ECN 134

SOLUTION KEY \#1

1. (i) $\mu=.06$ and $\sigma=.10$: Find $P(X<0)=P\left(Z<\frac{0-.06}{.10}\right)=P(Z<-.6)$.

Turning to the normal tables we find that the probability associated with the critical value of -.6 is 27.43%. That is 27.43% of the time, and thus approximately 13 years, the return on corporate bonds was less than 0%.
(ii) $\mu=.11$ and $\sigma=.16$: Find out what the rate of return is for the worst five years of the S\&P. That is: what was the rate of return for the worst 10% of the last 48 years. We must solve for $a: .10=P(X<a)=P\left(Z<\frac{a-.11}{.16}\right)$. Turning to the normal tables we find that the critical value leading to a .10 outcome is -1.28 . Thus find a such that

$$
\begin{aligned}
-1.28 & =\frac{a-.11}{.16} \\
a & =-.09
\end{aligned}
$$

This tells us (approximately) that in the worst 5 years of the last 48 years the S\&P lost 9% or more.
2. $\mathrm{r}=0.12$.
i) $\mathrm{NPV}=-75,000+140,000 /(1+\mathrm{r})^{5}=-75,000+79,439.76=4,439.76$.
ii) Yes, since Venkatesh can borrow against the return from selling the land.
iii) Keeping future consumption unchanged means Venkatesh borrows against the entirety of his return, i.e., he borrows $140,000 /(1+0.12)^{5}=79,439.76$ at $\mathrm{t}=0$. So $\mathrm{C}_{0}=\mathrm{Y}_{0}-75,000+79,439.76=\mathrm{Y}_{0}+4439.76$. The effect on C_{0} is $4439.76=$ NPV.
iv) Venkatesh is willing to pay up to the PV of his returns on the land, or $\$$ $79,439.8$.
3. Work $(39,39) \rightarrow \mathrm{PV}_{W}=39+39 /(1+\mathrm{r})$;

Law school $(23,65) \rightarrow \mathrm{PV}_{L}=23+65 /(1+\mathrm{r})$.
Note that if the budget constraint is linear, Hang-Ro will allocate half of PV to each periods consumption.
$\underline{\text { Situation I }}: \mathrm{r}=30 \%$. Hence, slope $=-(1+\mathrm{r})=-1.3$ and $\mathrm{PV}_{W}=69, \mathrm{PV}_{L}=73$.
Her optimal consumption plan is;
Work: $\mathrm{C}_{0}=69 / 2=34.5, \mathrm{C}_{1}=(34.5)(1.3)=44.9 \rightarrow$ Lending $=39-34.5=4.5$.
Law: $\mathrm{C}_{0}=73 / 2=36.5, \mathrm{C}_{1}=(36.5)(1.3)=47.5 \rightarrow$ Borrowing $=36.5-23=13.5$.
Since the law school budget constraint is everywhere outside the work budget constraint, Hang-Ro will clearly choose Law school, independent of her preference.

Situation II: $\mathrm{r}=50 \%$. Hence slope $=-1.5$ and $\mathrm{PV}_{W}=65, \mathrm{PV}_{L}=66.3$.
i) In this situation, we need to know preferences. If preferences were different, she might choose L over W .
ii) Work: If borrowing was unrestricted, then

$$
\mathrm{C}_{0}=65 / 2=32.5, \mathrm{C}_{1}=32.5 \times 1.5=48.8
$$

This point is in fact on the relevant portion of the constraint, and Hang-Ro will consume at (32.5, 48.8), lending $39.5-32.5=6.5$, and attain a utility level of $32.5 \times 48.8=1586$.

Law: If borrowing were unrestricted, then

$$
\mathrm{C}_{0}=66.3 / 2=33.2, \mathrm{C}_{1}=33.2 \times 1.5=49.8
$$

Unfortunately, this point is infeasible. She will end up at the kink, borrowing 3 at $\mathrm{t}=0$, and consuming $\mathrm{C}_{0}=26, \mathrm{C}_{1}=60.5$, thus enjoying a utility of $26 \times 60.5=1573$. Now, she is slightly better off working right away.

