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Abstract We define a general notion of single-peaked preferences based on abstract be-
tweenness relations. Special cases are the classical example of single-peaked preferences
on a line, the separable preferences on the hypercube, the “multi-dimensionally single-
peaked” preferences on the product of lines, but also the unrestricted preference domain.
Generalizing and unifying the existing literature, we show that a social choice function
is strategy-proof on a sufficiently rich domain of generalized single-peaked preferences
if and only if it takes the form of voting by issues (“voting by committees”) satisfying
a simple condition called the “Intersection Property.”

Based on the Intersection Property, we show that the class of preference domains
associated with “median spaces” gives rise to the strongest possibility results; in par-
ticular, we show that the existence of strategy-proof social choice rules that are non-
dictatorial and neutral requires an underlying median space. A space is a median space
if, for every triple of elements, there is a fourth element that is between each pair of the
triple; numerous examples are given (some well-known, some novel), and the structure
of median spaces and the associated preference domains is analyzed.



1 Introduction

By the Gibbard-Satterthwaite impossibility theorem, non-degenerate social choice func-
tions can be strategy-proof only on restricted domains. In response to this fundamental
result, a large literature has taken up the challenge of determining domains on which
possibility results emerge. In economic environments in which it is assumed that indi-
viduals care only about certain aspects of social alternatives, the well-known class of
Groves mechanisms offers a rich array of strategy-proof social choice functions under
the additional assumption of quasi-linear utility. By contrast, in contexts of “pure”
social choice (“voting”) individuals care about all aspects of the social state. Here,
a path-breaking paper by Moulin (1980) demonstrated the existence of a large class
of strategy-proof social choice functions in the Hotelling-Downs model in which so-
cial states can be ordered from left to right as in a line, and in which preferences are
single-peaked with respect to that ordering. Moulin showed that all strategy-proof so-
cial choice functions can be understood as generalizations of the classical median voter
rule. His result inspired a sizeable literature that obtained related characterizations for
other particular domains or proved impossibility results (see, among others, Border and
Jordan (1983) and Barberà, Sonnenschein and Zhou (1991)). Remarkably, it turned
out that when a positive result could be obtained, the class of strategy-proof social
choice functions had a structure similar to that uncovered by Moulin which we shall
refer to as “voting by issues” (“voting by committees” in the terminology of Barberà,
Sonnenschein and Zhou (1991)).

In this paper, we introduce a large class of preference domains, referred to as “gen-
eralized single-peaked” domains, and show that strategy-proof social choice can be
characterized in terms of voting by issues on these domains. This allows us then to
determine exactly which domains admit strategy-proof social choice functions exhibit-
ing fundamental additional properties such as non-dictatorship, anonymity, neutrality,
and efficiency. While part of this work is left to companion papers (see Nehring and
Puppe (2003a) and (2003b)), we shall identify here the class of domains on which the
strongest possibility results obtain; these are characterized geometrically as “median
spaces” and described in more detail below.

Generalized Single-peaked Domains

The basic idea underlying our approach is to describe the space of alternatives geo-
metrically in terms of a three-place betweenness relation, and to consider associated
domains of preferences that are single-peaked in the sense that individuals always prefer
social states that are between a given state and their most preferred state, the “peak”.

Following Nehring (1999), we shall conceptualize betweenness more specifically in
terms of the differential possession of relevant properties: a social state y is between
the social states x and z if y shares all relevant properties common to x and z. (Gen-
eralized) single-peakedness means that a state y is preferred to a state z whenever y
is between z and the peak x∗, i.e. whenever y shares all properties with the peak x∗

that z shares with it (and possibly others as well). Throughout, it will be assumed
that a property is relevant if and only if its negation is relevant, so that each property
together with its negation defines an issue to be decided upon. As further illustrated
below, a great variety of preference domains that arise naturally in applications can be
described as single-peaked domains with respect to betweenness relations of the kind
just described. In fact, our assumptions encompass almost all domains that have been
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shown to enable non-degenerate strategy-proof social choice in a voting context. For
instance, the standard betweenness relation in case of a line is derived from properties
of the form “to the right (resp. left) of a given state.” But generalized single-peaked
domains can also easily give rise to impossibility results. For instance, the unrestricted
domain envisaged by the Gibbard-Satterthwaite theorem can be described as the set
of all single-peaked preferences with respect to a vacuous betweenness relation that
declares no social state between any two other states; the corresponding relevant prop-
erties are, for every social state x, “being equal to x,” and “being different from x.”

The Structure of Strategy-Proof Social Choice

Building on previous work culminating in Barberà, Massó and Neme (1997), we show
that strategy-proof social choice on generalized single-peaked domains can be described
in a unified manner as “voting by issues” (Theorem 2). This structure has two aspects.
First, the social choice depends on individuals’ preferences through their most preferred
alternative only, i.e. it satisfies “peaks only.” Second, the social choice is determined by
a separate “vote” on each issue: an individual is construed as voting for a property over
its negation if and only if her top-ranked alternative has the property. For example, in
the special case in which voting by issues is anonymous and neutral it takes the form
of majority voting on issues; that is, a chosen state has a particular property if and
only if the majority of agents’ peaks have that property. In general, the chosen state
has a property if and only if the individuals voting for that property form a winning
coalition.

Crucially, the voting by issues structure describes only an implication of strategy-
proofness, not a characterization, since it does not by itself allow one to generate well-
defined social choice functions. Indeed, without restrictions on the family of properties
deemed relevant and/or the structure of winning coalitions, the chosen properties may
well be mutually incompatible. Consider, for example, majority voting on issues on
a domain of three states, and take as relevant the six properties of being equal to or
different from any particular of these states, corresponding to the unrestricted domain
of preferences. If there are three agents with distinct peaks, a majority of agents
votes for each property of the form “is different from state x.” Since no social state is
different from all social states (including itself), the social choice is therefore empty. A
structure of winning coalitions is called consistent if the chosen properties are always
jointly realizable (irrespective of voters’ preferences). We show that a structure of
winning coalitions is consistent if and only if it satisfies a simple condition, called the
“Intersection Property.” This leads to a unifying characterization of the class of all
strategy-proof social choice functions on all generalized single-peaked domains, namely
as voting by issues satisfying the Intersection Property (Theorem 3 below). For each
particular generalized single-peaked domain, it allows one to describe the subclass
of anonymous strategy-proof social choice functions in terms of a system of linear
inequalities representing bounds on the admissible quotas.

Median Spaces as Distinguished Domains

The restrictions imposed by the Intersection Property on the admissible sets of win-
ning coalitions reflect the structure of the underlying space. The Intersection Property
thereby provides the crucial tool for determining on which generalized single-peaked do-
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mains there exist well-behaved (e.g. non-dictatorial, anonymous, neutral, etc.) strategy-
proof social choice functions, but it does not answer this question by itself. This is the
central concern of the two companion papers Nehring and Puppe (2003a) and (2003b).
Here, we seek to determine those domains admitting a maximally rich class of strategy-
proof social choice functions. It turns out that these domains are exactly the domains
on which strategy-proof social choice functions exist that are both anonymous and
neutral, amounting to majority voting on issues. We show that majority voting on
issues is consistent if and only if the betweenness relation has the property that, for
all three distinct states, there exists a state between each pair of them (Corollary 3
below). Such a state is called a median of the triple, and the resulting space a median
space. In the case of three agents, for example, majority voting on issues boils down
to choosing the median of the agents’ peaks. The median can be viewed as a natu-
ral compromise between the voters’ preferences, since, by the single-peakedness, every
voter ranks the median above the other two agents’ peaks; thus, the median wins a
majority vote against every voter’s peak in pairwise comparison. We then prove that,
under strategy-proofness and non-dictatorship, neutrality alone requires the underlying
space to be a median space (Theorem 4). Moreover, median spaces are characterized
by the property that, for each alternative x, there exists a “minority veto rule” with x
as status quo (Theorem 5).

Median spaces represent the natural generalization and unification of the known
cases in which well-behaved strategy-proof social choice functions have been shown to
exist, the line and its multi-dimensional extensions on the one hand, and trees on the
other; see Border and Jordan (1983) as well as Barberà, Gul and Stacchetti (1993)
for the former, and Demange (1982) for the latter. In Nehring and Puppe (2003b)
we show that efficiency presupposes an underlying median space structure, unless the
social choice is dictatorial; thus, from this point of view as well median spaces are
central.

Since median spaces turn out to play such a distinguished role, one would like to
understand their associated preference domains directly, not merely indirectly via the
associated betweenness geometry. To this behalf, we show that single-peaked prefer-
ences on a median space can be described in terms of two economically fundamental
types of preference restrictions, convexity and separability. In the special case of the
line (or, more generally, in trees), the single-peaked preferences are simply the con-
vex ones; in the case of the hypercube considered in Barberà, Sonnenschein and Zhou
(1991), the single-peaked preferences are those that are separable. These are the two
pure cases; in general, single-peaked preferences on a median space are characterized
by a combination of convexity and separability restrictions.

Relation to the Literature

This paper was inspired by the remarkable paper Barberà, Massó and Neme (1997)
which demonstrated that strategy-proof social choice functions can be characterized in
terms of voting by issues (“generalized median voter schemes” in their terminology)
much more generally than thought previously. These authors looked at the domain
of all single-peaked preferences defined on a fixed product of lines, and considered
subdomains of preferences by restricting the peaks to lie in arbitrary prespecified sub-
sets interpreted as “feasible sets.” By contrast, in this paper we assume an arbitrary
fixed set of social states and consider a wide range of different preference domains over
that set. This fixed set is understood to reflect all feasibility constraints that may be
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relevant. Our central assumption is that the “betweenness geometry” implicit in the
domain can be described in terms of an abstract “property space.” Sometimes these
properties can be understood as characteristics in the manner of Lancaster (1966), but
at other times they are merely useful mathematical constructs.

Since states in a property space can be viewed as appropriately positioned points
in a sufficiently high-dimensional hypercube, there is a close mathematical relationship
between the setup of Barberà, Massó and Neme (1997) and ours. Indeed, for the sub-
class of preference domains consisting of all single-peaked preferences compatible with
a given betweenness relation, their first main result yields via an extension argument
the “peaks-only” property that is a central starting point for our analysis.1 In our
adaptation (Theorem 2 below), we state more general sufficient conditions on subdo-
mains of single-peaked preferences that still deliver the “peaks-only” property and that
are frequently required in applications. In terms of approach, our main step beyond
Barberà, Massó and Neme (1997) is however our demonstration that many naturally
occurring preference domains on a fixed set of social states without given structure can
be analyzed fruitfully as single-peaked preferences in a property space (subset of a hy-
percube); see Section 2.4 below for details, especially Theorem 1 and Examples 6 and
7.

Barberà, Massó and Neme (1997) also provided a characterization of consistency in
terms of a condition they called “intersection property” as well. Their condition is less
transparent and workable than the one obtained here; for instance, in the anonymous
case of “voting by quota,” our condition directly translates into a system of linear
inequalities, representing appropriate bounds on the quotas (see Section 3.3 below).
In contrast to their condition, our condition makes direct reference to the combinato-
rial structure of the property space via the notion of a “critical family” which has no
counterpart in their analysis. This feature is crucial in enabling us in related work to
characterize exactly the property spaces that admit strategy-proof social choice func-
tions with various desirable properties such as non-dictatorship, anonymity, efficiency,
etc. (Nehring and Puppe (2003a,b)). In the present paper, the focus is on median
spaces. Due to the canonical simplicity of their combinatorial structure identified by
the Intersection Property they are associated with a maximally rich set of strategy-
proof social choice functions, as pointed out above.

While median spaces are a well-known and well-studied object in abstract convex-
ity theory (see e.g. van de Vel (1993)), they do not appear to have been considered
anywhere in the strategy-proofness literature. Implicitly, however, the properties of
median spaces play a central role in Barberà, Sonnenschein and Zhou (1991) and Bar-
berà, Gul and Stacchetti (1993).
The remainder of the paper is organized as follows. Section 2 describes the prefer-
ence domains to which our characterization results apply. In particular, it introduces
the central concepts of single-peaked preference orderings with respect to general be-
tweenness relations, and of betweenness relations derived from property spaces. We
also provide a simple characterization of when a given set of linear orderings can be
represented as a sufficiently rich domain of single-peaked preferences with respect to
an appropriate betweenness relation (Theorem 1).

In Section 3, we use these concepts to provide a generalization and unification of the
existing literature. Specifically, we show that every strategy-proof social choice function

1The appropriate extension argument is provided in an earlier version of this paper, see Nehring
and Puppe (2002).
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on a sufficiently rich domain of generalized single-peaked preferences satisfying a weak
condition of “voter sovereignty” must be voting by issues (Theorem 2). We then derive a
simple necessary and sufficient condition for the consistency of the structure of winning
coalitions, the “Intersection Property.” We thus obtain a unifying characterization of
strategy-proof social choice on generalized single-peaked domains, namely as voting by
issues satisfying the Intersection Property (Theorem 3).

Section 4 introduces the notion of a median space. We show that a domain enables
neutral and non-dictatorial strategy-proof social choice if and only if the underlying
domain of social states is a median space (Theorem 4), and that median spaces are
maximally rich in the range of consistent “minority veto rules” (Theorem 5). We also
show that on a median space a preference ordering is single-peaked if and only if it
is convex and separable, and we introduce and analyze a stronger, cardinal notion of
convexity. Section 5 concludes, and all proofs are collected in Appendix 2.

