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Foreword

Ten years ago, I had the privilege to attend my first TARK conference. It was the 9th TARK
conference held at Indiana University, Bloomington. At that time I was a doctoral student
of economics interested in modeling subjective perceptions of players in games. I presented a
paper on unawareness. My first TARK conference was an educational experience similar to an
infant discovering language. I was “bathing in the sound” of TARK; see my cover design of the
proceedings. This year, the sound of TARK will be mixed with the sound of India. For the
first time in TARK’s history, the conference is held in India. We are extremely grateful for the
hospitality and support of the Institute of Mathematical Sciences, Chennai. Chennai is famous
for its Indian Music Festival, and I hope we get a flavor of it. The conference is held in winter
(January 7 - 9, 2013); another first time for TARK.

TARK conferences are truly interdisciplinary bringing together researchers from a wide
variety of fields, including Artificial Intelligence, Cryptography, Distributed Computing, Eco-
nomics and Game Theory, Linguistics, Philosophy, and Psychology, in order to further our
understanding of interdisciplinary issues involving reasoning about rationality and knowledge.
This year we had 64 submissions out of which 18 were accepted as contributed talks and
8 as poster presentations for the program. I am very grateful for working with the other
16 members of the multidisciplinary program committee: Samson Abramsky (Oxford Univer-
sity), Thomas Agotnes (Universitetet i Bergen), Hans van Ditmarsch (University of Sevilla),
Amanda Friedenberg (Arizona State University), Aviad Heifetz (The Open University of Israel),
Jérôme Lang (CNRS and Universite Paris-Dauphine), Fenrong Liu (Tsinghua University, Bei-
jing), Larry Moss (Indiana University, Bloomington), Antonio Penta (University of Wisconsin-
Madison), Andres Perea (Maastricht University), R. Ramanujam (Institute of Mathematical
Sciences, Chennai), Oliver Roy (Ludwig-Maximilians Universität München), Marciano Sinis-
calchi (Northwestern University), Giacomo Sillari (Scuola Normale Superiore, Pisa), Nobuyuki
Suzuki (Shizuoka University), and Jonathan Zvesper (London, UK). I thank them for their
timely and careful reviews and the interesting discussions about the submissions. We hope that
we found a “good” trade-off between minimizing false rejections and false acceptances.

This TARK we have the pleasure of listening to three eminent invited speakers: Pierpaolo
Battigalli (Bocconi University), Fangzhen Lin (Hong Kong University of Science and Technol-
ogy), and Rineke Verbrugge (University of Groningen). Pierpaolo is the leading researcher in
dynamic epistemic game theory. Fangzhen will tell us how we can discover the theorems of our
future TARK papers by computer. Rineke will finally bring an empirical component to TARK.
If we are serious about analyzing reasoning about knowledge and rationality, we ought to study
how humans really reason.

TARK 2013 colocates with Fifth Indian Conference on Logic and its Applications (ICLA
2013). We are very grateful to the people heading ICLA - especially Kamal Lodaya and R.
Ramanujam - for the collaboration and coordination between TARK and ICLA. It is com-
mon knowledge that the actual work involved with a conference rests with the local organizing
committee. We thank Sujata Ghosh (Indian Statistical Institute, Chennai), Kamal Lodaya
(Institute of Mathematical Sciences, Chennai), R. Ramanujam (Institute of Mathematical Sci-
ences, Chennai), and S. P. Suresh (Chennai Mathematical Institute) for their hard work. I
am extremely grateful to the chair of the local organizing committee, R. Ramanujam, who put
TARK into action and made things really happen leaving to me the pleasant part.

We would like also to thank the people behind the EasyChair conference system. As the
name suggests, Easychair makes it easy to chair the program committee handling submissions,
reviews, and emails free of charge.

Last but not least, I thank Joe Halpern, the founder and chair of the TARK conference
series. Without his admirable energy, enthusiasm, curiosity, and wide intellectual breath, TARK
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wouldn’t exist, and I would have never been exposed to the sound of TARK and learned its
meaning.

Burkhard C. Schipper
University of California, Davis
Program Chair TARK 2013
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1. THEORY OF MIND
As humans, we live in a remarkably complex social envi-

ronment. One cognitive tool which helps us manage all this
complexity is our theory of mind, the ability to reason about
the mental states of others. By deducing what other peo-
ple want, feel and think, we can understand their actions,
predict how our actions will influence them, and decide how
we should behave to be successful. Theory of mind is the
cognitive capacity to understand and predict external be-
havior of others and oneself by attributing internal mental
states, such as knowledge, beliefs, and intentions [17]. This
is thought to be the pinnacle of social cognition. A heated
debate is going: Do very smart animals, such as chimpanzees
and ravens, have any theory of mind? [3, 19].

Especially important in intelligent interaction is higher-
order theory of mind, an agent’s ability to model recursively
mental states of other agents, including the other’s model of
the first agent’s mental state, and so forth. More precisely,
zero-order theory of mind concerns world facts, whereas
k + 1-order reasoning models k-order reasoning of the other
agent or oneself. For example, “Bob knows that Alice knows
that he wrote a novel under pseudonym” (KBobKAlicep) is
a second-order attribution. It is commonly accepted that
animals other than human beings do not use second- and
higher-order theory of mind.

Several formal theories well-known to the TARK audi-
ence are suited to represent higher-order theory of mind
in intelligent interaction, for example, epistemic logic, dy-
namic epistemic logic, and epistemic game theory [15, 6,
22, 16]. However, in epistemic logic, unlimited rationality
is usually taken for granted. Agents are assumed to be log-
ically omniscient: they know all logical truths. The epis-
temic language allows reasoning on any modal depth and
presupposes that agents can immediately decide whether a

TARK 2013, Chennai, India. 2013, Chennai, India
Copyright 2013 by the authors.

formula like KAnn¬KBobKAnnKCarol¬KAnn wAnn is true in
a given possible world. This is clearly not the case for all
people [23]. Similarly, people often do not act according
to the game-theoretic assumption of common knowledge of
rationality [4]. In particular, several researchers have found
that both children and adults have difficulties when applying
second-order theory of mind in game situations [10, 7]. But
how do people really reason about others’ mental states?

2. EXPERIMENTS
In our lab, we have performed several experiments with

subjects applying second-order theory of mind in simple dy-
namic games. It turned out that we could facilitate their
correct and fast performance a lot, for example, by provid-
ing step-wise training, by introducing a visual presentation
that is easy to understand, and by prompting subjects to
think about what their opponent would do [12, 13]. With
the help of these cues, the subjects made the best possible
decision in more than 90% of the game items. From what
the subjects told us, however, we got the impression that
even if they made the correct decisions, they did not rea-
son exactly according to the game theory textbook. By a
follow-up experiment with an eye-tracker, we concluded that
indeed, most experimental subjects did not apply backward
induction from the start, but tried to get by with forward
reasoning as much as possible [14].

Formal methods are very useful for designing experiments
and interpreting the results. As an example, Stenning and
Van Lambalgen [18] provide an interesting analysis of the
difficulties that autistic children have in ascribing false be-
liefs to another person, if they themselves know the true
facts. As another example, one can investigate the com-
putational complexity of the tasks that experimental sub-
jects have been set [11]. Currently, we are investigating the
complexity of several instances of backward induction and
comparing them with subjects’ behavior in terms of reaction
times, decisions, and eye movements.

3. COGNITIVE MODELS
In order to understand how people really reason and solve

problems, it has proven fruitful in cognitive psychology to
use computational cognitive models implemented in a cogni-
tive architecture such as ACT-R, which has been validated
in hundreds of experiments [1]. It is also possible to use such
computational models when investigating how people reason
about other people’s knowledge, beliefs and plans. One way
to do this is to make an ACT-R model in which different rea-
soning strategies, such as backward reasoning and forward
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reasoning, ‘compete’ with one another and the model learns
by experience which reasoning strategy efficiently provides
effective decisions [9, 8]. The main advantage of using com-
putational cognitive models is that one can formulate very
precise predictions and see whether the simulations match
results of new experiments in the lab.

This is just what we did in the case of the controversy
about smart birds: Elske van der Vaart constructed a com-
putational cognitive model of birds’ smart social behavior.
It turned out that this ‘virtual bird’, equipped with sophis-
ticated memory based on the theory behind ACT-R [2], and
reacting to the stress of being observed, performed similarly
to the real birds in several experiments [20, 21]. In the lit-
erature, the birds’ behavior is often thought to exemplify a
form of perspective-taking: “I want to prevent that the other
bird knows where I’ve hidden my worms” [5]. We made some
precise predictions that can help settle the disputes between
‘theory of mind’ versus ‘simple behavioral rules’, and that
are currently being investigated in the lab.

Acknowledgments
I would like to thank the Netherlands Organization for Sci-
entific Research (NWO) for Vici grant NWO 227-80-001,
Cognitive systems in interaction: Logical and computational
models of higher-order social cognition.
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ABSTRACT
We consider a calculus of resources and processes as a ba-
sis for modelling decision-making in multi-agent systems.
The calculus represents the regulation of agents’ choices us-
ing utility functions that take account of context. Associ-
ated with the calculus is a (Hennessy–Milner-style) context-
sensitive modal logic of state. As an application, we show
how a notion of ‘trust domain’ can be defined for multi-agent
systems.

1. INTRODUCTION
Mathematical modelling is a key tool in designing and rea-

soning about the complex systems of systems upon which
the world depends. For modelling complex information pro-
cessing systems, including both logical and physical compo-
nents, the classical theory of distributed systems — see, for
example, [13] for an elegant account — provides a suitable
conceptual basis [11] for a modelling discipline. Executable
modelling languages are important supporting tools, provid-
ing methods for simulating — using both Monte Carlo and
what-if methods — systems that are too complex for useful
analytical solvable descriptions. Techniques such as model
checking can be applied in sufficiently constrained circum-
stances [11].

In this paper, we show how a compositional mathematical
systems modelling theory — which is grounded in process al-
gebra [28, 29] and logical resource semantics [32, 34, 35, 11],
which has been developed in detail by some of us elsewhere
[12, 9, 10, 11], and which is supported by an execution engine
and a model checker [11] — can be extended to include an
account of decision-making by agents as they execute within
models.

Our approach introduces into the account of processes a
notion of utility that associates values to the agents’ choices.
Our addition of utility is formulated so as to support a key
measure of decision-making in multi-agent systems: agents
make their decisions in the context provided by the other
agents that are executed within the model, so that different
decision paths occur in different contexts. As is usual in

∗Email: g.a.anderson@abdn.ac.uk
†Email: matthew.collinson@abdn.ac.uk
‡Email: d.j.pym@abdn.ac.uk

TARK 2013, Chennai, India.
Copyright 2013 by the authors.

the process-algebraic approach to modelling, the language
of processes is associated with a logic of state, in the sense of
Hennessy and Milner [11], in which propositional assertions
describe properties of the states of the model. In this paper,
these logical judgements are also context-dependent.

In Section 2, we provide a brief introduction to our back-
ground modelling theory [11] and in Section 3 we explain our
utility-theoretic approach to modelling decision-making. In
Section 4, we explain our contextual process calculus with
utility and, in Section 5, we explain its associated logic. We
conclude, in Section 6, with (a sketch of) an application of
our ideas to the concept of a ‘trust domain’. We provide
an extended derivation of the example used in this paper in
Appendix A, and full proofs of all claims in [2].

2. SYSTEMS MODELLING BACKGROUND
While the notion of process has been explored in some

detail by the semantics community, concepts like resource
have usually been treated as second class ([30] is a partial
exception). From the point-of-view of a theorist, there are
many advantages in doing this. We have taken the oppo-
site view [12, 9, 10, 11]: we explore what can be gained by
developing an approach in which the structures present in
modelling languages are given a rigorous treatment as first-
class citizens in a theory. In particular, we ensure that each
component — locations, resources, and processes — is han-
dled compositionally. These key structural components are
considered, drawing upon distributed systems theory (e.g.,
[13]), as follows:

Location: Places are connected by (directed) links. Loca-
tions may be abstracted and refined provided the connectiv-
ity of the links and the placement of resources is respected.
Mathematically, the axioms for locations [9] are satisfied
by various graphical structures, including simple directed
graphs and hyper-graphs, as well as various topological con-
structions [12, 9, 10, 11];

Resource: The notion of resource captures the compo-
nents of the system that are manipulated by its processes
(see below). Resources include things like the components
used by a production line, the tools on a production line,
computer memory, system operating staff, or system users,
as well as money. Conceptually, the axioms of resources
are that they can be combined and compared. Mathemati-
cally, we model this notion using (partial commutative) re-
source monoids [32, 12, 9, 10, 11]. That is, structures
R = (R,v, ◦, e) with carrier set R, preorder v, and par-

8



tial binary composition ◦ with unit e, and which satisfies
the bifunctoriality condition: R v R′ and S v S′ and R ◦ S
is defined implies R′ ◦ S′ is defined and R ◦ S v R′ ◦ S′, for
all R,S,R′, S′ ∈ R. In this paper, the order v is always
taken to be equality. Let R be a given resource monoid;

Process: The notion of process captures the (operational)
dynamics of the system. Processes manipulate resources in
order to deliver the system’s intended services. Mathemati-
cally, we use algebraic representation of processes based on
the ideas in [28], integrated with the notions of resource and
location [12, 9, 10, 11].

Let Act be a commutative monoid of actions, with multi-
plication written as juxtaposition and unit 1. Let a, b ∈ Act,
etc. The execution of models based on these concepts, as for-
mulated in [12, 9, 10, 11], is described by a transition system
with a basic structural operational semantics judgement [33,
28] of the form

L,R,E
a−→ L′, R′, E′,

which is read as ‘the occurrence of the action a evolves the
process E, relative to resources R at locations L, to become
the process E′, which then evolves relative to resources R′

at locations L′’.
The meaning of this judgement is given by a structural

operational semantics [33, 28]. The basic case, also know as
‘action prefix’, is the rule

L,R, a : E
a−→ L′, R′, E′

µ(L,R, a) = (L′, R′).

Here µ is a ‘modification’ function from locations, resources,
and actions (assumed to form a monoid) to locations and
resources that describes the evolution of the system when an
action occurs. Neglecting locations for now, partial function
µ : Act×R→ R is a modification if it satisfies the following
conditions for all a, b, R, S: µ(1, R) = R; if R◦S and µ(a,R)◦
µ(b, S) are defined, then µ(ab,R ◦ S) = µ(a,R) ◦ µ(b, S).

There are also rules giving the semantics to combinators
(which together form a a complete set for enumerating r.e.
graphs) for concurrent composition, choice, and hiding —
similar to restriction in SCCS and other process algebras
(e.g., [28, 29] — as well for recursion. For example, the rule
for synchronous concurrent composition of processes is

L,R,E
a−→ L′, R′, E′ M,S, F

b−→M ′, S′, F ′

L ·M,R ◦ S,E × F ab−→ L′ ·M ′, R′ ◦ S′, E′ × F ′
,

where we presume, in addition to the evident monoidal com-
positions of actions and resources, a composition on loca-
tions. The rules for the other combinators, with suitable
coherence conditions on the modification functions, follow
similar patterns [11]. Note that our choice of a synchronous
calculus retains the ability to model asynchrony [28, 29, 14]
(this doesn’t work the other way round).

Associated with this transition semantics is a modal logic,
given in the sense of Hennessy and Milner [19], with satis-
faction relation L,R,E |= φ read as ‘property φ holds of
the process E executing with resources R at locations L’.
In developing our subsequent theory, we will, for brevity
and simplicity, suppress locations, working with a calculus
and associated logic of resources and processes, based on
judgements of the form R,E

a−→ R′, E′ and R,E |= φ, re-
spectively. Whilst this simplification represents some loss of
generality (see [11] for more detail), the essential ideas are

not significantly affected (and, indeed, some aspects of loca-
tion can be coded within resource). In our discussion of the
concept of a trust domain, in Section 6, the intuitive need
for location, be it ‘logical’ or ‘physical’, is apparent and we
revisit the concept of location there.

The logic includes — in addition to the usual additive con-
nectives, quantifiers, and modalities that are familiar from
Hennessy-Milner logic — multiplicative connectives, quan-
tifiers, and modalities [12, 9, 10, 11]. For example, dropping
locations for brevity, multiplicative conjunction is defined
by the logical decomposition of the system, as follows:

R,E |= φ1 ∗ φ2 iff there are R1, R2 and E1, E2 s.t.
R = R1 ◦R2, E ∼ E1 × E2, and
R1, E1 |= φ1 and R2, E2 |= φ2.

Here ∼ is bisimulation, explained in detail for this set-up
in [12, 9, 10, 11], where treatments of location can also be
found.

The action modalities work just as in Hennessy–Milner
logic. For example,

R,E |= 〈a〉φ iff for some R′, E′ s.t. R,E
a−→ R′, E′

and R′, E′ |= φ.

The multiplicative version of this rule would permit the evo-
lution by action a to employ additional resource; that is, for
some S, R′, and E, R◦S,E a−→ R′, E′. Details and theoret-
ical development may be found in [12, 9, 10, 11]. Although
the basic logic of bunched implications, with intuitionistic
additives and multiplicatives, is decidable [17], its counter-
part with classical additives, widely known as ‘Boolean BI’
and the basis of Separation Logic [37], is not [6, 18]. We
conjecture that the undecidability of Boolean BI implies the
undecidability of the logic presented here.

In addition to the structural components of models, we
consider also the environment within which a system exists:

Environment : All systems exist within an external en-
vironment, which is typically treated as a source of events
that are incident upon the system rather than being explic-
itly stated. Mathematically, environments are represented
stochastically, using probability distributions that are sam-
pled in order to provide such events [12, 9, 10, 11].

The modal logic discussed above can also be extended to
the stochastic world, but an account of this is beyond our
present needs and scope. Related work can be found in
[38]. Logical reasoning about distributed systems has also
been studied by Barwise and Seligman [4]. We provide full
proofs of all claims made in this paper in the accompanying
technical report [2].

3. MODELLING DECISION-MAKING
One use of the process component within our models is

to represent agents within a system as they explore their
worlds, making decisions between the choices that are avail-
able to them. In the set-up described so far, as presented
in [12, 9, 10, 11], we have considered (again, suppressing
location, for brevity) an operational rule for choice of the
form

R,Ei
a−→ R′, E′

R,
∑
i∈I Ei

a−→ R′, E′
,

where I is an indexing set. This rule is understood, in the
style of structural operational semantics [33], read from con-
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clusion to premisses, as follows: the sum of the processes can
evolve by an action a, to become R′, E′ if one of its sum-
mands can evolve by the action a to become R′, E′. In other
words, there is a set of possible evolutions each element of
which leads to the evolution of the sum.

Models of distributed systems often capture situations in
which an agent or group of agents is exploring a world and
interacting with it and themselves. In such cases, a pro-
cess containing choices of the kind discussed represents the
choices made by agents as they evolve. It is therefore use-
ful to extend our modelling theory to provide an account of
agents’ decision-making.

Our approach, applying our methodology of incorporat-
ing representations of system modelling components as first-
class citizens, is to model agents’ decision-making by de-
veloping a utility-carrying version of the location-resource-
process calculus sketched above. It is possible to encode
some notions of location in the resource component; for
brevity and simplicity, we follow this approach to location
for the remainder of this paper. We return, in particular, to
the strengths of using location in modelling when we con-
sider trust domains in Section 6.

The key idea is to replace the simple choice combinator
described above with the utility-dependent choice (or sim-
ply sum)

∑
i∈I

u Ei, in which an agent has a choice between

alternatives Ei, and its preference is codified by the util-
ity u ∈ U . The operational rules of the calculus ensure
that this preference takes into account the wider context in
which the choice is embedded. For example, if the choice
R, a :E+u b :F (here we use an infix notation) occurs within
a wider context R ◦ S, (a :E +u b :F ) × G, then preference
will be determined by the utility calculations

u(R ◦ S, a :E ×G) and u(R ◦ S, b :F ×G). (1)

If the former is greater than the latter, the a : E option will
be chosen. An occurrence of the same choice R, a :E+u b :F
within a different context, such as R ◦ T, (a :E +u b :F )×H
with G 6= H or S 6= T , will have different utility calculations,
and may result in b : F being chosen instead.

Many process calculi include a form of prioritized sum, for
example [41]. In prioritized sums, say w · a : E + w′ · b : F ,
with w > w′, the option a : E is always chosen in any context
in which both a and b are available (which they may not be,
because of restriction operations). In contrast, our utility-
based sum can make different choices in different contexts
even when the same options are available.

In our set-up, resource-process contexts correspond to the
semantical notion of world. Utility functions are simply
given, being aspects of agents described in the model by
the modeller. A preference order �u on worlds is induced,
in the usual way, by: R,E �u S, F iff u(R,E) ≥ u(S, F ),
for all R,E and S, F . This means that the mathematical
structures we are considering appear to be similar to those
used to give a semantics for dynamic logics of preference
[42], but in a special case where processes are used to give a
very richly descriptive dynamics.

The use of a utility restricts the ordinal preference rela-
tions that can be represented (in the usual way [25]), but
it is a trivial step to replace the utility comparisons in our
calculus with more general relational comparisons, if so re-
quired.

Our utility calculations are not required to be determined

by the system dynamics described by the transition system.
At a sum, an agent makes a decision as to its own (partial)
control (i.e., process) choice knowing its context, but not us-
ing information about the resulting future evolution of the
system. Even if an agent may face a sequence of decisions,
we are not forced to model it as undertaking a traditional,
rational, multi-stage decision process. The decoupling of
choice from dynamics should also make it possible to in-
corporate expected utility for probabilistic choices [41] in a
natural fashion. Traditional decision theory usually treats
decision situations in a flat, atomic way, and is not concerned
with similar choice-points in different contexts. Prior works
that address this issue include [21, 16].

Process calculi in which contexts are treated as first-class
citizens include [8, 40, 7, 39]. Logics of propositions in con-
text have also been extensively studied, for example [27].
Points of contact between decision theory and process cal-
culus include [15, 31, 3]. Our approach differs from these in
having an explicit utility-based choice constructor, which,
in particular, which takes into account the wider context.
The importance of the combination of utility and process in
reasoning about trust has also been recognized in [3].

4. A PROCESS ALGEBRA WITH UTILITY
In process calculi such as the one sketched in Section 1, the

behaviour of a composite process, such as E1×E2, is usually
defined in terms of the behaviours of its sub-processes, with
the reductions of E1 and E2 being independent of each other.
In our calculus, however, choices take account of the context
in which sub-processes are reduced, so that the reductions
of E1 and E2 may not be independent.

To see how this works, consider the example used in the
utility expressions (1) in Section 3. The process a : A+ub : B
reduces taking account of its context G. We annotate the
context in which a process is reduced on the underside of
the reduction arrow (e.g., R, a : A+u b : B −−−−→

S,[ ]×G
a R′, A),

where [ ] denotes the hole into which a : A+u b : B may be
substituted to regain the complete system (a : A+u b : B)×
G, and S are the resources allocated toG. Note also that any
choices in [ ]×G may depend on what process is substituted
into the hole [ ]. We therefore annotate the process that
is substituted, into the process being reduced, on top of

the reduction arrow; for example, S, [ ] × G
R,a:A+ub:B−−−−−−−−→

b

S′, [ ]×G′.
So, the key judgement of the reduction relation for pro-

cesses with utility is of the form

C
C2−−→
C1

a

C′, (2)

which denotes how a context C, that exists in a system that
can be decomposed as C1(C(C2)), reduces. We refer to C
as the (primary) context, C1 as the outer context, and C2 as
the substituted, or inner context. Intuitively this denotes the
reduction of one part, C, of an entire system, C1(C(C2)).
In order to reason compositionally we wish to be able to
describe the reduction of C independently and structurally.
As choices can take account of context, this is not possible.
The choices in C, however, only make use of the definition
of C1 and C2, and disregard their structure. Hence we do
not need to reason over the structure of C1 and C2, as we do
with C, only to record their definitions which can then be
referred to at choice points. They are therefore annotated
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on the reduction arrow for reference, but are not reduced in
said relation.

We now describe the theoretical set-up in detail. Assume
a set U of symbols, called formal utilities, with a distin-
guished element 0U , called the neutral utility. Processes are
generated by the grammar:

E ::= 1 | [ ] | a : E |
∑
i∈I

u Ei | E × E.

These are really process contexts: the term [ ] is a hole into
which other processes may be substituted. For this work, it
turns out to be convenient to develop contexts as first-class
citizens rather than merely meta-theoretic tools.

The choice
∑
i∈I

u Ei is new: it describes situations in which

an agent has a choice between alternatives Ei indexed by
a i ∈ I, and its preference (in a larger context) is codified
by the utility u ∈ U . The infix operator E +u F may be
used for binary sums, and the subscript u may be dropped
when u = 0U . The zero process 0 is defined to be the sum
indexed by the empty set and the neutral utility. The zero
process, unit process 1, and synchronous products E×F are
well-known in process calculus, as are prefixes a : E, where
a ∈ Act.

A process E is well-formed if it contains at most one hole
and that hole is not guarded by action prefixes. The process
E is closed if it has no holes and open otherwise. Let PCont
be the set of all well-formed processes, PCCont be the set
of all closed well formed processes, and POCont be the set
of all open well-formed processes.

Let R be a resource monoid and µ be a fixed modification
function, as defined in Section 2. Define the products of sets
Cont = R× PCont, CCont = R× PCCont and OCont =
R × POCont. The letter C is reserved for contexts. De-
fine C∅ = e, [ ]. Brackets will be freely used to disambiguate
both processes and contexts. For C = R,E, the notational
abuses C × F = R, (E × F ) and C +u F = R, (E +u F )
will sometimes be used. Substitution in processes, E(F ),
replaces all occurrences of [ ] in E with F ; for example,
(([ ]+uE)×G)(F ) = (F +uE)×G. Substitution of contexts
C1(C2), where C1 = R,E and C2 = S, F , is defined as fol-
lows: if E is open, then C1(C2) = R ◦ S,E(F ), where E(F )
is process substitution; if E is closed, then C1(C2) = C1.

We assume that, for each formal utility u ∈ U , there is an
associated, real-valued utility function u : Cont −→ R [24]
that fixes an interpretation for each formal symbol u ∈ U .
The identically zero function is associated with 0U . Hence-
forth, we do not distinguish between formal utilities and
their utility functions.

The operational semantics of our process-utility calculus
is given in Figure 1. The side-condition (S

∑
) is that C3 =

C1((e,
∑
I\j

u Ei(C2)) +u [ ]) and ∀i ∈ I.u(C1(R,Ei(C2))) ≤

u(C1(R,Ej(C2))). The side-condition (S×) is that C3 =
C1((S, F (C2))× [ ]) and C4 = C1((R,E(C2))× [ ]).

The unit process always ticks, effecting no change. The
prefix process evolves via its head action. The hole rule is a
technical one used to terminate reduction derivations of open
contexts. The sum process

∑
I

u Ei represents a preference-

based choice by the agent: it follows the behaviour of any
of its constituent Ej which has at least as high a value as-
cribed by its utility u as any other option Ei for i ∈ I. The

R,1
C2−−→
C1

1

R,1
(Tick)

R, a : E
C2−−→
C1

a

µ(a,R), E
(Prefix)

C2
(e,1)a−−−−→
C1

C′2

e, [ ]
C2−−→
C1

1

e, [ ]
(Hole)

(S
∑

)
R,Ej

C2−−→
C3

a

S, F

R,
∑
I

u Ei
C2−−→
C1

a

S, F
(Sum)

(S×)
R,E

C2−−→
C3

a

R′, E′ S, F
C2−−→
C4

b

S′, F ′

R ◦ S,E × F C2−−→
C1

ab

R′ ◦ S′, E′ × F ′
(Prod)

Figure 1: Operational Semantics

first special case of the sum is for the zero process 0, which
never evolves. The second special case is where u = 0U
and the sum becomes an ordinary non-deterministic sum: in
this case, the utility is irrelevant, and the sum may evolve
as any of its component processes. The product evolves two
processes synchronously in parallel, according to the decom-
position of the associated resources. An important feature
of this system is that contextual information about conclu-
sions is propagated up to premisses. In the product case,
information about each premiss is propagated up from the
conclusion to the other premiss, so that derivations of tran-
sitions occur in context.

To demonstrate how contextual decisions can be utilized
in modelling, we give a simple example (inspired by [5]. Con-
sider a banker who has a presentation (for a client, that
includes confidential business data) on a USB drive. The
banker may chose to access the drive or not, depending on
the situation. The banker is modelled as a process

Banker = present : Banker′ +uB idleB : Banker′, (3)

where uB represents its preferences. The banker may be
willing to access the presentation when visiting a client, on
the assumption that the client’s network is firewalled, so
making the document safe from attack. In order to do so,
however, the banker must be given access to a computer by
the client. The client is modelled as

Client = logIn : Client′ +0U idleC : Client′, (4)

which, for simplicity, makes a non-deterministic choice be-
tween logging the guest in and idling. The interaction be-
tween the banker and the client is a form of joint access
control, in which the banker cannot show the presentation
without having been logged in, and the client cannot see the
presentation unless the banker accesses it. Here we can show
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that the principals co-operate to access the presentation:

R,Client×Banker logIn,present−−−−−−−−−→S,Client′×Banker′.
(5)

If the banker’s utility is uB , then we have

uB(R,Client× (idleB : Banker′)) ≤
uB(R,Client× (present : Banker′)). (6)

In a different situation — here, a different context — the
banker may make a different decision. The banker may use a
home computer, compromised by an attacker, who wants to
steal the presentation, but cannot unless the banker accesses
it from the USB stick. The attacker is modelled as

Attacker = steal : Attacker′ +0U idleA : Attacker′. (7)

In this situation, the banker prefers to idle than to work
on the presentation. As, in order for the attacker to steal
the presentation the banker must access it, and the banker
choses not to, then the attacker must also idle, so that

R,Attacker ×Banker idleA,idleB−−−−−−−→ S,Attacker′ ×Banker′.
(8)

Here the banker’s utility yields

uB(R,Attacker × (present : Banker′)) ≤
uB(R,Attacker × (idleB : Banker′)). (9)

A more detailed exposition of these examples is presented
in Appendix A.

A fundamental aspect of process calculus is the ability to
reason equationally about behavioural equivalence of pro-
cesses [28]. We now adapt these notions to suit the calculus
above, which incorporates ideas from [12, 9, 11].

The bisimilarity (or bisimulation) relation ∼ ⊆ PCont×
PCont is the largest binary relation such that, if E ∼ F ,
then ∀a ∈ Act, ∀R,R′, S, T ∈ R, and for all G,H, I, J ∈
PCont with G ∼ I and H ∼ J , then

1. ∀E′ ∈ PCont, if R,E
T,H−−−→
S,G

a

R′, E′ then ∃F ′ such that

R,F
T,J−−→
S,I

a

R′, F ′ and E′ ∼ F ′, and

2. ∀F ′ ∈ PCont, if R,F
T,J−−→
S,I

a

R′, F ′ then ∃E′ such that

R,E
T,H−−−→
S,G

a

R′, E′ and E′ ∼ F ′.

The union of any set of relations that satisfy these two con-
ditions also satisfies these conditions, so the largest such
relation is well-defined. Define ∼ ⊆ Cont × Cont by: if
E ∼ F then R,E ∼ R,F for all R ∈ R and E,F ∈ Cont.

Definition 1. A utility, u, respects bisimilarity if, for
all C1, C2 ∈ Cont, C1 ∼ C2 implies u(C1) = u(C2).

That is, behaviourally equivalent (bisimilar) states are re-
quired to be indistinguishable by u. The set U of utilities
respects bisimilarity if every u ∈ U respects bisimilarity.
Henceforth utilities are assumed to respect bisimilarity. We
can show that if bisimilar contexts are substituted into each
other, then the result is bisimilar:

Proposition 1. If E ∼ G and F ∼ H, then E(F ) ∼
G(H).

We can then prove a key property for reasoning composi-
tionally.

Theorem 1 (Bisimulation Congruence). The rela-
tion ∼ is a congruence. It is reflexive, symmetric and tran-
sitive, and for all a,E, F,G with E ∼ F , and all families
(Ei)i∈I , (Fi∈I)I with Ei ∼ Fi for all i ∈ I, a : E ∼ a : F ,
E ×G ∼ F ×G, and

∑
i∈I

u Ei ∼
∑
i∈I

u Fi.

Proof. Symmetry, reflexivity, and transitivity are straight-
forward. Prefixed processes a : E and a : F can only reduce
via an a action to E and F , which are bisimilar.

Consider the choices E +u G and F +u G, in (bisimilar)
outer contexts C1 and C2, with (bisimilar) inner contexts C3

and C4, and the case where R,E +u G
C2−−→
C1

a

S,E′. By the

(Sum) rule we know that u(C1(R,G(C2))) ≤ u(C1(R,E(C2)))

and that R,E
C2−−→
C5

a

S,E′, where C5 = C1((e,G(C2)) +u [ ]).

Let C6 = C3((e,G)(C4)+u[ ]); we can show that C5 ∼ C6 (by

Proposition 1), and hence that R,F
C4−−→
C6

a

S, F ′. By Propo-

sition 1 we know that C1(R,E(C2)) ∼ C3(R,F (C4)). Us-
ing Proposition 1, and the fact that utility functions respect
bisimilarity we can show that u(C3(R,G(C4))) ≤ u(C3(R,F

(C4))), and hence that R,F +u G
C4−−→
C3

a

S, F ′.

The product case follows from the fact that the contexts in
which each sub-process reduces, such as C1((S,G(C2))× [ ])
for E, is bisimilar to the context in which the counterpart
reduces, for example C3((S,G(C4))× [ ]) for F , by Proposi-
tion 1.

In order to reason equationally about processes, it is also
useful to establish various algebraic properties concerning
parallel composition and choice. We derive these below, for
our calculus. In order to do so, we make some additional
definitions concerning utility functions.

Definition 2. The set of utilities, U , is (algebraically)
accordant it respects bisimilarity and, for all u, v ∈ U , all
C,C1, C2, C3, C4 ∈ Cont, all E,F,G ∈ PCont, and R ∈ R,

1. u(C(R,F )) ≤ u(C(R,E)) and u(C(R,G)) ≤ u(C(R,E))
if and only if u(C(R,F +v G)) ≤ u(C(R,E)),

2. u(C(R,F )) ≤ u(C(R,E)) and u(C(R,G)) ≤ u(C(R,E))
if and only if u(C(R,G)) ≤ u(C(R,E +u F )).

3. for all R,E, u(C(R, 0)) ≤ u(C(R,E)), and

4. for all C1 ∼ C3, C2 ∼ C4, R,E, F,G, u(C1(R,E ×G+u

F ×G(C2))) = u(C3(R, (E +u F )×G(C4))).

We use the binary version of sum here in order to aid com-
prehension, but finite choices between sets of processes work
straightforwardly. Any real-valued function defined on the
quotient Cont/ ∼ defines a utility that respects bisimilarity.

Proposition 2 (Algebraic Properties). If U is ac-
cordant, then:

1 E +u F ∼ F +u E
2 E +u (F +u G) ∼ (E +u F ) +u G
3 E +u 0 ∼ E
4 E × 0 ∼ 0
5 E × 1 ∼ E
6 E × F ∼ F × E
7 E × (F ×G) ∼ (E × F )×G
8 (E +u F )×G ∼ E ×G+u F ×G.
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Proof. The interesting cases are: associativity of choice
(2) as it uses Definition 2.1 and 2.2, the unit of choice (3)
as it uses Definition 2.3, and distributivity of product over
choice (8), which uses Definition 2.4. The others are as
usual, and do not make use of the accordance properties.

As a representative of the interesting properties we prove
the associativity of choice. Consider the choices E+u (F +u

G) and (E +u F ) +u G, in (bisimilar) outer contexts C1

and C2, with (bisimilar) inner contexts C3 and C4, and the

case where R,E +u (F +u G)
C2−−→
C1

a

S,E′. By the (Sum) rule

we know that u(C1(R,F +u G(C2))) ≤ u(C1(R,E(C2))).
By the accordance properties (Def. 2.1) we then know that
u(C1(R,F
(C2))) ≤ u(C1(R,E(C2))) and u(C1(R,G(C2))) ≤ u(C1(R,
E(C2))).

Let C5 = C1((e, F +u G(C2))+u [ ]) and C6 = C3((e, F+u

G(C4)) +u [ ]); using Proposition 1 we can show that these
two contexts are bisimilar. By the (Sum) rule we know that,

as R,E+u(F+uG)
C2−−→
C1

a

S,E′, then R,E
C2−−→
C5

a

S,E′. So, by

the definition of bisimulation, we have that R,E
C4−−→
C6

a

S,E′.

As utility respects bisimilarity (Definition 1) we have that
u(C3(R,G(C4))) = u(C1(R,G(C2))) ≤ u(C1(R,E+uF (C2)))
= u(C3(R,E+u F (C4))), and that u(C3(R,F (C4))) = u(C1

(R,F (C2))) ≤ u(C1(R,E(C2))) = u(C3(R,E(C4))). Let
C7 = C3((e,G(C4)) +u [ ]). By (Sum) we can then show

that R,E +u F
C4−−→
C7

a

S,E′, and finally that R, (E +u F ) +u

G
C4−−→
C3

a

S,E′.

Future work includes extending the calculus to include
probabilistic choice [41] and expected utility [24]. It would
also be interesting to consider whether the (pre)sheaf-theoretic
semantics considered by Winskel [23] can be adapted to our
calculus.

5. A PROCESS LOGIC WITH UTILITY
We now introduce a modal logic of system properties. The

semantics is given using a satisfaction relation

C �C′ φ,

where C is a closed context, C′ is a context and φ is a for-
mula of a (Hennessy–Milner-style) modal logic of processes:
this may be read ‘the primary context C satisfies φ in the
surrounding context C′’ (cf. (2)). The context C may sat-
isfy different logical propositions, perhaps even negations of
each other, when placed in different surrounding contexts;
an example of this is below. Context-sensitive logics have
been studied by other authors [26, 4]. The structural nature
of processes and resources provides a semantic framework in
which such logics seem particularly natural.

The propositions of the logic are defined by the grammar

φ ::= p | ⊥ | > | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ |
〈a〉φ | [a]φ | I | φ ∗ φ | φ −−∗ φ,

where p ranges over atomic propositions, and a over actions.
The symbols for propositions for truth, falsehood, negation
and (additive) conjunction, disjunction, and implication are
standard. The (additive) modal connectives are 〈a〉 and [a].
The connectives I, ∗, and −−∗ are the multiplicative unit,
conjunction, and implication, respectively.

A valuation, V, is a function that maps each atomic propo-
sition to a ∼-closed set of closed contexts. The satisfaction
relation is specified in Figure 2.

In the interpretation of atoms, the surrounding context
is wrapped around the primary context, and the valuation
of the atom consulted to see if it contains this compound
context. This is what makes our logic context-sensitive. >,
⊥, ¬, ∧, ∨, and→ are all interpreted (essentially) classically.

The interpretation of the multiplicatives connectives here
is similar to that for the logic MBI in [12]. Recall also the
comments on ∗ in Section 1. The semantics of ∗ in Figure 2 is
slightly modified, because of the way that contextual infor-
mation is propagated upwards from conclusion to premisses
in the product rule of the operational semantics.

The standard interpretation of Hennessy–Milner logics uses
the relation specified by the operational semantics as a Kripke
structure to support the modal connectives. In our work,
the operational semantics is more complex: a context oc-
curs, and reduces alongside an outer context. Hence when
we consider whether C1 �C2 〈a〉φ holds, we have to consider

whether there are reductions of the form C1
C∅−−→
C2

a

C′1 and

C2
C1−−→
C∅

b

C′2 such that C′1 �C′
2
φ. The occurrences of the

empty context ensure that no extraneous contextual infor-
mation is introduced into the reductions of interest. The [a]
modality is interpreted similarly.

Recall the example of the banker who decides which ac-
tions to take in different contexts (3-9). In a situation that
consists of a client (context CC), the banker chooses to ac-
cess the presentation, but in a situation that consists of an
attacker (context CA) the banker chooses not to: that is,

RB , Banker �CC 〈present〉>
RB , Banker �CA ¬〈present〉>.

(10)

A derivation of these properties is in Appendix A. Hence, in
different contexts the process satisfies different propositions
that, moreover, would be inconsistent over the same context.

Behaviourally equivalent processes are also logically equiv-
alent (they satisfy the same logical properties). This is half
of the Hennessy–Milner property [19, 20].

Theorem 2. If C1 �C2 φ, C1 ∼ C3, and C2 ∼ C4, then
C3 �C4 φ.

Proof. A standard argument, by induction over the def-
inition of C1 �C2 φ, using Proposition 1 in the cases where
contexts are extended.

Hence, bisimilar processes can be used interchangeably within
a larger system, without changing the logical properties of
the larger system.

It is unclear whether a useful converse can be obtained.
With restrictions on the available fragments of the logic,
and a different equivalence relation, however, it is possi-
ble to obtain a converse. To this end, we introduce the
local equivalence relation ≈ ⊆ (OCont× Cont× CCont)×
(OCont × Cont × CCont), the largest binary relation such
that, if C1, A,D1 ≈ C2, B,D2, ∀a ∈ Act where A = R,E
and B = S, F (with A′ and B′, etc., modifying them, as
usual), then

1. ∀C′1 ∈ OCont,A′ ∈ Cont,D′1 ∈ CCont, if A
D1−−→
C1

a

A′

and C1
A(D1)−−−−→
C∅

c

C′1 and D1
C∅−−−−→

C1(A)

d

D′1 then ∃C′2 ∈
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C �C′ p iff C′(C) ∈ V(p)

C �C′ ⊥ never

C �C′ > always

C �C′ ¬φ iff C 6�C′ φ

C �C′ φ ∧ ψ iff C �C′ φ and C �C′ ψ

C �C′ φ ∨ ψ iff C �C′ φ or C �C′ ψ

C �C′ φ→ ψ iff C �C′ φ implies C �C′ ψ

C1 �C2 〈a〉φ iff ∃ C′1, C′2, b such that if C1
C∅−−→
C2

a

C′1

and C2
C1−−→
C∅

b

C′2, then C′1 �C′
2
φ

C1 �C2 [a]φ iff ∀ C′1, C′2, b such that if C1
C∅−−→
C2

a

C′1 and

C2
C1−−→
C∅

b

C′2, then C′1 �C′
2
φ

R,E �C′ I iff R = e and E ∼ 1

R,E �C′ φ ∗ ψ iff ∃ S, T , F , G such that R = S ◦ T , E ∼ F ×G, and
S, F �C′(T,[ ]×G) φ and T,G �C′(S,F×[ ]) ψ

R,E �C′ φ−−∗ ψ iff ∀ S, F such that R ◦ S is defined and S, F �C′ φ,
R ◦ S,E × F �C′ ψ

Figure 2: Interpretation of Propositional Formulae

OCont,B′ ∈ Cont,D′2 ∈ CCont such that B
D2−−→
C2

a

B′

and C2
B(D2)−−−−→
C∅

c

C′2 andD2
C∅−−−−→

C2(B)

d

D′2 and C′1, A
′, D′1 ≈

C′2, B
′, D′2

2. ∀C′2 ∈ OCont,B′ ∈ Cont,D′2 ∈ CCont, if B
D2−−→
C2

a

B′

and C2
B(D2)−−−−→
C∅

c

C′2 and D2
C∅−−−−→

C2(B)

d

D′2 then ∃C′1 ∈

OCont,A′ ∈ Cont,D′1 ∈ CCont such that A
D1−−→
C1

a

A′

and C1
A(D1)−−−−→
C∅

c

C′1 andD1
C∅−−−−→

C1(A)

d

D′1 and C′1, A
′, D′1 ≈

C′2, B
′, D′2

3. R = S.

The union of any set of relations that satisfy these two con-
ditions also satisfies these conditions, so the largest such
relation is well-defined. We define C1, A ≈ C2, B whenever
C1, A,D ≈ C2, B,D, for all D.

Fundamentally, this equivalence relation starts from the
view that processes should be considered equivalent when-
ever they have the same behaviour given the same resources
and context. The local equivalence relation fails to be a
congruence, however, as it is not respected by the product
constructor, ×, for processes [9]. Therefore, we do not have
an analogue of Theorem 1 for local equivalence. (Note that,
in [12, 9, 11], the equivalence corresponding to the equiva-
lence ∼ taken here is referred to as the global equivalence.)

We can, however, obtain a version of the full Hennessy-
Milner theorem, provided we restrict the logic to the frag-
ment without −−∗. The need for this restriction arises from the
failure of the local equivalence to be a congruence, because
the satisfaction relation for −−∗ requires that two subsystems
be combined using ×.

Consider the fragment of the logic that excludes −−∗. As-
sume that all atomic propositions are values as sets of con-
texts that are also closed under ≈. Alter the I and ∗ clauses
of the interpretation so that

C �C1 I iff C1, C ≈ C1, (e,1)
C �C1 φ ∗ ψ iff ∃ S, T and F , G such that C1, C ≈

C1, (S ◦ T, F ×G), and
S, F �C2 φ and T,G �C3 ψ,
where C2 = C′(T, [ ]×G) and
C3 = C′(S, F × [ ]).

Define two contexts (with accompanying outer contexts) to
be logically equivalent if they satisfy exactly the same set
of logical statements; that is, C1, A ≡ C2, B if and only if,
for all φ, A �C1 φ iff B �C2 φ. The following version of
Theorem 2 then holds:

Theorem 3. If C1, A,D1 ≈ C2, B,D2, then C1, A(D1) ≡
C2, B(D2).

Proof. Standard, by induction over the definition of
A(D1) �C1 φ, using a forward-only analogous version of
Proposition 1 for ≈, in the cases where contexts are ex-
tended.

We can now also obtain a converse, for the local equiv-
alence relation. Define a context to be image finite if it
has finitely many immediate derivatives (for any given inner
and outer contexts with which it reduces). We then have
the following.

Theorem 4. If C1, A ≡ C2, B, then there exist A1, D1,
B1, D2 such that A = A1(D1), B = B1(D2), and C1, A1, D1

≈ C2, B1, D2.

