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1 Introduction

Individuals are not born with complete knowledge but with an ability to learn. In economic and

social situations, learning is interactive as players learn about the behavior of other learners.

There is now a large literature that studies how individuals learn equilibrium interactively (see

for an overview Fudenberg and Levine, 1998a, or Young, 2004).

This paper is about the foundation of learning heuristics. Learning takes place in a repeated

context. So it is natural to ask whether learning players not only reach equilibrium of the

stage-game but also have a strategic incentive to adopt the learning heuristic in the long-run.

Similarly, in an evolutionary context one may view players as programmed to learning heuristics.

The question is then whether learning heuristics that converge to equilibrium of the stage-game

can be evolutionary stable. Finally, one may allow players to learn about learning heuristics.

The question becomes then whether there is a learning heuristic that could learn itself when

applied to the game of choosing learning heuristics.

As in the most recent literature on learning, we focus on uncoupled learning heuristics that

if followed by all players lead to a stage-game equilibrium in all games (e.g., Foster and Young,

2003, 2006, Hart and Mas-Colell, 2003, 2006, Germano and Lugosi, 2007, Kakade and Foster,

2008, Young, 2009). Our main observation is that when we want to find a learning heuristics

that players have an incentive to adopt, can be evolutionary stable, or could learn itself, we

need to look beyond uncoupled learning heuristics converging to equilibrium in all games.

The setting we study is as follows: Players face repeatedly a finite strategic game. Each

player observes the past actions of all other players (i.e., perfect monitoring). Each player

uses a learning heuristic, a strategy that assigns to each strategic game and each history in

the repeated version of that game a mixed action. The literature on learning in games has

focused on learning heuristics that satisfy at least the following two requirements: First, they

should lead to Nash equilibrium in every finite stage game. That is, when all players adopt

such a learning heuristic, their behavior should eventually converge to Nash equilibrium of the

stage game. Second, learning heuristics should be uncoupled, i.e., they should not directly take

opponents’ payoffs as input.

The uncoupledness assumption requires some discussion. In game theory, structural assump-

tions like uncertainty about payoffs are typically modelled within the game while behavioral

assumptions are modelled with conditions on strategies. In the literature of learning, this con-

ceptual divide is blurred as uncoupledness has been interpreted as complete ignorance about

opponents’ payoffs even though we have a well-established apparatus in game theory for mod-

elling incomplete information about opponents’ payoffs. In this paper, we treat uncoupledness

as how it is formally modelled, namely as a behavioral assumption on strategies. As game

theory attempts to explain behavior given the structural assumptions on the game, we find it

natural to ask whether there exist strategic, evolutionary, or learning explanations for the use
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uncoupled learning heuristics given the class of repeated finite games with complete information.

To answer the question, we impose a third requirement on learning heuristics. Consider the

normal-form game associated with the repeated game in which actions are learning heuristics

and payoffs are the long-run payoffs from profiles of learning heuristics. Since there are many

games, we consider the “average” normal-form game defined by the expected long-run payoffs

w.r.t. the Lebesgue measure on the space of games. We call this the learning game. Our

requirement now is that a learning heuristic should also be a Nash equilibrium action of the

learning game. The reason is that when a pair of learning heuristic is Nash equilibrium of the

learning game, then each player does not want to deviate unilaterally from the profile learning

heuristics. Nash equilibrium of the learning game is conceivably also a necessary condition for

evolutionary stability of learning heuristics. Finally, being Nash equilibrium of the learning

game is also a necessary condition for an equilibrium learning heuristic to select itself when

applied to the learning game.

Unfortunately, we show by a simple counterexample that there is no learning heuristic that

is uncoupled, converges to Nash equilibrium in every finite game, and is Nash equilibrium

of the learning game. This remains true even if instead of convergence to stage-game Nash

equilibrium in all finite games, we just require convergence to Nash equilibrium in the class of

2×2 games, two-player games, potential games, games with strategic complements etc. in which

learning is known to be “nice”. The recent literature on learning showed that convergence to

Nash equilibrium in all finite games is considerably more demanding than convergence to just

correlated equilibrium. Yet, our counterexample also demonstrates that there is no learning

heuristic that is uncoupled, converges to correlated equilibrium in every finite game, and is

Nash equilibrium of the learning game. This remains true even if we consider convergence to

iterated admissible action profiles, rationalizable action profiles or minimal curb-sets.

We show that for any uncoupled learning heuristic that converges to Nash equilibrium in

all finite stage-games, there is a strategic teaching heuristic that can manipulate the learning

opponent in such a way as to obtain the Stackelberg leader payoff “averaged” over all games.

This is reminiscent of the reputation results in repeated games (e.g., Fudenberg and Levine,

1989). Strategic teaching has been observed in the experimental literature on learning (Duersch

et al, 2010, Terracol and Vaksmann, 2009, Chong et al., 2006, Camerer et al., 2002, Hyndman

et al., 2012). The fact that long-run payoffs strictly larger than stage-game Nash equilibrium

payoffs can be earned against uncoupled equilibrium learners suggests that there are strict

positive incentives for learning strategies that also feature espionage of opponent’s payoffs and

thus go beyond uncoupledness.

In the setting briefly described so far we allowed deviations with coupled learning heuris-

tics. This makes sense because want to check whether we can derive uncoupledness of learning

heuristics as equilibrium property of the learning game rather than imposing it as an assump-

tion. Nevertheless, it begs the question whether there would be learning heuristics converging
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to stage-game Nash equilibrium in all finite games that are also Nash equilibrium in the learning

game when players are restricted to uncoupled strategies only. We extend our counterexample

to show that there is no stationary uncoupled learning heuristic with finite recall converging to

stage-game Nash equilibrium in every finite game and being a Nash equilibrium of the learning

game. The reason is that if the opponent uses a stationary uncoupled learning heuristic with

finite recall converging to stage-game Nash equilibrium, we can find an uncoupled learning

heuristic that can first learn about the payoffs from the opponent’s behavior and then use this

information to strategically teach the opponent to her advantage. For this to work, we allow

strategic teaching heuristics with arbitrary long recall. Thus, we essentially replace coupled

deviations by uncoupled deviations with large recall. For every uncoupled equilibrium learning

heuristic with finite recall there is strict incentive for acquiring larger recall and use this to

implicitly learn about opponent’s payoffs.

Our counterexample begs the question whether there is a “maximal” class of games for

which there are uncoupled learning heuristics that lead to Nash equilibrium in all games of

this class, that each player has an incentive to adopt if opponents adopt their part, and for

which this possibility fails the moment some other games outside the class are considered as

well. We show that when we restrict to the class of games that can be solved by one round

of elimination of weakly dominated actions or to the class of common interest games, then

we obtain possibility results. Note though that these two classes of games are in some sense

“strategically trivial” as players can deduce some of their own stage-game Nash equilibrium

actions just from their own payoffs.

The next section outlines the model. The counterexample is presented in Section 3. The

generality of the example is explored in Section 4. In Section 5 we establish lower bounds on

payoffs achievable with strategic teaching. Some “possibility” results are presented in Section 6.

In Section 7 we extend our observations to uncoupled strategic teaching heuristics. Section 8

explores discounting payoffs, games with mixed equilibrium only, and (1 − ε)-convergence to

stage-game ε-equilibrium. We conclude with a discussion in Section 9. Proofs are elementary

and collected in the appendix.

2 Basic Model

For our purpose it is enough to consider two-player games with players Rowena R and Colin

C. For simplicity, each player has the same nonempty finite set of actions A. As customary,

i ∈ {R,C} refers to one player and −i ∈ {R,C} refers to i’s opponent. The payoff function of

player i is denoted by ui : A×A −→ [0, 1]. Later in the text, we slightly abuse notation and let

ui, i ∈ {R,C}, also denote the multilinear extended (expected) utility function defined on the

space of mixed action profiles ∆(A) × ∆(A). We normalize payoffs to be in the unit interval

for integrability reasons. Consider now the class of all two-player games in normal-form with
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the action set A. The space of all such games is generated by varying players’ payoff functions.

Since A is finite, it is identified by the 2|A2| - dimensional Euclidean vector space [0, 1]2|A
2|.

Thus, we may simply call a profile of payoff functions u = (uR, uC) ∈ [0, 1]2|A
2| a game. Let

λ be the Lebesgue measure on the space of games [0, 1]2|A
2|.1 We let U ⊆ [0, 1]2|A

2| denote a

measurable subset of games.

For each game u ∈ [0, 1]2|A
2|, the dynamic setup consists of repeated play of the stage-game

u at discrete time periods t = 0, 1, 2, .... Let ati ∈ A denote the action of player i at time t, and

at = (atR, a
t
C) ∈ A×A be the combination of actions at t. At the end of period t each player i

observes the combination of realized actions at. That is, we assume perfect monitoring of play.

A learning heuristic σi of player i assigns to each game u ∈ [0, 1]2|A
2| a sequence of functions

(σ0i (u), σ1i (u), ..., σti(u), ...) where for each t > 0 the function σti(u) assigns to each history

ht−1 := (a0,a1, ...,at−1) in the t-th repetition of the stage game u a mixed action2 in ∆(A) to

be played at stage t. This rather general definition is in line with the recent learning literature

(e.g., Hart and Mas-Colell, 2006). With this formulation we let σ0i (u) be simply player i’s

distribution of initial actions in game u when i follows learning heuristic σi. We assume that

each σti , t = 0, 1, ..., is Lebesgue measurable with respect to the space of games. We denote by

σ = (σR, σC) a profile of learning heuristics. The set of learning heuristics is denoted by Σ.