2 Generalized Single-Peaked Domains

In this section, we describe the preference domains to which our later characterization
of strategy-proof social choice functions applies. Throughout, we assume that the
relevant preference restrictions are independent and identical across voters, so that the
domains are n-fold Cartesian products of one common set of individually admissible
preferences where n is the number of voters. The individual domains, in turn, can be
described as sufficiently rich sets of orderings that are “single-peaked” with respect to
an appropriately defined betweenness relation. For expository convenience, we consider
only the case of linear orderings here; the more general case of weak orderings and even
partial orders is treated in an earlier working paper version Nehring and Puppe (2002).

2.1 Single-Peakedness with Respect to General Beetweenness
Relations

The classical example of a preference domain admitting non-dictatorial and strategy-
proof social choice is the domain of all single-peaked preferences on a line. Suppose that
the social alternatives are ordered from left to right as in Fig. 1a below. A preference
ordering � with top element x∗ is single-peaked if y � z whenever y is between z and
the peak x∗. Here, the relevant notion of “betweenness” is of course the standard one
corresponding to the left-to-right scale of the line. The aim of this paper is to study
the structure of strategy-proof social choice on domains of preferences that are “single-
peaked” with respect to more general betweenness relations. Formally, we will consider
a ternary relation T on a finite universe X of social states or social alternatives with
#X ≥ 3. The interpretation of the ternary relation T is that (x, y, z) ∈ T if the social
state y is between the social states x and z. By convention, let (x, x, z) ∈ T and
(x, z, z) ∈ T for all x, z, i.e. every state is (weakly) between itself and every other state.
The “betweenness” terminology will be justified in the sequel by the requirement of
further axiomatic properties on the ternary relation.

Definition (Generalized Single-Peakedness) A preference ordering � on X is
single-peaked with respect to T if there exists x∗ ∈ X such that for all y 6= z,

(x∗, y, z) ∈ T ⇒ y � z. (2.1)
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We say that a preference ordering is generalized single-peaked if it is single-peaked with
respect to some betweenness relation T on X.

Thus, in analogy to the standard definition, a preference is single-peaked with respect
to T if every state y that is “T -between” the peak x∗ and another state z is preferred
to that state. The set of all linear orderings on X that are single-peaked with respect
to T will be denoted by ŜX,T .

As a first illustration, consider the three graphs in Figure 1 below with the nodes
representing social states. To each graph one can associate the corresponding graphic
betweenness according to which a social state y is between the two states x and z if y
lies on some shortest path connecting x and z.2 For instance, both y and y′ are between
x and z in Figures 1a and 1b, while w is not between x and z in Figures 1b and 1c.
The graphic betweenness associated with the line in Fig. 1a is of course the standard
betweenness and the corresponding notion of single-peakedness is the usual one. The
graph in Fig. 1b can be viewed as the (3-dimensional) “hypercube” corresponding to
the set {0, 1}3 of binary sequences of length 3. A preference is single-peaked with
respect to the graphic betweenness on a hypercube if and only if it is separable in the
sense of Barberà, Sonnenschein and Zhou (1991).3 Finally, the graph in Fig. 1c is
the complete graph in which each state is connected to every other state by an edge.
By consequence, the corresponding graphic betweenness is vacuous in the sense that
no state is between any two other states.4 Clearly, every linear preference ordering is
single-peaked with respect to this vacuous betweenness relation; therefore, the set of
all generalized single-peaked preferences is the unrestricted preference domain in this
case.
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Figure 1: Three graphic betweenness relations.

In all what follows, we will consider subdomains D ⊆ ŜX,T of single-peaked prefer-

2Formally, consider a graph φ on X, i.e. a symmetric binary relation on X. A shortest path
connecting two distinct elements x1 and xn is a minimal set {x1, ..., xn} such that (xi, xi+1) ∈ φ for
all i = 1, ..., n− 1. Note that shortest paths connecting two elements need not be unique. The graphic
betweenness Tφ associated with φ is defined by (x, y, z) ∈ Tφ if [y = x = z or y is an element of some
shortest path connecting x and z].

3This assertion follows at once from Fact 2.1 below.
4Note that the vacuous betweenness is not the empty set since it contains all triples of the form

(x, x, z) and (x, z, z); it is “vacuous” in the sense that it contains no other instances of betweeness,
i.e. no non-trivial instances of betweenness.
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ences, imposing the following “richness” conditions. For all x, y, denote by

[x, y] := {w ∈ X : (x, w, y) ∈ T}

the segment between x and y, and say that two distinct elements x and y are neighbours
if [x, y] = {x, y}, i.e. x and y are neighbours if no other point is between them.

R1 For all neighbours x, y there is � ∈ D such that for all w ∈ X \ {x, y}, x � y � w.
R2 For all x, y, z with y 6∈ [x, z], there is � ∈ D with peak x such that z � y.

Condition R1 requires that, for every pair of neighbours, there is a preference ordering
that has one of them as peak and the other as the second best element. Condition R2
states that, for each triple x, y, z such that y is not between x and z, there is a preference
with peak x that ranks z above y. Henceforth, we will say that a domain D ⊆ ŜX,T of
single-peaked preferences is rich with respect to T if it satisfies conditions R1 and
R2. The properties imposed on the betweenness relation in the following will guarantee
that a rich domain includes for each x at least one preference ordering with peak x (see
conditions T1-T5 in Section 2.4 below).

2.2 Betweenness Relations Derived from Property Spaces

For the purpose of characterizing the class of all strategy-proof social choice functions
on generalized single-peaked domains, one needs additional structure on the underlying
betweenness relation. Throughout, we will rely on the assumption that the betweenness
relation can be derived from a “property space,” as follows.

Suppose that the elements of X are distinguished by different basic properties. For-
mally, let these properties be described by a non-empty family H ⊆ 2X of subsets of X
where each H ∈ H corresponds to a property possessed by all alternatives in H ⊆ X
but by no alternative in the complement Hc := X \H. The basic properties are thus
identified extensionally: for instance, the basic property “the tax rate on labour in-
come is 10% or less” is identified with the set of all social states in which the tax rate
satisfies the required condition. We assume that the list H of basic properties satisfies
the following three conditions.

H1 (Non-Triviality) H ∈ H ⇒ H 6= ∅.
H2 (Closedness under Negation) H ∈ H ⇒ Hc ∈ H.
H3 (Separation) for all x 6= y there exists H ∈ H such that x ∈ H and y 6∈ H.

Condition H1 says that every basic property is possessed by some element in X. Con-
dition H2 asserts that for each basic property corresponding to the set H there is also
the complementary property possessed by all alternatives not in H. We will refer to a
pair (H,Hc) as an issue. Finally, condition H3 says that every two distinct elements
are distinguished by at least one basic property. A pair (X,H) satisfying H1-H3 will
be called a property space.

Following Nehring (1999), a property space (X,H) gives rise to a natural between-
ness relation TH as follows. For all x, y, z,

(x, y, z) ∈ TH :⇔ [ for all H ∈ H : {x, z} ⊆ H ⇒ y ∈ H]. (2.2)

Thus, y is between x and z in the sense of TH if y possesses all basic properties that
are common to x and z (and possible some more).
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The following result characterizes single-peakedness in terms of the basic properties
from which the betweenness is derived.

Fact 2.1 Let (X,H) be a property space. A preference ordering � is single-peaked with
respect to TH if and only if there exists a partition H = Hg ∪ Hb with Hg ∩ Hb = ∅
such that
(i) H ∈ Hg ⇔ Hc ∈ Hb,
(ii) y � z whenever y 6= z and for all H ∈ Hg, z ∈ H ⇒ y ∈ H, and
(iii) there exists x∗ such that x∗ ∈ H for all H ∈ Hg.

In view of conditions (i) and (ii), single-peakedness with respect to TH requires that it
must be possible to partition all basic properties into a set of “good” properties (those
in Hg) and a set of “bad” properties (those in Hb) in a separable way: a property is
good or bad no matter with which other properties it is combined. Indeed, by condi-
tion (ii), possessing an additional “good” property is always preferred. In addition to
separability, single-peakedness also requires, by condition (iii), that all good properties
are jointly compatible, that is: possessed by some ideal point x∗ which corresponds to
the preference peak.

The ordinally separable representation in Fact 2.1 suggests a cardinal strengthening,
in which preferences have an additive utility representation of the form

u(x) =
∑

H∈Hg,H3x

λH ,

where λH > 0 for all H ∈ Hg. As is easily verified, the domain of all additive preferences
in this sense is rich with respect to TH.

2.3 Basic Examples

To illustrate the above concepts, consider the following examples of generalized single-
peaked domains. The first three correspond to the graphic betweenness relations in
Figure 1 above.

Example 1 (Single-Peakedness on Line) Let X be linearly ordered by ≥, and
consider the betweenness relation T given by (x, y, z) ∈ T :⇔ [x ≥ y ≥ z or z ≥ y ≥ x]
(cf. Fig. 1a). This betweenness can be derived via (2.2) from the family H of all sets of
the form H≥w := {y ≥ w : for some w ∈ X} or H≤w := {y ≤ w : for some w ∈ X}.
Each basic property is thus of the form “lying to the right of w” or “lying to the left
of w” (see Figure 2a).
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Figure 2: Basic properties underlying Examples 1-4.

Example 2 (Separability on the Hypercube) Let X = {0, 1}K , which we refer to
as the K-dimensional hypercube (cf. Fig. 1b). An element x ∈ {0, 1}K is thus described
as a sequence x = (x1, ..., xK) with xk ∈ {0, 1}, and the natural betweenness is given
by (x, y, z) ∈ T :⇔ [ for all k : xk = zk ⇒ yk = xk = zk]. As is easily verified, this
betweenness coincides with the graphic betweenness in Fig. 1b above. Geometrically,
y is between x and z if and only if y is contained in the “subcube” spanned by x and
z (see Fig. 1b above and note, for instance, that the whole 3-hypercube is between
w and y′). This betweenness can be derived from the basic properties of the form
Hk

1 := {x : xk = 1} and Hk
0 := {x : xk = 0} for all k (see Figure 2b which depicts

the two basic properties corresponding to the vertical coordinate). In view of Fact 2.1,
a preference � is single-peaked with respect to T if and only if it is separable in the
sense that, for all x, y and all k,

x � (x−k, yk) ⇔ (y−k, xk) � y.

Example 3 (The Unrestricted Domain) The vacuous betweenness on X, defined
by (x, y, z) ∈ T :⇔ y ∈ {x, z}, can be derived via (2.2) from the family H of all
properties of the form {x} (“being equal to x”) and X \ {x} (“being different from
x”) for all x ∈ X (see Figure 2c which depicts the property H = {w}). As noted
above, every linear preference ordering is single-peaked with respect to the vacuous
betweenness relation, i.e. the set of all single-peaked preferences is the unrestricted
domain.

Example 4 (Products) The hypercube betweenness of Example 2 above is an instance
of a product betweenness. More generally, let X = X1×...×XK , where the alternatives
in each factor Xk are described by a list Hk of basic properties referring to coordinate
k. Let H := {Hk ×

∏
j 6=k Xj : for some k and Hk ∈ Hk}, and denote by THk the

betweenness relation on Xk induced by Hk. The product betweenness T induced by H
according to (2.2) is given by,

(x, y, z) ∈ T ⇔ [ for all k : (xk, yk, zk) ∈ THk ].

Figure 2d depicts the product of two lines; the alternatives between x and z are precisely
the alternatives contained in the dotted rectangle spanned by x and z.
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2.4 Rich Domains of Single-Peaked Preferences

Obviously, every given preference ordering � is single-peaked with respect to some
appropriate betweenness relation (for instance, with respect to the betweenness relation
according to which a state is between two other states if and only if it is intermediate in
terms of the preference ordering �). The essence of the domain restrictions considered
in this paper is of course that all voters’ preferences be single-peaked with respect
to the same betweenness relation. Say that a preference domain D is a (generalized)
single-peaked domain on X if there exists a betweenness relation T on X such that
every preference ordering in D is single-peaked with respect to T . Furthermore, say
that D is a rich single-peaked domain if there exists a betweenness relation T on X
such that every preference ordering in D is single-peaked with respect to T and if D
is rich with respect to T . In this subsection, we address the question which preference
domains can be described as rich single-peaked domains with respect to appropriate
betweenness relations. To provide an answer, we first need to find the conditions under
which a betweenness relation can be derived from a property space.

2.4.1 When is a Betweenness Relation Induced by a Property Space?

The ternary betweenness relation TH induced by a property space (X,H) via (2.2)
satisfies the following four conditions. For all x, y, z, x′, z′,

T1 (Reflexivity) y ∈ {x, z} ⇒ (x, y, z) ∈ T .
T2 (Symmetry) (x, y, z) ∈ T ⇔ (z, y, x) ∈ T .
T3 (Transitivity) [(x, x′, z) ∈ T and (x, z′, z) ∈ T and (x′, y, z′) ∈ T ] ⇒ (x, y, z) ∈ T .
T4 (Antisymmetry) [(x, y, z) ∈ T and (x, z, y) ∈ T ] ⇒ y = z.

The reflexivity condition T1 and the symmetry condition T2 follow at once from the
definition of TH. Note that it is the symmetry condition that justifies a geometric
interpretation of T as “betweenness” relation. The transitivity condition T3 is also
easily verified; it states that if both x′ and z′ are between x and z, and moreover y is
between x′ and z′, then y must also be between x and z. Finally, the antisymmetry
condition T4 easily follows, using H2, from the separation property H3.

