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Abstract

This is the working-paper version of the published article, “Preference for Flexibility

in a Savage Framework”, 1999, Econometrica 67, 121-146.

The last three sections consist of additional material on the uniqueness of the repre-

sentation (s. 5), interpretation in terms of freedom of choice (s. 6), and an alternative

motivation for departing from the Savage framework based on “intra-agent incentive-

compatibility”.
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1. INTRODUCTION

Flexia plans to undertake a plane trip; she has to decide whether to purchase an advance-

reservation ticket now at a price p, or whether to wait until right before her intended date

of departure and then to finally decide between staying at home and purchasing a ticket at

a higher price q. Flexia’s “present choice” can be thought of as one among “opportunity

sets”, here {fly @p, stay @p} and {fly @q, stay @0}, from which her “future choice” is then

made.

Flexia has fairly common present preferences over opportunity sets; if required to make

a final choice now among basic alternatives (singleton opportunity sets), she would most

prefer to purchase a ticket in advance (fly @p Â stay @0). On the other hand, if possible,

she prefers to “wait-and-see” ({fly @p, stay @p} ≺ {fly @q, stay @0}). Note that these

preferences are not compatible with a ranking of opportunity sets according to their indirect

utility (i.e. by ranking the sets as equivalent to their currently best element)1. They are

naturally explained, however, as due to an uncertainty about her own future preferences

between making the trip and staying at home.

Such preference for flexibility received its first axiomatic study in a classic paper by Kreps

(1979) which characterized the class of preferences that rank opportunity sets in terms of

their expected indirect (=maximal attainable) utility (EIU), the expectation being taken

with respect to an implicit2 state space describing future preferences. Kreps assumed that

present choices determine future opportunity sets deterministically. Such an assumption is

obviously very restrictive; for instance, if Flexia decides to wait, realistically she will need

to reckon with the risk that seats may no longer be available later. The present paper

characterizes EIU maximization in such more general situations in which the agent may be

uncertain about the opportunity set she is going to face, and in which at least some of the

uncertainty about future preferences is explicitly modeled.

Thus, at the heart of this paper’s analysis is a distinction between explicit and implicit

1assuming greater wealth to be preferred, of course.

2That is: part of the representation, not of the set-up.
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state spaces. In various guises, this distinction is of significant conceptual interest. As

shall be argued, it corresponds, roughly speaking, to distinctions between verifiable / non-

verifiable and foreseen / anticipated unforeseen contingencies, between incentive-compatible

and arbitrary Savage acts, and, finally, between preference for flexibility itself and intrinsic

preference for freedom of choice. Before describing these alternative interpretations of the

theory in greater detail in the second half of this introduction, we first sketch the main

result of the paper.

In formal terms, we will study preferences over acts f (“opportunity acts”) that map

states θ ∈ Θ to opportunity sets A ∈ A = 2X\∅ of alternatives x ∈ X . Both states as well

as prizes (opportunity sets) are to be understood as described in terms of what is knowable

ex-interim, rather than as complete descriptions of everything relevant, as “small worlds”

rather than “grand worlds” in Savage’s terminology (1972, pp.82). By consequence, belief

cannot be fully disentangled from value. As with single-valued acts, this leads to state-

dependent preferences. Thus, we take as point of departure for our characterization a

state-dependent version of Savage’s axioms (Karni-Schmeidler (1993)).

If preferences are defined over opportunity acts, incompleteness of description (specifi-

cally: the absence of future preferences from the definition of a state) manifests itself ad-

ditionally in conditional preferences displaying a preference for flexibility. That is to say, it

will typically not be the case, even for events E such that preferences are state-independent

on E, that the following property holds.

Conditional IU-Property)

For all sets (constant acts) A,B ∈ A, all acts f ∈ F , and all events E ⊆ Θ :

[A,E; f,Ec] º [B,E; f,Ec] implies [A,E; f,Ec] º [A ∪B,E; f,Ec].3

The key issue is to find axioms that yield an expected-utility representation with respect

to the implicit uncertainty concerning future preferences. Partial solutions can be found

in the work of Kreps (1979, 1992). Kreps (1979) characterizes the implications of EIU

3[A,E; f,Ec] denotes the act that coincides with the constant act A on E and with f outside E; cf.

section 3.
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maximization for preferences over constant acts, that is: opportunity sets. The obtained

restrictions, described by the following condition, are weak.4

OSM)5 ∀A,B,C ∈ A : A º A ∪B implies A ∪ C º A ∪B ∪C.

Building on this result, Kreps (1992) introduces uncertainty explicitly into the model

and shows that EIU maximization entails implications analogous to OSM for conditional

preferences over opportunity acts. However, these implications are only ordinal in character

and fail to characterize EIU maximization by far. Consequently, he obtains a representation

in which the utility of an act is monotone but not necessarily additive in implicit-state

utilities.

In an explicitly stochastic context, EIU maximization has additional and interesting car-

dinal implications. For example, it entails the following cardinal (conditional) version of

OSM, which implies that opportunity subsets are of necessity substitutes for each other.

CSM)6 For all sets, A,B,C ∈ A, all acts g, h ∈ F , and all events E ⊆ Θ :

[A,E; g,Ec] º [A ∪B,E;h,Ec] implies [A ∪ C,E; g,Ec] º [A ∪B ∪ C,E;h,Ec].

CSM asserts that the incremental value of a setB of additional alternatives never increases

as further alternatives become available; note that a conditional version of OSM results by

restricting CSM to g, h such that g = h. While coming much closer to characterizing EIU

rationalizable preferences, CSM fails to capture all their cardinal implications.7

To characterize EIU-maximization, we introduce an axiom “Indirect Stochastic Dom-

inance” (ISD*) that makes use of the “more-likely-relation” ≥ over events derived from

4Conversely, an additive representation is of limited significance in this context, as Kreps (1979, p. 567)

points out.

5OSM for “Ordinal Submodularity”, cf. section 4.

6CSM stands for “Cardinal Submodularity”.
7In addition, CSM does not seem to be fully satisfactory conceptually: that the incremental value of

additional alternatives be non-increasing seems plausible enough, but how compelling can it be? Indeed, it

can be shown that CSM may easily be violated if the decision maker is uncertainty-averse in the sense of

Gilboa-Schmeidler (1989).
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preferences over bets in the usual way. Roughly speaking, ISD* formalizes the notion that

acts that “in expectation offer effectively more choice” are better. More specifically, ISD*

requires that f be weakly preferred to g whenever, given any hypothetical (future) weak

order R, the R-best available alternatives under f are ≥-more-likely to be R-better than

under g (“first-order stochastically dominates in utility”; see sections two and three). For

example, ISD* entails the following condition ISD2 which evidently is closely related to

CSM.

ISD2) For any event E such that E is ≥-equally likely to its complement Ec and any

A,B,C ∈ A : [A,E;A ∪B ∪ C,Ec] ¹ [A ∪B,E;A ∪ C,Ec].

Specialized to state-independent preferences, the main result (theorem 3) characterizes

EIU-rationalizable preferences º as those satisfying the Savage axioms plus ISD*.

The notion of a “preference for flexibility” translates into decision theory, and thereby

generalizes, one of the central ideas of financial economics, the notion that “options have

value”; for example, the theory of option-pricing has profoundly affected the theory of

investment in physical capital under the name of “real options” (see especially the recent

monograph by Dasgupta/Pindyck (1994)). A more general decision-theoretic approach

seems clearly desirable in contexts in which markets are thoroughly incomplete (as is the

case for many investments in human capital, e.g. the comparatively “inflexible” decisions to

obtain a Ph.D. training in economic theory rather than an M.B.A., for instance), or where

markets are entirely absent; — in a somewhat playful and speculative vein, Dasgupta and

Pindyck stress the irreversibility inherent in the decisions to marry and commit suicide.8

While the economic importance of preference for flexibility seems evident, an axiomatic

approach to preference for flexibility is motivated by an interest in the distinction between

explicit and implicit states fundamental to the opportunity act model. A polarity of this

kind arises naturally from a variety of perspectives; while the second and third opposi-

8See also Jones-Ostroy (1984) for a decision-theoretic model which relates the value of flexibility to the

amount of information to be received.
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tions described below are conceptually of a rather different nature, they turn out to be

mathematically isomorphic in a precise way.

1. The distinction between explicit and implicit states captures at a primitive level im-

portant restrictions on the elicitation and even “construction” of an agent’s preferences.

In descriptive, especially in experimental applications, one may want to confine attention

to acts defined in terms of verifiable or contractible contingences.9 If one seriously wants

to test experimentally whether and to what extent a subject’s behavior conforms to SEU-

maximization, one will elicit preferences over acts defined in terms of a finite set of con-

tingencies that is coarse almost by definition. The phenomenon of preference for flexibility

shows that implicit (not directly elicited) uncertainty matters in a sequential setting even

to decisions between acts whose consequences are fully described in terms of the coarse

explicit state-space.

From a first-person point of view, the explicit state-space may analogously be interpreted

as the space of foreseen contingencies determining the class of thought-experiments relevant

to the decision-maker’s preference construction. Violation of the conditional IU property

can then be viewed as reflecting anticipated unforeseen contingencies (Kreps 1992); for

example, Flexia may explain her preference for flexibility by the expectation that “quite

possibly something will interfere with my travel plans”, without having a clear idea about

specifically what is likely to interfere. For another example, we note that in discussions of

the value of preserving biodiversity, the irreversibility of extinction occupies frequently a

central place. Preserving species for another generation keeps the option of their continued

existence open, an option which has significant value in view of our uncertainty about the

preferences of future generations which presumably we cannot foresee in any detail.