As discussed in the introduction, the literature on learning focused on uncoupled learn-

ing heuristics. These learning heuristics may take opponents’ actions and the player’s payoff

function as an input but not opponents’ payoff functions.

Definition 1 (Uncoupled) A learning heuristic σi is uncoupled on a class of games U ⊆
[0, 1]2|A

2| if for every (ui, u−i) ∈ U, σi(ui, u−i) = σi(ui, û−i) holds for all (ui, û−i) ∈ U.

Note that we explicitly define uncoupledness relative to a class of games. When we consider

a class of games that is a strict subset of the set of all finite two-player games, then this weakens

the uncoupledness assumption as we implicitly allow players to make use of the information

that the opponent’s payoffs are within this class of games.

The following notion of convergence to stage-game equilibrium can be viewed both as strong

and weak. It is strong because we require almost sure convergence.3 We believe that it captures

1The Lebesgue measure gives us a notion of “size” of various classes of games. Our results generalize to
smooth measures.

2Allowing for mixed actions and thus stochastic learning heuristics is crucial (even for learning pure Nash
equilibrium). Hart and Mas-Colell (2003) show that there exist no deterministic uncoupled learning heuristics
converging to Nash equilibrium in all games while Hart and Mas-Colell (2006) show that there are stochastic
uncoupled learning heuristics that converge to Nash equilibrium in all games. Randomization of actions allows
for exhaustive search.

3To keep the exposition simple and conceptually straightforward, we use almost sure convergence. In Sec-
tion 8.2 we generalize our result to a weaker notion of convergence.
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best what we intuitively mean with “convergence” to equilibrium. Yet, it is also a weak notion

of convergence in the sense that we require convergence to pure equilibrium only and are silent

on convergence in games with mixed equilibrium only (see Section 8.3). As it will become clear

later, the focus on pure equilibrium will be enough for our purpose.

Definition 2 (Convergence to Nash Equilibrium) A profile of learning heuristics σ con-

verges to Nash equilibrium in every stage-game in U ⊆ [0, 1]2|A
2| if for every game u ∈ U that

possesses a pure Nash equilibrium, almost every play path consists of a pure stage-game Nash

equilibrium being played from some point on. We say that learning heuristic σi converges to

Nash equilibrium in every stage-game if it is a component of a profile of learning heuristics that

converges to Nash equilibrium in every stage-game.

An example of a learning heuristics that satisfies both uncoupledness and convergence to

stage-game Nash equilibrium is the one used by Hart and Mas-Colell (2006, proof of Theorem

3): If each player plays the same action in the past two periods and player i’s action is a best

response to player −i’s action, then player i plays the same action again. Otherwise, each

randomizes uniformly over all actions. Clearly, if players play equilibrium for two periods, they

are stuck there. Otherwise, they may play equilibrium by chance in the next period and by

chance in the next-next period in which case they get stuck.

While the simplistic “learning” heuristic just described is uncoupled and Nash convergent

in any finite game with pure equilibrium, it is not clear that players have a long-run incentive

to follow it. In order to check whether there could be any learning heuristic that is uncoupled,

Nash convergent, and that players have a long-run incentive to adopt, we describe next a game

in which the “actions” are the learning heuristics. We denote by at(σ(u)) a profile of actions

realized in period t under a history generated by the profile of learning heuristics σ in the

repeated stage-game u. For each profile of learning heuristics σ and each game u ∈ [0, 1]2|A
2|,

we denote player i’s limit of expected means payoff by

vi(σ(u)) := lim
T→∞

inf Eσ(u)

[
1

T

T∑
t=1

ui(a
t(σ(u)))

]
, (1)

where the expectations are formed over mean payoffs4 resulting from histories given positive

probability by the profile of learning heuristics σ in the repeated stage-game u. This is the long

run expected payoff to player i in game u emerging from the profile of learning heuristics σ.

Note that vi is a measurable random variable on [0, 1]2|A
2|. To see this note that by assumption

σti is measurable for every t = 0, 1, .... Further, for every T , Eσ(u)

[
1
T

∑T
t=1 ui(a

t(σ(u)))
]

is

linear in probabilities of the per-period behavior strategies on a finite dimensional real-valued

4To keep the exposition simple and conceptually straightforward, we use the limit of expected means payoff
over alternative ways to evaluate streams of payoffs. In Section 8.1 we show that our results extends to discounting
for sufficiently patient players.
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domain. Hence it is continuous in those probabilities and thus measurable on [0, 1]2|A
2|. Since

the lim inf of a sequence of measurable real-valued functions is measurable, we have that vi is

a measurable random variable on [0, 1]2|A
2|.

As discussed in the introduction, we are interested in the long run expected payoff “aver-

aged” over all games in a Lebesgue measurable subset of games U ⊆ [0, 1]2|A
2| defined by

Vi(σ,U) :=

∫
U
vi(σ(u))dλ. (2)

This defines a game in normal-form 〈{R,C},Σ, (Vi(·,U))i=R,C〉 in which each player i “chooses”

a learning heuristic in Σ and her payoff from a profile of learning heuristics σ ∈ Σ×Σ over all

games in U is given by Vi(σ,U). We call this game the learning game based on U.

We are interested in learning heuristics that are a Nash equilibrium of a learning game.

Existence of Nash equilibrium of the learning game is guaranteed. There is a learning heuristic

that for each stage-game u ∈ U prescribes a Nash equilibrium of this stage-game. Of course,

such a strategy would not necessarily be uncoupled except when considering just some special

classes of games.

Definition 3 (Nash Equilibrium of the Learning Game) A profile of learning heuristics

σ = (σR, σC) ∈ Σ × Σ is a Nash equilibrium of the learning game 〈{R,C},Σ, (Vi(·,U))i=R,C〉
if for i ∈ {R,C},

Vi(σi, σ−i,U) ≥ Vi(σ̂i, σ−i,U) for all σ̂i ∈ Σ.

As we explained in the introduction, we view this requirement as a weak necessary condition

for a strategic, evolutionary, or learning foundation of learning heuristics.5 Note that currently

we allow for deviations with any learning heuristics in Σ. The extension to uncoupled deviations

is deferred to Section 7.

3 A Simple Counterexample

Consider the following 2× 2 game u1 defined by

Rowena b
c

Colin
a b

16, 12 13, 13

17, 7 14, 6

5Equilibrium among learning heuristics/rules is not an entirely new idea. Germano (2007) considers Nash
equilibrium of boundedly rational rules for playing games. It is also similar to Nash equilibrium of learning heuris-
tics game-by-game in Branfman and Tennenholtz (2004), Ashlagi et al. (2006), and Monderer and Tennenholtz
(2007).
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In this game, action c of Rowena strictly dominates her action b. The unique Nash equilibrium

of the game is (c, a), which is in pure actions. If players follow uncoupled learning heuristics

converging to Nash equilibrium in all finite games, then they must reach (c, a) in game u1.

Next consider the 2× 2 game u2 defined by

Rowena b
c

Colin
a b

16, 12 13, 13

15, 7 9, 6

This game is identical to game u1 except for the payoffs of Rowena from action c. Now b strictly

dominates action c. The unique Nash equilibrium is (b, b), which again is in pure actions. Any

profile of learning heuristics that is uncoupled and converges to Nash equilibrium in all games

must converge to (b, b).

Would Rowena have an incentive to stick to such a learning heuristic? Note that if Rowena

behaves in game u2 exactly as in game u1, then since Colin follows an uncoupled learning

heuristic the play must converge to (c, a) in game u2. This would yield Rowena a payoff of

15, which is strictly larger than her payoff of 13 in the unique Nash equilibrium of u2. Thus,

Rowena has a strict incentive to deviate from an uncoupled learning heuristic converging to

Nash equilibrium in all games to a “strategic teaching” heuristic as just described.

Since both games are generic, we can consider open neighborhoods U1 and U2 of u1 and u2,

respectively, such that both U1 and U2 belong to the class of games U for which there exists a

pure Nash equilibrium. Let (σR, σC) be a profile of uncoupled learning heuristics that converges

to Nash equilibrium in games in U. Moreover, let σ′R be a learning heuristic that plays both in

games in U1 and U2 identical to σR in U1 and identical to σR in all other games in U. Since

the space of games U contains the non-empty open sets U1 and U2 and the Lebesgue measure

is strictly positive on nonempty open subsets of the space of games6, the learning heuristic σ′R
is strictly better against σC in the learning game than σR against σC . We conclude: There is

no uncoupled learning heuristic that both converges to Nash equilibrium in all finite games and

is a Nash equilibrium learning heuristic of the learning game.

4 How General is the Counterexample?

Our arguments did not make reference to any other properties of learning rules that have been

discussed in the literature such as m-periods of recall, m-memory, stationarity (Hart and Mas-

Colell, 2006) or radical uncoupledness (Foster and Young, 2006, Germano and Lugosi, 2007,

Young, 2009). Some of those properties are sometimes imposed on top of uncoupledness to

6Obviously, to fit the examples within our model outlined in the previous section, we would need to normalize
payoffs of games in U1 and U2 with affine transformations to be within [0, 1].
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obtain positive or negative results on learning Nash equilibrium. Our observation holds for any

such uncoupled learning heuristics converging to Nash equilibrium in all games.

There are simple learning heuristics approaching correlated equilibrium but not necessarily

Nash equilibrium (Foster and Vohra, 1997, Fudenberg and Levine, 1999, and Hart and Mas-

Colell, 2000, 2001, 2003). Note that in both games, u1 and u2, the unique correlated equilibrium

is the unique Nash equilibrium. Similarly, in both games the unique Nash equilibrium coincides

with the sets of iterated admissible strategy profiles, rationalizable strategy profiles (Spohn,

1982, Bernheim, 1984, Pearce, 1984), and minimal curb sets (Basu and Weibull, 1991).

