Proof of Proposition 1.That ii) implies i) is straightforward; as to the Archimedean

property, merely note that I−continuity implies an analogous property for decreasing

sequences {An} by switching the roles of x and y.

For the converse, take any g ∈ F . By Eventwise Monotonicity and boundedness,

x− - g - x+. By the convex-rangedness of D, there exists a totally ordered chain
of unambiguous events T ⊆Λ such that, for any T ∈ Λ, there exists T 0 ∈ T such

that T 0 ≡ T. Hence one can infer from the Archimedeanicity of % (applied to the case
A+B = Ω, i.e. A ∈ Λ) the existence of an event Tg ∈ Λ such that g ∼ [x+, Tg;x−, T c

g ].

By compatibility, all such events Tg have the same unambiguous probability π (Tg) .

Hence the mapping V : g → π (Tg) is well-defined and represents % by construction.
For any consequence/constant act z, set u(z) := π (Tz) . By Eventwise Monotonicity,

V can be written as I ◦ u, with I monotone and compatible with D; note that I is
normalized by construction; moreover, the uniqueness claim is straightforward from

Solvability which implies that u is onto.

It remains to verify that I is event-continuous. To do so, consider {An ∈ ΛE} and

A ∈ ΛE such that π (An/E) converges to π (A/E) and such that the family is {An}∪A

is ordered by set-inclusion. Take any x, y ∈ X and Z ∈ Z. W.l.o.g. x ≥ y. It clearly

suffices to show convergence of I(x1An + y1E\An + Z1Ec) for the case of {An} being

an increasing or decreasing sequence. The proof for both cases is analogous; assume

the former, and suppose that the claim is false. I.e., in view of the monotonicity

of I, suppose that supn∈N I(x1An + y1E\An + Z1Ec) < I(x1A + y1E\A + Z1Ec). By

normalization, there exist an event T ∈ Λ such that supn∈N I(x1An+y1E\An+Z1Ec) <

I(1T ) < I(x1A + y1E\A + Z1Ec). Hence, by Archimedeanicity, there exist A0 ∈ ΛE

and A0 C A such that I(1T ) < I(x1A0 + y1E\A0 + Z1Ec). But by the convergence

assumption, A0 E An for some n, hence I(x1A0 + y1E\A0 + Z1Ec) ≤ supn∈N I(x1An +
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y1E\An + Z1Ec) < I(1T ), a contradiction. ¤

In the following Lemma, we state a key mathematical property of the intrinsic

integral bρ that will be used repeatedly in the sequel. Let S denote any finite partition
of Ω into events Si ∈ Σ. Say that Z ∈ Z is D-unambiguous conditional on the finite
partition S if, for all Si ∈ S, Z1Si is ΛSi-measurable; let ZS denote their class. For

Z ∈ ZS , a expectation conditional on S is any random variable ζ such that

ζ (ω) =
X

z∈[0,1]

zπ({ω0 ∈ Si | Z (ω0) = z}/Si) if ω ∈ Si and Si is non-null, and

ζ (ω) = arbitrary if ω ∈ Si and Si is null;

let the set of such ζ be denoted by E(Z/S).

Lemma 1 (Characterization of Intrinsic Integral) bρ is the unique mapping r :
Z → [0, 1] such that

i) For any event A ∈ Σ, r (1A) = ρ(A), and

ii) (Conditional Linearity) For any partition S and any Z ∈ ZS , r (Z) = r (ζ)

for any ζ ∈ E(Z/S).

Note that Conditional Linearity implies in particular that bρ restricted to unambigu-
ous random variables is the ordinary expectation with respect to π or equivalently

ρ.

Proof of Lemma 1.