A conceptualization of anticipated unforeseen contingencies in terms of a set of implicit

decision-relevant states is interesting particularly in that it combines (anticipated) “un-

foreseenness” with notions of subjective probability and expected utility10; this contrasts

9Note that many “Dutch book” argument for the sure-thing principle rely on the contractibility of

contingencies.
10This is not to belittle the seriousness of the uniqueness issue in this context; see section 5 for further
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with approaches in which “unforeseenness” is identified with ignorance of some kind, as in

Ghirardato (1996) and Mukerjee (1995)11. 12

2. It will be shown in section 7 that from a thorough-going revealed-preference perspec-

tive which identifies preferences with dispositions to choice-behavior, difficulties arise for a

direct application of Savage’s theorem in which future preferences are incorporated in the

description of a state and in which the preference ordering is defined on the class of all

Savage acts; in particular, it is not obvious which class of acceptable thought-experiments

can support arbitrary acts (i.e. acts that depend on the decision-maker’s future preferences

in arbitrary ways). We will thus argue that a “revealed-preference” interpretation of future

preferences implies incentive-compatibility restrictions on the domain of acts which in turn

lead to models equivalent to the opportunity-act model studied in this paper.

3. Last but not least, if one assumes that all uncertainty is modelled in standard ways13,

and preference for flexibility is thus fully accounted for in terms of the explicit uncertainty,

a failure of preferences to satisfy the conditional IU property can by definition no longer be

attributed to uncertainty about future preferences; instead, it reveals an intrinsic “prefer-

ence for freedom of choice.” It is in fact this notion of freedom of choice which has been at

discussion.
11For recent epistemic work on the related notion of awareness, see Modica-Rustichini (1994) and Dekel-

Lipman-Rustichini (1996).
12Finally, the issue of “coarse explicit state-spaces” is central to a related, but largely philosophical

literature on Bayesian belief revision and “belief kinematics” (the locus classicus is Jeffrey (1965, ch. 11).

Coarseness there corresponds to the notion that rational belief change cannot be fully accounted for by

Bayesian updating on “explicitly given” evidence. The literature emphasizes the existence of evidence that

may be “non-verifiable” (e.g. impressionistic judgements) and/or “unforeseen” (e.g. future insights) ; see also

Binmore-Brandenburger (1990) who forcefully spell out the problematic nature of large-world assumptions.

Reservations have been articulated towards inclusion of future beliefs (i.e. here: of future preferences over

bets) in the definition of a state. If these reservations are fully taken to heart, a theory of the kind outlined

in this paper is required to justify “as-if Bayesian updating” (which is what EIU maximization amounts

to in this context) with respect to the implicit uncertainty; in such a theory (with appropriately enriched

structure), beliefs about future beliefs are revealed by preferences over sets of future bets, i.e. by the

“flexibility value of effective belief revision”.

13Thus bracketing points 1 and 2.
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the center of the recent wave of interest in the axiomatic study of ranking of opportunity

sets14. The present paper is the first to simultaneously incorporate and distinguish within

one model the two sources of preferences for opportunities.15

The key step in making the results of this paper equally applicable to a freedom-of-choice

interpretation is a novel conceptualization of effective freedom of choice as a multi-attribute

construct, with component opportunities (i.e. the opportunities to bring about particular

consequences) defining the different attributes. The Indirect Stochastic Dominance axiom

is reinterpreted accordingly as requiring that “in expectation more opportunity is better”,

and theorem 3 yields an additive multi-attribute representation with optimal uniqueness

properties.

The remainder of the paper is organized as follows:

Section 2 considers a von Neumann-Morgenstern-type setting in which preferences are

defined on the class of all (objective) probability distributions over opportunity sets; an

objective version of the Indirect Stochastic Dominance axiom is introduced and used to

characterize EIU rationalizable preferences (theorem 1). We present theorem 1 as a separate

core result both to make it more accessible to the general reader unfamiliar with Savage’s

framework, and because from a mathematical point of view, the theorem is best understood

as a result on mixture-spaces over opportunity sets.

In section 3, a subjective version of the Indirect Stochastic Dominance axiom is for-

mulated; Karni-Schmeidler’s (1993) generalization of Savage’s theorem to state-dependent

preferences is then combined with theorem 1 to obtain a characterization state-dependent

EIU rationalizable preferences over opportunity acts.

Section 4 introduces the key technical tool of this paper, (dual) Möbius inversion which

is taken from the literature on belief-functions (non-probabilistic representations of uncer-

tainty). It is shown that EIU rationalizable preferences are characterized by a risk-aversion

14It will become clear that our results are equally applicable to rankings of opportunity sets purely in

terms of freedom of choice, without regard to the agent’s indirect utility.
15The nature and legitimacy of the distinction is intensively debated: for example, while Sen (1988) affirms

it emphatically, Arrow (1995) does not appear to see any meaning in it.
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property with respect to the “size” of the opportunity set. Dual Möbius inversion is also

shown to yield a direct and intuitive proof of Kreps’s (1979) classic result.

The following section 5 describes the uniqueness properties of the representation. While

these are significantly stronger than those obtainable in a standard setting without explicit

uncertainty, they still fall short of what one might have hoped for. It becomes clear, however,

what kind of structure needs to be added to obtain optimal results.

A reinterpretation of the results in terms of freedom of choice is given in section 6. Finally,

section 7 discusses the difficulties of applying a direct Savage approach under a “revealed-

preference” interpretation of future preferences. All proofs are collected in the appendix.

2. AN AXIOMATIZATION OF EXPECTED INDIRECT UTILITY

This section presents a characterization of Expected Indirect Utility maximization in a

von Neuman-Morgenstern (vNM) context in which preferences are defined over “opportunity

prospects” with numerically given probabilities and opportunity sets as prizes. It serves

both as a simplified version as well as a key building block of the main result of the paper,

theorem 3 of the following section.

Let X denote a finite non-empty set of alternatives, A = 2X \ ∅ the set of its non-

empty subsets (opportunity sets), and ∆A denote the probability simplex inRA with typical

element p. (Ex ante-) preferences are described by a relation º on the set of opportunity

prospects ∆A.

The chronology of decision-making and uncertainty-resolution is as follows: at date 1, an

opportunity prospect p is chosen by the agent. Then, at some time between dates 1 and

2, say at date 1.5, the opportunity prospect is resolved, yielding with probability pS the

opportunity set S . Finally, at date 2, the agent selects one alternative among S. At date

1, the agent is uncertain of his preferences based on which date 2 choices are made; this

uncertainty resolves before date 2.

The uncertainty concerning date-1.5 opportunity sets may arise “artificially” as result of
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an agent’s intentional randomization of set-choices, or of an experimenter’s explicitly offering

choices among “lotteries” with opportunity sets as prizes. Often, opportunity prospects also

arise naturally, as in the following example modifying Kreps (1979).

Example 1 At lunchtime, the agent has to make a reservation at a restaurant of her choice

for dinner with a friend. She wants to choose the restaurant offering the best-tasting meal

to her friend. Since she knows his tastes (at dinner) only incompletely, her choice among

restaurants will exhibit a “preference for flexibility”. Since she is also uncertain of the menu

(set of meals) offered by each restaurant, a restaurant represents a (subjective) prospect over

menus. To satisfy the domain assumption, one needs to ask the agent to imagine hypothet-

ical “restaurants” corresponding to arbitrary subjective (but not yet decision-theoretically

derived) probability distributions over menus. 2

To capture formally uncertainty about future tastes in the intended representation, let

Ω denote a (finite) set of preference-determining contingencies ω with associated utility-

function vω , and let λ ∈ ∆Ω denote a probability distribution over Ω. Note well that for

opportunity prospects, i.e. (marginal) probability distributions over opportunity sets, to

denote well-defined objects of preference, these distributions must be stochastically inde-

pendent of the uncertainty governing future preferences. This assumption becomes explicit

in a Savage setting (where it will be relaxed and further discussed); it is reflected here in the

axiom ISD below, and motivates the following definition of the class of “Expected Indirect

Utility” (EIU-) rationalizable preferences.

Definition 1 º is EIU-rationalizable if there exists a finite set Ω, λ ∈ ∆Ω and utility-

functions {vω}ω∈Ω such that, for all p, q ∈ ∆A:

p º q ⇔
X
S∈A

X
ω∈Ω

pSλωmax
x∈S

vω(x) ≥
X
S∈A

X
ω∈Ω

qSλωmax
x∈S

vω(x).

Remark: In order to preserve generality, we have allowed in this definition the implicit

state-space Ω to be arbitrary (finite), herein following Kreps (1979). It is debatable whether

these are really meaningful; one may want to restrict attention to a canonical space of states
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that is logically constructed from the data, i.e. ultimately from the universe of alternatives

X. A natural candidate for such a canonical state-space is the set of all weak orders on X.16

Basic to the characterization of EIU-rationalizable preference relations are the von Neumann-

Morgenstern axioms vNM .

Axiom 1 (vNM)

i) (Completeness) p º q or p ¹ q , for all p, q ∈ ∆A.

ii) (Transitivity) p º q and q º r imply p º r , for all p, q, r ∈ ∆A.

iii) (Independence) p º q ⇐⇒ ap+ (1− a)r º aq+ (1− a)r , for all a : 0 < a < 1 and

all p, q, r ∈ ∆A.

iv) (Continuity) p º q º r =⇒ ∃a : 0 ≤ a ≤ 1 such that ap + (1 − a)r ∼ q , for all

p, q, r ∈ ∆A.

The final axiom is based on an “Indirect Stochastic Dominance” relation defined as fol-

lows. For S ⊆ A, let p(S) =
P
T∈S

pT denote the probability of S.

Definition 2 The prospect p indirectly stochastically dominates q with respect to the weak

order17 R on X (“p¥R q”) if and only if, for all y ∈ X :

p({S | S ∩ {x | xRy} 6= ∅}) ≥ q({S | S ∩ {x | xRy}) 6= ∅}.

p indirectly stochastically dominates q (“p¥ q”) if it indirectly stochastically domi-

nates q with respect to every weak order R on X.