Maybe asking for convergence in all games in 0, 12|A
2| is requiring too much. What if we

restrict to generic and economically interesting class of games for which learning is known to

be well-behaved? Note that our arguments make use of two-player games only. In fact, we use

2 × 2 games only. Moreover, both games u1 and u2 are ordinal potential games (in the sense

of Monderer and Shapley, 1996), with ordinal potentials given, respectively, by

P 1 = b
c

a b(
5 8
10 9

)
P 2 = b

c

a b(
2 3
1 −1

)
Note further that both games satisfy strategic complements. That is, in both games and for

each player there is an order on the set of actions such that both stage-games satisfy increasing

differences, ui(x
′′, y′) − ui(x

′, y′) ≤ ui(x
′′, y′) − ui(x

′, y′′) for any actions x′′ > x′, y′′ > y′

and i, a property that facilitates convergence of many learning heuristics (e.g., Milgrom and

Roberts, 1990). E.g., let b < c for player 1 and b < a for player 2. Both games we use have a

unique Nash equilibrium which is in pure actions. Thus, the observation is not due to the fact

of converging to a “wrong” equilibrium or miscoordination. Often stronger positive results on

learning have been obtained for generic games only (see for instance Germano and Lugosi, 2007,

Young, 2009).7 Yet, all games we use are generic and “non-pathological”. Thus, one cannot

hope to obtain positive results for aforementioned subclasses of games. This seems particularly

frustrating for the classes of 2 × 2 games, ordinal potential games, and games with strategic

complements for which prominent learning heuristics are known to converge to equilibrium, see

Fudenberg and Levine (1998a).

From the discussion, we conclude:

Proposition 1 Let U be the class of all finite games. There is no learning heuristic that is

uncoupled, converges to Nash equilibrium in all games in U and is a Nash equilibrium learning

7The mathematical notion of genericity does not always coincide with economic relevance in game theory. The
games used in our counterexample are relevant to economics. In fact, game u2 can be viewed as a textbook-style
Cournot duopoly in which player i’s profit function is max{10.9− qi− q−i, 0} · qi−0.1 · qi, and for which we erase
all quantities qi and q−i except for the Cournot Nash equilibrium quantity as well as the Stackelberg leader and
follower quantities of each player and suitably rounded payoffs. That’s why we use actions {b, c} for Rowena and
{a, c} for Colin (rather than {U,D} and {L,R}, respectively).
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heuristic of the learning game based on U. This holds even if we restrict U to be the class

of all generic finite games, all two-player games, all 2 × 2 games, all games with pure Nash

equilibrium, all games with a unique Nash equilibrium, all games with strategic complements,

all ordinal potential games, or any union thereof, or if we weaken convergence to correlated

equilibrium, the set of iterated admissible strategy profiles, rationalizable strategy profiles, or

minimal curb sets.

Are all three properties necessary for the impossibility result? First, consider uncoupledness.

For instance, the Lemke-Howson algorithm finds a Nash equilibrium in every finite two-player

game of complete information (Lemke and Howson, 1964). It is a coupled algorithm that

just takes payoff information as input and ignores behavior of the opponent. (Consider it as a

strategy that at each period outputs the action of the profile of actions computed at that period

and repeats the last action forever once the algorithm stops.) Thus, it cannot be strategically

taught. Since the repeated stage-game equilibrium is an equilibrium of the repeated game, we

also have that the Lemke-Howson algorithm is a Nash equilibrium of the learning game. Thus,

uncoupledness is necessary for Proposition 1.

Proposition 1 applies to convergence of Nash equilibrium, correlated equilibrium, admissi-

bility, rationalizability, and minimal CURB sets of the stage-game. All these solution concepts

have in common that behavior convergences to a best response in the stage-game. Is this

property necessary? For instance, rational learning à la Kalai and Lehrer (1993) with patient

players converges (under suitable conditions on prior beliefs) to Nash equilibrium of the re-

peated game and hence to equilibrium of the learning game. If we consider rational learning as

an uncoupled heuristics, then our counterexample shows that patient rational learning cannot

converge to a best response of the stage-game. This would demonstrate that the requirement of

convergence to stage-game best response is necessary for Proposition 1. However, the argument

is not entirely satisfactory though since convergence to repeated games equilibrium requires

some version of the “grain-of-truth” assumption, roughly requiring that each player’s prior be-

lief does not rule out the correct strategy of the opponent. Since the correct strategy is also

rational for the opponent, indirectly each player takes some payoff information of the opponent

into account. Thus, rational learning is not entirely uncoupled. So the question of whether

convergence to stage-game best response is necessary for Proposition 1 is not entirely settled.

Finally, it is well-known that there are uncoupled learning heuristics converging to stage-

game Nash equilibrium in all finite games (Foster and Young, 2003, 2006, Hart and Mas-Colell,

2003, 2006, Germano and Lugosi, 2007, Kakade and Foster, 2008, Young, 2009). Thus, the

additional requirement that the learning heuristic is a Nash equilibrium of the learning game

is necessary for Proposition 1.
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5 Incentives for Strategic Teaching

In this section, we are interested in establishing a lower bound on the “average” long run payoffs

that can be achieved against an opponent who adopted an uncoupled learning heuristic that

converges to Nash equilibrium in all games. This allows us to draw a parallel to results in the

literature on reputations in repeated games.

Define player i’s pure best response correspondence for the stage-game u ∈ U by

Bi(u)(a−i) :=
{
ai ∈ Ai : ui(ai, a−i) ≥ ui(a′i, a−i) for all a′i ∈ Ai

}
.

Further, define player i’s worst Stackelberg leader payoff in game u ∈ U by

`i(u) := max
ai∈Ai

min
a−i∈B−i(u)(ai)

ui(ai, a−i).

In this definition, the Stackelberg leader is pessimistic since in case of multiple best responses

of the follower, he assumes that the follower chooses the best response that is worst to him.

This seems appropriate since our aim is to establish a lower bound. Yet, best responses are

unique in generic games. Thus, for “average” long run payoffs (i.e., “averaged” over all games

with respect to the Lebesgue measure on the space of games), the “pessimistic” selection from

the follower’s best response correspondence does not matter.

Let

Li(U) :=

∫
U
`i(u)dλ

be the “average” of Stackelberg leader payoffs over games in the Lebesgue measurable class U

with respect to the Lebesgue measure λ.

A player who faces an opponent following an uncoupled learning heuristic that converges

to Nash equilibrium in all finite two-player games that possess a pure Nash equilibrium can

guarantee herself almost surely at least the Stackelberg leader payoff averaged over all games

with a suitable strategic teaching strategy. Moreover, this payoff is strictly larger than adopting

the uncoupled learning heuristic as well and converging to a Nash equilibrium in all games. In

this sense, there is a strict positive incentive for strategic teaching to prevent learning from

converging to Nash equilibrium in all games. This is stated more formally in the following

proposition:8

Proposition 2 Let U be the class of finite two-player games that possess a pure Nash equilib-

rium. For any profile of uncoupled learning heuristics (σR, σC) that converges to Nash equilib-

rium in all games in U, there exists a learning heuristic σ̃ (i.e., a “strategic teaching heuristic”)

8Here and in the following sections Propositions 2 to 7 continue to hold when instead of requiring conver-
gence to Nash equilibrium, we just require convergence to correlated equilibrium, iterated admissible profiles,
rationalizable profiles, or minimal curb-sets.
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such that when Rowena follows σ̃ and Colin follows σC , we have

VR((σ̃, σC),U) ≥ LR(U) > VR((σR, σC),U).

The proof is contained in Appendix. We show that a player who is facing an opponent with

an uncoupled learning heuristic converging to Nash equilibrium can guarantee herself with a

“strategic teaching heuristic” at least the Stackelberg leader payoff in every generic two-player

game that possesses a pure Nash equilibrium. This is because for every generic two-player

game and Stackelberg outcome, there is a generic game in which this Stackelberg outcome is

the unique Nash equilibrium. This game differs from the first one in the player’s payoffs only

but not in the opponent’s payoffs. The player can then “pretend” to be in this game whenever

the original game is played and strategically teach the opponent to jointly reach almost surely

the outcome in the second game because the opponent follows an uncoupled learning heuristic.

In this sense, the proof of Proposition 2 generalizes our counterexample as it shows that there

is an opportunity for strategic teaching in every generic two-player game that possesses a pure

Nash equilibrium. It does not follow yet that the strategic teacher earns a strictly higher payoff

than in equilibrium of every game. The fact that the “average” over Stackelberg leader payoffs

is strictly larger than the “average” limit-of-means payoffs of σ is perhaps not obvious. It

is known that there are finite two-player games with a pure Nash equilibrium in which the

Stackelberg leader payoff as defined here can be strictly below a Nash equilibrium payoff (e.g.,

Başar and Olsder, 1999, p. 132-133). But such games must be non-generic and do not have

positive measure when “averaging” expected limit-of-means payoffs over all games in U with

respect to λ. In generic games with pure equilibrium, the worst Stackelberg leader payoff is

weakly above equilibrium payoff. Since our counterexample shows that there are also open

subsets of games where the worst Stackelberg leader payoff is strictly above equilibrium payoff,

the strict inequality in the proposition follows.