Proof. By contradiction. Take the finite set of contexts
C that can be obtained through the reduction of B1(D2) in
outer context C2 (with an empty inner context). If this
set is empty, then we can show that A1(D1) �C1 〈a〉>
and B1(D2) 6�C2 〈a〉>, which contradicts the premiss that
C1, A ≡ C2, B. If the set is non-empty, then we can con-
struct characteristic formulae φi for each context in C, such
that the result of reducing A1(D1) in C1 satisfies the for-
mula, but the result of reducing B1(D2) in C2 does not. We
can combine these to show that A1(D1) �C1 〈a〉(φ1∧...∧φn)
and B1(D2) 6�C2 〈a〉(φ1 ∧ ... ∧ φn), which again contradicts
the premiss that C1, A ≡ C2, B.

We remark that the usefulness of this result is limited by
the failure of local equivalence to be a congruence. It is a
strictly local reasoning tool.

14



Since each utility function u induces a preference relation
�u on closed contexts, the language could easily be enriched
with preference modalities such as 〈�u〉 and [�u] in the style
of dynamic preference logic [42]. Consider the necessitated
formula, [�u]φ, which denotes that any context that is val-
ued at least as much as the current context (in the outer
context) satisfies property φ. Formally, this is interpreted
as

C �C′ [�u]φ iff for all C′′, C′(C) �u C′(C′′) implies
C′′ �C′ φ.

These modalities can interact powerfully with existing struc-
tural operators.

In game-theoretic approaches to security, the notion of a
level of security is important. That is, if a defender chooses
to perform some defensive action, then no matter what a
given attacker does, the defender is guaranteed to maintain
at least a certain level of security. With preference modali-
ties we can make statements relevant to security levels. For
example, if a defensive measure d is in place, then every
better state for an attacker (which would be chosen by the
attacker) involves not attacking. To see this, consider the
proposition

φ−−∗ [d][�v](¬〈a〉>),

where the attacker is characterized by the property φ and
has preference function v. The multiplicative implication
operator permits us to reason about substitution within ar-
bitrary contexts, and hence of the efficacy of defensive mea-
sures relative to an arbitrary (partially) described attacker.

The logic might also be enriched to handle expected utility
[24]. Quantitative path-based logical properties of Markov
Chains are studied in [22]: they can reason about complex
notions, such as average utility with a given time discount,
but do not provide compositionality results over model struc-
tures. A more extensive study of such extensions is future
work.

6. TRUST DOMAINS
An agent, situated within a system that contains also

other agents, may establish a part of the system, or a col-
lection of other agents within the system, that it trusts.
Similarly, a system’s designer or manager might establish a
collection of parts of the system such that, within any given
part, the agents trust one another. We shall refer to such a
part of the system, or such a collection of agents, as a ‘trust
domain’.

The term ‘trust domain’ is in use in range of settings, such
as the Trusted Computing Project (www.trustedcomputing.
org.uk), the Open Trusted Computing (OpenTC) consor-
tium (www.opentc.net), and the ‘Trust Domains’ project
(www.hpl.hp.com/research/cloud_security/TrustDomains.
pdf). The literature on models of trust is very large and can-
not be surveyed in this short article, but a good survey with
a relevant perspective for us is [36].

In this section, we consider how the process-utility calcu-
lus might be used to characterize a notion of a ‘trust do-
main’. Within a system model, with an agent is represented
as a process, at any given point in the agent’s execution, the
process is associated with a location (which we suppress for
now) within the system and has access to a collection of re-
sources. That is, the agent has a state. As described above,
the agent is also associated with a utility function. Here we

interpret the utility function as a loss function, associating
a cost kE(ai) with each choice ai that is made as a process
executes, so that the trace σ of the process that describes
agent E gives the total cost K of an agent E’s execution:

KE(σ) =
∑

σ=a1,...,ak

kE(ai). (11)

For now, we consider just finite traces.
The intended situation is depicted in Figure 6. Here the

need for the concept of location should be apparent. Indeed,
a logical or physical location would seem to be an essential
component of the intended notion of domain. Informally,
located agents manipulate their resource environments, but,
in our formulation, they do so in contexts which characterize
the extent to which they do so whilst maintaining a required
logical property (intuitively, the ‘trust’ property) within a
specified bound on cost. This approach stands in contrast
to approaches in which constraints are expressed purely in
terms of preferences, where impossible choices, that can be
expressed logically in our setting, must represented by ‘in-
finitely negative’ utility. For brevity, we will not employ
location explicitly, along the lines of the discussion in Sec-
tion 2, instead trusting that the intuitions suggested in Fig-
ure 6 will make a sufficiently strong suggestion.

!
!

E"

F
G

Cost!L"

Cost!M"

Cost!N"

K1!

K2!L1!
L2!

M1!

M2!

N1!
F’"

Figure 3: Iso-utilities and Trust Domains

Here the agent E may be given one of two different choices
of cost (utility) function. If KE = K, then F is not within
E’s trust domain at either the K1 or K2 levels. If, however,
KE = L, then F is within E’s trust domain at the L2, but
not at the L1 level. Agent F ’s cost function, M , includes
agent G at the M2 level, but not at the M1 level (M1 ≤M2).
F ′ is in no-one’s domain at any of the given levels of utility.

The formal definition of a trust domain is set up, using the
process-utility calculus, for an agent E together with a prop-
erty φ required (by the agent or by the designer/manager)
of the part of the system or collection of agents that is to be
trusted, the agent’s utility function KE , which assigns val-
ues to choices made as the agent executes, and a bound K
on the total cost of the trace, which characterizes the total
acceptable cost to the agent in reaching or interacting with
other parts of the system or other agents within it.

The trust domain is then constructed as a collection of
contexts within which the agent may evolve whilst main-
taining the properties by which it determines trust. Two
properties are required to establish a viable definition. First,



a bound K on the cost that E is prepared to incur. Second,
a propositional assertion φ about the state to which E can
evolve within that cost constraint. So, if R is the resource
initially associated with E, then we can define, building on
(11),

TD(E, φ,KE ,K) =

{
C | there exist closed F and trace

σ such that R,E
(e,1)−−−→
C

σ

S, F

and S, F |=C′ φ

and KE(σ) ≤ K
}
, (12)

where the resource S is that which is derived from R by the

the trace σ and C
R,E−−→
C

σ′

C′, where σ′ is the trace of context

actions corresponding to σ.
Notice that the inner context is empty, so imposing no

restriction on the evolutions considered. More generally, in
further research, we could generalize the definition to con-
sider trust domains for agents A with non-empty inner con-
texts, corresponding to a degree of under-specification. A
richer treatment of logical satisfaction would then be needed.

Extending our banking example, we can give a simple
sketch of how trust domains work. Consider a process

Banker × Lawyer × P, (13)

where P is either Attacker or Client, and where we modify
Banker and introduce Lawyer, as follows:

Banker = shareL : Banker′ +K notshareL : Banker′

Lawyer = 1 : (shareP : Lawyer′ +L notshareP : Lawyer′).

In terms of Figure 6, Banker corresponds to A, Lawyer
to B, and P to C. Letting Banker’s cost be L, Lawyer’s
cost be M , and letting shareL, shareC, and shareA, etc.,
be the evident sharing (of data, say) actions with lawyer,
client, and attacker, we obtain

L(shareL : Banker′ × 1 : Lawyer × 1 : Attacker) ≥
L(notshareL : Banker′ × 1 : Lawyer × 1 : Attacker),

but

L(shareL : Banker′ × 1 : Lawyer × 1 : Client) ≤
L(notshareL : Banker′ × 1 : Lawyer × 1 : Client),

and

M(1 : Banker′ × shareA : Lawyer × 1 : Attacker) ≥
M(1 : Banker′ × notshareA : Lawyer × 1 : Attacker),

but

M(1 : Banker′ × shareC : Lawyer × 1 : Client) ≤
M(1 : Banker′ × notshareC : Lawyer × 1 : Client),

and see that Banker’s trust domain for sharing will include
Lawyer and Client, but not Attacker.

Here, the proposition φ in (12) would be something like
φBanker = ‘the bank retains a good credit rating while shar-
ing data’. Different φ’s give different domains.

We remark that work in the economics tradition would
tend to code propositional constraints within utility, and
that work in logic would tend to code utility constraints

propositionally. In our setting, the structure provided by the
Hennessy–Milner-style logic suggests it is natural to main-
tain the distinction between utility and logical properties.
Further work from this section is to consider information
flow [1, 4] between trust domains.
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. . .

RB , present : Banker
′ C1−−→

C
p
C

present

RB , Banker
′

(Prefix) uB(R,Client× (idleB : Banker′)) ≤
uB(R,Client× (present : Banker′))

RB , Banker
C1−−→
CC

present

RB , Banker
′

(Sum)

RC ◦ RB , Client× Banker
C1−−→
C∅

logIn,present

µ((logIn, present), RC ◦ RB), Client′ × Banker′
(Prod)

where C1 = e, 1, CC = RC , Client× [ ], Cp
C = RC , Client× ([ ] +uB

idleB : Banker′)

Figure 4: Banker choice in Client context

. . .

RB , idleB : Banker′
C1−−→
Ci
A

idleB
RB , Banker

′
(Prefix) uB(R,Attacker × (present : Banker′)) ≤

uB(R,Attacker × (idleB : Banker′))

RB , Banker
C1−−→
CA

idleB
RB , Banker

′
(Sum)

RA ◦ RB , Attacker × Banker
C1−−→
C∅

idleA,idleB
µ((idleA, idleB), RA ◦ RB), Attacker′ × Banker′

(Prod)

where C1 = e, 1, CA = RA, Attacker × [ ], Ci
A = RA, Attacker × (present : Banker′ +uB

[ ])

Figure 5: Banker choice in Attacker context

APPENDIX
A. DERIVATIONS OF EXAMPLES

We provide a detailed derivation of the examples intro-
duced in Equations 3–10. This example consists of situation-
ally dependent choices that make use of joint access control.
In order to encode the joint access control, we make use of
semaphore resources. We let Rs stand for sets of atomic re-
sources, such as Acnt, USB, ris, etc., and make use of the
ρ notation [12, 11], defined by

ρ(a) = min {R | µ(a,R) ↓},

to denote which resources are required for the modification
function to be defined for a given action:

ρ(logIn) = {Acnt, r1} = RC ρ(idleC) = {r2}
ρ(present) = {USB, r2} = RB ρ(idleB) = {r1}.

This ensures that the idleC and present actions, and the
idleB and logIn actions, cannot co-occur in a reduction, as
they require the same semaphore resources. We then define
the modification function for each action:

µ(logIn,RC) = RC µ(idleC , {r2}) = {r2}
µ(present,RB) = RB µ(idleB , {r2}) = {r2}.

Let R = {Acnt, r1, USB, r2}. In order to denote our prefer-
ence of giving the presentation over idling, in the presence
of the client and the absence of the attacker, we define a
portion of the banker’s preference function as

uB(R,Client× (present : Banker′)) = 0.7
uB(R,Client× (idleB : Banker′)) = 0.5.

We then have the reduction

RC ◦RB , Client×Banker
C1−−→
C∅

logIn,present

µ((logIn, present), RC ◦RB), Client′ ×Banker′,

as derived in Figure 4. We also have the property

RB , Banker �CC 〈present〉>.

This can be derived using the satisfaction relation in Fig-
ure 2, specifically the case for the diamond modality, as

RB , Banker
C1−−→
CC

present

µ((present), RB), Banker′,

by Figure 4.
In order to encode the joint access control we make use of

semaphore resources, as defined which resources are required
for the attacker’s actions:

ρ(attack) = {r1} = RA ρ(idleA) = {r2}.

and define the modification function for the attackers actions

µ(attack,RA) = RA µ(idleA, {rc}) = {rc}

To express the banker’s preference to idle in the presence
of an attacker, we define a further portion of its preference
function, and give a higher utility to idling in such a situa-
tion:

uB(R,Attacker × (present : Banker′)) = 0.1
uB(R,Attacker × (idleB : Banker′)) = 0.2.

Here we have the reduction

RA ◦RB , Attacker ×Banker
C1−−→
C∅

idleA,idleB

µ((idleA, idleA), RA ◦RB), Client′ ×Banker′

as derived in Figure 5. We also have the following property:

RB , Banker �CA ¬〈present〉>.

This can be derived using the satisfaction relation in Fig-

ure 2. By the diamond modality, as RB , Banker 6
C1−−→
CA

present

,

by Figure 4, we have that Rb, Banker 6�CA 〈present〉>.
Then the property follows directly by the interpretation of
negation.
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ABSTRACT
Although Dynamic Epistemic Logic (DEL) is an influential
logical framework for representing and reasoning about in-
formation change, little is known about the computational
complexity of its associated decision problems. In fact, we
only know that for public announcement logic, a fragment
of DEL, the satisfiability problem and the model-checking
problem are respectively PSPACE-complete and in P. We
contribute to fill this gap by proving that for the DEL lan-
guage with event models, the model-checking problem is,
surprisingly, PSPACE-complete. Also, we prove that the
satisfiability problem is NEXPTIME-complete. In doing so,
we provide a sound and complete tableau method deciding
the satisfiability problem.

Categories and Subject Descriptors
I.2.4 [Knowledge representation formalisms and meth-
ods]: Modal logic; F.1.3 [Complexity measure and classes]:
Reducibility and completeness

General Terms
Theory

Keywords
Dynamic epistemic logic, computational complexity, model
checking, satisfiability

1. INTRODUCTION
Research fields like distributed artificial intelligence, dis-

tributed computing and game theory all deal with groups of
human or non-human agents which interact, exchange and
receive information. The problems they address range from
multi-agent planning and design of distributed protocols to
strategic decision making in groups. In order to address ap-
propriately and rigorously these problems, it is necessary to
be able to provide formal means for representing and reason-
ing about such interactions and flows of information. The
framework of Dynamic Epistemic Logic (DEL for short) is
very well suited to this aim. Indeed, it is a logical frame-
work where one can represent and reason about beliefs and

∗An extended version of this article with full proofs can be
found at the following url: http://hal.inria.fr/docs/00/
75/95/44/PDF/RR-8164.pdf

TARK 2013, Chennai, India.
Copyright 2013 by the authors.

knowledge change of multiple agents, and more generally
about information change.

The theoretical work of the above mentioned research
fields has already been applied to various practical problems
stemming from telecommunication networks, World Wide
Web, peer to peer networks, aircraft control systems, and so
on. . . In general, in all applied contexts, the investigation of
the algorithmic aspects of the formalisms employed plays an
important role in determining whether and to what extent
they can be applied. For this reason, the algorithmic aspects
of DEL need to be studied.

To this aim, a preliminary step consists in studying the
computational properties of its main associated decision prob-
lems, namely the model checking problem and the satisfia-
bility problem. Indeed, it will indirectly provide algorithmic
methods to solve these decision problems and give us a hint
of whether and to what extent our methods can be applied.
However, surprisingly little is known about the computa-
tional complexity of these problems. We only know that
for public announcement logic, a fragment of DEL [Plaza,
1989], the model checking problem is in P and the satisfi-
ability problem is PSPACE-complete. Here, we aim to fill
this gap for the full language of DEL with event models.

DEL is built on top of epistemic logic. An epistemic model
represents how a given set of agents perceive the actual world
in terms of beliefs and knowledge about this world and about
the other agents’ beliefs. The insight of the DEL approach
is that one can describe how an event is perceived by agents
in a very similar way: an agent’s perception of an event can
also be described in terms of beliefs and knowledge. For
example, at the battle of Waterloo, when marshal Blücher
received the message of the duke of Wellington inviting him
to join the attack at dawn against Napoleon, Wellington did
not know at that very moment that Blücher was receiving
his message, and Blücher knew it. This is a typical example
of announcement which is not public. This led Baltag, Moss
and Solecki to introduce the notion of event model [Baltag
et al., 1998]. The definition of an event model, denoted
(M′, w′), is very similar to the definition of an epistemic
model. They also introduced a product update, which defines
a new epistemic model representing the situation after the
event. Then, they extended the epistemic language with
dynamic operators [M′, w′]ϕ standing for ‘ϕ holds after the
occurrence of the event represented by (M′, w′)’.

Using the so-called reduction axioms, it turns out that
any formula with dynamic operator(s) can be translated
to an equivalent epistemic formula without dynamic oper-
ator. As a first approximation, we could be tempted to
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use these reduction axioms to reduce both the model check-
ing problem and the satisfiability problem of DEL to the
model checking problem and the satisfiability problem of
epistemic logic, because optimal algorithmic methods al-
ready exist for these related problems. However, the re-
duction algorithm induced by the reduction axioms is expo-
nential in the size of the input formula. Therefore, for the
satisfiability problem, we only obtain an algorithm which is
in EXPSPACE (because the satisfiability problem of epis-
temic logic is PSPACE-complete), and for the model check-
ing problem, we only obtain an algorithm which is in EX-
PTIME (because the model checking problem of epistemic
logic is in P). These algorithms are not optimal because, as
we shall see, there exists an algorithm solving the satisfiabil-
ity problem which is in NEXPTIME⊆ EXPSPACE and also
an algorithm solving the model checking problem which is in
PSPACE⊆ EXPTIME. Our algorithm for solving the satis-
fiability problem is based on a sound and complete tableau
method which does not resort to the reduction axioms.

The paper is organized as follows. In Section 2, we re-
call the core of the DEL framework and the different vari-
ants of languages with event models which have been in-
troduced in the literature. In Section 3, we prove that
the model checking problem of DEL is PSPACE-complete,
and in Section 4 we prove that the satisfiability problem
is NEXPTIME-complete. In Section 5, we discuss related
works and whether our results still hold when we extend the
expressiveness of the language with common belief and ‘star’
iteration operators. We conclude in Section 6.

2. DYNAMIC EPISTEMIC LOGIC
Following the methodology of DEL, we split the exposi-

tion of the DEL logical framework into three subsections. In
Section 2.1, we recall the syntax and semantics of the epis-
temic language. In Section 2.2, we define event models, and
in Section 2.3, we define the product update. In Section 2.4,
we recall the different languages that have been introduced
in the DEL literature and we introduce our language LDEL.

2.1 Epistemic language
In the rest of the paper, ATM is a countable set of atomic

propositions and AGT is a finite set of agents.
A (pointed) epistemic model (M, w) represents how the

actual world represented by w is perceived by the agents.
Intuitively, in this definition, vRau means that in world v
agent a considers that world u might be the actual world.

Definition 1 (Epistemic model).
An epistemic model is a tuple M = (W,R, V ) where W
is a non-empty set of possible worlds, R maps each agent
a ∈ AGT to a relation Ra ⊆ W ×W and V : ATM → 2W

is a function called a valuation. We abusively write w ∈M
for w ∈ W and we say that (M, w) is a pointed epistemic
model. We also write v ∈ Ra(w) for wRav.

Then, we define the following epistemic language LEL. It
can be used to state properties of epistemic models:

Definition 2 (Epistemic language).
The language LEL of epistemic logic is defined as follows:

LEL : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Baϕ

where p ranges over ATM and a ranges over AGT. A for-
mula of LEL is called an epistemic formula. The formula ⊥
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Figure 1: Pointed epistemic models (M, w) (left),
((M ⊗ M′1), (w,w′1)) (center) and (M ⊗ M′1 ⊗
M′2, (w,w′1, w′2)) (right)

is an abbreviation for p ∧ ¬p, and > is an abbreviation for
¬⊥. The formula 〈Ba〉ϕ is an abbreviation of ¬Ba¬ϕ. The
size of a formula ϕ ∈ LEL is defined by induction as follows:
|p| = 1; |¬ϕ| = 1+|ϕ|; |ϕ∧ψ| = 1+|ϕ|+|ψ|; |Baϕ| = 1+|ϕ|.

Intuitively, the formula Baϕ reads as ‘agent a believes that
ϕ holds in the current situation’.

Definition 3 (Truth conditions).
Given an epistemic model M = (W,R, V ) and a formula
ϕ ∈ LEL, we define inductively the satisfaction relation |=⊆
W × LEL as follows: for all w ∈W ,

M, w |= p iff w ∈ V (p)
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
M, w |= ¬ϕ iff not M, w |= ϕ
M, w |= Baϕ iff for all v ∈ Ra(w), we have M, v |= ϕ

We writeM |= ϕ when for all w ∈M, it holds thatM, w |=
ϕ. Also, we write |= ϕ, and we say that ϕ is valid, when for
all epistemic model M, it holds that M |= ϕ. Dually, we
say that ϕ is satisfiable when ¬ϕ is not valid.

Example 1. Our running example is inspired by the co-
ordinated attack problem from the distributed systems folk-
lore [Fagin et al., 1995]. Our set of atomic propositions is
ATM = {p} and our set of agents is AGT = {1, 2}. Agent
1 is the duke of Wellington and agent 2 is marshal Blücher;
p stands for ‘Wellington wants to attack at dawn’. The ini-
tial situation is represented in Figure 1 by the pointed epis-
temic model (M, w) = ({w, u}, R1 = {(w,w), (u, u)}, R2 =
{(w,w), (w, u)}, V (p) = {w}). In this pointed epistemic
model, it holds thatM, w |= p∧B1p: Wellington ‘knows’ that
he wants to attack at dawn. It also holds thatM, w |= ¬B2p:
Blücher does not ‘know’ that Wellington wants to attack
at dawn; and M, w |= B1¬B2p: Wellington ‘knows’ that
Blücher does not ‘know’ that he wants to attack at dawn.

2.2 Event model
A (pointed) event model (M′, w′) represents how the ac-

tual event represented by w′ is perceived by the agents. In-
tuitively, in this definition, u′R′av

′ means that while the pos-
sible event represented by u′ is occurring, agent a considers
possible that the event represented by v′ is in fact occurring.
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Figure 2: Pointed event models (M′1, w′1) (left) and
(M′2, w′2) (right)

Definition 4 (Event model).
An event model is a tuple M′ = (W ′, R′, P re) where W ′ is
a non-empty and finite set of possible events, R′ maps each
agent a ∈ AGT to a relation R′a ⊆W ′×W ′ and Pre : W ′ →
LEL is a function that maps each event to a precondition
expressed in the epistemic language.

We abusively write w′ ∈ M′ for w′ ∈ W ′ and we say
that (M′, w′) is a pointed event model. The size of an event
model M′ = (W ′, R′, P re) is noted |M′| and is defined as
follows: card(W ′) +

∑
a∈AGT card(R′a) +

∑
w′∈W ′ |Pre(w

′)|.

Example 2. In Figure 2 are represented two pointed event
models. The first, (M1, w

′
1) = ({w′1, u′1}, R1 = {(w′1, u′1),

(u′1, u
′
1)}, R2 = {(w′1, w′1), (u′1, u

′
1)}, P re, w′1) where Pre(w′1)

= p and Pre(u′1) = >, represents the event whereby Blücher
receives the message of Wellington that he wants to attack at
dawn. When this happens, Wellington believes that nothing
happens and believes that this is even common knowledge.
The second, (M2, w

′
2) = ({w′2, u′2}, R1 = {(w′2, w′2), (u′2, u

′
2)},

R2 = {(w′2, u′2), (u′2, u
′
2)}, P re, w′2), where Pre(w′2) = B2p

and Pre(u′2) = >, represents the event whereby Wellington
receives the message of Blücher telling him that he ‘knows’
that Wellington wants to attack at dawn.

2.3 Product update
The following product update yields a new pointed epis-

temic modelM⊗M′, (w,w′) representing how the new sit-
uation which was previously represented by (M, w) is per-
ceived by the agents after the occurrence of the event rep-
resented by (M′, w′).

Definition 5 (Product update).
Let M = (W,R, V ) be an epistemic model and let M′ =
(W ′, R′, P re) be an event model. The product update of M
by M′ is the epistemic model M ⊗M′ = (W ′′, R′′, V ′′)
defined as follows (p and a range over ATM and AGT re-
spectively):

W ′′ ={(w,w′) ∈W ×W ′ | M, w |= Pre(u′)}
R′′a ={〈(w,w′), (v, v′)〉 ∈W ′′ ×W ′′ | wRav and w′R′av

′}
V ′′(p) ={(w,w′) ∈W ′′ | w ∈ V (p)}

Given a pointed epistemic model (M, w), and a pointed
event model (M′, w′), we say that (M′, w′) is executable in
(M, w) whenM, w |= Pre(w′). IfM is an epistemic model
andM′1, . . . ,M′n are event models, we abusively writeM⊗
M′1⊗ · · ·⊗M′n for (. . . ((M⊗M′1)⊗M′2)⊗ . . .)⊗M′n and
(w,w′1, . . . , w

′
n) for (. . . ((w,w′1), w′2), . . .), w′n).

Example 3. The pointed epistemic models ((M⊗M′1),
(w,w′1)) and (M⊗M′1⊗M′2, (w,w′1, w′2)) are represented in
Figure 1. After Blücher receives the message of Wellington,
Blücher ‘knows’ that Wellington wants to attack at dawn,
but Wellington does not ‘know’ that Blücher ‘knows’ it: M⊗
M′1, (w,w′1) |= p∧B2p∧¬B1B2p. Likewise, after Wellington
receives the message of Blücher telling him that he ‘knows’
that he wants to attack at dawn (B2p), Wellington ‘knows’
that Blücher ‘knows’ that he wants to attack at dawn, but
Blücher does not ‘know’ that Wellington ‘knows’ it: M⊗
M′1 ⊗ M′2, (w,w′1, w′2) |= p ∧ B2p ∧ B1B2p ∧ ¬B2B1B2p.
Hence, in particular, M, w |= ¬[M′1, w′1][M′2, w′2]B2B1B2p.

2.4 Languages of DEL
In [Baltag et al., 1998], the language is defined as follows:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Baϕ | [M′, w′]ϕ

where p ranges over ATM , a over AGT and (M′, w′) is any
pointed and finite event model. The formula 〈M′, w′〉ϕ is
an abbreviation for ¬[M′, w′]¬ϕ.

Intuitively, [M′, w′]ϕ reads as ‘ϕ will hold after the occur-
rence of the event represented by (M′, w′)’ and 〈M′, w′〉ϕ
reads as ‘the event represented by (M′, w′) is executable in
the current situation and ϕ will hold after its execution’.

However, note that in this definition, preconditions of
event models are necessarily epistemic formulas. In [Baltag
and Moss, 2004], another language is introduced which can
deal with event models whose preconditions may involve for-
mulas with event models. This language relies on the notion
of event signature and the epistemic language is extended
with a modality [Σ, ϕ1, . . . , ϕn]ϕ, where Σ is an event signa-
ture. The language of [Baltag and Moss, 2004] also includes
PDL-like program constructions such as sequential composi-
tion, union and ‘star’ operation of event models (see Section
5 for a definition of these program constructions).

In [van Ditmarsch et al., 2007], preconditions can also
be formulas involving event models, but only union of pro-
grams is allowed. It is therefore a fragment of the language
of [Baltag and Moss, 2004] since it does not include sequen-
tial composition nor the ‘star’ operation. This will be our
language in this paper.

Definition 6 ([van Ditmarsch et al., 2007]).
The language LDEL is the union of the formulas ϕ ∈ Lstat⊗

and the events (or epistemic events) π ∈ Ldyn⊗ defined by
the following rule:

Lstat⊗ : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Baϕ | [π]ϕ

Ldyn⊗ : π ::=M′, w′ | (π ∪ π)

where p ranges over ATM , a over AGT and (M′, w′) is
any pointed and finite event model such that for all w′ ∈
M′, Pre(w′) is a formula of Lstat⊗ that has already been
constructed in a previous stage of the inductively defined
hierarchy.

The size of ϕ ∈ LDEL is defined as for the epistemic lan-
guage together with the induction case |[π]ϕ| = 1 + |π|+ |ϕ|
where |M′, w′| = |M′|, and |π ∪ γ| = 1 + |π|+ |γ|.

Definition 7 (Truth conditions).
Given an epistemic model M = (W,R, V ) and a formula
ϕ ∈ LDEL, we define inductively the satisfaction relation
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|=⊆W × LDEL as follows:

M, w |= [M′, w′]ϕ iff M, w |= Pre(w′) implies
M⊗M′, (w,w′) |= ϕ

M, w |= [π ∪ γ]ϕ iff M, w |= [π]ϕ and M, w |= [γ]ϕ.

The other induction steps are identical to the induction steps
of Definition 3.

The results in this paper are the same whether or not the
formulas of the preconditions involve event models. How-
ever, the result of NEXPTIME-completeness of the satisfi-
ability problem of Section 4 holds only if we consider union
of event models as a program construction in the language.

3. MODEL CHECKING PROBLEM
The model checking problem of LDEL is defined as follows:

Input: a pointed epistemic model (M, w) and a for-
mula ϕ ∈ LDEL;

Output: yes iff M, w |= ϕ.

Whereas the model checking problem with an epistemic
formula of LEL is in P, model checking with a formula of
LDEL is surprisingly PSPACE-complete. This shows that
the addition of dynamic modalities with event models to
LEL increases tremendously the computational complexity
of the model checking problem.

3.1 Upper bound
In Figure 3 is defined a deterministic algorithm M-Check(

w M′1, w′1; . . . ;M′i, w′i , ϕ) that checks whether we have
M⊗M′1 ⊗ . . .M′i, (w,w′1, . . . , w′i) |= ϕ, where (M, w) is a
pointed epistemic model and for all j ∈ {1, . . . , i}, (M′j , w′j)
is a pointed event model. The precondition of a call to
the function M-Check(w M′1, w′1; . . . ;M′i, w′i , ϕ) is that
(w,w′1, . . . , w

′
i) ∈ M ⊗M′1 ⊗ . . .M′i, that is, the sequence

(M′1, w′1) . . . , (M′i, w′i) is executable in (M, w). In order to
check whether M, w |= ϕ, we just call M-Check(w,ϕ).

Theorem 1. The model checking problem of LDEL is in
PSPACE.

Proof sketch. Termination and correction of the algo-
rithm M-Check are easily proved over the size of the input

defined by |M|+
i∑

k=1

|M′k|+ |ϕ|. As for complexity, the al-

gorithm requires a polynomial amount of space in the size
of the input. Indeed, as the size of the input is strictly de-
creasing at each recursive call, the number of recursive calls
in the call stack is linear in the size of the input. Then, each
of the current call requires a polynomial amount of space in
the size of the input for storing the value of local variables:
the most consuming case is Baψ where we have to save all
the current values of u, u1, . . . , ui in the loop for.

3.2 Lower bound
We prove that the algorithm of the previous section is

optimal. To do so, we provide a polynomial reduction of the
quantified Boolean formula satisfiability problem, known to
be PSPACE-complete [Papadimitriou, 1995, p. 455] to the
model-checking problem of LDEL.

function M-Check(w M′1, w′1; . . . ;M′i, w′i ϕ)
match (ϕ)
case p:
return w ∈ V (p);

case ¬ψ:
return not M-Check(w M′1, w′1; . . . ;M′i, w′i ψ);

case ψ1 ∧ ψ2:
return (M-Check(w M′1, w′1; . . . ;M′i, w′i ψ1) and
M-Check(w M′1, w′1; . . . ;M′i, w′i ψ2));

case Baψ:
for u ∈ Ra(w)
for u′1 ∈ R′a(w′1)
if M-Check(u, Pre(u′1))
...
for u′i ∈ R′a(w′i)
if M-Check(u M′1, u′1; . . . ;M′i−1, u

′
i−1 Pre(u′i))

if not M-Check(u M′1, u′1; . . . ;M′i, u′i ψ);
return false ;

endIf
endIf endFor . . . endIf endFor endFor
return true ;

case [M′, w′]ψ:
if M-Check(w M′1, w′1; . . . ;M′i, w′i Pre(w′))
return M-Check(w M′1, w′1; . . . ;M′i, w′i;M′, w′ ψ);

endIf
return true ;

case [π ∪ γ]ψ:
return (M-Check(w M′1, w′1; . . . ;M′i, w′i [π]ψ) and
M-Check(w M′1, w′1; . . . ;M′i, w′i [γ]ψ));

endMatch
endFunction

Figure 3: PSPACE algorithm for model checking

Theorem 2. The model checking problem of LDEL is
PSPACE-hard.

Proof. Without loss of generality, we only consider in
this proof quantified Boolean formulas of the form ∀p1∃p2∀p3

. . .∀p2k−1∃p2kψ(p1, . . . p2k), where ψ(p1, . . . , p2k) is a Boolean
formula over the atomic propositions p1, . . . , p2k. The for-
mula ∀p1∃p2∀p3 . . .∀p2k−1∃p2kψ(p1, . . . p2k) is satisfiable iff
for both truth values of the atomic proposition p1 there is a
truth value for the atomic proposition p2 such that for both
truth values of the atomic proposition p3, and so on up to
p2k, the formula ψ(p1, . . . p2k) is true in the overall truth
assignment.

We can restrict ourselves to LDEL where there is only
one agent a. The quantified Boolean formula satisfiability
problem is defined as follows:

Input: a natural number k and a quantified Boolean
formula ϕ , ∀p1∃p2∀p3 . . .∀p2k−1∃p2kψ(p1, . . . , p2k);

Output: yes iff ϕ is satisfiable.

Let ϕ = ∀p1∃p2∀p3 . . .∀p2k−1∃p2kψ(p1, . . . p2k) be a quanti-
fied Boolean formula. We define a pointed epistemic model
(M, w0), 2k pointed event models (M′1, w′01 ), . . . , (M′2k, w′02k),
a pointed event modelM′�, w′0� and an epistemic formula ψ′

that are computable in polynomial time in the size of ϕ such
that:

ϕ is satisfiable in quantified Boolean logic
iff

M, w0 |= [M′1, w′01 ∪M′�, w′0� ]〈M′2, w′02 ∪M′�, w′0� 〉 . . .
[M′2k−1, w

′0
2k−1 ∪M′�, w′0� ]〈M′2k, w′02k ∪M′�, w′0� 〉ψ′.
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The corresponding instance of the model checking problem
of LDEL is computable in polynomial time in the size of ϕ.
Now, let us describe M, w0, the event models M′1, w′01 , . . . ,
M′2k, w′02k, the event model M′�, w′0� and ψ′.

• M = (W,R, V ) is defined by:

– W = {w0, w1, . . . , w2k+1};
– Ra = {(wj , wj+1 | j ∈ {0, . . . , 2k}};
– and V (p) = ∅ for all p ∈ ATM

• For all i ∈ {1, . . . , 2k},M′i = (W ′i , R
′
i, P rei) is defined

by:

– W ′i = {w′0i , w′1i , . . . , w′ii , w′�i }
– Ri

′
a = {(w′ji , w

′j+1
i ) | j ∈ {0, . . . , i− 1}}∪{(w′0i , w′�i ),

(w′�i , w
′�
i )}

– and Prei(u
′) = > for all u′ ∈W ′i

• M′�, w′0� = (W ′�, R
′
�, P re�) is defined by:

– W ′� = {w′0�}
– R�

′
a = {(w′0� , w′0� )}

– Pre�(w′0� ) = >

• ψ′ = ψ(p1 ← 〈Ba〉Ba⊥, . . . , p2k ← (〈Ba〉)2kBa⊥),
that is, ψ′ is the formula ψ where all pi occurrences
are substituted by (〈Ba〉)iBa⊥.1

The semantics is simulated in the following way. The
proposition pi is interpreted as the presence of a chain of
length exactly i from the root of a given epistemic model.
That is why in ψ′, the proposition pi is substituted by
(〈Ba〉)iBa⊥, which is true in the root of the final epistemic
model iff there exists a chain of length i in that model.

Note that updating an epistemic model where there is a
chain of length 2k + 1 by M′i, w′0i where i ∈ {1, . . . , 2k}:

• preserves the presence or absence of any chain of length
j 6= i; in particular, it always preserves the presence of
the chain of length 2k + 1;

• adds a chain of length i, that is pi becomes true;

Note also that updating an epistemic model where there
is a chain of length 2k+1 byM′�, w′0� preserves the presence
or absence of any chain. So, it will keep pi false if it was
already false and it will keep any pi true if it was already
true. In other words, the M′�, w′0� is a neutral element for
the product update.

The crucial invariant property (Inv) of an epistemic model
is the existence of a chain of length 2k + 1 in any update of
M, w0 by any sequence of M′�, w′0� and M′i, w′0i .

The behavior of ∀pi in quantified Boolean logic consists in
a universal choice of a truth value for pi. It is translated by
the update operator [M′i, w′0i ∪M′�, w′0� ] whose semantics is
to choose universally the update of the epistemic model by
M′i, w′0i , that will give a new updated epistemic model with
a chain of length i, that is pi is true, or by M′�, w′0� that
will let the new updated epistemic model without a chain of
length i, that is pi is false.

1The formula (〈Ba〉)iϕ is an abbreviation of 〈Ba〉 . . . 〈Ba〉︸ ︷︷ ︸
i times

ϕ.

The behavior of ∃pi in quantified Boolean logic consists in
an existential choice of a truth value for pi. It is translated
by the update operator 〈M′i, w′0i ∪M′�, w′0� 〉 whose semantics
is to choose existentially the update of the epistemic model
by M′i, w′0i , that will give a new updated epistemic model
with a chain of length i, that is pi is true, or by M′�, w′0� ,
that will let the new updated epistemic model without a
chain of length i, that is pi is false.

Remark 1. Note that the reduction used to prove that the
model checking problem of LDEL is PSPACE-hard uses only
the precondition >.

4. SATISFIABILITY PROBLEM
The satisfiability problem of LDEL is defined as follows:

Input: a formula ϕ ∈ LDEL;

Output: yes iff there exists a pointed epistemic model
(M, w) such that M, w |= ϕ.

The satisfiability problem is known to be decidable. Indeed,
the standard reduction axioms of DEL [Baltag and Moss,
2004, p. 214] induce a translation tr : LDEL → LEL such
that ϕ ∈ LDEL is satisfiable iff tr(ϕ) ∈ LEL is satisfiable.
Since the size of tr(ϕ) is at most exponential in the size
of ϕ [Lutz, 2006] and the satisfiability problem of LEL is
PSPACE-complete, the satisfiability problem of LDEL is in
EXPSPACE. This upper bound is nevertheless not optimal:
we are going to prove in this section that the satisfiability
problem of LDEL is NEXPTIME-complete.

4.1 Upper bound
In this subsection we present a tableau method that does

not rely on reduction axioms and we prove that it provides a
NEXPTIME procedure deciding the satisfiability problem.

4.1.1 Tableau method
Let Lab be a countable set of labels designed to represent

worlds of the epistemic model (M, w). Our tableau method
manipulates terms that we call tableau terms and they are
of the following kind:

• (σ M′1, w′1; . . . ;M′i, w′i ϕ) where σ ∈ Lab is a node
(that represents a world in the initial model) and for
all j ∈ {1, . . . , i},M′j , w′j is an event model. This term
means that ϕ is true in the world denoted by σ after
the execution of the sequenceM′1, w′1, . . . ,M′i, w′i and
that the sequence is executable in the world denoted
by σ;

• (σ M′1, w′1; . . . ;M′i, w′i X) means that the sequence
M′1, w′1, . . . ,M′i, w′i is executable in the world denoted
by σ;

• (σ M′1, w′1; . . . ;M′i, w′i ⊗) means that the sequence
M′1, w′1, . . . ,M′i, w′i is not executable in the world de-
noted by σ;

• (σRaσ1) means that the world denoted by σ is linked
by Ra to the world denoted by σ1;

• ⊥ denotes an inconsistency.

A tableau rule is represented by a numerator N above a
line and a finite list of denominators D1, . . . ,Dk below this
line, separated by vertical bars:
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(σ Σ′ ϕ ∧ ψ)

(σ Σ′ ϕ)
(σ Σ′ ψ)

(∧) (σ Σ′ ¬¬ϕ)

(σ Σ′ ϕ)
(¬¬)

(σ Σ′ ¬(ϕ ∧ ψ))

(σ Σ′ ¬ϕ) | (σ Σ′ ¬ψ)
(¬∧)

(σ Σ′ p)(σ Σ′ ¬p)
⊥ (⊥)

(σ Σ′ ¬[M′, w′]ϕ)

(σ Σ′ ;M′, w′ X)
(σ Σ′ ;M′, w′ ¬ϕ)

(¬[M′, w′])

(σ Σ′ [M′, w′]ϕ)

(σ Σ′ ;M′, w′ ⊗) (σ Σ′ ;M′, w′ X)
(σ Σ′ ;M′, w′ ϕ)

([M′, w′])

(σ Σ′ p)

(σ ε p)
(←p)

(σ Σ′ ¬p)
(σ ε ¬p)

(←¬p)
(σ Σ′ ;M′, w′ X)

(σ Σ′ Pre(w′))
(σ Σ′ X)

(X)
(σ Σ′ ;M′, w′ ⊗)

(σ Σ′ X)
(σ Σ′ ¬Pre(w′)) (σ Σ′ ⊗)

(⊗)

(σ M′1, w′1; . . . ;M′i, w′i Baϕ)
(σ Ra σ1) (Ba)

(σ1 M′1, u′1; . . . ;M′i, u′i X)
(σ1 M′1, u′1; . . . ;M′i, u′i ϕ)

(σ1 M′1, u′1; . . . ;M′i, u′i ⊗)

(σ Σ′ ⊗)(σ Σ′ X)

⊥ (clashX,⊗)
(σ ε ⊗)

⊥ (ε⊗)

(σ M′1, w′1; . . . ;M′i, w′i ¬Baϕ)

(σ Ra σnew)
(σnew M′1, u′1; . . . ;M′i, u′i X)
(σnew M′1, u′1; . . . ;M′i, u′i ¬ϕ)

(¬Ba)
(σ Σ′ [π ∪ γ]ϕ)

(σ Σ′ [π]ϕ)
(σ Σ′ [γ]ϕ)

([π ∪ γ])
(σ Σ′ ¬[π ∪ γ]ϕ)

(σ Σ′ ¬[π]ϕ) |
(σ Σ′ ¬[γ]ϕ)

(¬[π ∪ γ])

Figure 4: Tableau rules

N
D1 | . . . | Dk

The numerator and the denominators are finite sets of
tableau terms.

A tableau tree is a finite tree with a set of tableau terms
at each node. A rule with numerator N and denominator
D is applicable to a node carrying a set Γ if Γ contains an
instance of N but not the instance of its denominator D. If
no rule is applicable, Γ is said to be saturated. We call a node
σ an end node if the set of formulas Γ it carries is saturated,
or if ⊥ ∈ Γ. The tableau tree is extended as follows:

1. Choose a leaf node n carrying Γ where n is not an end
node, and choose a rule ρ applicable to n.

2. (a) If ρ has only one denominator, add the appropri-
ate instantiation to Γ.

(b) If ρ has multiple denominators, choose one of them
and add to Γ the appropriate instantiation of this
denominator.

A branch in a tableau tree is a path from the root to
an end node. A branch is closed if its end node contains
⊥, otherwise it is open. A tableau tree is closed if all its
branches are closed, otherwise it is open. The tableau tree
for a formula ϕ ∈ LDEL is the tableau tree obtained from
the root {(σ0 ε ϕ)} when all leafs are end nodes. We write
` ϕ when the tableau for ¬ϕ is closed.

The tableau rules of our tableau method are represented
in Figure 4. In these rules, Σ′ is a list of pointed event mod-
elsM′1, w′1, . . . ,M′i, w′i and ε is the empty list. The tableau
method contains the classical Boolean rules (∧), (¬¬), (¬∧).
The rules (←p) and (←¬p) handle atomic propositions. The
rule (⊥) makes the current execution fail. The rule for (Ba)
is applied for all j ∈ {1, . . . i} and all u′j such that w′jR

′
au
′
j .

Similarly, the rule for (¬Ba) is applied by choosing non-
deterministically for all j ∈ {1, . . . i} some u′j such that
w′jR

′
au
′
j and creating a new fresh label σnew. The rules (X),

(⊗), (clashX,⊗) and (ε⊗) handle the preconditions. The last
two rules ([π∪γ]) and (¬[π∪γ]) handle the union operator.

Theorem 3 (Soundness and Completeness). Let ϕ
∈ LDEL. It holds that ` ϕ iff |= ϕ.

Example 4. We prove with our tableau method that the
formula ϕ = ¬[M′1, w′1][M′2, w′2]B2B1B2p from Example 3
is satisfiable, where M′1, w′1 and M′2, w′2 are defined in Ex-
ample 2. In Figure 5, an open branch of the tableau tree
for ϕ is represented. The set Σ22 is saturated: no more
tableau rule is applicable. From this branch, we may extract
a pointed epistemic model (M, σ0) such that M, σ0 |= ϕ.

4.1.2 NEXPTIME-membership

Theorem 4. The satisfiability problem of LDEL is in NEX-
PTIME.

Proof sketch. Termination of our tableau method is
proved by defining the size of a term (σ Σ′ ϕ) by 1 +∑
(M′,w′)∈Σ′

(|M′| + 1) + |ϕ|. The depth of the tableau tree

is linear in the size of the input formula, but the number
of tableau terms at a node σ may be exponential, because
of rule (¬Ba). As a consequence, the tableau tree has at
most an exponential number of nodes and constructing non-
deterministically such a tree can been done in an exponential
amount of time. So, the procedure is in NEXPTIME.