In other words, p indirectly stochastically dominates q if, given any hypothetical weak

preference ordering over alternatives R and any associated ordinal indirect utility-function

uR, the probability distribution of indirect utilities p◦u−1R induced from p first-order stochas-

tically dominates (in the ordinary sense) the analogously defined probability distribution

q ◦ u−1R .
16However, fixing Ω in this way is not enough to ensure essential uniqueness; see section 5 for further

discussion.

17i.e.: complete and transitive relation.
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Indirect Stochastic Dominance restricted to degenerate prospects that yield with prob-

ability one some opportunity set A (and written as 1A) coincides with monotonicity with

respect to set-inclusion; in a stochastic setting, it is however much richer in content.

Example 2 Let X = {x, y, z}, p = 1
21{x,y} +

1
21{x,z} , and q = 1

21{x} +
1
21{x,y,z} . Then

p¥ q, but not q ¥ p.

This is easily verified. If x is a best alternative with respect to R, it is available with

probability one under p and q, and thus p¥R q as well as q¥R p. If, on the other hand, x is

not a best alternative with respect to R, the18 R-best alternative is available with probability

one half under each. Under p, the at-least-second-best alternative is always available, and

thus p ¥R q again. However, if x is worst with respect to R, with probability one half not

even the second-best option is available under q , and thus not q¥R p for such R. It follows

that p¥ q, but not q ¥ p. 2

Axiom 2 (ISD) p º q whenever p indirectly stochastically dominates q.

Remark: Note that, for the use of the unconditional distributions over opportunity sets

p and q to be legitimate in the definition of R-conditional dominance and of ISD, these

have to coincide with the ω-conditional distributions; that is to say, the distributions of

state-contingent preferences Rω and opportunity sets must be subjectively independent.

The following characterization of Indirect Stochastic Dominance is a straightforward con-

sequence of the adopted definitions.

Fact 1 The following three statements are equivalent:

i) p¥ q ,

ii) p({S | S ∩A 6= ∅}) ≥ q({S | S ∩A 6= ∅}) for all A ∈ A ,

iii) For all utility-functions v on X :
P
S∈A

pSmaxx∈S v(x) ≥
P
S∈A

qSmaxx∈S v(x) .

Theorem 1 º is EIU-rationalizable if and only if it satisfies vNM and Indirect Stochastic

Dominance.

18breaking ties arbitrarily throughout.
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Theorem 1 belongs to a family of decision-theoretic results that obtain an additively

separable representation by appropriately augmenting the vNM axioms. These include

in particular Harsanyi’s (1955) Utilitarian representation theorem, as well as Anscombe-

Aumann’s (1963) characterization of SEU maximization. The role of ISD is played by a

Pareto-condition in the former and by an (implicit, see Kreps (1988, p.107)) “only marginals

matter” condition in the latter. The analogy to Harsanyi’s theorem is particularly close,

in that ISD functions as a monotonicity-condition analogous to the Pareto-condition there.

Jaffray’s (1989) mixture-space approach to belief-functions, by contrast, enhances the vNM

axioms in a rather different direction.

3. PREFERENCE FOR FLEXIBILITY IN A SAVAGE FRAMEWORK

In this section, the characterization of EIU rationalizable preferences is extended to a

fully subjective Savage-style formulation in which preferences are defined over acts that

map states to opportunity sets. Theorem 1 can be translated to a Savage framework (with

state-independent preferences) for the following two reasons: first, the ISD axiom uses prob-

abilities only in ordinal, comparative way, and is thus straightforwardly put into subjective

terms. Secondly, ISD thus translated retains its force due to the richness of Savage acts,

specifically: to the fact that any subjective probability distribution over opportunity sets is

generated by some opportunity act.19 Besides providing an interpretation of theorem 1 in

subjective terms, “going Savage” opens an important dimension of generality by explicitly

raising the issue of state-independent preference. We will argue that state-independence

is a rather restrictive assumption in an opportunity-act setting, and present an additive

state-dependent generalization of Savage’s theorem. We will then “subjectivize” ISD to

obtain a subjective, state-dependent generalization of theorem 1.

Three basic types of explicit uncertainty can be distinguished in the present context:

the agent may be uncertain as to which opportunity set results from a particular present

19I.e., in the notation to follow, if µ denotes the agent’s subjective probability measure on Ω, {µ ◦ f−1 |

f ∈ F} = ∆A .
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choice (e.g., in Flexia’s case, the availability of a ticket if she does not buy one now),

the agent may receive information about the comparative value of alternative final choices

(e.g., if Flexia is worried about the health of her child, her final decision may depend on

his body temperature), and thirdly the final choice itself may be one under uncertainty

(e.g., at the time of her final decision, Flexia may still not know whether the child will fall

seriously ill.). In this paper, we will deal with uncertainty that resolves before the final

choice is made, i.e. with uncertainty of the first two kinds. Uncertainty not resolving before

the final choice is not explicitly modeled; doing so promises to be a worthwhile (see the

concluding remark of section 5) and non-trivial task for future research. Uncertainty of

the first kind is associated with state-independent preferences, uncertainty of the second

kind with state-dependent preferences. Thus, to assume global state-independence would

be highly restrictive, as it effectively eliminates uncertainty of the second kind.

We first state an appropriate state-dependent generalization of Savage’s theorem that

comes tailor-made from the literature; this result is then combined with theorem 1 to yield

the main result of the paper, a subjective state-dependent generalization of EIU rationaliz-

able preferences over opportunity acts.

Some additional notation and definitions.

Θ : the space of explicit states θ.

F : the class of opportunity acts f : Θ → A.

Fconst : the subclass of constant acts, typically denoted by the constant prize.

[f,E; g,Ec] : the act h such that, for θ ∈ Θ,

hθ =

⎧⎨⎩ fθ if θ ∈ E

gθ if θ ∈ Ec
(“f on E and g on Ec”).

º : a preference relation on F .

f ºE g : whenever [f,E;h,Ec] º [g,E;h,Ec] for some h ∈ F (“f is weakly preferred

to g given the event E”).

E is null if f ºE g for all f, g ∈ F .
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The following three axioms are exactly Savage’s P1, P2 (the “sure-thing principle” in

standard, if not Savage’s, terminology), and the richness and continuity condition P6.

Axiom 3 (P1) º is transitive and complete, i.e. a weak order.

Axiom 4 (P2) For all f, g, h, h0 ∈ F , E ⊆ Θ : [f,E;h,Ec] º [g,E;h,Ec] if and only if

[f,E;h0, Ec] º [g,E;h0, Ec].

Axiom 5 (P6) For all f, g ∈ F such that f Â g and all h ∈ Fconst, there exists a finite

partition H of Θ such that, for all H ∈ H:

i) [h,H; f,Hc] Â g,

ii) f Â [h,H; g,Hc].

The generalization of Savage’s theorem to be used assumes “finitary state-dependence”.

Definition 3 An event G is a state-independent preference (s.i.p.) event with respect to º

if the following three conditions are satisfied:

i) For non-null E ⊆ G, and all f, g ∈ Fconst : [f,E;h,Ec] º [g,E;h,Ec] if and only if

f ºG g.

ii) For all E,F ⊆ G and f, g, f 0, g0 ∈ Fconst such that f ÂG g and f 0 ÂG g0: [f,E; g,Ec] º

[f, F ; g, F c] if and only if [f 0, E; g0, Ec] º [f 0, F ; g0, F c].

iii) There exist f, g ∈ Fconst : f ÂG g.

Condition iii) requires G to be non-null, i) and ii) are Savage’s state-independence axiom

P3 and P4 restricted to G. The preference relation º is finitely state-dependent if there

exists a finite partition20 {Θi}i∈I of Θ such that each Θi (for i ∈ I) is an s.i.p. event.

Axiom 6 (P345*) º is finitely state-dependent.

The assumption of finite state-dependence can be viewed as having two parts: conditional

on each Θi, there is a rich, non-atomic set of contingencies within which preferences are

20For transitiveº, it is easily verified that one might have equivalently replaced “partition” by “collection”;

we choose the former for greater specificity.
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state-independent; this follows from Θi being non-null and P6. Secondly, state-dependence

can be described in terms of a finite partition. The second of these assumptions is made for

technical convenience; the first, however, has substantive content, as it is indispensable for

a characterization of subjective EIU-maximization based on an ISD type axiom. Note that

state-independence of preferences conditional on E ⊆ Θi requires in effect that, conditional

on Θi, any implicit uncertainty about future preferences is subjectively stochastically inde-

pendent of the explicit uncertainty θ. For simplification of language, we take in the following

the partition {Θi}i∈I as given and will abbreviate ºΘi to ºi ; theorems 2 and 3 are to be

read accordingly.

For any finitely-ranged function x : Θ→ R, defineZ
x(θ)dµ =

P
ξ∈x(Θ)

ξµ({θ ∈ Θ|x(θ) = ξ}).

Theorem 2 (Karni-Schmeidler) º on F satisfies P1, P2, P345* and P6 if and only

if there exists a collection of finitely additive, convex-ranged21 probability measures22 {µi :

2Θ → R}i∈I such that µi(Θi) = 1 and a collection of non-constant utility-functions {ui}i∈I
such that

f º g if and only if
P
i∈I

Z
ui(f(θ))dµi ≥

P
i∈I

Z
ui(g(θ))dµi , for all f, g ∈ F .23

It remains to “subjectivize” ISD as ISD∗. ISD∗ is naturally formulated here as an as-

sumption on conditional preferences ºi, since comparative probability relations can mean-

ingfully be defined only conditional on s.i.p. events Θi. Thus, let ≥i be the conditional

more-likely-than relation on 2Θ defined by

E ≥i F if, for any constant acts f, g such that f Âi g : [f,E; g,E
c] ºi [f, F ; g, F

c].

