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1 Introduction

Recently various frameworks for modeling dynamic games with unawareness have been intro-

duced (Halpern and Rego, 2014, Rego and Halpern, 2012, Feinberg, 2012, Grant and Quiggin,

2013, Heifetz, Meier, and Schipper, 2013, Schipper, 2018a, b; for a non-technical survey, see

Schipper, 2014). While all of these frameworks are capable of modeling asymmetric awareness

among players and endogenous dynamic change of awareness during play, the solution concepts

proposed for these frameworks and thus the implicit behavioral or epistemic assumptions un-

der unawareness differ. The solution concepts can be roughly divided into equilibrium notions

(Halpern and Rego, 2014, Rego and Halpern, 2012, Feinberg, 2012, Grant and Quiggin, 2013,

Ozbay, 2007, Filiz-Ozbay, 2012, Meier and Schipper, 2014) and rationalizability (Heifetz, Meier,

and Schipper, 2013, Guarino, 2017, Schipper and Woo, 2019, Li and Schipper, 2018b, Schip-

per, 2018b, 2016, Perea, 2018a). As pointed out in Heifetz, Meier, and Schipper (2013) and

Schipper (2018b), equilibrium notions that are mere extensions of the mathematical definitions

of equilibrium in standard games to the more sophisticated frameworks with unawareness are

problematic. Since awareness may change along the “equilibrium’ path, behavior cannot be in-

terpreted as a steady state. This is at odds with the common implicit equilibrium assumption

of mutual knowledge of play. Where should mutual knowledge of play come from when it could

not have been learned previously? In contrast, rationalizability does not feature this implicit

assumption. It seeks to answer the question about what behavioral constraints are implied by

higher order belief in the rationality.

Heifetz, Meier, and Schipper (2013) extended extensive-form rationalizability of Pearce

(1984) and Battigalli (1997) to generalized extensive-form games with unawareness. It entails a

notion of forward induction, a feature of special interest in dynamic games with unawareness: If

a player raises another player’s awareness of an action, then it is plausible to assume that latter

player reasons why the other player made her aware of that action and what it would imply

for future behavior. While in many games, extensive-form rationalizability yields interesting

restrictions on behavior, in some applications (see for instance Section 5) it is too permissible on

beliefs that players can hold. In particular, those beliefs do not feature any form of “caution” or

“prudence”. Sometimes this lack of constraints on beliefs does not permit ruling out strategies

that could not be justified anymore even if only some tiny bit of caution is assumed.

The etymology of awareness reveals a deep connection between awareness and caution that

serves as a conceptual motivation for considering caution in the context of limited awareness.

“Aware” has its root in the Proto-Germanic “ga-waraz”, where “waraz” means “wary” or

“caution” and “ga” is an intensifying prefix. It appears to have entered the English language via

the Old Saxon term “giwar” or German “gewahr” (which means to “perceive” or to “watch out
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for”).1 It suggests to us that it is rather natural to consider caution in the context of awareness.

This is expressed quite eloquently in a report we received from an anonymous reviewer who

writes “I see cautiousness as a natural assumption to impose, especially in iterative solution

concepts, which–as opposed to equilibrium concepts– do not implicitly assume that a steady

state of some learning process has been reached. In this sense, it is not easy to justify that

players rule out strategies of the opponents. In fact, in the presence of unawareness, one could

always argue that cautiousness is even more natural, as players realize that all the opponents’

strategies could be in principle justified, even for reasons that are currently unclear (viz., due

to the fact they are potentially unaware of some parts of the game).”

In this paper, we extend a notion of extensive-form rationalizability featuring some form

of caution to generalized extensive-form games with unawareness. We call this solution con-

cept prudent rationalizability. Like extensive-form rationalizability, at every information set,

the active player looks for a best rationalization for the way this information set has been

reached, and replies optimally to a belief over these best-rationalizable strategies. Yet, prudent

rationalizability requires additionally that this belief has full-support on the opponents’ (recur-

sively defined) prudently-best-rationalizable strategies. In Theorem 1 we prove that prudent

rationalizable strategies exist in every finite dynamic game with perfect recall, including gen-

eralized extensive-form games with unawareness as introduced by Heifetz, Meier, and Schipper

(2013). The significance of having a rationalizability concept featuring caution for games with

unawareness is that–as we have argued–it is natural in the context of limited awareness and that

it facilitates interesting applications in which strategic revelation of awareness and information

plays an important role.

In Section 5 we exemplify the attractiveness of prudent rationalizability in games with dis-

closure of verifiable information (see Grossman, 1981, Milgrom, 1981, Grossman and Hart,

1980, and Milgrom and Roberts, 1986; see Milgrom, 2008, for a review). Information unrav-

els in these models. Typically, this is proved using sequential equilibrium while an informal

intuition is provided with an inductive argument. We show that prudent rationalizability for-

malizes the inductive intuition and yields the unraveling result in the limit. Yet, since prudent

rationalizability is an inductive definition, it also provides predictions for every finite level of

mutual prudent belief in rationality. This has been useful in experiments. Li and Schipper

(2018a) partially identify levels of rationing in experimental disclosure games using prudent

rationalizability.

Full unraveling of information is somewhat unrealistic, though. In Section 5.2 we show that

when unawareness is introduced into disclosure games, prudent rationalizability does not imply

full information unraveling. Li and Schipper (2018b) find some support for this theoretical

prediction in experimental disclosure games with unawareness. It demonstrates that in some

1https://www.etymonline.com/word/aware
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games the presence or absence of unawareness may alter predictions dramatically. We also

analyze a sender-receiver game with unawareness introduced by Ozbay (2007), and show that

prudent rationalizability delivers the same prediction as does his equilibrium notion which

incorporates forward-induction reasoning.

We believe that these two applications demonstrate the attractiveness of prudent rationaliz-

ability in dynamic games with unawareness. Indeed, in many games with unawareness prudent

rationalizability rules out implausible extensive-form rationalizable strategies, with which a

player makes an opponent aware of an action which the player would actually like the opponent

to avoid, just because the player has a firm belief that the opponent would not take it (even

if the opponent is indifferent between the revealed action and another one, of which she was

aware also before); prudent rationalizability rules out such imprudent behavior.

Schipper and Woo (2019) apply theoretical insights of prudent rationalizability in disclosure

games to electorial campaigning in which voters may not be aware of all political issues spanning

the multi-dimensional policy space. Candidates campaign for votes by targeting messages to

voters that raise political issues and disclose some information about the candidate’s agenda.

They show that political competition, microtargeting of voters, negative campaigning, and the

political reasoning capabilities of voters entailed in forward induction of prudent rationalizability

all play a role for unraveling in electoral campaigns.

Prudent rationalizability is not really new. Already Pearce (1984) presents a notion of

cautious extensive-form rationalizability that differs from ours in several respects and which

he himself did not find satisfactory; see Section 4.3 for an example and further discussion.

Brandenburger and Friedenberg (2007) study iterated weak dominance on the tree, a notion

of conditional dominance à la Shimoji and Watson (1994) but featuring admissibility. They

consider the associated normal-form and normal-form information sets associated with infor-

mation sets in the tree. Strategies are eliminated iteratively when they are weakly dominated

conditional on these normal-form information sets. They observe that iterated conditional

weak dominance is equivalent to iterated (unconditional) weak dominance in the associated

normal-form game. Prudent rationalizability is equivalent to iterated conditional weak domi-

nance if instead of our local notion of optimizing over actions at information sets, optimizing

over strategy-replacements at information sets is used. Meier and Schipper (2012) show these

results formally for generalized extensive-form games with unawareness. They also show that in

games with unawareness the relationship between prudent rationalizability and iterated weak

dominance is more subtle. Games with unawareness consist of several normal-forms, one for

each awareness level. In order to consider the awareness levels of players when eliminating

strategies it is still necessary to condition on the appropriate normal-form when eliminating

strategies by weak dominance.