Proposition 2 is reminiscent of the reputation results in repeated games. For instance,

Fudenberg and Levine (1989) consider repeated games with a long-run player who faces a

sequence of short-run players. Short-run players are uncertain about the payoff-type of the

long-run player and thus the game they are playing. In particular, there is strict positive

prior probability that the long-run player is of the payoff-type for which the Stackelberg leader

strategy of the “true” game is strictly dominant. They show that the long-run player’s payoff

converges to the Stackelberg leader payoff as she becomes sufficiently patient. In our setting,

there is no Bayesian game. Yet, the role of uncertainty is taken by uncoupledness of the learning

heuristic as it means that the learning heuristic cannot distinguish between “payoff-types” of

the other player. Implicitly there are many “payoff-types” of the other player in our setting

since we require an uncoupled learning heuristic to face the other player in all games with a

pure equilibrium because it is supposed to converge to Nash equilibrium in all those games. The

long-run player corresponds now to the strategic teacher who cares about her long-run payoff
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that she can achieve against an opponent adopting an uncoupled learning heuristic leading

to Nash equilibrium in all games. Moreover, the opponent adopting an uncoupled learning

heuristic leading to Nash equilibrium in all games is short-term since he implicitly cares about

converging to stage-game Nash equilibrium in all games. To some extent, Fudenberg and

Levine (1998a, Chapter 8.11.1) anticipated our result in the last chapter of their book on “The

Theory of Learning in Games” when they suggested that reputation results from the repeated

games literature should carry over to the learning literature. Yet, they had a very different

setting in mind in which they explicitly added uncertainty. Moreover, they did not show that

any uncoupled learning heuristic that leads to Nash equilibrium provides an opportunity for

strategic teaching and developing reputations.

6 “Possibility” Results

Uncoupled learning heuristics depend only on the player’s own payoff function and the behavior

of the opponent but not directly on the opponent’s payoffs. With such learning heuristics “play

has a decentralized character, and no player can, alone, recognize a Nash equilibrium” (Hart and

Mas-Colell, 2006, p. 287). Thus, it is reasonable to expect that we could obtain a positive result

when we restrict to the class of games in which both player’s being rational and knowledge of

their own payoffs implies equilibrium. In Nash equilibrium of such games, each player plays as

if he solves individual decision problems. Nothing about the opponent’s payoff function needs

to be learned by the players in order to find the solution to the game. Hence, we may label such

games “strategically trivial”. We will show that indeed for such classes of games possibility

results can be obtained but that these possibility results fail when any measurable subset of

games with positive Lebesque measure outside these classes are considered as well.

We use as a rationality criterion the notion of admissibility, i.e., the avoidance of weakly

dominated actions.

Definition 4 (Weak Dominance) An action ai ∈ A is weakly dominated if there is a mixed

action αi ∈ ∆(A) such that

ui(αi, a−i) ≥ ui(ai, a−i) for all a−i ∈ A, and

ui(αi, a−i) > ui(ai, a−i) for some a−i ∈ A.

Let Di(ui) ⊆ A denote the set of all actions that remain after deletion of all weakly domi-

nated actions in a game in which player i’s utility function is ui.

A game u is weak dominance solvable9 in one round if for every player i ∈ {R,C} and for

9There are various notions of “dominance solvability” in the literature. We follow Moulin (1979) except that
we allow for actions to be weakly dominated by a mixed action. Note that the definition does not necessarily

13



all ai, a
′
i ∈ Di(ui),

ui(ai, a−i) = ui(a
′
i, a−i) for all a−i ∈ D−i(u−i).

Denote by WDS the class of one-round weak dominance solvable games.

Next we define a “richness” property of classes of games.

Definition 5 (Product Class) A class of games U ⊆ [0, 1]2|A
2| is a product class if

(ui, u−i), (ũi, ũ−i) ∈ U implies (ui, ũ−i), (ũi, u−i) ∈ U.

Product classes of games are natural to consider in the context of uncoupled learning.

Uncoupledness means that the learning heuristic cannot directly depend on opponents’ payoffs.

If a class of games is not a product class then the opponent’s payoffs are not independent

from the player’s payoffs. Thus, an uncoupled learning heuristic could nevertheless condition

implicitly on a non-trivial subset of opponents’ payoffs. Product classes of games are also

motivated by our desire to find “maximal” classes of games for which we can obtain a positive

result. A product class of games is closed under permutations of each player’s payoff functions.

Note that the class of one-round weak dominance solvable games is by definition a product class

of games.

Proposition 3 If U is a nonempty measurable class of games such that U ⊆ WDS, then

there exists a learning heuristic that is uncoupled, converges to Nash equilibrium in all games in

U, and is a Nash equilibrium learning heuristic of the learning game based on U. Conversely,

if there is a measurable product class of games U with a pure Nash equilibrium such that

WDS ⊆ U and for which there exists a learning heuristic that is uncoupled, converges to Nash

equilibrium in all games in U, and is a Nash equilibrium learning heuristic of the learning game

based on U, then U \WDS must be of measure zero.

The proof is contained in the Appendix. The first part is straightforward. The proof of the

converse is by contradiction. The idea is as follows: For any generic u = (ui, u−i) /∈WDS with

u ∈ U, we can find a generic game ũ = (ũi, ũ−i) ∈WDS such that (ui, ũ−i) ∈ U and in which

player −i has an incentive to pretend being in u although the game might be (ui, ũ−i). Player

i behaves with uncoupled learning like in u giving −i a higher payoff than in the unique Nash

of (ui, ũ−i). Since these games are generic, they show up in the average long run payoff, which

proves the converse.

imply that payoff functions are constant on all outcomes that remain after one round of elimination of weakly
dominated actions for each player but just on outcomes that the player can unilaterally choose and that survive
one round of elimination of weakly dominated actions.
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There are other classes of games for which we can obtain a possibility result. In any such

a class a player’s own payoff is sufficiently informative about a particular Nash equilibrium of

the game as long as one restricts to the class. One such class is the class of common interest

games studied in Aumann and Sorin (1998):

Definition 6 A game u is a common interest game if there is a profile of payoffs (zR, zC) ∈
uR(A)× uC(A) that strictly Pareto dominates all other profiles of payoffs, i.e.,

zR > wR and zC > wC

for all (wR, wC) ∈ uR(A)× uC(A) \ {(zR, zC)}, where ui(A) denotes the image of ui.

Let CI denote the class of common interest games.

Note that (zR, zC) is unique in a common interest game. Yet, action profiles for which the

payoff is (zR, zC) may not be unique. Every common interest game has at least one pure Nash

equilibrium that yields the payoff profile (zR, zC). Note that the class of common interest games

is in some sense less “strategically trivial” than one-round weak dominance solvable games as

they may still involve coordination problems. Finally, note that there one-round dominance

solvable games that are not common interest games. Moreover, there are common interest

games that are not one-round dominance solvable games.

Proposition 4 If U is a nonempty measurable class of games such that U ⊆ CI, then there

exists a learning heuristic that is uncoupled, converges to Nash equilibrium in all games U, and

is a Nash equilibrium learning heuristic in the learning game based on U. If U is a measurable

product class of games with pure Nash equilibrium such that CI ⊆ U, then there is no learning

heuristic that is uncoupled, converges to Nash equilibrium in all games in U, and is a Nash

equilibrium learning heuristic in the learning game based on U.

The proof is contained in Appendix. In a common interest game, if a player obtains his

maximal stage-game payoff, then she has no incentive to reach another outcome through strate-

gic teaching. For the first part of Proposition 4 we just need to show that there is an uncoupled

learning heuristics leading to a Pareto efficient Nash equilibrium in every common interest

game. This is done by modifying an uncoupled learning heuristic that has been used by Hart

and Mas-Colell (2006) to show convergence of uncoupled learning in games with a pure Nash

equilibrium such that it now converges to efficient pure Nash equilibrium. The second part

of Proposition 4 we show with a counterexample that is constructed with the help of product

classes of games. Note that in contrast to the class of one-round dominance solvable games,

the class of common interest games is not a product class. (Thus, in the second part of Propo-

sition 4 we could have written without loss of generality CI $ U.) A player can infer from

his payoff function and the fact that he faces only common interest games enough information
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about the opponent’s payoffs so as to know a Nash equilibrium of the game. Since the second

part of Proposition 4 holds for any product class of games with pure Nash equilibrium that

contains common interest games, it holds also for the smallest such class that is generated by

considering all permutations over all payoff functions in common interest games. In this sense,

the second part of Proposition 4 shows an impossibility even if for each player we only consider

payoff functions that are consistent with some common interest game.

In some sense, both one-round dominance solvable games and common interest games are

“strategically trivial” as each player can deduce from her own payoffs some Nash equilibrium

action. Thus, even though both Propositions 3 and 4 are phrased as possibility results, at

the heart of the matter they are impossibility results as possibilities fail when games beyond

“strategically trivial” games are considered.

7 Uncoupled Strategic Teaching

We now restrict the strategic teaching heuristics to be uncoupled as well. The strategic teacher

may now first learn about opponent’s payoffs from opponent’s behavior and then use this infor-

mation to strategically teach the learning opponent. This can only work if after having learned

about opponent’s payoffs from opponent’s behavior, the opponent’s learning heuristic stays

sensitive to learning so that it can be strategically taught. This is implied by uncoupledness

together with finite recall and stationarity.

Definition 7 (Stationary learning heuristic with finite recall) A learning heuristic σi

of player i has finite recall if for every u ∈ [0, 1]2|A
2| there exists a positive integer r such

that for each t > r, σti(u) is of the form σti(u)(at−r,at−r+1, ...,at−1). σi(u) with r-recall

is stationary if for any t, t′ > r, (at−r,at−r+1, ...,at−1) = (at
′−r,at

′−r+1, ...,at
′−1) implies

σti(u)(at−r,at−r+1, ...,at−1) = σt
′
i (u)(at

′−r,at
′−r+1, ...,at

′−1).