21µ is said to be convex-ranged if, for all E⊆ Θ and all ρ : 0≤ ρ ≤1, there exists F⊆E such that µ(F)=ρµ(E).
22For notational convenience, the measures µi are defined on 2

Θ instead of on 2Θi ; in view of the fact that

µi(Θi) = 1, they can nonetheless be interpreted as subjective conditional probability measures. Analogous

remarks apply to the subsequently defined relations ≥i .

23Karni-Schmeidler assume P3, but their proof is easily modified to a partition-relativized version of P3.
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Note that by part ii) of the definition of an s.i.p. event, “any” can be replaced by “all”

in the definition of ≥i, and that E ≥i F if and only if µi(E) ≥ µi(F ).

Moreover define

Definition 4 f ¥i g (“f indirectly stochastically dominates g conditional on Θi”), iff, for

all weak orders R on X and all x ∈ X:

{θ ∈ Θ|f(θ) ∩ {y ∈ X|yRx} 6= ∅} ≥i {θ ∈ Θ|g(θ) ∩ {y ∈ X|yRx} 6= ∅} .

The following is a subjective, conditional version of ISD.

Axiom 7 (ISD*, Indirect Stochastic Dominance) For all f, g ∈ F and all i ∈ I :

f ºi g whenever f ¥i g .

ISD* can be expressed purely in preference terms: if f and g coincide outside Θi, and if

any bet on attaining under f any level set of any weak order conditional on Θi, i.e. the bet

on the event {θ ∈ Θ| f(θ) ∩ {y ∈ X|yRx} 6= ∅} ∩ Θi, is preferred to the corresponding bet

based on g, then f itself is weakly preferred to g.

The following result, the main theorem of the paper, is a straightforward consequence of

theorems 1 and 2. Note that in the representation, the implicit probability distributions λi

over future preferences are allowed to depend on Θi.

Theorem 3 A preference relation over opportunity acts º satisfies P1, P2, P345*, P6 as

well as ISD∗ if and only if there exist {µi}i∈I and {ui}i∈I as in theorem 2 and such that

each ui has the form ui(A) =
P

ωi∈Ωi
λiωi maxx∈A viωi(x) (for appropriate Ωi, λ

i ∈ ∆Ωi , and

{viωi}ωi∈Ωi).

As remarked before, the richness of the state-space implied by P6 is critical to the validity

of the result. The result would cease to hold with additively separable preferences and a

finite state space as in Kreps (1992); it is easily verified, for instance, that the result is false
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if Θ consists of only one state, since then ISD* coincides with monotonicity with respect to

set-inclusion which is not enough according to theorem 5 below.

4. THE SIMPLE ALGEBRA OF EXPECTED INDIRECT UTILITY

Sections 2 and 3 have left two bits of unfinished business. The uniqueness properties of

the representation have not been discussed. One would also like to know more explicitly the

nature of the restrictions imposed by EIU-rationalizability on preferences over opportunity

prospects, and especially the restrictions on the cardinal utility-functions u representing

those preferences (“EIU functions”). Both of these issues will now be addressed based on

a preceding exposition of the algebra of EIU functions u . The basic novel insight of this

section is the observation (fact 2) that the structure of EIU functions is closely related to that

of “plausibility-functions” (conjugate belief-functions) in the literature on non-probabilistic

belief representations; as a result, the key technical tool of that literature, Möbius inversion

(originally due to Rota 1964), becomes applicable and central here as well. It has in fact

been used already in the proof of theorem 1; among other applications, Möbius inversion

proves its mettle at the end of this section by yielding a particularly transparent proof of

Kreps’s (1979) main result.24

Let A∗ = 2X\(∅∪ {X}). #S is the cardinality of the set S, with #X = n, and ⊂ denotes

the strict subset relation. 1: A → R is the constant function equal to 1, 1S : A → R is

the indicator-function of the set of sets S. Functions from A to R will often be viewed as

vectors in RA.

A function u : A → R is an indirect utility (IU) function if it has the form u(A) =

maxx∈A u({x}) for all A ∈ A. An function u : A → R is an expected indirect utility

(EIU) function if it is a convex combination of IU-functions: u(A) =
P
ω∈Ω

λωvω(A) =P
ω∈Ω

λωmaxx∈A vω({x}) for all A ∈ A, for some finite collection of IU-functions {vω}ω∈Ω
and some set of coefficients {λω}ω∈Ω such that λω ≥ 0 for all ω ∈ Ω and

P
ω∈Ω

λω = 1. Thus,

24The classical references on belief-functions are Dempster (1967) and Shafer (1976); for a recent thorough

study of Möbius inversion, the key technical tool, see Chateauneuf-Jaffray (1989).
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preferences over opportunity prospects / acts are EIU-rationalizable if and only if they have

a vNM / Savage representation in terms of an EIU function u.

An IU function is dichotomous (and 0-1 normalized) (DIU) if it takes the values 0 and

1 only, i.e. if u(A) ⊆ {0, 1}. Finally, a function u : A → R is simple if u = vS for some

S ∈ 2X , with vS : A→ R defined by

vS(A) =

⎧⎨⎩ 1 if A ∩ S 6= ∅,

0 if A ∩ S = ∅, for A ∈ A.
The following observation characterizes EIU functions as equivalent to certain linear

combinations of dichotomous IU (respectively simple) functions.

Fact 2 i) u is a DIU-function if and only if u is simple.

ii) u is an IU-function if and only if

u =
P
S∈A

λSvS , for λ ∈ RA such that λS ≥ 0 for all S 6= X, and such that λS > 0 and

λT > 0 imply S ⊆ T or S ⊇ T .

iii) u is an EIU-function if and only if

u =
P
S∈A

λSvS, for λ ∈ RA such that λS ≥ 0 for all S 6= X.

Example 3 Let X = {1, 2, 3} and u the IU-function defined by u(S) = maxx∈S x2. Then

u = v{1,2,3} + 3v{2,3} + 5v{3}.

Mathematically, the key to the following analysis is the observation that the set of DIU

functions is a linear basis of the space RA. How DIU-functions combine (in particular to

yield EIU functions) is described by the “dual Möbius operator”25 Ψ : RA → RA defined

by λ 7→ u =
P
S∈A

λSvS , and thus u(A) = Ψ(λ)(A) =
P

S∈A:S∩A6=∅
λS , for A ∈ A.

Basic is the following fact.

Fact 3 Ψ : RA → RA is a bijective linear map. Its inverse Ψ−1 is given by

Ψ−1(u)(A) =
P

S∈2X :S⊆A
(−1)#(A\S)+1u(Sc) for A ∈ A , with u(∅) = 0 by convention.

25For the choice of terminology, consult the proof of fact 3.
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The fact allows a straightforward characterization of EIU-functions in terms of 2n − 2

linear inequalities.

Corollary 1 u is an EIU function if and only if Ψ−1(u)(A) ≥ 0 for all A ∈ A∗.

Drawing on the literature on belief-functions, the characterizing condition is made more

intelligible by generalizing it to the following effectively equivalent pair of conditions.

Definition 5 i) u : A→ R is monotone if A ⊆ B implies u(A) ≤ u(B) ∀A,B ∈ A.

ii) u : A → R is uniformly submodular if, for any finite collection {Ak}k∈K in A

such that
T
k∈K

Ak 6= ∅,

u

µ T
k∈K

Ak

¶
≤

P
J:∅6=J⊆K

(−1)#J+1u
µ S
k∈J

Ak

¶
.26

Uniform Submodularity is easiest understood by considering the case of #K = 2, where

it specializes to the following standard “submodularity” condition:

u(A ∩B) + u(A ∪B) ≤ u(A) + u(B) ∀A,B ∈ A such that A ∩B 6= ∅ , (1)

or equivalently:

u(A ∪B)− u(A) ≥ u(A ∪B ∪ C)− u(A ∪C) ∀A,B,C ∈ A.

In this version, submodularity says that the incremental value of adding some set a given

set of alternatives (the setB toA) never increases as other alternatives (the set C) are added.

Submodularity implies that opportunity subsets are substitutes in terms of flexibility value.

Theorem 4 u is an EIU function if and only if it is monotone and uniformly submodular.

Theorem 4 translates immediately into a characterization of the risk attitudes towards

opportunity prospects implied by EIU maximization.

26The conjunction of monotonicity and uniform submodularity differs from “infinite monotonicity” in

the sense of Choquet (1953) in two ways: the latter condition would result if in the definition of uniform

submodularity the inequality would be reversed and if the non-empty-intersection clause be dropped.

20



Definition 6 i) º is monotone if 1{A} º 1{B} for all A,B in A such that A ⊇ B.

ii) º is opportunity risk-averse if, for any finite collection {Ak}k∈K in A such thatT
k∈K

Ak 6= ∅, and any q, p such that

q is defined by qS = 2
−n+1 ·#{J ≤ K | #J is even and strictly positive and S =

S
k∈J

Ak,

or J = ∅ and S =
T
k∈K

Ak}, and

p is defined by pS = 2
−n+1 ·#{J ≤ K | #J is odd and S =

S
k∈J

Ak},

then p º q.

The connection of this definition with an intuitive notion of risk-aversion emerges from

considering prospects of two opportunity sets. Opportunity risk-aversion then specializes27

to the condition that, for all A,B,C ∈ A such that A ⊃ B ∪C and B ∩ C = ∅ :

(
1

2
1{A\B} +

1

2
1{A\C}) º (

1

2
1{A} +

1

2
1{A\(B∪C)}). (2)

Thus, losing one of the opportunity subsets B or C for sure (each with equal odds) is

weakly preferred to facing a fifty-present chance of losing both B and C. All instances of

opportunity risk-aversion share the following two characteristics which together lend some

minimal justification to viewing them as genuine instances of risk-aversion:

i) p({S | S 3 x}) = q({S | S 3 x}) ∀x ∈ X, and

ii) for some S with qS > 0 : pT > 0⇒ T ⊃ S ∀T ∈ A.