It is immediate from its definition that bρ satisfies i). To verify the Conditional

Linearity of bρ, write Z as
P

i,j zij1Aij with Si =
P

j≤nj Aij for all i. Consider any

C such that π (C ∩Aij) = zijπ (Aij) for all i, j and all π ∈ Π; such C exist by the

convex-rangedness of Π. Then C ∈ [Z] by construction and fact, for all non-null Si
and all π ∈ Π,

π (C ∩ Si) =
X
j

π (C ∩Aij) =
X
j

zij (π (Aij/Si)π (Si)) =

ÃX
j

zijπ (Aij/Si)

!
π (Si) .
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From this evidently C ∈ [ζ] for any ζ ∈ E(Z/S). Thus indeed C ∈ [Z] ∩ [ζ], and

therefore bρ (Z) = ρ(C) = bρ (ζ) .
Conversely, assume that r satisfies i) and ii). Consider any Z=

P
i zi1Si and any

C ∈ [Z] such that π (C ∩ Si) = ziπ (Si) for all i, j and all π ∈ Π; such C exist by the

convex-rangedness of Π. By construction of C, 1C ∈ ZS with Z ∈ E(1C/S). Hence

r (Z) = r (1C) (by ii) = ρ(C) (by i) = bρ(Z),
which establishes that r = bρ. ¤

Proof of Theorem 1.

iii) implies ii) To show that % is utility-sophisticated with respect to D, take any
f, g such that Eπu ◦ f ≥ Eπu ◦ g for all π ∈ Π, and take A ∈ [u ◦ f ] and B ∈ [u ◦ g].

By construction, π(A) ≥ π(B) for all π ∈ Π, and therefore by the compatibility of ρ

bρ (u ◦ f) = ρ (A) ≥ ρ (B) = bρ (u ◦ g) ,
i.e. f % g. By the same token, if Eπu ◦ f > Eπu ◦ g for all π ∈ Π, then f Â g.

To verify that % is Archimedean, in view of Proposition 1 we need to verify that bρ is
event-continuous exploiting the event-continuity of ρ. Thus, take some x, y ∈ X , Z ∈

Z, E ∈ Σ, A ∈ ΛE and some increasing sequence {An} of events contained in A such

that π (An/E) converges to π (A/E) ; we need to show that bρ(x1An + y1E\An +Z1Ec)

converges to bρ(x1A + y1E\A + Z1Ec). By conditional linearity (Lemma 1),

bρ(x1A + y1E\A + Z1Ec) = bρ((π (A/E)x+ (1− π (A/E)) y) 1E + Z1Ec)

and likewise

bρ(x1An + y1E\An + Z1Ec) = bρ((π (An/E) x+ (1− π (An/E)) y) 1E + Z1Ec).

Suppose x ≥ y; the converse case is dealt with symmetrically.
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Take B ∈ [Z1Ec], A0 ∈ [(π (A/E)x+ (1− π (A/E)) y) 1E] and an increasing se-

quence of events A0n ∈ [(π (An/E) x+ (1− π (An/E)) y) 1E] contained in A0. By con-

struction,

bρ((π (A/E)x+ (1− π (A/E)) y) 1E + Z1Ec) = ρ (A0 +B) ,

as well as

bρ((π (An/E)x+ (1− π (An/E)) y) 1E + Z1Ec) = ρ (A0n +B)

Note that by definition, A0 and the A0n are unambiguous given E. Hence by the

event-continuity of ρ, ρ (A0 +B) = limn→∞ ρ (A0n +B) , and therefore

bρ(x1A + y1E\A + Z1Ec) = lim
n→∞

bρ(x1An + y1E\An + Z1Ec),

as needed to be shown.

ii) implies i) It is clear that Utility Sophistication implies Compatibility. To

verify Trade-off Consistency, take any x, y, x0, y0 ∈ X, f, g ∈ F and events A disjoint

from B and A0 disjoint from B0 such that A ≡ B BB ∅ and A0 ≡ B0 and such

that [x on A; y on B; f(ω) elsewhere] % [x0 on A; y0 on B; f(ω) elsewhere]. By the

assumption on A and B, for all π ∈ Π, π (A) = π (B) > 0; therefore, if it was the case

that u(x) + u(y) < u(x0) + u(y0), then the strict part of Utility Sophistication would

imply that [x on A; y on B; f(ω) elsewhere] ≺ [x0 on A; y0 on B; f(ω) elsewhere],

which is false by assumption. Thus u(x) + u(y) ≥ u(x0) + u(y0), which implies by the

non-strict part of Utility Sophistication that [x on A0; y on B0; g(ω) elsewhere] % [x0

on A0; y0 on B0; g(ω) elsewhere], as needed to be shown.

i) implies iii)

