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1 Introduction

The model of abstract binary Arrowian aggregation introduced by Wilson (1975), and
further developed by Rubinstein and Fishburn (1986), provides a general framework
for studying the problem of aggregating sets of logically interconnected propositions,
a problem that has recently received some attention in the literature on judgement
aggregation, following List and Pettit (2002). A great variety of aggregation problems
can be analyzed in this framework, among them the classical preference aggregation
problem and the problem of strategy-proof social choice on generalized single-peaked
domains, see Section 4 below for a few examples.

Within this framework, we characterize the problems that admit non-dictatorial,
locally non-dictatorial, anonymous and neutral Arrowian aggregators, respectively. A
“problem” is characterized by a set of social states which are described in terms of
a family of binary properties, or equivalently, in terms of yes/no-issues. Each state
corresponds to a unique combination of properties, or yes/no-evaluations. Crucially, the
issues are logically interrelated so that some evaluations are ruled out. An aggregator
maps profiles of such evaluations to a collective evaluation. An aggregator is called
Arrowian if it satisfies the familiar independence condition and respects unanimity.
Throughout, we will also assume a natural and desirable condition of non-negative
responsiveness (“monotonicity”). Monotonicity enables a unified characterization of
the class of all Arrowian aggregators in terms of a simple combinatorial condition, the
“Intersection Property” that is not available without monotonicity (see Appendix B).

Our first main result, Theorem 1, derives a condition called “total blockedness”
that is both necessary and sufficient for a problem to admit only dictatorial mono-
tone Arrowian aggregators. Many, but by far not all, interesting problems are totally
blocked; examples are provided in Section 4.

While this result ensures that if a problem is not totally blocked non-dictatorial
monotone Arrowian aggregators exist, those may still be “almost dictatorial” by giving
almost all decision power to a single agent, or by giving all decision power on some
issues to one agent and all decision power on all other issues to another agent. Thus,
the negation of total blockedness cannot be viewed as securing genuine possibility
results. The second main result of the paper, Theorem 2, therefore characterizes those
problems that admit anonymous and monotone Arrowian aggregators, ensuring that
all agents have equal influence on the chosen outcome. It turns out that the problems
that admit anonymous aggregators are exactly those that admit locally non-dictatorial
aggregators.

As illustrated by an example, the characterizing condition for the existence of anony-
mous monotone Arrowian aggregators is necessarily complex. The complexity results
from the existence of rather contrived cases in which anonymous aggregation rules exist
only for an odd number of agents. A simpler and more satisfying characterization is
obtained for problems admitting anonymous monotone Arrowian aggregators for an
arbitrary number of agents (Theorem 3).

While anonymous aggregation rules treat agents symmetrically, they typically treat
social states asymmetrically, for instance by applying different quotas to different issues.
We therefore finally characterize the circumstances under which monotone Arrowian
aggregation is compatible with different notions of neutrality, i.e. symmetric treatment
of social states (Theorem 4).

The remainder of this paper is organized as follows. The following Section 2 intro-
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duces our framework and notation. In Section 3, we state the main results. Section
4 presents and discusses applications and examples. All proofs are collected in the
appendices.

2 Framework and Notation

2.1 Property Spaces: Definition

A property space is a pair (X,H), where X is a finite universe of social states or social
alternatives, and H is a collection of subsets of X satisfying
H1 H ∈ H ⇒ H 6= ∅,
H2 H ∈ H ⇒ Hc ∈ H,
H3 for all x 6= y there exists H ∈ H such that x ∈ H and y 6∈ H,
where, for any S ⊆ X, Sc := X \ S denotes the complement of S in X. The elements
H ∈ H are referred to as the basic properties (with the understanding that a property
is extensionally identified with the subset of all social states possessing that property).
A pair (H,Hc) is referred to as an issue.

Property spaces can be identified with subsets Z ⊆ {0, 1}K of hypercubes satisfying
projkZ = {0, 1}. Specifically, any property space (X,H) with H = {H1,H

c
1 ,H2,H

c
2 , ...,

HK ,Hc
K} naturally defines a subset Z of {0, 1}K by

Z := {(z1, ..., zK) ∈ {0, 1}K : [(∩k:zk=0H
c
k) ∩ (∩k:zk=1Hk)] 6= ∅}.

Conversely, any subset Z ⊆ {0, 1}K canonically defines a property space (Z,H) with
H given by the family of all sets of the form {z ∈ Z : zk = 0} or {z ∈ Z : zk = 0}, for
all k = 1, ...,K; satisfaction of conditions H1-H3 is easily verified.1

The notion of a property space is also closely related to the notion of an agenda in
the literature on judgement aggregation, see List and Puppe (2007) for a recent survey
of that literature. Specifically, any issue (H,Hc) can be identified with a proposi-
tion/negation pair and the elements of X with complete and consistent judgements on
these; equivalently, the elements of X can be identified with the consistent truth-value
assignments on the propositions.2

2.2 Arrowian Aggregation on Property Spaces

Let N = {1, ..., n} be a set of individuals, where n ≥ 2. An aggregator is a mapping
f : Xn → X. The following conditions on such mappings play a fundamental role in
our analysis.

Unanimity f(x, ..., x) = x, for all x ∈ X.
Independence If f(x1, ..., xn) ∈ H and, for all i ∈ N , [xi ∈ H ⇔ yi ∈ H], then
f(y1, ..., yn) ∈ H.
Monotonicity If f(x1, ..., xi, ..., xn) ∈ H and yi ∈ H, then f(x1, ..., yi, ..., xn) ∈ H.

1Note that the property space formulation identifies “isomorphic” subsets, not only in a hy-
percube of given dimension, but also across hypercubes of different dimensions. E.g., the sets
{(0, ..., 0), (1, ..., 1)} ⊆ {0, 1}K give rise to the same property space for all K.