Theorem 4 yields the following corollary:

Corollary 2 º on ∆A is EIU-rationalizable if and only if it satisfies vNM and is monotone

and uniformly risk-averse.

Remark: While opportunity risk-aversion emerges as a natural characterizing property

from a purely descriptive point of view, it is not very appealing decision-theoretically as

a conceptually fundamental axiom. It is too complex to be particularly intuitive; more

importantly, its link to an intuitive notion of flexibility / indirect utility stands in need of

clarification; finally, in contrast to ISD, the role of stochastic independence remains hidden.

27by considering collections of the form {A\B,A\C}, with B ∩ C = ∅.
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We conclude this section by providing a new and simplified proof of Kreps’s (1979) clas-

sic result which characterizes EIU rationalizable preference orders defined on the class of

opportunity sets A. The new proof is based on dual Möbius inversion and given in the ap-

pendix; we hope that it significantly clarifies the logic of Kreps’s result. For the remainder

of this section only, assume º to be a weak order on A.

Definition 7 i) º is monotone if A ⊇ B implies A º B , for all A,B ∈ A.

ii) º is ordinally submodular if A º A ∪ B implies A ∪ C º A ∪ B ∪ C , for all

A,B,C ∈ A.

iii) º is ordinally EIU-rationalizable if there exists an EIU function u : A→ R such

that A º B if and only if u(A) ≥ u(B) for all A,B ∈ A.

Theorem 5 (Kreps) A weak order º is ordinally EIU-rationalizable if and only if it is

monotone as well as ordinally submodular.

The sufficient conditions of the theorem seem surprisingly weak. In particular, Kreps’

result implies that whenever a preference relation is “strictly monotone” (i.e. satisfies the

condition “A ⊃ B ⇒ A Â B for all A,B ∈ A”), it is ordinally EIU-rationalizable. To

facilitate the discussion, we restate the result as one about ordinal utility—functions.

Condition 1 (OSM) u(A) ≥ u(A ∪B)⇒ u(A ∪C) ≥ u(A ∪B ∪ C) ∀A,B,C ∈ A.

Theorem 6 (Kreps, restated) For any function u : A → R: there exists a strictly in-

creasing transformation τ : R→ R such that τ ◦ u is an EIU function if and only if u is

monotone and satisfies OSM.

Consider any utility function with the property A ⊃ B ⇒ u(A) > u(B) for all A,B ∈

A. According to theorem 6, for an appropriate τ , τ ◦ u is uniformly submodular. The

concave flavor of uniform submodularity suggests that to achieve this one needs to define

transformations τ that concavify u “sufficiently strongly.” The actual proof in the appendix

follows this line of argument (lemma 5), and verifies that indifferences are adequately taken

care of by condition OSM (lemma 4).
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5. ON THE UNIQUENESS OF THE REPRESENTATION

So far, the uniqueness properties of the EIU representation in theorem 1 and 3 have not

been discussed. This task will be addressed now, with dual Möbius inversion as the key

tool. The story line goes as follows. There is an essentially unique representation in terms of

dichotomous IU functions. Dichotomous IU representations can be reinterpreted as additive

multi-attribute representations (eliminating the reference to an implicit state-space). This

allows one to characterize the exact extent of the non-uniqueness problem; in particular, it

becomes evident what kind of structure needs to be added to achieve uniqueness. For the

sake of specificity, we will explicitly focus on the uniqueness properties of preferences over

opportunity prospects in a vNM setting; the extension to preferences over opportunity acts

is immediate.

From fact 2iii), EIU-rationalizability is equivalent to rationalizability by a set of di-

chotomous IU-functions; using dual Möbius inversion, it is easy to see that “dichotomous

EIU-representations” enjoy optimal uniqueness properties. º is nontrivial if X Â {x} for

some x ∈ X.

Proposition 1 i) º is EIU-rationalizable if and only if there exists λ ∈ RA with λT ≥ 0

for all T 6= X such that:

∀p, q ∈ ∆A : p º q ⇔
X
S∈A

X
T∈A

pSλT vT (S) ≥
X
S∈A

X
T∈A

qSλT vT (S). (3)

ii) If λ satisfies condition (3), then λ0 satisfies condition (3) as well if and only if, for

some c > 0 : λ0T = cλT for all T 6= X.

iii) If º is nontrivial, there exists a unique λ ∈ ∆A∗ satisfying (3)28.

In the remainder of this section, we will maintain the assumption that º is nontrivial

and refer to λ ∈ ∆A∗ satisfying (3) as the “weight vector” or “measure” representing º.

28Strictly speaking, λ ∈ ∆A such that λX = 0.
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While uniqueness of dichotomous EIU representations in the present context may not

seem to amount to that much, it is a significant improvement over what is achievable when

preferences are defined over opportunity sets. This improvement is obviously due to the

fact that the utility-functions representing preferences are unique up to positive affine rather

than merely strictly increasing transformations. In the latter case, not even the support

of λ is uniquely determined. Moreover, proposition 1 gives sufficient indication for what

needs to be assumed of the class of possible future preferences in order to ensure optimal

uniqueness properties.

Only in very rare situations, of course, will the decision maker in fact have dichotomous

date-2 preferences, as in the following example in which λ may be interpreted as a subjective

probability measure.

Example 4 Flex needs to open a lock; he can choose among closed boxes with uncertain

contents. Specifically, any box contains with probability pS exactly the non-empty set S of

keys x ∈ X; a box can thus be identified with a probability measure p ∈ ∆A. Having chosen

the box, Flex will attempt to open the lock, trying out all keys in the chosen box. He cares

only about the chance of success in opening the lock, and does not know which keys if any

will fit. In this case, the relevant state space is 2X , with T ∈ 2X denoting the set of keys

that in fact open the lock; in state T, Flex’s preferences over sets of keys are given by the

DIU-function vT ; in other words, Flex is successful (vT (S) = 1) if the box S contains at

least one key in T.

Here, A∗ denotes also the event that some keys fit but not all (T 6= ∅,X). By proposition

1, Flex’s preference ordering º over hypothetical boxes p ∈ ∆A reveals unambiguously his

subjective probability measure λ ∈ ∆A∗ over the sets of keys that fit, conditional on some but

not all keys in X fitting, that is: conditional on A∗ (the conditional probability that exactly

the keys in T fit is given by λT ) . On the other hand, º contains no information about the

subjective probability of the conditioning event A∗ itself (beyond its being non-zero), since

if either all keys work or none, Flex’s choice of a box does not matter. 2

In the general case, in which future preferences may be non-dichotomous, the coefficients
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of a dichotomous EIU-representation yield only highly “compounded” information about

the decision maker’s beliefs about future preferences. The representation of proposition 1

then needs to be rewritten a bit to become meaningfully interpretable. The starting point is

the observation that the interpretation of vT as a utility-function is unnecessary and, in this

case, unhelpful. Alternatively, vT can be viewed as indicator-function of the class of sets

that intersect with T, vT = 1{S|S∩T 6=∅}. Correspondingly, T can viewed as parametrizing

not a state but an attribute the “component opportunity” T . S realizes the component

opportunity T if and only if its intersects with T (or, equivalently, iff vT (S) = 1), in other

words: if S permits to realize some alternative in T .

Accordingly, the vNM utility of S can uniquely be written as the sum of the values λT of

all component opportunities that it realizes: u(S) =
P

T :T∩S 6=∅
λS, thus yielding an additive

multi-attribute representation in terms of which essential uniqueness is always ensured.

∀p, q ∈ ∆A : p º q ⇔
X
S∈A

pS

⎛⎝ X
T :T∩S 6=∅

λS

⎞⎠ ≥X
S∈A

pS

⎛⎝ X
T :T∩S 6=∅

λS

⎞⎠ . (4)

If one is willing to postulate that the decision maker “in fact” maximizes expected indirect

utility with given {vω}ω∈Ω and subjective probabilities {πω}ω∈Ω , further explanation of the

attribute weights λT can be given. In view of fact 2ii), it is easily verified that the (non-

normalized) coefficients λT in (4) that correspond to the EIU-function
P
ω∈Ω

πωvω satisfy:

λX =
X
ω∈Ω

πωmin
x∈X

vω({x}) ,

and, for T different from X,

λT =
X
ω∈Ω

πω[min
x∈T

vω({x})− max
T 0⊃T

min
x∈T 0

vω({x})]. (5)

Note that the expression “minx∈T vω({x})−maxT 0⊃T minx∈T 0 vω({x})” differs from zero

(being then in fact positive) if and only if T is a level set of vw, i.e. if T = {x ∈ X |

vω({x}) ≥ vω(T )}. Thus λT is the expected incremental utility from reaching the level set T

rather than the next lower one.
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Together with proposition 1, (5) precisely describes the extent of non-uniqueness of the

EIU-representation. Preferences thus fail to reveal the agent’s subjective probability dis-

tribution over IU-functions vω for two reasons. First, even if all IU-functions with positive

probability are in fact dichotomous, their coefficients combine a subjective-probability and

a utility-scale factor, as typical for state-contingent preferences. Secondly, the same EIU-

function can typically be generated as convex combination of non-dichotomous IU-functions

in many different ways.

However, (5) also suggests that the second source of non-uniqueness is not inescapable.

In particular, uniqueness will obtain if either due to additional conditions on º or simply

by an external “identifying” assumption, future preferences Rω are known to belong to

some class R with the property that any non-degenerate level set is associated with at

most one preference ordering in that class, i.e. formally that, for any x ∈ X and any R,

R0 ∈ R,{y|yRx} = {y|yR0x} 6= X implies R = R0. Such R will be referred to as identified.