Since Trade-off Consistency implies Eventwise Monotonicity for equidivisible con-

texts as remarked in the text, by Proposition 1 there exist an onto function u : X →
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[0, 1] and a normalized functional I : Z → [0, 1] that is monotone, event-continuous

and compatible with D such that f % g if and only if I(u ◦ f) ≥ I(u ◦ g), for all

f, g ∈ F . In particular, ρ is event-continuous as the restriction of I to indicator

functions. It remains to show that I = bρ.
Step 1. We shall first consider the case of dyadic-valued utilities; a number is dyadic

if α = c
2m
, wherem is natural or zero, and c is an odd integer or zero;m will be referred

to as the (dyadic) order of α denoted by |α|. Let D denote the set of dyadic numbers

in (0, 1].

Lemma 2 For any α ∈ D, w, x, y ∈ X,B ∈ Σ, A ∈ ΛB with A ⊆ B and T ∈ Λ

such that π(T ) = π(A/B) = α : if w ∼ [x, T ; y, T c], then [w,B; f(ω) elsewhere] ∼

[x,A; y,B\A; f(ω) elsewhere].

The Lemma is proved by induction on the order of α. If the order of α is 1, i.e. if

α = 1
2
, the assertion follows directly from Trade-off Consistency. Suppose thus that

the Lemma has been shown for all dyadic coefficient α0 with |α0| < |α| . Assume that

α ≥ 1
2
; the case of α < 1

2
can be proved essentially identically. Then α = 1

2
+ 1

2
β,

where β is dyadic with |β| = |α|− 1.

Now define unambiguous events T1, T2, T3 such that T1+T2+T3 = Ω, T2+T3 = T,

and π(T2) =
1
2
β. Since π(T ) = α, one has also π(T3) =

1
2
and π(T2/T1 + T2) = β. In

parallel, define events A1, A2, A3 ∈ ΛB such that A1+A2+A3 = B,A2+A3 = A, and

π(A2/B) =
1
2
β. Since π(A/B) = α, one has also π(A3/B) =

1
2
and π(A2/A1 +A2) =

β. Such events exist by the convex-rangedness of Π.

Take any D ∈ Λ such that π(D) = β, and z ∈ X such that z ∼ [x,D; y,Dc]; such

z exists by Solvability. Since π(T2/T1 + T2) = β, by the induction assumption this

implies that

[z, T1 + T2;x, T3] ∼ [y, T1;x, T2;x, T3],
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hence by the assumption that w ∼ [x, T ; y, T c] and transitivity also that

[z, T1 + T2;x, T3] ∼ [w, T1 + T2;w, T3]. (6)

Writing [x,A; y,B\A; f(ω) elsewhere] = [y,A1;x,A2;x,A3; f(ω) elsewhere], by the

induction assumption one also has

[x,A; y,B\A; f(ω) elsewhere] ∼ [z, A1 +A2;x,A3; f(ω) elsewhere].

By Trade-off Consistency and (6), in turn

[z,A1 +A2;x,A3; f(ω) elsewhere] ∼ [w,A1 +A2;w,A3; f(ω) elsewhere].

Since B = A1 +A2 +A3, we get by transitivity

[x,A; y,B\A; f(ω) elsewhere] ∼ [w,B; f(ω) elsewhere]

as desired.

Step 2. We shall next obtain the desired conclusion for the subset dyadic-valued

functions Y ∈ Z, which we shall abbreviate to ZD. Thus, take any Y =
P

i≤n yi1Ei ∈

ZD; by solvability, there exists f = [wi, Ei]i≤n ∈ F such that u (wi) = yi for all i, so

that Y = u◦f. For each i ≤ n, pick Ai ⊆ Ei such that π(Ai/Ei ) = u (wi) . By n−fold

application of Lemma 2, f ∼
£
x+,

P
i≤nAi;x

−,
¡P

i≤nAi

¢c¤
i≤n . Since

P
i≤nAi ∈ [Y ]

by construction, one obtains

I(Y ) = I(u ◦ f) = ρ(
X
i≤n

Ai) = bρ(Y ),
demonstrating that I = bρ on ZD.
Step 3.