For the next condition, we need some additional terminology. Say that a set A ⊆ X
is convex if for all x, y, z,

[{x, z} ⊆ A and (x, y, z) ∈ T ] ⇒ y ∈ A. (2.3)

Hence, in accordance with the usual notion of convexity in a Euclidean space, a set
is convex if it contains with every two elements all elements that are between them.
Furthermore, say that a subset H ⊆ X is a half-space if both H and its complement
Hc are non-empty and convex.

T5 (Separation) If (x, y, z) 6∈ T , then there exists a half-space H such that

H ⊇ {x, z} and y 6∈ H.

Fact 2.2 Let T be a ternary relation on X. There exists a collection HT of basic
properties satisfying H1-H3 such that T = T(HT ), i.e. such that T is derived from HT

via (2.2), if and only if T satisfies T1-T5.
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Necessity of the conditions T1-T5 are straightforward (cf. Nehring (1999)); their suffi-
ciency follows from defining the underlying property space HT as the collection of all
half-spaces induced by T .5

As is easily verified, all graphic betweenness relations satisfy T1, T2 and T4. They
need not satisfy T3 and T5, as illustrated by the following graph.6
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Figure 3: A graphic betweenness violating T3 and T5.

However, if a graphic betweenness satisfies T5, it also satisfies T3;7 thus, by Fact 2.2,
a graphic betweenness can be derived from a property space if and only if it satisfies
the separation condition T5. The following example further illustrates this.

Example 5 (Cycles) Let X = {x1, ..., xl}, and consider the l-cycle on X, i.e. the
graph with the edges (xi, xi+1), where indices are understood modulo l so that xl+1 =
x1 (see Fig. 4 for the case l = 6). A subset is convex with respect to the graphic
betweenness if it contains with every two points also a shortest path connecting them.
In particular, if l is even, all half-spaces are of the form {xj , xj+1, ..., xj−1+ l

2
}, and if l

is odd, the family of half-spaces consists of all sets of the form {xj , xj+1, ..., xj−1+ l+1
2
}

or {xj , xj+1, ..., xj−1+ l−1
2
}. As is easily verified, the graphic betweenness on the l-cycle

satisfies T5, and can thus be derived from a property space by taking all half-spaces as
the basic properties; for even l, these are the connected “half-cycles” (see Fig. 4).
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Figure 4: The 6-cycle.

2.4.2 When is a Domain a Rich Single-Peaked Domain?

Consider now an arbitrary domain D of linear preference orderings on X, and define a
ternary relation TD as follows. For all x, y, z with y 6= z,

(x, y, z) ∈ TD :⇔ [ y � z for all � ∈ D with peak x]. (2.4)
5Note, however, that the underlying property space is not uniquely determined by T , and frequently

it is not necessary to consider the collection of all half-spaces. For instance, every non-empty set A ⊆ X
is convex with respect to the vacuous betweenness, hence every non-trivial set is a half-space in this
case. However, as shown in Example 3 above, to generate the vacuous betweenness it suffices to take
all sets of the form {x} and their complements as the basic properties.

6Both x′ and z′ in Fig. 3 are between x and z, moreover y is between x′ and z′; however, y is not
between x and z, in violation of T3. Similarly, every convex set containing x and z must also contain
x′ and z′, and hence also y, in violation of T5.

7This follows from van de Vel (1993, Prop. 4.15, p.83).
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Also, by convention, (x, z, z) ∈ TD for all x, z. By construction, one has D ⊆ ŜX,TD ,
i.e. every preference in D is single-peaked with respect to TD. In fact, TD is easily
seen to be the largest ternary relation with that property. On the other hand, a given
domain D will typically not include all single-peaked orderings with respect to TD. For
instance, the betweenness relation associated with the unrestricted domain via (2.4) is
the vacuous betweenness according to which no state is between any two other states.
But this is also the betweenness associated with every domain such that, for every pair
x, y, there is a preference with x as top element and y as second best element. Also
note that every domain D satisfies the richness condition R2 with respect to TD by
construction. For example, this means that every domain such that, for every pair
x, y, there is a preference with x as top element and y as second best element is a rich
single-peaked domain with respect to the vacuous betweenness relation.

The following result characterizes the class of all domains that can be represented
as rich single-peaked domains.

Theorem 1 Let D be a set of linear orderings on X. There exists a list of basic
properties H such that D is a rich single-peaked domain with respect to TH if and only
if (i) TD satisfies symmetry (T2), transitivity (T3) and separation (T5), (ii) every
x ∈ X is the peak of some element in D, and (iii) the following “closure” condition
holds: for all x, y,

[∀w 6∈ {x, y} ∃ �∈ Dx : x � y � w] ⇒ [∃ �∈ Dx ∀w 6∈ {x, y} : x � y � w], (2.5)

where Dx denotes the subset of all preferences in D with peak x.

The closure condition (2.5) says that, if for every w 6∈ {x, y}, there is a preference with
peak x that ranks y above w, then there must exist a preference with peak x that has
y as second best element.

We conclude this section with two further examples illustrating the derivation of
the underlying property space via TD described in Theorem 1.

Example 6 (“Doing the Opposite”) Suppose that, for each state x, there exists a
state x̄ (“the opposite of x”) such that ¯̄x = x. Consider then the domain D of all linear
orderings � such that x � y ⇔ ȳ � x̄, i.e. if a state is deemed better than another,
then its opposite must be worse than that state’s opposite. The betweenness relation
TD associated with D according to (2.4) is given by

(x, y, z) ∈ TD ⇔ [z = x̄ or y ∈ {x, z}],

i.e. every element is between opposite pairs, but no element is between two non-opposite
states. As is easily verified TD is the graphic betweenness corresponding to the graph
in which each point is connected by an edge to all other points but to its opposite
element. A subset A 6= X is convex with respect to TD if and only if [x ∈ A ⇒ x̄ 6∈ A],
and H 6= X is a half-space if and only if [x ∈ H ⇔ x̄ 6∈ H]. In particular, TD satisfies
the separation condition T5; by Fact 2.2, it can thus be derived from a property space.
In contrast to some of the examples above, however, the basic properties (i.e. the
half-spaces) do not have a meaningful interpretation as “Lancasterian characteristics”
here.

Observe that a preference is single-peaked with respect to TD whenever the opposite
of the peak is the least preferred alternative. By contrast, for a preference in D,
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the ranking between any pair is uniquely determined by the ranking of the opposite
pair. Thus, D is much smaller than the domain ŜX,TD of all single-peaked preferences.
Nevertheless, D clearly satisfies the closure condition (2.5), hence it represents a rich
single-peaked domain by Theorem 1. As we shall see, this implies that the induced
betweenness TD is all what matters for the analysis of strategy-proofness.

Example 7 (Additive Preferences over Public Goods) There are K + 1 public
goods, which can be supplied in non-negative discrete quantities. Denote by xk ∈ N0

the quantity of good k = 0, 1, ...,K, and suppose that feasibility requires
∑

k xk ≤ M
for some fixed amount M , i.e. take the prices of each public good to be 1, for simplicity.
Furthermore, suppose that preferences can be represented by additive utility functions
of the form

∑
k uk(xk), where each uk is increasing and concave. By the resulting

monotonicity of preferences, the choice will always lie on the budget line
∑

k xk = M .
We can therefore eliminate the coordinate corresponding to good 0, and consider the
set X = {x ∈ NK

0 :
∑K

k=1 xk ≤ M} as the set of states. The utility functions on X
can be written as follows,

u(x1, ..., xK) =
K∑

k=1

uk(xk) + u0(M −
K∑

k=1

xk). (2.6)

As is easily verified, the geometric structure of the domain D of all additive preferences
of the form (2.6) is described by the following betweenness relation:

(x, y, z) ∈ TD :⇔

{
yk ∈ [xk, zk] for all k, and

∑
k

yk ∈

[∑
k

xk,
∑

k

zk

]}
.

For instance, for K = 2, TD is the graphic betweenness corresponding to the following
graph.
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Figure 5: Additive preferences over three public goods.

Again, TD satisfies T1-T5, and D satisfies (2.5). D is therefore yet another instance
of a rich domain of single-peaked preferences. Interestingly, in this case there is an
“endogenous” ideal point that depends on the budget set; indeed, due to the strict
monotonicity of preferences, there is no ideal point on their natural domain NK

0 . This
is in contrast to the interpretation of Barberà, Massó and Neme (1997) who assume
that the “true” ideal points are in fact feasible.8

8See Appendix 1 for further discussion of the relation to Barberà, Massó and Neme (1997).
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3 The Structure of Strategy-Proof Social Choice on
Generalized Single-Peaked Domains

3.1 Voting by Issues

Let N = {1, ..., n} be a set of voters. Each voter i is characterized by a linear preference
ordering �i in some domain D; the best element of X with respect to �i is denoted
by x∗i . A social choice function is a mapping F : Dn → X that assigns to each
preference profile (�1, ...,�n) in Dn a unique social alternative F (�1, ...,�n) ∈ X.
In the following, we will assume that X is endowed with the structure of a property
space; in the next subsection, we will then consider social choice functions defined on
rich domains of generalized single-peaked preferences.

An important class of social choice functions are those that only depend on the
peaks of voters’ preferences; these are referred to as “voting schemes.” A social choice
function F is a voting scheme if there exists a function f : Xn → X such that for all
(�1, ...,�n), F (�1, ...,�n) = f(x∗1, ..., x

∗
n), where x∗i is voter i’s peak. In this case, we

say that F satisfies peaks only. With slight abuse of terminology, we will also refer to
any f : Xn → X as a voting scheme, since any such function f naturally induces a
social choice function satisfying peaks only.

Given a description of alternatives in terms of their properties, a natural way to
generate a social choice is to determine the final outcome via its properties. This is
described now in detail.

Henceforth, families of winning coalitions of agents are denoted by W, where W
is a non-empty family of non-empty subsets of N (the “winning coalitions”) satisfying
[W ∈ W and W ′ ⊇ W ] ⇒ W ′ ∈ W.

For instance, majority voting corresponds to W 1
2

:= {W ⊆ N : #W > 1
2 · n}.

Majority voting is a special case of a quota rule: for each q ∈ (0, 1), voting by quota q
corresponds to Wq := {W ⊆ N : #W > q · n}.
Definition (Structure of Winning Coalitions) A structure of winning coalitions
on a property space (X,H) is a mapping that assigns a family WH of winning coalitions
to each basic property H ∈ H satisfying the following condition:

W ∈ WH ⇔ W c 6∈ WHc . (3.1)

As is easily verified, (3.1) implies that, for every basic property H, the families of
winning coalitions corresponding to H and Hc are interrelated as follows.

WH = {W ⊆ N : W ∩W ′ 6= ∅ for all W ′ ∈ WHc}. (3.2)

Consider now the following voting procedure, adapted to the present framework
from Barberà, Sonnenschein and Zhou’s (1991) “voting by committees.”

Definition (Voting by Issues) Given a property space (X,H) and a structure of
winning coalitions {WH : H ∈ H}, voting by issues is the mapping fW : Xn → 2X

such that, for all ξ ∈ Xn,

x ∈ fW(ξ) :⇔ for all H ∈ H with x ∈ H : {i : ξi ∈ H} ∈ WH . (3.3)

Voting by issues thus amounts to deciding, for each particular property, whether the
final outcome is to possess that property or its negation. Note that fW(ξ) ⊆ X is not
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assumed to be non-empty; in particular, fW does not yet define a voting scheme in the
sense of the above definition.

Definition (Consistency) A structure {WH : H ∈ H} of winning coalitions is called
consistent if fW(ξ) 6= ∅ for all ξ ∈ Xn. If W is consistent, the corresponding voting
procedure fW will also be referred to as consistent.

Example (Inconsistency of issue-by-issue majority voting on an unrestricted
domain) As a simple example of an inconsistent structure of winning coalitions, con-
sider the vacuous betweenness (see Example 3 above) on X = {x, y, z}, and assume
that voting by issues takes the form of issue-by-issue majority voting, i.e. WH = W 1

2
for all H. Moreover, suppose that there are three voters with pairwise distinct pref-
erence peaks. In this situation, each of the following basic properties gets a majority
of two votes: {y, z} (“being different from x”), {x, z} (“being different from y”), and
{x, y} (“being different from z”). But clearly, {y, z}∩ {x, z}∩ {x, y} = ∅, i.e. the basic
properties determined according to (3.3) are jointly incompatible.

While the basic properties determined by voting by issues via (3.3) may be incon-
sistent as in the preceding example, the following fact shows that under consistency
the outcome of voting by issues is uniquely determined.

Fact 3.1 If fW(ξ) 6= ∅, then fW(ξ) is single-valued. In particular, voting by issues
defines a voting scheme whenever it is consistent.

With slight abuse of notation, we may thus identify voting by issues with the corre-
sponding function fW : Xn → X if the underlying structure of winning coalitions is
consistent.

If fW is consistent, one has for all H and ξ,

fW(ξ) ∈ H ⇔ {i : ξi ∈ H} ∈ WH (3.4)

by (3.3) and (3.1). Since N ∈ WH for all H, this implies that fW satisfies unanimity,
i.e. for all x ∈ X, f(x, x, ..., x) = x. In particular, fW is onto whenever it is consistent,
i.e. each x ∈ X is in the range of fW .