If R is identified, it can be made the canonical state space; º has then a representation

of the form

p º q ⇔
X
S

pS

ÃX
R∈R

max
x∈S

vR(x)

!
≥
X
S

qS

ÃX
R∈R

max
x∈S

vR(x)

!
.

In view of (5), the vR in this representation are essentially unique: specifically, if {vR}R∈R
represents º, then {v0R}R∈R represents º as well if and only if there exists c > 0 and

{dR}R∈R such that v0R = cvR + dR for all R ∈ R.

An obvious example of an identified class has already been introduced, that of weak orders

R with only two level sets. More interestingly, identified classes arise quite naturally with

infinite domains X; examples are the class of quasi-linear preferences on a domain X of the

form X = Y ×R, and the class of EU preferences on a lottery space X of the form X =

∆Y . Of course, the restrictions on preferences over opportunity sets implied by additional

structure of this kind remain to be worked out. Note also that in a Savage framework,

preferences of the latter class arise naturally from uncertainty that is not resolved at date

2.
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6. FREEDOM OF CHOICE

We will now consider situations in which all relevant uncertainty is explicitly modelled in

the manner of section 3, including uncertainty about future preferences. A failure of condi-

tional preferences to satisfy the IU property can then by definition no longer be attributed

to uncertainty about future preferences, but reveals an intrinsic “preference for freedom of

choice.” 29

As a sound intuitive basis for imposing consistency conditions on preferences for oppor-

tunities, only the notion that “more opportunity is better” seems to remain.30We will argue

in this section that, properly conceived, this notion is rich enough to provide the basis for

an well-behaved theory of intrinsic preference for freedom of choice, and that in fact one

merely needs to reinterpret the results above to obtain such a theory. By contrast, the bulk

of the literature has relied on independence conditions to obtain additional structure; these,

however, are very restrictive and preclude consideration of the diversity of alternatives in

an opportunity set31.

The key is an answer to the question: more precisely of what is better? To address it, we

take as point of departure an interpretation of “freedom of choice” as the freedom to do this

or that, to choose something particular, to bring about specific consequences such as living

in a particular place, entering a particular profession, etc. . Thus, the freedom of choice

offered by some opportunity set can be analyzed in terms of its component opportunities

to bring about particular consequences, and effective freedom of choice is naturally viewed

as multi-attribute construct, with the component opportunities as its relevant attributes.

By “effective freedom of choice” we mean an agent’s inclusive valuation of opportunity sets

that combines indirect utility and freedom of choice considerations; the notion of “effective

29We leave to philosophy the task of explicating this intuitive appealing concept in a rigorous manner;

for a justification based on the notion that agents autonomously choose their own preferences, see Sugden

(1996).

30Of course, this requires to keep abstracting from phenomena such as weakness of will, etc.
31See Pattanaik-Xu (1990), Puppe (1995), Nehring-Puppe (1996a) as well as Sugden (1996) for criticisms

along this line.

27



freedom of choice” is thus understood to comprise as a special case the preferences of

agents who do not intrinsically value freedom of choice, i.e. whose conditional preferences

ºi satisfy the conditional IU-property; in this case, the valued component opportunities

are those associated with the attainment of some level-set of the form {y|{y} ºi {x}}. Up

to the issue of extensionality raised below, the notion of component opportunity coincides

with that of section 5 which had been introduced there for largely technical reasons.

A significant strand in the axiomatic literature on the ranking of opportunity sets is

interested in “measuring” freedom of choice exclusive of considerations concerning an agent’s

welfare. The notion of a component opportunity and the following analysis based on it are

equally applicable under such an exclusive freedom of choice interpretation, as illustrated

by the following example. We do not pursue this interpretation further here, especially

since its conceptual coherence stands in need of further clarification.32

Example 5 Renate is a young East German woman currently living in the GDR33 in the

1980s. An alternative consists of a place where she might live (East or West Berlin, E or

W), and of a profession she might enter (becoming a medical doctor or a journalist, D or

J). The relevant universe of alternatives is X = {w, x, y, z}, with w = (E, J), x = (E,D),

y = (W,D), and z = (W,J). At the level of consequences, basic component opportunities

are the opportunity to live in East Berlin, the opportunity to live in West-Berlin, that

of becoming a doctor, and that of becoming a journalist. Typically also logically derived

component opportunities are relevant, such as that of becoming a doctor while living in

West-Berlin.

To express component opportunities defined via consequences in terms of the primitives of

the model (i.e. alternatives), they need to be translated into their consequence extensions;

the extension E ⊆ X of a consequence is the set of alternatives that bring about that

consequence34. (Obviously, some information may be lost in translation, since different

32Sugden (1996) for one is highly skeptical.

33German Democratic Republic, R.I.P..
34In logic, the extension of a predicate is defined as the set of objects that satisfy it. In Frege’s famous
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consequences may happen to have the same extensions). The following matrix associates

component opportunities and their extensions in the example above.

Component Opportunity E W D J W&J

Extension {w, x} {y, z} {x, y} {w, z} {z}

Component opportunities will be described in the following extensionally, as the oppor-

tunity to bring about membership of the chosen alternative in E, to “realize E”, and will be

referred to by their extensions. As in section 5, an opportunity set A realizes the component

opportunity E if and only if A contains one alternative realizing E, in other words, if and

only if A ∩E 6= ∅.

In a stochastic setting, this suggests the following definition of “more opportunity in

expectation”.

Definition 8 The opportunity act f offers more opportunity in expectation than the op-

portunity act g (f ¥ g) if and only if, for all component opportunities E ∈ 2X and all

i ∈ I: {θ ∈ Θ|f(θ) ∩E 6= ∅} ≥i {θ ∈ Θ|g(θ) ∩E 6= ∅} .

Thus, f offers more opportunity in expectation than g if, for any component opportunity

E ∈ 2X and conditional on any Θi, it is at least as likely for E to be realized under f as it

is under g.

It is easily verified that the “offers more opportunity than” relation coincides with the

Indirect Stochastic Dominance; it is therefore denoted by the same symbol ¥. It follows

from the above that the indirect stochastic dominance axioms ISD* and ISD capture the

notion that more opportunity is better. State-dependence of preference is highly plausible,

again. For example, if Θ = {Θ1,Θ2}, with Θ1 denoting the event “Renate has married

someone unwilling to leave East-Berlin”, Renate’s valuation of the component opportunity

W of living in West-Berlin will most probably depend on whether Θ1 is realized or its com-

plement; correspondingly, her preferences over opportunity sets conditional on Θ1 and Θ2

example, the predicates “is the morning star” and “is the evening star” have the same extension, the planet

Venus.
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will differ. Moreover, to account for a co-existing preference for flexibility in terms of explicit

uncertainty, preferences need to be state-dependent. To establish the relevance of theorems

3 and 1 in a freedom-of-choice context, it remains to reinterpret the representations.

Theorem 3 yields a state-dependent additive multi-attribute representation, in which the

utility-functions ui : A → R of theorem 2 have the form ui(A) =
P

E∈A∗:E∩A6=∅
λiE for

appropriate state-dependent attribute weights λiE .
35 The collection of weights {λiE}E∈A∗

defines an additive measure λi on A∗, and the utility-representation can be rewritten as

ui(A) = λi({E|E ∩A 6= ∅}).

In view of the great popularity of proposals to measure pure (IU-exclusive) freedom of

choice by counting alternatives, a measure representation is of some interest. It shows that

the notion of counting makes sense after all, provided it is applied to the right type of

objects, component opportunities rather than alternatives.

Remark 1: The counting of alternatives (with possibly asymmetric weights) emerges

as a special case in which λi is concentrated on singletons, since then ui(A) = λi({{x}|x ∈

A}). However, concentration of λi on singletons means that the only valued consequences

are those that can exclusively be realized by a single alternative. This seems to be a

remarkably implausible implication even on a pure freedom-of-choice interpretation; for

instance, in example 5, it means that realization of no basic component opportunity has

value by itself. In fact, it is recognized by its apparent proponents that the counting of

alternatives is not entirely satisfactory, and that, in particular, it fails to take properly into

account the diversity of an opportunity set (see Pattanaik-Xu (1990) and Gravel-Laslier-

Trannoy (1996)).

Remark 2: It is worth noting that the manner of counting has been motivated decision-

theoretically rather than mathematically. On purely mathematical grounds, one might

35Note that the sum is taken over T ∈ A∗ rather than T ∈ 2X . While conceptually perfectly sensible, the

consequence extensions ∅ and X have been “normalized out” in the representation due to their irrelevance

to preferences.
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consider a dual measure based on all sets a given set contains, leading to uniformly su-

permodular (rather than submodular) vNM utility-functions of the form ui(A) = λi({E|E ⊆

A}). Such a measure is evidently devoid of decision-theoretic content.

From an inclusive valuation perspective, the most promising strand in the literature is

the emerging multi-preference approach in which opportunity sets are compared in terms of

a range of “relevant” (or “reasonable”) preferences; see in particular Jones-Sugden (1982),

Pattanaik-Xu (1995), and Sugden (1996). The results of this paper fit naturally into this

line of research; one simply needs to reinterpret an EIU rationalization as follows: In the

representing expression
P

ωi∈Ωi
λiωi max v

i
ωi(.) of theorem 3, Ωi indexes the set of “reason-

able” utility-functions (with λiωi > 0), conditional on Θi, and λiωi is naturally interpreted

as the relevance-weight of viωi ; preferences satisfy the conditional IU property whenever all

weight is concentrated on just one ordering. Of course, just as under the flexibility interpre-

tation, there is the problem of non-uniqueness of the representation, and in particular that

of disentangling relevance-weights from utility-scales. In this context, the present paper

contributes the first cardinal representation and, more specifically, an additive aggregation

rule. By comparison, the aggregation rules proposed in the literature are ordinal and en-

tirely different in character (see Pattanaik-Xu (1995), Puppe-Xu (1995)). Moreover, with

the exception of Nehring-Puppe (1996b), the set of relevant preferences is taken as given

rather than derived from a representation theorem.