2The abstract aggregation and property space framework can be adapted to model judgment ag-
gregation problems also beyond classical two-valued logic, see e.g. Dokow and Holzman (2006).
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An aggregator is called Arrowian if it satisfies unanimity and independence. In
this paper, we will be concerned with Arrowian aggregators that satisfy in addition the
monotonicity condition. Note that under monotonicity, unanimity can be deduced from
the weaker requirement that the aggregator is surjective, i.e. that any element of X is
in the range of f . Note also that the conjunction of independence and monotonicity is
equivalent to the following single condition.

Monotone Independence If f(x1, ..., xn) ∈ H and, for all i ∈ N , [xi ∈ H ⇒ yi ∈ H],
then f(y1, ..., yn) ∈ H.

Besides its evident appeal as a condition on satisfactory aggregation, the main
advantage of assuming monotonicity is the existence of a unified characterization of
all monotone Arrowian aggregators in terms of “voting by issues” satisfying a simple
combinatorial condition, the “Intersection Property” (see Appendix B). A comparable
characterization of all Arrowian aggregators without monotonicity is not known.

2.3 Conditional Entailment and (Total) Blockedness

In this subsection, we describe the key conditions on the logical complexity of a property
space that will later allow us to classify these in terms of the monotone Arrowian
aggregators they admit.

Say that a family G ⊆ H of basic properties is a critical family if ∩G = ∅ and
for all G ∈ G, ∩(G \ {G}) 6= ∅. A critical family G = {G1, ..., Gl} thus describes
the exclusion of the combination of the corresponding basic properties in the sense
that G1, ..., Gl cannot be jointly realized. “Criticality” (i.e. minimality) means that
this exclusion is not implied by a more general exclusion in the sense that the basic
properties in any proper subset of G are jointly realizable. Observe that all pairs
{H,Hc} of complementary basic properties are critical; they are referred to as the
trivial critical families.

The following “entailment” relation is crucial. Say that H conditionally entails
G, written as H ≥0 G if H 6= Gc and there exists a critical family containing both
H and Gc. Intuitively, H ≥0 G thus means that, given some combination of other
basic properties, the basic property H entails the basic property G. More precisely, let
H ≥0 G, i.e. let {H,Gc, G1, ..., Gl} be a critical family; then with A = ∩l

j=1Gj one has
both A∩H 6= ∅ (“property H is compatible with the combination A of properties”) and
A∩Gc 6= ∅ (“property Gc is compatible with A as well”) but A∩ H∩Gc = ∅ (“properties
H and Gc are jointly incompatible with A”). Note that H ≥0 G ⇔ Gc ≥0 Hc. We
write ≥ for the transitive closure of ≥0, and ≡ for the symmetric part of ≥.

It turns out that all subsequent characterization results can be stated in terms
of this conditional entailment relation. Its key role in our analysis derives from the
following observation. For any monotone Arrowian aggregator f , say that a coalition
W of agents is winning for H if the agents in W can jointly force the outcome under
f to be an element of H. If H ≥ G then any a coalition that is winning for H must
also be winning for G (see Lemma 1 in Appendix C).

Say that (X,H) is totally blocked if, for all H,G ∈ H, H ≥ G, i.e. if there exists
a sequence of conditional entailments from every basic property to every other ba-
sic property. Total blockedness is a quite demanding condition as it requires a large
number of entailments. As we shall see in Section 4 below, it is nevertheless satisfied
by a number of interesting aggregation problems. Say that H is blocked if H ≡ Hc,
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i.e. if there exists a sequence of conditional entailments from H to its complement
Hc, and vice versa. Call a property space (X,H) blocked if some H ∈ H is blocked;
otherwise, if no H is blocked, (X,H) is called unblocked. Finally, for each G ∈ H, let
H≡G := {H ∈ H : H ≡ G}, and say that a property space is quasi-unblocked if for
any G ∈ H and any critical family G, #(H≡G ∩ G) ≤ 2, whenever G is blocked. Evi-
dently, quasi-unblockedness is intermediate in strength between not total blockedness
and unblockedness.

3 Characterization Results

3.1 Non-Dictatorial Aggregation

An aggregator f is called dictatorial if there exists an individual i such that, for all
x1, ..., xn, f(x1, ..., xn) = xi.

Theorem 1 A property space (X,H) admits non-dictatorial and monotone Arrowian
aggregators if and only if it is not totally blocked.

To use Theorem 1 to show that a given domain is dictatorial is typically fairly straight-
forward, as it involves coming up with sufficiently many instances of conditional en-
tailment; in particular, it is not necessary to determine the set of critical families
exhaustively. By contrast, in order to show that a domain is non-dictatorial, in prin-
ciple one needs to determine the transitive hull of the entire conditional entailment
relation; this may be difficult. However, an easily verifiable and frequently applicable
sufficient condition is that there be at least one basic property not contained in any
non-trivial critical family. Indeed, if H is only contained in the trivial critical family
{H,Hc}, one has H 6≥0 G for all G, and therefore H 6≥ Hc, which implies that the
underlying property space is not totally blocked.

3.2 Locally Non-Dictatorial and Anonymous Aggregation

As a possibility result, Theorem 1 is not completely satisfactory since non-dictatorial
aggregation rules can still be rather degenerate, e.g. by giving almost all decision power
to one agent, or by specifying different “local” dictators for different issues. In this
subsection, we therefore characterize the problems for which locally non-dictatorial
monotone Arrowian aggregators exist. It turns out that this is also exactly the class
of problems for which anonymous monotone Arrowian aggregators exist.