4.2 Lower bound
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Σ0 := {(σ0 ε ϕ)}y (¬[M′,w′])

Σ1 := Σ0 ∪
{

(σ0 M′1, w′1 X)
(σ0 M′1, w′1¬[M′2, w′2]B2B1B2p)

}
y (X)

Σ2 := Σ1 ∪
{

(σ0 ε X), (σ0 ε p)
}y (¬[M′,w′])

Σ3 := Σ2 ∪
{

(σ0 M′1, w′1;M′2, w′2 X)
(σ0 M′1, w′1;M′2, w′2 ¬B2B1B2p)

}
y (X)

Σ4 := Σ3 ∪
{

(σ0 M′1, w′1 X), (σ0 M′1, w′1 B2p)
}y (¬Ba)

Σ5 := Σ4 ∪

 (σ0 R2 σ1)
(σ1 M′1, w′1;M′2, u′2 X)
(σ1 M′1, w′1;M′2, u′2 ¬B1B2p)

y (Ba)

Σ6 := Σ5 ∪
{

(σ1 M′1, w′1 X), (σ1 M′1, w′1 p)
}y (X)

Σ7 := Σ6 ∪
{

(σ1 M′1, w′1 X), (σ1 M′1, w′1 ¬(p ∧ ¬p))
}y (¬∧,¬¬)

Σ8 := Σ7 ∪
{

(σ1 M′1, w′1 p)
}y (→p)

Σ9 := Σ8 ∪
{

(σ1 ε p)
}y (¬Ba)

Σ10 := Σ9 ∪

 (σ1 R1 σ2)
(σ2 M′1, u′1;M′2, u′2 X)
(σ2 M′1, u′1;M′2, u′2 ¬B2p)

y (X)

Σ11 := Σ10 ∪
{

(σ2 M′1, u′1 X), (σ2 M′1, u′1 ¬(p ∧ ¬p))
}y (¬∧,¬¬)

Σ12 := Σ11 ∪
{

(σ2 M′1, u′1 p)
}y (→p)

Σ13 := Σ12 ∪
{

(σ2 ε p)
}y (X)

Σ14 := Σ13 ∪
{

(σ2 ε X), (σ2 ε >)
}y (¬∧,¬¬)

Σ15 := Σ14 ∪
{

(σ2 ε p)
}y (¬Ba)

Σ16 := Σ15 ∪

 (σ2 R2 σ3)
(σ3 M′1, u′1;M′2, u′2 X)
(σ3 M′1, u′1;M′2, u′2 ¬p)

y (→¬p)

Σ17 := Σ16 ∪
{

(σ3 ε ¬p)
}

y (X)

Σ18 := Σ17 ∪
{

(σ3 M′1, u′1 X)
(σ3 M′1, u′1;M′2, u′2 ¬(p ∧ ¬p))

}
y (X)

Σ19 := Σ18 ∪
{

(σ3 ε ¬(p ∧ ¬p)
}y (¬∧,¬¬)

Σ20 := Σ19 ∪
{

(σ3 ε ¬p)
}y (¬∧,¬¬)

Σ21 := Σ20 ∪
{

(σ3 M′1, u′1;M′2, u′2 ¬p)
}y (→¬p)

Σ22 := Σ21 ∪
{

(σ3 ε ¬p)
}

Figure 5: An open branch of the tableau for ϕ

We prove that the algorithm based on our tableau method
of the previous section is optimal in terms of computational
complexity. To do so, we prove that the satisfiability prob-
lem of LDEL is NEXPTIME-hard by reducing a NEXPTIME-
complete tiling problem to it [Boas, 1997].

Let C be a countable and infinite set of colors. A tile
type t is a 4-tuple of colors, denoted t = (left(t), right(t),
up(t), down(t)) ∈ C4. We consider the following tiling prob-
lem:

Input: a finite set T of tile types, t0 ∈ T and a natural
number k written in its binary form.

Output: yes iff there exists a function τ from {0, . . . k}2
to T satisfying the following constraints:

τ(0, 0) = t0; (1)

for all x ∈ {0, . . . , k} and y ∈ {0, . . . , k − 1}:

up(τ(x, y)) = down(τ(x, y + 1)); (2)

for all x ∈ {0, . . . , k − 1} and y ∈ {0, . . . , k}:

right(τ(x, y)) = left(τ(x+ 1, y)). (3)

In other words, the problem is to decide whether we can
tile a (k+ 1)× (k+ 1) grid with the tile types of T , t0 being
placed onto (0, 0).

Theorem 5. The satisfiability problem of LDEL is NEX-
PTIME -hard.

Proof. Without loss of generality, we assume that k =
2n. Let us consider an instance of the NEXPTIME-hard
tiling problem described above. Our goal is to provide a
polynomial translation from this instance to an instance of
the satisfiability problem of LDEL.

The idea is to embed two identical k × k-tilings into a
single tree. Each leaf of the tree represents both a position
(x1, y1) in the first tiling and a position (x2, y2) in the second
tiling. We need to encode two identical tilings because, in
order to check constraints 2 and 3, we will need to refer to
the tile located to the right or to the left of a given position
in a tiling, and also to refer to the tile located above or below
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it. This is hardly possible if we encode a single tiling at the
leafs of a tree, because we would need to ‘backtrack’ in the
tree to access these other positions.

We start by showing how to encode two identical tilings
at the leafs of a tree. Then we will show how to express the
three constraints 1, 2 and 3 in the definition of a tiling.

1. The coordinates (x1, y1) and (x2, y2) of the two tilings
are represented by the valuations of atomic propositions
p0, . . . , p4n−1. More precisely, the set X1 = {p0, . . . , pn−1}
contains the atomic propositions encoding the binary rep-
resentation of the integer x1, Y1 = {pn, . . . , p2n−1} con-
tains the atomic propositions encoding the binary repre-
sentation of the integer y1, X2 = {p2n, . . . , p3n−1} contains
the atomic propositions encoding the binary representation
of the integer x2, and Y2 = {p3n, . . . , p4n−1} contains the
atomic propositions encoding the binary representation of
the integer y2. For instance, for n = 4, the coordinates
(x1, y1) = (4, 3) and (x2, y2) = (11, 2) are represented at a
leaf of the tree by the following valuation. We recall that in
binary notation, 4 is represented by 100, 3 is represented by
11, 12 is represented by 1100 and 2 is represented by 10.

¬p0, p1,¬p2,¬p3︸ ︷︷ ︸
4

¬p4,¬p5, p6, p7︸ ︷︷ ︸
3

p8, p9,¬p10,¬p11︸ ︷︷ ︸
12

¬p12,¬p13, p14,¬p15︸ ︷︷ ︸
2

We then encode the existence of all valuations over X1 ∪
Y1 ∪X2 ∪ Y2 with the following formula:∧

l<4n

Bla

(
〈Ba〉pl ∧ 〈Ba〉¬pl∧

∧
i<l

((pi → Bapi) ∧ (¬pi → Ba¬pi))
)
. (4)

Formula 4 is true at a pointed epistemic model iff this pointed
epistemic model is bisimilar up to modal depth 4n to a bi-
nary tree of depth 4n whose leafs contain all the possible
valuations associated to p0, . . . , p4n−1.

In order to check Constraints 2 and 3 in the definition of
a tiling, we will need to refer to the tile located to the right
or to the left of a given position in a tiling, and also to refer
to the tile located above or below it. The following formulas
encode the fact that any pair of coordinates (x1, x2) and
(y1, y2) of the two tilings satisfy the properties x1 = x2,
x1 = x2 + 1, y1 = y2 and y1 = y2 + 1 respectively:

(x1 = x2) ,
∧
i<n

(pi ↔ pi+2n) (5)

(y1 = y2) ,
∧

n≤i<2n

(pi ↔ pi+2n) (6)

(x1 = x2 + 1) ,
∨
i<n

(∧
j<i

(pj+2n ↔ pj) ∧ ¬pi+2n ∧ pi

∧
∧

i<j<n

(pj+2n ∧ ¬pj)
)

(7)

(y1 = y2 + 1) ,
∨

n≤i<2n

( ∧
n≤j<i

(pj+2n ↔ pj) ∧ ¬pi+2n ∧ pi

∧
∧

i<j<2n

(pj+2n ∧ ¬pj)
)

(8)

The tile types of the first tiling are represented by atomic
propositions 1t and the tile types of the second tiling are
represented by atomic propositions 2t′ , where t and t′ range
over T . They hold at a leaf of the tree whose coordinates
correspond to (x1, y1) and (x2, y2) when the tile type of the
first tiling at coordinate (x1, y1) is t and the tile type of the
second tiling at coordinate (x2, y2) is t′.

Formulas 9 and 10 below encode the fact that, at each leaf
of the tree, there is exactly one tile type for the first tiling and
exactly one tile type for the second tiling. Formula 11 below
encodes the fact that when these two pairs of coordinates
coincide, that is when x1 = x2 and y1 = y2, then the tile
type of the first tiling and the tile type of the second tiling
are identical.

B4n
a

(∨
t∈T

1t ∧
∨
t∈T

2t

)
(9)

B4n
a

∧{
(1t → ¬1t′) ∧ (2t → ¬2t′) | t, t′ ∈ T, t 6= t′

}
(10)

B4n
a

(
(x1 = x2) ∧ (y1 = y2)→

∧
t∈T

(1t ↔ 2t)

)
(11)

However, it may be the case that in the tree, two differ-
ent leafs with the same valuation have different tile types.
Therefore, we also have to constrain the tree so that the leafs
denoting the same position in the first tiling (resp. second
tiling) contain the same tile type for the first tiling (resp.
second tiling). This is expressed by the following two for-
mulas:

[M′p0 ∪M
′
¬p0 ] . . . [M′p2n−1

∪M′¬p2n−1
]
∨
t∈T

B4n
a 1t (12)

[M′p2n ∪M
′
¬p2n ] . . . [M′p4n−1

∪M′¬p4n−1
]
∨
t∈T

B4n
a 2t (13)

where for a given a literal ` (p or ¬p), the pointed event
model M′` = (W ′, R′, P re, w′0) is defined as follows: W ′ =
{w′i | i ∈ {0, . . . , 4n}}; R′a = {(w′i, w′i+1) | i ∈ {0, . . . , 4n− 1}};
and Pre(w′i) = > for all i < 4n and Pre(w′4n) = `.

In formula 12, the sequence of pointed event models [M′p0∪
M′¬p0 ] . . . [M′p2n−1

∪M′¬p2n−1
] non-deterministically picks

a valuation v over X1 ∪ Y1 and selects the branches of the
tree whose leafs satisfy this valuation. Then, the formula∨
t∈T B

4n
a 1t checks that these leafs, which denote the same

position in the first tiling, are of the same tile type t. Like-
wise with formula 13 for the second tiling.

So, with formulas 9, 10, 11, 12 and 13, we have encoded
in the tree two identical tilings in a single tree. Importantly,
note that the tree is defined so that each leaf refers to two
coordinates of the tiling, which can possibly be identical or
consecutive. It is this feature which will allow us to express
that constraints 2 and 3 of the definition of a tiling hold.

2. Constraints 1, 2 and 3 of the definition of a tiling are
expressed respectively by the following formulas:

B4n
a

(( ∧
i<4n

¬pi

)
→ t0

)
(14)

B4n
a

(
(x1 = x2) ∧ (y1 = y2 + 1) (15)

→
∧
t∈T

{
1t →

∨{
2t′ | t′ ∈ T, down(t′) = up(t)

}})
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B4n
a

(
(x1 = x2 + 1) ∧ (y1 = y2) (16)

→
∧
t∈T

{
1t →

∨{
2t′ | t′ ∈ T, left(t′) = right(t)

}})
As we said at the beginning of the proof, these two con-
straints motivate the need to encode two tilings: for a given
position in a tiling, we need to refer to the tile located to the
right or to the left of it, and to refer to the tile located above
or below it. This would not be possible with our epistemic
language if the tiling was encoded by a single tree.

One can then check that there exists a tiling for the in-
stance of the tiling problem iff the formula ϕ, which is the
conjunction of fomulas 4, 9, 10, 11, 12, 13, 14, 15, and 16 is
satisfiable in LDEL.

3. Finally, we show that the reduction is polynomial in
the size of the instance of the tiling problem. The formula of
Equation 4 is of size O(n2). The formulas of Equations 12,
13 are of size O(n2 + |T |×n). The other formulas are clearly
of size polynomial in the size of the input, so the result
follows. Importantly, note that if we decided to rewrite the
formulas 12 and 13 without using the union operator ∪, then
the corresponding formula would be exponential in the size
of the input. So, the use of the union operator is really
crucial in order to have a polynomial reduction from the
tiling problem to our satisfiability problem.

5. RELATED WORK

5.1 Theory
There exists a terminating tableau method solving the

satisfiability problem of LDEL [Hansen, 2010]. This method
writes subformulas by applying the reduction axioms [Baltag
and Moss, 2004, p. 214]. It is therefore mainly a variant of
the tableau method of classical multi-modal logic Kn. Even
if we know that tr blows up exponentially the size of the
input formula, the computational complexity of this tableau
method is not studied. In this section, we review the existing
results about computational complexity of DEL.

5.1.1 Public Announcement Logic (PAL)
Public Announcement Logic (PAL) [Plaza, 1989] is an ex-

tension of epistemic logic with a dynamic operator [ψ!]ϕ
whose truth conditions are defined as follows:

M, w |= [ψ!]ϕ iff M, w |= ψ implies Mψ, w |= ϕ

where Mψ is the restriction of M to the worlds which sat-
isfy ψ. PAL is a fragment of DEL: the language of PAL is
LDEL restricted to event models consisting of a single pos-
sible event with reflexive arrows for all agents. There is a
gap between PAL and DEL in terms of computational com-
plexity, both for the model checking problem and the satis-
fiability problem. Indeed, the model checking of PAL is in
P (also with common belief) [van Benthem and Kooi, 2004]
and the satisfiability problem for PAL is PSPACE-complete
[Lutz, 2006]. Despite the fact that there exist reduction
axioms for PAL, it is difficult to implement a direct trans-
lation using reduction axioms. In fact, there are properties
that can be expressed exponentially more succinctly in PAL
than in epistemic logic [French et al., 2011]. Note that there
exist PSPACE tableau methods for solving the satisfiability
problem in PAL [de Boer, 2007, Balbiani et al., 2010].

5.1.2 DEL-sequents
DEL-sequents [Aucher, 2011] are triples of the form ϕ,ϕ′ |=

ϕ′′ where ϕ,ϕ′′ ∈ LEL and ϕ′ is a formula of a language for
event models. A DEL-sequent ϕ,ϕ′ |= ϕ′′ holds when for all
pointed epistemic model (M, w) such that M, w |= ϕ, for
all pointed event model (M′, w′) such that M′, w′ |= ϕ′, if
(M′, w′) is executable in (M, w), then M⊗M′, (w,w′) |=
ϕ′′. The problem of determining whether a DEL-sequent
holds is NEXPTIME-complete and there exists a tableau
method for it. DEL-sequents have been generalized to se-

quences of the form ϕ0, ϕ
′
1, ϕ1, . . . , ϕ

′
n, ϕn i

1
ψ and ϕ0, ϕ

′
1, ϕ1,

. . . , ϕ′n, ϕn i

2
ψ′. The corresponding satisfiability problem

is also NEXPTIME-complete [Aucher et al., 2012].

5.1.3 The sequence and ‘star’ iteration operators
The sequence and ‘star’ iteration operators are construc-

tions enabling to build complex programs as in Propositional
Dynamic Logic (PDL [Harel et al., 2000]). The truth condi-
tions are defined as follows:

M, w |= [π; γ]ϕ iff M, w |= [π][γ]ϕ
M, w |= [π∗]ϕ iff there is a finite sequence π; . . . ;π

such that M, w |= [π; . . . ;π]ϕ

We do not know about the computational complexity of
the model-checking problem when the operator [π∗]ϕ is added
to the language. In fact, we do not even know whether it is
decidable. The computational complexity of the satisfiabil-
ity problem remains the same when the sequential compo-
sition operator is added. However, adding a ‘star’ operator
makes the satisfiability problem undecidable. This result is
not really surprising, it is a direct corollary of the result of
[Miller and Moss, 2005] stating that Public Announcement
Logic with the ‘star’ operator is already undecidable.

5.1.4 The common belief operator
We may extend the language with the common belief op-

erator CGϕ, where G ⊆ AGT. The truth conditions are
defined as follows:

M, w |= CGϕ iff for all v ∈
( ⋃
a∈G

Ra

)+

(w),M, v |= ϕ

Intuitively, CGϕ is an abbreviation of an infinite conjunc-
tion [Fagin et al., 1995]: CGϕ = E1

Gϕ ∧ E2
Gϕ ∧ E3

Gϕ ∧ . . .,
where EkGϕ is defined inductively as follows: E1

Gϕ =
∧
a∈G

Baϕ

and Ek+1
G ϕ = E1

GE
k
Gϕ.

We do not know about the computational complexity of
the satisfiability problem when the common belief operator
is added to the language LDEL. However, we know that
it is decidable and that the language with common belief
operator is more expressive than the epistemic language LEL
with common belief [Baltag et al., 1998, Baltag et al., 1999].

5.2 Implementation
There exist two implementations of our decision problems:
1. The model-checker DEMO [van Eijck, 2007], standing

for Dynamic Epistemic MOdeling tool, can evaluate formu-
las of LDEL in epistemic models, display graphically epis-
temic models, event models and updates of epistemic models
by event models, translate formulas of LDEL to formulas of
PDL. DEMO is written in Haskel and has been applied in
[van Ditmarsch et al., 2005] and [van Ditmarsch et al., 2006].
Also, it has been used to investigate the pros and cons of
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modeling some well-known problems of computer security
within the DEL framework [van Eijck and Orzan, 2007].

2. The program Aximo [Richards and Sadrzadeh, 2009],
written in C++, implements an algorithm for proving prop-
erties of interactive multi-agent scenarios encoded in epis-
temic systems. Epistemic systems provide an algebraic se-
mantics to DEL and were developed together with a sound
and complete sequent calculus [Baltag et al., 2007].

6. CONCLUDING REMARKS
Our work contributes to the proof theory and the study

of the computational complexity of DEL, which has been
rather neglected so far. Although our results show that
our decision problems are not tractable, it turns out that
the DEMO implementation does not fare worse and often
even better in terms of time of execution than other model-
checkers modeling the same problems, without resorting to
the DEL methodology [van Ditmarsch et al., 2006].

We still need to investigate whether or not the computa-
tional complexity remains the same when we consider other
epistemic logics as the basis of DEL, such as S5. Moreover,
our results rely on the fact that we use the union operator
in the language, an open problem is to obtain similar results
without this operator. Finally, we plan to implement our
tableau method in LotrecScheme [Schwarzentruber, 2011].
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ABSTRACT
This paper studies the interaction between knowledge, time
and coordination in systems in which timing information
is available. Necessary conditions are given for the causal
structure in coordination problems consisting of orchestrat-
ing a set of actions in a manner that satisfies a variety of
temporal ordering assumptions. Results are obtained in two
main steps: A specification of coordination is shown to re-
quire epistemic properties, and the causal structure required
to obtain these properties is characterised via “knowledge
gain” theorems. A new causal structure called a centibroom
structure is presented, generalising previous causal struc-
tures for this model. It is shown to capture coordination
tasks in which a sequence of clusters of events is performed in
linear order, while within each cluster all actions must take
place simultaneously. This form of coordination is shown to
require the agents to gain a nested common knowledge of
particular facts, which in turn requires a centibroom. Al-
together, the results presented provide a broad view of the
causal shape underlying partially ordered coordinated ac-
tions. This, in turn, provides insight into and can enable
the design of efficient solutions to the coordination tasks in
question.

Categories and Subject Descriptors
[Artificial intelligence]: Knowledge representation and
reasoning — Reasoning about belief and knowledge, Causal
reasoning and diagnostics; [Artificial intelligence]: Dis-
tributed artificial intelligence — Cooperation and coordi-
nation, multi-agent systems; [Distributed computing
methodologies]

General Terms
Theory, Design, Algorithms, Verification

Keywords
Knowledge, Common knowledge, Epistemic logic, Temporal
coordination, Causality and communication

1. INTRODUCTION
Coordinated action in distributed and multi-agent systems
is closely related to knowledge and epistemic states. As a
particular example, linearly ordered actions require nested
knowledge. Namely, suppose that the occurrence of event e
is guaranteed to trigger a response by each of the agents
1, 2, and 3, and, moreover, they must act in this order:
first 1, then 2, and finally 3. Then, in a precise sense,
K3K2K1occ(e) (which we read as “agent 3 knows that 2
knows that 1 knows that e has occurred”) must hold when
agent 3 acts [3]. This generalises from three agents to any
finite number. In the theory of distributed systems, asyn-
chronous systems, in which agents have no clock and no
timing information is available, receive a great deal of atten-
tion [1, 17]. In such systems, Chandy and Misra’s celebrated
Knowledge Gain theorem [7] captures the necessary condi-
tion for attaining nested knowledge of this form. Roughly
speaking, it implies the following. Suppose that a sponta-
neous event e takes place at agent 0’s site in an asynchronous
system. Then K3K2K1occ(e) can hold only after a message
chain is formed, that starts from agent 0 after e occurs,
and passes through 1 and then through 2 to agent 3. (The
message chain may pass through other sites as well; but it
must visit these agents in the specified order.) As a result,
the only way to coordinate a linearly ordered response to
the event e in an asynchronous system is via such a mes-
sage chain. This theorem captures the shape of the causal
structure that underlies linear coordination.

The presence of clocks and timing information can greatly
facilitate coordination tasks in distributed and multi-agent
systems. In [3, 4] we initiated a study of coordination in
a synchronous model, where agents have access to a global
clock, and, for each particular channel, there is an upper
bound on the time messages can spend in transit. In the
presence of clocks the passage of time can be used to de-
rive information about events at remote sites. As a result,
message chains are not the only way to attain nested knowl-
edge. A knowledge gain theorem capturing subtle interplay
of communicated messages, the guaranteed bounds, and the
passage of time is given in [3]. It shows that the causal
“shape” underlying nested knowledge is captured by a struc-
ture called a centipede (see Figure 2). In a precise sense, this
is the “synchronous” analogue of a message chain.

The connection between coordination and epistemics mani-
fests itself beyond the connection between linearly ordered
actions and nested knowledge. Halpern and Moses showed
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that simultaneous actions are very closely related to com-
mon knowledge [14]: If a set of agents B can be guaranteed
to all perform a particular action a simultaneously when-
ever any of them perform it, then when they perform a they
have common knowledge that it is being performed. If the
action a is performed only in response to a particular spon-
taneous event e, then they must also have common knowl-
edge that e has occurred. Using more formal notation, if
we denote common knowledge to B by CB, then attaining
CBocc(e) is a prerequisite for performing a. While common
knowledge (as well as simultaneity) cannot be attained in
asynchronous settings [7, 14], it can often be attained in the
presence of clocks and time guarantees. A causal structure
called a broom (Figure 3) was shown to be necessary for
gaining common knowledge in systems with clocks [3]. Both
centipedes and brooms are defined in terms of two relations
(the different styled edges in Figures 2 and 3): syncausality,
which captures message chains in the synchronous model,
and bound guarantee, which provides the means to account
for the information obtained by the passage of time. (We
review the definitions of these relations and structures in
Section 2.2.)

Characterizing the causal shape underlying coordination tasks
provides insight into the structure of their solutions, and of-
ten enables the design of optimal solutions for such prob-
lems. In Section 3 we demonstrate this with a novel ap-
plication by deriving an optimal solution to the distributed
snapshot problem of [6] in the synchronous setting, based on
the connection between brooms and simultaneous response.

In this paper, we extend the analysis of coordination in the
synchronous model, to handle much more general forms of
coordination. We follow the same scheme as above: Relate
a class of coordination problems to a set of corresponding
epistemic states, and then study the causal structure un-
derlying these epistemic states via proving knowledge gain
theorems.

Consider the following example, which constitutes a varia-
tion on one discussed by Chwe [8] and is related to numerous
studies of information flow and agency in social networks [13,
22, 19].

Example 1. Under the yoke of the Roman conquerer, the
repressed Judean people are bitter and rebellious. As a popu-
lation, the agents are partitioned into several groups by their
tendency to revolt: there is an instigator, and there are the
hardline ideologists, the unsatisfied crowds, and the support-
ers of the old regime.

• The instigator is highly unpredictable. It may start a
revolt at any time, independent of any other event.

• A hard liner will revolt if it knows that the instigator
and all of the other hard liners are revolting together.1

• A member of the unsatisfied masses will revolt if it
knows that the instigator, the hard liners and all of the
other members of the unsatisfied masses are revolting.

1Assume for each of the groups in the population that com-
mon knowledge of “stalemate” is resolved by revolting. I.e.,
if it is common knowledge among the hardliners that the
instigator is revolting, then each hardliner revolts too.

• A supporter of the old regime will revolt only when
it knows that all other members of the population are
revolting.

By means of sun clocks and camel-borne messages, the agents
form a synchronous system with upper limits on message
transmission times. If the agents are continually communi-
cating with each other, then it is possible to arrange for a
rebellion to start a finite number of days after the instigator
revolts.2

The question we ask is — what pattern of communication
would suffice to ensure that the whole population revolts,
while keeping communication to a minimum, in the sense
that unneeded messages are not sent (so as not to arouse
the suspicion of the infamous Roman crucifixion police)?

The problem faced by the Judeans in Example 1 transcends
both of the coordination tasks discussed earlier, because it
involves both a linear ordering and simultaneity of events.
More precisely, it involves a sequential ordering of clusters of
responses, where the actions in every cluster are performed
simultaneously. We will define a corresponding class of co-
ordination problems, called Ordered Joint Response (OJR).
In general, the sets of acting agents in every cluster will not
be assumed to be disjoint. We will show that solving OJR
requires attaining nested common knowledge of the form

CBkCBk−1 · · ·CB1occ(e).

The main technical contribution of the paper is a nested
common knowledge gain theorem (nckg) for the synchronous
model. It captures the causal structure underlying nckg by
a new form called a centibroom (see Figure 5), which is a hy-
brid structure, combining the centipede with brooms. Since
the centibroom is necessary for getting the Judean groups
from Example 1 to revolt in the proper order, it is also the
minimal communication pattern.

Once we have established how linear sequences of joint re-
sponses can be ordered, we will take a bigger step and con-
sider the general problem of ordering events according to
any pre-specified ordering. Consider the following update
on the situation in Judea.

Example 2. The situation is just as dire as in Exam-
ple 1, but the social standing is more complex, as there are
now three instigators, and the hardline ideologists are di-
vided among themselves into two opposing groups: the Peo-
ples Front of Judea (PFJ) and the Judean People’s Front
(JPF).

• The three instigators are: Jedediah, Jeremiah, and Brian
- each of them operating on its own as before.

• A member of the PFJ will revolt if it knows that Jede-
diah, Jeremiah and the rest of the PFJ’s members are
revolting.

2In fact, the proposed solution to the distributed snapshot
problem, discussed in Section 3, coud be used to achieve this
in minimal time.

2

30



• A member of the JPF will revolt if it knows that Brian
and the rest of the JPF’s members are revolting.

• The unsatisfied masses and the supporters of the old
regime act as before.

Figure 1 sums up the revolt dependencies as a directed acyclic
graph. Once again we ask what pattern of communication
would push the population into rebellion (provided that enough
instigators revolt) while keeping communication to a mini-
mum.

Jedediah

Jeremiah

Brian

People’s Front
of Judea

Judean People’s
Front

Unsatisfied
Masses

Supporters of
Old Regime

Figure 1: Judea, 71AD

In Example 2, if both Jedediah and Brian revolt (but not
Jeremiah), then the country will not be swept by rebellion.
The members of the JPF will also revolt, as they only look
to Brian for guidance. But those of the PFJ will abstain
— waiting for Jeremiah to revolt as well before joining in.
The unsatisfied masses will see that the PFJ is not joining
in, and will prefer to stay at home. In contrast, if all three
instigators revolt (and there is sufficient communication to
spread the word) then both hardliner factions will revolt
too — eventually leading the unsatisfied masses to revolt,
and even the supporters of the old regime to follow in their
wake. Note that even though the members of the PFG all
revolt simultaneously, as do all members of the JPF, these
two simultaneous joint responses need not occur at the same
time.

In order to derive the necessary epistemic state and commu-
nication pattern for solving such problems, we will consider
General Ordered Response problems (GOR), in which a weak
ordering among responses is specified by a general directed
graph. An edge among two responses α and α′ should imply
that if α occurs at time t in a given execution and α′ occurs
at t′, then t ≤ t′. Note that we can encode both simultane-
ous sets of events, as well as an ordering on these sets, using
the same partial order. We do this by making use of cycles
on the graph, as all nodes on a cycle must be performed si-
multaneously. Thus, the GOR coordination problem can be
used to specify a partial order on simultaneous clusters of
responses. A we will show, while the OJR problem is solved
by a new communication pattern called the centibroom, so-
lutions to the more general GOR problem do not define a
yet more complex structure that solves it. Rather, the com-
munication pattern that characterizes it is best described as
a set of unrelated centibrooms, thus capturing “the causal
shape” of a very broad class of coordination problems in the
synchronous model.

Our analysis is performed for reactive coordination tasks in
which particular patterns of responses need to be performed

in response to external triggering events. This is motivated
by the fact that many distributed and multi-agent systems
are embedded within a larger environment and need to coor-
dinate their activities based on input that is supplied by it.
This is true of an online bank, where customers may initiate
transactions, a public safety application receiving the report
of a smoke alarm activation, an online retailer (e.g. Ama-
zon), a search engine (Google) that can accept requests, or a
cloud computing application in which customers can submit
computational tasks to be performed by the system. We fo-
cus on distributed settings in which activities in the system
may be triggered by external events that are spontaneous as
far as the system and its design are concerned. An exter-
nal event of this sort may require a simple response by the
system, but there are many cases in which it may trigger
an extended transaction in which multiple events must take
place, and these should be coordinated in various particular
patterns.

This paper is organized as follows. The next section presents
the model, and reviews the definitions of syncausality and
bound guarantees, knowledge and common knowledge in dis-
tributed systems, and the centipede and broom structures
from [3]. Section 3 illustrates the use of brooms by apply-
ing them to obtain an optimal distributed snapshot in the
synchronous setting. Section 4 defines the ordered joint re-
sponse problem, and relates the epistemic state of nested
common knowledge to solutions to the problem. The notion
of a centibroom is defined, and is used to capture nested
common knowledge formulas, and sequential ordering of si-
multaneous responses. Finally, Section 5 defines the general
ordered response problem, and states a theorem character-
izing the shape of GOR solutions in terms of centibrooms.
Section 6 closes the paper with discussion and further re-
search.

2. BACKGROUND
2.1 Synchronous Networks
We focus on a simple synchronous setting in which agents
are connected via a communication network and there are
upper bounds on message transmission times. Agents share
a global clock, and take steps at integer times. To analyze
coordination in such a setting, we make use of the interpreted
systems approach to modeling distributed systems (see [11]).
Namely, we separate the definition of the environment for
which protocols are designed, formally called the context,
from the protocol being executed in that context. Formally,
a context γ is a tuple (G0, Pe, τ), where G0 is a set of initial
global states, Pe is a protocol for the environment, and τ is a
transition function.3 The environment is viewed as running
a protocol (denoted by Pe) just like the agents; its protocol
is used to capture nondeterministic aspects of the execution,
such as the actual transmission times, external inputs into
the system, etc. The transition function τ describes how
the actions performed by the agents and by the environment
change the global state.

A run is an infinite sequence of global states, Given a con-
text γ and a protocol P designed to run in γ, there is a
unique set R = R(P, γ), of all possible runs of P in γ. This

3Depending on the application, a context can include addi-
tional components. See [11] for proper exposition.
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set is called a system, and we study how knowledge evolves
in systems. The reason why it does not suffice to consider
just one system—say the system consisting of all possible
runs in γ—is because the protocol being executed plays an
important role in determining what is known. Typically, the
information inherent in receiving a particular message (or in
not receiving one) depends on the protocol being used.

The essential elements of the model are the following.

• We assume that agents can receive external inputs
from the outside world. These are determined in a
genuinely nondeterministic fashion, and are not corre-
lated with anything that comes before in the execution
or with external inputs of other agents.

• The set of agents is denoted by P. The network consists
of the weighted channels graph Net = (P,C, b) in which
the weight of a channel (i, j) ∈ C consists of a discrete
upper bound bij ≥ 1. A copy of the network, as well as
the current global time, are part of every agent’s local
state at all times.

• The scheduler, which we typically call the environ-
ment, is in charge of choosing these external inputs,
and of determining message transmission times. The
latter are also determined in a nondeterministic fash-
ion, subject to the constraint that delivery satisfies the
transmission bounds bij , and messages take at least
one time step to be delivered.

• Time is identified with the natural numbers, and agents
are assumed to take steps only at integer times. For
simplicity, the agents follow deterministic protocols.
Hence, a given protocol P for the agents and a given
behavior of the environment completely determine the
run.

• Events are sends, receives, arrivals of external inputs,
and internal actions. All events in a run are distinct,
and we denote a generic event by the letter e. For ease
of exposition, we will assume that an agent’s local state
contains the set of response actions that the agent has
performed. This assumption is needed only for the
analysis of response problems, and can be obtained
by adding an auxiliary variable keeping track of the
history, to each of the agents.

We denote a context satisfying the above assumptions by
γmax, and use Rmax to denote a system R(P, γmax) consisting
of the set of all runs of some protocol P in synchronous
context γmax.4

Note that our model requires transmission times to obey the
bounds specified in Net = (P,C, b), but it does not require
the agents to have access to a global clock, or to any clocks
at all. Nevertheless, the results will apply even in the case in
which agents do share a precise global clock, and each agent
is scheduled to move at every time step.

4 We defer the rather tedious technical definition of γmax for
the full paper.

2.2 Syncausality and time bound guarantees
Messages and message chains are a primary tool in coor-
dinating actions in a distributed system. In synchronous
networks, in addition to messages, silence can also be used
to transmit information. Indeed, as suggested by Lamport
in [16], in the synchronous context γmax, it is possible to con-
sider the fact that a agent i does not send a message over the
channel (i, j) ∈ C at time t as the sending of a null message
over the channel. This null message is “received” by j at
time t+ bij . Motivated by this idea, we proposed the notion
of syncausality (in [3]), generalizing Lamport’s happened-
before relation ([15]) to capture generalized message chains
consisting of actual messages and null message. Since “not
receiving at t+ bij” is not an explicit event, it is convenient
to define the syncausality relation between agent-time nodes
rather than between events. An agent-time node (or simply
node) is a pair θ = 〈i, t〉, where i is a agent and t is a time.
Such a node represents the instant at time t on i’s timeline.
Formally, syncausality is defined as follows:

Definition 1 (Syncausality). The Syncausality re-
lation in a given run r is the smallest relation  r satisfying:

Locality: If t ≤ t′ then 〈i, t〉 r 〈i, t′〉;

Send-rcv: If a message sent at 〈i, t〉 is received at 〈j, t′〉
then 〈i, t〉 r 〈j, t′〉;

Null msg: If no message is sent over (i, j) ∈ C at time t
then 〈i, t〉 r 〈j, t+ bij〉; and

Transitivity: If θ  r θ
′ and θ′  r θ

′′, then θ  r θ
′′.

Syncausality captures a notion of direct information flow via
(generalized) message chains. If 〈i, t〉 6 r 〈j, t′〉, then j at
time t′ does not have information regarding which nondeter-
ministic (or spontaneous) events occur at 〈i, t〉. A straight-
forward but useful property of  r is:

Fact 1. If 〈i, t〉 6= 〈j, t′〉 and 〈i, t〉 r 〈j, t′〉, then t < t′.

The second (Send-rcv) clause of the definition makes syn-
causality run-dependent, as actual delivery times depend
on the adversary’s actions. Hence the subscript r in the
 r symbol. While syncausality captures direct information
flow, the upper bounds on message transmission times al-
low agents to know about events at remote sites in a less
direct fashion. Namely, if h knows about a message sent
by i at time t to j, then after sufficient time has passed h
can be guaranteed that j received i’s message. Moreover, if
the protocol specifies that j will perform particular actions
after receiving this message, then h can know about actions
of j without direct information flow from j. This can enable
them to coordinate their actions without communicating di-
rectly. The interaction between communication and time is
based on a combination of syncausality and the bound guar-
antee relation, a second causal relation between agent-time
nodes that is based on time bounds. Denote by δ(i, j) the
shortest distance between i and j in the weighted graph Net.
Intuitively, if we think of a shortest path from i to j in Net as
an “overlay channel” between i and j, then δ(i, j) would be
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the upper bound for the transmission time over this channel.
We define the bound guarantee relation as follows:

Definition 2 (Bound Guarantee [3]). With respect
to a network Net = (P,C, b), we write 〈i, t〉 99K 〈j, t′〉 iff
t+ δ(i, j) ≤ t′.

Intuitively, 〈i, t〉 99K 〈j, t′〉 holds, then a message chain ini-
tiated at 〈i, t〉 can be guaranteed to reach j by 〈j, t′〉. No
explicit acknowledgement from j is needed! Put another
way, 〈j, t′〉 is sure to be within the cone of (causal) influ-
ence of events that occur at 〈i, t〉. While syncausality is
sensitive to actually realized transmission times, the bound
guarantee relation is not. It depends solely on the weighted
network Net. This is one of the reasons why bound guar-
antees provides cross-site information of a type that is not
available, for example, in asynchronous settings. In a pre-
cise sense, bound guarantees capture the run-invariant part
of syncausality that is based solely on Net:

Fact 2. If 〈i, t〉 99K 〈j, t′〉 then 〈i, t′〉  r 〈j, t′〉, for
every run r.

2.3 Definition of knowledge
We focus on a very simple logical language in which the
set Φ of primitive propositions consists of propositions of
the form occ(e) for events e of interest. To obtain the logical
language L, we close Φ under propositional connectives and
knowledge formulas. Thus, Φ ⊂ L, and if ϕ ∈ L, i ∈ P, and
G ⊆ P, then {Kiϕ,CGϕ} ⊂ L.5 The formula Kiϕ is read
agent i knows ϕ, and CGϕ is read ϕ is common knowledge
to G. The truth of formulas is evaluated with respect to a
triple (R, r, t) consisting of a system R, a run r ∈ R, and a
time t ∈ N, and we use (R, r, t) � ϕ to state that ϕ holds
at time t in run r, with respect to system R. Denoting by
ri(t) agent i’s local state at time t in r, we inductively define

• (R, r, t) � occ(e) if the event e occurs in r at a time
t′ ≤ t;

• (R, r, t) � Kiϕ if (R, r′, t) � ϕ for every run r′ satis-
fying ri(t) = r′i(t);

• (R, r, t) � CGϕ if (R, r, t) � KihKih−1 · · ·Ki1ϕ holds
for every h > 0 and every sequence ih, ih−1, . . . , i1 of
agents in G.

Given the system R, the local state determines what facts
are known. Intuitively, a fact ϕ is common knowledge to G
if everyone in G knows ϕ, everyone knows that everyone
knows ϕ, and so on ad infinitum. We remark that for sin-
gleton sets G = {i}, the operators C{i} and Ki coincide.

2.4 Centipedes and Brooms
In [3] we introduced Ordered Response (OR) and Simultane-
ous Response (SR), two coordination tasks that were simpler
than the OJR and GOR problems studied here. We then un-
covered the epistemic states communication structures that
they necessitate. An instance OR〈es, α1, . . . , αk〉 of ordered

5This is a simplified logical language for ease of exposition.

response requires that, following occurrence of the triggering
event es the set {α1, . . . , αk} of responses be performed in a
linear temporal order. A central result of [3] is that every
run of a protocol solving ordered response must contain a
causal structure called a centipede:

Definition 3 (Centipede). Let r ∈ Rmax, let
{i0, . . . , ik} ⊆ P, and let t ≤ t′. A centipede for 〈i0, . . . , ik〉
in the interval (r, t..t′) is a sequence θ0  r θ1  r · · · r θk
of nodes such that (a) θ0 = 〈i0, t〉, (b) θk = 〈ik, t′〉, and
(c) θh 99K 〈ih, t′〉 holds for h = 1, . . . , k − 1.

A centipede is illustrated in Figure 2. The squiggly arrows
depict syncausal (message) chains, while the dashed arrows
stand for bound guarantees. In a precise sense, a centipede
plays in the synchronous context a role analogous to that of
message chains in asynchronous ones. In the asynchronous
context, a response to the trigger in a protocol ensuring
ordered response can occur only if a message chain from the
trigger, passing through all previous responses, arrives at
the acting agent. In our synchronous model, if es occurs
at 〈i0, t〉 and αh is performed at time th in r, then there
must be a centipede for 〈i0, . . . , ih〉 in (r, t..th).

〈i0, t〉
〈i1, t′〉
〈i2, t′〉

〈ik, t′〉
〈ik−1, t

′〉
θ1

θ2

θk−1

Figure 2: A centipede for 〈i0, . . . , ik〉 in (r, t..t′).

A related causal structure, called a broom governs simul-
taneous coordination. The simultaneous response problem
requires all responses to the trigger to occur simultaneously.
The responders can act at time t′ in response to a trigger at
〈i0, t〉 only if a broom structure as in Figure 3 exists.

〈i0, t〉

θ

〈i1, t′〉
〈i2, t′〉
〈i3, t′〉

〈ik, t′〉

Figure 3: A broom for 〈i0, {i1 . . . , ik}〉 in (r, t..t′).

In a seminal result, Chandy and Misra showed that (Lam-
port) message chains are a prerequisite for attaining nested
knowledge in asynchronous systems [7]. In our synchronous
model, centipedes replace message chains in this role:
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Theorem 1 (Knowledge Gain, [3]). Let P be a de-
terministic protocol, let r ∈ Rmax = R(P, γmax), and let es be
an external input received in r at 〈i0, t〉. If

(Rmax, r, t′) � KikKik−1 · · ·Ki1occ(es)

then there is a centipede for 〈i0, . . . , ik〉 in (r, t..t′).

Moreover, the synchronous model goes beyond the asyn-
chronous one by also allowing for common knowledge gain.
We have shown that common knowledge gain requires the
existence of a broom.

Theorem 2 (Common Knowledge Gain, [3]). Let P
be a deterministic protocol, let r ∈ Rmax = R(P, γmax), let
G ⊆ P, and let es be an external input received in r at 〈i0, t〉.
If

(Rmax, r, t′) � CGocc(es)

then there is a broom for 〈i0, G〉 in (r, t..t′).

3. BROOMS & THE DISTRIBUTED
SNAPSHOT PROBLEM

Before embarking on the technical analysis of OJR and GOR
problems, we now illustrate how a causal analysis (of the
“shape” of solutions) can guide the development of efficient
solutions to natural problems. We do this by describing
the derivation of an optimal solution to the Synchronous
Global Snapshot problem,6 a variant of Chandy and Lam-
port’s Asynchronous Global Snapshot problem [6]. Due to
space constraints, the discussion will be somewhat informal.
A formal version appears in [2] and is left for the full pa-
per. A global snapshot of the system at a given time t in
a particular run r, which we will denote by Snap(r, t), con-
sists of an instantaneous description of the local states of
all agents in the system, as well as the contents of the com-
munication channels, at that point in the run. Mechanisms
for recording global states come in useful, for example, in
association with recovery from system failure. In fact, many
applications use such algorithms in order to retain “check-
points”: global states that can be “rolled back” into, when
failure occurs (see [20]). Whereas in asynchronous systems
the snapshot can only be approximated (see [6]), in systems
with a global clock it is possible to compute Snap(r, t) pre-
cisely. Indeed, since agents have access to a global clock, if
they keep track of their full history, then such a snapshot
can be recorded without the need of communication. But
the cost of doing this is prohibitive. A natural solution is to
record periodical snapshots every X rounds, say. More flexi-
ble would be a solution that allows snapshots to be initiated
spontaneously, whenever there is good reason to do so. E.g,
when some major transaction is completed, or when there
is an external indication of an impending storm, requiring a
snapshot to be taken.

Consider the problem of taking a spontaneously-generated
snapshot. If each agent records its own local state in a global
snapshot, then the recording actions are a simultaneous re-
sponse to the snapshot trigger. By Theorem 2 this requires

6We are thankful to Gadi Taubenfeld for suggesting this
question.

OptimalDistributedSnapshot: % code for agent i

01 Snap Timei ←∞;

02 while True do

03 if timei = Snap Timei then

04 Statei ← local state;

05 Snap Timei ←∞;

06 else if ext Snap or Snap msgj(Tj) msgs arrived then

07 candidatei ← min{Tj : received Snap msgj(Tj)};
08 candidatei ← min{candidatei, timei + Rad(i)};
09 if candidatei < Snap Timei then

10 Snap Timei ← candidatei;

11 broadcast Snap msgi(Snap Timei) to neighbors.

12 end while

Figure 4: An Optimal Distributed Snapshot Protocol

a causal broom structure with respect to the arrival of a
spontaneous ext Snap external triggering message. We now
describe an optimal distributed snapshot protocol, for the
model γmax when agents share a global clock. The code for
the protocol appears in Figure 4. For every agent j ∈ P,
define

Rad(j) = max{δ(j, h) : h ∈ P}.

Each agent i maintains a local variable named Snap Timei,
which is initially set to ∞. A time-efficient solution would
work as follows: Suppose that a spontaneous snapshot re-
quest appears at (i0, t0). Then if t0+Rad(i0) < Snap Timei0 ,
agent i0 sets Snap Timei0 to t0 + Rad(i0) and initiates a
flooding of the network by sending a “Snap msg” labelled
with Snap Timei. When agent i receives a snap request la-
belled by a snap time Tj , it compares the current value of
Snap Timei with tj+Rad(j) and with Tj . If Tj (or ti+Rad(i))
is smaller than Snap Timei, then agent i updates Snap Timei
to the lower value and initiates a flooding of the network
with a Snap msg(Snap Timei) request. Finally, agents record
their local states at the earliest time for which they received
a snap message. (In order to account for the contents of
the network’s channels, they proceed to record messages re-
ceived on incoming channels until the channels’ bounds are
met.)

It is easy to see that every agent initiates at most one flood-
ing in this algorithm, though in practice much fewer will be
initiated. Moreover, the local states are recorded simulta-
neously, at the earliest time at which a broom exists for the
arrival of external ext Snap message. This ensures correct-
ness. Finally, a broom is formed in a run of this protocol iff
one would be formed in the corresponding run (in the sense
that all transmission times and external ext Snap messages
are the same), of a full-information protocol and so this pro-
tocol is optimally fast in all cases. No protocol could beat
this one, on any run when comparing corresponding runs.
Formally, we obtain

Theorem 3. The Optimal Distributed Snapshot protocol
of Figure 4 is all-case optimal: For every behavior of na-
ture it records the state as soon as any protocol can.
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4. RELATING KNOWLEDGE & ORDERED
SIMULTANEOUS RESPONSES

We now define the Ordered Joint Response problem more
formally.

Definition 4 (Ordered Joint Response). Let es be
an external input and let A1, . . . , Ak be disjoint sets of re-
sponses. A protocol P solves the instance OJR〈es, A1, . . . , Ak〉
of ordered joint response if P guarantees for every h ≤ k that
in every run r in which some response α ∈ Ah takes place
the following conditions are met:

Triggering: The trigerring event es and all responses in
A1 ∪ · · · ∪Ah occur in r; and

Simultaneity: All responses in the same set Ag are per-
formed simultaneously, for 1 ≤ g ≤ h; and

Linear Ordering: t0 ≤ t1 ≤ · · · ≤ th, where t0 is the
time that es occurs in r and tg is the time at which
responses in Ag do, for g = 1, . . . , h.