Voting by issues is characterized by the following monotonicity condition. Say that
a voting scheme f : Xn → X is monotone in properties if, for all ξ, ξ′,H,

[f(ξ) ∈ H and {i : ξi ∈ H} ⊆ {i : ξ′i ∈ H}] ⇒ f(ξ′) ∈ H.

Monotonicity in properties states that if the final outcome has some property H and
the voters’ support for this property does not decrease, then the resulting final outcome
must have this property as well.

Proposition 3.1 A voting scheme f : Xn → X is monotone in properties and onto if
and only if it is voting by issues with a consistent structure of winning coalitions.

For a structure of winning coalitions {WH : H ∈ H}, denote by FW : Dn → 2X the
mapping defined by FW(�1, ...,�n) = fW(x∗1, ..., x

∗
n), where for each i, x∗i is the peak

of �i on X. The mapping FW will also be referred to as voting by issues. As above,
we will identify voting by issues with the function FW : Dn → X if the underlying
structure of winning coalitions is consistent.

A social choice function F is called anonymous if it is invariant with respect to
permutations of individual preferences, i.e. if F (�1, ...,�n) = F (�σ(1), ...,�σ(n)) for
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every permutation σ : N → N . The following fact shows that anonymous voting by
issues takes the form of a quota rule; the first part is immediate from the definitions,
the second part follows at once from (3.2).

Fact 3.2 Voting by issues FW is anonymous if and only if it is a quota rule, i.e. for
all H there exists qH ∈ [0, 1] such that WH = WqH

if qH < 1 and WH = W1 := {N}
if qH = 1.9 If FW is consistent, the quotas can be chosen such that, for all H ∈ H,
qHc = 1− qH .

The appropriate formulation of neutrality in our context turns out to be as follows.
Say that a profile (�1, ...,�n) is simple if #{�1, ...,�n} ≤ 2, i.e. if it contains at most
two different preference orderings. A social choice function F is called neutral if, for
all simple profiles (�1, ...,�n), (�′1, ...,�′n) and all permutations σ : X → X such that
x �i y ⇔ σ(x) �′i σ(y) for all x, y and i, F (�′1, ...,�′n) = σ (F (�1, ...,�n)).

Fact 3.3 Let S be a rich single-peaked domain. Voting by issues FW : Sn → X is
neutral if and only if W is constant, i.e. for all H,H ′ ∈ H, WH = WH′ .

Note that by Facts 3.2 and 3.3 consistent voting by issues is anonymous and neutral
if and only if it is issue-by-issue majority voting, i.e. if and only if, for all H, WH = W 1

2
.

Note that, by (3.2), this requires on odd number of voters.

3.2 The Equivalence of Strategy-Proofness and Voting by
Issues

Throughout, let S denote a rich single-peaked domain on a property space (X,H). A
social choice function F : Sn → X is strategy-proof (on S) if for all i, �i,�′i∈ S and
�−i∈ Sn−1,

F (�i,�−i) �i F (�′i,�−i).

Furthermore, say that F satisfies voter sovereignty if F is onto, i.e. if every x ∈ X is
in the range of F .

Proposition 3.2 Let S be a rich single-peaked domain, and let F : Sn → X be repre-
sented by the voting scheme f : Xn → X. Then, F is strategy-proof if and only if f is
monotone in properties.

In combination with Proposition 3.1, this implies that a voting scheme is strategy-
proof on a rich single-peaked domain and onto if and only if it is voting by issues with
a consistent structure of winning coalitions. We now want to show that any strategy-
proof social choice function F : Sn → X satisfying voter sovereignty is voting by issues.
For this, it remains to show that any such F is a voting scheme, i.e. that it satisfies
peaks only.

Proposition 3.3 Let S be a rich single-peaked domain. Every strategy-proof social
choice function F : Sn → X that satisfies voter sovereignty is a voting scheme, i.e. sat-
isfies peaks only.

Combining Propositions 3.1 – 3.3 yields the following result.
9Note that the quotas qH are not uniquely determined in the sense that different sets of quotas

may define the same structure of winning coalitions.
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Theorem 2 A social choice function F : Sn → X satisfies voter sovereignty and is
strategy-proof on a rich single-peaked domain S if and only if it is voting by issues with
a consistent structure of winning coalitions.

Theorem 2 is a counterpart and adaption of a fundamental result in Barberà, Massó
and Neme (1997) that got this research started. We could not invoke their result
ready-made 10 due to the added generality associated with considering rich single-
peaked domains rather than maximal ones of the form D = ŜX,T . As illustrated by
Examples 6 and 7, the generality added by this move is substantial. While the proof
of Proposition 3.3 parallels that of Prop. 2 in Barberà, Massó and Neme (1997), ours
adds two additional, significant steps not present in their analysis. The second of these
introduces the notion of a “gated set” and yields substantial additional insights into
the structure of strategy-proof social choice functions that are absent from the analysis
of Barberà, Massó and Neme (1997). Specifically, for all voters i, denote by

oF
i (�−i) := {x ∈ X : there exists �i ∈ S such that F (�i,�−i) = x}

the set of options of voter i given the preference profile �−i of all voters other than i.

Definition (Gated set) A subset Y ⊆ X is called gated if, for all x ∈ X, there exists
an element γ(x) ∈ Y such that γ(x) ∈ [x, y] for all y ∈ Y , i.e. such that γ(x) is between
x and every element of Y . The element γ(x) is called the gate of Y to x.

Observe that the universal set X and all singletons are always trivially gated.

Lemma 3.1 Let S be a rich single-peaked domain, and suppose that F : Sn → X
is strategy-proof and satisfies peaks only. Then, for all i and �−i, the set of options
oF

i (�−i) is gated.

The significance of this result lies in the fact that property spaces frequently admit
only few gated sets. For instance, the only gated sets with respect to the vacuous
betweenness are the universal set and all singletons. On the other hand, it is easily
verified that the existence of non-degenerate strategy-proof social functions requires
the existence of non-trivial option sets. We thus obtain the following corollary.11

Corollary 1 (Generalized Gibbard-Satterthwaite Theorem) Let S be a rich
single-peaked domain, and let F : Sn → X be strategy-proof and satisfy voter sovereignty
and peaks only. If #X ≥ 3, and if only the universal set and all singletons are gated,
then F must be dictatorial.

This generalizes the Gibbard-Satterthwaite Theorem by showing that not only on the
unrestricted domain but also on many other rich single-peaked domains only dictatorial
social choice functions can be strategy-proof. For instance, also in Examples 6 and 7
above the universal set and all singletons are the only gated sets.

The following second corollary shows how restrictive neutrality is in our present
context.

Corollary 2 Let S be a rich single-peaked domain, and let F : Sn → X be strategy-
proof and satisfy voter sovereignty and peaks only. If F is neutral and non-dictatorial,
then all segments are gated.

10That is, via an extension argument, as had been done in an earlier working paper version Nehring
and Puppe (2002), see also Appendix 1 below.

11In Corollaries 1 and 2 below, we assume the peaks-only property to obtain the results as corollaries
from Lemma 3.1 without invoking Proposition 3.3 or Theorem 2.

17



The requirement that all segments be gated turns out to be a very natural property
as it characterizes the class of “median spaces” analyzed in detail in Section 4 below.
There, we will show that this condition is not only necessary but also sufficient for the
existence of neutral and non-dictatorial strategy-proof social choice.

3.3 Consistent Structures of Winning Coalitions:
The Intersection Property

By Theorem 2, a social choice function is strategy-proof on a rich domain of generalized
single-peaked preferences and onto if and only if it is consistent voting by issues. It is,
however, not self-evident whether a given structure of winning coalitions is consistent.
The needed characterization of consistency is provided in this subsection. Consistency
of voting by issues requires that the structure of winning coalitions be compatible with
the combinatorial structure of basic properties. This structure is summarized by the
class of minimally inconsistent families of basic properties; such families will be called
“critical.”

Definition (Critical Family) Say that a family G ⊆ H of basic properties is a critical
family if ∩G = ∅ and for all G ∈ G, ∩(G \ {G}) 6= ∅.
Trivial instances of critical families are all pairs {H,Hc} of complementary properties.
Critical families admit a simple intuitive interpretation as they reflect the “entailment
logic” of the underlying space. To illustrate, consider the line, labeled by the natural
numbers 1, ...,m. The basic properties are H≥j (“being greater than or equal to j”)
and H≤k (“being smaller than or equal to k”) for appropriate j and k in {1, ...,m}.
All critical families have the form {H≥j ,H≤k} for some k < j. The interpretation
is that “≥ j” logically entails “not ≤ k” whenever k < j. Thus, the critical family
corresponds to the statement “for all x, x ≥ j implies (not x ≤ k).” Similarly, consider
the set X = {x1, ..., xm} endowed with the vacuous betweenness. For each xj , the set
Hc

j = X \{xj} corresponds to the basic property “being different from xj .” The critical
family {Hc

1 , ...,Hc
m} thus describes the entailment: “if an alternative is different from

m−1 distinct elements of X, it cannot be different from the remaining m-th element.”

Intersection Property Say that voting by issues FW satisfies the Intersection Prop-
erty if for every critical family G = {G1, ..., Gl}, and every selection Wj ∈ WGj

,

l⋂
j=1

Wj 6= ∅.

Proposition 3.4 Voting by issues is consistent if and only if it satisfies the Intersec-
tion Property.

Combining this result with Theorem 2, we obtain the following characterization of
all strategy-proof and onto social choice functions on every rich single-peaked domain.

Theorem 3 A social choice function F : Sn → X satisfies voter sovereignty and is
strategy-proof on a rich single-peaked domain S if and only if it is voting by issues
satisfying the Intersection Property.

Observe that by this result the class of all strategy-proof and onto social choice func-
tions on a domain S only depends on the “betweenness geometry” of the underlying
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property space in the sense that any rich single-peaked domain defined on the same
property space induces the same class of strategy-proof social choice functions. Also
note that Theorem 3 may take on the character of an impossibility or a possibility
result, depending on the restrictions that the Intersection Property imposes via the
pattern of critical families of the underlying property space. For instance, in case
of the vacuous betweenness, i.e. for the unrestricted domain, the Intersection Prop-
erty directly entails the non-existence of anonymous social choice functions that are
strategy-proof and onto, as shown presently. On the other spaces, the Intersection
Property allows one to derive possibility results, as shown later.

Under anonymity, satisfaction of the Intersection Property translates into a system
of linear inequalities on integers, as follows. Any anonymous voting by issues is char-
acterized by a family {mH : H ∈ H} of absolute quotas, where mH := min{#W :
W ∈ WH}. Note that, by definition, mH + mHc = n + 1. It is easily verified that
the Intersection Property on the structure of winning coalitions is equivalent to the
following system of linear (in)equalities on the absolute quotas mH ,

for all H ∈ H : mH + mHc = n + 1 (3.5)

for all critical families G :
∑
H∈G

(n−mH) < n. (3.6)

The existence of an anonymous strategy-proof social choice rule is thus described
by an integer programming problem. This can be restated and simplified into a linear
programming problem by considering relative quotas, as described by the following
result; by condition (ii), the integer problem does not disappear completely but becomes
essentially trivial.

Fact 3.4 Let (X,H) be a property space and let {qH : H ∈ H} be a system of relative
quotas such that, for all H ∈ H, qH + qHc = 1 and qH · n is not an integer other than
0 or n. If, for every critical family G,∑

H∈G
(1− qH) ≤ 1, (3.7)

then voting by issues FW with the structure {WqH
: H ∈ H} of winning coalitions is

anonymous and consistent. Conversely, if voting by issues is anonymous and consis-
tent, then there exist quotas {qH : H ∈ H} such that (i) for all H ∈ H, qH + qHc = 1,
(ii) for all H ∈ H, qH ·n is not an integer other than 0 or n, and (iii) for every critical
family G, (3.7) is satisfied.

The role of the integer condition (ii) is to ensure that the families W1−qH
and WqH

are
adjoint in the sense of condition (3.1). This becomes important in situations in which
all anonymous social choice functions require some quota qH to be equal to 1

2 ; clause
(ii) implies in this case that n must be odd, which makes intuitive sense since majority
voting is well-defined only for an odd number of individuals. The proof of the second
part of Fact 3.4 in the appendix relies on the observation that if the absolute quotas
mH satisfy conditions (3.5) and (3.6), the relative quotas qH defined by qH := mH−1

n−1
satisfy conditions (i) and (3.7).

To illustrate the intuition behind the Intersection Property, we verify the necessity
of (3.7) in the special case of the vacuous betweenness on X = {x1, ..., xm}; from this
it is straightforward to infer the non-existence of anonymous, strategy-proof and onto
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social choice functions on an unrestricted domain if m ≥ 3. Recall that the vacuous
betweenness corresponds to the basic properties Hj = {xj} (“being equal to xj”) and
Hc

j = X \ {xj} (“being different from xj”), for j = 1, ...,m. The non-trivial critical
families are {Hc

1 , ...,Hc
m} and, for all j 6= k, {Hj ,Hk}. Consider the critical family

{Hc
1 , ...,Hc

m}, and suppose that (3.7) is violated, i.e.
∑

j qc
j < m− 1, where qc

j denotes
the quota corresponding to Hc

j . If qj = 1 − qc
j is the quota corresponding to Hj , one

obtains
∑

j qj > 1, say
∑

j qj = 1 + m · δ for some δ > 0. Now assign to a fraction of
qj−δ voters the peak xj . Since none of the properties Hj = {xj} reaches the quota, all
complements are enforced; but since their intersection is empty, consistency is violated.

