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ABSTRACT

When are a decision maker's preferences compatible with speci¯ed probabilistic beliefs? We

propose two de¯nitions of \compatibility" as possible answers to this question. The weaker one

requires simply that the decision maker prefer to bet on an event whenever it is more likely. It

is shown that under regularity conditions there exists a unique (incomplete) maximal comparative

likelihood relation such that a given preference ordering is compatible with it. This relation yields a

model-free notion of \revealed unambiguous beliefs"; it implies a de¯nition of \revealed unambiguous

events" that is strictly more demanding than Epstein-Zhang (2001)'s.

A stronger notion of compatibility called Tradeo® Consistency requires that the decision maker

rank acts according to their expected utility whenever possible. Given \minimally complete" prob-

abilistic beliefs, Tradeo® Consistency entails a complete determination of preferences over multi-

valued acts by betting preferences and consequence utilities. Exluding all departures from expected

utility maximization due to Allais-type probabilistic risk-aversion, it leads to a concept of \utility

sophistication" dual to Machina-Schmeidler's \probabilistic sophistication". We also propose two

\Ellsbergian" de¯nitions of ambiguity aversion in terms of betting preferences and characterize their

close link to the major notions of ambiguity aversion proposed in the literature.

¤This version is still quite rough and incomplete; it is also clearly too long, and will most likely be split in future

versions. Nonetheless, I would greatly appreciate any comments and suggestions.
ye-mail: kdnehring@ucdavis.edu
zSome of the main ideas of this paper were presented in December 1996 at LOFT2 in Torino, Italy, and in July

2001 at RUD in Venice, Italy. I am grateful to Juergen Eichberger, Paolo Ghirardato and Clemens Puppe for helpful

comments.
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1. INTRODUCTION

In this paper, we shall study decision makers who have precise probabilistic beliefs about some

events, while their beliefs about others may be imprecise or \ambiguous". Behaviorally, this ambi-

guity is characterized by violations of the sure-thing principle exempli¯ed by the Ellsberg's (1961)

celebrated (thought) experiments. While this and much other evidence provide compelling reasons

to abandon the assumption that behavior can be globally explained in terms of precise probabilistic

beliefs, they do not render the notion of probabilistic belief useless if it is applied \locally", that

is: if applied to some events or event comparisons. Indeed, the very formulation of Ellsberg's origi-

nal experiment suggests a comparison of events with probabilistic beliefs to those where beliefs are

presumed to be ambiguous. In many situations in which ambiguity is plausible and interesting, the

existence of local probabilistic beliefs is plausible as well. For example, while the expected return on

equity (as a whole) is notoriously hard to pin down through statistical information, this is much less

true for the volatility of the return. Thus, it seems much more plausible to assume precise proba-

bilistic beliefs on the latter than on the former. Likewise, in the context of games under incomplete

information, it may well make sense to ascribe to players precise beliefs about others' types along

with ambiguity about their strategy choices.

To explore how precise and imprecise probabilistic beliefs are intertwined, and how they together

determine an agent's preferences, our inquiry will take two directions that mirror each other. First,

we shall ask when an agent's preferences are \compatible" with a speci¯ed set of probabilistic beliefs.

We shall then ask, conversely, what probabilistic beliefs can meaningfully attributed to that agent

on the basis of an observation of his preference ordering.

Two notions of compatibility of preferences with probabilistic beliefs will be proposed, a \mini-

malist" one and a \maximalist" one. Pertaining to preferences over bets only, the minimalist notion

leaves maximal room for phenomena of \probabilistic risk-aversion"1 as displayed in the famous

Allais \paradox". By contrast, the maximalist notion excludes such phenomena systematically;

it requires that preferences over multi-valued acts are based on comparisons of expected utility,

whenever the agent's beliefs are su±ciently precise to allow this. If the DM has a su±ciently rich

set of probabilistic beliefs, the stronger notion implies that the entire preference ordering is deter-

mined by preferences over bets and consequence utilities. Such preferences will be called \utility
1In the following, we shall use the name \probabilistic risk-averison" as a catch-all phrase for departures from

expected utlity maximization with known probabilities.
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sophisticated", in analogy to Machina-Schmeidler's (1992) notion of \probabilistic sophistication".

Imprecise Qualitative Probability

To lay the groundwork for the analysis, we shall describe a decision maker's (DM's) probabilistic

beliefs as an incomplete \more-likely-than relation" over events D that can be represented in terms

of a set of priors ¦ as follows:

A D B if and only if ¼ (A) ¸ ¼ (B) for all ¼ 2 ¦: (1)

The existence of this multi-prior representation ensures that the relation D fully incorporates the

\logical syntax of probability", exempli¯ed by entailments such as \if A is more likely than B; then

not-B must be more likely than not-A". To obtain existence and in particular uniqueness of the

representation, it is assumed that D is \minimally complete" in an appropriate sense. Minimally

complete belief relations D with the multi-prior representation (1) will be referred to as \imprecise

qualitative probabilities"; their characterization is proved and further developed in Nehring (2001).

Compatibility of Betting Preferences with Probabilistic Beliefs

A bet on event A is the act that engenders the better of the two consequences in the event

A; and the worse consequence otherwise. A DM's \preferences over bets" consists of all preference

comparisons of bets involving the same two consequences. A DM's betting preferences are compatible

with his probabilistic information D if he prefers to bet on A to betting on B whenever A is more

likely than B in terms of D : Compatibility has bite through the consistency conditions de¯ning an

imprecise qualitative probability.

Throughout most of the paper, it will be assumed that the DM's preferences are compatible with

a \minimally complete" belief relation D imprecise qualitative probability relation.2 This struc-

tural assumption proves to be of great analytical and unifying power.3 It is satis¯ed, for example,

if preferences are compatible with probabilistic beliefs re°ecting the existence of an independent,

continuous random device as assumed in the Anscombe-Aumann approach.
2This relation is to be understood non-exhaustively, i.e. as capturing some of the probabilisitc beliefs that can be

attributed to the decision maker but not necessarily all of them.
3It is discussed in section 5 and relinquished in section 7.
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A Model-Free De¯nition of Revealed Unambiguous Beliefs

From a descriptive, third-person point of view it is of interest to reverse this question and ask

what probabilistic beliefs can be meaningfully attributed to a DM's on the basis of observations

of his preferences. To obtain a well-de¯ned answer, one would like to be able to come up with a

unique maximal imprecise qualitative probability such that the DM's preferences are compatible

with it. This would allow a clear-cut answer to any question of the form: does the DM believe that

A is more likely than B: It would then be meaningful to identify this maximal imprecise qualitative

probability with the DM's \revealed unambiguous (probabilistic) beliefs". The ¯rst main result of

the paper, Theorem 3, shows that a unique maximal imprecise qualitative probability exists under

regularity conditions. The resulting notion of \revealed unambiguous beliefs" is model-free in that

it makes no assumptions on probabilistic risk-attitudes, and only weak regularity assumptions on

ambiguity attitudes. It gives rise to a de¯nition of \revealed unambiguous events" as those for which

the DM has a precise unambiguous belief; the de¯nition turns out to be strictly more demanding

than Epstein-Zhang's (2001) as it applies to betting preferences (cf. Proposition 1).4

The published literature has not addressed the issue of compatibility explicitly, as far as we

know. Implicitly, however, it o®ers proposals for the special case of unconditional probabilistic

beliefs through primitive5 de¯nitions of \unambiguous events" revealed by the preference relation.

As explained in more detail at the end of the introduction, the compatibility requirements derived

from the extant de¯nitions fail to adequately capture the \syntax of probability", as in the case of

Epstein-Zhang (2001) and Ghirardato-Marinacci (2001a)6, or are of restricted applicability.

Utility Sophistication based on Tradeo® Consistency

While descriptively the case for phenomena of probabilistic risk-aversion is strong, it is much

weaker normatively, even if violations of the sure-thing principle due to ambiguity are deemed nor-

matively permissible. Moreover, for purposes of economic modelling, there is a clear interest in
4Epstein-Zhang (2001) build probabilistic sophistication over unambiguous acts into their de¯nition of a \revealed

unambiguous event"; we obtain this as an implication of a separate rationality axiom on preferences over multi-valued

acts called \Revealed Stochastic Dominance"; see section 4.1.
5That is: de¯nitions that are not based on a prior notion of compatibility.
6By contrast, the more recent work in progress Ghirardato-Maccheroni-Marinacci (2001c) proposes a de¯nition

of revealed unambiguous events that is e®ectively equivalent to that of Nehring (1999), and coincides with the one

proposed here if preferences are \utility sophisticated". See section 7 for further discussion.
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\zooming in" on ambiguity-based departures from SEU by excluding all others. Hence a stronger

notion of compatibility with given probabilistic beliefs requires, intuitively speaking, that acts are

compared in terms of expected utility \whenever possible". The stronger notion entails EU max-

imization over unambiguous acts, but goes substantially further. To °esh it out, assume that the

DM's preferences over unambiguous acts have an EU representation with von Neumann-Morgenstern

utility function u. Then the stronger requirement can be formulated as the condition that an act f

be preferred to an act g whenever, given any \revealed admissible" prior ¼ 2 ¦; the expected utility

of f (with respect to ¼) exceeds that g: In section 4, this requirement is captured by an axiom of

Tradeo® Consistency7.

Under the maintained assumption that preferences are compatible with a minimally complete

probabilistic belief relation D , Tradeo® Consistency implies that the agent's preference relation

over multi-valued acts is completely determined by preferences over bets and unambiguous acts.

This is shown by the second main result of the paper, Theorem 4. In view of this determination, we

shall call such preferences \utility sophisticated", intending this term to be dual to \probabilistically

sophistication" in the sense of Machina-Schmeidler (1992): while the latter excludes ambiguity, but

is largely unconstrained towards phenomena of probabilistic risk-aversion, the former excludes those

systematically, but imposes only minimal constraints on the structure of ambiguity.

The best-known example of utility sophisticated preferences is the \minimum expected utility"

(MEU) model due to Gilboa-Schmeidler (1989); in the MEU model, acts are evaluated according

to min¼2¦0 E¼ u ± f; for an appropriate convex set of priors ¦0: Let ½ denote a representation of

the agent's betting preferences that is normalized to be additive on unambiguous events. Then

a utility sophisticated preference relation is MEU if and only if ½ is a lower probability, that is:

if ½(A) = min¼2¦0 ¼ (A) for all events A: In section 6, we characterize betting preferences based

on lower probabilities (and therefore of the MEU model under utility sophistication) using a novel

notion of ambiguity aversion that is de¯ned in terms of generalized Ellsberg-style experiments.

Being a property of betting preferences, ambiguity aversion in our sense is clearly distinguished

from phenomena of probabilistic risk-aversion. By contrast, as pointed out by Epstein (1999), the

existing de¯nitions of ambiguity aversion that give rise to the MEU model (essentially Schmeidler's

(1989) original de¯nition and versions thereof) fail to accommodate this distinction.

Adapting recent work by Ghirardato-Maccheroni-Marinacci (2001c), we also characterize the more
7Tradeo® Consistency is related to Wakker's (1989) axiom of \Noncontradictory Revealed Tradeo®s"; it is strong

enough to entail EU maximization over unambiguous acts in the ¯rst place.
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general class of preferences with a constant \degree of caution" ° (the \®-MEU model" in their

terminology); this model is given by a representation of the form ½(A) = ° min¼2¦¤ ¼ (A) + (1 ¡
°)max¼2¦¤ ¼ (A). Here, utility sophistication entails an evaluation of acts according to ° min¼2¦¤ E¼ u±
f + (1 ¡ °)max¼2¦¤ E¼u ± f:

By contrast, utility sophistication is incompatible with the widely used Choquet Expected Utility

(CEU) model: CEU preferences are utility sophisticated only if the DM maximizes subjective ex-

pected utility. We interpret this initially perhaps somewhat disturbing state of a®airs as saying that

while the CEU model may be appropriate for subspaces on which the DM's beliefs have a rather

specī c structure, they are inappropriate if applied globally to preferences that are compatible with

minimally complete probabilistic information; similar arguments suggesting limitations of the CEU

model have in fact been made before in Klibano® (2001a,b) and Nehring (1999).

Compatibility of Betting Preferences with Probabilistic Beliefs: An Example

The notion of compatibility of betting preferences with beliefs is non-trivial mainly due to the

fact that precise beliefs over some events may entail imprecise restrictions on others, as illustrated

by the following example.

Suppose that the decision maker knows the marginal distribution of each of two random variables

to be uniform on the unit interval, but that she has little idea about their joint distribution. Consider

her preferences over bets on events in the state space £ = [0;1]£[0; 1]; in the \bet on A" she receives 1

dollar if the event A occurs, and 0 otherwise. Her betting preferences are described by a set function

½ : 2£ ! [0; 1] with the property that ½([a; b] £ [0; 1]) = ½([0; 1] £ [a; b]) = b ¡ a; re°ecting her

knowledge of the marginal distributions; here ½(A) can be interpreted as the \probability equivalent

of A", i.e. as the known probability to which the bet on A is equivalent in terms of preference. An

elementary computation shows that, under any joint probability distribution ¼ consistent with the

given marginal distributions, the probability of the event [0; c] £ [0; d] cannot be less than c + d ¡ 1;

and cannot exceed c + d: Our basic rationality postulate \Compatibility" requires that the bet on

[0; c] £ [0; d] is strictly to be preferred to the bet on any event T with known probability less than

c + d ¡ 1; and that it is strictly inferior to the bet on any event T with known probability exceeding

c + d; i.e. that

c + d ¡ 1 · ½([0; c] £ [0; d]) · c + d; (2)
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whatever else she might believe, and whatever her ambiguity attitude is.8

As mentioned above, various de¯nitions of \revealed unambiguous events" in terms of the DM's

preferences can be found in the literature. Given such a de¯nition of \revealed unambiguous events",

one can de¯ne a preference relation to be compatible with a given set of (unconditional) probabilistic

beliefs over events in some speci¯ed set ¤ if the probability equivalents for all events in ¤ are equal

to the given probabilistic beliefs, and if all events in ¤ are revealed unambiguous. In the example,

¤ consists of all \marginal" events, i.e. all events of the form A1 £ [0; 1] and [0; 1] £ A2.