We choose to define prudent rationalizability rather than using iterative elimination of
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weakly dominated strategies in the associated normal-form because our primary purpose is to

apply it to dynamic games with unawareness for which–as we just mentioned–the associated

normal-form is more involved. It also allows us to compare prudent rationalizability directly

to extensive-form rationalizability. Finally, prudent rationalizability is a solution concept for

dynamic games, while iterative admissibility applies to the normal-form, a static concept. For

“aesthetic” reasons, we prefer dynamic solution concepts for dynamic games. Moreover, we

simply do not know yet to what extent it is justified to invoke the invariance axiom suggested

in the literature on strategic stability for generalized games with unawareness.

In static games, iterated admissibility is a refinement of rationalizability. In the latter

solution concept, at every round of elimination a player’s strategy survives only if it is a best

response to some belief over the opponents’ strategies which survived the previous rounds,

while in the former a strategy survives only if it is a best response to such a full-support belief,

which does not completely exclude any strategy of the other players that has not been thus

far eliminated. This follows from Pearce (1984, Lemma 4). In this paper we are concerned

with the connection between the counterparts of these two notions in dynamic games, namely

extensive-form rationalizability and prudent rationalizability.

Extensive-form rationalizability is particularly interesting because it may be used to refine

the notion of sequential equilibrium (Pearce, 1984). Moreover, in generic perfect-information

games, extensive-form rationalizability induces the unique backward-induction path (Reny,

1992, Battigalli, 1997, Chen and Micali, 2013, Heifetz and Perea, 2015, Perea, 2018b), even

though the extensive-form rationalizable strategies may be distinct from the backward-induction

strategies (Reny, 1992). Moreover, extensive-form rationalizability has a transparent epistemic

characterization by common strong belief in rationality (Battigalli and Siniscalchi, 2002), a

characterization that has recently been extended to dynamic games with unawareness (Guar-

ino, 2017).

While in games in normal-form every iterative admissible strategy is also rationalizable, a

similar inclusion does not obtain in dynamic games: In Section 4 we present an example of a

game in which a player’s set of prudent rationalizable strategies is not a subset of her extensive-

form rationalizable strategies but is rather disjoint from it. Nevertheless, we conjecture that

inclusion does obtain in terms of outcomes. That is, we conjecture that the set of paths induced

by prudent rationalizable strategy profiles is always contained in the set of paths induced

by extensive-form rationalizable strategy profiles. Our examples illustrating the relationship

between extensive-form rationalizability and prudent rationalizability should be of interest to

the game theory community independent of its application to games with unawareness.2

2In fact, an anonymous reviewer remarked that our paper carries out two distinct exercises simultaneously.
On one hand, we illustrate the tension between cautiousness and forward induction. On the other hand, we
combine this with unawareness. In an earlier working paper version, we separated these two objectives into
different sections. Yet, we believe that the current exposition conveys more faithfully our motivation for prudent
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The paper is organized as follows: After outlining in Section 2 generalized extensive-form

games with unawareness as introduced in Heifetz, Meier, and Schipper (2013), we present the

definition of prudent rationalizability in Section 3, prove existence, and also demonstrate its

refining power with an example. Next, we explore in Section 4 the properties of prudent ratio-

nalizability by comparing it with extensive-form rationalizability. In Section 5 we demonstrate

the applicability of prudent rationalizability by applying it to games of disclosure of verifiable

information both with full awareness and under unawareness. Finally, we conclude with further

discussions in Section 6. All proofs are relegated to the appendix.

2 Generalized Extensive-form Games with Unawareness

In this section, we outline generalized extensive-form games with unawareness as introduced in

Heifetz, Meier, and Schipper (2013). To define a generalized extensive-form game Γ, consider

first, as a building block, a finite game tree with perfect information and simultaneous moves

with a set of players I, a set of decision nodes N0, active players In at node n with finite action

sets Ai
n of player i ∈ In (for n ∈ N0), chance nodes C0, and terminal nodes Z0 with a payoff

vector (pzi )i∈I ∈ RI for the players for every z ∈ Z0. The nodes N̄0 = N0 ∪ C0 ∪ Z0 constitute

a tree, i.e., they are partially ordered by a precedence relation l with which
(
N̄0,l

)
is an

arborescence (that is, the predecessors of each node in N̄0 are totally ordered by l), for each

decision node n ∈ N0 there is a bijection ψn between the action profiles
∏

i∈In A
i
n at n and n’s

immediate successors, and there is a unique node in N̄0 with no predecessors – the root of the

tree.

Consider now a family T of subtrees of N̄0. A subtree is defined by a subset of nodes

N̄ ′0 ⊆ N̄0 for which
(
N̄ ′0,l

)
is also a tree (i.e., an arborescence in which a unique node has no

predecessors). For two subtrees T ′, T ′′ ∈ T we write T ′ � T ′′ to signify that the nodes of T ′

constitute a subset of the nodes of T ′′.

One of the trees T1 ∈ T is meant to represent the modeler’s view of the paths of play

that are objectively feasible. Each other tree T ∈ T represents the feasible paths of play as

subjectively viewed by some player at some node in T1; or as the frame of mind attributed to

the player at some node of T1 by another player (or even by the same player at a later stage

of the game, after her awareness regarding the feasible paths has evolved), whose own frame of

mind regarding the feasible paths is represented by yet another T ′ ∈ T; and so forth.

Denote by NT
i the set of nodes in which player i ∈ I is active in the tree T ∈ T, and by

Ni =
⋃

T∈TN
T
i .

We require three properties:

rationalizability in games with unawareness.
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1. All the terminal nodes in each tree T ∈ T are in Z0.

2. For every tree T ∈ T, every node n ∈ T , and every active player i ∈ In there exists

a nonempty subset of actions Ai,T
n ⊆ Ai

n such that ψn maps the action profiles AT
n =∏

i∈In A
i,T
n bijectively onto n’s successors in T .

3. For any player i ∈ I, if for two decision nodes n, n′ ∈ NT
i (i.e., i ∈ In ∩ In′) it is the case

that Ai
n ∩Ai

n′ 6= ∅, then Ai
n = Ai

n′ .

See Heifetz, Meier, and Schipper (2013) for a discussion of these properties.

Within the family T of subtrees of N̄0, some nodes n appear in several trees T ∈ T. In

what follows, we will need to designate explicitly these different appearances of such nodes n

as distinct entities. To this effect, in each tree T ∈ T label by nT the copy in T of the node

n ∈ N̄0 whenever the copy of n is part of the tree T, with the caveat that if the move an ∈ AT
n

leads from n to n′, then an leads also from the copy nT to the copy n′T . Denote by N the union

of all decision nodes in all trees T ∈ T, by C the union of all chance nodes, by Z the union of

terminal nodes, and by N̄ = N ∪C ∪Z (copies nT of a given node n in different subtrees T are

distinct from one another, so that N̄ is a disjoint union of sets of nodes).

In what follows, when referring to a node in N̄ we will typically avoid the subscript T when

no confusion may arise. For a node n ∈ N̄ we denote by Tn the tree containing n.

Information and awareness of players is modelled with information sets. We allow that the

information set at node n in tree T may be in a lower tree. This feature differs from standard

extensive-form games. Formally, for each decision node n ∈ N , define for each active player

i ∈ In a nonempty information set πi (n) with the following properties:

I0 Confinement: πi (n) ⊆ T for some tree T .