A learning heuristic satisfies finite recall if just a finite number of last periods matter in-

stead of entire histories. It is stationarity if calendar time does not matter. Many uncoupled

learning heuristics converging to Nash equilibrium used in the literature satisfy finite recall and

stationarity (e.g., Hart and Mas-Colell, 2006).

To see how uncoupled convergent Nash equilibrium learning heuristics can be strategically

taught by an uncoupled heuristics, consider again our example in Section 3. Assume that game

u2 is played but neither player knows the opponent’s payoff. For the first T periods, let both

players follow an uncoupled learning heuristic converging to Nash equilibrium in all games.

As T becomes larger and larger, the probability of being away from playing Nash equilibrium

(b, b) should become small. Now suppose that after some finite period T , Rowena switches to a

learning heuristic that behaves in game u2 as if playing game u1. If Colin’s learning heuristics
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has finite recall, is uncoupled, and Nash equilibrium convergent, play (re-)converges almost

surely to (c, a) in game u2. This yields her a strictly higher long-run payoff than with the

learning heuristic converging to the Nash equilibrium in u2. That is, as T increases, Rowena

is able to use the first T periods to learn about Colin’s best response in u2 and then switches

heuristics so as if she learns in u1 thus effectively misleading Colin to “think” that game u1

is being played. Note that Colin cannot deduce from Rowena’s play that they are not playing

u1 since his learning heuristics is uncoupled and has finite recall. While this argument works

when Rowena’s teaching heuristic be uncoupled, it relies on Rowena having a sufficiently larger

memory than Colin. The proof of the following observation now follows from above arguments

and arguments made in Section 3.

Proposition 5 There is no stationary uncoupled learning heuristic with finite recall that both

converges to Nash equilibrium in all finite games and is a Nash equilibrium learning heuristic

of the learning game when restricting to the set of heuristics Σ to uncoupled heuristics only.

As with Proposition 1, the observation continues to hold even if we restrict U to be the

class of all generic finite games, all two-player games, all 2×2 games, all games with pure Nash

equilibrium, all games with a unique Nash equilibrium, all games with strategic complements,

all ordinal potential games, or any union thereof, or if we weaken convergence to correlated

equilibrium, the set of iterated admissible strategy profiles, rationalizable strategy profiles, or

minimal curb sets.

Proposition 2 on the incentives for strategic teaching can also be extended to uncoupled

strategic teaching heuristics if the opponent uses a stationary uncoupled learning heuristic with

perfect recall.

Proposition 6 Let U be the class of finite two-player games that possess a pure Nash equilib-

rium. For any profile of stationary uncoupled learning heuristics with finite recall (σR, σC) that

converges to Nash equilibrium in all games in U, there exists an uncoupled learning heuristic σ̃

(i.e., an uncoupled “strategic teaching heuristic”) such that when Rowena follows σ̃ and Colin

follows σC , we have

VR((σ̃, σC),U) ≥ LR(U) > VR((σR, σC),U).

To prove the result, let Ui denote the projection of U on the i-coordinate. Since A × A is

finite, there exists a finite partition of Ui such that i’s pure best response structure is identical

within each partition cell. We only need to focus on generic games. Thus, discard all partition

cells with Lebesque measure zero (i.e., with indifferences). Since the number of (remaining)

partition cells are finite, enumerate them 1, ..., n. Let Rowena’s uncoupled strategic teaching

heuristic be such that she follows an uncoupled learning heuristic converging to Nash equilibrium

in all games for the first nT periods, resetting it after every T periods. Let Rowena pretend

17



to play a game with pure best response structure of partition cell 1 in the first T periods, a

game with pure best response structure of partition cell 2 in the next periods T + 1, ..., 2T , and

let her continue in this fashion to the game with pure best response of partition cell n in the

last (n − 1)T + 1, ..., nT periods. For generic games, one of the partition cells corresponds to

Rowena’s actual ordinal payoff structure. As T becomes larger and larger, the probability of

being away from playing a pure Nash equilibrium in each of the n games becomes small. After

nT periods, Rowena learned all relevant best responses of Colin. She can now pretend to play

the game with the pure equilibrium corresponding to the Stackelberg outcome of the actual

game. Such game exists as constructed in the proof of Proposition 2. Colin eventually plays

the Stackelberg follower action of the actual game since he uses a stationary uncoupled learning

heuristics with finite recall converging to Nash equilibrium of the “pretended” game. The rest

of the proof now follows from arguments in the proof of Proposition 2.

The “positive” results of Propositions 3 and 4 can also be extended to uncoupled strategic

teaching heuristics when the opponent uses a stationary uncoupled learning heuristic with

finite recall. First, it is trivial that stage-game equilibrium in dominance solvable games can be

reached with a stationary uncoupled learning heuristic with finite recall converging to stage-

game equilibrium. Moreover, the learning heuristics constructed in the proof of Proposition 4

for converging to Pareto dominant equilibrium is stationary and has finite recall. The converses

follow from arguments analogous to just presented to prove Proposition 6 and the proofs of

Propositions 3 and 4.

8 Further Extensions

8.1 Discounting

So far, we defined learning games only with limit of means payoffs. Our results remain valid

with other forms of time preferences as long as players are sufficiently patient. Consider the

expected discounted payoffs defined for player i ∈ {R,C} by

vδi (σ(u)) := Eσ(u)

[
(1− δ)

∞∑
t=1

δt−1ui(a
t(σ(u)))

]
, (3)

for δ ∈ [0, 1). Given δ, the long-run expected payoffs “averaged” over all games in the Lebesgue

measurable subset of games U ⊆ [0, 1]2|A
2| is

V δ
i (σ,U) :=

∫
U
vδi (σ(u))dλ. (4)

We now consider the δ-discounted learning game 〈{R,C},Σ, (V δ
i (·,U))i=R,C〉 parameterized by

the common discount factor δ ∈ [0, 1).
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A profile of learning heuristics σ = (σR, σC) ∈ Σ × Σ is a Nash equilibrium of the δ-

discounted learning game 〈{R,C},Σ, (V δ
i (·,U))i=R,C〉 if for all i ∈ {R,C},

V δ
i (σi, σ−i,U) ≥ V δ

i (σ̂i, σ−i,U) for all σ̂i ∈ Σ. (5)

Our observation holds now for learning games in the limit as δ → 1.

Proposition 7 In the limit, as δ → 1 there is no uncoupled learning heuristic that both con-

verges to Nash equilibrium in all finite games and is a Nash equilibrium learning heuristic of

the δ-discounted learning game.

The proof follows from Proposition 1 and the Hardy-Littlewood Theorem. Note that in

the proof of Proposition 1, no matter whether Rowena uses the strategic teaching heuristic or

a Nash equilibrium learning heuristic, the profiles of heuristics are convergent in the games

considered in the counterexample since we assume that the learning heuristics converge to

Nash equilibrium in every finite game with pure Nash equilibrium. For convergent sequences,

the lim inf of means payoffs is equal to the lim sup of means payoffs. The Hardy-Littlewood

Theorem (e.g., Maschler, Solan, and Zamir, 2013, Theorem 13.31) implies that the limit of

δ-discounted payoffs is “sandwiched” between the lim inf of means payoff and lim sup of means

payoffs when δ goes to 1. Thus, for the sequences considered for the proof, the limit of the

δ-discounted payoffs must be equal to the lim inf of means payoffs as δ goes to 1. The rest of

the proof now follows from the proof of Proposition 1.

8.2 (1− ε)-Convergence and Approximate Equilibrium

Various notions of convergence have been used in the literature on learning in games. Some of

the literature uses convergence to ε-Nash equilibrium (1− ε) of the time after some sufficiently

long time period (e.g., Foster and Young, 2003, 2006). Compared to Section 2, this is a weaker

notion of convergence and a weaker equilibrium notion. An ε-Nash equilibrium is a profile

of mixed actions for which neither player can increase its payoff by more than ε through a

unilateral change of actions. We generalize our observation in Section 3 to (1− ε)-convergence

and ε-Nash equilibrium.

Proposition 8 There is an ε̄ > 0 such that for any ε ∈ [0, ε̄], there is no learning heuristic

that is uncoupled, converges in every game to ε-Nash equilibrium with probability of at least

(1− ε) as t becomes large, and is a Nash equilibrium of the learning game.

The proof in Appendix generalizes our counterexample by showing that there exists an

ε̄ > 0 such for every ε ∈ [0, ε̄] we can find payoffs for a counterexample similar to the one in

Section 3. In both games of the counterexample, the unique pure Nash equilibrium is also the

unique ε-Nash equilibrium. Moreover, games are generic.
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8.3 Mixed Equilibrium and Strictly Competitive Games

We considered learning heuristics that converge to pure Nash equilibrium of the stage-game if

such an equilibrium exists. Are our observations an artefact of focusing on pure equilibrium?

Would it be possible to find uncoupled learning heuristics that converge to non-degenerate mixed

equilibrium of the stage-game (in games that do have such equilibria) and that each player has

an incentive to adopt if the opponent adopt it as well? Moreover, is there a possibility result

when restricting to strictly competitive games, a class of games in which learning is usually

“nice”? Note that when confining the analysis to strictly competitive games, the uncoupledness

assumption of learning heuristics loses to a large extent its restrictiveness since each player’s

payoff function is informative about the opponent’s payoff function.

Consider as a counterexample the “matching pennies” game

h
t

h t

1,−1 −1, 1

−1, 1 1,−1

The unique Nash equilibrium is the profile of non-degenerate mixed actions, ((12 ,
1
2), (12 ,

1
2)).