Applying this notion of compatibility to the de¯nitions of \revealed unambiguous events" proposed

by Epstein-Zhang (2001) and Ghirardato-Marinacci (2001a), it is not di±cult to construct betting

preferences that are compatible with the given probabilistic information on marginals in terms of

these proposals but nonetheless con°ict with the compatibility restriction (2). This happens, for

instance, with betting preferences described by the following set function ½¤; with

½¤(A) = supf¸ (B) j B £ [0;1] µ A or [0; 1] £ B µ Ag; for any A µ £;

where ¸ is the Lebesgue-measure on [0; 1].9 It is not di±cult to verify that this preference relation

reveals all marginal events as unambiguous according to the Epstein-Zhang de¯nition.10 Yet ½¤ is

far from satisfying the compatibility requirement (2), since ½¤ ([0; c] £ [0; d]) = 0 whenever c < 1 and

d < 1: Thus, while ½¤ fails to build in the restrictions on ambiguous events entailed by Compatibility,

this de¯ciency is not recognized by the Epstein-Zhang de¯nition. If the example is appropriately

extended to render the alternative de¯nition proposed by Ghirardato-Marinacci (2001a) applicable,

that de¯nition turns out to founder in the same way. The Ghirardato-Marinacci de¯nition has two

further limitations: ¯rst, it applies only to either uniformly ambiguity-averse or uniformly ambiguity-

loving preferences (in a sense speci¯ed by them). Moreover, it assumes that all departures from

SEU maximization are due to ambiguity, and thus does not allow for the type of \probabilistic

risk-aversion" evidenced most famously in the Allais paradox.

A third de¯nition of \revealed unambiguous beliefs" has been proposed in Nehring (1999). It was

designed to induce the right notion of compatibility, and indeed performs without problems in this

example; however, while applicable to arbitrary ambiguity attitudes, it is restrictive just like the
8In other words, even for the most ambiguity averse decision maker, the probability equivalent of an event could

not be less than its lowest possible probability; and even for the most ambiguity loving decision maker, the probability

equivalent of an event could not exceed its highest possible probability.
9½¤ is in fact an \inner measure" of the kind considered in Epstein-Zhang (2001)

10This follows from the fact that, for any T of the form [a; b] £ [0; 1] and any A disjoint from T; ½¤ (A[ T) =

½¤ (A) + ½¤ (T) :
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Ghirardato-Marinacci de¯nition by assuming that all departures from SEU maximization are due

to ambiguity.

Finally, all published contributions are limited to unconditional probabilistic beliefs, but do not

allow to incorporate conditional probabilistic information. Such types of information are funda-

mental, however. For example, standard statistical models typically consist of families of precise

conditional distributions (frequently indexed by appropriate parameters); a natural interpretation

of classical (frequentist) statistics in the tradition of Wald is to assume probabilistic ignorance (or at

least imprecision) about the parameters themselves. Learning under ambiguity will thus frequently

have to incorporate conditional probabilistic information.

A way of overcoming this limitation has ¯rst been proposed in the talk Nehring (1996), from which

the present paper originated. Its fundamental idea of de¯ning a \revealed unambiguous preference"

relation as the maximal independent subrelation has recently been taken up and developed further

by Ghirardato-Maccheroni-Marinacci (2001c). In particular, they use this relation to provide a

characterization of preferences with a constant \degree of caution" mentioned above, and analyze

the relation of preferences and revealed beliefs in a dynamic context.

Overview

Section 2 describes a DM's probabilistic beliefs in terms of a \comparative likelihood relation"

on events, and states a multi-prior characterization result that is proved and further developed in

Nehring (2001). Section 3 focuses on the relation between probabilistic beliefs and betting pref-

erences. We ¯rst de¯ne a notion of compatibility of a DM's betting preferences with a specī ed

comparative likelihood relation, and then specify conditions under which there exists a maximal

such relation so that his preferences are compatible with it (Theorem 3). This relation is interpreted

as representing the DM's \revealed unambiguous beliefs". A de¯nition of \revealed unambiguous

events" is derived from it and compared to that of Epstein-Zhang (2001). Section 4 then considers

preferences over multi-valued acts; we ¯rst propose a \minimal" rationality axiom \Revealed Sto-

chastic Dominance" that entails probabilistic sophistication of preferences over unambiguous acts.

Strengthening Revealed Stochastic Dominance to Tradeo® Consistency, we then characterize the

class of \utility sophisticated" preferences in which all departures from SEU are due to ambiguity

(Theorem 4) . Sections 3 and 4 assume that the DM's preferences are compatible with a given

minimally complete set of probabilistic beliefs. Section 5 asks whether such reference can be elim-
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inated, and a \fully behavioral" account of revealed unambiguous beliefs can be given. We argue

that the answer is positive if preferences are utility sophisticated, but negative otherwise. Section

6 presents two \Ellsbergian" de¯nitions of ambiguity aversion; the weaker corresponds to Epstein's

(1999) de¯nition, while the stronger yields a characterization of the MEU model without confound-

ing ambiguity aversion with probabilistic risk-aversion. Finally, in section 7, we consider situations

in which preferences are observed only over acts de¯ned in terms of ¯nite state-spaces. We show how

the DM's revealed probabilistic beliefs can still be identi¯ed from his preferences over multi-valued

acts, under the assumption that his preferences over acts de¯ned in terms of an appropriate larger

state space are utility sophisticated; while not observed de facto, the larger preference relation is

assumed to be observable in principle. All proofs are contained in the appendix.

2. BACKGROUND: IMPRECISE QUALITATIVE PROBABILITY

2.1. Precise Qualitative Probability: Savage's Theorem

A decision maker's probabilistic beliefs shall be modelled in terms of a partial ordering D on a

¾-algebra of events § in a state space £; his \comparative likelihood relation", with the instance

A D B denoting the DM's judgment that A is at least as likely as B: We shall denote the symmetric

component of D (\is as likely as") by ´ : The comparative likelihood relation can be viewed as

representing a non-exhaustive (sub-)set of probabilistic judgments a DM is committed to, his salient

unambiguous beliefs; these judgments, in turn, may re°ect probabilistic information available to and

accepted by him. The DM may have further \non-salient" probabilistic judgments not listed in D;

these will be inferred from his preferences in section 3.

We shall treat the comparative likelihood relation D as a non-behavioral primitive, which later

will play the role of a constraint on and partial determinant of the DM's preferences. From a

¯rst-person point of view, this makes compelling intuitive sense. From a third-person point of

view, the DM's salient unambiguous beliefs can be interpreted, for example, as accessible through

direct communication rather than behavioral observation, or ascribed to him based on a shared

understanding of the situation. While introducing such a non-behavioral primitive runs against

certain strands of the \revealed preference" tradition in economics and decision theory, it needs to be

pointed out that any Savage-style approach in which \behavior" is described in terms of preferences

over mappings from states to consequences contains non-behavioral entities at its core: the state
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space, and the description of acts in terms of it. Philosophically, it is at least controversial whether

a thoroughgoing revealed-preference approach is really possible; 11 moreover, in our everyday social

reasoning and in the practice of economic modelling, direct ascriptions of beliefs are pervasive.

The following axioms are canonical; disjoint union is denoted by \+".

Axiom 1 (Partial Order)12 D is transitive and re°exive.

Axiom 2 (Nondegeneracy) £ B ;:

Axiom 3 (Nonnegativity) A D ; for all A 2 §:

Axiom 4 (Additivity) A D B if and only if A + C D B + C , for any C such that A \ C =

B \ C = ;:13

Additivity is the hallmark of comparative likelihood. Normatively, it can be read as saying that

in comparing two events in terms of likelihood, only states that are not common can matter.

For the sake of comparison, we brie°y review ¯rst the case when the comparative likelihood

relation is complete. It is well-known that, on ¯nite state-spaces, Additivity is far from su±cient to

guarantee the existence of a probability-measure representing the complete comparative likelihood

relation; see Kraft-Pratt-Seidenberg (1959). On the other hand, a central part of Savage's famous

characterization of SEU maximization was the demonstration that additivity su±ces in the absence

of probability \atoms". More speci¯cally, Savage (1954) characterized the existence of convex-

ranged probability measures; the probability measure ¼ is convex-ranged if, for any event A and

any ® 2 (0; 1); there exists an event B µ A such that ¼(B) = ®¼ (A): We state a version of his result

for the sake of further comparison. It requires one more axiom.

Axiom 5 (Partitioning) For all A; B such that A B B there exists a ¯nite partition of £

fC1; :::; Cng such that A B B [ Ci for all i · n:

Theorem 1 (Savage) D is complete and satis¯es Axioms 1 through 5 if and only if there exists a

(unique) ¯nitely additive, convex-ranged probability measure ¼ on § such that for all A; B 2 § :

ADB if and only if ¼(A) ¸ ¼(B):
11Cf. the contributions by Quine, Davidson, Nozick and Putnam for example. It is our impression that mainstream

of contemporary analytical philosohpy would deny the possibility of a radical behavioral approach for the purposes of

the social sciences.
12Technically, the proper label would be \preorder".
13In this notation, we quantify over all C disjoint from A and B:
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An important feature of Savage's result is the uniqueness of the representing probability. It

justi¯es the view that the comparative likelihood relation represents the DM's beliefs fully. This is

non-trivial, and holds only rarely in ¯nite state-spaces.

2.2 Dropping Completeness

It is a non-trivial task to generalize Savage's Theorem to the incomplete case. Here, the natural

goal is a representation in terms of a set of ¯nitely additive probability measures ¦ µ ¢(£) of the

following form. For all A; B 2 § :

ADB if and only if ¼(A) ¸ ¼(B) for all ¼ 2 ¦: (3)

Analogous representations for preferences over multi-valued acts have been given in particular by

Bewley (1986) and Walley (1991) building on the work of Smith (1961). A comparative likelihood

relation will be called coherent if it has a multi-prior representation (3). Note that if D satis¯es

(3) for some ¦; then it satis¯es (3) also for the convex hull of ¦, as it does for the closure of ¦ (in

the product or \weak¤"-topology which will be assumed throughout). Thus, it is without loss of

generality to assume ¦ to be a closed convex set, and uniqueness is understood to be at issue only

within this class (which shall be denoted by K(¢(§)).

Conceptually, coherence of a comparative likelihood relation can be interpreted as closure under

inferences from the logic of probability. For example, additivity implies that if ADB then not Ac B

Bc: If D is complete, one can infer that BcDAc: This must hold under a multi-prior representation but

does not follow automatically from additivity in the absence of completeness. To obtain coherence,

we will rely on the following new axiom called \Splitting".

Axiom 6 (Splitting) If A1 + A2 D B1 + B2; A1 ´ A2 and B1 ´ B2; then Ai D Bj:

In words: If two events are split into two equally likely parts, then any part of the more likely

event must be more likely than any part of the less likely event. Note that, as above, from additivity

one can only infer that not Bj B Ai :

In ¯nite settings, incomplete comparative likelihood relations will admit a unique multi-prior

representation only in degenerate cases. To see this, note that any instance ADB constrains any

¼ 2 ¦ to satisfy the condition ¼(A) ¸ ¼(B), which may also be written as ¼ ¢ (1A ¡ 1B) ¸ 0: Thus,

comparative likelihood relations can separate convex sets ¦ only through vectors taking values in

f¡1; 0; +1g only. Thus, it is clear that, in general, many di®erent convex sets will induce the
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same comparative likelihood relation. However, the uniqueness problem can be overcome if the

comparative likelihood relation is \minimally complete" in an appropriate sense. Mathematically,

what is needed is a su±cient supply of equality constraints on ¦; it turns out that the following

notion of \range convexity" is su±cient.

De¯nition 1 A set of priors ¦ is convex-ranged if, for any event A and any ® 2 (0; 1); there

exists an event B µ A such that ¼(B) = ®¼(A) for all ¼ 2 ¦:

Note that while range convexity of ¦ implies range convexity of every ¼ 2 ¦; the converse is far

from true. Range convexity has the following axiomatic counterpart which assumes that any event

can be split into two equally likely parts.

Axiom 7 (Equidivisibility) For any A 2 §; there exists B µ A such that B ´ AnB:

Note also that Equidivisibility implies that any atom A of § must be a null-event.14 In the

following, we will often refer to an comparative likelihood relation satisfying Equidivisibility as

minimally complete.

Finally, Savage's Partitioning axiom in its role as a continuity condition is no longer adequate.

With incompleteness, it is no longer su±cient nor even necessary. Indeed, even on independent

conceptual grounds, it seems desirable to express the notion of \continuity in probability" in terms

of a pure condition such as the following one which is applicable to any qualitative probability,

whether precise or not, and to any state space. It relies on the following notion of a 1
K ¡event: A is a

1
K ¡event if there exist at K ¡ 1 mutually disjoint events Ai ; disjoint from A; such that A E Ai for

all i: Clearly, for coherent D and any ¼ 2 ¦ and any 1
K ¡event A; ¼(A) · 1

K ; if ¦ is convex-ranged,

the converse holds as well:

Axiom 8 (Continuity) If not A D B; then there exists K < 1 such that, for any 1
K ¡events C; D;

it is not the case that A [ C D BnD:

Note that continuity is entailed by coherence.

Theorem 2 A relation D has a multi-prior representation with a convex-ranged set of priors ¦ if

and only if it satis¯es Partial Order, Additivity, Nonnegativity, Splitting, Continuity, Equidivisibility,

and Nondgeneracy.

The representing ¦ is unique in K(¢(§)):

14That is, for any A for which B ½ A implies B = ?, Equivdisibility implies A´ ;:
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In view of Theorem 2, we shall refer to a comparative likelihood relation with a convex-ranged

multi-prior representation as an imprecise qualitative probability (relation). We shall sketch

the idea of the proof of Theorem 2 with a bit of \reverse engineering". While its construction is

crucial to understanding the logic behind most of the results to follow, the results themselves can

be understood without it. Hence the following passage may be skimmed on a ¯rst reading.

One can extend every imprecise qualitative probability represented by the convex-ranged set of

priors ¦ to the set B(§; [0; 1]) of ¯nite-valued functions Z : £ ! [0; 1] by associating with each Z

an equivalence class [Z ] of events A 2 § as follows. Let A 2 [Z ] if, for some appropriate partition

of £ fEig; Z =
P

zi1Ei ; and, for all i 2 I and ¼ 2 ¦ : ¼ (A \ Ei) = zi¼ (Ei) : It is easily seen

that for any two A; B 2 [Z ] : ¼ (A) = ¼ (B) for all ¼ 2 ¦; and thus A ´ B: One therefore arrives

at a well-de¯ned partial ordering on B(§; [0; 1]); denoted by bD; by setting Y bDZ if A D B for some

A 2 [Y ] and B 2 [Z ]: It is easily veri¯ed that this ordering is monotone, continuous and satis¯es the

independence axiom, i.e. that

Y bDZ if and only if ®Y + (1 ¡ ®)X bD®Z + (1 ¡ ®)X for any X;Y; Z and ® 2 (0; 1]:

The proof of Theorem 2 proceeds by constructing this extension from the qualitative probability

relation and by deriving the three properties of the induced relation from the axioms on the primitive

relation. Deriving the independence axiom entails the hardest work. It can be viewed as consisting

of the following additive and a multiplicative invariance conditions:

Y bDZ if and only if Y + X bDZ + X for any X;Y; Z ,

and

Y bDZ if and only if ®Y bD®Z for any Y; Z and ® 2 (0; 1]:

The two conditions correspond to the additive and splitting axioms characteristic of an imprecise

qualitative probability, respectively. The proof then invokes a version of Bewley's (1986) Theorem

to obtain the desired multi-prior representation.