I1 No-delusion given the awareness level: If πi(n) ⊆ Tn, then n ∈ πi(n).

I2 Introspection: If n′ ∈ πi (n), then πi (n′) = πi (n).

I3 No divining of currently unimaginable paths, no expectation to forget currently conceiv-

able paths: If n′ ∈ πi (n) ⊆ T ′ (where T ′ ∈ T is a tree) and there is a path n′, . . . , n′′ ∈ T ′

such that i ∈ In′ ∩ In′′ , then πi (n′′) ⊆ T ′.

I4 No imaginary actions: If n′ ∈ πi (n), then Ai
n′ ⊆ Ai

n.

I5 Distinct action names in disjoint information sets: For a subtree T , if n, n′ ∈ T and

Ai
n = Ai

n′ , then πi (n′) = πi (n).

I6 Perfect recall: Suppose that player i is active in two distinct nodes n1 and nk, and there

is a path n1, n2, ..., nk such that at n1 player i takes the action ai. If n′ ∈ πi (nk), then
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there exists a node n′1 6= n′ and a path n′1, n
′
2, ..., n

′
` = n′ such that πi (n′1) = πi (n1) and

at n′1 player i takes the action ai.

We refer to Heifetz, Meier, and Schipper (2013) for illustrations and discussions of these

properties.

We denote by Hi the set of i’s information sets in all trees. For an information set hi ∈ Hi,

we denote by Thi
the tree containing hi. For two information sets hi, h

′
i in a given tree T, we

say that hi precedes h′i (or that h′i succeeds hi) if for every n′ ∈ h′i there is a path n, ..., n′ in T

such that n ∈ hi. We denote hi  h′i.

If n ∈ hi we write also Ahi
for Ai

n.

Above properties (in particular the perfect recall property I6) guarantee that with the prece-

dence relation  player i’s information sets Hi form an arborescence: For every information

set h′i ∈ Hi, the information sets preceding it {hi ∈ Hi : hi  h′i} are totally ordered by  .

For trees T, T ′ ∈ T we let T � T ′ whenever for some node n ∈ T and some player i ∈ In it

is the case that πi (n) ⊆ T ′. We denote by ↪→ the transitive closure of �. That is, T ↪→ T ′′ if

and only if there is a sequence of trees T, T ′, . . . , T ′′ ∈ T satisfying T � T ′� · · ·� T ′′.

A generalized extensive-form game Γ consists of a partially ordered set T of subtrees of

a tree N̄0 satisfying properties 1-3 above, along with information sets πi (n) for every n ∈ T,
T ∈ T and i ∈ In, satisfying properties I0-I6 above.

For every tree T ∈ T, the T -partial game is the partially ordered set of trees including T

and all trees T ′ in Γ satisfying T ↪→ T ′, with information sets as defined in Γ. A T -partial game

is a generalized game, i.e., it satisfies all properties 1-3 and I0-I6.

We denote by HT
i the set of i’s information sets in the T -partial game.

A (pure) strategy

si ∈ Si :=
∏

hi∈Hi

Ahi

for player i specifies an action of player i at each of her information sets hi ∈ Hi. Denote by

S =
∏
j∈I

Sj and S−i =
∏

j∈I\{i}

Sj

the set of strategy profiles and the set of strategy profile of player i’s opponents, respectively,

in the generalized extensive-form game.

If si = (ahi
)hi∈Hi

∈ Si, we denote by

si (hi) = ahi
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the player’s action at the information set hi.

With the strategy si, at node n ∈ Ni define the player’s action at n to be si (πi (n)). Thus,

the strategy si specifies what player i does at each of her active nodes n ∈ Ni, both in case

n ∈ πi (n) and in case πi (n) is a subset of nodes of a tree which is distinct from the tree Tn to

which n belongs.

For a strategy si ∈ Si and a tree T ∈ T, we denote by sTi the strategy in the T -partial

game induced by si (i.e., sTi (hi) = si (hi) for every information set hi of player i in the T -partial

game). If Ri ⊆ Si is some set of strategies of player i, denote by RT
i the set of strategies induced

by Ri in the T -partial game. The set of i’s strategies in the T -partial game is thus denoted

by ST
i . Denote by ST =

∏
j∈I S

T
j the set of strategy profiles in the T -partial game. Similarly,

denote by ST
−i =

∏
j∈I\{i} S

T
j the set of strategy profiles of player i’s opponents in the T -partial

game.

We say that a strategy profile s = (sj)j∈I ∈ S reaches a node n ∈ T if the players’ actions

sTj (πj (n′))j∈In′
and nature’s moves in the nodes n′ ∈ T lead to n with a positive probability.

Notice that by property (I4) (“no imaginary actions”), sTj (πj (n′))j∈I is indeed well defined:

even if πj (n′) /∈ T for some n′ ∈ T , the action profile sTj (πj (n′))j∈In′
is an action profile which

is actually available in T to the active players j ∈ In′ at n′. We say that a strategy profile s ∈ S
reaches the information set hi ∈ Hi if s reaches some node n ∈ hi. We say that the strategy

si ∈ Si reaches the information set hi if there is a strategy profile s−i ∈ S−i of the other players

such that the strategy profile (si, s−i) reaches hi. Otherwise, we say that the information set

hi is excluded by the strategy si. Similarly, we say that the strategy profile s−i ∈ S−i reaches

the information set hi if there exists a strategy si ∈ Si such that the strategy profile (si, s−i)

reaches hi.

As it is the case also in standard games, for every given node, a given strategy profile of the

players induces a distribution over terminal nodes in each tree, and hence an expected payoff

for each player in the tree.

So far, we outlined generalized extensive-form games with unawareness. See Heifetz, Meier,

and Schipper (2013) and Schipper (2018a) for further discussions of the underlying modelling

assumptions.

3 Prudent Rationalizability

In this section, we present the solution concept, prudent rationalizability.

A belief system of player i

bi = (bi (hi))hi∈Hi
∈
∏

hi∈Hi

∆
(
S
Thi
−i

)
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is a profile of beliefs - a belief bi (hi) ∈ ∆
(
S
Thi
−i

)
about the other players’ strategies in the

Thi
-partial game, for each information set hi ∈ Hi, with the following properties

• bi (hi) reaches hi, i.e., bi (hi) assigns probability 1 to the set of strategy profiles of the

other players that reach hi.

• If hi precedes h′i (hi  h′i) then bi (h′i) is derived from bi (hi) by conditioning whenever

possible on the set of opponents’ (partial) strategy profiles that reach h′i.

Denote by Bi the set of player i’s belief systems.

For a belief system bi ∈ Bi, a strategy si ∈ Si and an information set hi ∈ Hi, define player

i’s expected payoff at hi to be the expected payoff for player i in Thi
given bi (hi), the actions

prescribed by si at hi and its successors, assuming that hi has been reached.

We say that with the belief system bi and the strategy si player i is rational at the infor-

mation set hi ∈ Hi if there exists no action a′hi
∈ Ahi

such that only replacing the action si (hi)

by a′hi
results in a new strategy s′i which yields player i a higher expected payoff at hi given the

belief bi (hi) on the other players’ strategies S
Thi
−i . Note that this is a “local” notion of optimiz-

ing over actions available at the information rather than optimizing over entire continuation

strategies (i.e., replacement strategies) at the information set.3

Definition 1 (Prudent rationalizability in generalized extensive-form games) Let

S̄0
i = Si.