This conclusion is extended to all of Z by an inductive continuity argument. Let

Zk the set of random variables Y ∈ Z such that in their canonical representation
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Y =
P

i≤n yi1Ei no more than k yi’s are not dyadic. Step 2 has established that I = bρ
on ZD = Z0. Suppose therefore that I = bρ on Zk; we need to show that I = bρ on
Zk+1. Take Y =

P
i≤n yi1Ei ∈ Zk+1, and assume w.l.o.g. that y1 ∈ (0, 1]\D.

Take an increasing sequence {vj} inD converging to y1, and takeB ∈
£P

2≤i≤n yi1Ei
¤
,

A ∈ [y11E1 ] and an increasing sequence {Aj} contained in A such that Aj ∈ [vj1E1 ];

such events exist by repeated applications of equidivisibility. Denote Yj := vj1E1 +P
2≤i≤n yi1Ei . Note that by construction, Aj + B ∈ [Yj] and A + B ∈ [Y ]. By the

event-continuity of ρ, limj→∞ ρ(Aj +B) = ρ(A+B), and therefore

lim
j→∞

bρ (Yj) = lim
j→∞

ρ(Aj +B) = ρ(A+B) = bρ (Y ) .
Likewise, take a decreasing sequence {v0j} in D converging to y1, and denote Y

0
j :=

v0j1E1 +
P

2≤i≤n yi1Ei . The same argument establishes that

lim
j→∞

bρ ¡Y 0
j

¢
= bρ (Y ) .

By the induction assumption, for all j,

bρ (Yj) = I (Yj) and bρ ¡Y 0
j

¢
= I

¡
Y 0
j

¢
.

Hence, by the monotonicity of I,

bρ (Y ) = lim
j→∞

bρ (Yj) = lim
j→∞

I (Yj) ≤ I(Y ) ≤ lim
j→∞

I
¡
Y 0
j

¢
= lim

j→∞
bρ ¡Y 0

j

¢
= bρ (Y ) ,

which yields bρ (Y ) = I(Y )

as desired. ¤
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Proof of Theorem 2.

Step 1. constant-linearity of bρ implies P4.
Take any A,B ∈ Σ such that ρ (A) ≥ ρ (B) , and any x, y ∈ X with u(y) < u(x). In

view of Theorem 1, it suffices to show that bρ (u ◦ [x,A; y,Ac]) ≥ bρ (u ◦ [x,B; y,Bc]).

Indeed, this follows easily from the equalities

u ◦ [x,A; y,Ac] = u(x)1A + u(y)1Ac = (u(x)− u(y)) 1A + u(y)1Ω,

whence by constant-linearity

bρ (u ◦ [x,A; y,Ac]) = (u(x)− u(y)) ρ(A) + u(y),

and similarly bρ (u ◦ [x,B; y,Bc]) = (u(x)− u(y)) ρ(B) + u(y),

from which the desired conclusion follows immediately.

Step 2. P4 implies Union and Splitting Invariance.

Consider any A ∈ Σ , α, β ∈ [0, 1] such that α + β ≤ 1, and A0 ∈ ΛA as well

as B1 ∈ ΛA and B2 ∈ ΛAc (both disjoint from A0) such that π(A0/A) = α and

π(B1/A) = π(B2/A
c) = β, and let B = B1 +B2.

Claim: ρ(A0 +B) = αρ(A) + β.

Pick consequences y, x such that u(y) = β and u(x) = α+β. By utility sophistica-

tion and the conditional linearity property of bρ (Lemma 1),
[x,A; y,Ac] ∼ [x+, A0+B1;x−, A\ (A0 +B1) ;x

+, B2;x
−, Ac\B2] = [x+, A0+B;x−, (A0 +B)

c
].

Moreover, taking any T ∈ Λ with π (T ) = ρ (A) , by P4,

[x,A; y,Ac] ∼ [x, T ; y, T c],
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and thus by transitivity

[x+, A0 +B;x−, (A0 +B)
c
] ∼ [x, T ; y, T c].

One computes bρ (u ◦ [x, T ; y, T c]) = Eπ (u ◦ [x, T ; y, T c]) = (α+ β)π (T )+βπ0 (T c) =

αρ (A) + β, whence

ρ(A0 +B) = bρ(1A0+B) = bρ (u ◦ [x, T ; y, T c]) = αρ (A) + β,

verifying the claim.

Specialized to the case β = 0, the Claim clearly entails Splitting Invariance.