The simultaneous response problem SR of [3] coincides with
a particular subcase of OJR in which k = 1: Following the
occurrence of the triggering event, all responses must be
performed simultaneously. Similarly, the ordered response
problem is also a sub-case of OJR, one in which |Ah| = 1
for all h ≤ k.7 Consider the shape of solutions satisfying
OJR〈es, A1, A2〉, an instance with k = 2. Clearly, for every
α1 ∈ A2 and α2 ∈ A2 occurring in a run r the protocol
must solve ordered response and thus produce an appropri-
ate centipede. Moreover, for each of A1 and A2 the proto-
col must solve simultaneous response, producing a broom.
Does a solution need only to produce all of these induced
centipedes and the two brooms? We shall show that more
is required. Solutions satisfying OJR are associated with a
particular shape that combines centipedes and brooms in a
natural way. To show this, we apply the connection between
simultaneity and common knowledge.

As has been well-established in the literature, simultane-
ously coordinated actions are intimately connected to com-
mon knowledge: When they are performed, the participants
have common knowledge of this, and they also have com-
mon knowledge that all preconditions of the actions have
been satisfied [10, 11, 14]. In the case of OJR, we can show
that a particular nested common knowledge formula is a
necessary condition for coordinated action. In what follows
we denote the set of agents related to the response cluster
Ah by Ih ⊆ P, for all h ≤ k.

Theorem 4. Assume that P is a deterministic protocol
solving the instance OJR〈es, A1, . . . , Ak〉, let r ∈ Rmax =
R(P, γmax), and let 1 ≤ h ≤ k. If the responses in Ah occur
at time th in r, then

(Rmax, r, th) � CIhCIh−1 · · ·CI1occ(es).

7 Actually OJR is defined along weaker constraints: if the
responses occur they must do so simultaneously, whereas in
SR and OR the responses must occur in every run where the
trigger event es occurs.

Proof. (Sketch:) Using the notations in the theorem
statement, we prove by induction on h ≥ 1 that for all
t′h ≥ th: (Rmax, r, t′h) � CIhCIh−1 · · ·CI1occ(es).
The results of [10] imply that when an action joint to Ih

is performed, the members of Ih have common knowledge
that it is being performed. The fact that each agent j ∈ Ih

is assumed to recall the responses it performed (see Sec-
tion 2) means that this common knowledge is maintained at
all times t′h > th. The claim follows inductively from the fact
that A1 is performed only if es occurs, while Ah for h > 1
is performed only at or after Ah−1 has been performed, and
so the corresponding subformula for h− 1 holds.

Just as centipedes are closely related to ordered coordination
and to nested knowledge formulas, and brooms correspond
to common knowledge and simultaneous coordination, a nat-
ural composition of the two, which we call a centibroom,
captures nested common knowledge, and, in turn, linearly
ordered clusters of simultaneous actions. Formally,

Definition 5 (Centibroom). Let r ∈ Rmax, let Ih ⊆ P
for 1 ≤ h ≤ k. A centibroom for 〈i0, I1, . . . , Ik〉 in (r, t..t′)
is a sequence of nodes θ0  r θ1  r · · ·  r θk such that
θ0 = 〈i0, t〉, and θh 99K 〈ihm, t′〉 holds for all h = 1, . . . , k
and ihm ∈ Ih.

〈i0, t〉

θk

θ1

θ2

〈i11, t′〉
〈i12, t′〉
〈i13, t′〉
〈i14, t′〉

〈i21, t′〉
〈i22, t′〉

〈ik1, t′〉
〈ik2, t′〉
〈ik3, t′〉

Figure 5: A centibroom for 〈i0, I1, . . . , Ik〉 in (r, t..t′).

A centibroom for 〈i0, I1〉 is one in which k = 1 and there is
only one node θ1. This is a broom (see Fig. 1(b)). As men-
tioned, brooms were shown in [3] to be closely related to
common knowledge gain, and to coordinating a Simultane-
ous Response. A centibroom can be viewed as a generalized
centipede, in which every “leg” is replaced by a broom struc-
ture.8

The Nested Common Knowledge Gain Theorem, our main
technical result in this paper, now follows. The theorem
shows that, in terms of communication, nested common
knowledge requires, at the very least, the existence of a cen-
tibroom among the involved agents.
8The structure we now call a broom was originally called
a centibroom in [3]. We have since changed the terminol-
ogy because what is now called a centibroom consists of a
centipede whose legs are replaced by brooms.
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Theorem 5 (Nested Common Knowledge Gain).
Let P be a deterministic protocol, Ih ⊆ P for h = 1 . . . k, and
let r ∈ Rmax = R(P, γmax). Assume that es is the arrival of
an external input at θ = 〈i0, t〉 in r. If

(Rmax, r, t′) � CIkCIk−1 · · ·CI1occ(es),

then there is a centibroom for 〈i0, I1, . . . , Ik〉 in (r, t..t′).

Proof. Assume the notations and conditions of the the-
orem. We will use Ih = {ih1 , . . . , ihsh} to denote the set of

agents {i|〈i, a〉 ∈ Ah} participating in the responses Ah, for
every h < k. Let K̄Ih = Kih1

· · ·Kihsh
denote the string of

(nested) knowledge operators spanning the agents in Ih in
sequence. We write (K̄Ih)m to denote m consecutive copies
of K̄Ih . Denote d = t′ − t + 1. The fact that (Rmax, r, t′) �
CIkCIk−1 · · ·CI1occ(es) holds implies by definition of com-
mon knowledge that

(Rmax, r, t′) � (K̄Ik )d · (K̄Ik−1)d · · · (K̄I1)d occ(es).

By Theorem 1 (Knowledge Gain), there is a centipede

σ = 〈i0, t〉 r

θk1  r · · · r θ
k
d·sk  r

θk−1
1  r · · · r θ

k
d·sk  r

· · ·
θ11  r · · · r θ

1
d·s1

for 〈i0, (ik1 , . . . , iksk )d, . . . , (i11, . . . , i
1
s1)d〉 in (r, t..t′).

We partition the centipede σ into the segments Θk to Θ1

such that Θh = 〈θh1 , .., θhd·sh〉. Thus, each Θh corresponds

to the K̄Ih portion of the formula. Note that if h < k then
θ  r θ

′ for every θ ∈ Θh and θ′ ∈ Θh+1. Moreover, denoting
θ = (iθ, tθ) and θ′ = (iθ′ , tθ′), by Fact 1 we obtain that
if θ 6= θ′ then tθ < tθ′ . It follows that there can be at
most t′ − t + 1 = d distinct nodes β1  r β2  r · · ·  r β`
in σ, and in particular at most d distinct nodes in every
segment Θh of σ.

Given h ≤ k, recall that sh = |Ih| and that θh` 99K i
h
(`mod sh)+1

holds for each ` ≤ d·sh. As the segment Θh contains d·sh
nodes of which at most d are distinct, by the pigeonhole
principle there must exist some node βh ∈ Θh such that
βh = θhx = θhx+1 = · · · = θhx+sh−1 for some x ∈ [1..sh · d].
By definition of centipede and the structure of our particu-
lar centipede σ, we get that βh 99K 〈ihx+δ(mod sh), t

′〉 for all

δ ∈ [0..sh − 1]. It thus follows that βh 99K 〈i, t′〉 for all
i ∈ Ih. As noted above, we also have that θ0  r β1  r

β2  r · · ·  r βk. We conclude that 〈θ0, β1, .., βk〉 is a cen-
tibroom for 〈i0, I1, . . . , Ik〉 in (r, t..t′), as desired.

Theorem 5 presents a strict and significant generalization
of both the Knowledge Gain Theorem (Theorem 1 above)
and of the Common Knowledge Gain Theorem of [3] to the
case of nested common knowledge. It is the first nontrivial
and useful nested CK gain theorem that we are aware of.
Recall from Theorem 4 that nested common knowledge is a
prerequisite for action in OJR problems. Combining the two

theorems, we obtain a strict generalization of both the Cen-
tipede Theorem and the Broom Theorem of [3], matching
centibrooms with ordered joint response.

Corollary 1 (Centibroom Theorem). Assume that
P satisfies the OJR〈es, A1, . . . , Ak〉 property, that es occurs
at 〈i0, t〉 in r ∈ R(P, γmax). Denote by Im the set of agents
responding in Am, for m = 1, . . . , k. For every 1 ≤ h ≤ k,
if the responses in Ah are performed at time th in r, then
there is a centibroom for 〈i0, I1, . . . , Ih〉 in (r, t..th).

5. CHARACTERIZING GENERAL
ORDERED RESPONSE

We define a response ordering to be a finite directed graph
Ro = (V 〈T,A〉,�) where the set of nodes V = T ∪ A is a
disjoint union of the set of (externally initiated) triggering
events T , and the a set of response actions A. Moreover, �
is a preorder over A ∪ T (a reflexive and transitive binary
relation), in which the nodes of T are all initial elements.
Thus, β � τ for τ ∈ T is possible only if β = τ . Responses
have the form α = (a, i), where a is an action to be performed
by agent i. We define baseα, the trigger base of a response
α ∈ A, by

baseα = {e ∈ T : e � α}

Definition 6 (General Ordered Response).
A response ordering Ro = (V 〈T,A〉,�) defines an instance
GR〈Ro〉 of the General Ordered Response problem. A
protocol P solves GR〈Ro〉 if it guarantees both

Triggering: A response α ∈ A occurs in a run iff all of
the events in baseα occur; and

Weak Ordering: If α1 � α2, and in a particular run α1

occurs at time t1 while α2 occurs at t2, then t1 ≤ t2.

Given the weak ordering clause, nodes on a cycle in the re-
sponse ordering graph are responses that must be performed
simultaneously in every solution to the problem. Character-
izing the shape of GOR coordination is done by focusing on
the ability of GOR to specify that a collection of disjoint sets
of responses (we think of them as clusters) will be performed
such that all responses in a cluster take place simultane-
ously. Moreover, any linearly ordered set of such clusters,
together with an initial triggering event in their base, define
an instance of OJR as a subproblem of the given GOR. By
combining the above intuition with Theorems 4 and 5 that
relate to the OJR problem, we can characterize the causal
requirements for general response problems.

When the response ordering Ro is a DAG, it specifies a par-
tial order on the individual responses. Otherwise, it can
be viewed as a directed graph, and every directed graph
can be decomposed into its strongly connected components
(SCCs) [9]. This decomposition naturally induces a graph
on the SCCs, which is itself a DAG. Given an instance
GR〈A, T,Ro〉, let S = {scc1, . . . , scck} be the set of strongly
connected components of A ∈ Ro, and let I be a node
labelling such that I(scch) = Ih is the set of agents per-
forming responses in scch. (In particular, if scch is a single
response, then I(scch) is the agent performing it.) Then
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Cro = 〈S, T,�′〉 where scci �′ sccj iff αi � αj for some
αi ∈ scci and αj ∈ sccj , which we call the DAG decomposi-
tion of Ro.

Going back to Example 2, a part of the detailed response
ordering, containing cycles for agent groups that must re-
act simultaneously, is shown in Figure 6. Figure 1, shown
earlier, is the SCC decomposition of this full Ro.

People’s Front
of JudeaJedediah

Jeremiah

m1

m2

m3

m4

m5

towards a contact from
the unsatisfied masses

Figure 6: Part of the detailed Ro for Judea, 71AD

Formally, we show:

Theorem 6. Fix a GOR instance Γ = GR〈A, T,Ro〉 and
a response α ∈ A. Assume that P solves Γ, and let r ∈
Rmax = R(P, γmax) be a run in which α takes place at the
time t′. Then

a) If Ro is a DAG, then there exists a centipede for

〈i0, I(α1), . . . , I(αk)〉

in (r, t..t′) for every path e0 � α1 � α2 � · · · � αk =
α in Ro such that e0 occurs at the 〈i0, t〉 in r. More
generally,

b) In case Ro is not a DAG, let Cro = 〈S, T,�′〉 be
the DAG decomposition of Ro. Then there exists a
centibroom for 〈i0, I(scc1), . . . , I(scck)〉 in (r, t..t′), for
every path e0 �′ scc1 �′ scc2 �′ · · · �′ scck = sccα in
Cro such that α ∈ sccα and e0 occurs at 〈i0, t〉 in r.

Proof. (Sketch:) Part (a) is an instance of part (b) in
which all SCCs are singletons, since a centipede is a centib-
room in which every broom contains a single target node. It
thus suffices to show part (b). Under the conditions and the
notation of the theorem statement, the existence of the path
e0 �′ scc1 �′ scc2 �′ · · · �′ scck = sccα in Cro ensures that
the protocol P must satisfy the OJR(e0, scc1, . . . , scck) prop-
erty. Denoting Ih = I(scch) for 1 ≤ h ≤ k, Theorem 4 im-
plies that (Rmax, r, t′) � CIkCIk−1 · · ·CI1occ(e0). The claim
now follows immediately from Theorem 5 (nested common
knowledge gain).

Notice that a centipede contains a linear chain of syncausally-
related agents that mimic the linear temporal ordering that
is required of the responses in an Ordered Response. The
shape of the OR problem and the “shape” of its solution are
closely related. Theorem 6 shows that for more general spec-
ifications such as a partial-order GOR, the shapes are not as
tightly connected. The partial order implies a set of linear
orderings, and the centipedes for these must be constructed.
In a precise sense, it is the required logical structure, speci-
fied in terms of a conjunction of nested knowledge and nested

common knowledge formulas, that constrains the shape of
the solution.

Theorem 6 states necessary conditions for any solution to
GOR problems in a context in which the environment can
deliver message subject to given upper bounds on trans-
mission times. In a precise sense, this theorem cannot be
strengthened: In the full paper we show (using the same
technique as in [4]) that the condition in Theorem 6 is in
a precise sense sufficient, as well as necessary: In a context
in which the agents have access to a global clock there is
a full-information protocol solving the GOR, in which each
response α is performed at the first time t′ at which all the
required centibrooms for α by Theorem 6 exist. For every
behavior of nature, the resulting protocols ensures that the
agents respond in the fastest possible manner.

Using Theorem 6 to analyze Example 2, we obtain that in
order for a rebellion to start in Judea we need that all three
instigators revolt, and that there exist centibroom commu-
nication patterns for each of the following chains of popu-
lation groups (using masses for the unsatisfied masses and
old regime for supporters of the old regime):

• Jeremiah �′ PFJ �′ masses �′ old regime,

• Jedediah �′ PFJ �′ masses �′ old regime, and

• Brian �′ JPF �′ masses �′ old regime.

We remark that a GOR specifying a partial order on re-
sponses (with no simultaneous actions required), as in The-
orem 6(a), is implementable in the asynchronous model as
well. In the asynchronous model, centipedes reduce to mes-
sage chains ([3]), and so the message chains must closely
follow the paths in the graph of Ro in this case (cf. Parikh
and Krasucki [21]). This is no longer the case in the syn-
chronous model, since there the centipedes impose a richer
and more flexible structure in the shape of GOR implemen-
tations.

6. CONCLUSIONS
In summary, this paper uses an epistemic analysis to signifi-
cantly extend our understanding of the interaction between
knowledge, time and causality in multi-agent systems. This
new understanding can be applied to a broad class of coor-
dination problems, yielding insights and guidance regarding
how to design efficient, even optimal, solutions to coordi-
nation tasks. Natural extensions currently being explored
consider the analysis of coordination tasks stated in terms
of explicit time bounds, rather than orderings. For example,
if we specify that response α2 must occur no later than 5
days after response α1 has occurred, or even that responses
α1 and α2 must occur exactly 3 days apart from each other.
These issues are explored in [5] and [12].

The subject of network dynamics, the diffusion of ideas and
actions through a social network, has been extensively stud-
ied since the seventies, and in particular in the last decade.
We believe that our results pertaining to minimal networks
will be of value in this ongoing effort. It is interesting to note
that the minimal communication graph needed for achiev-
ing nested common knowledge in our system is significantly

9
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sparser than that needed by Chwe in [8]. Currently our
problem formulations are too far apart from Chwe’s to al-
low for rigorous comparison, so further research is needed in
order to get to the bottom of this.

The current paper extends and generalizes our previous work
in [3], from the study of sequential or strictly simultaneous
coordination to GOR problems. The latter allow coordina-
tion specified by an arbitrary partial order, or in terms of
a partial order defined of clusters, where each cluster of ac-
tions is necessarily simultaneous. GOR problems also allow
multiple triggering events, and responses must be performed
if all of the spontaneous triggering events that they depend
on occur. Thus, the dependence on triggers is conjunctive.
A natural question that arises from the current investiga-
tion is, what would be the effect on required communication
if the dependence on triggers could be more general, say
defined by a general boolean function. Similarly, perhaps
the interdependence among responses could also be speci-
fied more generally. Indeed, GOR problems can be specified
by a suitably expressive temporal logic [18]. Is there a sen-
sible way of relating general temporal-epistemic formulas to
the causal structure required to attain them?

We illustrated the applicability of a causal analysis in terms
of syncausality and bound guarantees in Section 3, show-
ing how it can be used to derive an optimal solution to the
synchronous distributed snapshot problem. Our new results
can similarly allow the synthesis of efficient, even optimal,
solutions to many other distributed tasks in synchronous
settings. A promising direction for further study is to ex-
plore the epistemic underpinnings of particular tasks, and
apply a causal analysis in this style, in order to improve the
analysis and solutions for such tasks. There is much room
for further investigation.
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ABSTRACT
We introduce language-based games, a generalization of psy-
chological games [6] that can also capture reference-
dependent preferences [7]. The idea is to extend the domain
of the utility function to situations, maximal consistent sets
in some language. The role of the underlying language in
this framework is thus particularly critical. Of special in-
terest are languages that can express only coarse beliefs [9].
Despite the expressive power of the approach, we show that
it can describe games in a simple, natural way. Nash equi-
librium and rationalizability are generalized to this setting;
Nash equilibrium is shown not to exist in general, while the
existence of rationalizable strategies is proved under mild
conditions.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—modal logic; I.2.11 [Artificial Intelli-
gence]: Distributed Artificial Intelligence—multiagent sys-
tems; J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics, Theory

Keywords
Psychological games, epistemic game theory, rationalizabil-
ity

1. INTRODUCTION
In a classical, normal-form game, an outcome is a tuple of

strategies, one for each player; intuitively, an outcome is just
a record of which strategy each player chose to play. Players’
preferences are formalized by utility functions defined on the
set of all such outcomes. This framework thereby hard-codes
the assumption that a player can prefer one state of the
world to another only insofar as they differ in the outcome
of the game.

Perhaps unsurprisingly, this model is too restrictive to ac-
count for a broad class of interactions that otherwise seem
well-suited to a game-theoretic analysis. For example, one
might wish to model players who feel guilt, wish to sur-
prise their opponents, or are motivated by a desire to live
up to what is expected of them. Work on psychological game

TARK 2013, Chennai, India.
Copyright 2013 by the authors.

theory, beginning with [6] and expanded in [3], is an enrich-
ment of the classical setting meant to capture these kinds
of preferences and motivations. In a similar vein, work on
reference-dependent preferences, as developed in [7], formal-
izes phenomena such as loss-aversion by augmenting players’
preferences with an additional sense of gain or loss derived
by comparing the actual outcome to what was expected.

In both of these theories, the method of generalization
takes the same basic form: the domain of the utility func-
tions is enlarged to include not only the outcomes of the
game, but also the beliefs of the players. The resulting
structure may be fairly complex; for instance, in psycho-
logical game theory, since the goal is to model preferences
that depend not only on beliefs about outcomes, but also
beliefs about beliefs, beliefs about beliefs about beliefs, and
so on, the domain of the utility functions is extended to
include infinite hierarchies of beliefs.

The model we present in this paper, though motivated
in part by a desire to capture belief-dependent preferences,
is geared towards a much more general goal. Besides be-
ing expressive enough to subsume existing systems such as
those described above, it establishes a general framework
for modeling players with richer preferences. Moreover, it is
equally capable of representing impoverished preferences, a
canonical example of which are so-called “coarse beliefs” or
“categorical thinking” [9]. More specifically, our formalism
provides good practical and theoretical tools for handling be-
liefs as discrete rather than continuous objects, an advantage
that is particularly relevant in the context of psychological
effects in games.

Despite this expressive power, the system is easy to use:
player preferences are represented in a simple and natural
manner, narrowing the divide between intuition and formal-
ism. As a preliminary illustration of some of these points,
consider the following simple example.

Example 1. A surprise proposal. Alice and Bob have been
dating for a while now, and Bob has decided that the time
is right to pop the big question. Though he is not one for
fancy proposals, he does want it to be a surprise. In fact, if
Alice expects the proposal, Bob would prefer to postpone it
entirely until such time as it might be a surprise. Otherwise,
if Alice is not expecting it, Bob’s preference is to take the
opportunity.

We might summarize this scenario by the following table
of payoffs for Bob:
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p ¬p
BA p 0 1
¬BA p 1 0

Table 1: The surprise proposal.

In this table, we denote Bob’s two strategies, proposing and
not proposing, as p and ¬p, respectively, and use BAp (re-
spectively, ¬BAp) to denote that Alice is expecting (respec-
tively, not expecting) the proposal.

Granted, whether or not Alice expects a proposal may be
more than a binary affair: she may, for example, consider
a proposal unlikely, somewhat likely, very likely, or certain.
But there is good reason to think (see [9]) that an accurate
model of her expectations stops here, with some small finite
number k of distinct “levels” of belief, rather than a contin-
uum. Table 1, for simplicity, assumes that k = 2, though
this is easily generalized to larger values.

Note that although Alice does not have a choice to make
(formally, her strategy set is a singleton), she does have be-
liefs about which strategy Bob will choose. To represent
Bob’s preference for a surprise proposal, we must incorpo-
rate Alice’s beliefs about Bob’s choice of strategy into Bob’s
utility function. In psychological game theory, this is ac-
complished by letting α ∈ [0, 1] be the probability that Alice
assigns to Bob proposing, and defining Bob’s utility function
uB in some simple way so that it is decreasing in α if Bob
chooses to propose, and increasing in α otherwise:1

uB(x, α) =

{
1− α if x = p
α if x = ¬p.

The function uB agrees with the table at its extreme points
if we identify BAp with α = 1 and ¬BAp with α = 0. Other-
wise, for the infinity of other values that α may take between
0 and 1, uB yields a linear combination of the appropriate
extreme points. Thus, in a sense, uB is a continuous ap-
proximation to a scenario that is essentially discrete.

We view Table 1 as defining Bob’s utility. To coax an ac-
tual utility function from this table, let the variable S denote
a situation, which for the time being we can conceptualize
as a collection of statements about the game; in this case,
these include whether or not Bob is proposing, and whether
or not Alice believes he is proposing. We then define

uB(S) =


0 if p ∈ S and BA p ∈ S
1 if p ∈ S and ¬BA p ∈ S
1 if ¬p ∈ S and BA p ∈ S
0 if ¬p ∈ S and ¬BA p ∈ S.

In other words, Bob’s utility is a function not merely of the
outcome of the game (p or ¬p), but of a more general ob-
ject we are calling a “situation”, and his utility in a given
situation S depends on his own actions combined with Al-
ice’s beliefs in exactly the manner prescribed by Table 1. As
noted above, we may very well wish to refine our represen-
tation of Alice’s state of surprise using more than two cate-
gories; indeed, we could allow a representation that permits
continuous probabilities, as has been done in the literature.
However, we will see that an “all-or-nothing” representation

1Technically, in [6], Bob’s utility can only be a function
of his own beliefs; this is generalized in [3] in the context
of extensive-form games, but the approach is applicable to
normal-form games as well.

of belief is enough to capture some interesting and complex
games.

The central concept we develop in this paper is that of
a language-based game, where utility is defined not on out-
comes or the Cartesian product of outcomes with some other
domain, but on situations. As noted, a situation can be con-
ceptualized as a collection of statements about the game; in-
tuitively, each statement is a description of something that
might be relevant to player preferences, such as whether or
not Alice believes that Bob will play a certain strategy. Of
course, this notion crucially depends on just what counts as
an admissible description. Indeed, the set of all admissible
descriptions, which we refer to as the underlying language of
the game, is a key component of our model. Since utility is
defined on situations, and situations are sets of descriptions
taken from the underlying language, a player’s preferences
can depend, in principle, on anything expressible in this lan-
guage, and nothing more. Succintly: players can prefer one
state of the world to another if and only if they can describe
the difference between the two, where “describe” here means
“express in the underlying language”.

Language-based games are thus parametrized by the un-
derlying language: changing the language changes the game.
The power and versatility of our approach derives in large
part from this dependence. Consider, for example, an under-
lying language that contains only terms refering to players’
strategies. Players’ preferences, then, can depend only on
the outcome of the game, as is the case classically. Thus
classical game theory is recovered as a special case of the
present work (see Sections 2.1 and 2.2 for details).

Enriching the underlying language allows for an expansion
and refinement of player preferences; in this manner we are
able to subsume, for example, work on psychological game
theory and reference-dependent preferences, in addition to
providing some uniformity to the project of defining new
and further expansions of the classical base. By contrast,
restricting the underlying language coarsens the domain of
player preference; this provides a framework for modeling
phenomena like coarse beliefs. A combination of these two
approaches yields a theory of belief-dependent preferences
incorporating coarse beliefs.

For the purposes of this paper, we focus primarily on
belief-dependent preferences and coarseness, although in Ex-
ample 6, we examine a simple scenario where a type of
procrastination is represented by a minor extension of the
underlying language. We make three major contributions.
First, as noted, our system is easy to use in the sense that
players’ preferences are represented with a simple and un-
cluttered formalism; complex psychological phenomena can
thus be captured in a direct and intuitive manner. Second,
we provide a formal game-theoretic representation of coarse
beliefs, and in so doing, expose an important insight: a dis-
crete representation of belief, often conceptually and techni-
cally easier to work with than its continuous counterpart, is
sufficient to capture psychological effects that have hereto-
fore been modeled only in a continuous framework. Sec-
tion 3 provides several examples that illustrate these points.
Third, we provide novel equilibrium analyses that do not
depend on the continuity of the expected utility function as
in [6]. (Note that such continuity assumptions are at odds
with our use of coarse beliefs.)

The rest of the paper is organized as follows. In the next
section, we develop the basic apparatus needed to describe
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our approach. Section 3 presents a collection of examples
intended to guide intuition and showcase the system. In
Section 4, we show that there is a natural route by which
solution concepts such as Nash equilibrium and rationaliz-
ability can be defined in our setting, and we address the
question of existence. Proofs, more discussion, and further
examples can be found in the full paper, which is available at
http://www.cs.cornell.edu/home/halpern/papers/lbg.pdf.

2. FOUNDATIONS

2.1 Game forms and intuition
Much of the familiar apparatus of classical game theory is

left untouched. A game form is a tuple Γ = (N, (Σi)i∈N )
where N is a finite set of players, which for convenience we
take to be the set {1, . . . , n}, and Σi is the set of strategies
available to player i. Following standard notation, we set

Σ :=
∏
i∈N

Σi and Σ−i :=
∏
j 6=i

Σj .

Elements of Σ are called outcomes or strategy profiles; given
σ ∈ Σ, we denote by σi the ith component of the tuple σ,
and by σ−i the element of Σ−i consisting of all but the ith
component of σ.

Note that a game form does not come equipped with util-
ity functions specifying the preferences of players over out-
comes Σ. The utility functions we employ are defined on
situations, which in turn are determined by the underlying
language, so, before defining utility, we must first formalize
these notions.

Informally, a situation is an exhaustive characterization of
a given state of affairs using descriptions drawn from the un-
derlying language. Assuming for the moment that we have
access to a fixed “language”, we might imagine a situation as
being generated by simply listing all statements from that
language that happen to be true of the world. Even at this
intuitive level, it should be evident that the informational
content of a situation is completely dependent on the ex-
pressiveness of the language. If, for example, the underlying
language consists of exactly two descriptions, “It’s raining”
and “It’s not raining”, then there are only two situations:

{“It’s raining”} and {“It’s not raining”}.

Somewhat more formally, a situation S is a set of formu-
las drawn from a larger pool of well-formed formulas, the
underlying language. We require that S include as many
formulas as possible while still being consistent; we make
this precise shortly.

The present formulation, informal though it is, is sufficient
to allow us to capture a claim made in the introduction: any
classical game can be recovered in our framework with the
appropriate choice of underlying language. Specifically, let
the underlying language be Σ, the set of all strategy profiles.
Situations, in this case, are simply singleton subsets of Σ,
as any larger set would contain distinct and thus intuitively
contradictory descriptions of the outcome of the game. The
set of situations can thus be identified with the set of out-
comes, so a utility function defined on outcomes is readily
identified with one defined on situations.

In this instance the underlying language, consisting solely
of atomic, mutually incompatible formulas, is essentially

structureless; one might wonder why call it a “language” at
all, rather than merely a “set”. Although, in principle, there
are no restrictions on the kinds of objects we might consider
as languages, it can be very useful to focus on those with
some internal structure. This structure has two aspects:
syntactic and semantic.

2.2 Syntax, semantics, and situations
The canonical form of syntactic structure in formal lan-

guages is grammar : a set of rules specifying how to compose
well-formed formulas from atomic constituents. One of the
best-known examples of a formal language generated by a
grammar is the language of classical propositional logic.

Given a set Φ of primitive propositions, let L(Φ) denote
the propositional language based on Φ, namely, the set of
formulas that can be obtained by starting with Φ and closing
off under ¬ and ∧. (We can define ∨ and → from ¬ and ∧
as usual.) Propositional logic is easily specialized to a game-
theoretic setting. Given a game form Γ = (N, (Σi)i∈N ), let

ΦΓ = {play i(σi) : i ∈ N, σi ∈ Σi},

where we read play i(σi) as “player i is playing strategy
σi”. Then L(ΦΓ) is a language appropriate for reasoning
about the strategies chosen by the players in Γ. We some-
times write play(σ) as an abbreviation for play1(σ1) ∧ · · · ∧
playn(σn).

Semantics provides a notion of truth. Recall that the se-
mantics of classical propositional logic is given by valuations
v : Φ → {true, false}. Valuations are extended to all formu-
las via the familiar truth tables for the logical connectives.
Each valuation v thereby generates a model, determining
the truth values of every formula in L(Φ). In the case of
the language L(ΦΓ), we restrict this class of models to those
corresponding to an outcome σ ∈ Σ; that is, we consider
only valuation functions vσ defined by

vσ(play i(σ
′
i)) = true if and only if σi = σ′i.

More generally, we consider only a setM of admissible mod-
els: the ones that satisfy some restrictions of interest.

A set of formulas F is said to be satisfiable (with respect
to a set M of admissible models) if there is some model in
M in which every formula of F is true. An L(Φ)-situation
is then defined to be a maximal satisfiable set of formulas
(with respect to the admissible models of L(Φ)): that is, a
satisfiable set with no proper superset that is also satisfiable.
Situations correspond to admissible models: a situation just
consists of all the formulas true in some admissible model.
Let S(L(Φ)) denote the set of L(Φ)-situations. It is not
difficult to see that S(L(ΦΓ)) can be identified with the set
Σ of outcomes.

Having illustrated some of the principle concepts of our
approach in the context of propositional logic, we now present
the definitions in complete generality. Let L be a language
with an associated semantics, that is, a set of admissible
models providing a notion of truth. We often use the term
“language” to refer to a set of well-formed formulas together
with a set of admissible models (this is sometimes called a
“logic”). An L-situation is a maximal satisfiable set of for-
mulas from L. Denote by S(L) the set of L-situations. A
game form Γ is extended to an L-game by adding utility
functions ui : S(L) → R, one for each player i ∈ N . L
is called the underlying language; we omit it as a prefix
when it is safe to do so.
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If we view Γ as an L(ΦΓ)-game, the players’ utility func-
tions are essentially defined on Σ, so an L(ΦΓ)-game is re-
ally just a classical game based on Γ. As we saw in Section
2.1, this class of games can also be represented with the
completely structureless language Σ. This may well be suf-
ficient, especially in cases where all we care about are two
or three formulas. However, having a structured underlying
language makes it easier to analyze the much broader class
of psychological games.

A psychological game is just like a classical game except
that players’ preferences can depend not only on what strate-
gies are played, but also on what beliefs are held. While
L(ΦΓ) is appropriate for reasoning about strategies, it can-
not express anything about beliefs, so our first step is to de-
fine a richer language. Fortunately, we have at our disposal a
host of candidates well-equipped for this task, namely those
languages associated with epistemic logics.

Fix a game form Γ = (N, (Σi)i∈N ), and let LB(ΦΓ) be the
language obtained by starting with the primitive proposi-
tions in ΦΓ and closing off under conjunction, negation, and
the modal operators Bi, for i ∈ N . We read Biϕ as “player
i believes ϕ”. Intuitively, this is a language for reasoning
about the beliefs of the players and the strategy profiles be-
ing used.

We give semantics to LB(ΦΓ) using Kripke structures, as
usual. But for many examples of interest, understanding the
(completely standard, although somewhat technical) details
is not necessary. Example 1 was ultimately analyzed as an
LB(ΦΓ)-game, despite the fact that we had not even defined
the syntax of this language at the time, let alone its seman-
tics. Section 3 provides more illustrations of this point.

A Γ-structure is a tuple M = (Ω, ~s, Pr1, . . . , P rn) satis-
fying the following conditions:

(P1) Ω is a nonempty topological space;

(P2) each Pri assigns to each ω ∈ Ω a probability measure
Pri(ω) on Ω;

(P3) ω′ ∈ Pri[ω] ⇒ Pri(ω
′) = Pri(ω), where Pri[ω] ab-

breviates supp(Pri(ω)), the support of the probability
measure;

(P4) ~s : Ω → Σ satisfies Pri[ω] ⊆ {ω′ : si(ω
′) = si(ω)},

where si(ω) denotes player i’s strategy in the strategy
profile ~s(ω).

These conditions are standard for KD45 belief logics in a
game-theoretic setting [1]. The set Ω is called the state
space. Conditions (P1) and (P2) set the stage to represent
player i’s beliefs in state ω ∈ Ω as the probability mea-
sure Pri(ω) over the state space itself. Condition (P3) says
essentially that players are sure of their own beliefs. The
function ~s is called the strategy function, assigning to
each state a strategy profile that we think of as the strate-
gies that the players are playing at that state. Condition
(P4) thus asserts that each player is sure of his own strat-
egy. The language LB(ΦΓ) can be interpreted in any Γ-
structure M via the strategy function, which induces a val-
uation [[·]]M : LB(ΦΓ)→ 2Ω defined recursively by:

[[play i(σi)]]M := {ω ∈ Ω : si(ω) = σi}
[[ϕ ∧ ψ]]M := [[ϕ]]M ∩ [[ψ]]M
[[¬ϕ]]M := Ω− [[ϕ]]M
[[Biϕ]]M := {ω ∈ Ω : Pri[ω] ⊆ [[ϕ]]M}.

Thus, the Boolean connectives are interpreted classically,
and Biϕ holds at state ω just in case all the states in the
support of Pri(ω) are states where ϕ holds.

Pairs of the form (M,ω), where M = (Ω, ~s, ~Pr) is a Γ-
structure and ω ∈ Ω, play the role of admissible models for
the language LB(ΦΓ). Given ϕ ∈ LB(ΦΓ), we sometimes
write (M,ω) |= ϕ or just ω |= ϕ instead of ω ∈ [[ϕ]]M , and
say that ω satisfies ϕ or ϕ is true at ω; we write M |= ϕ
and say that ϕ is valid in M if [[ϕ]]M = Ω. We say that ϕ is
satisfiable if for some state ω in some Γ-structure M (i.e.,
for some admissible model), ω |= ϕ. Given F ⊆ LB(ΦΓ),
we write ω |= F if for all ϕ ∈ F , ω |= ϕ; we say that F is
satisfiable if for some state ω in some M , ω |= F .

With this notion of satisfiability, we gain access to the
class of LB(ΦΓ)-games, where utility is defined on LB(ΦΓ)-
situations, namely, maximal satisfiable subsets of LB(ΦΓ).
In particular, we can extend any game form Γ to an LB(ΦΓ)-
game, a setting in which players’ preferences can depend, in
principle, on anything describable in the language LB(ΦΓ).

It is not hard to show that when there is more than
one player, S(LB(ΦΓ)) is uncountable. A utility function
ui : S(LB(ΦΓ))→ R can therefore be quite complicated in-
deed. We will frequently be interested in representing pref-
erences that are much simpler. For instance, though the
surprise proposal scenario presented in Example 1 can be
viewed as an LB(ΦΓ)-game, Bob’s utility uB does not de-
pend on any situation as a whole, but rather is determined
by a few select formulas. This motivates the following gen-
eral definition, identifying a particularly easy to understand
and well-behaved subclass of games.

Fix a language L. A function u : S(L) → R is called
finitely specified if there is a finite set of formulas F ⊂ L
and a function f : F → R such that every situation S ∈
S(L) contains exactly one formula from F , and whenever
ϕ ∈ S ∩ F , u(S) = f(ϕ). In other words, the value of
u depends only on the formulas in F . Thus u is finitely
specified if and only if it can be written in the form

u(S) =


a1 if ϕ1 ∈ S
...

...
ak if ϕk ∈ S,

for some a1, . . . , ak ∈ R and ϕ1, . . . , ϕk ∈ L.
A language-based game is called finitely specified if each

player’s utility function is. Many games of interest are finitely
specified. In a finitely specified game, we can think of a
player’s utility as being a function of the finite set F ; in-
deed, we can think of the underlying language as being the
structureless “language” F rather than L.

3. EXAMPLES
We now give a few examples to exhibit both the simplicity

and the expressive power of language-based games; more
examples are given in the full paper. Since we focus on the
language LB(ΦΓ), we write S to abbreviate S(LB(ΦΓ)).

Note that there is a unique strategy that player i uses in a
situation S ∈ S; it is the strategy σi such that play i(σi) ∈ S.
When describing the utility of a situation, it is often useful
to extract this strategy; therefore, we define ρi : S → Σi
implicitly by the requirement play i(ρi(S)) ∈ S. It is easy to
check that ρi is well-defined.

Example 2. Indignant altruism. Alice and Bob sit down
to play a classic game of prisoner’s dilemma, with one twist:
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neither wishes to live up to low expectations. Specifically,
if Bob expects the worst of Alice (i.e. expects her to de-
fect), then Alice, indignant at Bob’s opinion of her, prefers
to cooperate. Likewise for Bob. On the other hand, in the
absense of such low expectations from their opponent, each
will revert to their classical, self-serving behaviour.

The standard prisoner’s dilemma is summarized in Table
2:

c d
c (3,3) (0,5)
d (5,0) (1,1)

Table 2: The classical prisoner’s dilemma.

Let uA, uB denote the two players’ utility functions ac-
cording to this table, and let Γ denote the game form ob-
tained by throwing away these functions: Γ = ({A,B},ΣA,
ΣB) where ΣA = ΣB = {c, d}. We wish to define an
LB(ΦΓ)-game that captures the given scenario; to do so we
must define new utility functions on S. Informally, if Bob is
sure that Alice will defect, then Alice’s utility for defecting
is −1, regardless of what Bob does, and likewise reversing
the roles of Alice and Bob; otherwise, utility is determined
exactly as it is classically.

Formally, we simply define u′A : S → R by

u′A(S) =

 −1
if playA(d) ∈ S and
BB playA(d) ∈ S

uA(ρA(S), ρB(S)) otherwise,

and similarly for u′B .
Intuitively, cooperating is rational for Alice if she thinks

that Bob is sure she will defect, since cooperating in this case
would yield a minimum utility of 0, whereas defecting would
result in a utility of −1. On the other hand, if Alice thinks
that Bob is not sure she’ll defect, then since her utility in
this case would be determined classically, it is rational for
her to defect, as usual.

This game has much in common with the surprise proposal
of Example 1: in both games, the essential psychological el-
ement is the desire to surprise another player. Perhaps un-
surprisingly, when players wish to surprise their opponents,
Nash equilibria fail to exist—even mixed strategy equilibria.
Although we have not yet defined Nash equilibrium in our
setting, the classical intuition is wholly applicable: a Nash
equilibrium is a state of play where players are happy with
their choice of strategies given accurate beliefs about what
their opponents will choose. But there is a fundamental ten-
sion between a state of play where everyone has accurate
beliefs, and one where some player successfully surprises an-
other.

We show formally in Section 4.2 that this game has no
Nash equilibrium. On the other hand, players can certainly
best-respond to their beliefs, and the corresponding iterative
notion of rationalizability finds purchase here. In Section
4.3 we will import this solution concept into our framework
and show that every strategy for the indignant altruist is
rationalizable.

Example 3. A deeply surprising proposal. Bob hopes to
propose to Alice, but she wants it to be a surprise. He
knows that she would be upset if it were not a surprise, so
he would prefer not to propose if Alice so much as suspects

it. Worse (for Bob), even if Alice does not suspect a pro-
posal, if she suspects that Bob thinks she does, then she will
also be upset, since in this case a proposal would indicate
Bob’s willingness to disappoint her. Of course, like the gi-
ant tortoise on whose back the world rests, this reasoning
continues “all the way down”...

This example is adapted from a similar example given in
[6]; in that example, the man is considering giving a gift of
flowers, but rather than hoping to surprise the recipient, his
goal is the exact opposite: to get her flowers just in case she
is expecting them. Of course, the notion of “expectation”
employed, both in their example and ours, is quite a bit
more complicated than the usual sense of the word, involving
arbitrarily deeply nested beliefs.

Nonetheless, it is relatively painless to represent Bob’s
preferences in the language LB(ΦΓ), where Γ = ({A,B}, {·},
{p, q}) and p and q stand for Bob’s strategies of proposing
and not proposing, respectively (Alice has no decision to
make, so her strategy set is a singleton). For convenience,
we use the symbol Pi to abbreviate ¬Bi¬. Thus Piϕ holds
just in case player i is not sure that ϕ is false; this will be our
gloss for Alice “so much as suspecting” a proposal. Define
uB : S → R by

uB(S) =


1

if playB(p) ∈ S and
(∀k ∈ N)[PA(PBPA)kplayB(p) /∈ S]

1
if playB(q) ∈ S and
(∃k ∈ N)[PA(PBPA)kplayB(p) ∈ S]

0 otherwise,

where (PBPA)k is an abbreviation for PBPA · · ·PBPA (k
times). In other words, proposing yields a higher utility for
Bob in the situation S if and only if none of the formulas in
the infinite family {PA(PBPA)kplayB(p) : k ∈ N} occur in
S.

As in Examples 1 and 2, and in general when a player de-
sires to surprise an opponent, it is not difficult to convince
oneself informally that this game admits no Nash equilib-
rium. Moreover, in this case the infinitary nature of Bob’s
desire to “surprise” Alice has an even stronger effect: no
strategy for Bob is even rationalizable (see Section 4.3).

Example 4. Pay raise. Bob has been voted employee of
the month at his summer job, an honour that comes with
a slight increase (up to $1) in his per-hour salary, at the
discretion of his boss, Alice. Bob’s happiness is determined
in part by the raw value of the bump he receieves in his
wages, and in part by the sense of gain or loss he feels by
comparing the increase Alice grants him with the minimum
increase he expected to get. Alice, for her part, wants Bob
to be happy, but this desire is balanced by a desire to save
company money.

As usual, we first fix a game form that captures the players
and their available strategies. Let Γ = ({A,B},ΣA, {·}),
where ΣA = {s0, s1, . . . , s100} and sk represents an increase
of k cents to Bob’s per-hour salary (Bob has no choice to
make, so his strategy set is a singleton). Notice that, in
contrast to the other examples we have seen thus far, in this
game Bob’s preferences depend on his own beliefs rather
than the beliefs of his opponent. Broadly speaking, this is an
example of reference-dependent preferences: Bob’s utility is
determined in part by comparing the actual outcome of the
game to some “reference level”—in this case, the minimum
expected raise. This game also has much in common with a
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scenario described in [3], in which a player Abi wishes to tip
her taxi driver exactly as much as he expects to be tipped,
but no more.

Define uB : S → R by

uB(S) = k + (k − r),

where k is the unique integer such that playA(sk) ∈ S, and

r := min{r′ : PB playA(sr′) ∈ S}.

Observe that r is completely determined by Bob’s beliefs:
it is the lowest raise he considers it possible that Alice will
grant him. We think of the first summand k as representing
Bob’s happiness on account of receiving a raise of k cents
per hour, while the second summand k − r represents his
sense of gain or loss depending on how reality compares to
his lowest expectations.

Note that the value of r (and k) is encoded in S via a finite
formula, so we could have written the definition of uB in a
fully expanded form where each utility value is specified by
the presense of a formula in S. For instance, the combination
k = 5, r = 2 corresponds to the formula

playA(s5)∧PB playA(s2)∧¬(PB playA(s0)∨PB playA(s1)),

which therefore determines a utility of 8.
Of course, it is just as easy to replace the minimum with

the maximum in the above definition (perhaps Bob feels
entitled to the most he considers it possible he might get), or
even to define the reference level r as some more complicated
function of Bob’s beliefs. The quantity k − r representing
Bob’s sense of gain or loss is also easy to manipulate. For
instance, given α, β ∈ R we might define a function f : R→
R by

f(x) =

{
αx if x ≥ 0
βx if x < 0,

and set

u′B(S) = k + f(k − r),

where k and r are determined as above. Choosing, say,
α = 1 and β > 1 results in Bob’s utility u′B incorporating
loss aversion: Bob is more upset by a relative loss than he
is elated by a same-sized relative gain. These kinds of issues
are discussed in [7]; in the full paper we analyze a central
example from this paper in detail.

Turning now to Alice’s preferences, we are faced with a
host of modeling choices. Perhaps Alice wishes to grant Bob
the smallest salary increase he expects but nothing more.
We can capture this by defining uA : S → R by

uA(S) = −|k − r|,

where k and r are as above. Or perhaps we wish to represent
Alice as feeling some fixed sense of guilt if she undershoots,
while her disutility for overshooting depends on whether she
merely exceeded Bob’s lowest expectations, or in fact ex-
ceeded even his highest expectations:

u′A(S) =

 −25 if k < r
r − k if r ≤ k < R
r −R+ 2(R− k) if k ≥ R,

where

R := max{R′ : PB playA(sR′) ∈ S}.