For k ≥ 1 define inductively

B̄k
i =

bi ∈ Bi :

for every information set hi, if there exists some profile

s−i ∈ S̄k−1
−i =

∏
j 6=i S̄

k−1
j of the other players’ strategies

such that s−i reaches hi in the tree Thi
, then the support

of bi (hi) is the set of strategy profiles s−i ∈ S̄
k−1,Thi
−i that reach hi



S̄k
i =

{
si ∈ S̄k−1

i :
there exists bi ∈ B̄k

i such that for all hi ∈ Hi player i

with strategy si is rational at hi

}
The set of prudent rationalizable strategies of player i is

S̄∞i =
∞⋂
k=1

S̄k
i

3See Meier and Schipper (2012) for a discussion of these two notions and an extension of the one-shot deviation
principle to generalized extensive-form games with unawareness.
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At each level, each player, each tree, and each information set of the player, she forms full

support beliefs over the opponents’ strategies remaining from the previous level and reaching

this information set. The player retains any of her previous level strategies for which there

exists such a belief such that the strategy is rational at all information sets.

In the context of finite generalized extensive-form games with unawareness (and perfect

recall), every player’s set of prudent rationalizable strategies is non-empty.

Theorem 1 The set of player i’s prudent rationalizable strategies is non-empty.

The proof appears in the appendix.

3.1 An Example by Ozbay (2007)

In order to demonstrate the extra power of prudent rationalizability, consider the following

example of dynamic interaction with unawareness, which is a variant of example 3 in Ozbay

(2007). There are three states of nature, ω1, ω2, ω3. A chance move chooses one out of four

potential distributions over the states of nature:

δ1 = (1, 0, 0)

δ2 = (0, 1, 0)

δ3 = (0, 0, 1)

δ4 =

(
1

3
,
1

3
,
1

3

)
An Announcer gets to know the distribution (but not the realization of the state of nature). A

Decision Maker (DM) is initially aware only of the state ω1 (and hence the DM is certain that

ω1 will be realized with certainty). However, before the DM chooses what to do, the Announcer

can choose to make the DM aware of either ω2, ω3, none of them or both of them. Increased

awareness makes the DM aware of the relevant marginals of the distributions. For instance, if

the Announcer makes the DM aware of ω2, the DM becomes aware of the set of distributions

δ1|{ω1,ω2}
= (1, 0)

δ2|{ω1,ω2}
= (0, 1)

δ4|{ω1,ω2}
=

(
1

2
,
1

2

)
and also becomes certain that the Announcer knows which of these is the true distribution.4

4In Ozbay’s example and in what follows the DM’s beliefs about these marginal distributions will not be
necessarily related to the prior probabilities with which the distributions were chosen by the chance move.
That’s why we do not even bother to specify the probabilities with which the chance move chooses the different
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Subsequently, the DM should choose one out of three possible actions – left, middle or right.

The payoffs to the players as a function of the chosen action and the state of nature appear in

the following table:

left middle right

ω1 3, 3 0, 0 2, 2

ω2 0, 0 5, 5 2, 2

ω3 2, 2 0, 0 2, 2

The game is thus described in Figure 1.

It is obvious that if the Announcer announces nothing, and hence the DM is certain that

ω1 prevails, the DM will choose ‘left’.

What happens if the Announcer makes the DM aware of ω2? The information set of the

DM becomes {
δ1|{ω1,ω2}

, δ2|{ω1,ω2}
, δ4|{ω1,ω2}

}
The DM may then assign a high probability to δ1|{ω1,ω2}

,5 and this will lead the DM to choose

‘left’. Hence, assuming such a belief by the DM, it is rationalizable for the Announcer to make

the DM aware of ω2 when the Announcer knows that the true distribution is δ1 (i.e., when the

Announcer knows that ω1 will be realized with probability 1).

This is not very sensible, though. After all, the Announcer can ensure that the DM chooses

‘left’ by not announcing any new state. When the Announcer likes the DM to choose ‘left’, it

makes no sense on the Announcer’s part to announce ω2 and thus face the risk that the DM

assigns a low probability to δ1|{ω1,ω2}
and consequently choose ‘middle’. This idea is captured

by Ozbay’s reasoning refinement to his awareness equilibrium notion. Moreover, it is captured

even without assuming equilibrium by prudent rationalizability.

Proposition 1 The DM has a unique prudent rationalizable strategy. With this strategy the

DM chooses ‘left’ when no new state is announced, ‘middle’ when only ω2 is announced, ‘left’

when only ω3 is announced, and ‘right’ when both ω2, ω3 are announced.

The proof is contained in the appendix.

Caution embodied in the definition of prudent rationalizability is crucial for the argument.

distributions.
Put differently, instead of describing this game by a partially ordered set of trees, one for each level of awareness

as in Figure 1, we could have replaced each tree with an arborescence in which the initial chance move is erased.
Allowing for arborescences instead of trees in the framework for dynamic unawareness is straightforward, but for
the sake of clarity of the exposition we avoid this explicit generalization in the body of the paper.

5That is, the DM may assign a high probability to strategies of the Announcer by which the Announcer

announces ω2 (and cause the DM’s information set to become
{
δ1|{ω1,ω2} , δ2|{ω1,ω2} , δ4|{ω1,ω2}

}
) when the

Announcer has learned that the true distribution is δ1.

12



Figure 1:
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In particular, a solution concept like extensive-form rationalizability, which is analogous to pru-

dent rationalizability but without the requirement of full-support beliefs on strategies remaining

from the previous levels of the elimination procedure, would not allow us to show the result.

4 Comparison to Extensive-form Rationalizability

In order to explore properties of prudent rationalizability, it is useful to compare it to extensive-

form rationalizability. Pearce (1984) defined extensive-form (correlated) rationalizable strate-

gies by a procedure of an iterative elimination of strategies. The inductive definition below is an

extension of Battigalli’s (1997) version to generalized extensive-form games with unawareness

as introduced in Heifetz, Meier, and Schipper (2013). Battigalli’s (1997) definition differs from

Pearce’s (1984) in at least two respects. First, Battigalli allows for correlated beliefs over oppo-

nents’ strategies. Second, Battigalli’s definition defines a procedure of an iterative elimination

of beliefs. This allows for a more intuitive interpretation as a reasoning procedure. Never-

theless, Battigalli shows that when one allows for correlation in Pearce’s original definition,

then both procedures are equivalent. Below Definition 2 differs in two respects from Battigalli

(1997). First, it applies to generalized extensive-form games with unawareness. Second, it uses

local optimization over actions at the information rather than optimization over replacements

of strategies at the information. With respect to the last issue, below definition differs also from

Heifetz, Meier, and Schipper (2013).6 See Meier and Schipper (2012) for further discussions

and results comparing the two notions of optimization.

Definition 2 (Extensive-form Rationalizable Strategies) Define, inductively, the follow-

ing sequence of belief systems and strategies of player i ∈ I:

B1
i = Bi

S1
i =

{
si ∈ Si :

there exists a belief system bi ∈ B1
i with which for every

information set hi ∈ Hi player i with si is rational at hi

}
...

Bk
i =

bi ∈ Bk−1
i :

for every information set hi, if there exists some profile of the other

players’ strategies s−i ∈ Sk−1
−i =

∏
j 6=i S

k−1
j such that s−i reaches hi

in the tree Thi
, then bi (hi) assigns probability 1 to S

k−1,Thi
−i


Sk
i =

{
si ∈ Si :

there exists a belief system bi ∈ Bk
i with which for every

information set hi ∈ Hi player i with si is rational at hi

}
6In the working paper version of Heifetz, Meier, and Schipper (2013), we also used the notion in Definition 2

featuring local optimization over actions but following the recommendation of a reviewer in the publication we
changed it to optimization over strategy-replacements. After the paper had been published, Pierpaolo Battigalli
strongly encouraged us in repeated private communications to stick to the local notion of optimization over
actions, which we agree is more intuitive and conceptually proper.
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The set of player i’s extensive-form rationalizable strategies is

S∞i =

∞⋂
k=1

Sk
i .