To obtain Union Invariance, choose any A ∈ Σ and C ∈ Λ disjoint from A. It

clearly suffices to show that ρ(A+ C) = ρ(A) + ρ(C).

Take any A0 ∈ ΛA such that π(A
0/A) = 1

2
and any C 0 ∈ ΛC such that π(C

0/C) = 1
2
.

Clearly, C 0 ∈ Λ and A0 + C 0 ∈ ΛA+C with π(A0 +C 0/A+C) = 1
2
. Hence by Splitting

Invariance,

ρ(A0 + C 0) =
1

2
(ρ(A+ C)) . (7)

Now choose B1 ∈ ΛA and B2 ∈ ΛAc (both disjoint from A0) such that π(B1/A) =

π(B2/A
c) = 1

2
ρ(C). Evidently, B = B1 + B2 ∈ Λ with π (B) = π (C 0) = 1

2
ρ(C). It is

easily verified that therefore A0 + C 0 ≡ A0 +B, whence by Compatibility,

ρ (A0 + C 0) = ρ (A0 +B) . (8)

Since 1
2
+ 1

2
ρ(C) ≤ 1, the Claim can be applied, yielding

ρ (A0 +B) =
1

2
ρ(A) + ρ(B) =

1

2
(ρ(A) + ρ(C)) . (9)

Combining equations (7), (8), and (9) yields the desired result.
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Step 3a) Union Invariance implies constant-additivity.

Take any Y =
P

i∈I yi1Ei and c ∈ [0, 1] such that Y +c1Ω ∈ Z. Since Y ≤ (1−c)1Ω,

there exist A ∈ [Y ] and S, T ∈ Λ such that ρ(S) = ρ(A) ≤ 1 − c, ρ(T ) = c, and T

is disjoint from both A and S. To see this, take A =
P

i∈I Ai with Ai ∈ ΛEi and

π(Ai/Ei) = yi, S =
P

i∈I Si with Si ∈ ΛEi and π(Si/Ei) = ρ(A), and T =
P

i∈I Ti

with Ti ∈ ΛEi and π(Ti/Ei) = c such that Ti is disjoint from both Ai and Si, for

all i ∈ I; such Ai, Si, and Ti exist by the convex-rangedness of Π. Clearly, A + T ∈

[Y +c1Ω]. Since A ∼bet S by assumption, A+T ∼bet S+T by Union Invariance which

in turn is tantamount to

ρ (A+ T ) = ρ (S + T ) = ρ (S) + ρ (T ) = ρ (A) + c.

Hence bρ (Y + c1Ω) = ρ (A+ T ) = ρ (A) + c = bρ (Y ) + c.

Step 3b) Splitting Invariance implies positive homogeneity

Take Y ∈ Z and rational c = m
n
≤ 1, where m and n are natural numbers. Take

A ∈ [Y ] and T ∈ Λ such that π (T ) = bρ (Y ). By equidivisibility of D /convex-

rangedness of Π, there exist partitions of A and T can be split into n equally likely

subevents {A1, ..., An} and {T1, ..., Tn}; by an argument paralleling that in i), the Ai

can be chosen to belong to [ 1
n
Y ], whence

P
i≤mAi ∈ [mn Y ]. Since by construction

A ∼bet T, by Splitting Invariance A1 ∼bet T1, and therefore by Splitting Invariance

again
P

i≤mAi ∼bet

P
i≤m Ti. It follows that

bρ³m
n
Y
´
= ρ

ÃX
i≤m

Ai

!
= π

ÃX
i≤m

Ti

!
=

m

n
π (T ) =

m

n
bρ (Y ) ,

which establishes positive homogeneity for rational α. This implies positive homo-

geneity for arbitrary α, since by monotonicity of bρ,
αbρ (Y ) = sup{βbρ (Y ) | β ≤ α, β ∈ Q} = sup{bρ (βY ) | β ≤ α, β ∈ Q}

≤ bρ (αY ) ≤ inf{bρ (βY ) | β ≥ α, β ∈ Q} = αbρ (Y ) ,
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and thus bρ (αY ) = αbρ (Y ) . ¤

Proof of Proposition 2. The necessity of Union and Splitting Invariance

follows from Theorem 2. The validity of the converse can be seen as follows. First,

applying the proof of Theorem 1 to preferences over unambiguous acts %ua, one infers

that these preferences have a SEU representation with utility function u, unique up to

positive affine transformations. Likewise, applying the proof of Proposition 1, there

exists a unique event-continuous ρ representing %B such that ρ (T ) = π (T ) for T ∈ Λ.