Now consider a “biased matching pennies” game,

h
t

h t

2,−1 −1, 1

−1, 1 1,−1

that just differs from the previous game in that Rowena’s payoff from (h, h) increased to 2.

Colin’s payoffs remain unchanged. Since Rowena’s equilibrium mixed action must make Colin

indifferent among his actions, Rowena’s equilibrium mixed action remains unchanged. Colin’s

equilibrium action changes to (25 ,
3
5). He should put less weight on pure action h so as to keep

Rowena indifferent among her actions. Since Colin uses an uncoupled learning heuristic, his

behavior in both games must be the same unless Rowena “communicates” her change of payoff

through her different play. Note, however, that Rowena does not have an incentive to do so. If

she “communicates” her biased payoff and both players use learning heuristics leading to Nash

equilibrium (let’s say in terms of almost-sure convergence of per-period behavior à la Hart and

Mas-Colell, 2006, Theorem 7) in both games, then her long run payoff is 0.2. If instead she

behaves in the biased matching pennies game like her learning heuristic in the matching pennies

game, then Colin is not able to learn about her biased payoffs and her long run payoff is 0.25.

Since both games are generic, this simple example shows that we can apply arguments similar

to the previous sections also to the case of convergence to non-degenerate mixed equilibrium

and the class of strictly competitive games.
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9 Discussion

Inventive Compatibility and Repeated Games with Incomplete Information

Uncoupled learning heuristics converging to stage-game equilibrium implicitly “communicate”

through behavior information about the player’s payoff to other players. This is how those

profiles of learning heuristics eventually find stage-game Nash equilibrium. Our observations

suggest that such an implicit communication of payoffs through learning heuristics is not long-

run incentive compatible in all games. This is reminiscent of repeated games with incomplete

information. To see this, consider our counterexample in Section 3 as a repeated game with one-

sided incomplete information and known own payoff matrices. At the beginning of the repeated

game, either payoff matrix u1 or u2 is drawn according to some non-degenerate probability

distribution. Rowena is informed about the draw while Colin is kept ignorant. Note that Colin’s

payoff matrix in game u1 is identical to his payoff matrix in game u2. Thus, he has complete

information about his own payoff matrix but incomplete information about his opponent’s

payoff matrix. According to a characterization result by Shalev (1994), every Bayesian Nash

equilibrium of this repeated game is payoff-equivalent to a fully revealing Nash equilibrium of

the repeated game. Figure 1 shows the payoffs for the repeated games u1 (left figure) and u2

(right figure). The area shaped by the intermitted line indicates feasible payoffs of the repeated

Figure 1: Nash Equilibrium Payoffs of the Repeated Games in the Counterexample
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game with complete information. The thick vertical and horizontal solid lines mark the minimax

payoffs of Rowena and Colin in those games, respectively. Consequently, the grey-shaded areas

show equilibrium payoffs in the repeated game with complete information. The red dot indicates

the stage-game Nash equilibrium payoff. There is no Bayesian Nash equilibrium of the repeated

game with one-sided incomplete information in which players play like the repeated stage-game

Nash equilibrium in u1 when u1 is drawn and the repeated stage-game Nash equilibrium in u2

when u2 is drawn. A necessary condition of Shalev (1994)’s characterization result is incentive
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compatibility for Rowena. In our setting this means that Rowena’s payoff from playing u2 must

be weakly larger than her payoff in u2 when playing like in u1. Clearly, this is violated in our

counterexample as she receives 13 in the stage-game Nash equilibrium of u2 but 15 when she

plays in u2 like in (the stage-game Nash equilibrium of) u1.

In our counterexample it is not incentive compatible for Rowena to implicitly communicate

here payoffs to Colin via the equilibrium learning heuristic. She has an incentive to lie about

her payoffs and strategically teach Colin her “wrong” payoffs. Her strategic teaching strategy of

playing in u2 like in u1 is the best strategy against Colin. This follows from a characterization

result by Israeli (1999) in the repeated games literature. Applied to our context, his result

means that the best Rowena can do against Colin in u2 is to play as if she faces a zero-sum

game in which her payoffs are the negative of Colin’s payoffs. Note that this zero-sum game has

the same pure best response structure as u1. Rowena’s stage-game Nash equilibrium strategy

in u1 minimizes Colin’s payoff in u2. Thus, if she plays u2 like u1, she plays like in the zero-sum

game.

Population Games

One reviewer pointed out that strategic considerations at the core of our counterexample are

mostly absent when learning takes place in population games. Indeed in a review paper, Fuden-

berg and Levine (1998b) remark that “(m)ost of learning theory abstracts from these repeated

game considerations by explicitly or implicitly relying on a model in which the incentive to try

to alter the future play of opponents is small enough to be negligible. This can be justified

by appeal to models with a large number of players, who interact anonymously (which is the

case in most experiments), with the population size large compared to the discount factor.”

Yet, they also pointed to Ellsion (1997) as a caveat. Ellison (1997, Section 5) showed in an

interesting example of a 3×3 game that strategic teaching of fictitious play with finite memory

is possible even in a population game context due to contagion, and that strategic teaching

may become more effective the larger the population size. Thus, large populations are neither

sufficient nor necessary for rendering strategic teaching mute.

We do not know yet how to extend our observations to a setting in with a population

of Rowenas and Colins, or a setting in which the strategic teacher enters a population of

learners who are randomly matched to play a game in various positions.10 Instead we focus

on games without a population content. There are at least two justifications for this. First, in

games without population context, it is not immediate that strategic teaching must necessarily

interfere with learning stage-game equilibrium as the repeated stage-game equilibrium is also

an equilibrium of the repeated game. What we show is that uncoupledness of the learning

10It is immediate though to extend our observations to one Rowena playing against a population of Colins.
Then the same arguments apply although convergence may be slower.

22



heuristics creates this interferences. Second, we are line with recent papers on uncoupled

equilibrium learning who do not make use of population games (e.g., Babichenko, 2010, Foster

and Young, 2001, 2003, 2006, Hart and Mas-Colell, 2003, 2006, Germano and Lugosi, 2007,

Kakade and Foster, 2008, Young, 2009). It is perhaps not surprising that this literature does

not assume population games as they seek a theory of learning equilibrium in general strategic

games and not just in population games.

Experimental Evidence for Strategic Teaching

That uncoupled equilibrium learning gives rise to opportunities for strategic teaching is not

just a theoretical curiosity. There is experimental evidence (Duersch et al, 2010, Terracol and

Vaksmann, 2009, Camerer et al., 2002, Chong et al., 2006, Hyndman et al., 2012) that some

participants do indeed use sophisticated behavior akin to strategic teaching when opponents

follow uncoupled learning heuristics. E.g., Duersch et al. (2010) present stark example of

strategic teaching in an experiment in which human subjects played against a computer op-

ponent programmed to various learning heuristics. Terracol and Vaksmann (2009) show in an

experimental 3×3 game that players may forego some immediate payoff in order to modify the

opponent’s future behavior.

Evolutionary Stability of Learning Heuristics

Our observations can be interpreted in an evolutionary context. Instead of players choosing

strategically learning heuristics with the long-run benefit in mind, the emergence of learning

heuristics may be the result of mutations and evolutionary selection. Suppose there is a large

population of players who are randomly matched to play two-player games drawn at random

from a class of games U. For each game, each player has equal chance to play in the position

of the row or column player (which symmetrizes games). Players are programmed to learning

heuristics. Each player’s fitness (e.g., offsprings) is measured by the long-run payoffs “averaged”

over those games. (That is, evolution is assumed to be slower than it takes for average long-run

payoffs from learning to emerge.) Suppose now that initially the population is programmed

to an uncoupled learning heuristic converging to Nash equilibrium in all games. Would such

a population be robust to a small fraction of mutants that may invade with another heuristic

to play in those games? Although the notion of evolutionary stability is intricate in repeated

games (see for instance Binmore and Samuelson, 1992, Demichelis, 2013, Fudenberg and Maskin,

1990, Kim, 1994), we believe that a reasonable notion of evolutionary stability in repeated

games would require Nash equilibrium of the repeated game as a necessary condition. Under

this assumption, we conclude from our observations that if an uncoupled learning heuristic

converges to Nash equilibrium in all games, then it cannot be evolutionary stable.
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Learning to Learn

A third interpretation of our observations is based on the idea that players may also learn

how to learn in games and the quest for universal learning heuristics. Since learning heuristics

apply to all games, we can apply them also to the learning game. Our observations suggest

that there is no uncoupled learning heuristic converging to Nash equilibrium in all finite games

that could learn itself.11 This is in contrast to the existence of universal learning heuristics for

“single-person decision problems” in artificial intelligence (Schmidhuber, 2003).

Related Literature

Our paper contributes to the literature discussing the limits of strategic learning (Foster and

Young, 2001, Hart and Mas-Colell, 2003, 2006, Jordan 1993, Nachbar 1997, 2001, 2005, Sadzik,

2011). For instance, Nachbar (1997, 2001, 2005) pointed out a tension between prediction and

optimization in rational learning. Kalai and Lehrer (1993) studied rational learners who form

suitable probabilistic beliefs about opponents’ strategies in infinitely repeated games, update

beliefs according to Bayes rule, and chose strategies so as to maximize discounted expected

utility. They show that rational learners must eventually play like a Nash equilibrium of the

repeated game. Nachbar (1997, 2001, 2005) showed that since the set of possible strategies is

large in repeated games, there is no belief that allows a rational learner to predict future play

for every possible strategy of the opponent. In some sense, for rational learning to work, prior

beliefs must already be in a kind of “pre-equilibrium”. Another problem was studied by Sadzik

(2011). He focuses on uncoupled learning heuristics that converge to equilibrium. He shows that

finding among uncoupled equilibrium learning heuristics a pair that actually converges requires

a large degree of ex-ante coordination on learning heuristics. While these two impossibility

results are clearly different from our observations, all have in common the implicit question of

how would players come up with “right” learning strategies or beliefs.