For finite generalized extensive-form games with unawareness (and perfect recall), the set

of extensive-form rationalizable strategies is nonempty.

Theorem 2 The set of player i’s extensive-form rationalizable strategies is non-empty.

Heifetz, Meier, and Schipper (2013) proved this result using optimization by replacements

of strategies. The proof of Theorem 2 follows verbatim by replacing it with the local notion

of optimization over actions used in this paper. Earlier, Pearce (1984) and Battigalli (1997)

showed non-emptiness of extensive-form rationalizable strategies in standard extensive-form

games.

The following subsections we discuss differences between prudent rationalizability and extensive-

form rationalizability. The examples should be of general interest as they involve standard

extensive-form games without unawareness.

4.1 Subgame Perfection, Extensive-form Rationalizability, and Prudent Ra-

tionalizability

Some normal-form games have Nash equilibria in weakly dominated strategies. Similarly, the

game in Figure 2 is an example7 of a standard perfect-information extensive-form game with a

subgame-perfect equilibrium involving a strategy which is extensive-form rationalizable but not

prudent rationalizable. To wit, this is the subgame-perfect equilibrium (af, dg). The strategy

af is extensive-form rationalizable for player 1 – it is supported by the belief system which starts

at the root with the belief that player 2 will play dg, revised completely at 1’s second decision

node by the belief that 2 is playing cg; the strategy dg is extensive-form rationalizable for player

2 with the belief system with which player 2 is initially certain that 1 is playing af , revised

completely at 2’s second decision node to the belief that 1 played ae. However, af is rational

for player 1 at the root for no full-support belief on 2’s entire strategy set {dg, dh, cg, ch}, and

hence af is not prudent rationalizable.

4.2 Prudent Rationalizability versus Extensive-form Rationalizability

In normal-form games, iterated admissibility is a refinement of rationalizability. Yet, in extensive-

form games prudent rationalizability is not a refinement of extensive-form rationalizability, as

7This example arose from discussions by one of the authors with Ronen Gradwohl.
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Figure 2:
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the following example (Figure 3) demonstrates.

Figure 3:

I

a b c

II6 6 II6, 6

d     e          f      d       e          f
0 05 5 6 610 03 4 4 3 0, 05, 5 6, 610, 03, 4 4, 3

In this example, player 1 can guarantee herself the payoff 6 by choosing a and ending the

game. If player 2 is called to play, should he believe that player 1 chose b or c? If player 1 is

certain that player 2 is rational, she is certain that player 2 will not choose f . Hence, if player

2 is certain that player 1 is certain that he (player 2) is rational, then at his information set

player 2 is certain that player 1 chose c. The reason is that among player 1’s actions leading to

2’s information set, c is the only action which, assuming 2 believes c was chosen and that 2 is

rational and will hence choose e, yields player 1 the payoff 6, which is just as high as the payoff

she could guarantee herself with the outside option a. Hence (a, e) and (c, e) are the profiles

of extensive-form (correlated) rationalizable strategies (as well as extensive-form rationalizable

strategies) in this game.

The notion of prudence, in contrast, embodies the idea that being prudently rational, player

1 shouldn’t rule out completely any of 2’s possible choices, and hence that c is strictly inferior

for player 1 relative to her outside option a. Hence, if 2’s information set is ever reached, the

only way for 2 to rationalize this is to believe that 1 chose b, based on a belief ascribing a high

probability to the event that 2 will foolishly choose f. Player 2’s best reply to b is d; and player

16



1’s best reply to d is a. Thus, the only profile of prudent rationalizable strategies in this game

is (a, d).

This example demonstrates that in dynamic interactions the notions of rationalization and

prudence might involve a tension. Extensive-form rationalizability embodies a best-rationalization

principle (Battigalli 1996); it is driven by the assumption that in each of his information sets,

a player assesses the other players’ future behavior by attributing to them the ‘highest’ level

of rationality and mutual certainty of rationality consistent with the fact that the information

set has indeed been reached. But, with the additional criterion of ‘prudence’, what should a

player believe about the behavior of his opponent if, as in the example, the opponent’s only

action which is compatible with common certainty of rationality is imprudent on the part of

the opponent?

The definition of prudent rationalizability resolves this tension unequivocally in favor of the

prudence consideration. It remains open whether and how a more balanced and elaborate defi-

nition could resolve the tension in less an extreme fashion. We plan to address this challenge in

future work. However, any definition would have to cut the Gordian knot in the above example

in one particular way, choosing either d or e, and indeed both potential resolutions are backed

by sensible intuitions. This suggests that for dynamic interactions we need not necessarily

expect one ultimate definition of rationalizability taking into account both rationalization and

prudence.

Remark 1 For standard extensive-form games, Brandenburger and Friedenberg (2007) studied

the connection between iterative elimination of conditionally weakly dominated strategies and

iterative elimination of conditionally dominated strategies. They showed that under a “no rele-

vant convexities” condition, iterative elimination of conditionally dominated strategies coincides

with iterative elimination of conditionally weakly dominated strategies. Since iterative elimina-

tion of conditionally (resp. weakly) dominated strategies is equivalent to extensive-form (resp.

prudent) rationalizability (using the optimization over strategy-replacements rather than locally

over actions), we have that in standard games with “no relevant convexities” extensive-form

rationalizability coincides with prudent rationalizability. However, the example in Figure 3 does

not satisfy this condition, and hence demonstrates that in general, prudent rationalizability is

not a refinement of extensive-form rationalizability.

Nevertheless, as far as paths of play are concerned, in the above example the set of paths

induced by prudent rationalizability (the path a) is a subset of the paths induced by extensive-

form rationalizability (the paths a and (c, e)).

So far we demonstrated that prudent rationalizability is not a refinement of extensive-form

rationalizable strategies. Nevertheless we conjecture that generally prudent rationalizability

refines the set of extensive-form rationalizable paths. In an earlier working paper version of
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this paper we claimed this conjecture as a result and presented what we considered is a proof of

the result. Yet, the work by Chen and Micali (2013) made us realize further subtleties. While

we still believe that the conjecture is true, a fully satisfactory proof has been eluding us so far.

4.3 Forward Induction: The Tension between Extensive-form Rationaliz-

ability and Prudent Rationalizability

In Figure 3 we demonstrated the tension between the considerations of rationalization and

prudence when a player tries to divine his opponent’s past actions. A related but distinct

tension arises when a player tries to deduce the opponent’s future behavior from past actions

of that opponent. Consider the following example in Figure 4.

Figure 4:
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In this example, in is imprudent for player 1 (since by going out she can guarantee a payoff

of 10, while by moving in she risks getting 0 if player 2 would rather foolishly choose r). This

means that if player 1 does move in and player 2 gets to play, no prudent strategy in S̄1
1 reaches

2’s information set. Hence, the beliefs B̄2
2 of player 2 about player 1’s future actions are not

restricted. In particular, it contains beliefs by which if player 2 chooses m, player 1 will foolishly

choose R (with a high probability). That’s why both m and ` are prudent rationalizable for

player 2.