In view of the above construction, an imprecise qualitative probability can be viewed as inhab-

iting a mixture-space in the manner of Anscombe-Aumann without reference to an \extraneous"

randomization device. On the other hand, state-spaces with a continuous randomization device

furnish an important example of minimally complete imprecise qualitative probabilities which we

shall refer to as the Anscombe-Aumann example. Speci¯cally, consider a state space that can be

written as £ = £1 £ £2; where the (¯nite) space £1 is the space of \generic states" , and £2 that
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of independent \random states" with associated ¾¡algebra §2: The \continuity" and stochastic in-

dependence of the random device are captured by an imprecise qualitative probability DAA de¯ned

on § = 2£1 £ §2 that satis¯es the following two conditions.

AA1) The restriction of DAA to f£1g £ §2 is complete and satis¯es Partitioning.

AA2)
P

µ1
fµ1g £ Tµ1 DAA

P
µ1

fµ1g £ T 0
µ1

if and only if, for all µ1 2 £1;

£1 £ Tµ1 DAA £1 £ T 0
µ1

:

While the ¯rst condition ensures the existence of a convex-ranged probability measure over ran-

dom events ¼2 2 ¢ (§2), the second describes their stochastic independence. Consider any imprecise

qualitative probability D containing DAA : By AA1 and AA2, DAA and thus D satisfy Equidivisi-

bility. From Theorem 2, one obtains the existence of a unique closed convex set of ¯nitely additive

probability measures ¦ representing D; it has the property that, for all ¼ 2 ¦ and all µ1 2 £1;

marg§2¼(:=µ1) = ¼2; re°ecting the stochastic independence of the random device.15

3. BETTING PREFERENCES AND PROBABILISTIC BELIEFS

3.1. Compatibility of Preferences with Probabilistic Beliefs

Consider now a DM described by a preference ordering over acts and salient beliefs over events.

Let X be a set of consequences. An act is a ¯nite-valued mapping from states to consequences,

f : £ ! X; that is measurable with respect to a ¾-algebra of events §; the set of all acts is denoted

by F . A preference ordering % is a weak order (complete and transitive relation) on F . We shall

write [x1; A1; x2; A2; :::] for the act with consequence xi in event Ai; constant acts [x; £] are typically

referred to by their constant consequence x:

The DM also has salient beliefs described by a coherent comparative likelihood relation D0 on

§: This relation represents some of the DM's probabilistic beliefs; he may have others not included

in it. Later in this section we shall de¯ne a richer relation D¤ derived from his preferences that

captures all probabilistic beliefs that can be meaningfully described to the DM. Thus, the datum

for the following is a pair (%; D0): We shall ask in section 5 under what conditions D0 becomes
15For an earlier representation of the Anscombe-Aumann framework in a Savage setting, see Klibano® (2001a). A

di®erent route to \subjectivizing" the Anscombe-Aumann framework based on a rich set of consequences rather than

states is presented in Ghirardato et al. (2001d).
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redundant and can be replaced by D¤ so that D¤ itself is purely de¯nable in preferences, and a

\fully behavioral" account is possible.

Salient beliefs determine primarily preferences over bets. A bet is a pair of acts with the same two

outcomes, i.e. a pair of the form ([x; A; y;Ac ]; [x; B; y; Bc]) : Fundamental is the following rationality

requirement on the relation between preferences and probabilistic beliefs.

Axiom 9 (Compatibility) For al l A; B 2 § and x; y 2 X such that x Â y :

[x; A; y;Ac ] % [x; B; y; Bc] if A D0 B; and

[x; A; y;Ac ] Â [x; B; y; Bc] if A B0 B:

Note that, since the relation D0 is required to be coherent, Compatibility builds in respect for

all inferences from the \logic of probability". Applied to Example 1 of the Introduction, for ex-

ample, axiom 9 delivers restriction (2) on preferences involving ambiguous events.16 Compatibility

becomes especially powerful when salient beliefs are minimally complete, hence an imprecise quali-

tative probability. In this case, the associated preference relation will be referred to as \minimally

unambiguous".

3.2 Regular Preferences over Bets

As is customary, we shall assume that preferences over bets depend only on the events involved,

not on the stakes. This is captured by Savage's axiom P4. In the context of ambiguity, P4 is still a

natural \regularity" assumption , but it seems doubtful that it can still be viewed as a rationality

axiom.17

Axiom 10 (Consistent Con¯dence Ranking, P4)

For all x; y;x0; y0 2 X such that x Â y and x0 Â y0 and all A; B 2 § :

[x;A; y; Ac ] % [x; B ; y; Bc ] i® [x0; A; y0; Ac] % [x0; B ; y0; Bc ]:
16Note also that by compatibility, the betting preferences must re°ect the beliefs attributed to the decision maker.

It is not clear what further, purely behavioral evidence could be brought to bear on the question whether the DM \in

fact" has those beliefs. On the other hand, as discussed in section 5.2, compatiblity with a hypothesized imprecise

qualitative probability by itself does not seem warrant imputing that relation as probabilistic beliefs to the decision

maker.
17Note that P4 can be deduced from the assumption that the preference relation be compatible with some complete

qualitative probability. This justi¯cation of P4, however, evidently eliminates any room for ambiguity.
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Given this axiom, one can de¯ne an induced con¯dence relation18 ¸ (with symmetric compo-

nent +) on § by setting

A ¸ B i® [x; A; y; Ac] % [x; B; y; Bc] for some x Â y:

In the following, we will typically refer to betting preferences through their associated con¯dence

relation; note that compatibility with salient beliefs can be rewritten as the requirement that ¸
contain D0 as a relation.

To ensure real-valued representability, betting preferences are assumed to satisfy the following

\Archimedean" property. We will say that A0 is a 1
n¡fraction of A if there is a partition of A

fA0; A2; ::; Ang such that A0 ´0 Ai for all i ¸ 2:

Axiom 11 (Archimedean) If A > B; there exists K < 1 and 1
K ¡fractions C of Ac and D of

Bc such that AnC > B and A > B + D:

Two well-behavedness assumptions are also needed; below in Proposition 3 of section 4.2.3., they

will be derived from P4 via a rationality argument. Here we shall motivate them on their own

somewhat loosely.

Axiom 12 (Union Invariance) For any T that is a 1
n¡fraction of £; and for any A; B 2 §

such that A \ T = B \ T = 0 : A ¸ B if and only if A + T ¸ B + T:

The essence of the requirement on T is its unambiguity in terms of the basic D0; conceptually,

it is immaterial that T be assigned a probability of the form 1
n : The axiom is intuitive, as it says

that comparative con¯dence is not a®ected by the addition of events of known probability. Indeed,

it is su±ciently intuitive for Epstein-Zhang (2001) to turn it around and, by formulating it as a

condition on an event T; to make it their linchpin for the very de¯nition of an event T as \revealed

unambiguous".

While Union Invariance can be viewed as a restricted version of Additivity to instances in which

the addendum is unambiguous, the following axiom analogously requires invariance to splits when

these are unambiguous.

Axiom 13 (Splitting Invariance) For any A; B and 1
n -fractions A0; B 0 of A and B respec-

tively, A ¸ B if and only if A0 ¸ B0.
18In contrast to our terminology, ¸ is often referred to as the DM's \revealed likelihood" relation, following Savage

(1954). In the context of ambiguity, this terminology seems however inappropriate, as the relation ¸ re°ects not only

a DM's beliefs but also his \ambiguity attitude".
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Preference relations (as well as the associated con¯dence relation D) shall be called regular if they

satisfy the P4, Continuity, Union Invariance, Splitting Invariance, and the maintained assumption

of compatibility with the salient imprecise qualitative probability D0.

For any D0-non-null A 2 §; let ¤0
A denote the family of salient unambiguous events condi-

tional on A given as the set of all B µ A such that

B 2 ¤0
A i® there exists ® 2 (0; 1] such that ¼ (B) = ®¼(A) for all ¼ 2 ¦0;

and let ¼0 (B=A) denote the unique ® satisfying this condition; ¼0 (B=A) represents the unambiguous

conditional probability of B given A. In the case of A = £; we shall write simply ¤0 and ¼0(B):

It is easily veri¯ed that an Archimedean, minimally unambiguous con¯dence relation has a unique

representation in terms of a non-additive set function ½ : § ! [0; 1] such that

A ¸ B if and only if ½(A) ¸ ½(B);

with ½ (£) = 1 and such that ½ is additive on the family of salient unambiguous events ¤0; ½ will be

call the DM's con¯dence measure. Con¯dence is calibrated in terms of equivalent unambiguous

probability: ½(A) = ¼0(B) for any B 2 ¤0 such that B + A: A con¯dence relation ¸ that is

compatible with the imprecise qualitative probability D0 induces a well-de¯ned b̧ on the mixture-

space B(§; [0; 1]) associated with D0; b̧ is de¯ned as follows.

Y b̧Z if A ¸ B; for any A 2 [Y ] and B 2 [Z ];

using the [ ]-notation of section 2.2. To verify well-behavedness, simply observe that by construction

of the mixture space, for any two A; B 2 [Z ]; one has A ´0 B; hence by compatibility also A + B:

Let b½ denote the associated unique extension of ½ to B(§; [0; 1]) given by

b½(Y ) = ½(A) for any A 2 [Y ]:

Again, by the construction of the mixture-space, this is well-de¯ned, and by construction

Y b̧Z if and only if b½(Y ) ¸ b½(Z):

Note that b½(c1) = c for any c 2 [0; 1]; moreover, b½ is monotone (b½(Y ) ¸ b½(Z) whenever Y ¸ Z) by

compatibility of ¸ with D0 : b½ is c-additive if b½(Y + c1) = b½(Y ) + c; b½ is positively homogeneous if

b½(®Y ) = ®b½(Y ) for any ® 2 [0; 1]; b½ is c-linear if it is c-additive and positively homogeneous. If b½ is

c-linear, in view of its monotonicity it is also continuous in the sup-norm topology.

We note the following properties of b½.
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Fact 1 b½ is c-additive (resp. positively homogeneous) if and only if ¸ satis¯es Union Invariance

(resp. Splitting Invariance).

Thus, for preferences over bets, regularity is the analogue in the present framework to the

\certainty independence" axiom (in the Anscombe-Aumann framework) due to Gilboa-Schmeidler

(1989).

3.3 Revealed Unambiguous Beliefs

One can now turn the compatibility question around and ask, for given preferences over bets

%, which imprecise qualitative probability relation D the preferences are compatible with. This

question is of interest from a third-person point of view, as it asks which probabilistic beliefs it is

meaningful to impute to the observed DM. The following results show that if betting preferences are

regular, there is always a unique largest imprecise qualitative probability with which the preference

relation is compatible and that extends the salient belief relation D0. It thus makes conceptual sense

to identify this maximal relation as describing the unambiguous beliefs revealed by the DM.

Theorem 3 1. Let ¸ be a regular con¯dence relation compatible with the imprecise qualitative

probability D0. Then there exists a maximal imprecise qualitative probability D¤ such that

¸¶D¤¶D0.

2. D¤ is given by

A D¤ B if and only if A0 + C ¸ B 0 + C;

for al l C and all A0; B 0 such that, for some n < 1; A0 is a 1
n¡fraction of A and B 0 is a

1
n¡fraction of B:

3. ¦D¤ is the smallest closed, convex set ¦ µ ¦D0 such that for all A;B such that A > B; there

exists ¼ 2 ¦ such that ¼ (A) > ¼ (B) :

In the future, we shall write ¦¤ for ¦D ¤; and denote by ¤¤
A the family of revealed unambigu-

ous events conditional on A de¯ned analogously to ¤0
A , with associated unambiguous conditional

probability measure ¼¤(:=A):

Remark 1. The characterizing condition in part 2) is \designed" to build in the Additivity

and Splitting properties of an imprecise qualitative probability. The latter is essential; if one would
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stipulate as the criterion for unambiguous preference of A over B merely that A + C ¸ B + C for

all C; then A would be unambiguously equally likely to Ac whenever there is equal con¯dence in A

than in Ac (i.e. A + Ac); simply because there is no non-empty set disjoint from both A and Ac;

evidently, this makes little sense.

Remark 2. The \price" of needing to build in the Splitting Axiom is the need to rely on the

salient belief relation D0 relative to which unambiguous splits are de¯ned. It may be the case that

in part 1) of the Theorem, one could weaken the requirement that D¤ contain the relation D0 to

that of being minimally complete; indeed, we expect this to be frequently be the case. This would

have the advantage of characterizing D¤ in terms of preferences only19. On the other hand, it is

easy to give examples in which D is compatible with coherent comparative likelihood relations D0

that are not minimally complete and that are not contained in D¤; in those cases, there is then

no unique maximal coherent comparative likelihood relation. In section 5, we shall show that one

can overcome the need for a reference relation D0 if one is willing to make substantial rationality

assumptions on the DM's preferences over multi-valued acts.

Remark 3. The idea of using a maximal \independent" subrelation to de¯ne revealed unam-

biguous beliefs was ¯rst proposed in Nehring (1996) which presented an analogue to Theorem 3 in

an Anscombe-Aumann framework; see section 7 for further discussion.

Remark 4. Regularity of preferences has been de¯ned relative to the salient belief relation D0 :

Since that relation is understood to describe the DM's beliefs non-exhaustively, there is clearly a

degree of arbitrariness in specifying a DM's salient beliefs, as further beliefs might also have been

deemed salient. Thus, to be conceptually well-de¯ned, the regularity axioms Union and Splitting

Invariance should apply equally to any imprecise qualitative probability D such that D0µDµD¤. For

Splitting Invariance, this follows20 from the following Fact which is a straightforward consequence

of the range convexity of ¦0 and the inclusion of ¦¤ in ¦0:

Fact 2 For any A; B 2 § such that A 2 ¤¤
B ; there exist A0 2 ¤0

B such that ¼¤(A=B) = ¼¤ (A0=B) =

¼0(A0=B):
19With the big quali¯cation that the imputation of a given state space is a major non-behavioral element in any

Savage-style analysis.
20To verify this, considerA;B 2 § and 1

n
¡fractions (with respect to D¤) A0;B0 : By Fact 2, there exist 1

n
¡fractions

with respect to D0 A00 ;B00 such that A00 ´0 A0 and B00 ´0 B 0: By Compatibility, A0 + A00 and B0 + B00 ; whence
A0 ¸ B0 i® A00 ¸ B00 : Thus Splitting Invariance with respect to D¤ is equivalent to Splitting Invariance with respect

to D0 :

19



For Union Invariance, this can likewise be derived from Fact 2 using Splitting Invariance, but it

also follows directly from Proposition 1 below. Finally, the Archimedean axiom is evidently weaker

relative to D¤ than to D0.