An aggregator f is called locally dictatorial if there exists an individual i and an
issue (H,Hc) such that, for all x1, ..., xn, f(x1, ..., xn) ∈ H ⇔ xi ∈ H. Note that there
may exist several local dictators (over different issues). An aggregator f is called anony-
mous if it is invariant under permutations of individuals. An anonymous aggregator is
necessarily locally non-dictatorial.

Theorem 2 Let (X,H) be a property space. The following are equivalent.
(i) (X,H) admits locally non-dictatorial and monotone Arrowian aggregators.
(ii) (X,H) admits anonymous and monotone Arrowian aggregators.
(iii) (X,H) is quasi-unblocked.

In Appendix A, we show that there are spaces that are quasi-unblocked yet blocked.
However, these appear quite contrived, and it seems unlikely that they are relevant in
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applications. Moreover, on such spaces anonymous aggregation rules exist only for an
odd number of agents; hence, the possibility obtained in these cases is not robust.

A cleaner and more satisfying characterization is obtained for property spaces ad-
mitting anonymous rules for an arbitrary number of agents. This characterization
hinges on the following characterization of unblocked spaces as quasi-median spaces,
as follows. For each x ∈ X, denote by Hx := {H ∈ H : x ∈ H}; an element x̂ ∈ X is
called a median point if, for any critical family G, #(Hx̂ ∩ G) ≤ 1. Thus, a state is a
median point if every critical family contains at most one of its constituent properties.
The set of all median points is denoted by M(X), and a property space (X,H) is called
a quasi-median space if M(X) 6= ∅. A space is called a median space if every element
is a median point, i.e. if M(X) = X. It is easily verified that (X,H) is a median space
if and only if all critical families have exactly two elements. Median spaces are well-
studied in combinatorial mathematics and related fields (see, e.g., van de Vel, 1993);
their important role in the theory of aggregation is highlighted in Nehring and Puppe
(2007), where it is shown among other things that issue-by-issue majority voting is
consistent if and only if the underlying property space is a median space.

The concept of quasi-median space has been introduced by Nehring (2004) and
seems to be new to the literature. Nehring (2004) provides a geometric characterization
of median points which explains terminology, and the following fundamental result.

Proposition 3.1 A property space (X,H) is unblocked if and only if (X,H) is a quasi-
median space.

Median points play a central role in our present context, because they are canon-
ically associated with unanimity rules. Unanimity rules, in turn, are the canonical
examples anonymous rules for an arbitrary number of agents. An Arrowian aggregator
f is called a unanimity rule if there exists x̂ ∈ X such that for all H ∈ Hx̂,

f(x1, ..., xn) ∈ H ⇔ xi ∈ H for some i ∈ N. (3.1)

Clearly, a state x̂ such that (3.1) is satisfied for all H ∈ Hx̂ is uniquely determined and
is referred to as the status quo. Henceforth, we denote the unanimity rule with status
quo x̂ by fx̂. Note that the basic properties determined in (3.1) may not be jointly
compatible, so that an Arrowian unanimity rule of the form fx̂ may or may not exist.

Proposition 3.2 A property space (X,H) admits an Arrowian unanimity rule of the
form fx̂ if and only if x̂ ∈ M(X).

The following result summarizes the two characterizations of quasi-median spaces
entailed by Propositions 3.1 and 3.2, and shows that quasi-median spaces are also
exactly the spaces that admit anonymous monotone Arrowian aggregators for any
number of individuals.

Theorem 3 Let (X,H) be a property space. The following are equivalent.
(i) (X,H) admits anonymous and monotone Arrowian aggregators for some even n.
(ii) (X,H) admits anonymous and monotone Arrowian aggregators for all n ≥ 2.
(iii) (X,H) admits some Arrowian unanimity rule.
(iv) (X,H) is unblocked.
(v) (X,H) is a quasi-median space.
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3.3 Neutral Aggregation

Let xi, yi, for all i, and two basic properties H and H ′ be given such that, for all i,
xi ∈ H ⇔ yi ∈ H ′. An aggregator f is called neutral with respect to H and H ′ if in
this situation f(x1, ..., xn) ∈ H ⇔ f(y1, ..., yn) ∈ H ′. An aggregator f is called neutral
within issues if, for all H, f is neutral with respect to H and Hc; moreover, f is called
neutral across issues if, for all H and H ′, f is neutral with respect to H and H ′ or with
respect to Hc and H ′; finally, f is called (fully) neutral if it is neutral with respect to
all H and H ′.

Examples of aggregators that are neutral across but not within issues are the una-
nimity rules, or more generally, supermajority rules with a uniform quota > 1/2 for
each issue. An example of an aggregator that is neutral within but not across issues is
weighted issue-by-issue majority voting where the weights differ across issues. Specif-
ically, let H = {H1,H

c
1 , ...,HK ,Hc

K}; for all k and i, denote by wk
i ≥ 0 the weight

of voter i in issue k, and assume that
∑

i wk
i = 1 for all k = 1, ...,K. Weighted

issue-by-issue majority voting is defined by

f(x1, ..., xn) ∈ Hk :⇔
∑

i:xi∈Hk

wk
i > 1/2.

The difference in weights across issues may be the natural result of voters having
different stakes and/or different expertise in different dimensions.

Theorem 4 Let (X,H) be a property space.
a) (X,H) admits monotone Arrowian aggregators that are non-dictatorial and neutral
across issues if and only if (X,H) is a quasi-median space.
b) (X,H) admits monotone Arrowian aggregators that are locally non-dictatorial and
neutral within issues if and only if (X,H) is a median space.
c) (X,H) admits monotone Arrowian aggregators that are non-dictatorial and (fully)
neutral if and only if (X,H) is a median space.