Let bρ denote the associated expectation operator given by (1). By the proof of the
implication 3)=⇒2) of Theorem 2, bρ is constant-linear. Define % by setting for all

f, g ∈ F :

f % g iff bρ (u ◦ f) ≥ bρ (u ◦ g) . (10)

Clearly, by the implication 1)=⇒3) of Theorem 1, if an extension with the desired

properties exists, it must be given by (10). Conversely, this preference ordering % is
Archimedean and tradeoff-consistent by the implication 3)=⇒1) of Theorem 1. Since

ρ agrees with π on Λ, the restriction of % to Fua agrees with %ua . Furthermore, by

construction %bet=%B. Since bρ is constant-linear, % satisfies P4 by the implication

2)=⇒1) of Theorem 2.

Finally, we need to show that the ordering % given in (10) does not depend on

the context D . That is, take two equidivisible contexts D1 and D2 with associated
Λ1 and Λ2 relative to which %B is Archimedean, compatible and satisfies Union-
and Splitting-Invariance, and take preference relations over unambiguous acts %1ua
and %1ua with the same associated preferences over lotteries, hence with the same
representing vNM utility function u. Let %1 and %2 denote the extensions to all
Savage acts given by (10). Then we claim that in fact %1=%2 .
To see this, by Theorem 2, each %i has a constant-linear representation I ◦ u

with u (X) = [0, 1], ensuring applicability of Proposition 7 in section 6 below. For
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i = 1, 2, let %∗ibet denote associated revealed likelihood relations. Since %i is utility-

sophisticated with respect to the equidivisible context Di by construction and since

%1bet=%2bet=%B, by Proposition 7 evidently %∗1bet=%∗2bet . For i = 1, 2, 3 let Λi, [.]i, ρi, bρi
denote the families of unambiguous events, equivalence class operators, normalized ca-

pacities and intrinsic integrals associated with (%B,D1), (%B,D2), and (%B,%∗1bet=%∗2bet
), respectively. By maximality of %∗1bet and %∗2bet, evidently Λ3 ⊇ Λ1 ∪ Λ2 and [Z]3 ⊇

[Z]1 ∪ [Z]2 for all Z ∈ Z. Thus, clearly ρ1 = ρ3 = ρ2 and bρ1 = bρ3 = bρ2. By Theorem
1 therefore %1=%2 . ¤

Proof of Fact 1.

That ii) implies i) is straightforward.

The converse follows easily from showing that if % is strongly compatible with

a complete D represented by a convex-ranged prior π, then f % g whenever u ◦ f

stochastically dominates u ◦ g. But viewing D as the revealed likelihood relation

associated with %, Strong Compatibility is just Machina-Schmeidler’s (1992) Strong
Comparative Probability axiom, and the present claim is the key step in their proof.

¤

Proof of Proposition 4.

For x ∈ X, let δx denote the lottery putting probability 1 on x; also, for q ∈ L, let

E (q) =
P

x∈X xqx. In view of Proposition 1, it is w.l.o.g. to assume that X = [0, 1]

and u(x) = x for all x ∈ X; this simply means that consequences are referred by

the utilities they generate. As a result, acts f ∈ F can be identified with random

variables Z ∈ Z. If %AA satisfies Lottery Independence, then the linearity assumption

on u implies risk-neutrality, i.e., for all q ∈ L, q ∼AA δE(q), a simplification that will

be used repeatedly in the proofs.
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1. Trade-off Consistency of % implies Monotonicity and Lottery Independence of %AA

Lottery Independence follows immediately from EU maximization over unambigu-

ous acts implied by Theorem 1. To verify Monotonicity, take any act F ∈ FAA,

lotteries p, q ∈ L and event S ∈ Σ1 such that p %AA q. By EU/expected value maxi-

mization over unambiguous acts, p ∼AA δE(p) and q ∼AA δE(q), hence E (p) ≥ E (q) .