3.4 Revealed Unambiguous Events

In the preceding literature, attention has been paid not to unambiguity of preferences or beliefs

in general, but to unambiguity of events (see in particular Ghirardato-Marinacci (2001a), Nehring

(1999), Epstein-Zhang (2001)). Presumably, an event is \revealed unambiguous" if the DM reveals

an unambiguous probabilistic belief concerning its occurrence. This is captured by the following

formal de¯nition.

De¯nition 2 The event A is revealed unambiguous if A ´¤ T for some T 2 ¤0:

Revealed unambiguous events can be characterized in the following equivalent ways.

Proposition 1 For a regular con¯dence relation ¸; the following statements are equivalent:

1. A is revealed unambiguous.

2. For all ¼; ¼0 2 ¦¤ : ¼ (A) = ¼0 (A) :

3. For all A0 2 ¤0
A and B 2 § : ½ (A0 + B) ¡ ½ (B) = ½ (A0) :

4. For all A0 2 ¤0
A and B; C 2 § : B ¸ C i® B + A0 ¸ C + A0:

Let ¤¤ denote the family of all revealed unambiguous events (derived from ¸). By part ii), ¤¤

is a ¸¡system, i.e. it contains £ and is closed under complementation and (¯nite) disjoint union.

Moreover, the con¯dence measure ½ is additive on ¤¤ and can be extended to any ¼ 2 ¦¤ . In

particular, ½ is a qualitative probability i® ¤¤ = §:

Proposition 1 allows a direct comparison to Epstein-Zhang's (2001) de¯nition, as it applies to

preferences over bets. It is formulated here for the sake of comparability in terms of the con¯dence

relation D: an event A is EZ-unambiguous if, for any B; C disjoint from A : B ¸ C i® B + A ¸
C + A; and if the same holds when A is replaced by Ac .21 In view of part (4) of Proposition 1, an

21Epstein-Zhang (2001) de¯nition for multi-valued acts builds in probabilistic sophistication over unambiguous acts;

we obtain this as an implication of a separate rationality axiom on preferences over multi-valued acts called \Revealed

Stochastic Dominance"; see section 4.1.
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event is revealed unambiguous in our sense if and only if all of its fractions are EZ-unambiguous;

the Epstein-Zhang de¯nition is thus the weaker, more permissive one.22 Epstein-Zhang (2001) show

(under by and large weaker assumptions than regularity), that the family of EZ-unambiguous events

is a ¸-system, and that ½ is additive on this family. Thus, it might appear that EZ-unambiguous

events can be understood as events over which one can attribute probabilistic beliefs to the DM.

But such an interpretation would not valid in general. In particular, as noted in both Epstein

(1999) and Nehring (1999), additivity on a ¸-system does not imply extendability to a probability

measure on all of §; in other words, the comparative likelihood relation associated with the additive

measure on the family of EZ-unambiguous events may be inconsistent, and thus not interpretable

as corresponding to any well-de¯ned set of probabilistic beliefs.

One can extend De¯nition 2 to say that the event A is revealed unambiguous conditional

on B (with B non-null) if A ´¤ B 0 for some B 0 2 ¤0
B : Analogously to Proposition 1, the event A

is revealed unambiguous conditional on B if and only if, for all ¼; ¼0 2 ¦¤ such that ¼ (B) > 0 and

¼0 (B) > 0; ¼0 : ¼ (A=B) = ¼0 (A=B) : However, the third and fourth characterizations do not seem

to generalize straightforwardly.

3.5. Uniform Caution

Theorem 3 suggests a natural decomposition of the \con¯dence" in an event A in a belief compo-

nent given by the event A's lower and upper probabilities revealed by the con¯dence relation, and a

psychological \ambiguity reaction" describing the extent to which \con¯dence" is determined by the

most pessimistic respectively the most optimistic probability assignment compatible with the con-

¯dence relation. After de¯ning formally the DM's ambiguity reaction in terms of an event-speci¯c

\degree of caution", we shall characterize the model that results from assuming constancy of the

degree of caution across events. This section is an adaptation of section 4 of Ghirardato-Maccheroni-

Marinacci (2001c).

For any event A 2 §; de¯ne the event's revealed lower probability ¼¤
min(A) := min¼2¦¤ ¼ (A)

and upper probability ¼¤
max(A) = max¼2¦¤ ¼ (A) : Evidently, an event is revealed ambiguous i®

¼¤
min(A) < ¼¤

max (A): Compatibility implies that ¼¤
min(A) · ½ (A) · ¼¤

max (A): Hence, for any revealed
22In the special case of ambiguity averse betting preferences in the sense of section 6, however, \unambiguous" and

EZ-unambiguous events coincide.
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ambiguous event A 2 §n¦¤; there exists a unique number °(=: °(A)) 2 [0; 1] such that

½ (A) = °(A)¼¤
min(A) + (1 ¡ °(A))¼¤

max(A):

°(A) is the \degree of caution" exercised in assessing a bet on A: The maximal degree of caution

°(A) = 1 describes exclusive reliance on the lower probability in this assessment; likewise, the

minimal degree of caution (that is, the maximal degree of \boldness") °(A) = 0 describes exclusive

reliance on the upper probability.23

Empirically, there is substantial evidence that °(A) depends on the event A; see for example

Wakker (2001). Nonetheless, for applications it is clearly of interest to focus on the special case in

which this event-dependence does not happen, i.e. in which °(A) = ° for all A: In this case, ° is

plausibly interpreted as representing the DM's event-independent overall \degree of caution". This

case will be referred to as the \uniform model".24 Note that if the degree of caution is constant

across events, con¯dence in an event is monotone in the probability interval of the event, and in this

sense determined by the unambiguous beliefs about the event:

½ (A) ¸ ½ (B) whenever ¼¤
min(A) ¸ ¼¤

min(B) and ¼¤
max(A) ¸ ¼¤

max(B):

Translated into the following condition on preferences, this yields a characterization of the uniform

model.

Axiom 14 (Interval Monotonicity) Suppose that, given A; B 2 § it is the case that, for every

T 2 ¤¤; A E¤ T implies B E¤ T; and that B D¤ T implies A D¤ T: Then A ¸ B.

Proposition 2 Let ¸ be a regular con¯dence relation compatible with the salient imprecise qualita-

tive probability D0. Then ¸ has the representation

½ (A) = °¼¤
min(A) + (1 ¡ °)¼¤

max (A); for al l A 2 §;

if and only if it satis¯es Interval Monotonicity.
23It would be inappropriate to refer to °(A) as a \degree of pessimism", since this would suggest a statement about

the DM's beliefs, but these are already described by the probability interval [¼¤min(A); ¼
¤
max(A)].

24Note that the regularity axioms Union and Splitting Invariance can be interpreted as invariance conditions on

°(A): Indeed, the former is equivalent to the condition

For any A2 §n¤0 and any T 2 ¤0 such that A\ T = ; : °(A+T ) = °(A);

while the latter corresponds to the condition

For any A 2 §n¤0 and any B 2 ¤0
A : °(B) = °(A):

22



Due to the mixture-space representation of minimally unambiguous con¯dence relations, Propo-

sition 2 is a direct consequence of Theorem 12 of Ghirardato et al. (2001c) which characterizes the

interval expected utility model de¯ned in Fact 4 below (called by them the ®-minimum expected

utility model) in an Anscombe-Aumann framework.25

4. PREFERENCES OVER MULTI-VALUED ACTS

4.1 Revealed Stochastic Dominance

In this section, we shall introduce two rationality principles that determine how preferences over

bets constrain preferences over general acts. A natural minimal rationality requirement under ambi-

guity is respect for stochastic dominance, to the extent that this criterion can be applied on the basis

of the DM's revealed unambiguous beliefs. Thus, say that f revealed stochastically dominates

g if, for all x 2 X; fµ j f (µ) % xg D¤ fµ j g(µ) % xg.

Axiom 15 (Revealed Stochastic Dominance) f % g whenever f revealed stochastically domi-

nates g:

An act f is unambiguous if, for all x 2 X; fµ j f (µ) % xg 2 ¤¤: Letting ¼¤ denote the restriction

of any ¼ 2 ¦¤ to ¤¤; satisfaction of Revealed Stochastic Dominance entails respect for ordinary

stochastic dominance of outcomes with respect to ¼¤ as described by the following condition. For

any unambiguous acts f ;g:

f % g if ¼¤ (fµ j f (µ) % xg) ¸ ¼¤ (fµ j g(µ) % xg) for all x 2 X: (4)

In particular, f » g whenever f and g induce the same probability distribution over outcomes; the

agent's preferences over unambiguous acts are therefore probabilistically sophisticated in the sense

of Machina-Schmeidler (1992), but otherwise unconstrained, leaving plenty of room for Allais-type

phenomena.26

25For ° = 1; this had already been shown by Nehring (1996).
26Obtaining probabilistic sophistication on unambiguous acts was a central desideratum of Epstein-Zhang (2001).

While they achieved this goal as a consequence of their de¯nition of an unambiguous event, it seems cleaner to

separate such a de¯nition from Revealed Stochastic Dominance as a rationality requirement, as done here. Besides

this methodological di®erence, a further substantive di®erence to Epstein-Zhang comes from the fact that Revealed

Stochastic Dominance entails signi¯cant restrictions also on comparisons of ambiguous acts, since it applies whenever

the events of the form f! j f (!) % xg are unambiguously comparable across the two acts in terms of revealed
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Generalizing equation (4), the following characterization of revealed stochastic dominance is

straightforward from Theorem 3 and the well-known utility characterization of ordinary stochas-

tic dominance.

Fact 3 f revealed stochastically dominates g if and only if E¼ u± f ¸ E¼u ± g for all ¼ 2 ¦¤ and all

u : X ! R such that u (x) ¸ u (y) whenever x % y:

Fact 3 suggests that Revealed Stochastic Dominance is the strongest rationality requirement that

relies on ordinal information about the valuation of consequences only. Revealed Stochastic Dom-

inance has a precursor of sorts in the literature, Sarin-Wakker's (1992) \Cumulative Dominance"

axiom. Say that f cumulatively dominates g if, for all x 2 X; fµ j f (µ) % xg ¸ fµ j g(µ) % xg; the

preference relation satis¯es Cumulative Dominance if f º g whenever f cumulatively dominates g:

Thus, Cumulative Dominance is simply Revealed Stochastic Dominance modi¯ed to rely on arbitrary

con¯dence comparisons rather than just on unambiguous ones. Conceptually, this changes the na-

ture of the condition fundamentally, as the con¯dence relation ¸ cannot be interpreted as describing

the DM's beliefs only. By consequence, Cumulative Dominance cannot be viewed as a rationality

principle.27 Instead, in Sarin-Wakker (1992), in e®ect it gives rise to a \procedural description"

of how to construct CEU preferences over general multi-valued acts from the con¯dence relation

and SEU preferences over unambiguous acts. Note that since CEU preferences satisfy Cumulative

Dominance, they satisfy Revealed Stochastic Dominance a fortiori.

4.2 Utility Sophistication

4.2.1. Tradeo® Consistency.|

There are two basic types of departures from expected utility maximization: ambiguity, as illus-

trated by the Ellsberg paradox, and \probabilistic risk-aversion" (non-linear weighting of utilities),

as shown by the Allais-paradox. It thus seems worthwhile to demarcate those cases in which all de-

partures from expected utility maximization can be attributed to one of these two sources exclusively.

\Probabilistic sophistication" (over all acts) is one such demarcation: it excludes Ellsbergian phe-

nomena while preserving great °exibility with respect to phenomena of probabilistic risk-aversion.

Since ambiguity concerns the very nature of uncertainty itself, it is arguably more basic a departure

likelihood, even if these events themselves are ambiguous. Speaking loosely, Revealed Stochastic Dominance implies

for example that preferences over \almost unambiguous" acts are close to preferences over unambiguous acts proper.
27This has been pointed out before in Nehring (1994).
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from the expected utility paradigm than probabilistic risk-aversion, and arguably harder to rule out

on normative grounds. It seems therefore especially important to possess a model that allows to

zoom in on ambiguity alone. In this subsection, we thus want to propose a complementary con-

cept of \utility sophistication" which accommodates ambiguity in a very general way but excludes

Allais-type phenomena systematically. While there are examples of utility sophisticated models in

the literature (in particular the seminal contributions by Schmeidler (1989) and Gilboa-Schmeidler

(1989) in an Anscombe-Aumann-framework), and while a \utility sophisticated" outlook has been

advocated forcefully in Ghirardato-Marinacci (2001a), a general de¯nition of \utility sophistication"

has not yet been attempted, as far as we know.

To motivate the key axiom underlying utility sophistication, consider ¯rst the risk-neutral case

in which consequences are given in amounts of income, and in which the DM ranks unambigu-

ous acts according to expected income. Speci¯cally, consider the DM's choice between the two acts

[x; A; y; B ; f¡A¡B ] and [x0; A; y0; B; f¡A¡B ]; with A judged equally likely to B; that is: A ´0 B . Note

that, conditional on the event A [ B; the DM needs to compare two ¯fty-¯fty lotteries. Thus, there

seems to be little doubt what our risk-neutral DM should do: choose the act with the higher condi-

tional expected payo®; that is, he should prefer [x; A; y; B ; f¡A¡B ] over [x0; A; y0; B; f¡A¡B ] weakly

whenever 1
2x + 1

2y ¸ 1
2x0 + 1

2y0.

Next, abandon the assumption of risk-neutrality and consider choices among unambiguous acts

with two outcomes, each of which has subjective probability one half. Speci¯cally, consider a choice

between f = [x; A; y;Ac ] and g = [x0; A; y0; Ac] such that x Â x0 , y0 Â y and A ´0 Ac. According to

a classical interpretation of expected utility theory, a DM (\You") should choose f over g exactly if

You assess the utility gain from x over x0 to exceed the loss of obtaining y rather than y0: Conversely,

a preference of f over g is naturally interpreted as revealing a greater utility gain from x over x0

than from y0 over y. This intuition generalizes to choices of the form [x; A; y; B ;f¡A¡B ] versus

[x0; A; y0; B ; f¡A¡B ] whenever the events A and B are judged equally likely (A ´0 B) : for also in

this more general case, the comparison of these utility gains is the only remaining, hence decisive

factor in the choice. To compare the two acts, the DM simply does not need to consider his (possibly

imprecise) assessment of the likelihood of the union A + B; nor the payo®s in states outside A + B.