Note that, by part b), non-dictatorial aggregators that are neutral within issues
may exist also outside the class of median spaces. However, if the underlying space is
“indecomposable” then neutrality within issues is just as demanding as full neutrality,
as shown by the following result. Say that (X,H) is decomposable if H can be par-
titioned into two non-empty subfamilies H1 and H2 such that each critical family is
either entirely contained in H1 or entirely contained in H2; otherwise, (X,H) is called
indecomposable. One can easily show that a property space is decomposable if and only
if it can be represented as the Cartesian product of (at least) two property spaces.

Proposition 3.3 Suppose that (X,H) is indecomposable. Then, any monotone Ar-
rowian aggregator that is neutral within issues is also neutral across issues, hence fully
neutral.

4 Examples and Applications

4.1 Aggregation of Preferences

It is well-known that the classical problem of preference aggregation is a special case of
the binary aggregation framework considered here; see Wilson (1975), Nehring (2003),
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Dokow and Holzman (2005). Specifically, let A = {a, b, ...} be a finite set of alternatives
and let R be a family of binary relations on A. For each pair a, b ∈ A let H(a,b) denote
the basic property “aRb,” or more formally,

H(a,b) := {R ∈ R : aRb}.

A binary relation on A can thus be identified with a certain combination of basic
properties, and the family R can thus be embedded in a (#A)2-dimensional hypercube.
Different requirements on the members of the familyR give rise to different subsets. For
instance, transitivity of the binary relations in R implies that {H(a,b),H(b,c),H

c
(a,c)} is

an excluded combination of properties, i.e. forms a critical family. If the elements of R
are all irreflexive, then R can be embedded in a hypercube of dimension #A · (#A−1).
If the elements of R are in addition asymmetric and connected, then R can even be
embedded in a hypercube of dimension #A·(#A−1)

2 .
For instance, the set Lin(A) of all strict linear orderings on A can be embedded in

the 3-hypercube if #A = 3, as shown in Figure 1; in general, the embedding of Lin(A)
in the #A·(#A−1)

2 -hypercube is known as the #A-permutahedron.

c - a � b

6

b � c

�����1
c � a

sbac s
abc

s
acb

c
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sbca

scab
���

���
���

Figure 1: The 3-Permutahedron

Nehring (2003) has shown that Lin(A) is totally blocked whenever #A ≥ 3, and
used Theorem 1 above to show that therefore all monotone Arrowian aggregators on
Lin(A) are dictatorial if #A ≥ 3. This is a monotone version of Arrow’s theorem for
strict preferences.

Another preference domain for which our results have an immediate implication is
the set of strict partial orderings Part(A). The domain Part(A) is a quasi-median
space with a unique median point given by the empty relation according to which no
pair of alternatives can be compared. By Theorem 3, there exist anonymous Arrowian
aggregators on Part(A), and by Proposition 3.2 there is a unique unanimity rule among
these, which is given by taking the intersection of all individual orderings.

4.2 Discursive Dilemma

A special class of aggregation problems arises by considering a set of binary propositions
that can be split into a set of “premises” and a set of “conclusions” which depend on
the evaluation of the premises. A simple example arises by taking a conclusion that
is logically equivalent to the conjunction of its premises. The so-called “discursive
dilemma” (see Pettit, 2001, Kornhauser and Sager, 1986) consists in the observation
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that satisfactory aggregation methods, such as proposition-wise majority voting, may
yield inconsistent collective judgements. The results presented here can be used to
classify the monotone Arrowian aggregators admitted in such contexts.

For simplicity, we consider only the case with a single conclusion. Suppose also
that the conclusion is uniquely determined by a complete evaluation of the premises
(the “truth-functional case”). It can be shown that the corresponding space is a quasi-
median space if and only if the conclusion or its negation can be written as the conjunc-
tion of the premises or their respective negations. In this “conjunctive” case, there is a
unique median point, and hence the problem admits anonymous Arrowian aggregators
in form of unanimity rules. In the non-conjunctive case, by contrast, the underlying
space is totally blocked and thus only admits dictatorial aggregators (see Nehring and
Puppe, 2005a).

4.3 Admitting Applicants

Consider the K-dimensional hypercube and the subset X(K;k,k′) ⊆ {0, 1}K of all binary
sequences with at least k and at most k′ coordinates having the entry 1, where 0 ≤ k ≤
k′ ≤ K. A possible interpretation is that each coordinate corresponds to an applicant
for a number vacant positions of which at least k have to be filled, and at most k′ can be
filled. A binary evaluation in X(K;k,k′) specifies which applicants should be admitted
(those having entry 1).3

If k = 0 and k′ = K, we obtain the full hypercube in which the only critical
families are the trivial critical families of the form {Hk

0 ,Hk
1 } for k = 1, ...,K, where

Hk
0 (resp. Hk

1 ) denotes the set of binary evaluations with 0 (resp. 1) in coordinate k.
Evidently, the full hypercube is a median space; in particular, it is not totally blocked.

Next, assume k > 0. If k′ = K, the non-trivial critical families of the resulting
space are exactly the subsets of {H1

0 ,H2
0 , ...,HK

0 } with K − k + 1 elements. The
interpretation of such a critical family is that, if already K − k applicants have been
rejected, then all of the remaining applicants must be admitted. The resulting space
is not a median space, but it is a quasi-median space and consequently admits both
anonymous Arrowian aggregators and aggregators that are neutral across issues. For
instance, the unanimity rule according to which a candidate is admitted unless all voters
reject her is consistent since the point (1, ..., 1) is a median point. More generally, one
can show that the aggregator according to which an applicant is admitted as soon as
at least a fraction of 1/(K − k + 1) voters approve her is consistent.