Or perhaps Alice’s model of Bob’s happiness is sophisticated
enough to include his sensations of gain and loss, so that,
for example,

u′′A(S) = uB(S)− δk,
where δ is some scaling factor. Clearly the framework is rich
enough to represent many possibilities.

Example 5. Preparing for a roadtrip. Alice has two tasks
to accomplish before embarking on a cross-country roadtrip:
she needs to buy a suitcase, and she needs to buy a car.

Here we sketch a simple decision-theoretic scenario in a
language-based framework. We choose the underlying lan-
guage in such a way as to capture two well-known “irra-
tionalities” of consumers. First, consumers often evaluate
prices in a discontinuous way, behaving, for instance, as if
the difference between $299 and $300 is more substantive
than the difference between $300 and $301. Second, con-
sumers who are willing to put themselves out (for example,
drive an extra 5 kilometers) to save $50 on a $300 purchase
are often not willing to drive that same extra distance to
save the same amount of money on a $20,000 purchase.

We do not claim a completely novel analysis; rather, we
aim to show how naturally a language-based approach can
account for these kinds of issues.

Both of the irrationalities described above can be captured
by assuming a certain kind of coarseness, specifically, that
the language over which Alice forms preferences does not de-
scribe prices with infinite precision. For example, we might
assume that the language includes as primitive propositions
terms of the form pQ, where Q ranges over a given partition
of the real line. We might further suppose that this partition
has the form

· · · ∪ [280, 290) ∪ [290, 300) ∪ [300, 310) ∪ · · · ,

at least around the $300 mark. Any utility function defined
over such a language cannot distinguish prices that fall into
the same partition. Thus, in the example above, Alice would
consider the prices $300 and $301 to be effectively the same
as far as her preferences are concerned. At the borderline
between cells of the partition, however, there is the potential
for a“jump”: we might reasonably model Alice as prefering a
situation where p[290,300) holds to one where p[300,310) holds.
A smart retailer, therefore, should set their price to be at
the higher end of a cell of the consumers’ partition.

To capture the second irrationality discussed above, it suf-
fices to assume that the partition that determines the under-
lying language is not only coarse, but is coarser for higher
prices. For example, around the $20,000 mark, we might
suppose that the partition has the form

· · · ∪ [19000, 19500) ∪ [19500, 20000) ∪ [20000, 20500) ∪ · · · .

In this case, while Alice may prefer a price of $300 to a price
of $350, she cannot prefer a price of $20,000 to a price of
$20,050, because that difference cannot be described in the
underlying language. This has a certain intuitive appeal: the
higher numbers get (or, more generally, the further removed
something is, in space or time or abstraction), the more you
“ballpark” it—the less precise your language is in describing
it. Indeed, psychological experiments have demonstrated
that Weber’s law2, traditionally applied to physical stimuli,
2Weber’s law asserts that the minimum difference between
two stimuli necessary for a subject to discriminate between
them increases as the magnitude of the stimuli increases.
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finds purchase in the realm of numerical perception: larger
numbers are subjectively harder to discriminate from one
another [8; 11]. Our choice of underlying language represents
this phenomenon simply, while exhibiting its explanatory
power.

Example 6. Returning a library book. Alice has learned
that a book she borrowed from the library is due back to-
morrow. As long as she returns it by tomorrow, she’ll avoid a
late fee; returning it today, however, is mildly inconvenient.

Here we make use of an extremely simple example to il-
lustrate how to model an ostensibly dynamic scenario in a
normal-form framework by employing a suitable underlying
language. The idea is straightforward: Alice has a choice
to make today, but how she feels about it depends on what
she might do tomorrow. Specifically, if she returns the li-
brary book tomorrow, then she has no reason to feel bad
about not returning it today. Since the future has yet to be
determined, we model Alice’s preferences as depending on
what action she takes in the present together with what she
expects to do in the future.

Let Γ = (A, {return,wait}) be a game form representing
Alice’s two current options, and set Φ′Γ := ΦΓ ∪{tomorrow};
thus Φ′Γ is the usual set of primitive propositions (represent-
ing strategies) together with a single new addition, tomor-
row, read “Alice will return the book tomorrow”.

An LB(Φ′Γ)-game allows us to specify Alice’s utility in a
manner consistent with the intuition given above. In partic-
ular, we can define uA : S(LB(Φ′Γ))→ R by

uA(S) =

 −1 if playA(return) ∈ S
1 if playA(wait) ∧BAtomorrow ∈ S
−5 otherwise,

so Alice prefers to wait if she expects to return the book
tomorrow, and to return the book today otherwise.

In this example, Alice’s utility depends on her beliefs, as
it does in psychological game theory. Unlike psychologi-
cal game theory, however, her utility depends on her beliefs
about features of the world aside from which strategies are
being played. This is a natural extension of the psychologi-
cal framework in a language-based setting.

This example also hints at another interesting application
of language-based games. A careful look at the language
LB(Φ′Γ) reveals an oddity: as far as the semantics are con-
cerned, playA(return) and tomorrow are independent primi-
tive propositions, despite being intuitively contradictory. Of
course, this can be rectified easily enough: we can simply in-
sist in the semantics that whenever playA(return) holds at
a state, tomorrow does not. But in so doing, we have intro-
duced a further complexity: the strategy that Alice chooses
now determines more about the situation than merely the
fact of which strategy she has chosen.

This observation reveals the need for a good theory of
counterfactuals. After all, it is not just the true state of the
world that must satisfy the semantic contraints we impose,
but also the counterfactual situations we consider when de-
termining whether or not a player is behaving rationally.
In Section 4.1, we give a formal treatment of rationality in
LB(ΦΓ)-games that skirts this issue; however, we believe
that a more substantive treatment of counterfactual reason-
ing in games is both important and interesting, and that the
present framework is a promising setting in which to develop
such a theory.

Returning to the example at hand, we might emphasize
the new element of “control” Alice has by providing her with
explicit mechanisms of influencing her own beliefs about to-
morrow. For example, perhaps a third strategy is available
to her, remind, describing a state of affairs where she keeps
the book but places it on top of her keys, thus decreasing
the likelihood that she will forget to take it when she leaves
the next day.

More generally, this simple framework allows us to model
commitment devices [5]: we can represent players who ratio-
nally choose to perform certain actions (like buying a year-
long gym membership, or throwing away their “fat jeans”)
not because these actions benefit them immediately, but be-
cause they make it subjectively more likely that the player
will perform certain other desirable actions in the future
(like going to the gym regularly, or sticking with a diet) that
might otherwise be neglected. In a similar manner, we can
succinctly capture procrastination: if, for example, you be-
lieve that you will quit smoking tomorrow, then the health
benefits of quitting today instead might seem negligible—
so negligible, in fact, that quitting immediately may seem
pointless, even foolish. Of course, believing you will do
something tomorrow is not the same thing as actually doing
it when tomorrow comes, thus certain tasks may be delayed
repeatedly.

4. SOLUTION CONCEPTS
A number of important concepts from classical game the-

ory, such as Nash equilibrium and rationalizability, have been
completely characterized epistemically, using Γ-structures.
In LB(ΦΓ)-games (or, more generally, in language-based
games where the language includes belief), we can use the
epistemic characterizations as the definitions of these solu-
tion concepts. This yields natural definitions that generalize
those of classical game theory. We begin by defining ratio-
nality in our setting.

4.1 Rationality
We call a player i rational if he is best-responding to his

beliefs: the strategy σi he is using must yield an expected
utility that is at least as good as any other strategy σ′i he
could play, given his beliefs. In classical game theory, the
meaning of this statement is quite clear. Player i has beliefs
about the strategy profiles σ−i used by the other players.
This makes it easy to compute what i’s payoffs would be
if he were to use some other strategy σ′i: since i’s utility
just depends on the strategy profile being used, we simply
replace σi by σ′i in these strategy profiles, and compute the
new expected utility. Thus, for example, in a two-player
game, if player 1 places probability 1/2 on the two strategies
σ2 and σ′2 for player 2, then his expected utility playing σ1

is (u1(σ1, σ2)+u1(σ1, σ
′
2))/2, while his expected utility if he

were to play σ′1 is (u1(σ′1, σ2) + u1(σ′1, σ
′
2))/2.

We make use of essentially the same approach in language-
based games. Let (Γ, (ui)i∈N ) be an LB(ΦΓ)-game and fix

a Γ-structure M = (Ω, ~s, ~Pr). Observe that for each ω ∈ Ω
and each i ∈ N , there is a unique LB(ΦΓ)-situation S such
that ω |= S; we denote this situation by S(M,ω) or just
S(ω) when the Γ-structure is clear from context.

If play i(σi) ∈ S(ω), then given σ′i ∈ Σi we might näıvely
let S(ω/σ′i) denote the set S(ω) with the formula play i(σi)
replaced by play i(σ

′
i), and define ûi(σ

′
i, ω), the utility that

i would get if he played σ′i in state ω, as ui(S(ω/σ′i)). Un-
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fortunately, ui is not necessarily defined on S(ω/σ′i), since
it is not the case in general that this set is satisfiable; in-
deed, S(ω/σ′i) is satisfiable if and only if σ′i = σi. This
is because other formulas in S(ω), for example the formula
Bi play i(σi), logically imply the formula play i(σi) that was
removed from S(ω) (recall that our semantics insist that ev-
ery player is sure of their own strategy). With a more careful
construction of the “counterfactual” set S(ω/σ′i), however,
we can obtain a definition of ûi that makes sense.

A formula ϕ ∈ LB(ΦΓ) is called i-independent if for
each σi ∈ Σi, every occurrence of play i(σi) in ϕ falls within
the scope of some Bj , j 6= i. Intuitively, an i-independent
formula describes a proposition that is independent of player
i’s choice of strategy, such as another player’s strategy, an-
other player’s beliefs, or even player i’s beliefs about the
other players; on the other hand, player i’s beliefs about his
own choices are excluded from this list, as they are assumed
to always be accurate, and thus dependent on those choices.
Given S ∈ S, set

ρ−i(S) = {ϕ ∈ S : ϕ is i-independent}.3

Let S−i denote the image of S under ρ−i. Elements of S−i
are called i-situations; intuitively, they are complete de-
scriptions of states of affairs that are out of player i’s con-
trol. Informally, an i-situation S−i ∈ S−i determines every-
thing about the world (expressible in the language) except
what strategy player i is employing. This is made precise
in Proposition 1. Recall that ρi(S) denotes the (unique)
strategy that i plays in S, so play i(ρi(S)) ∈ S.

Proposition 1. For each i ∈ N , the map ~ρi : S → Σi ×
S−i defined by ~ρi(S) = (ρi(S), ρ−i(S)) is a bijection.

This identification of S with the set of pairs Σi×S−i pro-
vides a well-defined notion of what it means to alter player i’s
strategy in a situation S “without changing anything else”.
By an abuse of notation, we write ui(σi, S−i) to denote ui(S)
where S is the unique situation corresponding to the pair
(σi, S−i), that is, ~ρi(S) = (σi, S−i). Observe that for each
state ω ∈ Ω and each i ∈ N there is a unique set S−i ∈ S−i
such that ω |= S−i. We denote this set by S−i(M,ω), or just
S−i(ω) when the Γ-structure is clear from context. Then the
utility functions ui induce functions ûi : Σi×Ω→ R defined
by

ûi(σi, ω) = ui(σi, S−i(ω)).

As in the classical case, we can view the quantity ûi(σi, ω)
as the utility that player i would have if he were to play σi
at state ω. It is easy to see that this generalizes the clas-
sical approach in the sense that it agrees with the classical
definition when the utility functions ui depend only on the
outcome.

For each i ∈ N , let EUi : Σi × Ω → R be the expected
utility of playing σi according to player i’s beliefs at ω. For-
mally:

EUi(σi, ω) =

∫
Ω

ûi(σi, ω
′) dPri(ω);

3As (quite correctly) pointed out by an anonymous reviewer,
this notation is not standard, since ρ−i is not a profile of
functions of the type ρi. Nonetheless, we feel it is appropri-
ate in the sense that, while ρi extracts from a given situation
player i’s strategy, ρ−i extracts “all the rest” (cf. Proposi-
tion 1), the crucial difference here being that this includes
far more than just the strategies of the other players.

when Ω is finite, this reduces to

EUi(σi, ω) =
∑
ω′∈Ω

ûi(σi, ω
′) · Pri(ω)(ω′).

Define BRi : Ω→ 2Σi by

BRi(ω) = {σi ∈ Σi : (∀σ′i ∈ Σi)[EUi(σi, ω) ≥ EUi(σ′i, ω)]};

thus BRi(ω) is the set of best-reponses of player i to his
beliefs at ω, that is, the set of strategies that maximize his
expected utility.

With this apparatus in place, we can expand the underly-
ing language to incorporate rationality as a formal primitive.
Let

Φrat
Γ := ΦΓ ∪ {RATi : i ∈ N},

where we read RATi as “player i is rational”. We also em-
ploy the syntactic abbreviation RAT ≡ RAT1 ∧ · · · ∧RATn.
Intuitively, LB(Φrat

Γ ) allows us to reason about whether or
not players are being rational with respect to their beliefs
and preferences.

We wish to interpret rationality as expected utility max-
imization. To this end, we extend the valuation function
[[·]]M to LB(Φrat

Γ ) by

[[RATi]]M := {ω ∈ Ω : si(ω) ∈ BRi(ω)}.

Thus RATi holds at state ω just in case the strategy that
player i is playing at that state, si(ω), is a best-response to
his beliefs.

4.2 Nash equilibrium
Having formalized rationality, we are in a position to draw

on work that characterizes solutions concepts in terms of
RAT .

Let Γ = (N, (Σi)i∈N ) be a game form in which each set Σi
is finite, and let ∆(Σi) denote the set of all probability mea-
sures on Σi. Elements of ∆(Σi) are the mixed strategies
of player i. Given a mixed strategy profile

µ = (µ1, . . . , µn) ∈ ∆(Σ1)× · · · ×∆(Σn),

we define a Γ-structure Mµ that, in a sense made precise
below, captures “equilibrium play” of µ and can be used to
determine whether or not µ constitutes a Nash equilibrium.

Set

Ωµ = supp(µ1)× · · · × supp(µn) ⊆ Σ1 × · · · × Σn.

Define a probability measure π on Ωµ by

π(σ1, . . . , σn) =

n∏
i=1

µi(σi),

and for each σ, σ′ ∈ Ωµ, let

Prµ,i(σ)(σ′) =

{
π(σ′)/µi(σi) if σi = σ′i
0 otherwise.

Let Mµ = (Ωµ, idΩµ , ~Prµ). It is easy to check that Mµ is a
Γ-structure; call it the characteristic Γ-structure for µ.
At each state in Mµ, each player i is sure of his own strategy
and has uncertainty about the strategies of his opponents;
however, this uncertainty takes the form of a probability dis-
tribution weighted according to µ−i, so in effect each player
i correctly ascribes the mixed strategy µj to each of his op-
ponents j 6= i. It is well known (and easy to show) that a

46



mixed strategy profile µ is a Nash equilibrium in the clas-
sical sense if and only if each player is rational (i.e. maxi-
mizing expected utility) at every state in the characteristic
Γ-structure for µ. Accordingly, we define a Nash equilib-
rium (in an LB(ΦΓ)-game) to be a mixed strategy profile µ
such that Mµ |= RAT . It is immediate that this definition
generalizes the classical definition of Nash equilibrium.

We note that there are several other epistemic character-
izations of Nash equilibrium besides the one presented here.
While in the classical setting they all generate equivalent
solution concepts, this need not be true in our more general
model. We believe that investigating the solution concepts
that arise by teasing apart these classically equivalent no-
tions is an interesting and promising direction for future
research.

In contrast to the classical setting, Nash equilibria are not
guaranteed to exist in general; indeed, this is the case for the
indignant altruism game of Example 2.

Proposition 2. There is no Nash equilibrium in the in-
dignant altruism game.

Proof. We must show that for every mixed strategy pro-
file

µ = (µA, µB) ∈ ∆({c, d})×∆({c, d}),

the corresponding characteristic Γ-structure Mµ 6|= RAT .
Suppose first that µA(c) > 0. Then Mµ |= ¬BB playA(d),

which implies that Alice’s utility at every state in Mµ co-
incides with the classical prisoner’s dilemma, so she is not
rational at any state where she cooperates. Since, by defi-
nition, Mµ contains a state where Alice cooperates, we con-
clude that Mµ 6|= RATA, so µ cannot be a Nash equilibrium.

Suppose instead that µA(c) = 0. ThenMµ |= BB playA(d),
and so Alice, being sure of this, is not rational at any state
where she defects, since by definition she is guaranteed a
utility of −1 in that case. By definition, Mµ contains a state
where Alice defects (in fact, Alice defects in every state), so
we can conclude as above that Mµ 6|= RATA, which means
that µ cannot be a Nash equilibrium.

What went wrong here? Roughly speaking, the utility
functions in this game exhibit a kind of “discontinuity”: the
utility of defecting is −1 precisely when your opponent is
100% certain that you will defect. However, as soon as this
probability dips below 100%, no matter how small the drop,
the utility of defecting jumps up to at least 1.

Broadly, this issue arises in L-games whenever L is limited
to a coarse-grained notion of belief, such as the underlying
language in this example, which only contains belief modal-
ities representing 100% certainty. However, since coarseness
is a central feature we wish to model, the lack of existence
of Nash equilibria in general might be viewed as a problem
with the notion of Nash equilibrium itself, rather than a de-
fect of the underlying language. Indeed, the requirements
that a mixed strategy profile must satisfy in order to qualify
as a Nash equilibrium are quite stringent: essentially, each
player must evaluate his choice of strategy subject to the
condition that his choice is common knowledge! As we have
seen, this condition is not compatible with rationality when
a player’s preference is to do something unexpected.

More generally, this tension arises with any solution con-
cept that requires players to have common knowledge of the
mixed strategies being played (the “conjectures”, in the ter-

minology of [2]). In fact, Proposition 2 relies only on second-
order knowledge of the strategies: whenever Alice knows
that Bob knows her play, she is unhappy. In particular, any
alternative epistemic characterization of Nash equilibrium
that requires such knowledge is subject to the same non-
existence result. Furthermore, we can use the same ideas
to show that there is no correlated equilibrium [1] in the
indignant altruism game either (once we extend correlated
equilibrium to our setting).

4.3 Rationalizability
In this section, we define rationalizability in language-

based games in the same spirit as we defined Nash equi-
librium in Section 4.2. As shown by Tan and Werlang [12]
and Brandenburger and Dekel [4], common belief of rational-
ity characterizes rationalizable strategies. Thus, we define
rationalizability that way here.

Let LCB(Φrat
Γ ) be the language obtained by starting with

the primitive propositions in Φrat
Γ and closing off under con-

junction, negation, the modal operators Bi, for i ∈ N , and
the modal operator CB. We read CBϕ as “there is common
belief of ϕ”. Extend [[·]]M to LCB(Φrat

Γ ) by setting

[[CBϕ]]M :=

∞⋂
k=1

[[EBkϕ]]M ,

where

EBϕ ≡ B1ϕ ∧ · · · ∧Bnϕ, and

EBkϕ ≡ EB(EBk−1ϕ).

For convenience, we stipulate that EB0ϕ ≡ ϕ. We read
EBϕ as “everyone believes ϕ”. Thus, intuitively, CBϕ holds
precisely when everyone believes ϕ, everyone believes that
everyone believes ϕ, and so on. We define a strategy σi ∈ Σi
to be rationalizable (in an LB(ΦΓ)-game) if the formula
play i(σi) ∧ CB(RAT ) is satisfiable in some Γ-structure.

Although there are no Nash equilibria in the indignant
altruism game, as we now show, every strategy is rational-
izable.

Proposition 3. Every strategy in the indignant altruism
game is rationalizable.

Proof. Consider the Γ-structure in Figure 1.

Figure 1: A Γ-structure for indignant altruism.

The valuations of the primitive propositions at each of the
four states are labeled in the obvious way. Arrows labeled i
based at state ω point to all and only those states in Pri[ω]
(so every probability measure has exactly one state in its
support).
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As discussed in Example 2, it is rational to cooperate in
this game if you believe that your opponent believes that
you will defect, and it is rational to defect if you believe
that your opponent believes you will cooperate. Given this,
it is not difficult to check that RAT holds at each state of
this Γ-structure, and therefore so does CB(RAT ). Thus, by
definition, every strategy is rationalizable.

Does every language-based game admit a rationalizable
strategy? Every classical game does. This follows from the
fact that every strategy in a Nash equilibrium is rationaliz-
able, together with Nash’s theorem that every (finite) game
has a Nash equilibrium (cf. [10]). In the language-based
setting, while it is immediate that every strategy in a Nash
equilibrium is rationalizable, since Nash equilibria do not
always exist, we cannot appeal to this argument. In fact,
we have already seen an example of an LB(ΦΓ)-game that
admits no rationalizable strategy.

Proposition 4. The deeply surprising proposal game has
no rationalizable strategies.

Proof. Fix a Γ-structure M = (Ω, ~s, ~Pr) and suppose
for contradiction that ω ∈ Ω is such that ω |= CB(RAT ).
Consider first the case where Alice does not expect∗ a pro-
posal at state ω, where “expect∗” denotes the infinitary no-
tion of expectation at play in this example: for all k ≥ 0,
ω |= ¬PA(PBPA)kplayB(p). Thus, for all k ≥ 0, ω |=
BA(BBBA)k¬playB(p); taking k = 0, it follows that for all
ω′ ∈ PrA[ω], ω′ |= ¬playB(p). Moreover, since CB(RAT )
holds at ω, certainly ω′ |= RATB . But if Bob is ratio-
nally not proposing at ω′, then he must at least consider
it possible that Alice expects∗ a proposal: for some k ∈
N, ω′ |= PBPA(PBPA)kplayB(p). But this implies that
ω |= PA(PBPA)k+1playB(p), contradicting our assumption.
Thus, any state where CB(RAT ) holds is a state where Alice
expects∗ a proposal.

So suppose that Alice expects∗ a proposal at ω. It fol-
lows that there is some state ω′ satisfying ω′ |= playB(p) ∧
CB(RAT ). But if Bob is rationally playing p at ω′, there
must be some state ω′′ ∈ PrB [ω′] where Alice doesn’t expect∗

it; however, we also know that ω′′ |= CB(RAT ), which we
have seen is impossible.

This completes the argument: CB(RAT ) is not satisfi-
able. It is worth noting that this argument fails if we re-
place “expects∗” with “expects≤K”, where this latter term is
interpreted to mean

(∀k ≤ K)[¬PA(PBPA)kplayB(p)].

In the full paper, we provide a condition that guarantees
the existence of rationalizable strategies in LB(ΦΓ)-games.
The essential ingredient is a kind of compactness assumption
on the language LB(Φrat

Γ ). Roughly speaking, we require
that no player can fail to be rational for an “infinitary” rea-
son. All finitely-specified LB(ΦΓ)-games turn out to satisfy
this condition, so we obtain the following:

Theorem 1. Every finitely-specified LB(ΦΓ)-game has a
rationalizable strategy.

Since we expect to encounter finitely-specified games most

often in practice, this suggests that the games we are likely
to encounter will indeed have rationalizable strategies.
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ABSTRACT
Nonmonotonic logics are usually characterized by the pres-
ence of some notion of ‘conditional’ that fails monotonicity.
Research on nonmonotonic logics is therefore largely con-
cerned with the defeasibility of argument forms and the as-
sociated normality (or abnormality) of its constituents. In
contrast, defeasible modes of inference aim to formalize the
defeasible aspects of modal notions such as actions, obli-
gations and knowledge. In this work we enrich the stan-
dard possible worlds semantics with a preference ordering
on worlds in Kripke models. The resulting family of modal
logics allow for the elegant expression of defeasible modali-
ties. We also propose a tableau calculus which is sound and
complete with respect to our preferential semantics.

Keywords
Knowledge representation and reasoning; modal logic; pref-
erential semantics; defeasible modes of inference

1. INTRODUCTION AND MOTIVATION
Defeasible reasoning, as traditionally studied in the litera-

ture on nonmonotonic reasoning, has focused mostly on one
aspect of defeasibility, namely that of argument forms. Such
is the case in the approach by Kraus et al. [33, 35], known
as the KLM approach, and related frameworks [5, 6, 7, 8,
10, 15, 20, 21]. For instance, in the KLM approach (propo-
sitional) defeasible consequence relations |∼ with a preferen-
tial semantics are studied. In this setting, the meaning of
a defeasible statement (or a ‘conditional’, as it is sometimes
referred to) of the form α |∼ β is that “all normal α-worlds
are β-worlds”, leaving it open for α-worlds that are, in a
sense, exceptional not to satisfy β. With the theory that
has been developed around this notion it becomes possible
to cope with exceptionality when performing reasoning.

There are of course many other appealing and equally use-
ful aspects of defeasibility besides that of arguments. These
include notions such as typicality [4, 21], concerned with
the most typical cases or situations (or even the most typ-
ical representatives of a class), and belief plausibility [2],
which relates to the most plausible epistemic possibilities
held by an agent, amongst others. It turns out that with
KLM-style defeasible statements one cannot capture these
aspects of defeasibility. This has to do partly with the syn-
tactic restrictions imposed on |∼, namely no nesting of con-

TARK 2013, Chennai, India.
Copyright 2013 by the authors.

ditionals, but, more fundamentally, it relates to where and
how the notion of normality is used in such statements. In-
deed, in a KLM defeasible statement α |∼ β, the normality
spotlight is somewhat put on α, as though normality was a
property of the premise and not of the conclusion. Whether
the situations in which β holds are normal or not plays no
role in the reasoning that is carried out. In the original
KLM framework, normality is also linked to the premise as a
whole, rather than its constituents. Technically this meant
one could not refer directly to normality of a sentence in
the scope of logical operators. This limitation is overcome
by taking a (modal) conditional approach à la Boutilier [5]
— the resulting conditional logics are sufficiently general to
allow for the expression of a number of different forms of
defeasible reasoning. However, the emphasis remains on the
defeasibility of arguments, or of conditionals.

In this paper we investigate a related, but incompara-
ble, notion which we refer to as defeasible modes of infer-
ence [11].1 These amount to defeasible versions of the tradi-
tional notions of actions, obligations, knowledge and beliefs,
to name a few, as studied in modal logics. For instance, in
an action context, one can say that normally the outcome of
a given action a is α . However we may also want to state
that the outcome of a is usually (or normally) α, which is
different from the former statement. To see why, the first
statement says that in the most normal worlds, the result of
performing the action a is always α, whereas in the second
one it is in the most normal situations resulting from a’s ex-
ecution that α holds — regardless of whether the situation
in which the claim is uttered is normal or not.

For a concrete example, assume one arrives at a dark room
and wants to toggle the light switch. Exceptionally, the light
will not turn on. This can be either because the light bulb
is blown (the current situation is abnormal) or because an
overcharge was caused while switching the light (the action
behaves abnormally). In the former case, the normality of
the situation, or state, before the action is assessed, whereas
in the latter the relative normality of the situation is assessed
against all possible outcomes. Here we are interested in
the formalization of the latter type of statement, where it
becomes important to shift the notion of normality from
the premise of an inference to the effect of an action, and,
importantly, use it in the scope of other logical constructors.

Our next example concerns obligations and weaker ver-
sions thereof. There is a subtle difference between stating

1The present paper extends and refines the preliminary pro-
posal which was presented at the 14th International Work-
shop on Non-Monotonic Reasoning (NMR).
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that, from the perspective of any normal situation, rhino
poaching ought to carry a minimum prison sentence of 10
years, and stating that, from any perspective, the minimum
sentence for rhino poaching normally ought to be 10 years.
The shift in focus is again from normality of the present
world, to relative normality amongst possible worlds. In the
former statement, an abnormal present world would render
the obligation unenforceable, whereas in the latter state-
ment, the obligation is applicable in all relatively normal
accessible worlds. We contend that the informal notion of
‘normal, reasonable obligations’ is more accurately modeled
as defeasible modalities than as conditional statements.

Scenarios such as the ones depicted above require an abil-
ity to talk about the normality of effects of an action, relative
normality of obligations, and so on. While existing modal
treatments of preferential reasoning can express preferential
semantics syntactically as modalities [5, 6, 20], they do not
suffice to express defeasible modes of inference as described
above. The ability to capture precisely these forms of de-
feasibility remains a fundamental challenge in the definition
of a coherent theory of defeasible reasoning. At present we
can formalize only the first type of statements above by, e.g.
stating > |∼ 2α in Britz et al.’s extension of preferential
reasoning to modal languages [8, 10]. (As we shall see later
in the paper, both Boutilier’s [5] and Booth et al.’s [4] ap-
proaches also have to be enriched in order to capture the
forms of defeasibility we are interested in here.)

In this paper we make the first steps towards filling this
gap by introducing (non-standard) modal operators allow-
ing us to talk about relative normality in accessible worlds.
With our defeasible versions of modalities, we can make
statements of the form“α holds in all of the relatively normal
accessible worlds”, thereby capturing defeasibility of what is
‘expected’ in target worlds. This notion of defeasibility in a
modality meets a variety of applications in Artificial Intelli-
gence, ranging from reasoning about actions to deontic and
epistemic reasoning. For instance, a defeasible-action opera-
tor allows us to make statements of the form p∼∼paα, which we
read as “α is a normal necessary effect of a” (i.e., necessary
in the most normal of a’s outcomes), and with defeasible-
obligation operators one can state formulae such as p∼∼pAα,
read as “α is a normal obligation of agent A”.

These operators are defined within the context of a general
preferential modal semantics obtained by enriching the stan-
dard possible worlds semantics with a preference order. The
main difference between the approach we propose here and
that of Boutilier [5] is in whether the underlying preference
ordering alters the meaning of modalities or not. Boutilier’s
conditional is defined directly from a preference order in a
bi-modal language, but the meanings of any additional, in-
dependently axiomatized, modalities are not influenced by
the preference order. Our defeasible modalities correspond
to a modification of the other modalities using the prefer-
ence relation. Also, in contrast with the plausibility models
of Baltag and Smets [2], the preference order we consider
here does not define an agent’s knowledge or beliefs. Rather,
it is part of the semantics of the background ontology de-
scribed by the theory or knowledge base at hand. As such, it
informs the meaning of defeasible actions, which can fail in
their outcome, or defeasible obligations, which may not hold
in exceptional accessible worlds, in that it alters the classical
semantics of these modalities. This allows for the definition
of a family of modal logics in which defeasible modes of in-

ference can be expressed, and which can be integrated with
existing |∼-based nonmonotonic modal logics [8, 10].

The remainder of the present paper is structured as fol-
lows: After setting up the notation and terminology that we
shall follow in this paper (Section 2), we revisit Britz et al.’s
preferential semantics for modal logic [8, 10] (Section 3)
by proposing a simplified version thereof. In Section 4 we
present a logic enriched with defeasible modalities allow-
ing for the formalization of defeasible versions of modes of
inference. In Section 5 we present a detailed example il-
lustrating the application of our constructions in an action
context. Following that, we define a tableau system for the
corresponding logic that we show to be sound and complete
with respect to our preferential semantics (Section 6). In
Section 7 we assess |∼-statements in our richer language.
After a discussion of and comparison with related work (Sec-
tion 8), we conclude with some comments and directions for
further investigation. All the proofs of our results can be
found in the Appendix.

2. MODAL LOGIC
We assume the reader is familiar with modal logic [14].

The purpose of this section is to make explicit the terminol-
ogy and notation we shall use.

Here we work within a set of atomic propositions P, using
the logical connectives ∧ (conjunction), ¬ (negation), and a
set of modal operators 2i, 1 ≤ i ≤ n. (In later sections we
shall adopt a richer language.) We assume that the under-
lying multimodal logic is independently axiomatized (i.e.,
the logic is a fusion and there is no interaction between the
modal operators [32]). Propositions are denoted by p, q, . . .,
and formulae by α, β, . . ., constructed in the usual way ac-
cording to the rule: α ::= p | ¬α | α∧α | 2iα. All the other
truth functional connectives (∨, →, ↔, . . . ) are defined in
terms of ¬ and ∧ in the usual way. Given 2i, 1 ≤ i ≤ n,
with 3i we denote its dual modal operator, i.e., for any α,
3iα ≡def ¬2i¬α. We use > as an abbreviation for p ∨ ¬p,
and ⊥ as an abbreviation for p ∧ ¬p, for some p ∈ P.

With L we denote the set of all formulae of the modal lan-
guage. The semantics is the standard possible-worlds one:

Definition 1. A Kripke model is a tuple M = 〈W,R,V〉
where W is a (non-empty) set of possible worlds, R = 〈R1,
. . . ,Rn〉, where each Ri ⊆W×W is an accessibility relation
on W, 1 ≤ i ≤ n, and V : W × P −→ {0, 1} is a valuation
function.

Satisfaction of formulae with respect to possible worlds in
a Kripke model is defined in the usual way:

Definition 2. Let M = 〈W,R,V〉 and w ∈W:

• M , w  p if and only if V(w, p) = 1;

• M , w  ¬α if and only if M , w 6 α;

• M , w  α ∧ β if and only if M , w  α and M , w  β;

• M , w  2iα if and only if M , w′  α for all w′ such
that (w,w′) ∈ Ri.

Given α ∈ L and M = 〈W,R,V〉, we say that M satisfies α
if there is at least one world w ∈W such that M , w  α. We
say that M is a model of α (alias α is true in M ), denoted
M  α, if M , w  α for every world w ∈ W. Given a class
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of models M, we say that α is valid in M if every Kripke
model M ∈M is a model of α.

Here we shall assume the system of normal modal logic K,
of which all the other normal modal logics are extensions.
Semantically, K is characterized by the class of all Kripke
models (Definition 1). We say that α locally entails β in
the system K (denoted α |= β) if for every K-model M and
every w in M , M , w  α implies M , w  β.

Syntactically, K corresponds to the smallest set of sen-
tences containing all propositional tautologies, all instances
of the axiom schema K : 2i(α → β) → (2iα → 2iβ),
1 ≤ i ≤ n, and closed under the rule of necessitation RN :
α/2iα, 1 ≤ i ≤ n.

3. MODAL PREFERENTIAL SEMANTICS
In this section we modify the constructions for preferential

reasoning in modal logic as studied by Britz et al. [8, 10]. We
do so by enriching standard Kripke models with preference
relations, instead of placing an ordering on states which are
labeled with pointed Kripke models. Our starting point is
therefore similar to the CT4O models of Boutilier [5] and
the plausibility models of Baltag and Smets [2].

Definition 3. A preferential Kripke model is a tuple P :=
〈W,R,V,≺〉 where W is a (non-empty) set of possible worlds,
R = 〈R1, . . . ,Rn〉, where each Ri ⊆ W ×W is an accessi-
bility relation on W, 1 ≤ i ≤ n, V : W × P −→ {0, 1} is
a valuation function, and ≺ ⊆ W ×W is a co-Noetherian
strict partial order on W, i.e., ≺ is irreflexive, transitive and
well-founded.2

Given a preferential Kripke model P = 〈W,R,V,≺〉, we
refer to M := 〈W,R,V〉 as its associated standard Kripke
model. If P = 〈W,R,V,≺〉 is a preferential Kripke model
and α ∈ L, then with JαK := {w ∈ W | M , w  α, where
M = 〈W,R,V〉} we denote the set of possible worlds satis-
fying α (α-worlds for short).

Definition 4. Let P = 〈W,R,V,≺〉 and let W′ ⊆ W.
With min≺W′ we denote the minimal elements of W′ with
respect to ≺, i.e., min≺W′ := {w ∈W′ | there is no w′ ∈W′

such that w′ ≺ w}.

The intuition behind the preference relation ≺ in a pref-
erential Kripke model P is that worlds lower down in the
order are more preferred (or more normal [4, 5]) than those
higher up. Note that the preference relation in a preferential
Kripke model, although a binary relation on W, is not to be
seen as an accessibility relation. Indeed, the ≺-component
in a preferential Kripke model has no counterpart in the
syntax as each accessibility relation has.

As an example, Figure 1 below depicts the preferential
Kripke model P = 〈W,R,V,≺〉, where W = {wi | 1 ≤
i ≤ 5}, R = 〈R2〉, with R2 = {(w1, w2), (w1, w4), (w2, w3),
(w2, w5), (w3, w2), (w4, w5), (w5, w4)}, represented by the
solid arrows in the picture, V is the obvious valuation func-
tion (in our pictorial representations of models we interpret

2This implies the smoothness condition in Kraus et al.’s
terminology [33], which basically says that ≺ has no in-
finitely descending chains. Even though well-foundedness
is stronger than smoothness, here we prefer to stick to the
term that is more broadly known outside the nonmonotonic
reasoning circle.

absence of an atom as the atom being false in the respec-
tive world), and ≺ is the transitive closure of {(w1, w2),
(w1, w3), (w2, w4), (w3, w4), (w4, w5)}, represented by the
dashed arrows in the picture. (Note the direction of the
dashed arrows, which point from less preferred to more pre-
ferred worlds.)

P :

• w1 {p}

•{p, q} w2 • w3 {p, q}

• w4 {q}

• w5 {}
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Figure 1: A preferential Kripke model for P = {p, q}
and a single modality.

Given P = 〈W,R,V,≺〉 and α ∈ L, α is satisfiable in P
if JαK 6= ∅, otherwise α is unsatisfiable in P. We say that α
is true in P (denoted P  α) if JαK = W. It is easy to see
that the addition of the ≺-component preserves the truth of
all (classical) modal formulae that are true in the remaining
Kripke structure:

Lemma 1. Let α ∈ L (i.e., α is a classical modal for-
mula). Let P = 〈W,R,V,≺〉 be a preferential Kripke model
and M = 〈W,R,V〉 its associated standard Kripke model.
Then P  α if and only if M  α.

Proof. See Appendix A.1.

We can define classes of preferential Kripke models in the
same way we do in the classical case. For instance, we can
talk about the class of reflexive preferential Kripke models,
in which the R-components are reflexive. We say that α is
valid in the class M of preferential Kripke models if and
only if α is true in every P ∈ M. Therefore, the following
result is an immediate consequence of Lemma 1:

Corollary 1. A modal formula α is valid in the classM
of preferential Kripke models if and only if it is valid in the
corresponding class of Kripke models.

4. PREFERENCE-BASED MODALITIES
Recalling our discussion in the Introduction, we want to

be able to state that a given sentence holds in all the rela-
tively normal worlds that are accessible. This leads us to the
definition of a ‘weaker’ version of the 2 modalities. Through
them we are then able to single out those normal situations
that one cannot grasp via the classical 2 modalities. Simi-
larly, we want to be able to state that a given sentence holds
in at least one relatively normal accessible world. This leads
us to the definition of a stronger version of 3, which may be
read as distinct possibility.

We define a more expressive language than L by extend-
ing our modal language with a family of defeasible modal
operators p∼∼pi and p∼∼

p

i, 1 ≤ i ≤ n (called, respectively, the
‘flag’ and the ‘flame’), where n is the number of classical
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modalities in the language. The formulae of the extended
language are then recursively defined by:

α ::= p | ¬α | α ∧ α | 2iα | p∼∼piα | p∼∼
p

iα

(As before, the other connectives are defined in terms of ¬
and ∧ in the usual way, and > and ⊥ are seen as abbrevia-
tions. It turns out that each p∼∼

p

i too is the dual of p∼∼pi, as we

shall see below.) With L̃ we denote the set of all formulae
of such a richer language.

The semantics of L̃ is in terms of our preferential Kripke

models (see Definition 3). As before, given α ∈ L̃ and a
preferential Kripke model P = 〈W,R,V,≺〉, with JαK we
denote the set of elements of W satisfying α.

Definition 5. Let P = 〈W,R,V,≺〉 be a preferential
Kripke model. Then:

• Jp∼∼piαK := {w ∈W | min≺ Ri(w) ⊆ JαK};

• J p∼∼
p

iαK := {w ∈W | min≺ Ri(w) ∩ JαK 6= ∅}.

The intuition behind a sentence like p∼∼piα is that α holds
in the most ‘normal’ of Ri-accessible worlds. p∼∼

p

iα intuitively
says that α holds in at least one such relatively normal ac-
cessible world. To give a simple example (a more elaborated
one is given in Section 5), if toggle denotes the action of tog-
gling the light switch and light the proposition “the light is
on”, with the formula ¬light → p∼∼ptogglelight we formalize the
example from the Introduction.

As mentioned before, in our enriched language the pref-
erence relation is not explicit in the syntax. The meaning
of the new modalities is informed by the preference relation,
which nevertheless remains tacit outside the realm of defea-
sible modalities. This stands in contrast to the approaches
of Baltag and Smets [2], Boutilier [5], Britz et al. [6] and
Giordano et al. [20], which cast the preference relation as
an extra modality in the language. From a knowledge rep-
resentation perspective, our approach has the advantage of
hiding some complex aspects of the semantics from the user
(e.g. a knowledge engineer who will write down sentences in
an agent’s knowledge base).

The notions of satisfaction in a preferential Kripke model,
truth (in a model) and validity (in a class of preferential
Kripke models) are extended to formulae with defeasible
modalities in the obvious way.

We observe that, like in the classical (i.e., non-defeasible)
case, the defeasible modal operators p∼∼p and p∼∼

p are the dual
of each other:

|= p∼∼piα↔ ¬ p∼∼
p

i¬α (1)

The following validities are also easy to verify:

|= p∼∼pi⊥ ↔ 2i⊥ |= 3i> ↔ p∼∼
p

i>

|= p∼∼pi> ↔ > |= p∼∼
p

i⊥ ↔ ⊥

The following is the p∼∼p-version of Axiom Schema K.

(K̃) |= p∼∼pi(α→ β)→ (p∼∼piα→ p∼∼piβ) (2)

The validity below is easy to verify:

(R̃) |= p∼∼pi(α ∧ β)↔ (p∼∼piα ∧ p∼∼piβ) (3)

We also have |= (p∼∼piα ∨ p∼∼piβ) → p∼∼pi(α ∨ β), but not the
converse, as can easily be checked.

The following validity is an immediate consequence of our
preferential semantics:

(N) |= 2iα→ p∼∼piα (4)

Intuitively, given i = 1, . . . , n, where n is the number of
modalities in the language, we want 2i and p∼∼pi to be ‘tied’
together in so far as one is the defeasible (or the ‘hard’)
version of the other. Schema N is in line with the commonly
accepted principle that whatever is classically the case is
also defeasibly so.3

From duality of p∼∼
p and p∼∼p and contraposition of N we get:

|= p∼∼
p

iα→ 3iα (5)

It can easily be checked that in our preferential semantics,
the standard rule of necessitation RN : α/2iα holds. The
following rule of normal necessitation (RNN) follows from
RN together with Schema N in (4) above:

(RNN)
α

p∼∼piα
(6)

From satisfaction of (1), (2) and (3), one can see that
the logic of our defeasible modalities shares properties com-
monly characterizing the so-called normal modal logics [14].
In particular, we have that the following rule holds:

(NRK)
(α1 ∧ . . . ∧ αn)→ β

(p∼∼piα1 ∧ . . . ∧ p∼∼piαn)→ p∼∼piβ
(n ≥ 0) (7)

The observant reader would have noticed that we assume
we have as many defeasible modalities as we have classical
ones. That is, for each 2i, a corresponding p∼∼pi (its defeasible
version) is assumed. Moreover they are both linked together
via Schema N in (4). In principle, from a technical point of
view, nothing precludes us from having defeasible modali-
ties with no corresponding classical version or the other way
round. The latter is easily dealt with by simply not having
p∼∼pi for some i for which 2i is present in the language. The
former case, on the other hand, would require an elaboration
of the semantics as satisfiability of p∼∼p-formulae calls upon the
accessibility relation Ri, associated with the 2i-modality.

The dependency between each (classical) modality and its
defeasible counterpart is defined by a (fixed) preference order
on worlds in the model. We do not have a Hilbert-style ax-
iomatization of this dependency yet. What is certain is that
such an axiomatization would require casting the preference
order as a modality, in order to axiomatize the relationship
between p∼∼pi, p∼∼

p

i and the preference order ≺, for each i. To
this end, we may use, for example, the modal axiomatization
of the preference order of Britz et al. [6], or one of Boutilier’s
modal systems [5]. Such an axiomatization is possible at the
expense of moving to a more expressive language (see the
remark below Definition 5 above and also the discussion in
Section 8). Nevertheless, from a computational logic point
of view, we shall suffice with the definition of a tableau-based
decision procedure, which will be presented in Section 6.

We also observe that in order for us to capture the seman-

tics of L̃ in standard conditional logics [14] we would require
the addition of a preference relation on worlds, all standard
modalities we want to work with and a suitably defined con-
ditional for each modality in the language. Our contention
here is that this route would hardly simplify matters.
3Similarly to what happens in KLM consequence relations
(α |= β implies α |∼ β) [33] and in defeasible subsumption
relations (C v D implies C <

∼D) [9].
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From the perspective of knowledge representation and rea-
soning, it becomes important to address the question of

what it means for an L̃-sentence to be entailed from an L̃-
knowledge base.

An L̃-knowledge base is a (possibly infinite) set K ⊆ L̃.
Given a preferential Kripke model P, we extend the notion
of satisfaction to knowledge bases in the obvious way: P 
K if and only if P  α for every α ∈ K.

Definition 6. Let K ⊆ L̃ and let α ∈ L̃. We say that K
(globally) entails α in the class M of preferential Kripke
models (denoted K |= α) if and only if for every P ∈M, if
P  K, then P  α.

Given this notion of entailment, its associated consequence
relation is defined as follows:

Cn(K) ≡def {α | K |= α} (8)

It can be checked that the consequence relation Cn(·) as
defined in (8) above is a Tarskian consequence relation:

Theorem 1. Let Cn(·) be a consequence relation defined
in terms of preferential entailment. Then Cn(·) satisfies the
following properties:

• K ⊆ Cn(K) (Inclusion)

• Cn(K) = Cn(Cn(K)) (Idempotency)

• If K1 ⊆ K2, then Cn(K1) ⊆ Cn(K2) (Monotonicity)

Proof. See Appendix A.2.