This motivates the following rationality axiom which requires that the DM's preferences must be

rationalizable in terms of a comparison of utility di®erences that is consistent across choices of the

above kind.
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Axiom 16 (Tradeo® Consistency) For all x; y; x0; y0 2 X; f; g 2 F and A; B; A0; B 0 such

that A\B = A0\B 0 = ; and A ´0 B as well as A0 ´0 B 0 : [x; A; y; B; f¡A¡B ] % [x0; A; y0;B ; f¡A¡B ]

if and only if [x; A0; y; B 0;g¡A0¡B0 ] % [x0; A0; y0; B 0; g¡A0¡B 0]:

Conditions requiring consistency of trade-o®s across choices have been used before in the axiom-

atization of SEU; see in particular Wakker (1989). Our condition is actually more closely related to

Ramsey's (1931) seminal contribution in which \tradeo®s"/\utility di®erences" are de¯ned in terms

of preferences over acts with two equally likely outcomes; indeed, Ramsey's axiom 2 is simply the

restriction of Tradeo® Consistency to comparisons based on events of the form B = Ac and B0 = A0c;

that is: to events with unambiguous probability 1
2 :

4.2.2. The Representation Theorem.|

To endow Tradeo® Consistency with all its potential force, we shall also assume28

Axiom 17 (Solvability)

For any x; y 2 X and T 2 ¤0; there exists z 2 X such that z » [x; T ; y; T c].

For expositional simplicity, assume also that the preference relation is bounded (in utility), i.e.

that there exist x and x 2 X such that, for any x 2 X; x - x - x: Finally, we shall need to generalize

Archimedean axiom to general acts.

Axiom 18 (Archimedean) For any f; g 2 F such that f Â g; there exists K < 1 and 1
K ¡events

C µ fµ j f (µ) Â xg and D µ fµ j g (µ) Á xg, such that, for any 1
K ¡events29 C; D; [f¡C ; Cc; x; C] Â

g and f Â [g¡D ; Dc ; x; D]:

For consequences x; y such that x Â y, let ¸fx;yg be the con¯dence relation associated with the

DM's preferences over bets with these outcomes, and let ½ : § ! [0; 1] denote the con¯dence measure

representing ¸fx;xg, with b½ as the canonical extension of ½ to B(§; [0; 1]). Note that b½ can be viewed

as an \expectation operator" associated with the non-additive measure ½; for example, as remarked

in section 3, b½ has the averaging property that b½ (c1) = c for c 2 [0; 1]:

28It is well-known how to derive this axiom from continuity plus connectedness assumptions.
29With respect to D0.
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Theorem 4 Consider a bounded preference ordering % on F that is compatible with an imprecise

qualitative probability D0; and let ½ denote the representation of ¸fx;xg. The preference ordering

satis¯es Tradeo® Consistency, the Archimedean axiom and Solvability if and only if there exists a

(unique) u function u from X onto [0; 1] such that, for all f; g 2 F :

f % g i® b½ (u ± f ) ¸ b½ (u ± g) : (5)

In this case, if the acts f and g are salient unambiguous, then f % g i® E½u ± f ¸ E½u ± g:

Preference relations described by Theorem 4 will be referred to as \utility sophisticated". By

(5), utility sophisticated preferences over arbitrary acts are determined by the DM's preferences over

bets and expected utility-preferences over salient unambiguous acts.

4.2.3. The Regular Case.|

U.s. preferences do not necessarily satisfy P4; they do, however, if and only if b½ is c-linear. This

gives rise to the following Proposition.

Proposition 3 A utility sophisticated preference ordering % satis¯es P4 if and only if it30 satis¯es

Union and Splitting Invariance.

In view of Proposition 3, utility sophisticated preferences that satisfy P4 will be called \regular."

In the regular case, ½ is represents the DM's con¯dence measure, and the bar can be dropped

notationally. Since the operator b½ is determined by the underlying ½; it seems not entirely frivolous

to write b½ (Z) as
R

Zd½:31 We shall refer to this as the intrinsic integral of Z with respect to ½; and

sometimes write for clarity
R

int Zd½, to be distinguished from the Choquet integral
R

choq Zd½.

In general, the intrinsic integral is \complex" re°ecting the complexity, lack of structure of the

underlying con¯dence measure ½: In the uniform model, however, b½ has the following \interval

expected utility" representation.

Fact 4 If ½ is uniform with degree of caution °; then
Z

int
u ± fd½ = ° min¼2¦¤ E¼ (u ± f ) + (1 ¡ °)max¼2¦¤ E¼ (u ± f ) :

30More precisely, if all con¯dence relations ¸fx;yg satisfy these two conditions, or, equivalently, as is evident from

the proof, if ¸fx;xg does.
31This notation cheats a bit in that it suppresses the reference relation D0 used to de¯ne b½ from ½: Mathematically,

it would therefore seem desirable to show that the particular D0 used does not matter. If that can be done, it would

furthermore be desirable to characterize compatibility of ½ with some minimally complete D0 internally.
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In the general, non-uniform case, the intrinsic integral has a simple representation only for two-

outcome acts, as noted in the following straightforward fact whose proof is omitted.32 33

Fact 5 If f = [x; A; y; Ac ] with x % y; then
Z

int
u ± fd½ = u(x)½(A) + u(y) (1 ¡ ½(A)) :

Under utility sophistication, the DM's revealed set of priors becomes highly informative for pref-

erences over multi-valued acts. Indeed, Theorem 3, part 3), together with Theorem 4 entail the

following characterization.

Proposition 4 Suppose % is regular utility sophisticated. Then ¦¤ is the smallest set ¦ 2 K(¢(§))

such that

f % g whenever E¼ (u ± f ) ¸ E¼ (u ± g) for all ¼ 2 ¦: (6)

In particular, if the acts f and g are revealed unambiguous, then f % g i® E½u ± f ¸ E½u ± g:

Thus ¦¤ is the smallest set of priors such that the DM's preferences coincide with the expected-

utility preferences induced by the di®erent priors, whenever these agree. Note that (6) is equivalent

to requiring that there exists ¼ 2 ¦ such that E¼ (u ± f ) > E¼ (u ± g) whenever f Â g; thus, ¦¤ is

the smallest set of priors ¦ that allows to rationalize each strict preference in terms of some prior

chosen from ¦:

In line with intuition, Proposition 4 has the following corollary.34

Corollary 1 Regular utility sophistication implies Revealed Stochastic Dominance.

Just as in the case of the regularity axioms Union and Splitting Invariance, the content of Trade-

o® Consistency respectively utility sophistication should not depend on the particular imprecise

qualitative probability D used in the range between D0 and D¤ to be conceptually well-behaved.

This follows directly from Proposition 4, from which it is evident that the preference relation is

tradeo®-consistent with respect to D¤ : Thus we have35

32The proof is a straightforward consequence of the c-linearity of ½:
33The class of preferences over two-outcome acts with this representation has been studied in detail in Ghirardato-

Marinacci (2001b) under the name of \biseparability".
34This is an immediate consequence of Fact 3. Indeed, one obtains the stronger result that f revealed stochastichally

dominates g if and only if there exists a u.s. preference relation %0 whose restriction to bets and to comparisons of

constant acts agrees with % : The Corollary could also have been shown directly, without recourse to Propostion 4.
35Using Fact 2, one can also show that Tradeo® Consistency with respect to D0 together with Revealed Stochastic

Dominance imply Tradeo® Consistency with respect to D¤ :
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Corollary 2 Regular Utilitarian Sophistication with respect to D0 implies Regular Utilitarian So-

phistication with respect to D¤ :

4.2.4. Incompatibility of Utilitarian Sophistication with Choquet Expected Utility.|

Utility sophistication is incompatible with the widely used Choquet Expected Utility (CEU)

model: CEU preferences are utility sophisticated only if the DM maximizes subjective expected

utility. We will state this fact formally as a statement about the relation of the Choquet and in-

trinsic integrals. Note that in general, the domain of applicability of the Choquet integral is larger

than that of the intrinsic integral, in that the Choquet integral is de¯ned for monotone transforms of

the normalized con¯dence measure À = Á ± ½, with Á re°ecting the DM's probabilistic risk-attitude.

However, Á must be the identity function if unambiguous acts are ranked according to their expected

utility (as presupposed by utility sophistication).

Fact 6
R

int Zd½ =
R

choq Zd½ if and only if ½ is a probability measure.

In view of the conditional linearity property of the intrinsic integral stated as Lemma 2 in the

appendix, mathematically Fact 6 is merely a restatement of the incompatibility of the one-stage and

two-stage formulations of Choquet Expected Utility noted before in Sarin-Wakker (1992). Here, the

incompatibility of the two methods of integration is not really that surprising since the underlying

Cumulative Dominance respectively Tradeo® Consistency axioms are clearly very di®erent ways of

achieving the same thing, namely a determination of preferences over multi-valued acts through

preferences over unambiguous acts and preferences over bets.

In view of the popularity and apparent usefulness of the CEU and the related Cumulative Prospect

models in descriptive applications, the incompatibility may be viewed as disconcerting, and perhaps

even as reason to question the appeal of Tradeo® Consistency. We see two potential interpretations

of this incompatibility. On the one hand, the CEU model may be deemed to be an intrinsically

non-expected utility model that is the simply not of interest under an \idealization" in which the

DM is supposed to maximize expected utility over unambiguous acts. This interpretation does

not seem very attractive, however, since there is nothing in the CEU model itself which precludes

maximization of expected utility over unambiguous acts. A more convincing interpretation seems to

be that the CEU model is appropriate only for subspaces on which the DM's beliefs have a rather

specī c structure, but that it is inappropriate if applied globally to preferences that are compatible
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with minimally complete probabilistic information36. This interpretation seems to be in accord

with the apparent usefulness of the CEU model in descriptive applications, that is: in the stylized

description of the outcome of laboratory experiments, since the state spaces in such experiments are

typically extremely simple. Product- or conditional structures are rarely considered.

5. IS A FULLY BEHAVIORAL ACCOUNT POSSIBLE ?

5.1 Possibility in the Case of Utility Sophistication:

Quantifying Out Salient Beliefs

Both the notion of revealed unambiguous beliefs as well as the axiom of Tradeo® Consistency

underlying utility sophistication have been de¯ned relative to an independently given imprecise

qualitative probability D0 : This relation has been interpreted as a set of likelihood judgements

that is attributed to the DM directly rather than being inferred from his preferences alone; note

however that, by compatibility of preferences with salient beliefs, the belief attribution must fail to be

falsī ed by observable behavior. By contrast, a \fully behavioral" point of view would abstain from

specifying a salient imprecise qualitative probability D0 as an independent primitive, and requires

that all concepts be de¯nable in terms of conditions on preferences alone. Is a fully behavioral

account indeed possible ?

From a \fully behavioral" point of view, one can still make use of conditions such as Tradeo® Con-

sistency by \quantifying out" the DM's salient belief relation D0 : Specī cally, one can determine

from preferences whether there exists some minimally complete imprecise qualitative probability D0

relative to which preferences are utility sophisticated ; call such preferences potentially utility sophis-

ticated . Prima facie, potential utility sophistication may be a weak and relatively unsatisfactory

concept to the extent that there is little reason to attribute one of the associated imprecise quali-

tative probabilities to the DM. In particular, suppose that a given preference relation is compatible

with both D0
1 and D0

2; but not with their union. Then, since there can be no evidence on preference

grounds for privileging one over the other, there is little support for attributing either imprecise

qualitative probability since there is no support for attributing them jointly. Fortunately, to due

the specī c content of utility sophistication, this issue in fact never arises. This follows from the

following Proposition, which in turn follows directly from Proposition 4 and Corollary 2 above.

36Similar arguments have in fact been made before in Klibano® (2001a,b) and Nehring (1999).
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Proposition 5 Suppose that there exist an imprecise qualitative probability D0 such that % is reg-

ularly utility sophisticated with respect to D0 : Then % is regularly utility sophisticated with respect

to the revealed unambiguous belief relation D¤ associated with D0 : Moreover, D¤ contains any

minimally complete imprecise qualitative probability D0 with respect to which % is regularly utility

sophisticated :

Thus, by Proposition 5, potentially utility sophisticated preferences are utility sophisticated rela-

tive to a unique maximal imprecise qualitative probability; label this imprecise qualitative probability

(speci¯ed in the Proposition) D¤us : We suggest D¤us as the canonical fully behavioral de¯nition

of revealed unambiguous beliefs. The superscript \¤us" indicates that this de¯nition is applicable

only to potentially utility sophisticated preferences; moreover, note that the imprecise qualitative

probability D¤us is determined from information about multi-valued preferences, not from prefer-

ences about bets alone. This is the price paid for achieving a fully behavioral de¯nition of revealed

unambiguous beliefs.37

5.2. Impossibility Without Utility Sophistication

Theorem 3 asserts for a regular, minimally unambiguous con¯dence relation ¸ the existence of

a unique maximal imprecise qualitative probability D such that ¸ is compatible with it, and such

that D extends D0; that is: such that revealed unambiguous beliefs are compatible with salient

unambiguous beliefs. Theorem 3 does not exclude the possibility that there exists some other

imprecise qualitative probability D0 such that ¸ is compatible with it, while it is not compatible

with any imprecise qualitative probability containing both D and D0 : Say that the con¯dence relation

¸ is wel l-behaved if no such D0; i.e. if D¤ is the unique maximal imprecise qualitative probability

D such that ¸ is compatible with it. Label this imprecise qualitative probability D¤¤; to denote

its independence from the salient imprecise qualitative probability D0 : For well-behaved con¯dence

relations ¸; D¤¤ suggests itself as a fully behavioral de¯nition of revealed unambiguous beliefs,

generalizing the de¯nition of D¤us in a natural way. Two questions arise naturally, a mathematical

and a conceptual one.

The mathematical one asks when minimally unambiguous con¯dence relations are well-behaved

(i.e. when D¤¤ exists). The answer to this we do not know at this point. It seems likely that
37The possibility of de¯ning a \revealed unambiguous preference" relation in fully behavioral terms partly motivated

Ghirardato et al. (2001c) utility sophisticated point of view.
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any uniform con¯dence relation is well-behaved; for all we know, it might even be that any regular

minimally unambiguous con¯dence relation is well-behaved. (Note that in this case, Proposition 5

above would become redundant).