Let now 0 < k ≤ k′ < K. Then, in addition to all subsets of {H1
0 ,H2

0 , ...,HK
0 } with

K − k + 1 elements also any subset of {H1
1 ,H2

1 , ...,HK
1 } with k′ + 1 elements forms a

critical family. It is easily verified that the corresponding spaces are totally blocked
whenever K ≥ 3. By Theorem 1, any monotone Arrowian aggregator is dictatorial.

As a variation of this example, consider a non-empty subset J ⊆ {1, ...,K} repre-
senting a subgroup of applicants, and suppose that at least one applicant has to be
admitted, but at most m out of the subgroup J , where 1 ≤ m ≤ #J . Denote the cor-
responding subspace by X(K;m,J). If #J < K, none of the spaces X(K;m,J) is totally
blocked. Indeed, for all k 6∈ J , the property “applicant k is admitted” is not an element
of any non-trivial critical family. Thus, by the remark after Theorem 1 above, the space

3Another possible interpretation arises when the set of applicants is the set of voters themselves.
The resulting problem is known in the literature as the group identification problem, following Kasher
and Rubinstein (1997), see also List (2006) for a formulation in the judgement aggregation model.
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is not totally blocked. On the other hand, if #J > 2, then the subspace corresponding
to the coordinates in J is totally blocked. It can be shown that, therefore, all monotone
Arrowian aggregators on X(K;m,J) are locally dictatorial whenever 2 < #J < K. If
#J = 2 the corresponding spaces are quasi-median spaces.

As another variation suppose that l of the K candidates are women and that a
regulation requires that at least as many women be hired as men, so that again not
all points of the hypercube represent possible states. Evidently, the state in which all
women and no men are admitted is a median point, so that the underlying space is
a quasi-median space. There may be other median points, but in general the space
is not a median space; for instance, the space that results from taking l = 2 and
K = 3 is isomorphic to the space X(3;1,3) above. It is also easily verified that the
class of all anonymous and monotone Arrowian aggregators that treat all women and
all men symmetrically is a one-dimensional family with the extreme points (1, 1

m ) and
( m

m+1 , 1
m+1 ), where the first entry is the quota for hiring a man, and the second the

quota for hiring a woman. Note the extent to which the regulation biases the hiring in
favor of women.

4.4 Strategy-Proof Social Choice

The results of the present paper allow one to derive corresponding results on the exis-
tence of strategy-proof social choice functions on a large class of domains, the “general-
ized single-peaked domains” introduced in Nehring and Puppe (2002, 2007). There is
a one-to-one correspondence between the class of strategy-proof social choice functions
defined on a rich domain of generalized single-peaked preferences on a given property
space (X,H) and the class of monotone Arrowian aggregators on (X,H). The char-
acterization results derived here thus apply via this correspondence to strategy-proof
social choice functions on such domains. In particular, the Gibbard-Satterthwaite the-
orem is easily obtained as a special case of Theorem 1 above (see Nehring and Puppe,
2005b).

5 Related Literature

In the present paper, we have classified aggregation problems in terms of the monotone
Arrowian aggregators they admit. The monotonicity condition is crucial in order to
obtain a simple unified characterization of the class of all Arrowian aggregators for
an arbitrary problem. While the monotonicity condition seems conceptually uncontro-
versial, mathematically, it may be interesting to explore the aggregation possibilities
without it. Some results have already been established in that direction. Dokow
and Holzman (2005) identify a condition (“non-affineness”) that together with total
blockedness characterizes the aggregation problems on which all Arrowian aggregators
(with or without monotonicity) are dictatorial. In a similar vein, Dietrich and List
(2007a,b) show how Theorem 4b) and 4c) can be adapted to the non-monotone case.
Finally, Dietrich and List (2007c) show that Theorem 3 remains valid also without the
monotonicity requirement.
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Appendix A: Anonymity without Median Points

Consider the subspace X ⊆ {0, 1}5 shown in Figure 2 below. The two cubes to the
right correspond to a “1” in coordinate 4 (i.e. to the basic property H4

1 ), similarly, the
two top cubes correspond to a “1” in coordinate 5 (i.e. to H5

1 ). Missing points of the
5-hypercube are indicated by blank circles. For the purpose of better illustration, the
edges connecting different points across the four subcubes have been omitted in the
figure.
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Figure 2: A quasi-unblocked space without median points

This space is characterized by the following critical families: G1 = {H1
1 ,H3

0 ,H4
1},

G2 = {H1
1 ,H3

1 ,H5
1}, G3 = {H1

0 ,H2
0 ,H4

1}, G4 = {H1
0 ,H2

1 ,H5
1}, G5 = {H2

0 ,H3
0 ,H4

1},
G6 = {H2

1 ,H3
1 ,H5

1} and G7 = {H4
1 ,H5

1}. For instance, the criticality of {H4
1 ,H5

1} = G7

reflects the fact that the top-right cube contains no element of X, and is a maximal sub-
cube with this property. As is easily verified, one has Hk

0 ≡ Hk
1 for k = 1, 2, 3, i.e. the

first three coordinates are blocked; in particular, by Proposition 3.1, the underlying
space admits no median points. Nevertheless, denoting by qk

1 the quota corresponding
to Hk

1 , the following anonymous choice rule is easily seen to be consistent if the number
of voters is odd: The final outcome lies in the top left subcube if and only if all voters
endorse the basic property H5

1 (i.e. q5
1 = 1); similarly, the choice is in the bottom

right subcube if and only if all voters endorse H4
1 (i.e. q4

1 = 1). In all other cases, the
outcome lies in the bottom left subcube (q5

0 = q4
0 = 0). In addition, the location of the

outcome within any of the three admissible subcubes is decided by majority vote in
each of the first three coordinates (q1