That is, in spite of the defeasibility features of p∼∼p, we end
up with a logic that is monotonic (at the entailment level).

5. AN APPLICATION EXAMPLE
Let us assume the following simple scenario depicting a

nuclear power-plant [8]. In a particular power station there
is an atomic pile and a cooling system, both of which can
be either on or off. A surveillance agent is in charge of
detecting hazardous situations so that the human controller
can prevent the plant from malfunctioning (Figure 2).

ON

OFF

DANGER

Figure 2: The power plant and its surveillance agent.

In what follows we shall illustrate our constructions from
previous sections in reasoning about action using the afore-
mentioned scenario.

We find in the AI literature a fair number of modal-based
formalisms for reasoning about actions and change [12, 13,
16, 18, 29, 38, 41, 42, 43]. These are essentially variants
of the modal logic K we presented in Section 2. Modal
operators are determined by a (finite) set of actions A =
{a1, . . . , an}: For each a ∈ A, there is associated a modal

operator 2a. Given a Kripke model, Ra ⊆W×W is there-
fore meant to represent possible executions of an (ontic) ac-
tion a at specific worlds w ∈W, i.e., Ra is the specification
of a’s behavior in a transition system. Hence, whenever
(w,w′) ∈ Ra, w′ is a possible outcome of doing a in w. For-
mulae of the form 2aα are used to specify the effects of
actions and they are read “after every execution of action a,
the formula α holds”. The operator 3a is mostly used to
specify the executability of actions: 3a> reads “there is a
possible execution of action a”.

In our nuclear power plant example, let P = {p, c, h} be
a set of propositions, where p stands for “the atomic pile is
on”, c for “the cooling system is on”, and h for “hazardous
situation”. Moreover, let A = {f,m} be a set of atomic
actions, where f stands for “flipping the pile switch”, and m
for (occurrence of) “a malfunction”.

We first construct a preferential Kripke model (Defini-
tion 3) in which to check the satisfiability and truth of a
few sentences. (The purpose is to illustrate the semantics of
our notion of defeasibility in an action context rather than
to present a comprehensive modeling of the nuclear power
plant scenario.)

Let P = 〈W,R,V,≺〉 be the preferential Kripke model
depicted in Figure 3, where W = {wi | 1 ≤ i ≤ 4}, R =
〈Rf ,Rm〉, with Rf = {(w1, w2), (w2, w1), (w3, w1), (w3, w4),
(w4, w2), (w4, w4)} and Rm = {(w4, w3), (w4, w4)}, V is the
obvious valuation function, and ≺ is the transitive closure
of {(w1, w2), (w2, w3), (w3, w4)}, i.e., of the relation repre-
sented by the dashed arrows in the picture. (Note again the
direction of ≺ from less to more normal worlds.)

P :

• w1 {p, c}

• w2 {c}

• w3 {}

• w4 {p, h}

f

f
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Figure 3: Preferential Kripke model for the power
plant scenario.

The rationale of this partial order is as follows: The utility
company selling the electricity generated by the power plant
tries as far as possible to keep both the pile and the cooling
system on, ensuring that the pile can easily be switched off
(world w1); sometimes the company has to switch the pile
off for maintenance but then tries to keep the cooler running,
because turning the pile on again would not cause a fault
in the cooling system (world w2); more rarely the company
needs to switch off both the pile and the cooler, e.g. when
the latter needs maintenance (world w3); and, finally, only
in very exceptional situations would the pile be on while the
cooler is off, e.g. during a serious malfunction (world w4).

In the preferential model P depicted above, one can check
that P  (p ∧ ¬c) ↔ h, i.e., J(p ∧ ¬c) ↔ hK = W. Also,
w4 ∈ Jh ∧ p∼∼

p

f¬hK: at w4 we have a hazardous situation, but
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it is possible to switch the pile off having as a normal effect
a safe condition. We have that w1 satisfies p∼∼pm⊥: at w1 a
malfunction cannot occur (which is not true of w4). In P we
have P  ¬p→ p∼∼pfp (the normal outcome of switching the
pile on is it being on), but P 6 ¬p → 2fp (see world w3).
We also have P  c→ p∼∼pf¬h (if the cooler is on, the normal
result of switching the pile is a safe situation). Finally we
also have P  h → p∼∼

p
m>: in any hazardous situation a

meltdown is a distinct possibility — but fortunately P 
3f¬h: from every world it is possible to return to a non-
hazardous world.

So far we have illustrated the preferential semantics of L̃-
statements using a specific preferential Kripke model. In a
knowledge representation context, though, we are interested

in preferential entailment from an L̃-theory or knowledge
base. The latter determines the preferential models that are
permissible from the standpoint of the knowledge engineer.

To illustrate this, consider the following L̃-knowledge base:

K =

{
(p ∧ ¬c)↔ h, h→ p∼∼

p

m>,
p→ p∼∼pf¬p, c→ p∼∼pfc, 3f¬h

}
K basically says that “a hazardous situation is one in which
the pile is on and the cooler off”, “in a hazardous situation
a malfunction is distinctly possible”, “if the pile is on, then
flipping its switch normally switches it off”, “if the cooler is
on, then switching the pile normally does not affect it” and
“it is always possible to flip the pile switch”. (Note that all
the formulae in K are true in the preferential model P of
Figure 3 above.) We can then conclude K |= p → p∼∼pf¬h,
K |= p∼∼pm⊥ → (¬p ∨ c) and K |= (p ∨ c) → p∼∼pf¬h, using

the sound L̃-inference rules and validities presented in the
previous section.

6. TABLEAU SYSTEM
In this section we present a simple tableau calculus for

defeasible modalities based on labeled formulae and on ex-
plicit accessibility relations [22].4 As we shall see, it also
makes use of an auxiliary structure of which the intention
is to build a preference relation on possible worlds. (For a
discussion on the differences between our tableau method
and the one by Giordano et al. [20], see end of Section 8.)

Definition 7. If n ∈ N and α ∈ L̃, then n :: α is a
labeled formula.

In a labeled formula n :: α, n is the label. (As we shall
see, informally, the idea is that the label stands for some
possible world in a Kripke model.)

Let mod(L̃) denote the set of all classical modalities of L̃.
(Remember our assumption that we have as many defeasible
modalities as we have classical ones and that, for a given i,
both 2i and p∼∼pi depend on the same Ri.)

Definition 8. A skeleton is a function Σ : mod(L̃) −→
2N×N.

Informally, a skeleton maps modalities in the language to
accessibility relations on possible worlds.

Definition 9. A preference relation ≺ is a binary rela-
tion on N.

4Our exposition here follows that given by Varzinczak [37]
and Castilho et al. [12, 13].

As alluded to above, ≺ is meant to capture a preference
relation on possible worlds. As we shall see below, like Σ, ≺
is built cumulatively through successive applications of the
tableau rules we shall introduce.

Definition 10. A branch is a tuple 〈S,Σ,≺〉, where S is
a set of labeled formulae, Σ is a skeleton and ≺ is a prefer-
ence relation.

Definition 11. A tableau rule is a rule of the form:

ρ
N ; Γ

D1 ; Γ′1 | . . . | Dk ; Γ′k

where N ; Γ is the numerator and D1 ; Γ′1 | . . . | Dk ; Γ′k is
the denominator.

Given a rule ρ, N represents one or more labeled formu-
lae, called the main formulae of the rule, separated by ‘,’. Γ
stands for any additional condition (on Σ or ≺) that must
be satisfied for the rule to be applicable. In the denomina-
tor, each Di, 1 ≤ i ≤ k, has one or more labeled formulae,
whereas each Γ′i is a condition to be satisfied after the ap-
plication of the rule (e.g. changes in the skeleton Σ or in
the relation ≺). The symbol ‘|’ indicates the occurrence of
a split in the branch.

Figure 4 presents the set of tableau rules for L̃. In the rules

we abbreviate (n, n′) ∈ Σ(i) as n
i→ n′, and n′ ∈ Σ(i)(n) as

n′ ∈ Σi(n). Finally, with n′?, n′′?, . . . we denote labels that
have not been used before. We say that a rule ρ is applicable
to a branch 〈S,Σ,≺〉 if and only if S contains an instance of
the main formulae of ρ and the conditions Γ of ρ are satisfied
by Σ and ≺.

(⊥)
n :: α, n :: ¬α

n :: ⊥ (¬)
n :: ¬¬α
n :: α

(∧)
n :: α ∧ β

n :: α, n :: β
(∨)

n :: ¬(α ∧ β)

n :: ¬α | n :: ¬β

(2i)
n :: 2iα ; n

i→ n′

n′ :: α
(3i)

n :: ¬2iα

n′? :: ¬α ; Γ′1 | n′? :: ¬α ; Γ′2

where Γ′1 = {n i→ n′?, n′? ∈ min
≺

Σi(n)} and

Γ′2 = {n i→ n′?, n
i→ n′′?, n′′? ≺ n′?, n′′? ∈ min

≺
Σi(n)}

(p∼∼pi)
n :: p∼∼piα ; n

i→ n′, n′ ∈ min≺ Σi(n)

n′ :: α

( p∼∼
p

i)
n :: ¬p∼∼piα

n′? :: ¬α ; n
i→ n′?, n′? ∈ min≺ Σi(n)

Figure 4: Tableau rules for L̃.

The Boolean rules together with (2i) are as usual and
need no explanation. Rule (p∼∼pi) propagates formulae in the
scope of a defeasible necessity operator to the most preferred
(with respect to ≺) of all accessible nodes. Rule ( p∼∼

p

i) creates
a preferred accessible node with the corresponding labeled
formulae as content. Rule (3i) replaces the standard rule
for 3-formulae and requires a more thorough explanation.
When creating a new accessible node, there are two possi-
bilities: Either (i) it is minimal (with respect to ≺) amongst
all the accessible nodes, in which case the result is the same
as that of applying Rule ( p∼∼

p

i), or (ii) it is not minimal, in
which case there must be a most preferred accessible node

54



that is more preferred (with respect to ≺) than the newly
created one. (This splitting is of the same nature as that in
the (∨)-rule, i.e., it fits the purpose of a proof by cases.)

Definition 12. A tableau T for α ∈ L̃ is the limit of a
sequence T 0, . . ., T n, . . . of sets of branches where the initial
T 0 = {〈{0 :: α}, ∅, ∅〉} and every T i+1 is obtained from T i

by the application of one of the rules in Figure 4 to some
branch 〈S,Σ,≺〉 ∈ T i. Such a limit is denoted T ∞.

We make the so-called fairness assumption: Any rule that
can be applied will eventually be applied, i.e., the order of
rule applications is not relevant. We say a tableau is satu-
rated if no rule is applicable to any of its branches.

Definition 13. A branch 〈S,Σ,≺〉 is closed if and only

if n :: ⊥ ∈ S for some n. A saturated tableau T for α ∈ L̃
is closed if and only if all its branches are closed. (If T is
not closed, then we say that it is an open tableau.)

For an example of construction of a tableau, consider the
sentence α = p∼∼p(p → q) → (2p → 2q) (which is not valid).
Figure 5 depicts the (open) tableau for ¬α = p∼∼p¬(p ∧ ¬q) ∧
2p ∧ ¬2q.

0 :: p∼∼p¬(p ∧ ¬q) ∧ 2p ∧ ¬2q

0 :: p∼∼p¬(p ∧ ¬q), 0 :: 2p, 0 :: ¬2q

1 :: ¬q ; Γ′1

1 :: p

1 :: ¬(p ∧ ¬q)

1 :: ¬p

1 :: ⊥

(⊥)

(∨)

1 :: ¬¬q

1 :: q

1 :: ⊥

(⊥)

(¬)

(∨)

(p∼∼p)

(2)

(3)

2 :: ¬q ; Γ′2

2 :: p

3 :: p

3 :: ¬(p ∧ ¬q)

3 :: ¬p

3 :: ⊥

(⊥)

(∨)

3 :: ¬¬q

3 :: q

(¬)

(∨)

(p∼∼p)

(2)

(2)

(3)

(∧)

Γ′1 = add (0, 1) to Σ and 1 to min≺ Σ(0)

Γ′2 = add (0, 2) and (0, 3) to Σ, (3, 2) to ≺ and 3 to min≺ Σ(0)

Figure 5: Visualization of an open tableau for the
formula p∼∼p¬(p ∧ ¬q) ∧ 2p ∧ ¬2q.

From the open tableau in Figure 5 we extract the prefer-
ential Kripke model P depicted in Figure 6. (In Figure 6
the understanding is that 3 ≺ 2 and that 0 is incomparable
with respect to ≺ to the other possible worlds.)

We are now ready to state the main result of this section.

Theorem 2. The tableau calculus for L̃ is sound and com-
plete with respect to the modal preferential semantics.

P :

•3 {p, q}

•2 {p}

• 0 {}

Figure 6: Preferential Kripke model P constructed
from Figure 5.

Proof. See Appendix A.3.

It can easily be checked that in the construction of the
tableau there is only a finite number of distinct states since
every formula generated by the application of a rule is a
sub-formula of the original one. Hence we have a decision

procedure for L̃.
We end this section with a brief remark on complexity. It

is well-known that satisfiability checking for modal logic K
and Kn are both pspace-complete [23, 34]. The addition of
p∼∼p and p∼∼

p to the language does not affect the space complex-
ity of the resulting tableaux. If the formula at the root of
the tableau is α, and |α| = m, then the space requirement
for each label is at most O(m). Since there exists a satu-
rated tableau with depth at most O(m2), the total space
requirement is O(m3).

7. ADDING DEFEASIBLE ARGUMENTS
An obvious next step to the work presented here is the

integration of L̃ with a KLM-style defeasible consequence
relation |∼, since this would allow for the expression of both
defeasible modalities and defeasible argument forms.5 First
we need some definitions.

Given P = 〈W,R,V,≺〉 and α, β ∈ L, the defeasible
statement α |∼ β holds in P (denoted P  α |∼ β) if and
only if min≺JαK ⊆ JβK, i.e., every ≺-minimal α-world is a
β-world. As an example, in the model P of Figure 1, we
have P  p |∼ 2q (but note that P 6 p → 2q). We also
have P  ¬p |∼ 3(¬p ∧ 2q) and P 6 2¬q |∼ ¬q (from the
latter follows P 6 2¬q → ¬q).

It is worth noting that if only a classical modal language is
assumed, then defeasible statements here still have the same
intuition as mentioned in the Introduction. To witness, the
statement 3α |∼ 2β just says that “all normal worlds with
an α-successor have only β-successors”. That is, any |∼-
statement still refers only to normality in the premise, or,
in this case, of the ‘actual’ world. In our enriched language
we shall be able to make statements of the form α |∼ p∼∼pβ.

We say that a preferential Kripke model P satisfies a set
of defeasible statements if each such statement holds in P.
Given a set X of defeasible statements, we say that X (pref-
erentially) entails the defeasible statement α |∼ β (denoted
X |= α |∼ β) if every preferential model satisfying all the
statements in X also satisfies α |∼ β. (It is easy to see
that |= here is exactly the same entailment relation from
Definition 6, just restated in terms of |∼-statements.)

We can now relate the truth of L̃-sentences in a preferen-
tial model with that of defeasible statements, as the follow-
ing result shows.

5Here, |∼ need not be a new connective in the language but
can rather have the same status as, e.g., subsumption and
defeasible versions thereof in description logics [1, 7, 9].
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Lemma 2. Let α ∈ L̃ and P be a preferential Kripke
model. Then P  α if and only if P  ¬α |∼ ⊥.

Proof. See Appendix A.4.

This result raises the obvious question on whether and

how entailment of L̃-sentences relates to that of |∼-statements.

Definition 14. Let K ⊆ L̃. K|∼ := {¬α |∼ ⊥ | α ∈ K}.

Theorem 3. K |= α if and only if K|∼ |= ¬α |∼ ⊥.

Proof. See Appendix A.4.

Hence, preferential entailment in L̃ reduces to preferen-

tial entailment of |∼-statements in the language of L̃. Note
that soundness of KLM postulates for modal preferential

reasoning [8, 10] is preserved when moving from L to L̃.
An immediate consequence of this is that the existence of a
sound and complete KLM-style |∼-based proof system [33]

for L̃ would define a decision procedure for the extension

of L̃ with |∼. At present we can only conjecture that a proof
system along these lines exists, and is based on the integra-

tion of the tableau-based proof procedure for L̃ presented in
Section 6 and the tableau calculi of Giordano et al [20].

8. DISCUSSION AND RELATED WORK
To the best of our knowledge, the first attempt to formal-

ize a notion of relative normality in the context of defeasible
reasoning was that of Delgrande [17] in which a conditional
logic of normality is defined. Given the relationship between
the general constructions on which we base our work and
those by Kraus et al., most of the remarks in the compar-
ison made by Lehmann and Magidor [35, Section 3.7] are
applicable in comparing Delgrande’s approach to ours and
we do not repeat them here. We note though that, like
Kraus et al. and Boutilier, Delgrande focuses on defeasibil-
ity of argument forms rather than modes of reasoning as
we studied here. Contrary to them, Delgrande adopts the
semantics of standard conditional logics [14, Chapter 10],
which is based on a (general) selection function picking out
the most normal worlds relative to the current one. In his
setting, a conditional α⇒ β holds at a world w if and only
if the set of most normal α-worlds (relative to w) are also
β-worlds. We can capture Delgrande’s conditionals in our
approach with p∼∼p-formulae of the form p∼∼p(α→ β) in the class
of S5 preferential Kripke models.

Boutilier’s expressive conditional logics of normality [5]
act as unifying framework for a number of conditional logics,
including those of Delgrande and Kraus et al. but do not
suffice to define p∼∼p. This is because his modalities are defined
directly from a preference order, and do not influence the
meaning of any further modalities added to the language.

Baltag and Smets [2] also employ preference orders to re-
fer to the normality of accessible worlds, but their aims and
resulting semantics differ from ours in key aspects. They
define multi-agent epistemic and doxastic plausibility models
similar to our preferential Kripke models. Each accessibility
relation is induced by a corresponding preference order and
linked to an agent whose beliefs are determined by what the
agent deems epistemically possible. Minimality, or doxas-
tic appearance, is therefore determined relative to an epis-
temic context, which is induced as an equivalence relation

on worlds. This results in modalities of knowledge, (condi-
tional) belief and safe belief that are somewhat related to
our defeasible modalities.

In contrast, our work offers a preferential semantic frame-
work independent of a specific application area. We assume
(for now) a single preference order across worlds in each
Kripke model. The preference order informs the meaning
of existing modalities by considering minimality in accessi-
ble worlds, where accessibility is determined independently
from the preference order. The key difference between our
proposal and plausibility models is therefore that our classi-
cal modalities are defined independently from any preference
order. The special case of a single modality which does cor-
respond to a (connected) preference order yields a logic in
which p∼∼p defines a belief operator. This follows from the con-
flation of accessibility and preference in plausibility models.

As we have seen, Britz et al. [8, 10] also propose a gen-
eral semantic framework for preferential modal logics, but
they focus on defeasible arguments rather than on defea-
sible modalities. As such, the semantics introduced there
provides a foundation for the semantics of defeasible modal-
ities, but the syntax of preferential modal logic also does not
suffice to define preferential modalities such as ours.

Booth et al. [4] introduce an operator with which one can
refer directly in the language to those most typical situa-
tions in which a given sentence is true. For instance, in
their enriched language, a sentence of the form α refers to
the ‘most typical’ α-worlds in a semantics similar to ours.
One of the advantages of such an extension is the possibility
to make statements of the kind“all normal α-worlds are nor-
mal β-worlds”, thereby shifting the focus of normality from
the antecedent by also allowing us to talk about normal-
ity in the consequent. This additional expressivity can also
be obtained by the addition of the modality 2 of Modular
Gödel-Löb logic to express normality syntactically [6, 20]:

α ≡def 2¬α ∧ α (9)

Despite the gain in expressivity, both these proposals re-
main propositional in nature in that the only modality al-
lowed is the one with semantics determined by the prefer-
ence order. Britz et al. extended propositional preferential
reasoning to the modal case [8, 10], but the modalities un-
der consideration there remain classical — their meaning re-
mains as in propositional modal logic, despite the underlying
preferential semantics of the logic due to the extension of the
language with conditional statements of the form α |∼ β.

If we internalize the preference relation as a modality and
enrich our classical modal language with converse modalities
and nominals [3], then p∼∼p can be given an entirely classical
treatment as follows:

p∼∼pα ≡def

∨
o∈O

(o ∧ 2(¬α→ 3≺(α ∧ 3̆o))) (10)

where 3≺ is the dual of the modality characterizing the
preference relation [6], 3̆ is the converse of 3 and O is a set
of nominals. Then p∼∼pα is true at a world w in a (hybrid)
Kripke model if and only if w is the denotation of some
nominal o ∈ O and every ¬α-world that is accessible from w
is less normal than some α-world which is accessible from w.
(Of course, besides ensuring that each nominal is interpreted
as at most one possible world one also has to make sure that
each possible world in a Kripke model is the denotation of
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some nominal o ∈ O. This is warranted in the class of named
models [3, pp. 439–447].)

The definition in (10) above has the inconvenience of re-
quiring infinitary disjunctions [30] in the language. We can
replace (10) with an infinitely denumerable collection of ax-
iom schemata given by:

(F) @op∼∼pα↔ @o2(2≺¬3̆o→ α) (11)

As mentioned earlier, making use of such a machinery takes
us to a much more expressive language. Note though that
complexity-wise we remain in the same class — satisfiability
in the basic hybrid logic like the one briefly sketched above
is pspace-complete [3, Theorem 7.21].

Finally, despite the similarities between the tableau method
we presented here and the one by Giordano et al. [20], they
remain largely superficial. First, our preferential semantics
counts as a proper generalization of the KLM approach to
full modal logic, whereas theirs is an embedding of proposi-
tional KLM consequence relations in an enriched language.
Second, again, in their approach the preference relation is
explicit and cast as an additional modality, requiring a spe-
cial tableau rule to deal with it. Here the preference relation
is not present in the language and materializes only in the
inner workings of our tableau method.

9. CONCLUSION AND FUTURE WORK
The main contribution of the present paper is the pro-

vision of a natural, simple and intuitive framework within
which to represent defeasible modes of inference. The de-
feasible modalities we introduced here refer to the relative
normality of accessible worlds, unlike syntactic characteri-
zations of normality [4, 5, 20, 21], which refer to the rela-
tive normality of worlds in which a given sentence is true,
or |∼ [33, 35], which refers to the relative normality of the
worlds in which the premise is true.

We have seen that the modal logics obtained through the
addition of p∼∼pi are monotonic (Theorem 1). Although a logic

based on L̃ can be extended to include a nonmonotonic con-
ditional |∼, such an extension does not make the addition
of p∼∼pi a superfluous extension to the language, since p∼∼pi can-
not be expressed in terms of |∼. One avenue for future
research is therefore integrating p∼∼pi with our approach to
modal preferential reasoning [8, 10], since this would allow
for the expression of both defeasible arguments and defeasi-
ble modalities. First steps towards this aim were presented
in Section 7. Once this is in place, a deeper exploration of
applications in various modal logics is warranted.

Here we have investigated the case where a single prefer-
ence ordering among worlds is assumed. As we have seen,
this fits the bill in capturing defeasibility of action effects or
obligations, where an ‘objective’ or commonly agreed upon
notion of normality can be quite easily justified. When mov-
ing to defeasible notions of knowledge or belief, though, a
multi-preference based approach seems to be more appropri-
ate, as agents may have different views on which worlds are
more normal than others, i.e., preferences become subjective
or at least relative to an agent [2].

Here we have investigated defeasible modalities in the sys-
tem K. Our basic framework paves the way for exploring
similar notions of defeasibility and additional properties in
specific systems of modal logics. Once this is in place we
will be able to investigate further applications of defeasi-

ble modalities in e.g. dynamic epistemic logic [36] as well
as in other similarly structured logics, such as description
logics [1]. We are currently investigating such extensions.

Finally, from a knowledge representation perspective, when
one deals with knowledge bases, issues related to modu-
larization [25, 26, 27, 28], knowledge base update and re-
pair [24, 39, 40] as well as knowledge base maintenance and
versioning [19] show up. These are tasks acknowledged as
important by the community in the classical case [31] and
that also make sense in a nonmonotonic setting. When mov-
ing to a defeasible approach, though, such tasks have to be
reassessed and specific methods and techniques redesigned.
This constitutes an avenue worthy of exploration.
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APPENDIX
A. PROOFS OF MAIN RESULTS

A.1 Proof of Lemma 1
• Proving the ‘only if’ part: Let α ∈ L be such that M  α,
where M = 〈W,R,V〉. Then M , w  α for every w ∈ W.
Let P = 〈W,R,V,≺〉 for some ≺ ⊆ W ×W. Since α ∈
L, α’s truth conditions do not depend on ≺. Then, given
that α is true at every w ∈W, it follows that JαK = W and
therefore P  α.

• Proving the ‘if’ part: Let α ∈ L be such that P  α, where
P = 〈W,R,V,≺〉. Then JαK = W. Since α ∈ L, it follows
that M , w  α for every w ∈ W with M = 〈W,R,V〉.
Hence M  α.

A.2 Proof of Theorem 1
• Showing Inclusion: Let α ∈ K. Since every preferential
Kripke model of K is a model of α, it immediately follows
that K |= α, from which follows α ∈ Cn(K).

• Showing Idempotency: Let α ∈ Cn(K). Then Cn(K) |=
α follows by the same argument given for Inclusion above.
Hence α ∈ Cn(Cn(K)). For the other direction, let α ∈
Cn(Cn(K)). Then Cn(K) |= α. Assume that α /∈ Cn(K).
Then K 6|= α, and then there exists P such that P  K
but P 6 α. But from the definition of Cn(·) we have P 
Cn(K), from which we derive a contradiction. Hence α ∈
Cn(K).

• Showing Monotonicity: Let α ∈ Cn(K1). Then K1 |= α.
Let P be such that P  K2. Since K1 ⊆ K2, we have
P  K1 too. Hence P  α and we have K2 |= α, and
therefore α ∈ Cn(K2).

A.3 Proof of Theorem 2
We first show completeness of our tableau method, i.e., if

α ∈ L̃ is preferentially valid, then every tableau for ¬α is
closed. Equivalently, if there is an open (saturated) tableau
for α, then α is satisfiable, i.e., there exists a preferential
Kripke model P in which JαK 6= ∅.

In the following, we show that from any open tableau T
for α ∈ L̃ one can construct a preferential Kripke model
satisfying α, from which the result follows.

Let T = T ∞ be an open saturated tableau for the for-

mula α ∈ L̃ (possibly infinite). Then there must be an
open branch 〈S,Σ,≺〉 in T (cf. Definition 13). Let the tuple
PT := 〈WT ,RT ,VT ,≺T 〉 be defined as follows:

• WT := {n | n :: β ∈ S};
• RT := 〈R1, . . . ,Rn〉, where each Ri := Σ(i), for 1 ≤
i ≤ n;

• VT := v, where v : WT × P −→ {0, 1} and v(n, p) = 1
if and only if n :: p ∈ S, and

• ≺T :=≺.

Lemma 3. P is a preferential Kripke model.

Proof. That MT := 〈WT ,RT ,VT 〉 is a Kripke model
follows immediately from the definition of WT , RT and VT
above. It remains to show that ≺T is a strict partial order
satisfying the smoothness condition [33]. That is, one has
to show that:

• ≺T is irreflexive and transitive: This follows from the
construction of ≺ in Rules ( p∼∼

p

i) and (3i), since (i) no
pair (n, n) is ever added to ≺ and (ii) no chain of length
greater than 2 is ever added to the preference structure.

• ≺T has no infinitely descending chains: Clearly no pair
(n, n′) is added to ≺ beyond those added by Rules ( p∼∼

p

i)
and (3i). Given this one can easily check that ≺ must
have a minimum.

It remains to show that P above satisfies α.

Lemma 4. Let P = 〈WT ,RT ,VT ,≺T 〉 and let β be a
sub-formula of α. If n :: β ∈ S, then n ∈ JβK.

Proof. The proof is by structural induction on the num-
ber of connectives in β.
Base case: β is a literal. We have two cases: (i) β = p ∈ P.
Then n :: p ∈ S if and only if v(n, p) = 1 if and only if
VT (n, p) = 1 if and only if n ∈ JpK = JβK. (ii) β = ¬p for
some p ∈ P. Then n :: ¬p ∈ S, and therefore n :: p /∈ S,
otherwise n :: ⊥ ∈ S (as T is saturated), contradicting the
assumption that 〈S,Σ,≺〉 is open. Hence v(n, p) = 0, and
then n /∈ JpK, from which follows n ∈WT \JpK = J¬pK = JβK.
Induction step: The Boolean cases are as usual. We analyze
the modal cases (below MT = 〈WT ,RT ,VT 〉):
• β = 2iγ: If n :: 2iγ ∈ S, then n′ :: γ ∈ S by Rule (2i),

for every n′ such that (n, n′) ∈ Ri. By the induction
hypothesis, n′ ∈ JγK for every n′ such that (n, n′) ∈ Ri,
i.e., MT , n

′  γ for every n′ such that (n, n′) ∈ Ri.
From this we conclude MT , n  2iγ and therefore n ∈
J2iγK.

• β = ¬2iγ: If n :: ¬2iγ ∈ S, then by Rule (3i) there
exists n′ such that (n, n′) ∈ Ri and n′ :: ¬γ ∈ S. Then
there exists n′ such that (n, n′) ∈ Ri and n′ ∈ J¬γK, by
the induction hypothesis. Hence n ∈ J¬2iγK.

• β = p∼∼piγ: If n :: p∼∼piγ ∈ S, then n′ :: γ ∈ S by Rule (p∼∼pi),
for every n′ such that n′ ∈ min≺T Ri(n). By the in-
duction hypothesis, n′ ∈ JγK for every n′ such that
n′ ∈ min≺T Ri(n), and therefore n ∈ Jp∼∼piγK.

• β = ¬p∼∼piγ: If n :: ¬p∼∼piγ ∈ S, then by Rule ( p∼∼
p

i) there
exists n′ such that n′ ∈ min≺T Ri(n) and n′ :: ¬γ ∈ S.
Then there exists n′ such that n′ ∈ min≺T Ri(n) and
n′ ∈ J¬γK, by the induction hypothesis. Hence n ∈
J¬p∼∼piγK.

Now, since 0 :: α ∈ S, from Lemma 4 we conclude that
0 ∈ JαK. Hence JαK 6= ∅ for the preferential Kripke model
constructed as above, and therefore α is satisfiable, as we
wanted to show.

In the following we show soundness, i.e., if α ∈ L̃ is (pref-
erentially) satisfiable, then there is an open tableau for α.
Equivalently, if all the tableaux for α are closed, then α is
unsatisfiable, i.e., ¬α is valid.

Definition 15. Let S be a set of labeled formulae. S(n) :=
{β | n :: β ∈ S}.

Definition 16. Ŝ(n) :=
∧
{β | β ∈ S(n)}.
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Lemma 5. If, for every tableau rule that can be applied to
T j = {. . . , 〈Sj ,Σj ,≺j〉, . . .} to produce T j+1 = {. . . , 〈Sj+1,
Σj+1,≺j+1〉, . . .} and for every branch 〈Sj ,Σj ,≺j〉 ∈ T j

there exists n such that ̂Sj+1(n) is unsatisfiable, then Ŝj(n)
is unsatisfiable.

Proof. We suffice with the cases of Rules ( p∼∼
p

i) and (3i).

• Rule ( p∼∼
p

i): If Sj contains n :: ¬p∼∼piβ, then an applica-

tion of Rule ( p∼∼
p

i) creates a new label n′, adds n
i→ n′

to Σj(i) to obtain Σj+1(i), adds n′ :: ¬β to Sj to ob-
tain Sj+1, and sets n′ as a minimum in Σj+1(i) with
respect to ≺j+1 (which extends ≺j). Now, suppose

Ŝj(n) is satisfiable, but ̂Sj+1(n′) is unsatisfiable. Since
̂Sj+1(n′) = ¬β (as Sj+1 is the singleton {n′ :: ¬β} —

n′ the freshly added label), then ¬β must be unsatisfi-
able, i.e., |= β. From this and normal necessitation —

Rule (6) —, we have |= p∼∼piβ. Hence Ŝj(n) is unsatisfi-
able too because n :: ¬p∼∼piβ ∈ Sj .

• Rule (3i): If Sj contains n :: ¬2iβ, then an applica-
tion of Rule (3i) will create a new label n′ and either

(i) add n
i→ n′ to Σj(i) to obtain Σj+1(i), add n′ :: ¬β

to Sj to obtain Sj+1, and set n′ as a minimum in
Σj+1(i) with respect to ≺j+1 (thereby extending ≺j) or

(ii) add n
i→ n′ to Σj(i) to obtain Σj+1(i), add n′ :: ¬β

to Sj to obtain Sj+1, create a new label n′′ and also

add n
i→ n′′ to Σj+1(i), add (n′′, n′) to ≺j to obtain

≺j+1 and set n′′ as a minimum in Σj+1(i) with respect
to ≺j+1. If (i) is the case, then we have the same argu-
ment as for Rule ( p∼∼

p

i) above. Let us assume (ii) is the

case. Suppose Ŝj(n) is satisfiable, but either ̂Sj+1(n′)

is unsatisfiable or ̂Sj+1(n′′) is unsatisfiable. If ̂Sj+1(n′)

is unsatisfiable, since ̂Sj+1(n′) = ¬β we have the same

argument as for Rule ( p∼∼
p

i) above. If ̂Sj+1(n′′) is un-

satisfiable, then since ̂Sj+1(n′′) = >, we have |= ⊥,

which implies |= 2i⊥, and then |= 2iβ. Hence Ŝj(n)
is unsatisfiable too because n :: ¬2iβ ∈ Sj .

From Lemma 5 we conclude that if all tableaux for α are
closed, then every Ŝ(n) is unsatisfiable. In particular Ŝ(0) =
α is unsatisfiable. Hence all rules preserve satisfiability when
transforming one set of branches into another. This warrants
soundness of our tableau rules.

A.4 Proofs of Lemma 2 and Theorem 3
Lemma 2: Let P = 〈W,R,V,≺〉. P  α if and only if
JαK = W if and only if J¬αK = ∅ if and only if min≺J¬αK = ∅
if and only if min≺J¬αK ⊆ J⊥K if and only if P¬α |∼ ⊥.

Theorem 3: LetK|∼ be obtained fromK as in Definition 14.
For the ‘only if’ part, let P be such that P  K|∼, i.e.,
P  ¬β |∼ ⊥ for every ¬β |∼ ⊥ in K|∼. From Lemma 2,
this is the case if and only if P  β for every β ∈ K. Hence
P  K, and since K |= α, we have P  α too. From
Lemma 2 again we get P  ¬α |∼ ⊥. Now, for the ‘if’ part,
let P be such that P  K, i.e., P  β for all β ∈ K. From
Lemma 2, it follows that P  ¬β |∼ ⊥ for every β ∈ K,

and then P  K|∼. From this and K|∼ |= ¬α |∼ ⊥ we
have P  ¬α |∼ ⊥, and therefore by Lemma 2 again we get
P  α.
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ABSTRACT
We compare different epistemic notions in the presence of
awareness of propositional variables: the logics of implicit
knowledge (in which explicit knowledge is definable), explicit
knowledge, and speculative knowledge. Different notions of
bisimulation are suitable for these logics. We provide corre-
spondence between bisimulation and modal equivalence on
image-finite models for these logics. The logic of speculative
knowledge is equally expressive as the logic of explicit knowl-
edge, and the logic of implicit knowledge is more expressive
than both. We also provide axiomatizations for the three
logics — only the one for speculative knowledge is novel.
Then we move to the study of dynamics by recalling action
models incorporating awareness. We show that any conceiv-
able change of knowledge or awareness can be modelled in
this setting, we give a complete axiomatization for the dy-
namic logic of implicit knowledge. The dynamic versions of
all three logics are, surprising, equally expressive.

Keywords
modal logic, awareness, bisimulation, dynamics

1. INTRODUCTION

Motivating example. Explicit knowledge is often defined
as implicit knowledge plus awareness, with implicit knowl-
edge given by the standard modal box [4, 9]. Thus, to ex-
press that ‘agent i knows ϕ explicitly’, KE

i ϕ, we use formu-
las of the form 2iϕ ∧ Aiϕ. In such frameworks, awareness
is typically modelled as a function A that indicates the set
of formulas each agent is aware of at each state; hence, Aiϕ
is true at state s iff ϕ ∈ Ai(s). When the agents’ awareness
consists of all formulas built from a subset of atoms (the
so-called propositional awareness), we can simply associate
with a formula ϕ the set of atoms Q ⊆ P occurring in ϕ, and
we can then say that Aiϕ is true at state s iff Q ⊆ Ai(s).

This definition of explicit knowledge can lead to counter-

TARK 2013, Chennai, India.
Copyright 2013 by the authors.

intuitive situations. Consider the following models.

M : ◦ ◦ ◦
s t u

M ′ : ◦ ◦ •
s t u

Model M has a domain {s, t, u}, a single agent i with acces-
sibility relation R = {(s, t), (t, u)}, atom p true in all states,
and the agent is aware of p only in state s. Awareness is not
depicted. Model M ′ is like M , except that p is now false in
u (the black dot).

As mentioned, the agent knows explicitly a given ϕ at
a given state iff she is aware of the formula in that state
and ϕ is true in all accessible states. Let us apply this to
the depicted structures. In both, the agent is unaware of p
at state t, and therefore of the value of p in u: she should
see (M, t) and (M ′, t) as identical, and therefore (M, s) and
(M ′, s) as well. We propose a notion of bisimilarity for which
(M, s) and (M ′, s) are bisimilar.

Now here is the surprise: in the language with awareness
and modal box, states (M, s) and (M ′, s) are not modally
equivalent. Given explicit knowledge KE

i ϕ as 2iϕ ∧ Aiϕ,
consider KE

i 2ip. This is true in (M, s) but false in (M ′, s).
In logics of awareness [4] it is common only to consider

models for knowledge (equivalence relations) and belief. How-
ever, as always in multi-agent logics, it is elementary to
transform a single-agent model with directed (asymmetric)
accessibility into a multi-agent model where intersecting equiv-
alence classes for agents force such asymmetry. For example,
consider the following.

T : ◦ ◦ ◦ ◦
w s t u

i j i

T ′ : ◦ ◦ ◦ •
w s t u

i j i

Models T and T ′ have equivalence accessibility relations (a
line represents a two-directions arrow, with reflexive and
transitive arrows omitted) for agents i and j. Agent i is
aware of p in the states w, and unaware of p in every other
state; agent j is unaware of p in every state. The only differ-
ence between T and T ′ is that p is true at (T, u) and false in
(T ′, u). Again, intuitively, these models are the same from
agent i’s perspective. But KE

i 2j2ip is true above and false
below.
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The problem here is the presence of the 2. If the KE op-
erator is not defined by abbreviation but a primitive in the
language, then the models cannot be distinguished, as we
will prove. Explicit possibility LE seems another desirable
primitive, as it is not the dual of explicit knowledge (both
require awareness). This led us to the comparison of logics
where different epistemic notions are primitive. Instead of
KE and LE as primitives, it turns out that we can equally
well take KE and A (awareness) as primitive, and this lan-
guage then contrasts nicely with the initial one with 2 and
A as primitives. A third epistemic notion is also in our fo-
cus: speculative knowledge KS [20, 21], and with that, the
language with KS and A. An agent i speculatively knows ϕ,
KS

i ϕ, if in any i-accessible state, in any state indistinguish-
able from that as far as awareness of i is concerned, ϕ is
true. This is exactly the sense in which (M, s) and (M ′, s′),
or (T,w) and (T ′, w), are similar for i.

Our results. This paper addresses the question of what
a proper notion of knowledge should be in the presence
of awareness, and what the proper notion of bisimulation
should be in structures encoding knowledge and awareness;
how these choices interact; and how adding dynamics of
knowledge and awareness further affects this. We present
two notions of bisimulation for the Fagin and Halpern struc-
tures of [4], standard bisimulation and awareness bisimula-
tion; and we present three logics, all in the presence of oper-
ators Aiϕ for awareness of variables occurring in ϕ: the logic
of implicit knowledge (with 2i, so that KE

i is definable), the
logic of explicit knowledge (with KE

i ), and the logic of specu-
lative knowledge (with KS

i ), summarily introduced above as
knowledge modulo speculation over unaware variables. We
then show that, on image-finite models, standard bisimilar-
ity corresponds to modal equivalence in the logic of implicit
knowledge, but that awareness bisimilarity corresponds to
modal equivalence in the logic of explicit knowledge, and also
to modal equivalence in the logic of speculative knowledge.
We continue by listing various expressivity results, mainly
that the logic of implicit knowledge is (strictly) more expres-
sive than the logic of explicit knowledge (reminiscent of [9]).
After that we give axiomatizations for our three logics. The
logic of implicit knowledge was already axiomatized in [4]
and the logic of explicit knowledge in [9], but the axiomati-
zation for the logic of speculative knowledge is novel. Then
we investigate the dynamics of awareness and of knowledge,
by way of epistemic awareness action models. The dynamic
logic of speculative knowledge has already been reported in
[22]. Here, we show that on the class of finite models ev-
ery conceivable change of (implicit, explicit, or speculative)
knowledge or awareness can be modelled in an epistemic
awareness action model. Finally, we give a complete axiom-
atization for the dynamic logic of implicit knowledge. The
dynamic versions of the logics are, surprising, equally expres-
sive. This also gives us the axiomatization for the dynamic
logic of explicit knowledge.

Overview of the literature. Our work is rooted in the tra-
dition of epistemic logic [13] and in particular multi-agent
epistemic logic [15, 5], in various works on the interaction
between awareness and knowledge [4, 16, 9, 11, 12, 8, 10],
and in modal logical research in propositional quantification,
starting with [6] and followed up by work on bisimulation
quantifiers [24, 14, 7].

Works treating awareness either follow a more semanti-
cally flavoured approach, where awareness is defined in terms
of a set of propositional variables [17, 11], or a more syn-
tactically flavoured approach, where awareness concerns all
formulas of the language in a given set, in order to model
‘limited rationality’ of agents [4, 19]. Our proposal falls
straight into the semantic corner: within the limits of their
awareness, agents are fully rational.

2. LOGICS FOR AWARENESS
Throughout the contribution, given are a countable non-

empty set of atomic propositions P and a (disjoint) finite
non-empty set of agents N .

Definition 1 (Epistemic awareness model) An episte-
mic awareness model is a tuple M = (S,R,A, V ) where

• S (also denoted by D(M)) is a non-empty set of states;

• R : N → P(S × S) is an accessibility function;

• A : N → S → P(P ) is an awareness function;

• V : P → P(S) is a valuation.

A pair (M, s) with s ∈ S is an epistemic awareness state.

We write Ri for R(i), Ai for A(i), and Ri(s) for {t ∈ S |
Ri(s, t)}. An epistemic awareness model is image-finite if all
Ri(s) are finite.

An epistemic awareness model is simply an epistemic model
plus a propositional awareness function. We associate two
notions of bisimulation [18, 3] with this. Standard bisimula-
tion is the more obvious one, but awareness bisimulation is
evidently the more suitable notion in view of our introduc-
tory examples. The motivation for awareness bisimulation
was the lattice of state spaces in [11]; see [20, 21] for details.

Definition 2 (Standard bisimulation) Let Q ⊆ P . A Q
standard bisimulation between epistemic awareness models
M = (S,R,A, V ) and M ′ = (S′, R′,A′, V ′) is a relation
R[Q] ⊆ (S × S′) such that, for every (s, s′) ∈ R[Q], for
every agent i ∈ N , and for every p ∈ Q:

• atoms: s ∈ V (p) iff s′ ∈ V ′(p);

• aware: Q ∩ Ai(s) = Q ∩ A′i(s′);

• forth: if t ∈ Ri(s) then there is a t′ ∈ R′i(s′) such that
(t, t′) ∈ R[Q];

• back: if t′ ∈ R′i(s′) then there is a t ∈ Ri(s) such that
(t, t′) ∈ R[Q].

(M, s) and (M ′, s′) are Q standard bisimilar, notation (M, s)
'Q (M ′, s′), if there is a Q standard bisimulation between
M and M ′ that contains (s, s′).

Definition 3 (Awareness bisimulation) As Definition 2
but with the following clauses for forth and back instead.

• forth: if t ∈ Ri(s) then there is a t′ ∈ R′i(s′) such that
(t, t′) ∈ R[Q ∩ Ai(s)];

• back: if t′ ∈ R′i(s′) then there is a t ∈ Ri(s) such that
(t, t′) ∈ R[Q ∩ A′i(s′)].

where R[Q∩Ai(s)] is a Q∩Ai(s) awareness bisimulation and
R[Q ∩ A′i(s′)] is a Q ∩ A′i(s′) awareness bisimulation. The
notation for Q awareness bisimilarity is (M, s)↔Q(M ′, s′).

In an awareness bisimulation, the perspective of the agent
is restricted to the variables that she is aware of, therefore
in the back and forth steps bisimulation is only checked for
the variables in Q∩Ai(s) instead of the variables in Q. The
following is therefore obvious.
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Proposition 4 Let (M, s) and (M ′, s′) be epistemic aware-
ness models, and Q ⊆ P . If (M, s) 'Q (M ′, s′), then
(M, s)↔Q(M ′, s′).

Example 1 Awareness bisimularity does not imply stan-
dard bisimularity. The epistemic awareness states (M, s)
and (M ′, s) of the introduction are {p} awareness bisimilar.
To see this, observe that (M,u) and (M ′, u′) are ∅ aware-
ness bisimilar; then, because of this, because {p}∩Ai(t) = ∅
and because t’s states coincide in p’s truth value and in
i’s awareness of p, epistemic awareness states (M, t) and
(M ′, t′) are {p} awareness bisimilar. In turn, this, the fact
that {p} ∩ Ai(s) = {p} and the fact that s and s′ coincide
in p’s truth value and in i’s awareness of p, make epistemic
awareness states (M, s) and (M ′, s′) {p} awareness bisimilar
too.