The second question is conceptual: If a minimally unambiguous con¯dence relation is well-

behaved, does the relation D¤¤ indeed provide a satisfactory fully behavioral de¯nition of revealed

unambiguous beliefs? This conceptual question becomes especially transparent in the case in which

D¤¤ is complete, i.e. when ¸ is a qualitative probability; under Revealed Stochastic Dominance

(applied to D¤¤); this is the case of \probabilistically sophisticated" preferences discussed in partic-

ular by Epstein (2001) and Ghirardato-Marinacci (2001a) . For speci¯city, consider preferences that

have a CEU representation with Choquet capacity º = Á ± ½; where ½ is a convex-ranged probability

measure on §; and Á is a monotone, strictly convex mapping from [0; 1] onto [0; 1]: Such preferences

have two natural pure interpretations: on the one hand, the DM's belief may be free of ambiguity,

being given by the additive subjective probability ½; and the monotone transform Á may re°ect

his probabilistic risk-aversion. Alternatively, the DM could be probabilistically risk-neutral38 but

ambiguity averse and evaluate acts according to the minimum expected utility of the core of the

capacity º: In the ¯rst case, all events would be unambiguous, the second none. On the basis of

preferences alone, there seems to be no basis for preferring one interpretation; a satisfactory fully

behavioral de¯nition of unambiguous beliefs seems impossible. At best, one can give a behavioral

de¯nition on the basis of a \convention", for example by declaring probabilistic sophistication to

reveal absence of ambiguity by de¯nition.39

Note that this second, conceptual question could be raised in principle also about D¤us . But here,

it lacks force. For example, if D¤us is complete as above, not only must ¸ be a subjective probability,

but the DM must in fact be a SEU-maximizer; in this case, there is simply no basis for doubting the

unambiguity of his beliefs. The case of utility sophistication is fundamentally simpler, since there is

no need to disentangle ambiguity attitudes from probabilistic risk attitudes.

38And indeed utility sophisticated on a larger state-space in the manner of section 7.
39This in fact seems to be the line taken by Epstein-Zhang (2001). Ghirardato-Marinacci (2001a, section 6), on the

other hand, argue for the convention aligned with the second interpretation, explaining very clearly the unavoidability

of a conventional element in the absence of salient unambiguous events. They also point out how the existence

of salient unambiguous events allows to distinguish between the two possible interpretations of a probabilistically

sophisticated DM.
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6. ELLSBERGIAN AMBIGUITY AVERSION

A central concern of the literature on decision making under ambiguity is the de¯nition of an

appropriate concept of \ambiguity aversion". The ¯rst and most frequently used is Schmeidler

(1989)'s; it is motivated by the requirement that \substituting ob jective mixing for subjective mixing

makes the decision maker better o®" (p. 582).40 In the Anscombe-Aumann-framework in which it

was formulated, this amounts simply to convexity of preferences; for recent translations into a Savage

framework, see Casadesus-Masanell et al. (2000) and Ghirardato et al. (2001d). Recently, Epstein

(1999) as well as Ghirardato-Marinacci (2001a) have argued that the Schmeidlerian de¯nition is

intuitively unsatisfactory, and have proposed alternative de¯nitions; both proposals derive a notion

of \absolute" ambiguity aversion from a de¯nition in terms of \comparative ambiguity aversion".

None of these de¯nitions establishes a clear link between the formal de¯nitions and the intuitions

derived from the classical Ellsberg-type urn problems which presumably were the origin of the notion

of ambiguity aversion in the ¯rst place. Ghirardato-Marinacci (2001a) establish the appropriateness

of their de¯nition to the Ellsberg 3-color problem; Epstein (1999, p.592) likewise uses that problem

to illustrate the intuitive content of his de¯nition but suspects that \a general formal result seems

unachievable". In this section, we shall show that this lacuna can be remedied in the presence of

minimally complete salient beliefs. By considering two classes of Ellsberg-style experiments appro-

priately generalized, we obtain natural analogues to the two types of de¯nitions described above.

Ellsberg's two-urn problem motivates the following \minimal" de¯nition of ambiguity aversion.41

De¯nition 3 ¸ is minimally ambiguity averse if, for no A 2 § and T 2 ¤¤; A > T and

Ac > T c:

Minimal ambiguity aversion precludes a simultaneous preference for betting on ambiguous event

A over some unambiguous event T; combined with a preference for betting on the non-occurrence of

A over the non-occurrence of T ; this would contradict the typical outcome of Ellsberg's (1961) two-

urn experiment, where exactly the opposite happens: the DM prefers to bet over any unambiguous

event (T or T c) over betting on any of the ambiguous event A and Ac.

Minimal ambiguity aversion is easily seen to be equivalent to requiring of the con¯dence measure

that for all A 2 § : ½ (A) + ½ (Ac) · 1: This de¯nition is rather weak and does not appear very

40An adaptation of Schmeidler's de¯nition to the present context is stated below as Axiom 21.
41In this and the following de¯nitions, we rely on the revealed belief relation D¤; in view of Fact 2 above, we could

have used the DM's salient beliefs D0 instead throughout.
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useful. Hence, in the following, we will consider more general de¯nitions of ambiguity aversion that

maintain the two basic features of the above distinctions: ambiguity aversion is de¯ned in terms

of betting preferences only, and more specī cally, it imposes conditions on preferences comparisons

between bets on ambiguous and unambiguous events.

A natural move is to consider urns with arbitrarily many colors.

De¯nition 4 ¸ is weakly ambiguity averse if there do not exist partitions of £ fAigi=1;::;n and

fTigi=1;::;n such that Ti 2 ¤¤ for all i; and such that Ai > Ti for all i · n:

In the language of urns, weak ambiguity aversion precludes the following preferences in an exper-

iment in which a ball is drawn from each of two urns containing balls with n di®erent colors labeled

i = 1; ::; n; a T-urn which contains the n colors in known frequencies, and an A-urn whose compo-

sition is \unknown". Then weak ambiguity aversion rules out that the DM, when asked to decide

whether to bet on some color i as the outcome of a draw from urn A or to bet on the same color as

that of the ball drawn from urn T, he prefers to bet on the ambiguous urn A over the unambiguous

urn T, for every color i. Weak ambiguity aversion has the following attractive characterization.

Proposition 6 For a regular con¯dence relation ¸; the following three conditions are equivalent.

1. ¸ is weakly ambiguity averse;

2. For any partition fAigi=1;::;n of £;
P

i ½ (Ai) · 1;

3. there exists an additive probability measure ¼ 2 ¢ (£) such that ½ (A) · ¼ (A) for al l A 2 §:42

In other words, weak ambiguity aversion is equivalent to ½ possessing a non-empty core. The

key to proving the assertion is to note that under regularity, the second condition is equivalent to

\balancedness" of ½ in the mixture-space extension, which is the classical characterizing condition

of non-emptiness of the core; see, for example, Kannai (1992). Minimal unambiguity of preferences

is critical to the validity of the characterization. Applied to preferences over bets, both the Epstein

(1999) and Ghirardato-Marinacci (2001a) proposals amount to saying that a con¯dence relation

is ambiguity averse if it is \more ambiguity averse" (in their sense) than some precise qualitative
42The proofs of the results in this section are fairly straightforward and will be supplied in future versions of this

paper.
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probability, which is equivalent to non-emptiness of the core.43 Proposition 6 strengthens the appeal

of their de¯nition by showing that it captures a uni¯ed set of intuitions about ambiguity aversion.

Moreover, weak ambiguity aversion can be tested directly, while a comparative de¯nition cannot .

Yet weak ambiguity aversion does not exhaust our relevant intuitions, since it is limited a priori

in its power by comparing ambiguous events to unambiguous ones only. Potential implications of

\ambiguity aversion" (in a preformal sense) for comparisons of ambiguous events do not come into

view, while they are essential to Schmeidlerian de¯nitions of ambiguity aversion.

A more general viewpoint with an attendant stronger de¯nition of ambiguity aversion is obtained

by considering comparisons of ambiguous with conditionally unambiguous events. To motivate the

following de¯nition, consider an Ellsberg-style experiment with one urn containing ¯ve colors white,

yellow, red, green, and black. The DM is told that there are 50 white or yellow, and 50 red or green

balls, i.e. in total 100 non-black balls; he is not given any other information about the composition

of the urn; in particular, he is not informed of the number of black balls. If given a choice between

bets on any two non-black colors, an ambiguity-averse DM might reason as follows: my decision

matters only if the ball drawn is not black. In that case, I have a ¯fty-¯fty chance of winning if I

bet on \white or yellow" (or on \red or green"), but only an ambiguous prospect otherwise. Hence

the former bets are more attractive than the latter. In this example, it is thus natural to view the

DM as displaying \ambiguity seeking" if instead he prefers to bet on \white or red" over betting on

\white or yellow", and simultaneously prefers to bet on \yellow or green" over betting on \red or

green".

This intuition is captured by the following general de¯nition.

De¯nition 5 ¸ is ambiguity averse if, for no A; A0;T ; T 0 2 § such that A + A0 = T + T 0 and

T ´¤ T 0 : A > T and A0 > T 0:

One obtains the following representation theorem.

43In the CEUmodel with capacity À =Á ±½; hence with ½ = Á¡1 ±À; this is just Epstein's characterization (Lemma

3.4, p. 589). Since the Ghirardato-Marinacci de¯nition appeals an expected-utility benchmark, it is applicable here

only under EUmaximization over unambiguous acts, in which case Á = id and thus À = ½; hence their characterization

in terms of non-emptiness of the core of À is equivalent to that of the core of ½:
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Theorem 5 For a regular con¯dence relation ¸; the following three conditions are equivalent.

1. ¸ is ambiguity averse;

2. ½ is super-additive, i.e. ½ (A + B) ¸ ½ (A) + ½ (B) for all A; B:

3. There exists ¦ 2 K(¢(§)) such that, for all A 2 §;

½(A) = min¼2¦ ¼(A):

In this case, indeed ¦ = ¦¤ ; and ¼ 2 ¦¤ i® ¼ (A) ¸ ½(A) for all A 2 §:

According to the ¯rst part of the Theorem, the \con¯dence" of an ambiguity-averse DM in an event

is determined by its lower probability, relative to some belief set ¦; according to the second part, this

set must consist exactly of those probability measures that are compatible with his unambiguous

beliefs. The ¯rst part is shown by noting that ambiguity aversion entails a weak form of preference

convexity in the mixture-space extension, and by then appealing to Gilboa-Schmeidler's (1989)

classical result. The second part is new; note that it implies that the revealed set of priors ¦¤ is

uniquely identī ed by the associated lower-probability function A 7¡! min¼2¦¤ ¼(A) it induces; this

hinges critically on the range convexity of ¦¤. 44

In view of the subadditivity characterization in part 2) of Theorem 5, it is easily verī ed that

under regularity, ambiguity aversion is equivalent to either of the following two conditions.

Axiom 19 (Complementarity)

For all A; B 2 § and T; T 0 2 ¤¤ : A + T and B + T 0 imply A + B ¸ T + T 0:

This condition captures the intuition that the ambiguities of disjoint events can never reinforce

each other, but that they can cancel each other out.

Axiom 20 (Preference for Randomization over Bets)

For any A;B 2 § such that A ¸ B and T 2 ¤¤ such that T \ D ´¤ T c \ D for any D 2
fAnB; A + B; BnA; (A + B)cg : (T \ A) + (T c \ B) ¸ B.

Here the event T is speci¯ed to have conditional probability 1
2 irrespective of the joint realization

of A and B ; thus the event (T \ A) + (T c \ B) can be viewed as describing a random bet that is

paid out in the event A or in the event B; contingent on the outcome of the \fair coin toss" T .
44In a ¯nite state setting, for example, only very special classes of beliefs are generated by their lower-probability

function; see, for example, Walley (1991, section 4.6.1)
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Preference for Randomization over Bets can be viewed as a version of ambiguity aversion a la

Schmeidler restricted to preferences over bets. Schmeidler's original de¯nition which applies to

general multi-valued acts it can be reformulated here as follows.

Axiom 21 (Preference for Randomization over Multi-Valued Acts)

For any f; g 2 F such that f % g and any T 2 ¤¤ such that T \ D ´¤ T c \ D for all D contained

in the algebra generated by f and g : [f; T ; g; T c] % g.

If all departures from SEU maximization are due to ambiguity, i.e. if preferences are \utility

sophisticated", then our notion of ambiguity aversion entails Schmeidler's; this follows from Propo-

sition 7 below.45 Otherwise, it is substantially weaker. For example, our de¯nition is entirely

consistent with the CEU model, while Schmeidler's is not, as shown in Klibano® (2001a).

Note also that ½ viewed as a capacity (normalized to be additive on salient unambiguous events ¤0

as assumed throughout) need not be \convex" but merely \exact", that is: to be a lower probability

in the sense of Theorem 5. Indeed, one can show that if ½ is convex and regular with respect to a

minimally complete D0; then it must be additive. Hence the misgivings of both Ghirardato-Marinacci

(2001a) and Epstein (1999) about the counterintuive convexity implications on the capacity entailed

by a Schmeidlerian de¯nition do not apply to the present one, while their misgivings about convexity

itself are fully borne out.

From Theorems 5 and 4, we obtain the following characterization of the classical Minimum Ex-

pected Utility (MEU) model which is given by the following representation:

f % g if and only if min
¼2¦

E¼ (u ± f ) ¸ min
¼2¦

E¼ (u ± g) ;

for appropriate utility functions u and belief sets ¦.

Proposition 7 Let % be a solvable, minimally unambiguous preference ordering. Then % has a

Minimum Expected Utility representation if and only if it is ambiguity averse, tradeo® consistent,

Archimedean and satis¯es P4.

The MEU model has been axiomatized ¯rst in the Anscombe-Aumann-framework by Gilboa-

Schmeidler (1989), and recently in a Savage framework by Casadesus-Masanell et al. (2000) and
45Klibano® (2001b), for example, is explicit about the implicit \utility sophisticated" character of Schmeidler's

notion by saying that \one may interpret this requirement as saying that the individual likes smoothing expected

utility across states" (p. 290).
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Ghirardato et al. (2001d). Proposition 7 has advantages in the conceptual transparency and mini-

mality of its behavioral/rationality assumptions, especially in appealing to P4 rather than \certainty-

independence" type assumptions, and by relying on a notion of ambiguity aversion de¯ned in terms

of betting preferences; on the other hand, it pays a price in the form of stronger structural assump-

tions: Gilboa-Schmeidler (1989) do not need solvability, while Casadesus-Masanell et al. (2000) and

Ghirardato et al. (2001d) make do without a richness of states requirement.