1 = q2
1 = q3

1 = 1
2 ). Using the anonymous version of

the Intersection Property (see Nehring and Puppe, 2007, Fact 3.4) is is easily verified
that this rule is in fact the only anonymous and monotone Arrowian aggregator in the
present example. Note in particular that, in accordance with Theorem 3, there is no
anonymous rule for an even number of voters.
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Appendix B: Characterization of the Class of all Monotone
Arrowian Aggregators

The proofs of our results use the following general characterization of the class of
all monotone Arrowian aggregators on an arbitrary property space from Nehring and
Puppe (2002, 2007). A family of winning coalitions is a non-empty family W of subsets
of the set N of all individuals satisfying [W ∈ W and W ′ ⊇ W ] ⇒ W ′ ∈ W. A
structure of winning coalitions on (X,H) assigns a family of winning coalitions WH to
each property satisfying the following condition,

W ∈ WH ⇔ (N \W ) 6∈ WHc . (B.1)

In words, a coalition is winning for H if and only if its complement is not winning for
the negation of H. Using (B.1) and the fact that families of winning coalitions are
closed under taking supersets, we obtain

WHc = {W ⊆ N : W ∩W ′ 6= ∅ for all W ′ ∈ WH}. (B.2)

A mapping f : Xn → X is called voting by issues if for some structure of winning
coalitions and all H ∈ H,

f(x1, ..., xn) ∈ H ⇔ {i : xi ∈ H} ∈ WH .

A structure of winning coalitions satisfies the Intersection Property if for any critical
family {H1, ...,Hl} ⊆ H, and any selection Wj ∈ WHj

,

l⋂
j=1

Wj 6= ∅.

The following result is proved in Nehring and Puppe (2002; 2007, Theorem 3).

Theorem A mapping f : Xn → X is a monotone Arrowian aggregator if and only if
it is voting by issues satisfying the Intersection Property.

Appendix C: Proofs

For the subsequent proofs, we always assume that a monotone Arrowian aggregator is
described as voting by issues with associated structure {WH}H∈H of winning coalitions.
The fundamental role played by the conditional entailment relation derives from the
following simple observation.

Lemma 1 (Inclusion Lemma) If {WH}H∈H satisfies the Intersection Property and
H ≥ G, then WH ⊆ WG.

Proof of Lemma 1 By transitivity, it suffices to show that H ≥0 G ⇒ WH ⊆
WG. Thus, suppose that {H,Gc} ⊆ G for some critical family G. By the Intersection
Property, W ∩W ′ 6= ∅ for any W ∈ WH and any W ′ ∈ WGc . By (B.2), this implies
WH ⊆ WG.

The following “veto lemma” gives a simple sufficient condition for the existence
of an individual who can veto a certain property (by being winning alone for the
complementary property).
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Lemma 2 (Veto Lemma) Suppose the structure of winning coalitions satisfies the
Intersection Property and that {G1, G2, G3} ⊆ G for some critical family G. If WGc

1
⊆

WG2 , then {i} ∈ WGc
3

for some i ∈ N .

Proof of Lemma 2 Let W̃1 be a minimal element of WG1 , and let i ∈ W̃1. By (B.2)
and minimality of W̃1, one has (W̃ c

1 ∪ {i}) ∈ WGc
1
. By assumption, WGc

1
⊆ WG2 ,

hence (W̃ c
1 ∪ {i}) ∈ WG2 . Now consider any W3 ∈ WG3 . By the Intersection Property,

∩3
j=1Wj 6= ∅ for any selection Wj ∈ WGj

. In particular, W̃1 ∩ (W̃ c
1 ∪ {i}) ∩W3 6= ∅.

Since W̃1 ∩ (W̃ c
1 ∪ {i}) = {i}, this means i ∈ W3 for all W3 ∈ WG3 . By (B.2), this

implies {i} ∈ WGc
3
.

Proof of Theorem 1 Suppose that (X,H) is totally blocked. By Lemma 1, WH = W0

for some W0 and all H. Moreover, it is easily verified that any totally blocked space
admits at least one critical family G with at least three elements, say G ⊇ {G1, G2, G3}.
By Lemma 2, {i} ∈ WGc

3
= W0; but then voter i is a dictator.

Suppose then that (X,H) is not totally blocked. To construct a non-dictatorial
strategy-proof social choice function partition H as follows.

H0 := {H ∈ H : H ≡ Hc},
H+

1 := {H ∈ H : H > Hc},
H−

1 := {H ∈ H : Hc > H},
H2 := {H ∈ H : neither H ≥ Hc nor Hc ≥ H}.

For future reference we note the following facts about this partition of H. Part c) of
the following lemma will only be used later in the proofs of Theorem 2 and Proposition
3.1 below.

Lemma 3 a) For any critical family G, if G ∈ G ∩H−
1 , then G \ {G} ⊆ H+

1 .
b) For any critical family G, if G ∩ H0 6= ∅, then G ⊆ H0 ∪H+

1 .
c) Take any H̃ ∈ H2. Then there exists a partition of H2 into H−

2 and H+
2 with

H̃ ∈ H−
2 such that G ∈ H−

2 ⇔ Gc ∈ H+
2 , and for no G ∈ H−

2 and H ∈ H+
2 , G ≥ H.

Proof of Lemma 3 a) Suppose G ∈ G ∩H−
1 , i.e. Gc > G. Consider any other H ∈ G.