However, (M, s) and (M ′, s) are not {p} standard bisimi-
lar because, in turn, (M, t) and (M ′, t) are not {p} standard
bisimilar, and this is because (M,u) and (M ′, u) are not {p}
standard bisimilar: they differ in p’s truth-value.

Definition 5 (Language) The language L(2,KE , LE , KS ,
A) is defined as follows, where p ∈ P and i ∈ N .

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | 2iϕ | KE
i ϕ | LE

i ϕ | KS
i ϕ | Aiϕ

Given a language L, L|Q is the language with the proposi-
tional variables restricted to Q ⊆ P .

We typically consider languages for subsets of these induc-
tive rules. We write L2 for L(2, A), LE for L(KE , A), and
LS for L(KS , A), as these three languages are the main fo-
cus of our investigations. We assume familiarity with the
meaning of propositional constructs, the modal box, and
awareness. Implication →, disjunction ∨, equivalence ↔,
and the modal diamond 3i are defined by abbreviation, as
usual. Formula 2iϕ sometimes stands for ‘the agent im-
plicitly knows ϕ’, but we also view it as a mere technical
background notion. Formula KE

i ϕ stands for ‘the agent ex-
plicitly knows that ϕ, LE

i ϕ stands for ‘the agent explicitly
considers possible that ϕ. (Explicit knowledge is not the
dual of explicit possibility, as both require awareness.) For-
mula KS

i ϕ stands for ‘the agent speculatively knows that ϕ.
Speculative possibility LS

i ϕ is the dual of speculative knowl-
edge and by abbreviation defined as LS

i ϕ iff ¬KS
i ¬ϕ. More

explanations will be given with the semantics.

Definition 6 (Free variables) The free variables of a for-
mula ϕ are defined by v(p) := {p}, v(¬ϕ) := v(ϕ), v(ϕ ∧
ψ) := v(ϕ) ∪ v(ψ) and v(Y ϕ) := v(ϕ), where Y is one of
2i, Ai,K

E
i , L

E
i ,K

S
i .

Definition 7 (Semantics) Let (M, s) be an epistemic aware-
ness state, with M = (S,R,A, V ). The non-propositional
clauses are

(M, s) |= 2iϕ iff ∀t ∈ Ri(s), (M, t) |= ϕ
(M, s) |= Aiϕ iff v(ϕ) ⊆ Ai(s)
(M, s) |= KE

i ϕ iff v(ϕ) ⊆ Ai(s) and ∀t ∈ Ri(s), (M, t) |= ϕ
(M, s) |= LE

i ϕ iff v(ϕ) ⊆ Ai(s) and ∃t ∈ Ri(s), (M, t) |= ϕ
(M, s) |= KS

i ϕ iff ∀t ∈ Ri(s),∀(M ′, t′)↔Ai(s)(M, t),
(M ′, t′) |= ϕ

Model validity M |= ϕ and validity |= ϕ are defined as usual.
The logic (i.e., the set of validities) of language L2 is called
L2, the logic of LE is LE, and the logic of LS is LS.

We will refer to our standard logics as follows:

• L2: the logic of implicit knowledge

• LE : the logic of explicit knowledge

• LS : the logic of speculative knowledge

We pay attention to semantic relations between the non-
propositional primitives in Section 5. E.g., it is the case
that Aiϕ↔ (KE

i ϕ ∨ LE
i ¬ϕ).

Speculative knowledge is defined in terms of awareness
bisimulation: agent i knows speculatively ϕ at (M, s) iff ϕ
is the case in every epistemic awareness state that is Ai(s)
awareness bisimilar to some state t accessible from s in M .

Speculative and explicit knowledge are different. For ex-
ample, any agent knows p ∨ ¬p speculatively, even if she is
unaware of p, because in every possible state p ∨ ¬p is true.
Nevertheless, the agent only knows p ∨ ¬p explicitly when
she is aware of p.

Speculative and implicit knowledge are also different. The
agent may implicitly know p, but she cannot speculatively
know that, because she can speculate about p being false.
And if p were false, she cannot know that p.

More convincing examples of speculative knowledge in-
volve dynamics. Suppose that the agent explicitly knows q
but is unaware of p. She then speculatively knows: “If p is
false then even if I were to become aware of p I cannot ex-
plicitly know that p and q are both true.” (In the extended
logic of Section 7 this is formally ¬p → [A+p]¬KE

i (p ∧ q),
where [A+p] is a dynamic modal operator.) But she does
not explicitly know that, because she is unaware of p, and p
occurs in the formula. For more intuitions, see [20, 21, 22].

Definition 8 (Modal equivalence) Awareness epistemic
states (M, s) and (M ′, s′) are modally equivalent in a lan-
guage L up to Q ⊆ P , notation (M, s) ≡LQ (M ′, s′), if for all

ϕ ∈ L|Q, (M, s) |= ϕ iff (M ′, s′) |= ϕ. For L = L2,LE ,LS

we write for that, respectively, ≡2
Q, ≡E

Q, and ≡S
Q.

Example 2 Consider the first introductory example. The
formula KE

i 2ip is true in (M, s) and false in (M ′, s). The
models are not modally equivalent in the logic L2. But they
are modally equivalent in the logic LE (without 2), as we
will show later.

3. BISIMILARITY AND MODAL EQUIVA-
LENCE

For the logic of implicit knowledge we have, as expected,
that standard bisimilarity implies modal equivalence in L2.
Moreover, in the class of image-finite models, modal equiv-
alence in L2 implies standard bisimilarity. (Let (M, s) and
(M ′, s′) be epistemic awareness models, and Q ⊆ P ...)

Proposition 9
(M, s) 'Q (M ′, s′) implies (M, s) ≡2

Q (M ′, s′).

Proof. The proof is standard, by induction on ϕ. The
case for formulas of the form Aiϕ follows from the aware
clause in Definition 2.

Proposition 10 On image-finite models:
(M, s) ≡2

Q (M ′, s′) implies (M, s) 'Q (M ′, s′).

Proof. Again, the proof is standard. For proving the
aware clause, we use modal equivalence with respect to for-
mulas of the form Aiϕ.
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Theorem 11 On image-finite models:
(M, s) 'Q (M ′, s′) iff (M, s) ≡2

Q (M ′, s′).

For the logic of explicit knowledge the correspondence is
between awareness bisimulation and modal equivalence in
LE . We recall that awareness bisimulation is a weaker notion
than standard bisimulation.

Proposition 12
(M, s)↔Q(M ′, s′) implies (M, s) ≡E

Q (M ′, s′).

Proof. We show the following:

Let ϕ ∈ LE and let Q ⊆ P such that v(ϕ) ⊆ Q.
Then for any (M, s) and (M ′, s′), (M, s)↔Q(M ′, s′)
implies that: (M, s) |= ϕ iff (M ′, s′) |= ϕ.

In this formulation it is important that ϕ is chosen before Q,
and both ϕ and Q before the models, so that the inductive
hypothesis may be used on a subformula of ϕ for another
subset of P than the initial Q (and for any models). Again,
the proof goes by induction on ϕ; all cases are trivial except
KE

i ϕ.
Case KE

i Assume (M, s)↔Q(M ′, s′), and suppose that
(M, s) |= KE

i ϕ with v(KE
i ϕ) ⊆ Q (which implies v(ϕ) ⊆

Q). By semantic interpretation, v(ϕ) ⊆ Ai(s) and every
state in Ri(s) satisfies ϕ. First, take any t′ ∈ R′i(s

′). By
back there is a t ∈ Ri(s) such that (M, t)↔Q∩Ai(s)(M

′, t′).
But t ∈ Ri(s) so (M, t) |= ϕ. Moreover, v(ϕ) ⊆ Q and
v(ϕ) ⊆ Ai(s) so v(ϕ) ⊆ Q ∩ Ai(s), and then we can use
induction hypothesis to get (M ′, t′) |= ϕ. Thus, every ele-
ment of R′i(s

′) satisfies ϕ. Second, (M, s)↔Q(M ′, s′) implies
Q ∩ Ai(s) = Q ∩ A′i(s′), so from v(ϕ) ⊆ Q ∩ Ai(s) we get
v(ϕ) ⊆ Q ∩ A′i(s′) and thus v(ϕ) ⊆ A′i(s′). Hence, from
the two parts we get (M ′, s′) |= KE

i ϕ, as needed. The other
direction is similar.

Proposition 13 On image-finite models:
(M, s) ≡E

Q (M ′, s′) implies (M, s)↔Q(M ′, s′).

Proof. We will show that the relation of modal equiv-
alence in LE with formulas built from atoms in Q is a Q
awareness bisimulation, i.e., that ≡E

Q satisfies Definition 3.

Suppose that (M, s) ≡E
Q (M ′, s′).

• Atoms. Take any p ∈ Q and suppose s ∈ V (p); then p ∈
LE |Q and (M, s) |= p so (M ′, s′) |= p, that is, s′ ∈ V ′(p).
The other direction is similar.

• Aware. Take any i ∈ N , and suppose p ∈ Q∩Ai(s); then
p ∈ Q and p ∈ Ai(s). From the latter we get (M, s) |= Aip
and therefore (M ′, s′) |= Aip, that is, p ∈ A′i(s′). We
already had p ∈ Q, so p ∈ Q∩A′i(s′). The other direction
is similar.

• Forth. Take any i ∈ N , and suppose t ∈ Ri(s); we want
to find a t′ ∈ R′i(s

′) such that (M, t) ≡E
Q∩Ai(s) (M ′, t′).

We proceed by contradiction, so suppose no element of
R′i(s

′) is modally equivalent to t with respect to formulas
in LE |(Q ∩ Ai(s)).
Observe how R′i(s

′) is a finite non-empty set: finite be-
cause of image-finiteness, and non-empty because Ri(s) 6=
∅ iff (M, s) |= Li>, and since Li> ∈ LE |Q, we should
have (M ′, s′) |= Li> too. Now, since no element of R′i(s

′)
is modally equivalent to t with respect to formulas with
atoms in Q∩Ai(s), then for each t′k ∈ R′i(s′) there should
be a formula ϕk ∈ LE |(Q∩Ai(s)) that holds at t but fails
at t′k.

Now define ϕ := ϕ1 ∧ . . . ∧ ϕn (with n the cardinality of
R′i(s

′)). We have (M, t) |= ϕ because every ϕk is true
at t, but also (M ′, t′k) 6|= ϕ for every k because each ϕk

fails in at least t′k. Moreover, since ϕk ∈ LE |(Q ∩ Ai(s))
for every k, we have ϕ ∈ LE |(Q ∩ Ai(s)), and hence
v(ϕ) ⊆ Q ∩ Ai(s), that is, v(ϕ) ⊆ Ai(s). Now, from
t ∈ Ri(s), (M, t) |= ϕ and v(ϕ) ⊆ Ai(s) we get (M, s) |=
Liϕ. But (M, s) 6|= Liϕ because no successor of s′ satisfies
ϕ. Then, Liϕ distinguishes between s and s′. But since
ϕ ∈ LE |(Q ∩ Ai(s)), we have Liϕ ∈ LE |(Q ∩ Ai(s)) and
hence Liϕ ∈ LE |Q: this contradicts (M, s) ≡E

Q (M ′, s′).
Hence, there should be a state t′ ∈ R′i(s

′) such that
(M, t) ≡E

Q∩Ai(s) (M ′, t′).

• Back. Similar to the forth clause.

Theorem 14 On image-finite models:
(M, s)↔Q(M ′, s′) iff (M, s) ≡E

Q (M ′, s′).

Example 3 The formula KE
i 2ip distinguishing the models

in the introduction is in L2 (it is an abbreviation of Ai2ip∧
2i2ip), but it is not in LE. It was unclear until now that it
does not have an LE equivalent. Now it is clear: the models
(M, s) and (M ′, s′) are p awareness bisimilar, and therefore
modally equivalent in LE.

That the language L2 of implicit knowledge is aligned
with standard bisimulation rather than awareness bisimu-
lation can be seen as a strong argument against the use of
this language to specify interactions in epistemic awareness
models: it is too rich from the point of view of an agent rea-
soning about its knowledge and awareness. The language of
explicit knowledge LE can be seen as its ‘explicit’ counter-
part. Without the aspect of awareness, L2 is nothing but
the standard multiagent epistemic language, built from the
propositional connectives plus operators to talk about what
the agent knows and considers possible. Similarly, language
LE can be seen as (relative to an expressivity result proved
in Section 5) built from propositional connectives plus op-
erators to talk about what the agent explicitly knows and
explicitly considers possible.

Finally, speculative knowledge. Interestingly, modal equiv-
alence in LS for the logic of speculative knowledge is also
characterized (on image-finite models) by awareness bisim-
ulation.

Proposition 15
(M, s)↔Q(M ′, s′) implies (M, s) ≡S

Q (M ′, s′).

Proof. See [21, 22].

Proposition 16 On image-finite models:
(M, s) ≡S

Q (M ′, s′) implies (M, s)↔Q(M ′, s′).

Proof. Assume (M, s) ≡S
Q (M ′, s′); we will show that

the relation ≡S
Q defines a Q awareness bisimulation linking

(M, s) and (M ′, s′). Clauses atoms and aware are straight-
forward; back is similar to forth.

• Forth. We proceed as in Proposition 13. Assume that
t ∈ Ri(s), that the i-successors of t are t′1, . . . , t

′
m (a fi-

nite number), and that none of those is Q∩Ai(s) modally
equivalent to t. Therefore there are difference formulas
ϕ1, . . . , ϕm ∈ LS |(Q ∩ Ai(s)) that are false in t′1, . . . , t

′
m,

respectively, and true in t, so that their conjunction ψ =∧
1..m ϕi is true in t. This conjunction ψ is also in LS |(Q∩
Ai(s)). We now have that (M, s) |= LS

i ψ, as there is an
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i-accessible state from s, namely t, and a Q∩Ai(s) aware-
ness bisimilar state equivalent to (M, t), namely (M, t) it-
self, such that (M, t) |= ψ. (From (M, t) ≡Q∩Ai(s) (M, t)
follows by the definition of the bisimulation that (t, t) ∈
R[Q ∩ Ai(s)].) On the other hand, LS

i ψ is false in s′:
clearly, ψ is false in any of the states t′1, . . . , t

′
m accessible

from s′, but any Q∩Ai(s) modally equivalent state should
also not satisfy ψ, as ψ ∈ LS |(Q ∩ Ai(s)).

Theorem 17 On image-finite models:
(M, s)↔Q(M ′, s′) iff (M, s) ≡S

Q (M ′, s′).

4. HAVING THE SAME KNOWLEDGE
We can now harvest the benefits from the previous sec-

tion. We want to characterize when two epistemic awareness
states are the same ‘from the perspective of an agent’, that
is, when the agent’s knowledge and ignorance is the same in
both. This is weaker than being modally equivalent: two ep-
istemic awareness states (M, s) and (M ′, s′) that differ only
in a propositional variable p look the same for an agent that
is not aware of p in both, and they also look the same for
an agent that is aware of p in both but such that the actual
state is not accessible. The results for implicit, explicit and
speculative knowledge are similar.

Definition 18 (Same knowledge) Let Q ⊆ P , and N ′ ⊆
N . Assume epistemic awareness states (M, s) and (M ′, s′).

• (M, s) and (M ′, s′) describe the same implicit knowledge
up to Q for the agents in N ′ iff, for every agent i ∈ N ′
and every formula ϕ ∈ L2|Q, (M, s) |= 2iϕ iff (M ′, s′) |=
2iϕ.

• (M, s) and (M ′, s′) describe the same explicit knowledge
up to Q for the agents in N ′ iff, for every agent i ∈ N ′ and
every formula ϕ ∈ LE |Q, (M, s) |= KE

i ϕ iff (M ′, s′) |=
KE

i ϕ, and (M, s) |= LE
i ϕ iff (M ′, s′) |= LE

i ϕ.

• (M, s) and (M ′, s′) describe the same speculative knowl-
edge up to Q for the agents in N ′ iff, for every agent
i ∈ N and every formula ϕ ∈ LS, (M, s) |= KS

i ϕ iff
(M ′, s′) |= KS

i ϕ.

If (M, s) and (M ′, s′) describe the same explicit knowledge
for agent i up to (at least) Ai(s), and Ai(s) = A′i(s′), then
we can simply say that they describe the same explicit knowl-
edge for agent i; and similarly for speculative knowledge.

To define the same explicit knowledge, we need to refer to
both KE and LE in the definition (both require awareness).
For implicit knowledge and for speculative knowledge the
part for the dual diamond version is simply the contrapo-
sition of the part for the box version. The ‘at least’ bit in
the final part of the definition is there, because agent i does
not explicitly know any formula with variables in Q \Ai(s),
both in s and s′.

Write (M, s)↔i(M ′, s′) whenever (M, s)↔Ai(s)(M
′, s′) ex-

cept for the valuation of atoms in s and s′ (i.e., skip clause
atoms in the root), and except for back and forth for all
other agents than i, in the root. Then this ↔i equivalence
class encodes exactly ‘what agent i knows in state s’. This
works both for explicit knowledge and for speculative knowl-
edge (for implicit knowledge we would require standard bi-
simulation, but we consider that case of lesser interest).

Proposition 19 Let (M, s) and (M ′, s′) be image-finite ep-
istemic awareness models, and i ∈ N . Then (M, s)↔i(M ′, s′)

iff (M, s) and (M ′, s′) describe the same explicit / specula-
tive knowledge for agent i.

Proof. Directly from Theorem 14, resp., Theorem 17.

This structural characterization of explicit knowledge and
speculative knowledge, for a given agent, was an important
motivation for our investigation.

5. EXPRESSIVITY
Two models (M, s) and (M ′, s′) can be distinguished in

language L of logic L if there is formula ϕ ∈ L that is false
in (M, s) and true in (M ′, s′); ϕ is called a distinguishing
formula. A logic L with language L is at least as expressive
as L′ with language L′ if all pairs of models distinguishable
in L′ are also distinguishable in L. A standard way to prove
this, is to show that any formula in L′ is equivalent to a
formula in L (and a trivial case is when L′ ⊆ L), and a
standard way to disprove it is to show that some pair of
models distinguishable in L′ is indistinguishable in L. A
logic L is (strictly) more expressive than a language L′, given
a class of models, if L is at least as expressive as L′ but not
vice versa. Instead of expressivity of logics one sometimes
talks about the expressivity of languages. The latter is then,
of course, relative to a semantics, i.e., it concerns after all a
logic.

The expressivity hierarchy is a partial order <. We are
interested in the relative expressivity of our main logics L2,
LE , and LS . This is a total order: L2 > LE = LS . Both
terms in the equation are of interest. For example, LE and
LS could just as well have been incomparable. Of further in-
terest is that a number of other logics are equally expressive
as L2. As we have a good naming device for languages but
not for logics we will henceforth in this section talk about
expressivity of languages, not logics, and we will write all
languages in full, e.g., L(2, A) instead of L2, etc.

Proposition 20 (Equivalence class of L2)
The languages L(2, A), L(2,KE), L(2,KE , A) and L(2,
KE , LE) are equally expressive.

Proof. This follows from the following equivalences:

KE
i ϕ ⇔ 2iϕ ∧Aiϕ

LE
i ϕ ⇔ 3iϕ ∧Aiϕ

Aiϕ ⇔ KE
i ϕ ∨ LE

i ¬ϕ ⇔ KE
i (ϕ ∨ ¬ϕ)

Proposition 21 (Equivalence class of LE)
The languages L(KE , LE), L(KE , A), L(KE) and L(LE , A)
are equally expressive.

Proof. This follows from the following equivalences:

KE
i ϕ ⇔ ¬LE

i ¬ϕ ∧Aiϕ
LE

i ϕ ⇔ ¬KE
i ¬ϕ ∧Aiϕ

Aiϕ ⇔ KE
i ϕ ∨ LE

i ¬ϕ ⇔ KE
i (ϕ ∨ ¬ϕ)

Proposition 22 (L2 > LE)
L(2, A) is more expressive than L(KE , A).

Proof. Consider the models (M, s) and (M, s′) of the
first introductory example. We have seen that they are {p}
awareness bisimilar, and thus by Proposition 12 modally
equivalent in L(KE , A). On the other hand, KE

i 2ip ∈ L(2,
A) distinguishes between the two models. Hence, L(2, A) is
more expressive than L(KE , A).
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Proposition 23 (Equivalence class of LE, continued)
L(KS , A) and L(KE , A) are equally expressive.

Proof. To show that L(KS , A) is at least as expressive
L(KE , A) it is enough to show that KE and LE are express-
ible in L(KS , A). The following obvious (recursive) defini-
tions are sufficient for this.

(KE
i ϕ)′

def
≡ KS

i ϕ
′ ∧Aiϕ (LE

i ϕ)′
def
≡ LS

i ϕ
′ ∧Aiϕ

For the converse, to show that L(KE , A) is at least as ex-
pressive as L(KS , A), we require the concept of a uniform
interpolant [24]. It has been shown that the modal logic K
has the uniform interpolation property, that is, if there is a
formula ϕ whose variables are taken from the union of the
disjoint sets of atoms Q and R, then there is a single formula
ϕQ such that

1. ϕ→ ϕQ is valid.

2. the validity of ϕ → γ implies the validity of ϕQ → γ
for all formulae γ not containing any atoms from R.

This allows us to define a recursive translation (relative to
the set Q of propositional atoms the agent is aware of):

(KS
i ϕ)′

def
≡Q (KE

i ϕ
′)Q (LS

i ϕ)′
def
≡Q (LE

i ϕ
′)Q

The proof of Prop. 23 required the presence of the aware-
ness operator in L(KS , A) (but not that of A in L(KE , A),
given Prop. 21). As speculative knowledge treats unaware
atoms as their most general consistent interpretation, there
is no semantic difference (with respect to just speculative
knowledge) between an agent being unaware of an atom and
an agent (speculatively) knowing nothing about it.

The lower end of this expressivity hierarchy is also of the-
oretical interest but maybe less of practical interest. We
have various other results, that are given here without proof.
Clearly the propositional language L(∅) is less expressive
than all of L(KE), L(LE), L(2), and L(KS). More inter-
esting is that, although we already established that L(KE)
is equally expressive as L(KE , A), still, L(2), L(LE) and
L(KS) are strictly less expressive than, respectively, L(2, A),
L(LE , A) and L(KS , A). Interestingly, L(2) and L(KS) are
incomparable. And so on . . .

6. AXIOMATIZATION
In this section we present complete axiomatizations for

our logics.
Table 1 presents an axiomatization L2 characterizing the

validities of the language L2 in epistemic awareness mod-
els (the logic L2). This axiomatization is provided in [4],
modulo a minor variation (see Section 8).

All propositional tautologies Ai>
> Ai¬ϕ↔ Aiϕ
2i(ϕ→ ψ)→ (2iϕ→ 2iψ) Ai(ϕ ∧ ψ)↔ Aiϕ ∧Aiψ
From ϕ and ϕ→ ψ infer ψ Ai2jϕ↔ Aiϕ
From ϕ infer 2iϕ AiAjϕ↔ Aiϕ

Table 1: Axiom system L2

Theorem 24 (Soundness and completeness)
Axiom system L2 is sound and complete for L2 with respect
to epistemic awareness models.

Proof. Soundness is proved by showing that axioms in
L2 are valid and that its rules preserve validity. Complete-
ness is proved by using the canonical model technique in the
standard way.

Table 2 presents an axiomatization LE characterizing the
validities of the language LE in epistemic awareness models.
A similar axiomatization, but with a different completeness
proof, was provided in [9]. See again Section 8 for further
discussion.

All propositional tautologies Ai>
> Ai¬ϕ↔ Aiϕ
KE

i (ϕ→ ψ)→ (KE
i ϕ→ KE

i ψ) Ai(ϕ ∧ ψ)↔ Aiϕ ∧Aiψ
KE

i ϕ→ Aiϕ AiK
E
j ϕ↔ Aiϕ

From ϕ and ϕ→ ψ infer ψ AiAjϕ↔ Aiϕ
From ϕ infer Aiϕ→ KE

i ϕ

Table 2: Axiom system LE

Theorem 25 (Soundness and completeness)
Axiom system LE is sound and complete for LE with respect
to epistemic awareness models.

Proof. Soundness is proved by showing that axioms in
LE are valid and that its rules preserve validity. Complete-
ness is proved by using the canonical model technique in the
standard way.

Table 3 presents an axiomatization LS characterizing the
validities of the language LS in epistemic awareness models.
In axiom * of Table 3, called KS, it is required that p 6∈ v(ϕ).

All propositional tautologies Ai>
> Ai¬ϕ↔ Aiϕ
KS

i (ϕ→ ψ)→ (KS
i ϕ→ KS

i ψ) Ai(ϕ ∧ ψ)↔ Aiϕ ∧Aiψ
KS

i ϕ→ (¬Aip→ KS
i ϕ[p\ψ]) * AiK

S
j ϕ↔ Aiϕ

From ϕ and ϕ→ ψ infer ψ AiAjϕ↔ Aiϕ
From ϕ infer KS

i ϕ

Table 3: Axiom system LS

Since the axiomatization for the logic of speculative knowl-
edge is novel, we provide the results in detail.

Theorem 26 (Soundness) Every theorem of LS is valid.

Proof. This is a quite standard proof, and we only need
to examine the axioms and rules involving speculative knowl-
edge. Axiom KS

i (ϕ→ ψ)→ (KS
i ϕ→ KS

i ψ) and the rule of
necessitation for KS are straightforward, and are also found
in [21].

Axiom KS is new. It says that if an agent speculatively
knows a formula despite the formula using an atom of which
the agent is unaware, then the agent would continue to know
that formula if the atom were replaced with any other for-
mula. This axiom captures the intuition of the specula-
tive knowledge operator, where if an agent is unaware of an
atom, the agent must assume the most general interpreta-
tion of that atom. In other words, this is according to the
semantics for speculative knowledge.

To prove completeness, we use the canonical model tech-
nique.
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Definition 27 (Canonical model) The canonical model
for LS is a tuple Mc = (Sc, Rc,Ac, V c) where

• Sc is the set of all theories (maximal consistent sets) of
LS;

• For any i ∈ N , Rc
i is a binary relation on Sc such that

Rc
i (Φ,Ψ) iff for all ϕ, KS

i ϕ ∈ Φ implies ϕ ∈ Ψ;

• Ac : N → Sc → P is such that p ∈ Ac
i (Φ) iff Aip ∈ Φ;

• V c : P → Sc is such that Φ ∈ V c(p) iff p ∈ Φ.

Lemma 28 For all formulas ϕ ∈ LS and all maximal con-
sistent sets Φ ∈ Sc, v(ϕ) ⊆ Ac

i (Φ) iff Aiϕ ∈ Φ.

Proof. This follows directly from the definition of a ca-
nonical model (Definition 27) and the axioms involving aware-
ness (right-hand side of Table 3).

Lemma 29 Suppose that (M, s) is image-finite. Let Th(M, s)
be {ϕ ∈ LS | (M, s) |= ϕ}. Then (M, s)↔(Mc,Th(M, s)).

Proof. This follows from the definitions of the canonical
model (Def. 27) and awareness bisimulation (Def. 3). De-
fine the relation B = {(s,Th(M, s)) | s ∈ D(M)}. It can be
easily seen that B satisfies clauses atoms and aware. For
forth, if t ∈ Ri(s), then we have (t,Th(M, t)) ∈ B, and
we note that Th(M, t) ∈ Rc

i (Th(M, s)) since if (M, s) |=
KS

i (ϕ), then (M, t) |= ϕ. For back, if Φ ∈ Rc
i (Th(M, s)),

then for every formula ϕ ∈ Φ we must have (M, s) |= LS
i ϕ.

Since M is image-finite there must be some t ∈ Ri(s) such
that for all ϕ ∈ Φ, (M, t) |= ϕ. Therefore (t,Φ) ∈ B and we
are done.

Lemma 30 (Truth) For all formulas ϕ ∈ LS and all max-
imal consistent sets Φ ∈ Sc, (Mc,Φ) |= ϕ iff ϕ ∈ Φ.

Proof Sketch. This is shown by induction over the com-
plexity of formulas; we only show the non-trivial case KS

i ϕ.
Suppose (Mc,Φ) |= KS

i ϕ. Then for all Ψ ∈ Rc
i (Φ) and

for all (N, t)↔Ac
i (Φ)(M

c,Ψ) we have (N, t) |= ϕ. Suppose

for contradiction that KS
i ϕ /∈ Φ; then there must be some

Ψ ∈ Rc
i (Φ) such that ¬ϕ ∈ Ψ (this follows from the max-

imality of Φ, from propositional reasoning, and the axioms
for distribution of KS over → and necessitation for KS).
By induction hypothesis, (Mc,Ψ) |= ¬ϕ and, since aware-
ness bisimulation is reflexive, we have the required contra-
diction, so we must have KS

i ϕ ∈ Φ.
Now suppose that KS

i ϕ ∈ Φ and define Q := v(ϕ)\Ac
i (Φ).

From axiom KS we also have that(
KS

i ϕ ∧
∧
q∈Q

¬Aiq
)
→ KS

i ϕ[Q\ψ],

where ψ is any vector of formulas in one-to-one correspon-
dence with Q (so that [Q\ψ] stands for simultaneous substi-
tution). So KS

i ϕ[Q\ψ] ∈ Φ. Now suppose that Ψ ∈ Rc
i (Φ),

and that (N, t) is any model such that (N, t)↔Ai(Φ)(M
c,Ψ).

By Theorem 26, Th(N, t) must be a maximally consis-
tent set. For every atom p ∈ Q, we define a characteristic
formula, χ(p),that is true exactly when p is in the sets reach-
able from Th(N, t), up to the modal depth of ϕ. This can be
done by taking the intersection of these sets with the closure
set of ϕ (all subformulas of ϕ and their negations) and the
set Ac

i (Φ). Applying axiom KS, substituting χ(p) for p we
can show that LS

i ψ ∈ Φ for all ψ ⊆ ϕ where (N, t) |= ψ.
Since KS

i ϕ ∈ Φ for every subtitution of Q, it follows that
(N, t) |= ϕ as required. Therefore, (Mc,Φ) |= KS

i ϕ as re-
quired.

Theorem 31 (Completeness)
Let Φ ⊆ LS and ϕ ∈ LS. Then Φ |= ϕ implies Φ ` ϕ.

7. DYNAMICS

7.1 Epistemic awareness action models
Epistemic awareness models represent the information of

agents who may be uncertain about the truth of some propo-
sitional variables and unaware of others. The information of
such agents can change via informational acts. Epistemic
awareness action models represent awareness change and
knowledge change. They were introduced in [22] for the logic
of speculative knowledge. The definition adds a component
for awareness to the action models of [1] (and a component
for postconditions, as in [23]).

Definition 32 (Epistemic awareness action model)
An epistemic awareness action model is a tuple M = (S,R,A,
pre, post) where

• S is a non-empty set of actions;

• R : N → P(S× S) is an accessibility function;

• A : {+,−} → N → S → P(P ) is an awareness change
function, indicating the disjoint sets of atoms each agent
i ∈ N will become aware (+) and unaware of (-) after the
execution of s ∈ S;

• pre : S→ L is a precondition function specifying, for each
action s ∈ S, the requirement for its execution;

• post : S → P → L is a postcondition function specify-
ing, for each action in s ∈ S, how the truth value of each
atomic proposition p ∈ P will change.

A pair (M, s) with s ∈ S is an epistemic awareness action.

The language L of the preconditions and postconditions is a
fixed parameter of this definition. We write A+

i for A(+)(i)
and A−i for A(−)(i).

Example 4 Particular kinds of epistemic awareness action
models can be considered. Some examples:

• If A+ and A− are both empty, the standard action models
for knowledge change reappear.

• The singleton epistemic awareness action model with ac-
tion s accessible to all agents, with trivial precondition and
postcondition, and such that A+

i (s) = {p} for all agents
i, represents ‘all agents become aware of p’ (without any
knowledge change). For this action we write A+p. (Simi-
larly, A−p, for becoming unaware of a variable.)

• The singleton epistemic awareness action model that is
similar to the previous, but with precondition ϕ and A+

i (s) =
v(ϕ), represents a ‘public announcement of a novel issue
ϕ’ — all agents become aware of the variables in ϕ as part
of the announcement. For this action we write !Aϕ.

We can now indicate how an epistemic awareness action
model modifies an epistemic awareness model.

Definition 33 (Action model execution) Let M = (S,
R,A, V ) be an epistemic awareness model, and let M =
(S,R,A, pre, post) be an epistemic awareness action model.
The epistemic awareness model M ⊗M = (S′, R′,A′, V ′) –
the result of executing M in M – is defined as follows:
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S′ :=
{

(s, s) | (M, s) |= pre(s)
}

R′i :=
{(

(s, s), (s′, s′)
)
| s′ ∈ Ri(s) and (s, s′) ∈ Ri

}
A′i(s, s) :=

(
Ai(s) ∪ A+

i (s)
)
\A−i (s)

V ′(p) :=
{

(s, s) | (M, s) |= post(s, p)
}

The new set of states is the restricted cartesian product
of S and S: a pair (s, s) is a state in the new model iff s
satisfies s’s precondition in M . Since the precondition is a
formula of a language L, we assume a satisfiability relation
|= that evaluates it. For the accessibility relation of the new
model, we combine the accessibility relation of the ‘static’
model and the ‘action’ model: a state (s′, s′) is R′i-accessible
from state (s, s) iff s′ is Ri-accessible from s, and s′ is Ri-
accessible from s. For the awareness function of each agent i
in each state (s, s), we add to Ai(s) the atoms in A+

i (s) and
remove those in A−i (s) (in whatever order, as these sets are
disjoint). For the valuation: an atomic proposition p is true
at state (s, s) iff s satisfies post(s, p) in M .

7.2 Language and semantics
Instead of interpreting action models relative to a given

logical language, we can also consider the set of action model
frames as an additional parameter in an inductively defined
language with a clause [M, s]ϕ (where the precondition of ac-
tions should be lower in the inductive hierarchy); this stands
for ‘after execution of (M, s), ϕ (is true)’.

Definition 34 (Language) The language L(⊗) extends any
L with an additional inductive clause [M, s]ϕ, where (M, s)
is an epistemic awareness action satisfying that: its domain
is finite, the postcondition function changes the valuation of
only a finite number of atomic propositions, and the aware-
ness function returns two finite sets of atomic propositions.
For L(2, A,⊗) we write L2⊗, for L(KE , A,⊗) we write
LE⊗, and L(KS , A,⊗) we write LS⊗.

Definition 35 (Free variables)
An additional inductive clause v([M, s]ϕ) is defined as

v(ϕ)∪
⋃

t∈D(M)

v(pre(t))∪
⋃

t∈D(M),p∈A+
i (t)∪A−

i (t)

(p∪v(post(t)(p)))

This definition of free variables formalizes that an agent is
aware of an action [M, s] if she is aware of all variables that
occur in a precondition or postcondition of an action in the
model M. This can be called a conservative stance. For
example, the agent can only be aware of 2ip → [A+p]KE

i p
(if the agent implicitly knows ϕ, then after becoming aware
of p, the agent explicitly knows that p) if the agent is already
aware of p before the action. There is much wiggle room here
that may also depend on philosophical considerations. For
example, alternatively one could call a variable p that occurs
in a construct [A+p]KE

i p a closed variable. The variables
that an agent is aware of now would then exclude those that
she may become aware of later. We think this stance is
conceptually problematic.

Definition 36 (Semantics)
Let M = (S,R,A, V ) and s ∈ S.

(M, s) |= [M, s]ϕ iff (M, s) |= pre(s)⇒ (M ⊗M, (s, s)) |= ϕ

The set of validities of language LX⊗ is called the logic LX⊗

(for X = 2, E, S).

Example 5 The dynamic operator [M, s] is not awareness
bisimulation preserving. Consider this: The models (M, s)
and (M ′, s) of the introduction are p awareness bisimilar.
And modally equivalent in LE. But after we make the agent
aware of p, they are no longer p awareness bisimilar. The
formula KE

i K
E
i p is now a distinguishing formula. And there-

fore, [A+p]KE
i K

E
i p is true in (M, s) and false in (M ′, s). So

(M, s) and (M ′, s) are not modally equivalent in LE⊗.

The dynamic operator [M, s] is not awareness bisimulation
preserving, but it is standard bisimulation preserving. The
proof is similar for all three dynamic logics. In the proof
we use modal equivalence in LX⊗ (for X = E,S,2 of epi-
stemic awareness states up to Q, denoted by ≡X⊗

Q , defined

analogously to ≡X
Q .

Proposition 37 Let ϕ ∈ LX⊗, Q ⊆ P , and (M, s), (M ′, s′)
given. If (M, s) 'Q (M ′, s′), then (M, s) ≡X⊗

Q (M ′, s′).

Proof. The proof is very similar to that in [22] for spec-
ulative knowledge. (Theorem 8 in [22] contains an error. It
is here corrected.) The difference between implicit, specu-
lative and explicit knowledge plays no role in the inductive
case for action models. We only show that case.

Inductive case [M, s]ϕ: Suppose (M, s) |= [M, s]ϕ.
Then (M, s) |= pre(s) implies (M ⊗ M, (s, s)) |= ϕ. By in-
duction, (M, s) |= pre(s) iff (M ′, s′) |= pre(s). The modal
product construction in (M ⊗M) is (standard) bisimulation
preserving [1]; an easily observable fact when one realizes
that pairs in the new accessibility relation require the first
argument to be in the accessibility relation in the original
model (given (t, t′) ∈ R[Q], the induced bisimulation R′[Q]
on the product is defined as ((t, t), (t′, t)) ∈ R′[Q]). We now
also have to satisfy the aware requirement. In the model
M ⊗ M the level of awareness Ai(t, t) is a function of the
prior level of awareness Ai(t) in t and the added or deleted
propositional variables A+

i (t) and A−i (t). As the prior aware-
ness Ai(t) is the same in any Q awareness bisimilar state t′,
and the added or deleted atoms are also the same, the poste-
rior awareness must therefore also be the same for any pairs
(t, t) and (t′, t) in the Q awareness bisimulation. Therefore,
(M ⊗ M, (s, s))↔Q(M ′ ⊗ M, (s′, s)). Now using induction
again, we conclude (M ′⊗M, (s′, s)) |= ϕ, and from that and
(M ′, s′) |= pre(s) we conclude (M ′, s′) |= [M, s]ϕ.

Given the variety of knowledge and awareness changes that
can be modelled by epistemic awareness action models, as
shown in Example 4, the following is an important theorem.
It demonstrates the adequacy of the framework.

Theorem 38 Let (M, s) and (M ′, s′) be finite epistemic
awareness states. Then there is an epistemic awareness ac-
tion (M, s) such that (M, s) ⊗ (M, s) is standardly bisimilar
to (M ′, s′).

Proof. The proof is an extension of the one in [23]. We
sketch the proof. First, delete the structure of (M, s) by a
public announcement of its characteristic formula (as M is
finite, this characteristic formula exists [2]). The result is a
singleton epistemic awareness state consisting of s only. It
does not matter what the valuation is or the level of aware-
ness because, next, we execute an epistemic awareness ac-
tion with precondition true and with the exact structure of
the target model (M ′, s′), using postconditions in actions
instead of valuations in states (setting then the value of
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propositional variables to the value of the valuation in the
corresponding state), and awareness change function in ac-
tions instead of awareness functions in states (setting then
the level of awareness of propositional variables to that in
the corresponding state). This last part on awareness is the
extension with respect to [23].

An alternative construction is the straightforward execu-
tion in (M, s) of an epistemic awareness action with the
structure of the target model (M ′, s′), and then the result is
an epistemic awareness state bisimilar to (M ′, s′) (but typ-
ically larger than in the previous construction, it now has
size |M ⊗M ′| instead of size |M ′|).

7.3 Axiomatization
We now give the axiomatization of the logic L2⊗. In Table

4 we only give the axioms involving action models. The ones
for awareness after actions were presented in [22] and the
one for implicit knowledge after action is novel, but has the
standard shape of [1]. These are rewrite rules, that allow us
to eliminate epistemic awareness action from formulas (given
an innermost action model, one pushes it deeper and deeper
into a formula until one of the first two axioms can be applied
at which moment it has disappeared on the right-hand side).
This proves the completeness of the axiomatization and the
logic L2⊗ is therefore also equally expressive as the logic of
implicit knowledge L2.

[M, s]> ↔ >
[M, s]p↔

(
pre(s)→ post(s, p)

)
[M, s]¬ϕ↔

(
pre(s)→ ¬[M, s]ϕ

)
[M, s](ϕ ∧ ψ)↔

(
[M, s]ϕ ∧ [M, s]ψ

)
[M, s]Aiϕ↔ ¬pre(s) if v(Aiϕ) ∩ A−i (s) 6= ∅
[M, s]Aiϕ↔ (pre(s)→ Aiϕ[A+

i (s)\>]) otherwise
[M, s]2iϕ↔ (pre(s)→

∧
t∈Ri(s)

2i[M, t]ϕ)

From ϕ infer [M, s]ϕ

Table 4: Axioms for action models in L2⊗

Proposition 39 L2⊗ is sound and complete.

Example 6 To get an idea for the axioms involving aware-
ness after actions, consider [A+p]Aip. Surely we want the
agents to be aware of p after becoming aware of p. The
righthand side of this axiom computes to Aip[p\>] which is
Ai>, a theorem.

The other axiom applies when the agent becomes unaware.
For example, consider [A−p], which stands for ‘the agents be-
come unaware of ϕ’ (not to be seen as gradual fading out,
but as conscious abstraction). After that, the agents are no
longer aware of p, so [A−p]Aip should be false. The right-
hand side of the axiom is ¬pre([A−p]). The action [A−p] is
always executable: precondition >. Its negation is therefore
the contradiction ⊥, as desired.

7.4 Expressivity
In this short section we show that the logics L2⊗, LE⊗,

LS⊗ are all equally expressive (and therefore, as L2⊗ = L2,
all equally expressive as L2).

Proposition 40 L2⊗ and LE⊗ are equally expressive.

Proof. This follows from the following equivalences (em-
beddings). The first demonstrates that L2⊗ < LE⊗ and

the second (wherein we use a familiar equivalence, but now
within the language L2⊗ instead of L2) that L2⊗ > LE⊗.

2iϕ ⇔ [A+v(ϕ)]KE
i ϕ

KE
i ϕ ⇔ Aiϕ ∧ 2iϕ

Proposition 41 LE⊗ and LS⊗ are equally expressive.

Proof. The same argument as in Prop. 23 applies here.

This is an unmistakable though somewhat (we think) sur-
prising result. Even though the logic of implicit knowledge
is more expressive than the logic of explicit knowledge, the
dynamic logic of implicit knowledge is equally expressive as
the dynamic logic of explicit knowledge. And similarly for
speculative knowledge. Example 5 clearly demonstrates the
increase of expressive power when dynamics are added: all of
a sudden we can distinguish the models (M, s) and (M ′, s)!

To conclude the picture — and this paper — the axioma-
tization for the dynamic logic of explicit knowledge is there-
fore simply the one wherein you write KE

i ϕ as 2iϕ ∧ Aiϕ
and then derive that in L2⊗. This does not get us the ax-
iomatization for the dynamic logic of speculative knowledge
yet, a missing piece in this puzzle, but as the expressivity
of this logic is now known, this seems of decidedly minor
interest.

8. RELATED WORKS
Our epistemic awareness models are those of [4]. The

language used there is L(2,KE , A), but it has the same ex-
pressivity as L(2, A), since KE

i ϕ is definable as 2iϕ ∧ Aiϕ
(see Proposition 20). The setting of [4] is otherwise differ-
ent. They assume the accessibility relations to be serial,
transitive and euclidean (KD45). For the axiomatization
one can simply add the characterizing axioms. The com-
plete axiomatization provided there defines awareness Aip
by abbreviation as KE

i (p ∨ ¬p).
Another pertinent investigation is [9]. It focusses on ax-

iomatizations, not on expressivity issues. In [9], Halpern
presents axiomatizations for the logics with languages L(2, A),
L(KE , A) and L(KE), for the model class where the (KD45)
agents also know their own awareness: t ∈ Ri(s) implies
Ai(s) = Ai(t). In the axiomatization for L(2, A) we find
this as Aiϕ → 2iAiϕ and ¬Aiϕ → 2i¬Aiϕ. In the axiom-
atization for L(KE , A) this property is, instead, described
by an axiom Aiϕ→ KE

i Aiϕ and a rule Irr.: “If no proposi-
tional variables in ϕ appear in ψ, then from ¬Aiϕ→ ψ infer
ψ” (with the suggestion that the rule might be derivable
from the axiomatization). The rule Irr. is also discussed
in [10]. These additional features seem to explain that the
completeness proof for the logic of explicit knowledge in [9]
is more involved than ours.

The language L(KE) is shown in [9] to have the same ex-
pressivity as L(KE , A) but with the crucial difference that
this is on models with euclidean accessibility relations and
knowledge of awareness. In such models awareness can be
defined in terms of explicit knowledge (as also done in [17]):
Aϕ ↔ KEϕ ∨ KE¬KEϕ. We recall that in our approach
Aϕ↔ KE(ϕ∨¬ϕ) (similar to [4], see above), but this equiv-
alence does not hold on the more restricted model class.

Some recent studies on dynamics, such as [12, 8, 19] take
a somewhat different approach to awareness, namely syn-
tactic awareness, but employ similar ideas for the dynamics:
updates of structures.

69



9. CONCLUSIONS AND FURTHER WORK
We have the described the logics of implicit, explicit, and

speculative knowledge, related modal equivalence in these
logics to different forms of bisimulation, compared their ex-
pressivity, and provided sound and complete axiomatiza-
tions. Then we investigated the dynamics of these logics,
where we have shown that any conceivable change of knowl-
edge or awareness can be modelled, we axiomatized the dy-
namic logic of implicit knowledge, and showed that all three
dynamic logics are equally expressive.

Concerning further work, we wish to close some (we think)
little gaps. The axiomatization of the logic of speculative
knowledge with respect to S5 structures is not necessarily
an extension of the current axiomatization. This is because
the speculative knowledge operator has a built-in quantifi-
cation over awareness bisimilar structures. Quantifying over
structures in a more restricted model class therefore changes
the semantics of speculative knowledge; and therefore, also
its axiomatic properties. Another little gap is that, even
though we know the expressivity of the dynamic logic of
speculative knowledge, we do not have (as mentioned above)
its axiomatization (with or without the S5 restriction).