However, it is not very sensible on the part of player 2 to believe that following m player

1 may choose R. After all, when player 2 has to move, player 1 has already proved to be

imprudent, but not irrational. Indeed, player 1’s rationalizable (though imprudent) strategy

(in, L) yields her the payoff 10 in conjunction with 2’s only (extensive-form) rationalizable

strategy `, as well as in conjunction with 2’s prudent rationalizable strategy m; and this payoff

is the same as the payoff player 1 gets from her only prudent rationalizable strategy (out, L).

Thus, as long as player 1 has been rational (even if imprudent) thus far, it makes more sense
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for player 2 to believe that player 1 will continue to be rational (though possibly imprudent) in

the future. Restricting player 2’s beliefs according to this logic would cross out the nonsensical

choice m.

Already Pearce (1984) was well aware of this tension, which motivated his definition of cau-

tious extensive-form rationalizability. That definition involves refining the set of rationalizable

strategies by another round of strategy elimination with full support beliefs about the other

players’ surviving strategies; and then repeating this entire procedure – the standard iterative

elimination process as in the definition of rationalizability, followed by one round assuming full-

support beliefs –ad infinitum. In the above example, cautious extensive-form rationalizability

does indeed rule out the strategy m for player 2.

However, as Pearce (1984) himself admits, the definition of cautious extensive-form ratio-

nalizability is not really satisfactory, as the following simple example of his shows (Figure 5).

In this example, the strategy d is irrational for player 2. Once d is crossed out, both a and

Figure 5:

1

a b
2

5, 5 c d

0, 05, 5

b are extensive-form rationalizable for player 1, and are actually also cautious extensive-form

rationalizable. Notice that in contrast, b does get crossed out by prudent rationalizability, and

the only prudent rationalizable strategy for player 1 is a.

5 Application: Disclosure of Verifiable Information

In this section we provide an application of prudent rationalizability to the problem of disclosure

of verifiable information by interested parties. Disclosure of verifiable information arises in

many contexts such as buyer-seller relationships, financial markets, legal proceedings, electoral

campaigns, communication of scientific results etc.; see Milgrom (2008) for a survey. The

application also allows us to demonstrate how unawareness affects unraveling outcomes in this

important class of strategic problems.
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5.1 Disclosure of Verifiable Information with Full Awareness

Consider a merchandise whose quality qi ∈ {q1, . . . , qn} is known to its seller, while a buyer

knows only the prior probability distribution (p1, . . . , pn) of the qualities, where pi > 0 for all

i = 1, . . . , n. For each quality level qi the seller is better off the larger the quantity that she

sells, while the utility of the buyer from the merchandise is strictly concave in the quantity

purchases with a single peak at β (qi). Furthermore,

β (q1) < · · · < β (qn) .

Before sale takes place, the seller has the option of providing the buyer with a certified

signal about the quality of her merchandise, proving to the seller that the quality is within

some range {qmin, . . . , qmax} containing the actual quality qi.

Milgrom and Roberts (1986) proved that if the buyer’s utility is strictly concave then there

is a unique sequential equilibrium, in which when the quality is qi the seller certifies to the

buyer a range (possibly a singleton) {qmin, . . . , qmax} in which qmin = qi, while the buyer is

skeptical and always buys β (qmin). Thus, in this unique sequential equilibrium the quality qi

is fully revealed to the seller, who buys the optimal quantity β (qi) for him.

We proceed with the caveat that the quantities which can be demanded by the buyer belong

to a finite grid. The assumption of quantities belong to a finite grid is made just to capture

this application within our framework of finite generalized extensive-form games. Moreover, in

reality any quantity can only be be measured up finite precision. For simplicity, we assume

further that the quantities β (qi) , i = 1, . . . , n belong to this grid. For 1 ≤ m < n we denote by

[β (qm) , β (qn)] the set of quantities in this grid at least as large as β (qm) and no larger than

β (qn).

Any profile of prudent rationalizable strategies in this game yields the full revelation outcome

shown by Milgrom and Roberts (1986) using sequential equilibrium.

Proposition 2 The strategy to buy β (qmin) when confronted with the certification that the

quality is in the range {qmin, . . . , qmax} is also the unique prudent rationalizable strategy for

the buyer, and certifying some range {qmin, . . . , qmax} in which qmin = qi constitute the prudent

rationalizable strategies of the seller.

The proof is contained in the appendix.

It is not difficult to see that the above argument does not depend on the assumption that

the available certificates consist of ranges of qualities (containing the true quality). For the

argument to hold it is enough to assume that for each quality level qi one of the available

certificates is the fully revealing certificate {qi}.
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Note that the result would not obtain when we employ extensive-form rationalizability

rather than prudent rationalizability. The reason is that when the buyer is presented with a

certificate {qm, . . . , qn}, then the buyer could optimistically believe that the seller’s quality is

qn and buy a larger quantity than with a prudent full support belief. Battigalli (2006) already

realized that in disclosure games some restriction on beliefs that imply a degree of scepticism

is required for rationalizability to yield unraveling. In his case, the restriction is tailored to the

disclosure game in that he assumes that the receiver puts some strict positive probability on the

lowest quality consistent with the message. In contrast, we use full support beliefs consistent

with the message because we strive for a solution concept that is not tailored to the particular

game but generally applicable to games.

5.2 Disclosure of Verifiable Information under Unawareness

Assume now that there are several dimensions of quality along which such certifications could

be provided. To fix ideas, consider two dimensions L,H and 0,∗. The four combinations are

L0, H0, L∗, H∗.

So, for instance, in the state L0 the available certificates are {L,H} ×
{
0,∗
}

, {L} ×
{
0,∗
}

,

{L,H} ×
{
0
}

and {L} ×
{
0
}

.

Assume further that

β (L∗) < β
(
L0
)
< β

(
H0
)
< β (H∗) .

Since the singleton certificates

{L} × {∗} , {L} ×
{
0
}
, {H} ×

{
0
}
, {H} × {∗}

are available, the above argument obtains and full revelation takes place in any profile of prudent

rationalizable strategies of the players.

Assume, however, that the buyer is initially aware only of the {L,H} dimension and is

unaware of the
{
0,∗
}

dimension; he evaluates the merchandise as having the default quality L0

when confronted with the certificate {L}, and similarly, with the certificate {H} he evaluates

the merchandise as having the default quality H0. Assume further that the seller knows this,

and that by presenting the certificates {∗},
{
0
}

or
{
0,∗
}

the seller inter alia makes the buyer

aware of the
{
0,∗
}

dimension.

Intuitively, it is clear that the seller will want to make the buyer aware of this extra dimension

when the quality is H∗, because this will lead the buyer to demand the high quantity β (H∗).

In contrast, when the actual quality is L∗, the seller will prefer not to present any certificate at

all along the dimension
{
0,∗
}

: this way the buyer will remain unaware of this extra dimension,
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and will demand the quantity β
(
L0
)

(because unraveling and full revelation will occur only

along the {L,H} dimension); if the seller were to make the buyer aware of this extra dimension,

the buyer would have demanded only β (L∗) < β
(
L0
)
.

This strategic interaction is represented in the following generalized game form (Figure 6).

Initially, nature selects a state out of {L0, L∗, H0, H∗}. (We denote nature by c.) The seller

observes the state of nature and chooses a certificate. Unless the seller presents a certificate

involving the dimension {0,∗ }, the buyer remains unaware of it. This is indicated by the

intermitted arrows from nodes in the upper tree to nodes in the lower tree. E.g., if the seller

selects the certificate {L}, then the buyer remains unaware of the {0,∗ } dimension and views

the game as represented by the lower tree. In particular, his information set is a singleton

containing the node after nature selects L and the seller reports {L} in the lower tree. If the

seller presents a certificate involving the {0,∗ }-dimension, then the buyer becomes aware of it

and he conceives of the entire generalized game. For instance, if the seller selects the certificate

{L,H}× {0,∗ }, then the buyer’s information set is given by the upmost information set drawn

as an intermitted line connecting four nodes.