It is clear from the discussion of section 5 that within the framework studied here, the

multi-attribute and the multi-preference interpretations are “observationally equivalent”.

It remains to be seen whether the two can be distinguished in interesting ways if more

structure is assumed.

7. INCENTIVE-COMPATIBILITY

In this section, we discuss the viability of a direct Savage-style approach in which future

preferences enter the description of a state. We will argue that whether or not any mileage

is gained by such a move depends critically on one’s willingness to accept certain types of
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counterfactuals.

For expositional simplicity only, we will illustrate the problem by means of a simple

example with two alternatives (X = {x, y}) and with only preference-uncertainty. In a

direct Savage-style approach, the state-space is then given by the set of conceivable future

preference-orderings, i.e.36 by the two linear orders P1, P2 with xP1y and yP2x, as illustrated

in the following table.

A natural subclass of Savage acts are those induced by the agent’s future choice from

some opportunity sets A. Such acts have the form fA : Pi 7−→ argmaxPi A, assigning to

each state as “prize” the finally chosen alternative; they will be referred to as “generated by

the opportunity set A”, and their class denoted by Fopp. Note that on Fopp the sure-thing

principle is satisfied vacuously (this holds true in general, irrespective of the cardinality of

X). Note also that due to the inherent state-dependence of conditional preferences, Savage’s

other key axioms P3 and P4 do not apply here in any case.

act P1 P2 generating set

(x,x) x x {x}

(y,y) y y {y}

(x,y) x y {x,y}

(y,x) y x —

Thus, if one considers preferences over Fopp, the direct Savage approach entails no ad-

ditional restrictions. It follows that in order to give the sure-thing principle, and thus the

direct Savage approach, any bite, arbitrary acts (like (y, x)) need to be supported by ap-

propriate (counterfactual) gedanken-experiments; the question is whether acceptable ones

exist.

The most straightforward justification for the admissibility of arbitrary acts derives from

postulating a perfectly mind-reading referee who awards the prize based on the agent’s future

preference ordering. The mind-reading might be that of an empathetic but potentially

spiteful wife, or that of a brain-scientist in possession of a perfect “preference detector”.

36disregarding the possibility of future indifference for simplicity.
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Gedanken-experiments of this kind seem not only rather contrived, but also very much to

go against the grain of the “revealed-preference” approach central to the decision-theoretic

tradition, within which preferences are identified with dispositions to choice-behavior. Thus

perhaps somewhat more plausible is a story in which the referee obtains knowledge of the

agent’s preference through the agent’s own truthful revelation. This, however, leads to

a severe incentive-compatibility problem, since honest reporting will often be contrary to

the agent’s current interest, i.e. to acting in accordance with the choice-function defining

the state. In the above example, for instance, an agent faced with the “prima-facie act”

(y, x) in terms of reported preferences will report P2 if his true preferences are P1, and

vice versa, thus inducing the act (x, y) in terms of his true preferences. Note that at no

point in the argument have we denied that the agent himself has introspective access to his

own preferences; that simply is not enough to support arbitrary acts. The issue is rather

whether it may be feasible for the agent to commit himself at present to make choices in

the future contrary to his preferences at that time.

If this is doubted, the discussion suggests that only incentive-compatible acts correspond

to plausible thought-experiments; an act is incentive-compatible if, for any pair of weak

orders R and R0 on X, f(R) R f(R0)37; in other words, if, for all weak orders R,

f(R) ∈ argmaxR{f(R0)|R0 is weak order on X}.

Thus, incentive-compatible acts are precisely those induced by some opportunity set; as a

result the sure-thing principle is vacuously satisfied on the class of incentive-compatible acts,

and the state-structure turns out to be redundant. In other words, a preference relation

over opportunity acts38 is effectively as primitive as can be.

It should be noted that analogous revealed-preference / incentive-compatibility considera-

tions do not undermine the decision-theoretic approach to game-theory in which players are

assumed to have beliefs about others’ beliefs (respectively preferences on a state-space that

37In a general deterministic model, an act f maps weak orders to alternatives.
38that is, in the absence of non-preference uncertainty assumed here, a preference relation over opportunity

sets.
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includes others’ preferences). In a nutshell, the difference to the intrapersonal intertemporal

case is that in a game with self-interested players, player i’s belief that another player j

has placed some bet on i’s own betting behavior does not interfere with i’s actual betting

behavior since, by self-interestedness, i does not care whether j wins or loses his bet. By

contrast, an agent’s “future self” i will typically care about whether the “initial self” j wins

his bet or not: not only do the interests of the initial and future selves typically coincide,

but also the initial self’s bets can only be physically paid out to the future self!

We have argued that incentive-compatibility constraints may be of concern even on a nor-

mative interpretation on which acts correspond to a decision-maker’s thought-experiments.

On the other hand, on a behavioral interpretation concerned with real experiments, these

constraints seem to be binding in principle. Fortunately, theorem 3 has shown that the hy-

pothesis of EIU maximization with respect to all uncertainty remains testable in principle

nonetheless.

APPENDIX: PROOFS

Proof of Fact 1.

i) ⇒ iii). True since p ¥Ru q implies
P
S∈A

pSu(S) ≥
P
S∈A

qSu(S) , with Ru defined by

xRuy ⇔ u(x) ≥ u(y).

iii) ⇒ ii). True since p({S | S ∩A 6= ∅} coincides with expected utility from p under the

indirect-utility function vA given by
P
S∈A

pSvA(S) .

ii) ⇒ i). True since p ¥R q is equivalent by definition to p({S | S ∩ A 6= ∅} ≥ q({S |

S ∩A 6= ∅} for all A of the form {x | xRy}, for some y ∈ X.

Proof of Theorem 1:
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It is well-known that vNM implies the existence of a vNM utility-function u : A→R such

that

p º q ⇐⇒
X
S∈A

pSu(S) ≥
X
S∈A

qSu(S) , for all p, q ∈ ∆A. (6)

In view of fact 3 below, we need to show that º satisfies ISD if and only if λA =

Ψ−1(u)(A) ≥ 0 for all A ∈ A∗.

Note first that p({S | S ∩ A 6= ∅}) = Ψ(p)(A). The dual Möbius operator Ψ thus

maps opportunity prospects p to their characteristic profiles Ψ(p), establishing a linear

isomorphism between ∆A and the space of characteristic profiles ΓA := Ψ(∆A) = {µ ∈

RA | µ is monotone, uniformly submodular and µ(X) = 1}. The desired result is obtained

by studying the induced preferences over characteristic profiles.

º defined on ∆A induces bº on ΓA according to
µ bº µ0 ⇐⇒ Ψ−1(µ) º Ψ−1(µ0).

bº is said to be monotone if µ ≥ µ0 ⇒ µ bº µ0. Fact 1 implies p¥ q ⇐⇒ Ψ(p) ≥ Ψ(q). This

yields part i) of the following fact. In view of facts 2, iii) and equation (6), one also easily

verifies its second part.

Fact 4 i) bº is monotone if and only if º satisfies ISD.

ii) µ bº µ0 if and only if
P

A∈A∗
λAµ(A) ≥

P
A∈A∗

λAµ
0(A) , for all µ, µ0 ∈ ΓA.

In view of fact 4, i) , the theorem follows from the following lemma.

Lemma 1 bº is monotone if and only if λA ≥ 0 for all A ∈ A∗.

Proof of lemma.

Only if: define µ by µ(A) = #{S∈A|S∩A6=∅}
#{S∈A} = 1− 2n−#A−1

2n−1 , for all A ∈ A.

µ is in the interior of ΓA, since Ψ is a homeomorphism and Ψ−1(µ)= 1
2n−1 · 1 is in the

interior of ∆A. Thus, for any A ∈ A∗ and small enough ε, µ + ε1{A} ∈ ΓA. By the

monotonicity of bº and fact 4, ii) , λA ≥ 0.
The converse is immediate, noting that Ψ(p)(X) = 1 for all p ∈ ∆A.2
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Remark: Characteristic profiles are, from the mathematical point of view, “plausibility

functions” in the sense of the theory of belief-functions (Shafer (1976)); however, in contrast

to the intended interpretation of that theory, a characteristic profile does not express a non-

additive belief about the state-space A∗, but rather probabilistic beliefs about events in A∗

of the form {S | S ∩ T 6= ∅}.

Proof of Theorem 3:

Let {µi}i∈I and {ui}i∈I as in theorem 2, which implies in particular

f ºi g if and only if

Z
ui(f(θ))dµi ≥

Z
ui(g(θ))dµi, for all f, g ∈ F . (7)

For given i ∈ I, define º∗i on ∆A according to µi ◦ f−1 º∗i µi ◦ g−1 if and only if f ºi g ,

for all f, g ∈ F . By the representation (7), º∗i is well-defined. From the convex-rangedness

of µi and the definition of F , {µi ◦ f−1 | f ∈ F} = ∆A; º∗i is therefore complete. From (7),

it follows that º∗i satisfies all of the vNM axioms and is represented by the vNM utility-

function ui. [ These facts have been in fact derived by Savage as a key step in obtaining his

representation theorem in the first place ].

ISD∗ of º is clearly equivalent to ISD of º∗i . By theorem 1, this in turn is equivalent

to a representation of ui according to ui(A) =
P

ωi∈Ωi
λiωi maxx∈A viωi(x) , for appropriate Ωi,

λi ∈ ∆Ωi , and {viωi}ωi∈Ωi .

Proof of Fact 2.

1. i) =⇒ . If u is a DIU-function, then u = v{x∈X|u(x)=1} .