We have H ≥ Gc > G ≥ Hc, hence H > Hc, i.e. H ∈ H+
1 .

b) Suppose G ∈ G∩H0 and let H ∈ G be different from G. We have H ≥ Gc ≡ G ≥ Hc,
hence H ≥ Hc. But this means H ∈ H0 ∪H+

1 .
c) The desired partition into H−

2 = {G1, ..., Gl} and H+
2 = {Gc

1, ..., G
c
l } will be con-

structed inductively. Set G1 = H̃, and suppose that {G1, ..., Gr}, with r < l, is deter-
mined such that Gj 6≥ Gc

k for all j, k ∈ {1, ..., r}. Take any H ∈ H2\{G1, G
c
1, ..., Gr, G

c
r}

and set

Gr+1 :=
{

H if for no j ∈ {1, ..., r} : Gj ≥ Hc

Hc if for some j ∈ {1, ..., r} : Gj ≥ Hc

First note that Gr+1 6≥ Gc
r+1 since H ∈ H2. Thus, the proof is completed by showing

that for no k ∈ {1, ..., r}, Gk ≥ Gc
r+1 (and hence also not Gr+1 ≥ Gc

k). To verify this,
suppose first that Gr+1 = H; then, the claim is true by construction. Thus, suppose
Gr+1 = Hc; by construction, there exists j ≤ r with Gj ≥ Hc, hence also H ≥ Gc

j .
Assume, by way of contradiction, that Gk ≥ Gc

r+1, i.e. Gk ≥ H. This would imply
Gk ≥ H ≥ Gc

j , in contradiction to the induction hypothesis.

Proof of Theorem 1 (cont.) If H+
1 ∪ H

−
1 is non-empty, set WH = 2N \ {∅} for all

12



H ∈ H−
1 and WH = {N} for all H ∈ H+

1 ; moreover, choose a voter i ∈ N and set
WG = {W ⊆ N : i ∈ W} for all other G ∈ H. Clearly, the corresponding voting by
issues is non-dictatorial. It also satisfies the Intersection Property. Indeed, the only
problematic case is when a critical family G contains elements of H−

1 . However, by
Lemma 3a), if G ∈ G ∩ H−

1 , we have G \ {G} ⊆ H+
1 , in which case the Intersection

Property is clearly satisfied.
Next, suppose that H+

1 ∪H
−
1 is empty, and consider first the case in which both H0

and H2 are non-empty. By Lemma 3b), no critical family G can meet both H0 and H2.
Hence, we can specify two different dictators on H0 and H2, respectively, by setting
WH = {W : i ∈ W} for all H ∈ H0 and WG = {W : j ∈ W} for all G ∈ H2 with i 6= j.
Clearly, the Intersection Property is satisfied in this case.

Now suppose thatH2 is also empty, i.e.H = H0. Since (X,H) is not totally blocked,
H is partitioned in at least two equivalence classes with respect to the equivalence
relation ≡. Since, obviously, no critical family can meet two different equivalence
classes, we can specify different dictators on different equivalence classes while satisfying
the Intersection Property.

Finally, if H0 is empty, (X,H) is a quasi-median space by Proposition 3.1, hence
the existence of non-dictatorial monotone Arrowian aggregators follows as in the proof
of Proposition 3.2 below.

Proof of Theorem 2 Obviously, (ii) implies (i). Thus, it suffices to show that (i)
implies (iii), and that (iii) implies (ii).
“(i) ⇒ (iii)” We prove the claim by contraposition. Assume that (X,H) is not quasi-
unblocked. This means that there exists G ∈ H with G ≡ Gc and some critical family G
such that (H≡G ∩G) ⊇ {H,H ′,H ′′} for three distinct H,H ′,H ′′. Consider a structure
of winning coalitions satisfying the Intersection Property. By Lemma 1, WH = WG

for all H ∈ H≡G. By Lemma 2, applied to the critical family G ⊇ {H,H ′,H ′′}, there
exists i, such that {i} ∈ WH for all H ∈ H≡G. Hence, i is a dictator on H≡G, which
proves the claim.
“(iii) ⇒ (ii)” We will construct an anonymous Arrowian aggregator by specifying an
appropriate structure of winning coalitions, provided that (X,H) is quasi-unblocked.
Partition H as above, i.e.

H0 := {H ∈ H : H ≡ Hc},
H+

1 := {H ∈ H : H > Hc},
H−

1 := {H ∈ H : Hc > H},
H2 := {H ∈ H : neither H ≥ Hc nor Hc ≥ H}.

Furthermore, partition H2 according to Lemma 2c) into H−
2 and H+

2 . Let n be odd,
and set

WH = {W : #W > n/2} if H ∈ H0,
WH = 2N \ {∅} if H ∈ H−

1 ∪H
−
2 ,

WH = {N} if H ∈ H+
1 ∪H

+
2 .

Clearly, this structure of winning coalitions is anonymous; we will show that it satisfies
the Intersection Property. Let G be a critical family; we distinguish three cases.
Case 1: G ∩ (H−

1 ∪ H
−
2 ) 6= ∅. If G ∈ G ∩ H−

1 , then by Lemma 3a), G \ {G} ⊆ H+
1 ,

and the Intersection Property is clearly satisfied. Thus, suppose that there exists
H ∈ G∩H−

2 . By Lemma 3b), we must have G∩H0 = ∅, and by Lemma 3a), G∩H−
1 = ∅.
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Hence, if there exists H ′ ∈ G \ {H} with WH′ 6= {N}, we must have H ′ ∈ H−
2 . But

then H ≥ (H ′)c contradicts the construction of H−
2 and H+

2 in Lemma 3c). Thus, if
H ∈ G ∩ H−

2 , one has WH′ = {N} for any other element H ′ ∈ G, in which case the
Intersection Property is satisfied.
Case 2: G∩H0 6= ∅. First, observe that G1 ≡ G2 whenever {G1, G2} ⊆ G∩H0. Indeed,
G1 ≡ G2 follows at once from G1 ≥ Gc

2, G2 ≥ Gc
1, G1 ≡ Gc

1 and G2 ≡ Gc
2. Thus, by

quasi-unblockedness, G can contain at most two elements of H0. By Lemma 3b), for
any H ∈ G \H0 one has WH = {N}. Hence, the Intersection Property is also satisfied
in Case 2.
Case 3: If G does not meet H0, H−

1 and H−
2 , then G ⊆ (H+

1 ∪ H
+
2 ), in which case the

Intersection Property is trivially satisfied. This completes the proof of Theorem 2.

