ECONOMICS 134 (NEHRING)

SOLUTION KEY \#4

Question 1

i) Bovine's fair stock price is $\frac{2.40}{0.06}=\$ 40$.
ii) Since RoM invests at its opportunity cost of capital, its fair stock price must also be $\$ 40$.
iii) RoM's dividends next year will be $0.25 \times 2.40=\$ 0.60$.
iv) RoM's dividends will grow at the rate $g=\pi \rho=0.06 \times 0.75=0.045$.
v) RoM's dividends are given by the expression

$$
D_{t}^{R o M}=0.6 \times 1.045^{(t-1)}
$$

To surpass Bovine Cash's dividends, they will need to quadruple over time; that is, dividends will need to double twice. At $\mathrm{g}=4.5 \%$, it takes approximately $\frac{0.7}{0.045} \approx 15.5$ years to double, and thus 31 years to quadruple. Hence RoM will surpass Bovine Cash's dividends in about 32 years from now. Remark: the exact solution is found by solving the equation

$$
0.6 \times 1.045^{(t-1)}=2.4
$$

vi) The PV of all future dividends is $\frac{0.6}{0.6-0.45}=\$ 40$. This must come out to the same value as ii), since the fair stock price is always equal to the PV of all future dividends.

Question 2

The hypothetical prices of U.S. Treasury Strips with face value $\$ 1000$ are approximately as follows.

Maturity	Price
$2-2009$	$\$ 987$
$2-2012$	$\$ 897$
$2-2018$	$\$ 640$

Using: $P V=P_{b}=\frac{F}{\left(1+r_{t}\right)^{t}}$
or: $\left(1+r_{t}\right)^{t}=\frac{F}{P_{b}}$
or: $1+r_{t}=\left(\frac{F}{P_{b}}\right)^{\frac{1}{t}}$
or: $r_{t=}\left(\frac{F}{P_{b}}\right)^{\frac{T}{t}}-1$
i) For $r_{1}: r_{1}=\left(\frac{1000}{987}\right)^{\frac{1}{1}}-1=1.32 \%$;
ii) For $r_{4}: r_{4}=\left(\frac{1000}{897}\right)^{\frac{1}{4}}-1=2.76 \%$;
iii) For $r_{10}: r_{10}=\left(\frac{1000}{640}\right)^{\frac{1}{10}}-1=4.56 \%$;
iv) Thus, the current yield curve is upward sloping.

Question 3

These are the formulae:
$\mathrm{PV}_{\text {face }}(\mathrm{F}, \mathrm{r}, \mathrm{t})=\mathrm{F} /(\mathrm{a}+\mathrm{r})^{t}$,
$\mathrm{PV}_{\text {coupon }}(\mathrm{C}, \mathrm{r}, \mathrm{t})=\mathrm{C} / \mathrm{r} \times\left[1-1 /(1+\mathrm{r})^{r}\right]$.
These are the $\mathrm{r}=.07,0.08,0.09$;
values $\mathrm{F}=1000, \mathrm{C}=70, \mathrm{t}=20$;

r	$\mathrm{PV}_{\text {coupon }}$	$\mathrm{PV}_{\text {face }}$	$\mathrm{PV}_{\text {bond }}$	$\frac{P V_{\text {face }}}{P V_{\text {bond }}}$
0.07	741.581	258.419	1000	0.258
0.08	687.27	214.548	901.819	0.238
0.09	638.998	178.431	817.429	0.218

The fraction of the repayment of the face value decreases in the interest rate, since the repayment is the very last cash flow received from the bond and thus discounted steeply, in particular at high interest rates.
iii) straightforward (omitted); if your graph is neat, you should read off an interest rate (yield to maturity) of approximately 8.6%.
iv) Suppose the relationship is linear; then the yield to maturity is: $(901-850) /(901-817)$ $\times 1+8=8.607$ percent. This yields a $\mathrm{PV}_{\text {bond }}(\mathrm{C}, \mathrm{F}, 0.08607, \mathrm{t})=849.1$; so the approximation is pretty good!