Theorem 3 generalizes Corollary 3 in Barberà, Massó and Neme (1997) which applies
to the domains ŜX,T where X is some subset of a product of lines. In that context, these
authors derive a condition also called “intersection property” that can be viewed as
relating families of “inconsistent properties” to admissible winning coalitions. However,
the condition obtained here is much simpler and more powerful due to the restriction
to minimal such families. This gives rise to the characterization of anonymous and
onto strategy-proof social choice functions in terms of a set of linear inequalities just
described, and makes it possible to determine which property spaces admit strategy-
proof social choice functions with various desirable properties such as non-dictatorship,
anonymity and efficiency from their combinatorial structure (see Nehring and Puppe
(2003a,b)).

The Intersection Property has a special, and particularly simple, structure when
all critical families have cardinality two, for evidently {G, Hc} is a critical family if
and only if G ⊆ H, in other words, if and only if G entails H on its own. We shall
call such property spaces simple. At an abstract level, the distinguished status of
simple property spaces derives from the fact that in such spaces and in no others, a
structure of winning coalitions is consistent if and only if it is order-preserving (G ⊆
H ⇒ WG ⊆ WH). Almost directly, this characterization ensures the existence of a
rich set of strategy-proof social choice functions in simple property spaces, as borne
out by the analysis of the following section. A basic but important example of this
follows directly from the Intersection Property, as it is immediate from Fact 3.4 that
issue-by-issue majority voting among an odd number of voters is consistent if and only
if the underlying property space is simple. Indeed, by (3.7) voting by issues with a
uniform quota qH = 1/2 for all H can be consistent only if all critical families have two
elements. In the next section, we characterize simple property spaces geometrically as
“median spaces” and analyze their remarkable further structure in more detail.

4 Strong Possibility Results in Median Spaces

By Theorem 3 above, strategy-proof social choice on single-peaked domains takes the
form of voting by issues satisfying the Intersection Property. For each given domain
this yields a simple characterization of the class of all onto and strategy-proof social
choice functions. On the other hand, it does not answer the question for which property
spaces there exist well-behaved strategy-proof social choice functions on the associated
domain of single-peaked preferences. In this section, we consider a distinguished class
of property spaces, the class of median spaces, and show that they enable strategy-proof
social choice functions that are well-behaved in a particularly strong sense.
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4.1 Simple Property Spaces as Median Spaces

As an immediate consequence of the Intersection Property, we have seen that issue-by-
issue majority voting is consistent if and only if the underlying property space is simple,
i.e. every critical family has only two elements. What does that mean geometrically?
To provide the intuition, consider three voters with peaks ξ1, ξ2, ξ3 and denote by m the
chosen state under issue-by-issue majority voting. Every basic property H possessed
by both ξ1 and ξ2 gets a majority of at least two votes over Hc, hence we must have
m ∈ H (see Figure 6 below). By (2.2), this means that m is between ξ1 and ξ2. But
the same argument applies to every basic property jointly possessed by ξ1 and ξ3, and
to every basic property jointly possessed by ξ2 and ξ3. In other words, a necessary
condition for issue-by-issue majority voting to be consistent is that every triple ξ1, ξ2,
ξ3 of social states admits a state m = m(ξ1, ξ2, ξ3) that is between any pair of them.
Such a state will be called a “median” of the triple.
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Figure 6: The median property.

Definition (Median Space) A property space (X,H) is called a median space if the
induced betweenness relation TH satisfies the following condition. For all x, y, z ∈ X
there exists an element m = m(x, y, z) ∈ X, called the median of x, y, z, such that m
is between any pair of {x, y, z}, i.e. such that {(x, m, y), (x, m, z), (y, m, z)} ⊆ TH.

Median spaces are a classic topic in abstract convexity theory (see, e.g., Bandelt and
Hedliková (1983) and the references in van de Vel (1993)). It is easily verified that due
to the separation property H3, the median of a triple is uniquely determined. Moreover,
one has the following result.

Proposition 4.1 Let (X,H) be a property space. The following are equivalent.
(i) All critical families have cardinality two, i.e. (X,H) is simple.
(ii) (X,H) is a median space.
(iii) All segments are gated.

The betweenness relation of a median space is always a graphic betweenness (see van
de Vel (1993, Chapter I.6)), and the median of a triple minimizes the sum of the
graph distances (i.e. the number of edges in the underlying graph) to the triple. More
generally, it is easily verified that in a median space the outcome of issue-by-issue
majority voting with an odd number of agents minimizes the sum of the graph distances
to the voters’ peaks.
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The simplest examples of median spaces are lines (Example 1 in Sect. 2 above) with
the middle point of a triple as their median. More generally, the graphic betweenness
associated with any tree (i.e. connected and acyclic graph) gives rise to a median
space. To see this, consider for each triple of points in a tree the (unique) shortest
paths connecting every pair. By the acyclicity, these three shortest paths have exactly
one point in common, the median of the triple. Furthermore, all hypercubes (Example
2) are median spaces; a typical configuration is the triple x, z, w with the median y in
Fig. 1b above. More generally, products are median spaces if and only if every factor is
a median space; indeed, by definition of the product betweenness (see Example 4), the
median on a product is simply given by taking the median in each coordinate. Thus,
our analysis shows that the common source of the possibilities of strategy-proof social
choice derived in Moulin (1980), Barberà, Sonnenschein and Zhou (1991) and Barberà,
Gul and Stacchetti (1993) is that in each case the underlying space is a median space.12

Formally, we have the following corollaries to Theorem 3.

Corollary 3 (Barberà, Sonnenschein and Zhou (1991)) Let S be the domain of
all separable preference orderings on the hypercube. A social choice function F : Sn →
X is strategy-proof and onto if and only if it is voting by issues.

Corollary 4 (Moulin (1980), Barberà, Gul and Stacchetti (1993)) Let S be
the domain of all single-peaked preference orderings on a product of lines. A social
choice function F : Sn → X is strategy-proof and onto if and only if it is voting by
issues satisfying, for all G, H, G ⊆ H ⇒WG ⊆ WH .

4.2 Median Spaces Characterized by Possibility Results

One fundamental requirement of social choice is that all alternatives are treated on
par, i.e. that the social choice function be neutral. We have seen that under voting
by issues, there is a unique anonymous and neutral rule, issue-by-issue majority voting
with an odd number of agents. On the other hand, there is a rich class of neutral rules
that are not anonymous. Indeed, take any family of winning coalitions W0 satisfying
W ∈ W0 ⇔ W c 6∈ W0; then, defining WH = W0 for all H yields a neutral rule.

Combining Proposition 4.1 with Proposition 3.3 and Corollary 2 above, we can
now show that under strategy-proofness neutral and non-dictatorial rules exist only on
median spaces.

Theorem 4 Let (X,H) be a property space, and let S be a rich single-peaked domain
on (X,H). There exists a strategy-proof social choice function F : Sn → X that is
onto, neutral and non-dictatorial if and only if (X,H) is a median space.

Moreover, on a median space (X,H), a social choice function F : Sn → X is onto,
strategy-proof and neutral if and only if it is voting by issues such that WH = W0 for
all H ∈ H and some family W0 of winning coalitions satisfying W ∈ W0 ⇔ W c 6∈ W0.

12By contrast, the property spaces underlying the other examples considered in Section 2 above are
not median spaces. For instance, the triple x, z, w in Fig. 1c above does not have a median. More
generally, in Example 3 (the vacuous betweenness) no triple of pairwise distinct alternatives admits a
median. The fact that cycles of length 6= 4 (Example 5) are not median spaces is exemplified by the
triple xj−2, xj , xj+2 in Fig. 4 above. As is easily verified, the spaces underlying Examples 6 and 7 are
also not median spaces.
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In the anonymous case, we obtain the following corollary which entails that issue-
by-issue majority voting is consistent if and only if the underlying space is a median
space (cf. the remark at the end of Section 3 above).

Corollary 5 Let (X,H) be a property space, and let S be a rich single-peaked domain
on (X,H). There exists a strategy-proof social choice function F : Sn → X that is
onto, neutral and anonymous if and only if (X,H) is a median space.

Neutrality is of additional interest in the context of strategy-proofness since a
slightly weakened form of neutrality is necessary for efficiency, as we have shown in
Nehring and Puppe (2003b). Note also that by the Intersection Property and Proposi-
tion 4.1 the necessary departures from neutrality outside median spaces are substantial.
For instance, it follows at once from (3.7) that in the anonymous case at least one prop-
erty must be chosen with supermajority of at least 2/3 if the underlying space is not a
median space.13

In some contexts, however, one may want to treat properties and alternatives asym-
metrically. For instance, in the context of constitutional change supermajority rules are
frequently employed. Median spaces are also maximally rich in the range of strategy-
proof choice rules that privilege particular properties and alternatives, as follows. For
every family W of winning coalitions, let the adjoint Wa be defined by (3.1), or equiv-
alently, by (3.2), i.e.

Wa := {W ⊆ N : W ∩W ′ 6= ∅ for all W ′ ∈ W}.

A family W of winning coalitions is called a minority family if it strictly contains its
adjoint, i.e. if Wa ⊆ W and Wa 6= W. Using the fact that (Wa)a = W, it is easily
verified that W is a minority family if and only if (i) there exist W,W ′ ∈ W with
W ′∩W = ∅, and (ii) for all W,W ′ ∈ Wa, W ∩W ′ 6= ∅. For instance, in the anonymous
case a family of winning coalitions is a minority family if and only if it corresponds to
a quota < 1/2.

Definition (Minority veto rule) A social choice function F : Sn → X is called
a minority veto rule with status quo x if there exists a minority family W such that
F (�1, ...,�n) = x whenever {i : ξi = x} ∈ W, where ξi is the peak of �i.

Theorem 5 Let (X,H) be a property space, and let S be a rich single-peaked domain
on (X,H). There exists, for each x ∈ X, a minority veto rule F : Sn → X with status
quo x if and only if (X,H) is a median space.

Moreover, if (X,H) is a median space, there exists, for all x and every minority
family, an associated minority veto rule F : Sn → X with status quo x.

To illustrate the above results in the anonymous case, consider the graphic betweenness
relation associated with the following graph.

13To see this, note that, if (X,H) is not a median space, there exists a critical family with at least
three elements, by Proposition 4.1.
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Figure 7: A seven point graph.

The basic properties of the underlying property space are the three 4-cycles through x,
z and w, respectively, and their complements.14 Note that the space is not a median
space since the triple x, z, w does not admit a median. First, suppose that voters’
peaks are evenly distributed among x, z and w. Evidently, consistency forces the
chosen outcome to lie in at least one of the three 4-cycles. Hence, at least one of the
three 4-cycles requires a quota of no more than 1/3. In particular, consistency is not
compatible with neutrality. Now assume without loss of generality that it is the 4-cycle
through w which requires a quota of at most 1/3, and consider a profile with 49% of
the voters’ peaks at x and 51% of the voters’ peaks at w. Clearly, x is not chosen,
which shows that there is no (anonymous) minority veto rule with status quo x. On
the other hand, for every point in Fig. 7, there exists a “majority rule” with the given
point as status quo. For instance, suppose that a departure from the two 4-cycles
through z and w, respectively, requires a simply majority, whereas a departure from
the 4-cycle through x requires unanimous consent; by the Intersection Property this
rule is consistent, and x is chosen whenever 51% of the voters have their peak at x.

4.3 Single-Peaked Preferences in Median Spaces

So far, we have described the preference domains on which possibility results emerge
indirectly through their underlying geometry derived from the median space structure.
We now show that one can characterize the single-peaked domains on median spaces
directly through appropriate convexity and separability conditions. In this sense, it is
ensured that all preference domains associated with median spaces are economically
meaningful.

Throughout this subsection, (X,H) denotes a median space. As noted above, the
induced betweenness relation of a median space is always graphic. Say that y is linearly
between x and z if y is on a unique shortest path connecting x and z in the underlying
graph. Say that a preference ordering � is convex on (X,H) if x � y ⇒ y � z
whenever y is linearly between x and z and y 6= z. Moreover, say that� is separable on
(X,H) if x � y ⇔ z � w whenever (x, y) and (z, w) are two pairs of (graph) neighbours
separated by the same basic property, i.e. such that {H ∈ H : x ∈ H and y 6∈ H} =

14A natural interpretation is in terms of three candidates, with the 4-cycle through x (resp. z, w)
representing the admission of candidate Ax (resp. Az , Aw). For instance, the point between x and z
represents the state in which candidates Ax and Az but not Aw are admitted; similarly, the center
point represents the state in which all three candidates are admitted. Note that in the present example
at least one candidate must be admitted, since the intersection of the complements of the three 4-cycles
is empty.
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{H ∈ H : z ∈ H and w 6∈ H}; note that in a median space, neighbours are always
graph neighbours, and are always separated by exactly one basic property (cf. Lemma
A.3 in the appendix).

Proposition 4.2 On a median space, a preference ordering is generalized single-peaked
if and only if it is convex and separable.