Proof of Proposition 3.1 Suppose that for all H ∈ H, H 6≡ Hc. Partition H into
H−

1 , H+
1 , H−

2 and H+
2 as above, where H−

2 and H+
2 are determined according to Lemma

3c). Then, any critical family G can meet H−
1 ∪H

−
2 at most once. Indeed, by Lemma

3a), H ∈ G ∩ H−
1 implies G \ {H} ⊆ H+

1 . Furthermore, if {H,H ′} ⊆ G ∩ H−
2 , one

would obtain H ′ ≥ Hc which contradicts the construction of H−
2 . But this implies

that ∩(H−
1 ∪ H

−
2 ) is non-empty (otherwise it would contain a critical family), and by

H3, it consists of a single element, say x̂. By definition, x ∈ M(X).
Conversely, let x̂ ∈ M(X), and consider any H ∈ Hx̂. Then, H ≥0 G implies

G ∈ Hx̂. Indeed, by definition, H ≥0 G means that {H,Gc} ⊆ G for some critical
family G. Since x̂ ∈ M(X), G contains at most one element of Hx, hence Gc 6∈ Hx,
which implies G ∈ Hx. This observation immediately implies H 6≡ Hc.

Proof of Proposition 3.2 Let fx̂ be an Arrowian unanimity rule and consider the set
Hx̂ of all properties possessed by x̂. As is easily verified, fx̂ corresponds to voting by
issues with WH = 2N \ {∅} for all H ∈ Hx̂ and WH = {N} for all H 6∈ Hx̂. Suppose
that there exists a critical family G and two distinct H,H ′ with H,H ′ ∈ Hx̂ ∩ G; then
one can choose W ∈ WH and W ′ ∈ WH′ with W ∩W ′ = ∅, violating the Intersection
Property. Thus, #(Hx̂ ∩ G) ≤ 1 for every critical family G, i.e. x̂ ∈ M(X).

Conversely, it is immediate from the Intersection Property that for any median
point x̂ ∈ M(X) voting by issues with WH = 2N \ {∅} for all H ∈ Hx̂ and WH = {N}
for all H 6∈ Hx̂ is well-defined (and coincides with the Arrowian unanimity rule fx̂).

Proof of Theorem 3 The equivalences “(iv) ⇔ (v)” and “(iii) ⇔ (v)” follow at once
from Propositions 3.1 and 3.2, respectively. The implications “(iii) ⇒ (ii)” and “(ii)
⇒ (i)” are evident. Thus, the proof is completed by verifying the implication “(i) ⇒
(iv).” This is done by contraposition. Thus, assume that H is blocked, i.e. H ≡ Hc.
By Lemma 1 this implies WH = WHc for any structure of winning coalitions satisfying
the Intersection Property. Under anonymity, this implies, using (B.1), WH = WHc =
{W ⊆ N : #W > 1/2}, which is compatible with (B.2) only if the number of voters is
odd.

Proof of Theorem 4 a) By Proposition 3.2, any quasi-median space admits at least
one Arrowian unanimity rule, and any such rule is neutral across issues and non-
dictatorial.

Conversely, let f : Xn → X be voting by issues satisfying the Intersection Property.
We show by contraposition that if f is non-dictatorial and neutral across issues, then
(X,H) must be a quasi-median space. Thus, suppose that (X,H) is not a quasi-median
space. By Proposition 3.1, there exists a basic property H that is blocked, i.e. H ≡ Hc.
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By Lemma 1, this implies WH = WHc , hence f is fully neutral, i.e. WH = W0 for all
H and some fixed W0. Since (X,H) is not a median space, there exists a critical family
G with at least three elements, say G ⊇ {G1, G2, G3}. By Lemma 2, {i} ∈ WGc

3
= W0,

i.e. voter i is a dictator.
b) Median spaces are characterized by the property that all critical families have car-
dinality two. Using the Intersection Property this implies that, e.g., issue-by-issue
majority voting with an odd number of agents is consistent on any median space, and
evidently, issue-by-issue majority voting with an odd number of agents is neutral, in
particular neutral within issues.

Conversely, let f : Xn → X be voting by issues satisfying the Intersection Property.
We show by contraposition that if f is locally non-dictatorial and neutral within issues,
then (X,H) must be a median space. Thus, suppose that (X,H) is not a median
space. Then there exists a critical family G with at least three elements, say G ⊇
{G1, G2, G3}, in particular, Gj ≥ Gc

k for distinct j, k ∈ {1, 2, 3}. By Lemma 1, WGj
⊆

WGc
k

for distinct j, k ∈ {1, 2, 3}. Under neutrality within issues this implies at once
that W assigns identical committees to G1, G2, G3 and their respective complements.
By Lemma 2 above, {i} ∈ WGc

3
, i.e. voter i is a local dictator.

c) As in part b), an underlying median space guarantees the existence of a fully neutral
aggregator. The converse follows from part b) together with the observation that, under
full neutrality, a local dictator must even be a global dictator.

Proof of Proposition 3.3 Suppose that (X,H) is indecomposable, and consider any
fixed H ∈ H. Then, for any G ∈ H, at least one of the following holds, G ≥ H,
G ≥ Hc, Gc ≥ H, or Gc ≥ Hc. Indeed, otherwise the subfamilies H1 := {G ∈ H :
G ≥ H,G ≥ Hc, Gc ≥ H, or Gc ≥ Hc} and H2 := H \H1 form a decomposition, as is
easily verified. The claim follows immediately from this observation using Lemma 1.
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