The theoretical literature on strategic teaching of learning players is small. Previous papers

focused on special classes of games and particular learning heuristics while we seek general

results. Fudenberg and Kreps (1993) pointed out with an example the possibility of Stackelberg

leadership against an opponent following fictitious play. Ellison (1997) shows that a single

rational player in a population of players learning by fictitious play can strategically teach the

selection of risk dominant equilibria in 2 × 2 coordination games. He also presents simulation

results for nonmyopic manipulation in a 3× 3 game. Schipper (2019) derives optimal strategic

11If there were, we would have pushed the problem just one level further. How do players were to find such a
learning heuristic? Presumably there is a (meta-meta-)learning heuristic to (meta-)learn the learning heuristic
to play in the games ... Clearly, we are headed for an infinite regress akin to “how to decide how to decide ...”
that have been studied by Mongin and Walliser (1988), Lipman (1991), and Ergin and Sarver (2010). There is no
need for us to formalize this infinite regress problem here because our counterexample shows a problem already
at the second level.
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teaching strategies against an opponent learning according to myopic best response in games

with strategic complements or substitutes. Kordonis et al. (2018) show the possibility of

Stackelberg leadership against some types of adaptive players in games motivated by electricity

markets. Duersch et al. (2012, 2014) and Schipper (2009) characterize the class of games in

which conditional and unconditional imitation strategies can not be taken advantage of.

A Proofs

A.1 Proof of Proposition 2

Fix a generic stage-game u = (ui, u−i) ∈ U. In generic games best responses are unique. Hence,

we write

aLi := arg max
ai∈A

ui(ai, a−i) s.t. a−i = B−i(u)(ai)

and

aF−i := B−i(u)(aLi )

for the Stackelberg leader i and follower −i’s actions of the stage-game u, respectively.

Since U is the class of finite two-player games that possess a pure Nash equilibrium, there

exists a game (ũi, u−i) ∈ U such that

(a) (aLi , a
F
−i) is the unique Nash equilibrium of (ũi, u−i), and

(b) ũi(a
L
i , a

F
−i) ≥ `i(ũi, u−i).

E.g., let ũi be such that

(A) aLi strictly dominates all other actions in A for player i, i.e., for any αi ∈ ∆(A) with

αi(a
L
i ) < 1, we have ũi(a

L
i , a−i) > ũi(αi, a−i) for any a−i ∈ A,

(B) player i’s payoff from the profile (aLi , a
F
−i) strictly dominates any other payoff, i.e., ũi(a

L
i , a

F
−i) >

ũi(a) for any a ∈ A×A, a 6= (aLi , a
F
−i).

(A) implies (a) since (ũi, u−i) is generic, aLi is the unique best response of player i to aF−i in

(ũi, u−i) and aF−i = B−i(u)(aLi ) = B−i(ũi, u−i)(a
L
i ). (B) implies (b). Moreover, both (A) and

(B) are consistent in the sense that for any generic u ∈ U there exist (ũi, u−i) ∈ U such that

both (A) and (B) hold.

Since (σi, σ−i) is a profile of uncoupled learning heuristics that converges almost surely to

the stage-game Nash equilibrium in all games in U, it must almost surely converge to the Nash

equilibrium (aLi , a
F
−i) in the game (ũi, u−i). Let player i now follow a learning heuristic σ̃i that

in both games, u and (ũi, u−i), behaves like σi in game (ũi, u−i). (Thus, when in u, player i

“pretends” to be in (ũi, u−i).) Since σ−i is an uncoupled learning heuristic, player −i behaves

25



almost surely identically in u and (ũi, u−i) when player i follows σ̃i. Thus, in both games, u

and (ũi, u−i), almost every play path consists of (aLi , a
F
−i) being played from some point on.

Hence,

lim
T→∞

inf E(σ̃i(u),σ−i(u))

[
1

T

T∑
t=1

ui(a
t(σ̃i(u), σ−i(u)))

]
≥ `i(u)

and

lim
T→∞

inf E(σ̃i(ũi,u−i),σ−i(ũi,u−i))

[
1

T

T∑
t=1

ũi(a
t(σ̃i(ũi, u−i), σ−i(ũi, u−i)))

]
≥ `i(ũi, u−i).

Since the argument holds for almost any repeated stage-game u ∈ U, we must have

Vi((σ̃i, σ−i),U) ≥ Li(U).

It is known that there are finite two-player games with a pure Nash equilibrium in which the

(worst) Stackelberg leader payoff as defined here can be strictly below a Nash equilibrium payoff

(e.g., Başar and Olsder, 1999, p. 132-133). But such games must be non-generic. In a generic

game, best responses are unique. Thus, in generic games a Stackelberg leader can guarantee

herself at least her best Nash equilibrium payoff because if the Stackelberg leader chooses the

action corresponding to her most preferred pure Nash equilibrium, then the opponent best

responds uniquely with his corresponding Nash equilibrium action. When “averaging” limit-

expected-mean payoffs over all games in U with a Lebesgue measure, non-generic games must

have measure zero. Thus Li(U) ≥ Vi((σi, σ−i),U).

In our example u2 from Section 3 we observe that the Stackelberg leader achieves a payoff

that is strictly larger than in the unique Nash equilibrium. Since u2 is generic, this holds for an

open neighborhood U2 ⊆ U of the stage-game. Since any nonempty open neighborhood must

have strict positive Lebesgue measure, we must have Li(U) > Vi((σi, σ−i),U).

Finally, note that in above arguments, (aLi , a
F
−i) is the unique and strict Nash equilibrium

of (ũi, u−i) in which player i plays a strict dominant action. Thus, it is also the correlated

equilibrium, iterative admissible action profile, rationalizable action profile, and minimal curb

set of (ũi, u−i). Hence, the result holds also for uncoupled learning heuristics that converge

to correlated equilibrium, iterative admissible action profiles, rationalizable action profiles or

minimal curb sets, respectively. This completes the proof of the proposition. �

A.2 Proof of Proposition 3

Let U ⊆WDS with u ∈ U. By definition of WDS, any action that remains after one round

of elimination of weakly dominated actions in the stage-game u is a Nash equilibrium action.

For each player i, select σi that in every stage-game u ∈ U chooses an action ai ∈ Di(ui) for

every history. Then the profile σ = (σi, σ−i) selects a Nash equilibrium in every stage-game
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u ∈ U. Require also that the action that σi selects for player i in (ui, ũ−i) ∈ U is identical to

the action that it selects in u ∈ U, for every ũ−i. Then σi is uncoupled. Moreover, it follows

that the profile of such learning heuristics is a Nash equilibrium in the learning game based on

U.

We prove the converse by contradiction. Let WDS ⊆ U and let u ∈ U be a generic

stage-game with u /∈ WDS. Fix a history of play of u that emerges from the profile of un-

coupled learning heuristics σ = (σi, σ−i) that converges to Nash equilibrium in all games in

U . Since every game in U has a pure Nash equilibrium by definition, there is a Nash equilib-

rium of the stage-game u to which σ(u) converges almost surely. Denote it by a∞(σ(u)) =

(a∞i (σ(u)), a∞−i(σ(u))).

We claim that there exists a generic stage-game ũ = (ũi, ũ−i) ∈WDS such that

(0) (ui, ũ−i) is a generic game in U,

(i) any Nash equilibrium action of player i in the stage-game (ui, ũ−i) differs from a∞i (σ(u)),

(ii) ũ−i(a
∞(σ(u))) > ũ−i(a

∗) for any Nash equilibrium a∗ of the stage-game (ui, ũ−i).

Intuitively, (ii) implies that player −i has an incentive to pretend being in game u even

though the stage-game is (ui, ũ−i). Together with (i), player −i has an incentive to not let

the play converge to a Nash equilibrium of (ui, ũ−i). (0) implies that this is relevant for the

learning game based on U.

(0) follows because ũ ∈WDS ⊆ U, both ũ and u are generic, U is a product class of finite

two-player games, and (ui, ũ−i) has a pure Nash equilibrium. To see the last point, pick for

player −i an action a−i ∈ D−i(ũ−i) and note that because ũ is generic there must be a pure

and unique best response ai to it by player i. Action a−i is the unique best response to ai in

(ui, ũ−i) because ũ ∈WDS and ũ is generic. Thus, (ai, a−i) is a strict pure Nash equilibrium

of (ui, ũ−i).

(i) follows from u /∈WDS. To see this, note that u /∈WDS implies that for some player i

there exist a∗∗i , a
∗
i ∈ Di(ui) such that

ui(a
∗∗
i , a−i) > ui(a

∗
i , a−i) for some a−i ∈ D−i(u−i).

If in addition

ui(a
∗∗
i , a−i) ≥ ui(a

∗
i , a−i) for all a−i ∈ A,

then a∗∗i weakly dominates a∗i , a contradiction to a∗i ∈ Di(ui). (In the last inequality, we could

have written “>” since the game is generic.) Thus, we must also have

ui(a
∗∗
i , a−i) < ui(a

∗
i , a−i) for some a−i ∈ A. (6)
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Since u is generic, there exist a∗∗−i, a
∗
−i ∈ A such that a∗∗i is the unique best response to a∗∗−i

and a∗i is the unique best response to a∗−i.