We summarize the discussion in the following proposition.

Proposition 3 In the verifiable information model in which the buyer is unaware of some

dimension of the good’s quality, the seller may not fully reveal the quality in any prudent ratio-

nalizable outcome.

This is in sharp contrast to the case with full awareness discussed in the previous subsection.

6 Further Discussion of Prudent Rationalizability

Definition 2 of extensive-form rationalizable strategies involves, as in Battigalli (1997), an itera-

tive reduction procedure of belief systems (that is, by definition Bk
i ⊆ B

k−1
i ), and this definition

implies that strategies get iteratively eliminated (Sk
i ⊆ S

k−1
i ). In contrast, the inductive defini-

tion of prudent rationalizable strategies involves an iterative elimination of strategies (that is,

by definition S̄k
i ⊆ S̄

k−1
i , in analogy with the original formulation of Pearce (1984) for extensive-

form rationalizability by an iterative elimination procedure), but in the case of prudence it is

not generally the case that B̄k
i ⊆ B̄

k−1
i . Indeed, when S̄k

−i ( S̄k−1
−i :

• if the set of strategy profiles in S̄k
−i reaching some information set hi ∈ Hi is a proper,

non-empty subset of the strategy profiles in S̄k−1
−i that reach hi, then the support of each

belief b̄k−1i (hi) in each belief system b̄k−1i ∈ B̄k−1
i is strictly larger than the support of

any belief b̄ki (hi) for b̄ki ∈ B̄k
i .
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Figure 6:
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• For information sets hi not reached by S̄k
−i, there is no restriction (beyond conditional

probabilities) on b̄ki (hi) for b̄ki ∈ B̄k
i . No such restriction is needed, because if we define

mk
hi

= max
{
m < k : there exists s−i ∈ S̄m

−i that reaches hi
}

then for ski ∈ S̄k
i the restrictions on i’s actions ski (hi) at hi were already determined at

stage mk
hi
, since by definition ski ∈ S̄k

i ⊆ S̄
mk

hi
i .

Is it nevertheless feasible to define prudent rationalizability via a reduction process of belief

systems? Asheim and Perea (2005) proposed to look at systems of conditional lexicographic

probabilities – belief systems in which each belief at an information set is itself a lexicographic

probability system (Blume, Brandenburger and Dekel 1991) about the other players’ strategy

profiles. Using belief systems which are conditional lexicographic probabilities we could, in the

spirit of Stahl (1995), put forward an equivalent definition of prudent rationalizable strategies

involving an iterative reduction procedure of belief systems rather than an iterative elimination

procedure of strategies. In each round of the procedure, the surviving belief systems would

be those in which at each information set, ruled-out strategy profiles of the other players (i.e.,

strategy profiles outside S̄
mk

hi
−i ) would be deemed infinitely less likely than the surviving strategy

profiles, but infinitely more likely than strategy profiles which had already been eliminated in

previous rounds. We leave the precise formulation of such an equivalent definition to future

work.

In their paper, Asheim and Perea (2005) proposed the notion of quasi-perfect rationalizabil-

ity, which also involves the idea of cautious beliefs. Quasi-perfect rationalizability is distinct

from our notion of prudent rationalizability. The difference is that with prudent rationalizabil-

ity (as with extensive-form rationalizability), a player does not need to believe that another

player’s future behavior must be rationalizable to a higher order than that exhibited by that

other player in the past; in contrast, with the quasi-perfect rationalizable strategies of Asheim

and Perea (2005), a player should ascribe to her opponent the highest possible level of ratio-

nality in the future even if this opponent has already proved to be less rational in the past.

That’s why quasi-perfect rationalizability implies backward induction in generic perfect infor-

mation games, while our prudent rationalizable strategies need not coincide with the backward

induction strategies in such games (though they do generically lead to the backward induction

path – the argument is the same as in Reny 1992 and Battigalli 1997, since in generic perfect

information games prudent rationalizability coincides with extensive-form rationalizability in

terms of realized paths).
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A Proofs

Proof of Theorem 1

First, observe that B̄k
i 6= ∅ for every k ≥ 1, because if an information set hi ∈ Hi is reached

by some s−i ∈ S̄k−1
−i , then s−i reaches also all of i’s information sets that precede hi in the tree

Thi
.

We proceed by induction. S̄0
i = Si and hence non-empty. Notice also that for every bi ∈ B̄1

i ,

a standard backward induction procedure on the arborescence of information sets Hi yields a

strategy si ∈S̄1
i with which player i is rational for all hi ∈ Hi given bi.

Suppose, inductively, we have already shown that for all i ∈ I S̄k−1
i 6= 0 (and hence that

S̄k−1
−i 6= 0), and also that for every bi ∈ B̄k−1

i there exists a strategy si ∈ S̄k−1
i with which player

i is rational for all hi ∈ Hi given bi.

Let bi ∈ B̄k
i . Let Ḣi ⊆ Hi be the set of i’s information sets not reached by any profile

s−i ∈ S̄k−1
−i but reached by some profile s−i ∈ S̄k−2

−i . If Ḣi 6= ∅, for every hi ∈ Ḣi with no

predecessor in Ḣi, modify (if necessary) bi (hi) so as to have full support on the profiles in S̄k−2
−i

that reach hi, and in succeeding information sets modify bi by Bayes rule whenever possible.

Denote the modified belief system by ḃi. Then by construction also ḃi ∈ B̄k
i .

Consider a sequence of belief systems bi,n ∈ B̄k−1
i such that

ḃi =
(
ḃi
(
h′i
))

h′i∈Hi

≡
(

lim
n→∞

bi,n
(
h′i
))

h′i∈Hi

.

To construct such a sequence bi,n ∈ B̄k−1
i , for every information set h′i ∈ Hi not reached by

any s−i ∈ S̄k−1
−i define bi,n (h′i) = ḃi (h′i) for every n ≥ 1; and for every h′i ∈ Hi with no

predecessors but reached by some profile s−i ∈ S̄k−1
−i define bi,n (h′i) ∈ ∆

(
S̄k−1
−i

)
to be any

converging sequence of beliefs such that for every n ≥ 1 the support of bi,n (h′i) is the subset of

profiles in S̄k−2
−i that reach h′i, while limn→∞ bi,n (h′i) = ḃi (h′i). In succeeding information sets

reached by some si ∈ S̄k−1
−i define bi,n (h′i) by conditioning whenever possible.

Given such a sequence of belief systems bi,n ∈ B̄k−1
i , let si,n ∈ S̄k−1

i be a corresponding

sequence of strategies with the property that given bi,n, it is the case that with the strategy si,n

player i is rational at every hi ∈ Hi. Since player i has finitely many strategies, some strategy

si appears infinitely often in the sequence si,n. Since expected utility is linear in beliefs and

hence continuous, also given ḃi it is the case that with the strategy si player i is rational at

every hi ∈ Hi. Hence si ∈ S̄k
i as well.