On trees betweenness coincides with linear betweenness (since shortest paths are always
unique), hence by Proposition 4.2 a preference is single-peaked on a tree if and only if
it is convex. By contrast, in a hypercube the linear betweenness relation is vacuous,
hence by Proposition 4.2 a preference is single-peaked on a hypercube if and only if it
is separable.15

Note that while by Fact 2.1 above, any single-peaked preference on any property
space is separable, a conclusion similar to that of Proposition 4.2 fails often outside the
class of median spaces. For instance, consider a single-peaked preference ordering �
on the 6-cycle (cf. Fig. 4 above): if y is opposite to the peak of � and linearly between
x and z, one has x � y but y 6� z in violation of convexity.

Frequently, taking as domain the class of all single-peaked preferences is unnaturally
permissive. Indeed, the separability entailed by single-peakedness is quite weak. Often
one would like to have additive separability. Similarly, in some contexts convexity may
be too weak as well. For instance, in the product of two lines, convexity merely imposes
the restriction that the sections of the upper contour sets are connected, i.e. lines. A
stronger restriction results from the following cardinal notion of convexity. Say that
a preference ordering � is cardinally convex and separable on (X,H) if it has
an additive utility representation u(x) =

∑
H∈Hg,H3x λH (cf. Sect. 2.2 above) with

λG ≥ λH whenever G ⊇ H. The appeal of this definition emerges from the following
characterization.

Fact 4.1 A preference ordering on a median space is cardinally convex and separable
if and only if it has a utility representation u : X → R such that u is concave on every
linear path, and u(x)− u(y) = u(z)− u(w) whenever (x, y) and (z, w) are two pairs of
neighbours separated by the same basic property.

For instance, in the context of the product of lines, a preference ordering is cardinally
convex and separable if and only if it has a utility representation of the form u(x) =∑

k uk(xk), where each uk is concave.16

Proposition 4.3 On a median space, the set of all cardinally convex and separable
preferences is a rich single-peaked domain.

Propositions 4.2 and 4.3 establish that every median space is associated with econom-
ically natural and well-behaved domains of single-peaked preferences.

4.4 The Structure of Median Spaces

The above results show how remarkably well-behaved median spaces are for the pur-
poses of the analysis of strategy-proof social choice. It remains to understand this class

15The linear betweenness on the hypercube is vacuous since shortest paths between two distinct
points that are not neighbours are never unique.

16This follows from the observation that in a product of lines the linear paths are the paths parallel
to the coordinate axes.
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better in itself. The following figure shows the structure of the class of median spaces.
An arrow indicates subsethood, and each class of spaces is the intersection of its two
immediate predecessors.
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Figure 8: The class of median spaces.

The existing literature has studied the lower part of this diagram, Moulin (1980) lines,
Demange (1982) trees, Barberà, Sonnenschein and Zhou (1991) hypercubes, and Bar-
berà, Gul and Stacchetti (1993) the product of lines. As an example of a distributive
lattice structure, consider the following problem of constitutional choice. Suppose that
a set of countries, say the EU member states, have to decide on the procedures for
their collective choices, i.e. they have to decide on their joint constitution. Specifically,
consider the problem of determining on which of the issues K = {1, ..., k} future deci-
sions are to be made on the basis of majority voting. Individual preferences are thus
taken to be over subsets of K (“constitutions”) with the interpretation that L �i L′ if
country i prefers majority voting over exactly the issues in L ⊆ K to majority voting
over exactly the issues in L′ ⊆ K. The assumption of single-peakedness does not seem
implausible in that context; it requires that, for each single issue j, majority voting over
issue j is preferred/not preferred independently of the corresponding preference over
other issues. Observe, however, that this excludes a preference for the overall extent
of majority voting (regardless on which issues), since in that case majority voting for
one issue would be a substitute for majority voting over another issue.

In general, one cannot assume that the issues are independent from each other. In
other words, one has to account for the “entailment logic” of the underlying problem.
For instance, suppose that the issue j represents the joint defense policy of the countries,
whereas j′ represents their joint foreign policy. It is in general not possible to decide
on defense policy by majority voting without also deciding at least on some foreign
policy issues by majority voting. In particular, the set of all feasible constitutions will,
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in general, not be the entire power set 2K . The entailment “majority voting over j ⇒
majority voting over j′” thus corresponds to a critical family. If the space of feasible
constitutions is constrained only by entailments of this form (with one antecedent and
one conclusion), it forms a (necessarily distributive) lattice of sets. Another example
of a distributive lattice that is not a product of lines arises in a quasi-linear version of
the public goods Example 7 above (see Nehring and Puppe (2003a)).

The following figure shows an example of a “generic” median space that has neither
a product structure nor that of a distributive lattice.
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Figure 9: A median space embedded in the product of two lines.

More generally, any connected subset of the product of two lines such that every
section is a line (in particular, every “discretization” of a convex subset of R2) is a
median space. These spaces are of particular interest since they admit strategy-proof
social choice functions that are efficient (see Nehring and Puppe (2003b), which also
presents an economically natural location example with similar structure).

5 Conclusion

In this paper, we have defined a general notion of single-peakedness based on abstract
betweenness relations. We have shown that a social choice function is onto and strategy-
proof on a sufficiently rich single-peaked domain if and only if it takes the form of voting
by issues satisfying the Intersection Property (Theorems 1, 2 and 3). The concept of a
median space, in which every triple of social states admits a fourth state that is between
any pair of the triple, turned out to be fundamental for the existence of well-behaved
strategy-proof social choice functions. Median spaces are distinguished from a number
of different perspectives. Due to their simple and regular structure, median spaces give
rise to a maximally rich class of strategy-proof social choice functions (Proposition
4.1). They are exactly the spaces that admit anonymous and neutral strategy-proof
social choice rules, amounting to issue-by-issue majority voting (Corollary 5). More
generally, neutral and non-dictatorial strategy-proof social choice functions only exist
on median spaces (Theorem 4). Finally, median spaces are maximally rich in the
range of admissible minority veto rules (Theorem 5), and their associated domain of
single-peaked preferences can be exhaustively described by convexity and separability
restrictions (Proposition 4.2).
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Appendix 1: “Voting under Constraints” as a Special Case

The following clarifies the relation of our work to Barberà, Massó and Neme’s “Vot-
ing under Constraints” (1997). Let (X,H) be a property space with ŜX,TH as the
associated domain of all single-peaked preferences. Suppose that only a subset Y of
social alternatives is in fact feasible, and that voters’ ideal points are known to be
feasible (as pointed out by Barberà, Massó and Neme (1997), the latter assumption
is clearly restrictive). Formally, let D := {� |Y : � ∈ ŜX,TH with peak of � in Y }.
One can show that D consists exactly of the preferences on Y that are single-peaked
with respect to the restriction of TH to Y , which is the betweenness associated with
the relativization (Y, {H ∩ Y : H ∈ H}) of the underlying property space to Y . Every
such domain D is therefore covered by our analysis. Barberà, Massó and Neme (1997)
consider the special case in which the underlying property space (X,H) is a product
of lines. Conversely, any preference domain of the form ŜX,TH , where (X,H) is an
arbitrary property space, is isomorphic to an appropriate relativized domain (in the
above sense) embedded in a hypercube.

Appendix 2: Proofs

Proof of Fact 2.1 Let � be single-peaked with respect to TH, and denote by x∗ the
peak of �; define Hg := {H ∈ H : x∗ ∈ H} and Hb := {H ∈ H : x∗ 6∈ H}. Obviously,
this partition of H satisfies all required properties.

Conversely, let the partition H = Hg ∪ Hb satisfy (i), (ii) and (iii). It is straight-
forward to verify that � is single-peaked with peak x∗.

Proof of Fact 2.2 in text.

Proof of Theorem 1 If D is a rich single-peaked domain on (X,H), then TD = T
where T = TH by R2. Thus, any TD associated with a rich single-peaked domain on
(X,H) satisfies T1-T5 since TH does by Fact 2.2. Moreover, in a property space, every
element has at least one neighbour. Thus, every x ∈ X is the peak of at least one pref-
erence ordering in D due to the richness conditions R1 or R2. Finally, suppose that
the antecedent in condition (2.5) is satisfied; this means that x and y are neighbours
with respect to TD, and hence also neighbours with respect to T . Thus, (2.5) follows
from R1.

Conversely, suppose that D and TD satisfy the stated conditions. The relation TD
satisfies T1 by construction, and T4 due to the antisymmetry of the preferences in D
and the fact that each x ∈ X is the peak of some element of D. Hence, by Fact 2.2, TD
is the betweenness relation associated with some property space (X,H). As noted in
the text, the richness condition R2 is satisfied by construction. To verify R1, let x and
y be neighbours with respect to TD; by definition, this means that, for all w 6∈ {x, y},
there exists a preference � with peak x such that x � y � w, hence R1 follows from
(2.5).

Proof of Fact 3.1 Suppose that x ∈ fW(ξ) and consider any y 6= x. By condi-
tion H3, there exists H ∈ H such that x ∈ H and y ∈ Hc. By definition of fW ,
{i : ξi ∈ H} ∈ WH . By (3.1), {i : ξi ∈ H}c = {i : ξi ∈ Hc} 6∈ WHc , hence by definition,
y 6∈ fW(ξ).

Proof of Proposition 3.1 Since families of winning coalitions are by definition closed
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under taking supersets, voting by issues is monotone in properties by (3.4). Further-
more, voting by issues is clearly onto since it satisfies unanimity.

Conversely, let f : Xn → X be onto and monotone in properties. For all H ∈ H,
define

WH := {W ⊆ N : ∃ξ such that {i : ξi ∈ H} = W and f(ξ) ∈ H}.

Note that by monotonicity of f , the definition ofWH does not depend on the choice of ξ.
Since f is onto, WH is non-empty. We verify that WH is closed under taking supersets.
Hence, suppose that W ∈ WH and W ′ ⊇ W . Choose ξ such that W = {i : ξi ∈ H}
and f(ξ) ∈ H. Define ξ′ as follows: ξi = ξi whenever i ∈ W or i ∈ N \W ′, and ξ′j ∈ H
if j ∈ W ′ \W . Then, W ′ = {i : ξ′i ∈ H} and, by monotonicity in properties, f(ξ′) ∈ H.
Hence, by definition, W ′ ∈ WH .

Next, we verify (3.1). It is easily seen that W c 6∈ WHc implies W ∈ WH . To verify
the converse implication, assume by way of contradiction that W ∈ WH and W c ∈
WHc . Choose ξ with {i : ξi ∈ H} = W and f(ξ) ∈ H, and ξ′ with {i : ξ′i ∈ Hc} = W c

and f(ξ′) ∈ Hc. Consider ξ′′ defined by ξ′′i = ξi for i ∈ W and ξ′′i = ξ′i for i ∈ W c. By
monotonicity in properties, f(ξ′′) ∈ H and f(ξ′′) ∈ Hc, a contradiction.

The proof is completed by noting that f = fW . Indeed, by definition of W, one
clearly has f(ξ) ∈ fW(ξ), but fW is single-valued by Fact 3.1.

Proof of Fact 3.2 in text.

Proof of Fact 3.3 Let FW : Sn → X be neutral, and consider H,H ′ ∈ H. We
show that WH ⊆ WH′ . Take any W ∈ WH and choose x ∈ H and y ∈ Hc such
that the segment [x, y] is inclusion minimal. Using T3, it is easily seen that x and
y are neighbours. Similarly, choose neighbours x′ ∈ H ′ and y′ ∈ (H ′)c. By the
richness condition R1, there exist the following four single-peaked preferences: �x

having x as its top element and y as the second best, �y with y as top and x as
second best element, �x′ with x′ as top and y′ as second best element, and �y′ with
y′ as top and x′ as second best element. Let σ : X → X be a permutation such that
w �x z ⇔ σ(w) �x′ σ(z) and w �y z ⇔ σ(w) �y′ σ(z), for all w, z. In particular,
σ(x) = x′ and σ(y) = y′. Denote by (�x;W,�y;W c) the simple profile in which
all voters in W have the preference �x and all others have the preference �y. Since
W ∈ WH , we have FW(�x;W,�y;W c) ∈ H and in fact FW(�x;W,�y;W c) = x, since
clearly FW(�x;W,�y;W c) ∈ [x, y]. By neutrality, FW(�x′ ;W,�y′ ;W c) = σ(x) = x′,
which implies W ∈ WH′ by definition of voting by issues. Thus, neutrality implies that
W is constant.

The converse implication follows immediately from the from the following lemma.

Lemma A.1 Let x 6= y, and suppose that WH = W0 for some W0 and all H ∈ H.
Then FW(�x;W,�y;W c) = x if and only if W ∈ W0.

Proof of Lemma A.1 Clearly, if FW(�x;W,�y;W c) = x, then W must be a winning
coalition; indeed, otherwise W c would be winning and could therefore enforce a basic
property H 3 y with x 6∈ H.

Conversely, suppose that W ∈ W0. Since WH = W0 for all H ∈ H, W is winning
for all basic properties. In particular, W enforces all basic property H that contain x.
But their intersection contains the single point x by H3.

Proof of Proposition 3.2 Suppose f : Xn → X is monotone in properties. Consider
an individual j with true peak ξj who reports ξ̂j . Let H ∈ H be any basic property
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such that ξj ∈ H and f(ξ̂j , ξ−j) ∈ H. Clearly, {i : (ξ̂j , ξ−j)i ∈ H} ⊆ {i : ξi ∈ H},
hence by monotonicity in properties f(ξ) ∈ H. This shows that f(ξ) ∈ [ξj , f(ξ̂j , ξ−j)],
i.e. f(ξ) is between the true peak ξj and the outcome f(ξ̂j , ξ−j). By single-peakedness,
this implies that f(ξ) �j f(ξ̂j , ξ−j) whenever f(ξ) 6= f(ξ̂j , ξ−j).