Let Y and Z be Savage acts such that F (Y ) = [p on S;F (ω) elsewhere], F (Z) = [q

on S;F (ω) elsewhere], and Y−S×Ω2 = Z−S×Ω2 . By the Conditional Linearity property

of the intrinsic integral (Lemma 1) and Theorem 1, Y ∼ [E (p) on S × Ω2, Y−S×Ω2 ]

and Z ∼ [E (q) on S ×Ω2, Z−S×Ω2]. Since E (p) ≥ E (q) , by Eventwise Monotonicity

and transitivity therefore Y % Z, which implies that [p on S;F (ω) elsewhere] %AA [q

on S;F (ω) elsewhere], as needs to be shown.

2. Monotonicity and Lottery Independence of %AA imply Trade-off Consistency of % .

In view of Theorem 1, we need to show that I = bρ. To do so, we need to show that
for any Z ∈ Z there exists A ∈ [Z] such that Z ∼ 1A and thus I (Z) = ρ (A).

Take any Z ∈ Z and write Z =
P

i≤n,j≤ni zi,j1Si×Ti,j . By convex-rangedness of

η, there exist for each i ≤ n, j ≤ ni events T
0
i,j ∈ Σ2 such that T

0
i,j ⊆ Ti,j and

η
¡
T 0i,j
¢
= zi,jη (Ti,j) . Let A :=

P
i≤n,j≤ni Si × T 0i,j. By construction, for all i, j, A ∩

(Si × Ti,j) = Si × T 0i,j and π (A/Si × Ti,j) = zi,j, whence A ∈ [Z] . Write F (Z) = [pi
on Si] and F (1A) = [qi on Si].

Since for all i ≤ n,

E (pi) =
X
j≤ni

zi,jη (Ti,j) =
X
j≤ni

η
¡
T 0i,j
¢
= E (qi) ,

by risk-neutrality

pi ∼AA qi for all i.

By Monotonicity, this implies

F (Z) ∼AA F (1A),
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which, by the construction of %AA, yields Z ∼ 1A as desired .

3. Trade-off Consistency and P4 of % imply Certainty Independence of %AA .

Take any AA-acts F = [pi on Si], G = [qi on Si], any constant act H = [q on

Ω1] and α ∈ (0, 1].

Let Y :=
P

iE (pi) 1Si×Ω2 and Z :=
P

iE (qi) 1Si×Ω2 . By Theorem 2, bρ is constant-
linear. Hence by Theorem 1,

Y % Z if and only if αY + (1− α)E (q) % αZ + (1− α)E (q) . (11)

By the Monotonicity and Lottery Independence (hence risk-neutrality) shown in

part 1),

F ∼AA [δE(pi) on Si] = F (Y ),

G ∼AA [δE(qi) on Si] = F (Z),

αF + (1− α)H ∼AA [δαE(pi)+(1−α)E(q) on Si] = F (αY + (1− α)E (q)), and

αG+ (1− α)H ∼AA [δαE(qi)+(1−α)E(q) on Si] = F (αZ + (1− α)E (q)).

In view of the equivalences established above, this translates back into the desired

conclusion

F %AA G if and only if αF + (1− α)H %AA αG+ (1− α)H.

4. Monotonicity and Certainty Independence of %AA imply P4 of % .

Since % is trade-off consistent by part 2), in view Theorems 1 and 2 it suffices

to establish the constant-linearity of the intrinsic integral bρ. Take any Z ∈ Z, and

α, c ∈ [0, 1] such that α + c ≤ 1; we need to show that bρ (αZ + c1Ω) = αbρ (Z) + c in

any such case.
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By definition of bρ,
Z ∼ bρ (Z) 1Ω,

hence

F (Z) ∼AA F (bρ (Z) 1Ω) = δbρ(Z).
By Certainty Independence, it follows that

F (αZ + c1Ω) = αF (Z) + (1− α)δ c
1−α

∼AA αδbρ(Z) + (1− α)δ c
1−α

∼AA δαbρ(Z)+c
= F ((αbρ (Z) + c) 1Ω) ,

whence from the definition of %AA,

αZ + c1Ω∼ (αbρ (Z) + c) 1Ω,

and therefore bρ (αZ + c1Ω) = αbρ (Z) + c

by the normalization of bρ. ¤

Proof of Proposition 5.