Now, since player i’s set of strategies Si is finite and by definition S̄k+1
i ⊆ S̄k

i for every

k ≥ 1, for some ` we eventually get S̄`
i = S̄`+1

i for all i ∈ I and hence B̄`+1
i = B̄`+2

i for all i ∈ I.
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Inductively,

∅ 6= S̄`
i = S̄`+1

i = S̄`+2
i = ...

and therefore

S̄∞i =
∞⋂
k=1

S̄k
i = S̄`

i 6= ∅

as required. �

Proof of Proposition 1

B̄1
DM contains belief systems in which in the information set

{
δ1|{ω1,ω2}

, δ2|{ω1,ω2}
, δ4|{ω1,ω2}

}
(which follows the announcement of only ω2 by the Announcer) the DM’s belief assigns high

probabilities to δ2|{ω1,ω2}
, δ4|{ω1,ω2}

. The strategies in S̄1
DM corresponding to these belief systems

prescribe ‘middle’ to the DM in the information set
{
δ1|{ω1,ω2}

, δ2|{ω1,ω2}
, δ4|{ω1,ω2}

}
. The crucial

point is that B̄2
Announcer contains only belief systems that assign strictly positive probabilities to

these strategies of the DM. Thus, with any belief system in B̄2
Announcer, it is sub-optimal for the

Announcer to announce ω2 in the announcer’s information set {δ1} , in which the Announcer is

certain of ω1.
8 Hence, S̄2

Announcer does not contain strategies in which the Announcer announces

just ω2 when the announcer’s information set is {δ1}. We conclude that B̄3
DM contains only

belief systems in which the belief at the information set
{
δ1|{ω1,ω2}

, δ2|{ω1,ω2}
, δ4|{ω1,ω2}

}
assigns

probability zero to δ1|{ω1,ω2}
. Hence, S̄3

DM contains only strategies with which the DM chooses

‘middle’ at the information set
{
δ1|{ω1,ω2}

, δ2|{ω1,ω2}
, δ4|{ω1,ω2}

}
.

Furthermore, already S̄1
DM contains only strategies with which the DM chooses ‘left’ at the

information set
{
δ1|{ω1,ω3}

, δ3|{ω1,ω3}
, δ4|{ω1,ω3}

}
(i.e., when the Announcer announces just the

new state ω3). This is because prudent rationalizability implies that all the belief systems in

B̄1
DM assign a positive probability to strategies of the Announcer with which the Announcer

announces the new state ω3 even when the Announcer’s information set (from the point of view

of the DM!) is
{
δ1|{ω1,ω3}

}
or
{
δ4|{ω1,ω3}

}
.

Also, B̄1
DM contains belief systems in which the DM’s belief in the information set {δ1, δ2, δ3, δ4}

(when the Announcer announces both new states ω2, ω3) assigns high probability to δ2. The

strategies in S̄1
DM corresponding to these belief systems prescribe ‘middle’ to the DM in the in-

formation set {δ1, δ2, δ3, δ4} . Hence, B̄2
Announcer contains only belief systems that assign strictly

positive probabilities to these strategies of the DM. Thus, with any belief system in B̄2
Announcer,

it is sub-optimal for the Announcer to announce both ω2 and ω3 in the announcer’s informa-

tion sets {δ1} and {δ3}. Similarly, B̄1
DM contains belief systems in which the DM’s belief in

the information set {δ1, δ2, δ3, δ4} assigns high probability to δ1. The strategies in S̄1
DM corre-

8Because according to every belief system in B̄2
Announcer, announcing just ω2 will lead the DM with a positive

probability to choose ‘middle’.
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sponding to these belief systems prescribe ‘left’ to the DM in the information set {δ1, δ2, δ3, δ4} .
Hence, B̄2

Announcer contains only belief systems that assign strictly positive probabilities to these

strategies of the DM. Thus, with any belief system in B̄2
Announcer, it is sub-optimal for the An-

nouncer to announce both ω2 and ω3 in the Announcer’s information sets {δ1} , {δ2} or {δ3} .
We conclude that B̄3

DM contains only belief systems in which the belief at the information set

{δ1, δ2, δ3, δ4} assigns probability zero to δ1, δ2, δ3. That is, B̄3
DM contains only belief systems

that assign probability 1 to δ4 at the information set {δ1, δ2, δ3, δ4}. Hence, S̄3
DM contains only

strategies with which the DM chooses ‘right’ at the information set {δ1, δ2, δ3, δ4}.

We thus conclude that S̄3
DM contains a unique strategy s∗DM . This strategy prescribes the

DM to choose ‘left’ in the information set
{
δ1|{ω1}

}
(i.e., when the Announcer does not an-

nounce any new state), to choose ‘middle’ in the information set
{
δ1|{ω1,ω2}

, δ2|{ω1,ω2}
, δ4|{ω1,ω2}

}
(i.e., when the Announcer announces just the new state ω2), to choose ‘left’ in the information

set
{
δ1|{ω1,ω3}

, δ3|{ω1,ω3}
, δ4|{ω1,ω3}

}
(i.e., when the Announcer announces just the new state ω3)

and to choose ‘right’ in the information set {δ1, δ2, δ3, δ4} (i.e., when the Announcer announces

both new states ω2, ω3).
9 �

Proof of Proposition 2

When the buyer is confronted with the certificate {qn}, his unique level-1 (prudent) rational-

izable action is to buy β (qn), while when he is confronted with some range {qm, . . . , qn} all

the quantities in the interval [β (qm) , β (qn)] are level-1 (prudent) rationalizable (because any

posterior belief of the buyer about the qualities with support {qm, . . . , qn} can be derived from

a belief of the buyer that the seller provides the certificate {qm, . . . , qn} with an appropriate

probability ri when the seller knows that the quality is qi ∈ {qm, . . . , qn}). Consequently,

the only level-2 prudent rationalizable strategies of the seller are those in which she provides

the certificate {qn} when the quality is qn (because any other certificate that she can provide

{qm, . . . , qn} will yield an expected sale strictly smaller than β (qn) with a full support belief

about the level-1 prudent rationalizable strategies of the buyer, that have actions in the range

[β (qm) , β (qn)]).

Assume, inductively, that we have already proved that in all the level-(2k − 1) prudent

rationalizable strategies of the buyer, for every i = 0, . . . , k − 1 he buys the quantity β (qn−i)

when confronted with a certificate of the form {qn−i, . . . , q`}, and that in all the level-2k prudent

rationalizable strategies of the seller she indeed provides such a certificate when the quality is

qn−i. Then in all the level-(2k + 1) (prudent) rationalizable strategies of the buyer, he buys

the quantity β (qn−k) when confronted with a certificate of the form {qn−k, . . . , q`}. (This is

because he believes that such a certificate could only be presented to him with the quality qn−k.

9This is also the unique strategy of the DM which is part of an awareness equilibrium satisfying reasoning
refinement in Ozbay (2007).
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By the induction hypothesis, with each higher quality all the level-2k prudent rationalizable

strategies of the seller present a certificates where that higher value is the minimal value.)

Furthermore, when confronted with some range {qm, . . . , qn−k, . . . , q`} all the quantities in the

interval [β (qm) , β (qn−k)] are level-(2k + 1) (prudent) rationalizable (because any posterior be-

lief of the buyer about the qualities with support {qm, . . . , qn−k} can be derived from a belief

of the buyer on the level-2k prudent rationalizable strategies of the seller in which the seller

provides the certificate {qm, . . . , q`} with an appropriate probability ri when the seller knows

that the quality is qi ∈ {qm, . . . , qn−k}).

Consequently, in all the level-(2k + 2) prudent rationalizable strategies of the seller she

provides the certificate {qn−k, ..., q`} when the quality is qn−k (because any other certificate

that she can provide {qm, . . . , qn−k, . . . , q`} will yield an expected sale strictly smaller than

β (qn−k) with a full support belief about the level-(2k + 1) prudent rationalizable strategies of

the buyer, that have actions in the range [β (qm) , β (qn−k)]).

Hence, the inductive claim obtains in particular for k = n− 1, concluding what we wanted

to prove. �
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