Conversely, suppose that f is not monotone in properties; then there exist ξ, ξ′ and
H such that W := {i : ξi ∈ H} ⊆ W ′ := {i : ξ′i ∈ H}, f(ξ) ∈ H but f(ξ′) ∈ Hc.
Without loss of generality, we may assume that W ′ = W ∪ {j} for some individual
j 6∈ W . Since f(ξ′) is not between ξ′j and f(ξ), there exists by the richness condition
R2, a preference �j ∈ S with top ξ′j such that f(ξ) �j f(ξ′). Clearly, if �j is the true
preference of j, this voter will benefit from reporting ξj . Hence, F is not strategy-proof.

Proof of Proposition 3.3 The following proof is inspired by the proof of Barberà,
Massó and Neme (1997, Prop. 2) which it augments by two significant intermediate
steps; specifically, these are Facts A.1 and A.2, the latter of which is based on Lemma
3.1.

Let F be strategy-proof and onto. The proof of the “peaks-only” property proceeds
by induction over the number of voters. Thus assume first n = 2. From the strategy-
proofness of F it is immediate that

F (�1,�2) = argmaxo1(�2) �1= argmaxo2(�1) �2, (A.1)

i.e. F (�1,�2) is the best element in the option set oi(�j) with respect to �i.
Denoting by τ(�) ∈ X the peak of �, one has

[τ(�1) = τ(�2) = x] ⇒ F (�1,�2) = x. (A.2)

For verification, suppose that x is the common peak of�1 and�2. Since F is onto, there
exist �′1 and �′2 such that F (�′1,�′2) = x, i.e. x ∈ o1(�′2). By (A.1), F (�1,�′2) = x,
i.e. x ∈ o2(�1), hence again by (A.1), F (�1,�2) = x.

The following fact plays a key role in the proof of Lemma A.2 below.

Fact A.1 Suppose that y ∈ o2(�1) and y′ ∈ [y, τ(�1)], then y′ ∈ o2(�1).

To verify this, we can assume that y′ is a neighbour of y; from this the general claim
then follows by induction using the transitivity condition T3. Thus, assume by way of
contradiction that y′ ∈ [y, τ(�1)] is a neighbour of y with y′ 6∈ o2(�1). By the richness
condition R1, there exists � such that y′ � y � w for all w 6∈ {y, y′}. By (A.1),
F (�1,�) = y, and by (A.2), F (�,�) = y′. By the single-peakedness of �1, voter 1
can therefore manipulate at (�1,�) via �, a contradiction.

For the next step, we need the following notation. For F : Sn → X and every voter
i, denote by

oF
−i(�i) := {x ∈ X : there exists �−i∈ Sn−1 such that F (�i,�−i) = x}.

In contrast to the set oF
i (�−i) defined in the main text, the set oF

−i(�i) describes the
social states that all voters other than i can induce, given a fixed preference for voter
i. Note that for n = 2, one has oF

−i(�j) = oF
j (�i), where i 6= j. When no confusion

can arise, we will suppress the reference to the underlying social choice function and
simply write oi(�−i) and o−i(�i).

Lemma A.2 If τ(�1) = τ(�′1), then o−1(�1) = o−1(�′1).
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Proof of Lemma A.2 We first prove the result for n = 2. Suppose, by way of
contradiction, that x = τ(�1) = τ(�′1) and y ∈ o2(�1) but y 6∈ o2(�′1). By (A.2), one
must have y 6= x. First, we show that y cannot be a neighbour of x. Otherwise, one
could choose, by R1, a preference � with y � x � w for all w 6∈ {y, x}; by (A.1) one
would obtain F (�1,�) = y and F (�′1,�) = x, but then voter 1 could manipulate at
(�1,�) via �′1.

Thus, y is not a neighbour of x. Choose a neighbour y′ ∈ [x, y] of y. By Fact A.1,
y′ ∈ o2(�1). Suppose that also y′ ∈ o2(�′1). By R1, there exists a preference �′ with
y �′ y′ �′ w for all w 6∈ {y, y′}. By (A.1), F (�1,�′) = y and F (�′1,�′) = y′. But by
the single-peakedness of �1, we have x �1 y′ �1 y; therefore, voter 1 can manipulate
at (�1,�′) via �′1. Thus, we must have y′ ∈ o2(�1) and y′ 6∈ o2(�′1). Now replace y by
y′ and repeat the argument until a neighbour of x is reached to derive a contradiction.

To prove the assertion for general n, define a social choice function E : S2 → X
by E(�1,�2) := F (�1,�2, ...,�2). It is easily verified that E inherits the strategy-
proofness and voter sovereignty from F . Hence, by the above arguments,

[τ(�1) = τ(�′1)] ⇒ oE
2 (�1) = oE

2 (�′1).

The proof is thus completed by showing that, for all �1, oE
2 (�1) = oF

−1(�1). Clearly,
one has oE

2 (�1) ⊆ oF
−1(�1). To show the converse inclusion, take any x ∈ oF

−1(�1) and
choose �2, ...,�n such that x = F (�1,�2, ...,�n). Consider any preference � with
τ(�) = x. By the strategy-proofness of F ,

x = F (�1, ...,�n) = F (�1, ...,�n−1,�) = ... = F (�1,�, ...,�) = E(�1,�),

hence x ∈ oE
2 (�1). This concludes the proof of Lemma A.2.

For the case n = 2, we can now complete the proof of the “peaks-only” property.
Indeed, that property follows at once from the fact that

[o2(�1) = o2(�′1)] ⇒ F (�1,�2) = F (�′1,�2). (A.3)

To verify (A.3), assume by way of contradiction, that x = F (�1,�2) 6= F (�′1,�2) = x′.
By assumption there exist � and �′ such that F (�1,�′) = x′ and F (�′1,�) = x. But
then voter 2 can either manipulate at (�1,�2) via �′ (if x′ �2 x), or manipulate at
(�′1,�2) via � (if x �2 x′).

The proof for n = 2 is thus complete. For the induction argument, we need to first
prove Lemma 3.1.

Proof of Lemma 3.1 Given any element x ∈ X choose �i with τ(�i) = x, and set
γ(x) := F (�1,�2, ...,�n). We claim that γ(x) is the gate of oi(�−i). Assume, by way
of contradiction, that z ∈ oi(�−i) is such that γ(x) 6∈ [x, z]. By the richness condition
R2, there exists �′i with τ(�′i) = x and z �′i γ(x). By the strategy-proofness of F ,
γ(x) 6= F (�′i,�−i); but this contradicts the “peaks-only” property of F .

Proof of Prop. 3.3 (cont.) For given �1 define

G(�2, ...,�n) := F (�1, ...,�n),

and denote Y := o−1(�1). Clearly, G is strategy-proof with range Y . Furthermore, Y
is gated; indeed, as shown in the proof of Lemma A.2, we have Y = oF

−1(�1) = oE
2 (�1),

and oE
2 (�1) is gated by Lemma 3.1. Let GY denote the restriction of G to the profiles
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of preference orderings in S that have their peak in Y . Now observe that for every
� ∈ S with peak x, the restriction � |Y is single-peaked (with respect to the induced
betweenness on Y ) with peak γ(x), where γ(x) is the gate of Y to x. Moreover, the
set of all restrictions is a rich domain on Y . Hence, by the induction hypothesis GY

satisfies “peaks-only” and can therefore represented by a voting scheme g : Y n−1 → Y .

Fact A.2 G(�2, ...,�n) = g(γ(ξ2), ..., γ(ξn)), where ξi = τ(�i).

This follows from γ(ξi) = argmaxY �i, using Lemma 3.1, and the observation that, by
strategy-proofness, G(�2, ...,�n) = GY (�2 |Y , ...,�n |Y ).

We now complete the proof by deriving a contradiction from the assumption that
there exist �1 and �′1 with τ(�1) = τ(�′1) =: x such that

y = F (�1,�2, ...,�n) 6= F (�′1,�2, ...,�n) = y′.

By Lemma A.2, o−1(�1) = o−1(�′1) =: Y . Define G, GY and g as above, and analo-
gously, G′, G′

Y and g′. By Fact A.2,

y = g(γ(ξ2), ..., γ(ξn)) 6= g′(γ(ξ2), ..., γ(ξn)) = y′,

and by Propositions 3.1 and 3.2, g and g′ are voting by issues on Y . Choose H ∈ H|Y
with y ∈ H, y′ ∈ Hc and, without loss of generality, γ(x) ∈ H. Let W := {i : γ(ξi) ∈
H}, W ′ = {i : γ(ξi) ∈ Hc}, and consider η = (η2, ..., ηn) where

ηi =
{

y′ if i ∈ W ′

γ(x) if i 6∈ W ′ .

Since g and g′ are voting by issues, and since every basic property jointly possessed
by y′ and γ(x) gets unanimous support, we have {g(η), g′(η)} ⊆ [y′, γ(x)]. Moreover,
W = {2, ..., n} \ W ′ is winning for H in g, and W ′ is winning for Hc in g′, hence
g(η) ∈ H and g′(η) ∈ Hc.

We show that g′(η) 6= y′. Otherwise, choose �̂i with τ(�̂i) = ηi to obtain from
g(η) ∈ [y′, γ(x)] and g(η) 6= y′,

g(η) = F (�1, �̂2, ..., �̂n) �′1 F (�′1, �̂2, ..., �̂n) = y′,

in contradiction to the strategy-proofness of F . Now repeat the argument replacing y′

by z′ := g′(η) ∈ Hc. The desired contradiction is then obtained by induction since the
segment [z′, γ(x)] is strictly contained in [y′, γ(x)].

Proof of Corollary 1 We show, by contraposition, that if F is non-dictatorial, then
under the stated assumptions there exist non-trivial gated sets. By Propositions 3.1
and 3.2, F is voting by issues. First, assume that all minimal elements of all WH

are singletons. Since F is non-dictatorial, there must exist two distinct voters i and
j such that {i} ∈ WH and {j} ∈ WH′ . Since also the minimal elements of WHc and
W(H′)c are singletons by assumption, one must have {i} ∈ WHc and {j} ∈ W(H′)c by
(3.2); moreover, by the Intersection Property, all four intersections H ∩H ′, Hc ∩H ′,
H ∩ (H ′)c and Hc ∩ (H ′)c are non-empty. In this case, oi(�−i) is clearly non-trivial,
since if j’s peak is in H ′, oi(�−i) is contained in H ′ and intersects both H and Hc.
Hence by Lemma 3.1, there exist non-trivial gated sets.
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Thus, suppose that W ∈ WH is minimal winning and contains at least two different
voters, say j and k. Since #X ≥ 3, we can choose G 6∈ {H,Hc}. Without loss of
generality, we may assume that both Gc ∩ H and Gc ∩ Hc are non-empty; indeed, if
one of these sets were empty, replace G by Gc. We distinguish two cases.
Case 1. Suppose that {j} ∈ WG. Then consider a profile �−j in which all voters other
than j have their peak in Gc ∩ Hc. By construction, oj(�−j) intersects both G and
Gc; but since {j} is not winning for H, we also have oj(�−j) ⊆ Hc. Thus, oj(�−j) is
non-trivial, and by Lemma 3.1 it is gated.
Case 2. Now let {j} 6∈ WG. Consider a profile �−j in which all voters in W \ {j}
have their peak in Gc ∩H and all voters outside W have their peak in Gc ∩Hc. By
construction, oj(�−j) intersects both H and Hc; moreover, since {j} is not winning
for G, we also have oj(�−j) ⊆ Gc. Thus, the gated set oj(�−j) is again non-trivial.

Proof of Corollary 2 By Propositions 3.1 and 3.2, F is voting by issues, and by Fact
3.3 the corresponding structure of winning coalitions is constant, i.e. WH = W0. Let
W ∈ W0 be minimal, and let i ∈ W . Consider any segment [x, z] and a profile �−i

in which all voters in W \ {i} 6= ∅ have their peak at x and all voters outside W have
their peak at z. By construction, [x, z] ⊆ oi(�−i); indeed, by reporting y ∈ [x, z] voter
i enforces all basic properties possessed by y since all these are shared with x or with
z. On the other hand, since F is non-dictatorial one also has oi(�−i) ⊆ [x, z]. Hence,
[x, z] coincides with oi(�−i), and is thus gated by Lemma 3.1.

Proof of Proposition 3.4 Suppose fW is consistent, and let G = {G1, ..., Gl} be
a critical family. For j = 1, ..., l, consider any selection Wj ∈ WGj . We will show
∩l

j=1Wj 6= ∅ by a contradiction argument. Thus, assume that ∩l
j=1Wj = ∅. Then,

for all i ∈ N , there exists ji such that i 6∈ Wji
. For each i, pick an element ξi ∈

Gc
ji
∩ (∩j 6=ji

Gj) = ∩j 6=ji
Gj (observe that the latter set is non-empty by definition of

a critical family). By construction, if i ∈ Wj , then j 6= ji, hence ξi ∈ Gj . This
shows that, for all j, Wj ⊆ {i : ξi ∈ Gj}. Therefore, {i : ξi ∈ Gj} ∈ WGj , hence by
(3.4), fW(ξ1, ..., ξn) ∈ Gj for all j = 1, ..., l. However, this contradicts the fact that
{G1, ..., Gl} is a critical family.