7. SMALL STATE SPACES

7.1. Motivation: \Descriptive" Applications

In the literature, richness assumptions are frequently criticized.46 This criticism is viewed to have

particular force in \descriptive" applications; see, for example Epstein (1999). While the meaning of

\descriptive" is often not entirely clear47, the underlying intention seems to be that typically, only

preferences over acts de¯ned in terms of a limited set of states are \observed" or speci¯ed in an

economic model. Hence it is deemed desirable to de¯ne and analyze fundamental concepts such as

ambiguity aversion or unambiguous beliefs / events in terms of \observed" behavior/preferences in

the context of the given \observed" state space. That state space may be small; for example, in the

analysis of Ellsberg experiments, the relevant state space may consist merely of the possible colors

of the balls in the urn.48

While we concur with the interest of exploring the behavioral consequences of fundamental notions

in speci¯c, possibly very restricted \observed contexts", it does not seem to be appropriate to con¯ne

oneself from the outset to such contexts if the task is to clarify fundamental conceptual questions,

especially if they have normative content. To address them, \richness" of the framework is generally

desirable, as it gives maximum play to the substantive assumptions. Indeed, richness assumption

may prove to be indispensable; for example, as argued in section 5, it simply does not seem to be

possible to provide a sound general de¯nition of \revealed unambiguous beliefs" without them.

For conceptual and normative purposes, it is entirely su±cient that preferences be \observable
46With respect to the AA approach in particular, these express unhappiness about the inclusion of \extraneous"

random devices.
47For Epstein (1999, p. 601), for example, observability in laboratory experiments does not constitute \descriptive-

ness" per se.
48Note that if actual observed-ness is taken seriously, it seems clear in any case that the state space needs to be

¯nite. Hence, according to this line of criticism, even Savage's own theory goes beyond what is actually \observed".
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in principle", that is: correspond to choices in well-de¯ned hypothetical choice situations; actual

observedness is not needed. As a result, a richness assumption such as Equivisibility seems per-

fectly viable; for example, °eshing it out in Anscombe-Aumann manner in terms of an extraneous

continuous random device is a way of constructing such well-de¯ned hypothetical choice situations.49

7.2. In the Background: A Rich State-Space

To integrate the two viewpoints, the \conceptual" and the \descriptive", we shall now assume

that the DM \has" a minimally unambiguous preference relation that is observable in principle, but

that the analyst observes only preferences over acts measurable with respect to some coarser algebra

§obs. For speci¯city, assume §obs to be the algebra generated by some ¯nite partition S of £; the

elements of the partitions correspond to the observable \states". The observable preference relation

%obs is the restriction of % to F (§obs) £ F(§obs): Assume that the DM's underlying preferences %

are regular utility sophisticated . In view of Theorem 4 and Proposition 3, his observable preferences

%obs have a representation of the form

f %obs g if and only if I(u ± f ) ¸ I(u ± g); (7)

where u : X ! R has range [0; 1] and I : [0; 1]S ! R is monotone and c-linear. Indeed, I is simply

the restriction of b½ to B(§obs; [0; 1]):

While it will not be possible in general to recover the entire underlying preference relation %, it

turns out to be possible to recover a substantial, minimally unambiguous fragment of that relation,

namely its restriction to acts measurable with respect to the \mixture-space (of events) generated

by §obs" M (§obs) : M (§obs) is de¯ned as follows:

M (§obs) := fA 2 § j A \ S 2 ¤0
S for all S 2 Sg:

Let %M(§obs) and D0
M(§obs)denote the restrictions of % respectively D0 to M (§obs) :

Note that by construction, M (§obs) is a ¸-system, and that %M(§obs) is compatible with D0
M(§obs)

which is minimally complete. To see that %M(§obs) can be uniquely inferred from %obs , one merely
49Indeed, this view seems to concord with the mainstream of the decision theoretic tradition following Ramsey,

deFinetti, and Savage. In particular, the central notion of \revealed preference" in that tradition requires de¯ni-

tion/construction of concepts in terms of choices that are observable in principle rather than observed de facto in

any serious sense. (It goes without saying that this discussion deserves more detail in its own right, and thus must

be taking with a grain of salt in its present form. Here, its purpose is essentially motivational, to provide a starting

point and context for the subsequent analysis.)
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needs to verify that the restriction of ½ to M (§obs) can be uniquely inferred by utility sophistication.

But this follows from the identity

½(A) = ½(
X

S2S
A \ S) = b½

ÃX

S2S
¼0

S (A \ S) 1S

!
= I

ÃX

S2S
¼0

S (A \ S) 1S

!
:

In the Anscombe-Aumann example of section 2, if §obs is the algebra §1; then M (§obs) = §1 £
§2; thus, in this case, the entire preference relation can be recovered from the directly observed

preferences.

The upshot of this discussion is that preferences over the rich state M (§obs) can be inferred from

observable choice behavior once it is known that the DM's full preferences are utility sophisticated. As

a result, the central analytic concepts remain well-de¯ned in terms of observed preferences even when

§obs is small.

7.3. Priors Revealed on Small State Spaces

We shall now apply these ideas to characterizing unambiguous beliefs in terms of observed pref-

erences under the assumption of utility sophistication. Since with small state spaces it is generally

not possible to characterize beliefs in terms of an imprecise qualitative probability, one must do this

directly in terms of a multi-prior representation.

Since the DM's beliefs on the rich space M (§obs) can be inferred from observable preferences,

it is natural to de¯ne the \observable set of priors" ¦us
%obs

as the restriction of the set of priors

(revealed on M (§obs)) ¦³
¸M(§obs)

´¤ 2 K(¢(M (§obs))) to the observable event space §obs : To

de¯ne it formally, let rest§0¦ as frest§0¼ j ¼ 2 ¦g; where rest§0 ¼ is the restriction of ¼ to §0 µ §:

De¯nition 6 ¦us
%obs

:= rest§obs¦³
¸M(§obs)

´ ¤:

In view of Proposition 4, the observable set of priors ¦us
% obs

is the smallest set of priors such that

the DM's preferences coincide with the expected-utility preferences induced by the di®erent priors,

whenever these agree. This is stated by the following Proposition.

Proposition 8 ¦us
%obs

is the smallest set ¦ 2 K(¢(§obs)) such that

f %obs g whenever E¼ f ¸ E¼g for all ¼ 2 ¦: (8)

Conceptually, the set ¦us
% obs

describes the DM's set of priors over the observed state space §obs

inferred from his entire observed preference relation on the basis of his assumed utility sophistication.
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Note that by Proposition 8 ¦us
%obs

does not depend on the salient belief relation D0
M(§obs) implicitly

used in its de¯nition.

7.4. From Unambiguous Beliefs to Unambiguous Preferences.

Proposition 8 motivates the following de¯nition of the DM's \unambiguous preference" subrelation

%¤
obs as those preferences that are consistent with expected utility maximization relative to ¦us

% obs
:

De¯nition 7 f %¤
obs g i® E¼ (u ± f ) ¸ E¼ (u ± g) for all ¼ 2 ¦us

% obs
:

The unambiguous preference subrelation %¤
obs (hence ¦us

% obs
as well) can be characterized in be-

havioral terms directly, paralleling Theorem 3. To do this, assume for simplicity that the DM is

risk-neutral, i.e. that X = [0; 1] and u = id: As in section 3, %0 is independent if f %0 g if and

only if ®f + (1 ¡ ®)h %0 ®g + (1 ¡ ®)h for all f; g; h and ® 2 (0; 1]:50

Proposition 9 Suppose that %obs is c-linear, continuous and risk-neutral. Then %¤
obs is the maxi-

mal independent subrelation of %obs : Moreover, f %¤
obs g if and only if ®f+(1¡®)h %obs ®g+(1¡®)h

for all h and ® 2 (0; 1]:

The ¯rst characterization of %¤
obs as the maximal independent subrelation of %obshas been pro-

posed before as a de¯nition of unambiguous preferences in an Anscombe-Aumann framework in

Nehring (1996), which also contained a variant of the second characterization.51

The present approach improves upon these two contributions ¯rst of all in its greater generality,

by providing a single uni¯ed de¯nition of unambiguous beliefs which induces the above notion

if preferences are utility sophisticated. It has signī cant advantages even if utility sophistication

is assumed as a maintained (rationality) assumption. In particular, utility sophistication can be

formulated explicitly and hence behaviorally verī ed only in a rich setting via Tradeo® Consistency.

By contrast, in a small state-space52, \utility sophistication" can be only appealed to as an informal,

interpretative assumption to the e®ect that all departures from EU maximization are attributable

to ambiguity. Furthermore, the relation %¤
obs itself is a preference relation in contrast to D¤ which

is a belief relation.

Paralleling Proposition 1, one can characterize unambiguous events in a variety of equivalent ways.
50In the general, non-risk-neutral case, independence can be de¯ned in the manner of Ghirardato et al. (2001d).
51The exact form of the second characterization has also recently been arrived at independently by Ghirardato et

al. (2001c).
52That is: in a small state space that is not extended to a rich one in the manner of subsection 7.2.

41



Proposition 10 Suppose that %obs is c-linear, continuous and risk-neutral. Then the following

three statements are equivalent .

1. ¼ (A) = ¼ 0 (A) for all ¼; ¼0 2 ¦us
%obs

:

2. For all constant acts f ; 1A %¤
obs f or f %¤

obs 1A :

3. For all acts f; g and f 0; g0 such that f ¡ g is fA; Acg-measurable and f ¡ g = f 0 ¡ g0, f %obs g

if and only if f 0 %obs g0:

The second condition has been independently proposed as a de¯nition of revealed unambiguous

events by Ghirardato et al. (2001c), who also show its equivalence to the ¯rst. The third character-

ization of an unambiguous event has been proposed before in Nehring (1999). It has the following

intuitive interpretation. Think of f ¡ g as the incremental bet involved in deciding between f and

g; if indeed the DM assigns an unambiguous probability to the event A; the incremental bet has

an unambiguous expectation which determines the ranking between f and g; as well as the parallel

ranking between f 0 and g0.
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APPENDIX: PROOFS.

Proof of Fact 1.

Union Invariance equivalent to c-additivity. That c-additivity implies Union Invariance is straight-

forward. For the converse, write Y =
P

i2I yi1Ei : Since Y · (1 ¡ c)1; there exist A 2 [Y ] and

S; T 2 ¤0 such that ½(S) = ½(A) · c; ½(T) = c; and T is disjoint from both A and S: To see

this, take A =
P

i2I Ai with Ai 2 ¤0
Ei

and ¼0(Ai=Ei) = yi ; S =
P

i2I Si with Si 2 ¤0
Ei

and

¼0(Si=Ei) = ½(A); and T =
P

i2I Ti with Ti 2 ¤0
Ei

and ¼0(Si=Ei) = c such that Ti is disjoint

from both Ai and Si; for all i 2 I; such Ai ; Si; and Ti exist by the range convexity of ¦0: Clearly,

A + T 2 [Y + c1]: Since A ´ S by assumption, A + T ´ S + T by Union Invariance; which is

tantamount to ½ (A + T ) = ½ (S + T) = ½ (S) + ½ (T ) = ½ (A) + c: Hence

b½ (Y + c1) = ½ (A + T ) = ½ (A) + c = b½ (Y ) + c:

Splitting Invariance equivalent to positive homogeneity.

It is clear that positive homogeneity implies Splitting Invariance; to show the converse, a similar

technique as in part establishes that Splitting Invariance implies positive homogeneity for rational

®. This implies positive homogeneity for arbitrary ®; since by monotonicity of b½;

®b½ (Y ) = supfb½ (¯Y ) j ¯ · ®; ¯ 2 Qg · b½ (®Y ) · inffb½ (¯Y ) j ¯ ¸ ®; ¯ 2 Qg = ®b½ (Y ) ;

and thus b½ (®Y ) = ®b½ (Y ) : ¤

Proof of Theorem 3. Consider the extension of b̧ of ¸ to the mixture-space B(§; [0; 1]) asso-

ciated with D0 : De¯ne the following subrelation of b̧ :

X b̧ ¤
Y if and only if, for all n 2 N and Z 2 B(§; [0; 1]) :

1
n

X +
n ¡ 1

n
Z b̧ 1

n
Y +

n ¡ 1
n

Z:

Lemma 1 If X b̧ ¤
Y; then X 0 b̧ ¤

Y 0 for all X 0; Y 0 such that X 0 ¡Y 0 = 1
° (X ¡ Y ) for some ° 2 R++ :

Consider X; Y such that X b̧ ¤
Y: By continuity, it su±ces to prove the assertion for rational °.

To verify it, de¯ne

Z (¯ ) =
1

1 ¡ ¯°

·
¯(X 0 ¡ °X) + (1 ¡ ¯)

1
2
1
¸

:

Clearly, for su±ciently small ¯; Z (¯) 2 B(§; [0; 1]):
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Now de¯ne

X 00 = ¯°X + (1 ¡ ¯°)Z (¯ ) ; and (9)

Y 00 = ¯°Y + (1 ¡ ¯°)Z (¯) :

With a bit of algebra, it is easily veri¯ed that

X 00 = ¯X 0 + (1 ¡ ¯)
1
2
1; and (10)

Y 00 = ¯Y 0 + (1 ¡ ¯ )
1
2
1:

Take a su±ciently small ¯ with the property that ¯° = 1
n for appropriate n: By the assumption and

(9), X 00 b̧Y 00: Hence by c-independence and (10), X 0 b̧Y 0; verifying the Lemma.

From the Lemma, it follows immediately that b̧ ¤
satis¯es independence, hence that it is the

maximal independent subrelation of ¸ :

Note that one can write b̧ ¤
as \ b̧n;Z ; where b̧n;Z is given by X b̧n;ZY i® 1

nX+ n¡1
n Z b̧ 1

n Y + n¡1
n Z:

Thus b̧ ¤
is transitive and continuous, since these properties are preserved by taking intersections;

it is evidently monotone as well.