Suppose that a CEU preference ordering % is utility-sophisticated relative to the

equidivisible context D. Since by EU maximization on unambiguous acts, ν = ρ, we

need to show that ρ is additive. Thus, take any disjoint events A,B ∈ Σ as well as

events A0 ⊆ A such that A0 ≡ A\A0 and B0 ⊆ B such that B0 ≡ B\B0. Specify

consequences in utiles, and, for z ∈ [0, 1] let

fz := [1 on B0, z on A, 0 elsewhere],

and

gz := [
1

2
on B, z on A, 0 elsewhere].
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By construction, for all π ∈ Π, Eπfz = Eπgz, hence for all z ∈ [0, 1],

fz ∼ gz

by utility sophistication.

Now Z
u ◦ fzdν = ρ (B0) + z [ρ (A+B0)− ρ (B0)] ,

while, for z ≥ 1
2 Z

u ◦ gzdν = zρ (A) +
1

2
[ρ (A+B)− ρ (A)] ,

and for z ≤ 1
2 Z

u ◦ gzdν =
1

2
ρ (B) + z [ρ (A+B)− ρ (B)] .

Thus,
R
u ◦ fzdν =

R
u ◦ gzdν for z ∈ {0, 12 , 1} only if

ρ (A) = ρ (A+B0)− ρ (B0) = ρ (A+B)− ρ (B) ,

i.e. only if ρ (A) + ρ (B) = ρ (A+B) , as needed to be shown. ¤.

Proof of Proposition 6.

Part 1). Take any x, y, x0, y0 ∈ X such that x % x0, acts f, g ∈ F and events A

disjoint from B and A0 disjoint from B0 such that A ≡ B BB ∅, A0 ≡ B0 and

[x on A; y on B; f(ω) elsewhere] % [x0 on A; y0 on B; f(ω) elsewhere]. (12)

By the equidivisibility of D0, there exist events A00 disjoint from B00 and A000 disjoint

from B000 such that A00 + B00 = A + B, A000 + B000 = A0 + B0, A00 ≡0 B00 BB ∅ and
A000 ≡0 B000.

Clearly by coherence and the fact that D⊇D0, A ≡ A00 and B ≡ B00. Therefore by

Strong Compatibility,

[x on A; y on B; f(ω) elsewhere] ∼ [x on A00; y on B00; f(ω) elsewhere], (13)
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and

[x0 on A; y0 on B; f(ω) elsewhere] ∼ [x0 on A00; y0 on B00; f(ω) elsewhere]. (14)

Combining (12), (13) and (14) by transitivity therefore

[x on A00; y on B00; f(ω) elsewhere] % [x0 on A00; y0 on B00; f(ω) elsewhere]. (15)

By Trade-off Consistency with respect to D0 thus

[x on A000; y on B000; f(ω) elsewhere] % [x0 on A000; y0 on B000; f(ω) elsewhere]. (16)

By the same token as above, A0 ≡ A000 and B0 ≡ B000, and therefore

[x on A000; y on B000; f(ω) elsewhere] ∼ [x on A0; y on B0; f(ω) elsewhere], (17)

and

[x0 on A000; y0 on B000; f(ω) elsewhere] ∼ [x0 on A0; y0 on B0; f(ω) elsewhere]. (18)

Combining (16), (17) and (18) by transitivity therefore

[x on A0; y on B0; f(ω) elsewhere] % [x0 on A0; y0 on B0; f(ω) elsewhere] (19)

as desired.

Part 2). Suppose % is utility-sophisticated, Archimedean, bounded, solvable with

respect to the equidivisibleD context that containsD0 . Clearly, % is also Archimedean
with respect to D, since BB contains BB0; likewise, % is solvable with respect to D .

By Theorem 1 (2=⇒1), preferences are trade-off consistent with respect to D0. Since
they are strongly compatible with D by assumption, they are also trade-off consis-

tent with respect to D by part 1) . By Theorem 1 again (1=⇒2), preferences are

utility-sophisticated with respect to D . ¤
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Proof of Proposition 8.

The equivalence of (1) and (2) is immediate from Proposition 7. The equivalence

of (2) and (3) follows from the fact that Π(%∗bet)
= Π∗, which in turn follows from the

uniqueness of the multi-representation of equidivisible likelihood relations shown in

Nehring (2006, Theorem 2).
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