Conversely, suppose fW is not consistent, i.e. for some ξ, fW(ξ) = ∅. By (3.1) and
(3.3), this implies that ∩{H ∈ H : {i : ξi ∈ H} ∈ WH} = ∅. We show that fW cannot
satisfy the Intersection Property by contradiction. Thus assume fW does satisfy the
Intersection Property. Pick a critical family {G1, ..., Gl} ⊆ {H ∈ H : {i : ξi ∈ H} ∈
WH}. By the Intersection Property, ∩l

j=1{i : ξi ∈ Gj} 6= ∅. Let i0 ∈ {i : ξi ∈ Gj} for
all j = 1, ..., l. But then ξi0 ∈ Gj for all j, contradicting the fact that {G1, ..., Gl} is a
critical family.

Proof of Fact 3.4 To show the first statement, note that the structure of winning
coalitions corresponding to the given set of quotas is well-defined due to the integer
clause. It is then straightforward to derive the Intersection Property from (3.7) and
the assumption that qH + qHc = 1.

Conversely, suppose that voting by issues is anonymous and consistent. For each
H ∈ H, set qH := mH−1

n−1 where mH are the absolute quotas defined in the main text.
If mH 6= n, mH is easily seen to be the smallest integer greater than qH · n. Thus,
WH = WqH

:= {W ⊆ N : #W > qH · n} if mH < n. If, on the other hand, mH = n,
we clearly have WH = W1 = {N}. Thus, the given structure of winning coalitions
can be described as a quota rule with the quotas qH as specified. By (3.5), we have
mH + mHc = n + 1, hence qH + qHc = 1. Finally, the Intersection Property implies
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(3.6), and hence
∑

H∈G(1− qH) ≤ 1 as desired.

Proof of Proposition 4.1 We first show “(i) → (iii).” Thus, let (X,H) be simple.
For every pair v, w, denote by H{v,w} := {H ∈ H : {v, w} ⊆ H}, and observe that
∩H{v,w} = [v, w]. Consider any segment [x, y]. We have to show that [x, y] is gated.
Clearly, γ(z) = z if z ∈ [x, y]; thus, suppose z 6∈ [x, y]. We claim that the set A :=
(∩H{x,y})∩(∩H{x,z})∩(∩H{y,z}) is non-empty. Indeed, if A were empty, the collection
H{x,y} ∪H{x,z} ∪H{y,z} would contain a critical family. But evidently, all pairs of this
collection have a non-empty intersection; hence, since by assumption all critical families
have cardinality two, A must be non-empty. Now let γ(z) ∈ A, then γ(z) is the gate
of [x, y] to z. Indeed, pick an arbitrary w ∈ [x, y], and consider any basic property
H ⊇ {w, z}. Since w is between x and y, H must contain x or y, thus H ∈ H{x,z} or
H ∈ H{y,z}. In either case, A ⊆ H, hence γ(z) ∈ H, i.e. γ(z) is between z and w.

The implication “(iii) → (ii)” is straightforward. Indeed, it is easily seen that the
gate γ(z) of the segment [x, y] to z is the median of the triple x, y, z.

Thus, it remains to prove the implication “(ii) ⇒ (i).” By contraposition, suppose
there exists a critical family with at least three elements, say G = {H1,H2,H3, ...,Hl},
and let A := H3 ∩ ... ∩ Hl. By the criticality of G, we can choose x ∈ H1 ∩ H2,
y ∈ H2 ∩ A, and z ∈ H1 ∩ A. By construction, the triple x, y, z cannot have a median
m, since m ∈ [x, z] ⇒ m ∈ H1, m ∈ [x, y] ⇒ m ∈ H2, and m ∈ [y, z] ⇒ m ∈ A, but by
assumption H1 ∩H2 ∩A = ∅.
Proof of Corollary 3 From Fact 2.1, we know that a preference ordering is separable
on the hypercube if and only if it is single-peaked with respect to the corresponding
betweenness. The result thus follows from the observation that, since all critical families
on the (full) hypercube have the form {H,Hc}, every structure of winning coalitions
satisfies the Intersection Property due to (3.1) or (3.2).

Proof of Corollary 4 The result follows at once from the observation that on a
product of lines all critical families have the form {G, Hc} with G ⊆ H. Note also
that the “multi-dimensionally” single-peaked preference orderings on a product of lines
defined in Barberà, Gul and Stacchetti (1993) are exactly the single-peaked ones as
defined here, and that the conditions defining a “generalized median voter scheme” are
exactly the restrictions imposed on a structure of winning coalitions by the Intersection
Property. The result of Moulin (1980) corresponds to the one-dimensional case.

Proof of Theorem 4 By the Intersection Property, issue-by-issue majority voting
with an odd number of voters is consistent on a median space. Conversely, suppose
that F is strategy-proof, onto, neutral and non-dictatorial. By Theorem 2, F must be
voting by issues; by Corollary 2, all segments must be gated, hence by Proposition 4.1,
the underlying space must be a median space.

The second part follows from Fact 3.3 and the observation that, if W ∈ W0 ⇔
W c 6∈ W0, the constant structure of winning coalitions WH = W0 for all H always
satisfies the Intersection Property on a median space by Proposition 4.1.

Proof of Corollary 5 The proof is immediate from Theorem 4 and the observation
that voting by issues is anonymous and neutral if and only if it is issue-by-issue majority
voting with an odd number of voters.

Proof of Theorem 5 First, suppose that (X,H) is a median space. For all x ∈ X,
denote by H{x} := {H ∈ H : H 3 x}. Take any minority family W0, and define a
structure of winning coalitions by WH = W0 for all H ∈ H{x}, and by WH = (W0)a
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for H 6∈ H{x}. Note that (3.2) is thus satisfied by construction. Since (X,H) is a
median space, any critical family G has two members. If G contains an element of
H{x} (necessarily, at most one), the Intersection Property is satisfied by (3.2). On
the other hand, if G does not intersect H{x}, the Intersection Property follows from
(W0)a ⊂ W0, i.e. the assumption that W0 is a minority family, and (3.2). Thus, in any
case the corresponding minority veto rule is consistent. Note also that every minority
veto rule is onto and strategy-proof.

We now show, by contraposition, that consistency of a minority veto rule for all
x ∈ X requires a median space. Thus, let F be a minority veto rule with status
quo x and minority family W0. By definition of F and (3.4), we have W0 ⊆ WH

for all H ∈ H{x}. Suppose that the triple x, y, z has no median, i.e. suppose that
[x, y] ∩ [y, z] ∩ [x, z] = ∅. This implies, in the notation of Proposition 4.1 above, that
the family H{x,y} ∪ H{x,z} ∪ H{y,z} contains a critical family G. Clearly, at least two
basic properties in G must contain x. SinceW0 contains two disjoint winning coalitions,
the Intersection Property applied to the critical family G is violated, hence F is not
consistent.

For the results of Section 4.3, the following lemma will be useful. For all x, y, denote
by Hx¬y := {H ∈ H : x ∈ H and y 6∈ H}.

Lemma A.3 Let (X,H) be a median space. Then, any two neighbours are separated
by exactly one basic property. Moreover, x and z are connected by a unique shortest
path if and only if Hx¬z is linearly ordered by set inclusion.

Proof of Lemma A.3 Let x, z be two neighbours. By contradiction, suppose that
Hx¬z contains two distinct elements H and H ′. Without loss of generality, there exists
y ∈ H such that y 6∈ H ′. By construction, the median of the triple x, y, z is different
from x and z, but between these two elements, which is obviously not possible.

Let now x0, x1, ..., xl, xl+1 be a unique shortest path with x0 = x and xl+1 = z, and
denote by Hj the unique property with xj ∈ Hj and xj+1 6∈ Hj . We show that, for all j,
Hj−1 ⊆ Hj . By contradiction, suppose that there exists y ∈ Hj−1 with y ∈ Hc

j . Then,
the median of the triple xj−1, xj+1, y is different from xj but nevertheless between
xj−1 and xj+1, i.e. on a shortest path connecting these two elements. Obviously, this
contradicts the assumption that the original shortest path is unique.

Conversely, suppose that Hx¬z is linearly ordered by set inclusion, say Hx¬z =
{H0,H1, ...,Hl} with H0 ⊆ H1 ⊆ ... ⊆ Hl. For every j, consider the set Aj :=
(Hj \Hj−1)∩ [x, z]. Since Hj \Hj−1 is non-empty, and since (X,H) is a median space,
Aj is non-empty. Moreover, we will show that, for all j, Aj contains a unique element
xj . This immediately implies that x, x1, ..., xl, z is a unique shortest path connecting
x and z. Thus, assume by way of contradiction that y and y′ are two distinct elements
of Aj . By H3, let H be a basic property with y ∈ H and y′ ∈ Hc. Since both y and
y′ are between x and z, H must contain either x or z, but not both. Without loss of
generality, assume that x ∈ H and z 6∈ H. Then H ∈ Hx¬z, in contradiction to the
fact that, obviously, H 6= Hj for all j = 0, ..., l.

Proof of Proposition 4.2 First, let � be single-peaked. By Fact 2.1, � is separable.
To show that � is convex, suppose that y is linearly between x and z, and that x � y.
Using Lemma A.3, let G be the maximal basic property in Hx¬z with y ∈ Gc. By the
single-peakedness of � and Fact 2.1, we have G ∈ Hg since it must contain the peak
of �. Indeed, if Gc contained the peak of �, y would be preferred to its neighbour in
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[x, y], contradicting the single-peakedness. By Lemma A.3, this implies that y ∈ H for
all H ∈ Hg such that z ∈ H. Hence, again by Fact 2.1, y � z.

To prove that, conversely, every convex and separable preference ordering is single-
peaked, we use the following fact (cf. van de Vel (1993, ch. I.6)). Let x, y, z be a
triple of distinct elements in a median space such that y ∈ [x, z]. Then, there exists
a “direct path” through y that connects x and z. Formally, there exists a sequence
y0, y1, ..., yl, yl+1 with the following properties: y0 = x, yl+1 = z, y ∈ {y1, ..., yl}, and
for all j = 0, ..., l, yj and yj+1 are neighbours such that yj+1 ∈ [yj , z].

Now consider any convex and separable preference ordering � with peak x. We will
show that y � z for all y 6= z with y ∈ [x, z]. As above, let y0, ..., yl+1 be a direct path
through y connecting x and z. For all j, denote by Θj the set of neighbours of yj in
[yj , z]. We show by induction that, for all j,

yj � w for all w ∈ Θj . (A.4)

By transitivity of �, (A.4) implies yj � z for all j, since z = yl+1 ∈ Θl. For j = 0, (A.4)
holds trivially since y0 = x is the peak of �. Thus, assume that (A.4) holds for j−1, and
consider yj along with a neighbour w ∈ Θj . Let Hyj−1¬yj

= {H} and Hyj¬w = {G}.
There are two possible cases. First, if H ⊆ G then yj is linearly between yj−1 and
w. By the induction hypothesis, yj−1 � yj , hence yj � w by convexity. Otherwise,
if H 6⊆ G, there exists, using the median property, a neighbour v of yj−1 in H ∩ Gc.
Since v ∈ Θj−1, we have yj−1 � v by the induction hypothesis. This implies yj � w
by separability, since the two pairs of neighbours (yj−1, v) and (yj , w) are separated by
the same basic property G.

Proof of Fact 4.1 Suppose that � has a utility representation u as required by
cardinal convexity and separability. Clearly, if x and y are neighbours with x � y, we
have u(x) − u(y) = λH where H ∈ Hg is the unique basic property in Hx¬y. This
directly implies the stated separability condition, and using Lemma A.3 the concavity
on linear paths.

Conversely, let u be a utility representation such that u(x) − u(y) = u(z) − u(w)
for every two pairs of neighbours separated by the same basic property, and such that
u is concave on every linear path. Define λ : H → R by λH := max{u(x)−u(y), 0} for
every two neighbours x, y that are separated by H. By assumption, λ is well-defined.
Clearly, the function ũ defined by ũ(x) :=

∑
H3x λH equals u up to an additive con-

stant. Concavity along linear paths implies λG ≥ λH if G ⊇ H by Lemma A.3, since
λH is the utility increment of moving one step in direction of the preference peak if the
peak is contained in H.

Proof of Proposition 4.3 Evidently, every cardinally convex and separable prefer-
ence ordering is single-peaked. To verify the richness condition R1, let the neighbours
x and y be separated by G ∈ H{x}. Set λH = 0 for all H 6∈ H{x}, and choose generic, in
particular pairwise distinct, numbers λH > 0 for all H ∈ H{x}, while respecting inclu-
sion monotonicity. If λG = min{λH : H ∈ H{x}}, the preference ordering represented
by u(x) =

∑
H3x λH has x as peak and y as second best element; the genericity of the

λH for H ∈ H{x} guarantees that the preference ordering displays no indifferences.
To verify R2, let y 6∈ [x, z]. Choose a cardinally convex and separable preference

ordering � with peak x, and a basic property G ∈ H{x,z} such that y 6∈ G. If λG is
larger than

∑
H∈H{x,y}

λH , one obtains z � y. Since such a preference ordering clearly
exists, R2 is satisfied.
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