Translating b̧ ¤
back into § yields the ordering D¤ described in part ii) of the Theorem. By the

above results, it is the maximal imprecise qualitative probability compatible with ¸ and containing

¸0 :

As to part iii), it follows from Theorem 2 and part i) of this Theorem that ¦¤ is the smallest

closed, convex set ¦ such that A ¸ B; whenever ¼(A) ¸ ¼(B) for all ¼ 2 ¦: By modus tollens and

the completeness of ¸, the latter is however equivalent to the condition that if A > B; there exists

¼ 2 ¦ such that ¼ (A) > ¼ (B) ; as desired. ¤

Proof of Proposition 1.

i) 1. is equivalent to 2.: straightforward.

ii) 1. is equivalent to 3. Suppose A ´¤ T for some T 2 ¤0: By the (proof of ) Theorem 3, then also

A0 + C + T 0 + C for any A0 2 ¤0
A and T 0 2 ¤0

T such that ¼0(A0=A) = ¼0(T 0=T ) =: ® 2 (0; 1]: Hence

by c-linearity, ½ (A0 + C) = ½ (T 0 + C ) = ½ (T 0) + ½ (C ) = ½ (A0) + ½ (C) : The converse implication

is obtained by reverting this inference, quantifying over A0 and C:

iii) 3. is equivalent to 4.
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It is straightforward that 3. implies 4. To verify the converse, suppose that 3. is violated, i.e.

that there exists A; B 2 §;A0 2 ¤0
A disjoint from B , and " 6= ; such that

½(A0 + B) = ½(A0) + ½(B) + 2": (11)

Consider the case of " > 0; the case of " < 0 is similar. Pick n 2 N such that 1
n < 1 ¡ ½(B) ¡ ";

and pick A00 2 ¤0
A0 and B 00 2 ¤0

B 0 such that ¼0(A00=A0) = ¼0(B 00=B 0) = 1
n : Moreover, take T 2 ¤0

disjoint from A00 such that

½ (T) =
1
n

(½(B) + ") ; (12)

such T exists by the range convexity of ¦0: By c-linearity,

½(A00 + T) =
1
n

½(A0) + ½ (T) : (13)

Likewise, since A00 + B 00 2 ¤0
A0+B with ¼ 0(A00 + B 00=A0 + B) by construction, by positive homo-

geneity and (11) one has

½(A00 + B 00) =
1
n

½(A0 + B) =
1
n

(½(A0) + ½(B) + 2") : (14)

By (12) and positive homogeneity, ½ (T ) > 1
n½(B) = ½(B 00); and thus

T > B 00:

On the other hand, by (13) and (14), ½(A00 + T) ¡ ½(A00 + B 00) = 1
n½(A0) + 1

n (½(B) + ") ¡
1
n (½(A0) + ½(B) + 2") = ¡ 1

n" < 0; hence

A00 + T > A00 + B 00;

the desired violation of 4., since A00 2 ¤0
A as is easily veri¯ed. ¤

Proof of Theorem 4.

(Necessity)

That the representation (5) entails Tradeo® Consistency follows from the Conditional Linearity

property of b½ stated in the following Lemma. Say that Z 2 B(§; [0; 1]) is D0-unambiguous condi-

tional on the ¯nite partition S if, for all Si 2 S ; Z1Si is ¤0
Si

-measurable; let B0(§=S ; [0; 1]) denote

their class. For Z 2 B0(§=S ; [0; 1]); the expectation conditional on S E0(Z=S) is a well-de¯ned

random variable given by

E0(Z=S) :=
X

Si2S
1Si

0
@ X

z2[0;1]

z¼0(fµ 2 Si j Z (µ) = zg=Si)

1
A :
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Lemma 2 (Conditional Linearity) For Z 2 B0(§=S ; [0; 1]); b½ (Z) = b½ ¡
E0(Z=S)

¢
:

Note that the Lemma asserts in particular that b½ restricted to unambiguous random variables is

the ordinary expectation with respect to ¼0 or equivalently ½:

To verify Lemma 2, write Z as
P

i;j zij1Aij with Si =
P

j·nj
Aij for all i: Consider any C 2 [Z ]

such that ¼ (C \ Aij ) = zij¼ (Aij) for all i; j and all ¼ 2 ¦: Then in fact, for all i and all ¼ 2 ¦;

¼ (C \ Si) =
P

j ¼ (C \ Aij ) =
P

j zij
£
¼0 (Aij=Si)¼ (Si)

¤
=hP

j zij¼0 (Aij=Si)
i
; which implies that C 2 [E0(Z=S)]. Thus indeed C 2 [Z ] \ [E0(Z=S)]; which

establishes the Lemma in view of the assumed compatibility of ½ with D0. ¤

Necessity of the other conditions is straightforward.

(Su±ciency).

By the Archimedean axiom, Solvability and compatibility with D0; it is straightforward to see

that there exists a (unique) monotone functional I : B(§; [0; 1]) ! [0; 1] and a (unique) function u

from X onto [0; 1] such that

i) I(®1) = ® for all ® 2 [0;1];

ii) I(1A) = ½(A) for all A 2 §;

iii) f % g i® I(u ± f ) ¸ I(u ± g) for all f; g 2 F .

By i), ii) and iii), for any x 2 X; u(x) = ½(T ) for any T such that x » [x; T c; x; T ]:

To show that in fact I = b½, we shall ¯rst consider the case of dyadic-valued utilities; a number is

dyadic if ® = `
2m ; where m is natural or zero, and ` is an odd integer or zero; m will be referred to

as the (dyadic) order of ® denoted by j®j. Let D denote the set of dyadic numbers in (0; 1]:

Lemma 3 For any ® 2 D; w; x; y 2 X; A;B; T 2 § such that ¼0(T ) = ¼0(A=B) = ® : if w »
[x; T ; y; T c ]; then [w; B; f¡B ; Bc] » [x; A; y; BnA; f¡B ; Bc]:

The Lemma is proved by induction on the order of ®: If the order of ® is 1, i.e. if ® = 1
2 ; the

assertion follows directly from Tradeo® Consistency. Suppose thus, that the Lemma has been shown

for all instances in which the order of the dyadic coe±cient ®0 is strictly less than that of ®: Assume

that ® ¸ 1
2 ; the case of ® < 1

2 can be proved essentially identically. Then ® = 1
2 + 1

2¯; where ¯ is

dyadic with j¯j = j®j ¡ 1:

Now de¯ne events T1; T2; T3 such that T1 + T2 + T3 = £; T2 + T3 = T; and ¼0(T2) = 1
2¯; hence

also ¼0(T3) = 1
2 and ¼0(T2=T1 + T2) = ¯:

Likewise, de¯ne events A1; A2;A3 such that A1+A2+A3 = B; A2 +A3 = A; and ¼0(A2=B) = 1
2¯;
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hence also ¼0(A3=B) = 1
2 and ¼0(A2=A1 + A2) = ¯: Such events exist by the range convexity of

¦D0 :

Take any D 2 ¤0 such that ¼0(D) = ¯; and z 2 X such that z » [x; D ;y; Dc]; such z exists

by Solvability. By the induction assumption, [z; T1 + T2; x; T3] » [y; T1; x; T2; x; T3]; hence by the

assumption on w also

[z; T1 + T2; x; T3] » [w; T1 + T2; w; T3]: (15)

Writing [x;A; y; BnA;f¡B ; Bc] = [y; A1;x; A2; x; A3; f¡B ; Bc]; this act is indi®erent to [z; A1 +

A2; x; A3; f¡B ; Bc] by induction assumption, which in turn is indi®erent to [w; A1+A2; w; A3; f¡B ; Bc ]

by Tradeo® Consistency and (15). By transitivity, we get

[x; A; y; BnA; f¡B ; Bc] » [w; B ; f¡B ; Bc ];

as desired. 2

By the lemma, we obtain the desired conclusion for dyadic-valued functions B(§; D [ f0g); which

we shall abbreviate to BD . Thus, take any Y 2 D[ f0g; by solvability, there exists f = [wi; Bi]i·n 2
F such that Y =

P
i·n u (wi) 1Bi = u ± f: For each i · n; pick Ai µ Bi such that ¼0(Ai=Bi ) =

u (wi) : By n¡fold application of Lemma 3, f »
h
x;

P
i·n Ai ; x;

³P
i·n Ai

´ci
i·n

: Hence I(Y ) =

I(u ± f ) = ½(
P

i·n Ai) = b½(Y ); the latter follows since
P

i·n Ai 2 [Y ] by construction.

Thus I = b½ on BD : To extend this to all of B(§; [0; 1]); one can reason as follows.

By monotonicity,

supfI(Z) j Z 2 BD ; Z · Y ) · I(Y ) · inffI(Z) j Z 2 BD ; Z ¸ Y );

hence by the validity of I = b½ on BD also

supfb½(Z) j Z 2 BD ; Z · Y ) · I(Y ) · inffb½(Z) j Z 2 BD ; Z ¸ Y ):

By monotonicity and continuity of b½;

supfb½(Z) j Z 2 BD ; Z · Y ) = b½(Y ) = inffb½(Z) j Z 2 BD ; Z ¸ Y );

whence I(Y ) = b½(Y ); as needed to be shown.

The ¯nal assertion of Theorem 4 follows directly from the following straightforward Lemma.

Lemma 4 For any Y 2 B(§; [0; 1]); A 2 [Y ]; and ¼ 2 ¦0 : ¼ (A) = E¼ Y:
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Proof of Proposition 3.

We shall show that P4 implies Union and Splitting Invariance; the converse follows from similar

reasoning.

Consider any A 2 § , ®; ¯ 2 [0; 1] such that ® + ¯ · 1; and A0 2 ¤0
A as well as B 2 ¤0

A \ ¤0
Ac

disjoint from A0 such that ¼0(A0=A) = ® and ¼0(B=A) = ¼0(B=Ac) = ¯. To establish Union and

Splitting Invariance, it clearly su±ces to show that ½(A0 + B) = ®½(A) + ¯.

Pick consequences x1; x2 such that u(x1) = ¯ and u(x2) = ® + ¯: By utility sophistication

and the induced conditional linearity property of b½ stated in the proof of Theorem 4; [x; A0 +

B ; x; (A0 + B)c ] » [x2; A;x1; Ac]. Moreover, exploiting P4, [x2; A; x1; Ac ] » [x2; T ; x1; T c ] for any

T 2 ¤0 with ½ (T ) = ½ (A) : Hence by transitivity ½(A0 + B) = I(1A0+B) = I (u ± [x2; T ; x1; T c]) =

E½ (u ± [x2; T ; x1; T c ]) =

(® + ¯) ½ (T ) + ¯½ (T c) = ®½ (A) + ¯: ¤

Proof of Proposition 4.

By Theorem 3, part 3, it is clear that ¦ ¶ ¦¤ for any ¦ 2 K(¢(§)) such that

f % g whenever E¼ (u ± f) ¸ E¼ (u ± g) for all ¼ 2 ¦: (16)

Thus one needs to show that indeed

f % g whenever E¼ (u ± f ) ¸ E¼ (u ± g) for all ¼ 2 ¦¤ :

To verify this, consider any A 2 [u ±f ] and B 2 [u ±g]: By utility sophistication, f % g if and only

if A ¸ B . In view of Lemma 3, if E¼ (u ± f ) ¸ E¼ (u ± g) for all ¼ 2 ¦¤; then also ¼ (A) ¸ ¼ (B) for

all ¼ 2 ¦¤; and therefore A ¸ B: Since by utility sophistication, f % g if and only if A ¸ B; one

obtains f % g as desired. 2

Proof of Proposition 8.

By Proposition 4, ¦³
¸M(§obs)

´ ¤ is the smallest set ¦ 2 K(¢(M (§obs))) such that, for all Y; Z 2
B(M (§obs) ; [0; 1]);

b½ (Y ) ¸ b½ (Z) whenever E¼Y ¸ E¼Z for all ¼ 2 ¦: (17)

Since I equals the restriction of b½ to §obs ; clearly for all Y; Z 2 B(M (§obs) ; [0; 1]);
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I (Y ) ¸ I (Z) whenever E¼Y ¸ E¼Z for all ¼ 2 ¦us
%obs

:

Hence

f %obs g whenever E¼f ¸ E¼g for all ¼ 2 ¦us
%obs

:

Consider any set ¦0 2 K(¢(§obs)) such that

I (Y ) ¸ I (Z) whenever E¼Y ¸ E¼Z for all ¼ 2 ¦0:

For any ¼ 2 ¢(§obs); de¯ne its extension to M (§obs) e¼ by setting

e¼ (A) =
X

S2S
¼ (S)¼0 (A \ S=S) ;

and de¯ne e¦ : K(¢(M (§obs))) as fe¼ j ¼ 2 ¦0g:

We shall verify that e¦ satis¯es (17), from which it follows that e¦ ¶ ¦³
¸M(§obs)

´¤; hence that

¦0 = rest§obs
e¦ ¶ rest§obs¦³

¸M(§obs)
´ ¤ = ¦us

% obs
; as needs to be shown.

It remains to verify that, for all Y; Z 2 B(M (§obs) ; [0; 1]);

b½ (Y ) ¸ b½ (Z) whenever Ee¼Y ¸ Ee¼Z for all e¼ 2 e¦:

But this is a straightforward from noting that, by Conditional Linearity of b½ (cf. Lemma 2); b½ (Y ) =

b½ ¡
E0(Y j S¢

) = I
¡
E0(Y j S¢

); as well as the identity Ee¼Y = Ee¼ E0(Y j S) = E¼E0(Y j S): ¤

Proof of Proposition 9. Omitted, since it parallels the ¯rst part of the proof of Theorem 3.

Proof of Proposition 10.

The equivalence of (1) and (2) is immediate from the de¯nitions. In view of Proposition 9, (2) is

clearly equivalent to the following condition on I: For all ® 2 (0; 1] and all f 2 B;

I(®1A + (1 ¡ ®)f ) = I(®I(1A)1 + (1 ¡ ®)f ) = I(®1A) + I((1 ¡ ®)f );

the second equality follows from c¡linearity.

By straightforward but slightly tedious manipulation, this condition in turn is equivalent to the

following. For all f; g and f 0; g0 such that f ¡ g is fA; Acg-measurable and f ¡ g = f 0 ¡ g0,
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I(f ) ¡ I(g) = I(f 0) ¡ I(g0): (18)

Equation (18) clearly implies part (3) of the Proposition. Conversely, suppose that (18) is violated,

i.e. that there exist f; g and f 0;g0 such that f ¡ g is fA; Acg-measurable and f ¡ g = f 0 ¡ g0, and

" > 0 such that

I(f ) ¡ I(g) > " > I(f 0) ¡ I(g0):

By construction, the range of each of the four RVs 1
2f + 1

4 ; 1
2f 0 + 1

4 ; 1
2 (g + ") + 1

4 ; 1
2 (g0 + ") + 1

4 is

contained in [0; 1]: Hence by c-linearity,

I(
1
2

f +
1
4

) ¡ I(
1
2

(g + "1) > 0 > I(
1
2
f 0 +

1
4
) ¡ I(

1
2

(g0 + "1) : (19)

But this means that 1
2f + 1

4 Âobs
1
2 (g + "1) as well as 1

2f 0 + 1
4 Áobs

1
2 (g0 + "1) ; in contradiction to

part (3). ¤
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