Since σ converges to a pure Nash equilibrium of u, we must have a∞i (σ(u)) 6= a∗∗i or

a∞i (σ(u)) 6= a∗i . With loss of generality, assume the latter case (otherwise replace ∗ with ∗∗ in

below arguments), a∞i (σ(u)) 6= a∗i . We can choose a generic stage-game ũ ∈WDS such that

a∗−i strictly dominates all other actions in A for player −i, i.e., for all a−i ∈ A \ {a∗−i},

ũ−i(ai, a
∗
−i) > ũ−i(ai, a−i) for all ai ∈ A.

Then by construction, a∗−i is the unique Nash equilibrium action of player −i in the game

(ui, ũ−i). Hence, a∗ = (a∗i , a
∗
−i) is the unique Nash equilibrium of (ui, ũ−i). It follows that

player i’s Nash equilibrium action in the game (ui, ũ−i) is different from a∞i (σ(u)), which

finishes the proof of (i).

To prove (ii), note that by previous arguments it is sufficient to show

ũ−i(a
∞(σ(u))) > ũ−i(a

∗),

for the unique Nash equilibrium a∗ of the game (ui, ũ−i).

Note that a∞−i(σ(u)) 6= a∗−i. Suppose not, then since a∗i is the unique best response to a∗−i
in the stage-game u, it follows that a∞i (σ(u)) = a∗i , a contradiction to the assumption above

that a∞i (σ(u)) 6= a∗i .

We can choose ũ−i such that

ũ−i(a
∞
i (σ(u)), a∗−i) = ũ−i(a

∞(σ(u))) + ε = ũ−i(a
∗) + 2ε

for some ε > 0. This makes ũ−i(a
∞(σ(u))) sufficiently large in order to satisfy

ũ−i(a
∞(σ(u))) > ũ−i(a

∗),

while continuing to satisfy

ũ−i(a
∞
i (σ(u)), a∗−i) > ũ−i(a

∞(σ(u))),

a necessary condition for a∗−i being strict dominant. This finishes the proof of (ii). Note that

(i) and (ii) (and (0)) can be satisfied simultaneously.

Note that if player i adopts σi, then player −i can strictly improve her long run payoff in

the repeated stage-game (ui, ũ−i) with σ∗−i that satisfies σ∗−i(u) = σ∗−i(ui, ũ−i) = σ−i(u). That

is, in game (ui, ũ−i), player −i pretends to be in u. Since both stage-games u and (ui, ũ−i) are

generic, our arguments above hold also for open neighborhoods of them. Since any nonempty

open neighborhoods must have strict positive Lebesgue measure, player −i’s “average” long-run

payoff from σ∗−i in the learning game when player i follows σi is strictly larger than from σ−i.

Thus, σ is not a Nash equilibrium of the learning game, a contradiction.
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In the above arguments, (ui, ũ−i) has a unique and strict Nash equilibrium in which one

player plays a strict dominant action. Thus, it must also be the correlated equilibrium, the

iterative admissible action profile, the rationalizable action profile, and the minimal curb set.

Thus, analogous arguments apply when we weaken convergence to the set of correlated equi-

libria, iterative admissible action profiles, rationalizable action profiles, or minimal curb sets,

respectively. �

A.3 Proof of Proposition 4

We show that there exists an uncoupled learning heuristic that in every game in CI leads to a

Nash equilibrium with a payoff profile that strictly Pareto dominates any other payoff profiles.

We do this by slightly modifying a learning heuristic used in Hart and Mas-Colell (2006, Proof

of Theorem 3). Consider the following learning heuristic: for any t ≥ 2,

• If (at−2R ), at−2C ) = (at−1R , at−1C ), at−1i is a best response to at−1−i , and the payoff obtained by

player i in t − 2 and t − 1 is player i’s maximal payoff of the stage-game, then player i

plays ati = at−1i .

• Otherwise, player i randomizes uniformly in t over all actions.

This learning heuristics is uncoupled; player i does not condition on the opponent’s payoffs. It

is easy to see that if both players follow the heuristic in any game in CI, then they will reach a

pure Nash equilibrium corresponding to the strict Pareto dominant payoff profile almost surely.

The arguments are analogous to Hart and Mas-Colell (2006, Proof of Theorem 3). This proves

the first part of Proposition 4.

Let U be a product class of games such that each stage-game in U has a pure Nash equilib-

rium and CI ⊆ U. Suppose by contradiction that there exists a profile of uncoupled learning

heuristics σ = (σR, σC) that converges to Nash equilibrium in all games in U and is a Nash

equilibrium learning heuristic of the learning game based on U. Consider the following stage-

games:

u = a
b

a b(
8, 9 2, 3
0, 1 4, 5

)
ũ = a

b

a b(
8, 9 6, 3
0, 7 4, 5

)
û = a

b

a b(
8, 9 10, 11
0, 1 4, 5

)
We have u, ũ, û ∈ CI.

Now consider

(uR, ũC) = a
b

a b(
8, 9 2, 3
0, 7 4, 5

)
(uR, ûC) = a

b

a b(
8, 9 2, 11
0, 1 4, 5

)
.

Both games have a unique and pure Nash equilibrium. Since U is a product class and CI ⊆ U,

we have that both (uR, ũC), (uR, ûC) ∈ U.
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Since (a, a) is the unique Nash equilibrium of (uR, ũC) and (b, b) is the unique Nash equi-

librium of (uR, ûC), the profile of learning heuristics σ = (σR, σC) must converge to (a, a) in

(uR, ũC) and (b, b) in (uR, ûC).

All of the above games are generic. Let Ũ be an open neighborhood of (uR, ũC) and Û be

an open neighborhood of (uR, ûC) such that both are product classes and Ũ, Û ⊆ U and retain

the same pure best response structure, respectively.

Let σ̃C be an alternative learning heuristic for Colin that in games in Ũ ∪ Û behaves

identically to σ in Ũ. For all other games, σ̃ behaves identically to σ. That is, with σ̃C Colin

pretends to be in Ũ whenever he is Û. Note that (σR, σ̃C) converges to (a, a) in stages-games

in Û, which is not the Nash equilibrium of these stage-games. Note further that Colin earns

a strictly larger payoff in (a, a) than in the unique Nash equilibrium of these games. Since

any nonempty open neighborhoods must have strict positive Lebesgue measure, Colin’s average

long run payoff from σ̃C in the learning game when Rowena follows σR is strictly larger than

from σC . Thus, σ is not a Nash equilibrium of the learning game, a contradiction.

Note that we can extend the arguments above to games with larger actions sets by simply

adding strictly dominated rows and columns.

Note further that we can let U be the smallest product class of games that contains CI,

i.e.,

U :=

{
u ∈ [0, 1]2·|A

2| :
u = (ũR, ûC) s.t. there exist ũ = (ũR, ũC)
and û = (ûR, ûC) with ũ, û ∈ CI

}
.

Finally note that both games, (uR, ũC) and (uR, ûC), posses a unique, pure, and strict Nash

equilibrium. Thus, it must also be the correlated equilibrium, the iterative admissible action

profile, the rationalizable action profile, and the minimal curb set. Hence, analogous arguments

apply when we weaken convergence to the set of correlated equilibria, iterative admissible action

profiles, rationalizable action profiles, or minimal curb sets, respectively. This completes the

proof of Proposition 4. �

A.4 Proof of Proposition 8

Define game u3 by

Rowena b
c

Colin
a b

1− 2ε, 12 +
1
2
−ε
2 0, 1

1, 12 −
1
2
−ε
2 2ε, 0
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and u4 by

Rowena b
c

Colin
a b

1, 12 +
1
2
−ε
2 2ε, 1

1− 2ε, 12 −
1
2
−ε
2 0, 0

Clearly there is ε̂ > 0 such that for all ε ∈ [0, ε̂], games u3 and u4 are generalizations of games

u1 and u2 in Section 3, respectively, in the sense that they have identical pure best response

structures, respectively. Colin’s payoffs in u3 are identical to his payoffs in u4. Rowena’s payoffs

in u3 correspond to her payoffs in u4 except with rows being interchanged.

Note that (c, a) is the unique ε-Nash equilibrium of u3 and (b, b) is the unique ε-Nash

equilibrium of u4. For Rowena, pretending to play u3 instead of u4 when both players follow

a learning heuristic that converges (1 − ε) of the time to stage-game ε-Nash equilibrium is

profitable if

(1− ε) · (1− 2ε) + ε · 0 > ε · 1 + (1− ε) · 2ε

The first term of the l.h.s., (1− ε) · (1− 2ε), is the payoff from stage-game ε-Nash equilibrium

of u3 in u4, which happens at least (1−ε) of the time. The second term of the l.h.s., ε ·0, is the

worst payoff that could be obtained in the remaining ε of the times when ε-Nash equilibrium

is not played. The second term of the r.h.s. is the stage-game ε-Nash equilibrium payoff in u4,

which happens at least (1 − ε) of the time. The first term of the r.h.s. is the highest payoff

from non-Nash equilibrium of u4 which happens at most ε of the time. This is the best payoff

in u4 to Rowena and hence the worst case for Rowena when she pretends to play u3 instead.

We solve above inequality together with ε ∈ [0, 1) to find ε ∈
[
0, 34 −

1
4

√
5
)
. Set ε̄ := 3

4−
1
4

√
6.

Clearly, ε̄ > 0. Thus, for all ε ∈ [0, ε̄] it is profitable for Rowena to pretend to play u3 instead

of u4 when using a learning heuristic that converges at least 1 − ε of the time to stage-game

ε-Nash equilibrium and Colin uses an uncoupled learning heuristics converging at least 1− ε of

the time to stage-game ε-Nash equilibrium.

Finally, since both u3 and u4 are generic, we can consider open neighborhoods U3 and U4

of u3 and u4, respectively, where this occurs. �
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