2. i)⇐= . By definition of a simple function, vS(A) = 1 if and only if ∃x ∈ X : x ∈ A∩S

, which in turn holds if and only if ∃x ∈ A : vS({x}) = 1.

3. ii) ⇐= . Consider u =
P
S∈A

λSvS , for λ ∈ RA such that λS ≥ 0 for S 6= X, and such

that λS > 0 and λT > 0 imply S ⊆ T or S ⊇ T . Define Λ = {S ∈ A | λS > 0 or

S = X}.Then u({x}) =
P

S∈Λ:S3x
λS , for all x ∈ X, and u(A) =

P
S∈Λ:S∩A6=∅

λS =u({y}) for
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any y ∈ ∩{S ∈ Λ | S ∩ A 6= ∅}; such y exist by the assumed ordering property of Λ. Since

clearly u(A) ≥ u({z}) for all z ∈ A, u(A) = maxx∈A u({x}); u is thus an IU-function.

4. ii) =⇒ . If u is an IU-function, let {xk}k=1,..,n be an enumeration of X such that

u({xk}) ≥ u({xk+1}) for k = 1, .., n. Then

w =
n−1X
k=1

(u({xk})− u({xk+1}))v{xj |j≤k} + u({xn})vX

denotes a function of the desired form. By part 3., w is an IU-function. To show its

equality to u, it thus suffices to show equality for singleton-sets, as follows: w({xl}) =
n−1P
k=l

(u({xk})− u({xk+1})) + u({xn}) = u({xl}).

5. iii) ⇐⇒ . Immediate from 3. and 4. .

Proof of Fact 3.

Extend u to R2
X
by setting u(∅) = 0, and set λ∅ = 0 as well. Define Θ : RA × {0} →

RA × {0} , u 7−→ Θ(u) = l by l(A) = u(X)− u(Ac).

By construction, l(A) =
P

S∈2X :S∩X 6=∅
λS −

P
S∈2X :S∩Ac 6=∅

λS =
P

S∈2X :S⊆A
λS.

Let Φ : RA × {0} → RA × {0} denote the linear (“Möbius”) operator that maps λ to l

as just described. Shafer (1976) has shown the following.

Proposition 2 (Shafer) Φ : RA × {0}→ RA × {0} is a bijective linear map. Its inverse

Φ−1 is given by

Φ−1(l)(A) =
P

S∈2X :S⊆A
(−1)#(A\S)l(S) for A ∈ 2X .

Since Θ is invertible (with inverse Θ−1 = Θ; this follows from noting that l(l(A)) = u(A)

), one can write Ψ = Θ−1 ◦ Φ , and thus also Ψ−1 = Φ−1 ◦ Θ. Specifically, in view of

proposition 2, one obtains Ψ−1(u)(A) =
P

S∈2X :S⊆A
(−1)#(A\S)(u(X) − u(Sc)) , for A ∈ A.

Since
P

S∈2X :S⊆A
(−1)#(A\S) = 0 (cf. Shafer (1976, p.47)) , one can simplify to Ψ−1(u)(A) =P

S∈2X :S⊆A
(−1)#(A\S)+1u(Sc).
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Proof of Theorem 4.

In view of corollary 1 and the decomposition Ψ−1 = Φ−1 ◦Θ as in the proof of fact 3, the

theorem is an immediate consequence of the following two lemmas. Let A∗∗ = 2X\{X}.

Lemma 2 i) u is monotone (on A) if and only if the associated loss-function l = Θ(u) is

monotone on A∗∗.

ii) u is uniformly submodular (on A) if and only if the associated loss-function l = Θ(u)

is uniformly supermodular on A∗∗, i.e. if, for any finite collection {Ak}k∈K in A∗∗ such

that
S
k∈K

Ak ⊂ X, l

µ S
k∈K

Ak

¶
≥

P
J :∅6=J⊆K

(−1)#J+1l
µ T
k∈J

Ak

¶
.

Proof of lemma. Part i) is obvious from the definition of l.

For part ii), we shall prove the “only-if” part; the “if” part follows from reading the proof

given backwards. Thus, consider a finite collection {Ak}k∈K in A∗∗ such that
S
k∈K

Ak ⊂ X;

it needs to be shown that l

µ S
k∈K

Ak

¶
≥

P
J:∅6=J⊆K

(−1)#J+1l
µ T
k∈J

Ak

¶
. This follows from the

equivalence of the three inequalities just below, as well as the equivalence of “
S
k∈K

Ak ⊂ X

”and “
T
k∈K

Ac
k 6= ∅”.

l

Ã[
k∈K

Ak

!
≥

X
J :∅6=J⊆K

(−1)#J+1l
Ã\
k∈J

Ak

!
is by the definition of l and computation of complements equivalent to

u(X)− u

Ã\
k∈K

Ac
k

!
≥

X
J :∅6=J⊆K

(−1)#J+1(u(X)− u

Ã[
k∈J

Ac
k

!
),

which, due to the equality
P

J :∅6=J⊆K
(−1)#J+1 = 1, is equivalent to

u

Ã\
k∈K

Ac
k

!
≤

X
J :∅6=J⊆K

(−1)#J+1u
Ã[
k∈J

Ac
k

!
. 2

Lemma 3 l is monotone and uniformly supermodular on A∗∗ if and only if Φ−1(l)(A) ≥ 0

for all A ∈ A∗∗.
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Proof of lemma. For x ∈ X, let Ax = 2
X\{x}. It follows from Shafer’s (1976) theorem

2.1 (see also Chateauneuf-Jaffray (1989), Corollary 1) for any x ∈ X that l is uniformly

supermodular on Ax if and only if Φ
−1(l)(A) ≥ 0 for all A ∈ Ax. The claim follows from

noting that
S
x∈X Ax = A∗∗. 2

Proof of Corollary 2.

By standard arguments , the vNM axioms ensure the existence of a vNM representation

p º q ⇔
P
S∈A

pSu(S) ≥
P
S∈A

qSu(S). Monotonicity and opportunity risk—aversion of º are

then easily verified to be equivalent to monotonicity and uniform submodularity of the

utility—function u.

Proof of Theorem 6.

Necessity is straightforward.

For sufficiency, assume w.l.o.g. that u(X) = 0 , and hence that u(S) ≤ 0 for all S ∈ A.

Let um : A→ R defined by um(S) = −(−u(S))m. Let λm denote the associated coefficient

vector λm = Ψ−1(um); note that −um(A) =
P

S⊆Ac

λmS .

We want to show that, for some sufficiently large m, um is an EIU-function. By fact 2,iii)

, it thus needs to be shown that for some sufficiently large m : λmS ≥ 0 for all S 6= X. Since

X is finite, it suffices to show that for all S ∈ A∗, λmS ≥ 0 for all sufficiently large m. Take

S ∈ A∗.

Case 1: For some x ∈ S : u(Sc ∪ {x}) = u(Sc). Then um(Sc ∪ {x}) = um(Sc); since,

moreover, um satisfies OSM because u does, it follows that λmS = 0 by lemma 4 below.

Case 2: For all x ∈ S : u(Sc ∪ {x}) > u(Sc). Then λmS > 0 for sufficiently large m by

lemma 5 below. 2

Lemma 4 For any w satisfying OSM, A ∈ A, and x ∈ X:

w(A ∪ {x}) = w(A) implies λT = 0 for all T such that x ∈ T ⊆ Ac.
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Proof of lemma. Fix x ∈ X. The claim is shown by downward induction on the

size of A. It holds vacuously for A = X.

Thus, assume the claim to be true for all B such that B ⊃ A, and assume also

w(A ∪ {x}) = w(A). (8)

By OSM, w(B ∪ {x}) = w(B) for all B ⊃ A;

hence by induction assumption, λmT = 0 for all T such that x ∈ T ⊂ Ac : λT = 0.

Since equation 8 implies by the definition of λ:
P

T :x∈T⊆Ac

λT = w(A ∪ {x})− w(A) = 0 ,

it follows that λAc = 0. 2

Lemma 5 i) m→∞lim sup |λmS |
−um(Sc) <∞.

ii) In case 2: m→∞lim λmS
−um(Sc) = 1.

Proof of lemma. From λmS = −um(Sc)−
P
T⊂S

λmT , one obtains

λmS
−um(Sc)

= 1−
X
T⊂S

λmT
−um(T c)

−um(T c)

−um(Sc)
. (9)

Let ηS = m→∞lim sup |λmS |
−um(Sc) . Due to the monotonicity of u, |

−um(T c)
−um(Sc) |≤ 1 in equation

(9). One thus obtains from equation (9), ηS ≤ 1 +
P
T⊂S

ηT for S ∈ A.

Part i) follows from this by induction on the size of S.

Part ii) follows from the validity of i) for T ⊂ S, and the fact that satisfaction of the

condition “for all x ∈ S : u(Sc ∪ {x}) > u(Sc)” implies um(T c)
um(Sc)

→ 0 as m → ∞, for all T

such that T ⊂ S. 2

Proof of Proposition 1.

i) follows from theorem 1 and fact 2,iii) .

ii) By the unique determinacy of vNM-utility functions up to positive affine transforma-

tions, u =
P
T∈A

λT vT and u0 =
P
T∈A

λ0T vT must be positive affine transformations of each
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other. The claim is thus a straightforward implication of the behavior of Ψ−1 under affine

transformations described by the following fact which itself follows at once from the linearity

Ψ−1 and the definition of Ψ; note that changes in the “level” of u affect only the coefficient

on vX representing global indifference.

Fact 5 For any u ∈ RA, c > 0 and d ∈ R :

Ψ−1 (cu+ d1) (T ) =

⎧⎨⎩ cΨ−1(u)(T ) if T 6= X

cΨ−1(u)(T ) + d if T = X.

iii) is straightforward from ii).
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