Further ahead, there are alternative notions of knowledge
beyond implicit / explicit / speculative that employ propo-
sitional awareness, for example: an agent knows a formula
ϕ in state s iff in all accessible states t, ϕ is true and the
agent is aware of ϕ (a version explored in [19]). Or consider
knowledge employing a recursive version of awareness: agent
i is aware of KE

i ϕ in s iff it is aware of ϕ in s and aware of ϕ
in all t i-accessible from s. Alternative notions of knowledge
would correspond to yet other notions of bisimulation.

The result of Theorem 38 that awareness action models
can encode any form of knowledge and awareness change, is
very strong. But from another perspective, it is also very
weak, because typically only certain protocols or a given and
commonly known set of actions are allowed. Investigating
the dynamic logics of explicit and speculative knowledge for
those settings may be relevant for game theory.
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ABSTRACT
From the standpoint of game theory, dominoes is a game
that has not received much attention (specially the variety
known as draw). It is usually thought that this game is al-
ready solved, given general results in game theory. However,
the determination of equilibria is not feasible for the general
case because of the well known problem of node explosion
in the tree expressing the game. We propose a new model
based in limited forecast as a kind of bounded rationality
for dynamic alternate games.

1. INTRODUCTION
There are a lot of possible games to play with dominoes

tiles. The variety we analize here is known as Draw, which
is part of a bigger group called blocking games. In this kind
of games, tiles are initially randomly distributed among all
players and the one with the biggest double (a tile with the
same number in both sides) draws it on the table, starting
the game train. Afterwards, players draw tiles alternately
matching a free-end. The game ends when one player draws
all of her tiles or the game is blocked, which happens when
none of the players can draw a matching tile. At the end of
the game the sum of points in the tiles of the other players
are the winner’s profit.

Even though there are several theoretical results propos-
ing a solution to similar games, we think this is an inter-
esting problem because in practice it is not computationally
possible to apply these results to the general (i.e. with an ar-
bitrary number of points). Also the node explosion problem
makes necessary to find alternative techniques to compute
the game equilibria and to determine the best strategy in
order to get the best profit in the match.

We define a model of the game considering limitations
on forecast as referred in [1, 4, 10], but in our approach
limitations are not fixed anf instead they are a function of
some bounded optimization parameter [5].

2. PREVIOUS MODEL
Philippe Jehiel [1] presents a model of limited horizon fore-

cast applied to repeated alternate games. The key features
of this class of games are that there are two players moving
sequentially in discrete time steps. In each period t, the cur-
rent payo↵ for player i depends on her own action chosen in
that time and the action made by the opponent in the last
period. The action spaces are finite and remain the same
throughout the match.

It is assumed that each player has a limited ability to fore-

cast the future. Player i is characterized by the lenght of her
forecast n

i

(a constant). At period t, player i formulates pre-
dictions for the forthcoming n

i

moves after her own move.
Therefore, she must make her choice of the current action
on the basis of her limited forecast only. This is because:

1. Player i cannot build her criterion on what will come
after n

i

periods, since she cannot make predictions
about (she has no idea of) it, and,

2. Given the stationarity of the game, the average payo↵
over the lenght of foresight may be perceived as a good
approximation of the true objective function.

Jehiel also defines a solution concept called (n1, n2)�solution

which requires two preliminary notions:

1. A strategy for player i is justified by a sequence of fore-
casts if the strategy provides actions that maximize the
average payo↵ obtained over the lenght of her forecast,
and,

2. A sequence of forecasts for player i is consistent with a
strategy profile if the forecast coincide with the trun-
cation to the first n

i

actions of the respective actions
of the respective continuation paths induced by the
strategy profile.

Hence a (n1, n2) � solution is defined as a strategy profile
that can be justified by consistent sequences for players 1
and 2. In other words, in a (n1, n2)� solution:

1. Current actions are chosen to maximize the average
payo↵ over the lenght of her foresight, and,

2. At any period t where player i must move, her fore-
casts for the forthcoming n

i

actions as a function of
her current action are correct.

It should be mentioned that the predictions for the forth-
coming n

i

actions include her own actions and that the
equilibrium forecasts about all these actions are assumed
to be correct whatever her current action and not only on
the equilibrum path.

Another important issue mentioned by Jehiel is the fact
that there is no improvement by incrementing the forecast
for player, since the game is cyclic.

3. OUR MODEL
In the case of dynamic alternate games, like dominoes,

there are substantial di↵erences:
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} While the movements are alternated, the game is dy-
namic, meaning that the action space is updated after
each move and the search space is reduced.

} According to the classification presented in [2], domi-
noes is a convergent, imperfect information and sudden
death game. Given this, the length of the forecast is
not constant and forecasting can be better based upon
a function of the computing capability of the agent1.

} Since in games with similar nature to dominoes sub-
game perfect equilibrium can be applied, a reasonable2

approach to the solution concept could be subgame per-

fect equilibrium with limited forecast, wich would have
to compute at each period a new equilibrium according
to some desired benefit (payo↵ function).

} A problem in applying the bounded forecast to the
game of chess for instance, is the di�culty of deter-
mining a reasonable function to estimate the payo↵ at
the end of the horizon bounded by the forecast. In the
case of dominoes we can use heuristics or guidelines

known in the folklore of the game to determine this
payo↵ function [7].

In order to develop the model, it is important to have a clear
notion of awareness. Therefore, the first step is to answer
the questions raised in [3] for dominoes:

} Awareness of what? The player must be aware of the
actions made up to the current period of the game, as
well as the tiles she holds. In addition, she must be
aware of the actions she might take in her turn.

} What is the environment? The environment consists
of the current state of the game: how many tiles each
player holds and the game train. A query to the en-
vironment consists of trying to reconstruct the history
of the match using the current turn and following the
match train.

} What is the enumeration process? The acquisition of
the set of possible actions is made by touring the de-
cision tree of the match as the match evolves. This
path can return a set or a particular state. However,
building the entire tree requires exponential space.

} What is the decision making process? Once the enu-
meration returns a state or a set, she can select the
best possible action from among its outgoing edges by
following the subgame perfect equilibrium.

Now we define a model of limited horizon forecast as a func-
tion of the computing capability of the agent applied to
dynamic alternate games. The key feature of this class of
games is that there are two players moving sequentially in
discrete time steps. In each period t, the current expected
payo↵ for player i depends on her own action chosen in that
time and the action made by the opponent in the previous
period. The action spaces are finite and the search space is
reduced as the match evolves.

1
Computing capability in this context indicates the ability to

generate and visit a certain number of nodes in the future.
2
Reasonable in this context is used as a synonym for common

sense.

The latter ensures that in the final steps of the match,
the number of nodes is very small and can be determined
in reasonable time. In other words, the number of leaves
is very small compared to the number of branches at the
beginning of the match.

We assume that each player has a limited ability to forecast

the future. Player i is characterized by her ability to gen-

erate and visit states in the future c

i

. At period t, player i

formulates predictions for the forthcoming n

i

= f (c
i

) moves
after her own move. Therefore, she must make her choice of
the current action on the basis of her limited forecast only.
This is because:

1. Player i cannot build her criterion on what will come
after n

i

periods, since she cannot make predictions
about (she is not aware of) it, and,

2. The subgame perfect equilibrium payo↵ over the lenght
of foresight may be perceived as a good approximation
of the true objective function.

3.1 Dynamic alternate games
We consider two players indexed by i = 1, 2; player i takes

actions a
i

from a finite action space A
i

. Players take actions
in discrete time and the horizon is finite. Time periods are
indexed by t = 1, 2, 3, .... At time t player i’s period payo↵
is a function of the current actions a

t

i

of the two players
i = 1, 2.

Players take actions sequentially and player 1 moves first.
At each odd period (t = 1, 3, 5, . . .), player 1 choses an action
from her set. Similarly, player 2 choses her actions at each
even period (t = 2, 4, 6, . . .). In both cases, the action taken
modifies the immediate next action of the opponent and
reduces the search spaces of both players. We call games
like this dynamic alternate games.

A stream of action profiles
�
q

t

i

 
n

max

t=1
=
�
q

2k�1
1 , q

2k
2

 
n

max

t=1
,

where q

2k�1
1 2 A1 and q

2k
2 2 A2 is known as a path and

is denoted by Q. Since players move each two periods, an
action taken at period t is combined with the action taken by
the opponent in the last period t�1 to modify the structure
of the game tree (they prune it) and therefore, the payo↵ of
player i induced by path Q.

Notation
1. Let R

n

be an arbitrary n-length stream of actions of al-
ternate actions; �

i

(R
n

) denotes a function that, given
the current state for player i, returns the expected pay-
o↵ to player i induced by R

n

. This function considers
both the rules of the game and/or guidelines known
from the game in question.

2. [Q]
n

denotes the truncation of path Q =
�
q

t

i

 
n

max

t=1
,

where n  n

max

, to the first n actions.

3. [q]N denotes the truncation of path q to the last N

actions.

4. (q, q0) denotes the concatenation of q =
�
q

t

i

 
s

t=v

with

q

0 =
�
q

t

i

 
w

t=s+1
: (q, q0) =

�
q

t

i

 
w

t=v

.

3.2 The solution concept
Similar to Jehiel [1], we assume that players have a limited

ability to forecast the future and bounded recall ; however,
unlike his proposal, forecasting ability in our model is not

72



fixed, but a function of the ability of the agent to generate
and visit future states in the game tree. The idea of having
units of brain power to study the future and partly to the
analysis of the past is maintained, but in the case of the units
dedicated to the future they are intended to dynamically
compute the next possible branches. Therefore, Player i has
a two-dimensional ability, on the one hand N

i

represents
her memory capacity and, on the other side n

i

= f (c
i

)
is the number of steps that player i is able to foresight,
as a function of her ability to generate and visit. At each
period where player i must take an action, she determines
new forecasts about the future. Her forecasts are limited to
the next n

i

steps. Additionally, as she has bounded memory,
her forecasts about the future may only depend on the last
N

i

periods and her current action.

Notation and auxiliary definitions

Let H (N
i

) be the set of histories of alternate actions of
length N

i

, in which last action is an element of A
j

(j 6= i)
and h an arbitrary element of H (N

i

).

1. An n

i

-length prediction, where n

i

= f (c
i

), for player
i is a stream of alternate actions of length n

i

, starting
with an action in A

j

(j 6= i). The set of n

i

-length
predictions (shorter in the last steps of the match) is
denoted by P

n

i

(a subtree).

2. An n

i

-length forecast for player i at a period t where
she must move is denoted by f

t

i

. It maps, for every
history of length N

i

, h 2 H (N
i

), the set of actions
A

i

available for the set of predictions P

n

i

. Formally,
f

t

i

=
�
f

t

i

(·|h) 
h

, where, 8h 2 H (N
i

) , f t

i

(·|h) : A
i

!
P

n

i

: f t

i

(a
i

|h) is the prediction about the forthcoming
n

i

actions made by player i at period t if she currently
choses a

i

given the last N
i

actions h 2 H (N
i

).

3. f

i

=
�
f

t

i

 
t

denotes an arbitrary sequence of forecasts

f

t

i

for every period t where player i must move. The
set of f

i

is denoted by F
i

. A pair (f1, f2) 2 F1 ⇥F2 is
denoted byf and F denotes the set of f .

4. A pure strategy for player i is denoted by �

i

. It is a
sequence of functions �

t

i

, one for each period t where
player i must take an action. The function at period t,
�

t

i

, is the behavior strategy for player i at that period.
It determines player i’s action at period t as a function
of the last N

i

actions. A strategy profile (�1,�2) is
denoted by � and the set of strategy profiles ⌃1 ⇥ ⌃2

is denoted by ⌃.

Any strategy profile � 2 ⌃ generates a pathQ (�) =
�
q

t

i

(�)
 
t

,

i = 1 if t is odd and i = 2 if t is even. Let Ht be the set
of histories of alternate actions of length t and let h⇤ be an
arbitrary history of length t�1, i. e., h⇤ 2 Ht�1. The strat-
egy profile and the induced path by � on the subgame h⇤ are
denoted by �|

h

and Q (�|
h

) respectively. Given h

⇤ 2 Ht�1

and an action a

i

2 A

i

at period t, the continuation path
induced by � after (h⇤

, a

i

) is thus Q (�|
h

⇤
a

i

). The set of
continuation paths at period t, referred as the continuation
set, is denoted by Q

t (�) = {(a
i

, Q (�|
h

⇤
a

i

))}
h

⇤
a

i

. The se-

quence of continuation sets Qt (�) , t = 1, 2, . . . is denoted by
Q̂ (�) =

�
Q

t (�)
 
t

.
The key idea in this construction is that the strategies of

player i, (i. e. her choices of actions), are based on her fore-
cast, limited by her computing capability. Hence, to define

the solution concept it is necessary to (1) specify a criterion
based on forecast as a function of computing capability and
(2) show how equilibrium forecasts are related to equilibrium
strategies.

The criterion for calculating the payo↵ is to determine the
largest profit among all the branches in the subtree she can
see by applying subgame perfect equilibrium. Such a cri-
terion is natural, given the features of this class of games.
In the early stages (where the player cannot see the hori-
zon of the match) this criterion will indicate what action
will give her the best profit even if this profit may not be
the best in the whole game tree. In the final stages (where
player can see all subtrees from the current node) the agent
can determine the actual equilibrium and take the best ac-

tual action according to the subgame perfect equilibrium.
In other words, player assumes she can see the whole tree
and based on this assumption, she can calculate a subgame
perfect equilibrium at every turn. Formally:

Definition 1. A strategy �

i

2 ⌃
i

is justified by a sequence
of forecasts f

i

=
�
f

t

i

 2 F
i

if at each stage player i chooses
the action that delivers the largest profit by applying sub-
game perfect equilibrium to the game tree produced by her
forecast limited by her computing capability.

We next assume that player i’s equilibrium forecasts are
related to equilibrium strategies by a consistency relation-

ship, defined as follows. Given a history h

⇤ of length t � 1,
and any action a

i

at the current period t, Q (�|
h

⇤
a

i

) is the
continuation path induced by � after (h⇤

a

i

). At period t,
the N

i

last actions are h = [h⇤]Ni . Consistency requires
for every (h⇤

, a

i

), the forecast f

t

i

(a
i

|h) coincides with the
truncation to the first n

i

= f (c
i

) actions of the contin-
uation path induced by �, [Q (�|

h

⇤
a

i

)]
n

i

. In other words,
consistency means that forecasts are correct on and o↵ the
equilibrium path. Formaly:

Definition 2. f

i

=
�
f

t

i

 2 F
i

is consistent with � 2 ⌃
if for every period t where player i must move: 8a

i

2 A

i

,
8h⇤ 2 Ht�1, f t

i

(a
i

|h) = [Q (�|
h

⇤
a

i

)]
n

i

with h = [h⇤]Ni .

Now define the solution concept. A (c1, c2)�solution is a
strategy profile that can be justified by consistent forecasts
for players 1 and 2, i. e., a strategy profile that is associated
with sequences of forecasts such that (1) players choose their
actions in order to maximize the payo↵ received by applying
the subgame perfect equilibrium over the length of her cur-
rent forecast and (2) player i’s forecasts for the forthcoming
n

i

= f (c
i

) actions after her own move are correct on and
o↵ the equilibrium path. Formally:

Definition 3 The solution concept. A strategy profile � =
(�1,�2) 2 ⌃ is a subgame perfect equilibrium with limited

forecast ((c1, c2) � solution) if and only if there exist se-
quences of forecasts f = (f1, f2) 2 F such that for i = 1, 2.

1. �

i

is justified for f
i

and

2. f

i

is consistent with �.

Similarly to Jehiel, we do not provide justification for why
forecasts should be correct in equilibrium, but in [8] Je-
hiel discusses a learning process based on limited predictions
such that players eventually learn to have correct forecasts.
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Hence, players eventually behave as in (c1, c2)� solution.

3.3 Construction
Given a forecast fT

i

of player i at period T , if fT

i

is asso-
ciated with a (c1, c2)�solution, is it possible to derive fT�1

i

backward on the sole basis of fT

i

? It is not possible, because
player i generates subtrees at each period T where she must
move, hence the opponent cannot know in advance which
tree she will generate (since it depends on her computing
capability). There are two ways in wich the opponent may
foresee all the moves down to the leaves: if she has expo-
nential capability and when she is su�ciently near to the
horizon of the match; if this is the case, she will be able to
determine a subgame perfect equilibrium.

Hence in dynamic alternate games the construction is per-
formed forward, but in each period T where player i moves,
she must apply backward induction to calculate the sub-
game perfect equilibrium over the generated subtree. This
construction is similar to the forward looking procedure in-
troduced in [9].

As stated above, on each step player i generates a set
of predictions P

n

i

of length (depth) n

i

= f (c
i

), this set
is the subtree computed at the current period. Given P

n

i

we apply a function that returns a payo↵ for each outgoing
edge from the current node to the leafs of each prediction.
When player i cannot see the real horizon of the game from
the current node this function estimates the gains from the
rules and/or guidelines known from the game in question.
Once the player can see the whole subtree starting from the
current node, the function returns the payo↵ for each of the
leafs. Therefore the player can obtain a series of subgame

perfect equilibria wich corresponds with a (c1, c2)�solution.
Moreover, this function is useful to make the best choice

at each time step and to generate a sequence of subtrees P
n

i

.
Each P

n

i

2 P
n

i

meets that length (P
n

i

)  length

�
P

n

i+1

�

where n

i

is such that the current player cannot see the
leafs. Once the player is able to observe the entire subtree
from any node, the relationship is reversed length (P

n

i

) �
length

�
P

n

i+1

�
, since the number of nodes in the last steps

of the game tree is much lower than in the early stages due
to the considerable reduction of the search space as the game
progresses.

3.4 Properties
A dynamic alternated game always has at least one sub-

game perfect equilibrium with limited forecast. By applying
a Kuhn’s Corollary of the Zermelo-von Neumann’s Theorem
[10], we guarantee the existence of a subgame perfect equi-
librium for each subtree that player i may generate, hence
we may construct a subgame perfect equilibrium with lim-
ited forecast by concatenating the equilibria calculated in
each period.

Equilibrium forecasts associated with (c1, c2) � solution

are history independent, as a decision made in the current
period is taken on the sole basis of the last action (taken by
the opponent).

3.5 When a player is better off with a larger
foresight

Given the nature of dynamic games, the search space is
reduced at each period and since the game is finite (of sudden
death), contrary to the model developed by Jehiel [1], in
this class of games player i gets advantage by having larger

computing capability and, therefore a larger foresight.
Compared to a completely random player, this model be-

haves better. At any stage, while a purely random player
chooses her actions completely at random within the range of
possible options, a player implementing the model presented
here can take into account both knowledge and preferences
of the player and other players (the guidelines).

On the other hand, this model requires less computational
power than that of “rational man”. Endowed with polyno-
mial capability, the player’s behaviour approaches that of
the rational man as the game advances.

3.6 Example
To illustrate the usefulness of the model, we now present

how to apply it to a small instance of dominoes. As stated
above, the problem with games like chess is the di�culty to
define a payo↵ function. However, in games like dominoes
we may use basic guides like those shown in [7] to define
the expected payo↵ function �. Some of them can easily be
adapted to the case of individual games.

We consider an instance of players {1, 2} with 6 tiles (each
player gets 3 at the beginning). To show a concrete ex-
ample, player 1 gets tiles {(0, 0) , (0, 1) , (2, 2)} and player 2
{(0, 2) , (1, 1) , (1, 2)}; additionally, the computing capability
for each player is 2n with n the number of tiles each player
gets at the beginning. To simplify the example we will con-
sider the guide of drawing the tile with higher value. The
main goal of the match is to win by drawing all the tiles
she possesses first and if she cannot win in the current pe-
riod she will apply the guide mentioned above. It should
be noticed that when nodes generated by an agent do not
cover a full level, we consider the she does not possesses any
information about the truncated level, as we cannot know
what set of nodes she will generate.

The game described above generates the game tree shown
in figure 1. We observe that if player 1 draws the tile (0, 0)
in her first turn, there exists a path that gives her a gain of
3. However, as she has limited forecast she is not aware of
this possibility. At the beginning the number of levels player
1 may visit is n1 = 1; therefore she evaluates her profit with
the guide of “getting rid of heavier tokens” and she draws
tile (2, 2).

Figures show in boxes the levels that player i can generate
and visit at each turn and in light gray the branches cannot
be played. Figure 3 shows that player 2 can foresee n2 = 2
levels down.

Now player 2 has two options: draw tiles (0, 2) and (1, 2).
If she draws tile (0, 2), she might win the match; but as she
is not aware of it she chooses to draw tile (1, 2), the highest.

At this point, figure 3 shows that player 1 can only draw
tile (0, 1). She can see the complete rest of the game tree
n1 = 4 and she is aware she will win, getting a gain of 2.

Figure 4 shows the final stages of the match. Player 2
must draw tile (0, 2) but she can leave free-end [0, 0] or [2, 2]
in both cases she loses. She chooses to leave [2, 2] in order
to lock the tile (0, 0) of player 1.

This example shows that the length of the forecast grows
as the game evolves because the number of future states
is reduced at each period. This feature together with the
intrinsic finiteness of the game makes feasible to build a
subgame equilibrium (and strategies) that gets closer to the
perfect at each step.
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Figure 1: Full game tree
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Figure 2: Game tree after the first turn of player 1
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Figure 3: Game tree after the first turn of player 2
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Figure 4: Game tree in the final stages of the match

4. CONCLUSIONS AND FURTHER WORK
In this paper we have proposed a model of limited foresight

as a function of the computing capability of an agent applied
to the class of dynamic alternate games. We also define a
solution concept called subgame perfect equilibrium with
limited forecast which uses the well known subgame perfect
equilibrium for each subtree that player builds at each period
of the game.

Additionally, we provide a couple of properties for the
class of games as well as the solution concept. Finally, we
show a concrete example of the model applied to an instance
of the game dominoes in order to show its applicability.

We intend to extend the results in this paper in the fol-
lowing directions:

} Currently we seek to prove that our model performs
better than a purely random one.

} Develop a generic mathematical model applicable to a
class of games, not only dominoes.

} Derive other interesting properties about the solution
concept.

} Present concrete examples on how to use the model,
initially by applying it to dominoes adding several guides
and then with other dynamic games.

} Obtain models that combine other characterizations of
bounded rationality.
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Appendix

Kuhn’s Corollary of the Theorem of Zermelo-

von Neumann

A general n-person game � with perfect infor-
mation always has an equilibrium point in pure
strategies [10].

Basic strategies for dominoes

Here are descriptions of basic moves and strate-
gies [7].

1. Commanding/Leading a Strong Num-
ber. Generally a player should lead a strong
number with the objective of playing it later
in the game. A strong number is a number
that occurs often in a player’s hand.

2. Indicating/Showing the Number of the
Double Tile. A player should command a
number that includes any respective double
tile in her hand, so that her partner knows
her most di�cult tiles to play.

3. Hitting/Blocking a Number Commanded
by the Opposition. When a player blocks
a number led by the opposition.

4. Leaving a Number Open. When a player
avoids drawing a number that he has been
trying to play.

5. Repeating a Number. A player should
repeat a strong number.

6. Taking Care of the Hand. When a player
avoids being void at a given number.

7. Avoid Leading an Orphan Number.
Generally, leading an orphan number should
be avoided because the player who does so
is providing inaccurate information to her
partner. An orphan number is a number
that occurs only once in a hand.

8. Protecting Your Partner/Avoiding a
Possible Pass. If a player does not have
the relative control of her couple, she should
avoid forcing her partner to pass on her
next turn.

9. Indicating/Showing Your Type of Hand.
Each player should try to show the value of
her hand (low or high) so that her partner
knows the tiles she should try to play.

10. Stealing the Game. When a player does
not have the relative control of her couple,
she should hit a number commanded by her
partner with her own strong number.

11. Playing Aggressively (for Low Hands).
A player should try to play in a manner that
high tiles cannot be played if she feels that
her couple can win the game or she does
not have a high hand with at least one high
double hand.
From this strategy comes the first objec-
tive of dominoes: try to win by getting the
highest amount of points.

12. Playing Conservatively (for High Hands).
A player should try to play in a manner
that high tiles are played if she feels that
her couple cannot win the game or she has
a high hand with at least one high double
hand.
From this strategy comes the second objec-
tive of dominoes: try to lose by giving the
lowest amount of points.

13. Playing to Accumulate Points. The
couple has the option to play aggressively
(for low hands) if the score is not close to
the upper limit of points.

14. Playing not to Accumulate Points. The
couple should play conservatively (for high
hands) if the score is close to the upper limit
of points. The definition of a “close” score
is subjective and depends on the player’s
appraisal.
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ABSTRACT
Coordinating activities at different sites of a multi-agent
system typically imposes epistemic constraints on the par-
ticipants. Specifying explicit bounds on the relative times
at which actions are performed induces combined tempo-
ral and epistemic constraints on when agents can perform
their actions. This paper characterises the interactive epis-
temic state that arises when actions must meet particular
temporal constraints. The new state, called timely common
knowledge, generalizes common knowledge, as well as other
variants of common knowledge. While known variants of
common knowledge are defined in terms of a fixed point of
an epistemic formula, timely common knowledge is defined
in terms of a vectorial fixed point of temporal-epistemic for-
mulae. A general class of coordination tasks with timing
constraints is defined, and timely common knowledge is used
to characterise both solvability and optimal solutions of such
tasks. Moreover, it is shown that under natural conditions,
timely common knowledge is equivalent to an infinite con-
junction of temporal-epistemic formulae, in analogy to the
popular definition of common knowledge.

Categories and Subject Descriptors
[Artificial intelligence]: Knowledge representation and
reasoning — Reasoning about belief and knowledge, Tempo-
ral reasoning, Causal reasoning and diagnostics; [Artificial
intelligence]: Distributed artificial intelligence — Cooper-
ation and coordination, multi-agent systems; [Real-time
systems]: Real-time system specification; [Distributed
computing methodologies]

General Terms
Theory, Algorithms, Verification

Keywords
Common Knowledge, Epistemic Logic, Temporal coordina-
tion, Real-time constraints

1. INTRODUCTION
The fact that knowledge is closely related to coordinated

action in distributed and multi-agent systems is well es-
tablished by now. Ensuring that actions are performed in

TARK 2013, Chennai, India.
Copyright 2013 by the authors.

linear temporal order requires the agents to obtain appro-
priate nested knowledge (knowledge about knowledge) [5],
while coordinating simultaneous actions requires attaining
common knowledge of particular facts [17]. The latter con-
nection has found uses in the analysis of distributed proto-
cols (see, e.g. [17, 11, 28]). One of the contributions of [17]
was in relating approximations of simultaneous coordina-
tion to weaker variants of common knowledge, called ep-
silon-common knowledge and eventual common knowledge.
While common knowledge is typically defined and thought
of as an infinite conjunction of nested knowledge formulae,
it may also be defined as a fixed point [3, 8]. The vari-
ants of common knowledge defined by Halpern and Moses
in [17] are most naturally obtained by appropriately modify-
ing the fixed-point definition of common knowledge. All of
the forms of coordination analyzed in [17] are symmetric in
nature, in the sense that they are invariant under renaming
of agents. For example, ε-common knowledge arises when
the agents are guaranteed to act at most ε time units apart.
In many natural situations, however, asymmetric forms of
coordination arise. Let us consider an example.

Example 1.1 (Robotic Car Wash).
In an automated robotic car-wash enterprise, there are two
washing robots L and R, (with L fitted to soap & rinse the
left sides of cars, and R fitted to soap & rinse the right sides),
and one drying robot, denoted D. At some point after a
car enters, it must be soaped & rinsed from both sides, and
then dried. The robot L is a new model, which takes only
4 minutes to perform its duty, while R is an older model,
requiring 6 minutes. The drying is applied to the whole car,
and it must commence only after washing of both sides is
complete. Moreover, drying should not begin more than 5
minutes after the first of the washing robots finishes rinsing
the car, as water stains might otherwise incur. It follows
that, in particular, no more than 5 minutes may elapse be-
tween the time at which the rinsing of the car’s left side ends
and the time at which the rinsing of its right side ends. This,
in turn, implies that L must start washing the car no later
than 7 minutes after — and no more than 3 minutes before
— R starts washing it. Finally, it is obviously desirable to
minimize the time that the car spends in the Car Wash.

The temporal constraints in the car wash example make
the design of the robots’ control (the protocol that they fol-
low) a delicate matter. With respect to a given car, each
of the robots has only one decision to make: when to start
treating the car — we shall refer to this as the robot’s ac-
tion. The times at which the robots act must satisfy the

1
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interactive constraints implied by the example. Clearly, the
decision to act depends on when each of the other robots
can (and will) commence treatment of this car. Before it
can act, a robot must know (i.e., be sure) that the others
will act in time, which requires, in particular, that the others
will in turn know that they can act. More concretely, in our
example, when L starts washing a car, it must know that
between 7 minutes earlier and 3 minutes later, R will have
started washing it, and that between 4 and 4 + 5 = 9 min-
utes afterward, the drying robot D will have started drying
it. Conversely yet asymmetrically, when R starts washing a
car, it must know that between 3 minutes earlier and 7 min-
utes later, L will have started washing it and that between 6
and 6 + 5 = 11 minutes afterward, D will have started dry-
ing it. We can similarly calculate D’s required knowledge
about L and R. Notice that this dependence is asymmetric
— each robot calculates different bounds between its action
and those of the two others.

The above discussion suggests that the robots in our ex-
ample must reach some form of “temporal-epistemic equilib-
rium” in order to act. More generally, analogous situations
seem to arise whenever a set of agents must coordinate their
actions in a manner satisfying possibly asymmetric timing
constraints. Our purpose in this paper is to concisely and
usefully capture this form of interdependence in coordinated
action. We shall do this by defining a new epistemic con-
dition called timely common knowledge, which is, in a pre-
cise sense, necessary and sufficient for coordination as in
the above example. Timely common knowledge generalizes
and significantly extends common knowledge and its pop-
ular variants. Mathematically, the new notion is formally
captured by way of a vectorial fixed point. Whereas com-
mon knowledge of an event ψ can be defined as the greatest
fixed point of the function x 7→ E(ψ∧x), mapping events to
events, where E is the operator denoting “everyone knows
that...”, a vectorial fixed point is the fixed point of a function
mapping tuples of events to tuples of events. To our knowl-
edge, such a technique has never before been utilized with
regard to epistemic analysis. Roughly speaking, in the case
of the car wash example, let ξ̄ = (ξl, ξr, ξd) be the greatest
fixed point of the function xl

xr
xd

 7→

 Kl( ψc ∧ ⊚≤3xr ∧ ⊚≤9xd )
Kr( ψc ∧ ⊚≤7xl ∧ ⊚≤11xd )
Kd( ψc ∧ ⊚≤−4xl ∧ ⊚≤−6xr )

 ,

where ψc is the event “the car is here”, where Ki denotes
“i knows that. . . ” and where ⊚≤εx means that “x holds at
some (past, present or future) point in time, no later than ε
minutes after the current time”. In the fixed point ξ̄, robot
L’s coordinate ξl holds iff Kl(ψc ∧⊚≤3ξr ∧⊚≤9ξd) does, and
similarly for the other coordinates. Our results imply that
the car-wash problem may be solved by having each robot i
perform its task as soon as ξi holds, and that this solution
is, in a precise sense, time-optimal. Roughly speaking, the
tuple of events ξ̄ will constitute timely common knowledge of
ψc (with respect to the timing constraints of Example 1.1).1

Notice that ξ̄ does not correspond to a single fact (or event)
that may be true or false at a single point in time. Rather,
it represents a tuple of facts, one for each agent of interest.
Each of the facts should hold at its own individual time, and

1 The definition of timely common knowledge is made in
Section 4 with respect to general timing constraints, and is,
naturally, more subtle.

the different times jointly satisfy the conditions in the fixed
point definition.

In Section 4, we relate timely common knowledge to co-
ordination. We define a class of timely coordination spec-
ifications, in which actions by various agents must satisfy
timing conditions as in the Car Wash example. Timely co-
ordination allows both symmetric and asymmetric forms of
communication, and it strictly generalizes many symmet-
ric forms of coordination previously studied in the litera-
ture. We also show, in a precise sense, that timely common
knowledge strictly generalizes standard common knowledge
and some of its variants. In Section 6, we show another close
connection between timely common knowledge and standard
common knowledge. Recall that common knowledge is of-
ten described as an infinite conjunction of nested knowledge
formulae. A temporal-epistemic variant applies in the case
of timely common knowledge. Roughly speaking, consider
the point p at which L acts in the above car wash exam-
ple. Recall that ψc denotes the fact that the car c has ar-
rived, then clearly Klψc must hold at p. It is not hard to
check that Kl ⊚

≤3Krψc should also hold at p, as should
Kl ⊚

≤3Kr ⊚
≤7Klψc. Indeed, it is possible to generate ar-

bitrarily deeply nested formulae that must hold at p. A
different set of formulae must hold when R acts, and yet
another set when D does. Thus, timely common knowledge
implies an infinite set of nested formulae at each point of
action. We show that it is in fact equivalent to a tuple of
such sets under natural assumptions.

As an example of a natural application of our analysis,
in Section 5 we present and mathematically analyze timely-
coordinated response — a novel class of multi-agent coor-
dination tasks. Roughly speaking, a timely-coordinated re-
sponse task involves a prespecified triggering event ψ, such
as the activation of a smoke detector or the arrival of a
car to the car-wash facility. Should the trigger ψ occur,
then each agent i in a set I of agents should perform an
action (called its response to ψ) specified by the task, and
the timing of the actions must satisfy a constraint of the
following form: for all i, j ∈ I, if i acts at time ti and j
at tj , then −δ(j, i) ≤ tj − ti ≤ δ(i, j). The trigger ψ, the
response actions, and the bounds δ are parameters specified
in a given task. E.g. in the car wash example, the trigger is a
car’s arrival ψc, responses are robots’ initiating their respec-
tive services, while δ(L,R) = 3, δ(L,D) = 9, δ(R,L) = 7,
δ(R,D) = 11, δ(D,L) = −4 and δ(D,R) = −6. Timely-
coordinated response is inspired by, and strictly generalizes,
the response problems presented and studied by Ben-Zvi and
Moses [5, 4, 6, 7].

We show that timely common knowledge is, in a precise
sense, the epistemic counterpart of timely coordination. We
use timely common knowledge to phrase a necessary and
sufficient condition characterising protocols solving timely-
coordinated response. Moreover, we show how timely com-
mon knowledge can be used to give a general technique for
deriving a time-optimal solution (i.e. an optimal protocol)
for any instance of timely-coordinated response.

The main contributions of this paper are:

• The theory of coordination in multi-agent systems is
extended to treat timely coordination, in which general
interdependent constraints are allowed;

• Timely common knowledge is defined as a vectorial
fixed point and the mathematical soundness and key
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properties of its definition are established;

• The solvability of, and optimal solutions to, a general
class of timely coordination tasks are characterised us-
ing timely common knowledge;

• Timely common knowledge is shown to generalize com-
mon knowledge and many of its variants; and

• Timely common knowledge is shown to be equivalent
to an infinite conjunction under natural assumptions.

2. RELATED WORK
The notion of common knowledge was defined by the philo-

sopher David Lewis in [24]. Its relevance to game theory
was shown by Aumann [2] and to AI by McCarthy [26].
Halpern and Moses [17] introduced it to distributed com-
puting, showed its connection to simultaneity, and defined
weaker variants of common knowledge corresponding to“ap-
proximations” of simultaneity. Common knowledge and its
variants have had various applications in distributed com-
puting [9, 11, 28, 19, 22, 12]. More recently, Ben-Zvi and
Moses studied how time bounds on message transmission im-
pact coordination in message-passing systems [5, 6, 4]. Most
of their work studied coordination problems that are speci-
fied by partial orders. In [7], Ben-Zvi and Moses consider a
notion of tightly-timed coordination in which agents act at
precise time differences from each other. This gives rise to
a generalization of common knowledge in which agents are
considered at different prespecified times. All fixed-point
epistemic notions (common knowledge and its variants) in
the above works are based on a standard (scalar) fixed-point
definition. The analysis in this paper significantly extends
the connection between coordination and epistemic notions.

3. MODEL AND NOTATION
For ease of exposition, we adopt the multi-agent systems

model, based on contexts, runs and systems, of Fagin et
al. [12]. The model captures the possible histories, called
runs, of a finite set of agents I. We model time as being
discrete, ranging over the set T = N ∪ {0} of nonnegative
integers.2 Each agent i ∈ I may be thought of as an au-
tomaton, existing at any specific time t ∈ T in one of a
set of possible states Li. The set of possible global states
of the model, describing a snapshot of the system at some
given time, is thus Le ××i∈I Li, where Le is a set of pos-

sible states for the environment. We denote by R the set
of possible runs, or possible histories, of the model, where a
run r ∈ R is a function r : T→ Le ××i∈I Li, from times to

global states. A point is a run-time pair p = (r, t) ∈ R× T,
denoting time t in the run r. The local state of an agent i ∈ I
at the point (r, t) is denoted by ri(t). We denote by P the set
of protocols, where a protocol P ∈ P is a tuple P = (Pi)i∈I,
in which each Pi is a function from the set Li of i’s local
states to sets of possible actions (or to a single option, if P
is deterministic) for the actions to be performed by i when
at that state. Finally, a context γ is a specification of a pro-
tocol for the environment, possible initial global states, any

2 All results in this paper hold verbatim if we consider in-
finite sets I of agents, and with only trivial changes if time
is continuous, so that T , R≥0. We avoid modifying the
model to handle continuous time for ease of exposition.

relevant constraints on runs (e.g. an agent may not perform
two certain given actions at the same time), and a transition
function from the global state and all actions performed at
any time t, to the global state at t+ 1. For a context γ and
a protocol P ∈ P, we denote by R(P, γ) the set of runs of P
in γ.

3.1 Events, Knowledge Operators and
Temporal Operators

There are two equivalent ways of defining knowledge in
systems, one in terms of propositions and modal operators
in modal logic [12], and the other, proposed by Aumann [2],
in terms of events and of functions on events. We follow
the latter, since it facilitates the formulation of fixed points,
which play a role in our analysis. Informally, however, we use
the terms fact and event interchangeably. As in probability
theory, we represent events using the set of points at which
they hold. A set of runs R gives rise to a (R-)universe

ΩR , R×T, and a corresponding σ-algebra of events FR ,
2ΩR . Thus, for example, the event “agent i is performing
action α”, is formally associated with all points (r, t) ∈ ΩR
at which i performs α.

We make use of several temporal operators applied to
events. These are very much in the spirit of standard linear-
time operators (see Manna and Pnueli [25]), except that in
our case two of the operators may refer to the past as well
as the future. We thus use slight variations on the stan-
dard symbols. A few basic properties of these operators are
explored in Appendix C. We define three temporal opera-
tors as functions FR → FR as follows;3 fix R ⊆ R and let
ψ ∈ FR.

• �ψ ,
{

(r, t) ∈ ΩR | ∃ t′ ∈ T : (r, t′) ∈ ψ
}

; the event
“ψ holds at some past, present or future time (during
the current run)”,

• ⊚εψ ,
{

(r, t) ∈ ΩR | (r, t + ε) ∈ ψ
}

, for ε ∈ Z; the
event “ψ holds at exactly ε time units from now”, and

• ⊚≤εψ ,

{
(r, t) ∈ ΩR

∣∣∣∣ ∃ t′ ∈ T :
t′ ≤ t+ ε &

(r, t′) ∈ ψ

}
, for

ε ∈ Z∪{∞}; the event“ψ holds at some (past, present,
or future) time, no later than ε time units from now”.

The standard definition of knowledge in this setting is also
a function on events. Intuitively, an agent’s information is
captured by its local state ri(t). Accordingly, two points
(r, t) and (r′, t′) are considered indistinguishable in the eyes
of i if i’s local state at both points is the same. We use Ki

to denote i’s knowledge, and define the event “i knows ψ”
by

• Kiψ ,
{

(r, t)∈ΩR | (r′, t′)∈ψ whenever r′i(t)=ri(t)
}

.

Since Kiψ is itself an event, nested knowledge facts such
as KjKiψ are immediately well defined. This gives rise to
a standard S5 notion of knowledge, equivalent to the stan-
dard definition in terms of partitions. See Appendix A for
a discussion, and for a definition of common knowledge.

3 While the following definitions depend on R, we omit R
from these notations for readability, as the set of runs will be
clear from the discussion. We follow this convention when
presenting some other definitions below as well.
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3.2 Event Ensembles
Roughly speaking, it is possible for an agent i to act pre-

cisely whenever an event ψ ∈ ΩR occurs, only if at every
point at which ψ holds, i knows that it does, i.e. if ψ = Kiψ.
Such an event is said to be i-local. Equivalently, ψ is i-local
if its truth is determined by i’s local state, i.e. if there ex-
ists S ⊆ Li s.t. for every (r, t) ∈ ΩR, we have (r, t) ∈ ψ iff
ri(t) ∈ S. In the study of coordination, we are usually inter-
ested in the interaction between the actions of several agents.
Consider, for example, a scenario in which two agents, Al-
ice and Bob, must perform two respective actions α and β
in some coordinated manner. Then the set eA of points
at which Alice performs α is a local event for Alice, and
likewise for the corresponding set eB for Bob and β. The
pair ē , (eA, eB) is called an ensemble for Alice and Bob.
More generally, following Fagin et al., given a set of agents
I ⊆ I, we define an I-ensemble to be an I-tuple of events
ē = (ei)i∈I ∈ FRI , in which ei is i-local, for each i ∈ I. Re-
turning to Alice and Bob, consider a deterministic protocol
in which whenever Alice performs action α, Bob is guar-
anteed to simultaneously perform action β and vice versa.
Since α and β are guaranteed to be simultaneous actions,
we have eA = eB . An ensemble ē with this property is thus
said to be perfectly coordinated. Fagin et al. [13] have stud-
ied the properties of such ensembles, as well as of ensembles
satisfying weaker forms of coordination (eventual coordina-
tion and ε-coordination) defined in [17]. See Appendix B.1
for more details.

4. TIMELY COORDINATION &

TIMELY COMMON KNOWLEDGE
Given a set of agents I, we denote by the set of distinct

pairs of agents in I by I 2̄ ,
{

(i, j) ∈ I2 | i 6= j
}

. We define
a timely-coordination spec to be a pair (I, δ), where I ⊆ I
is a set of agents and δ : I 2̄ → Z ∪ {∞}. Intuitively, δ(i, j)
denotes an upper bound on the time from when i performs
her action, until when j performs his.4 We can now formally
define timely coordination.

Definition 4.1 (Timely-Coordination).
Given a timely-coordination spec (I, δ) and a system R ⊆ R,
we say that an I-ensemble ē ∈ FRI is δ-coordinated (in R)

if for every (i, j) ∈ I 2̄ and for every (r, t) ∈ ei, there exists
t′ ≤ t+ δ(i, j) s.t. (r, t′) ∈ ej.

While, as discussed in Appendix A, the popular definition
of common knowledge is in terms of an infinite conjunction
of nested knowledge formulae, Barwise [3], following Har-
man [8], has defined common knowledge as a fixed point.
Indeed, if we denote EIψ =

⋂
i∈I Kiψ (“everybody in I

knows”), then the following is an equivalent way of formu-
lating common knowledge as a fixed point.5

Theorem 4.2 ([17]). Let R ⊆ R and I ⊆ I. Then CIψ
is the greatest fixed point of the function fψ : FR → FR given
by x 7→ EI(ψ ∩ x), for every event ψ ∈ FR.

4 If time were continuous (i.e. T = R≥0), then the range of δ
would be (T− T) ∪ {∞} = R ∪ {∞} = (−∞,∞].
5 The equivalence is in the standard models; see Barwise [3]
for a discussion of various accepted definitions for common
knowledge and of models in which they do not coincide.

As mentioned in the introduction, a classic result [17],
which stems from Theorem 4.2, is that common knowledge
tightly relates to perfect coordination. One manifestation
of this is in the fact that if an action α is guaranteed to be
performed simultaneously by a set of agents whenever any
of them performs it, then these agents must have common
knowledge of the occurrence of α when it is performed. (In-
tuitively, the guaranteed simultaneity of α causes its joint
occurrence to be inferred at once by all participants who
perform it.) Conversely, whenever common knowledge of a
fact arises among a set of agents, it does so simultaneously
for all agents. See Appendix B.2 for further details, as well
as a review of the analogous analysis for the weaker vari-
ants of common knowledge defined in [17]. Our purpose is
to similarly relate timely coordination to an epistemic no-
tion. Consider the points at which the robots act in the
Car Wash example. In general, the robots may act at differ-
ent times. Moreover, while the local events that the various
robots must respectively know in order for them to act are
interdependent, they differ from one another. Therefore, in-
stead of seeking a fixed point of a function on (single events
in) FR as done for common knowledge and previous vari-
ants, we define a function on FRI — the set of I-tuples of
events. Given an event ψ ∈ FR and a timely-coordination
spec (I, δ), we define a function fδψ on FRI in which each
coordinate i captures the respective constraints of the agent
i, based on ψ and δ. The greatest fixed point of fδψ, denoted

by by CδIψ (this is an I-tuple of events), is shown to cap-
ture timely coordination, and is thus the desired ensemble.
Since fδψ is a function of several variables, it is a vectorial

function, and its fixed point is a vectorial fixed point [1].6

4.1 Timely Common Knowledge as a
Vectorial Fixed Point

We start by defining a lattice structure on FRI . A greatest
fixed point of a function f on FRI is a fixed point of f that
is greater than any other fixed point thereof, according to
the partial order ≤ of the lattice. Recall that a member of
FRI is a tuple of events of the form ϕ̄ , (ϕi)i∈I .

Definition 4.3 (Lattice Structure on FRI).
Let R ⊆ R and let I ⊆ I. The following partial order relation
and binary operations define a lattice structure on FRI .

• Order: ϕ̄ ≤ ξ̄ iff ∀i ∈ I : ϕi ⊆ ξi.

• Join: ϕ̄ ∨ ξ̄ , (ϕi ∪ ξi)i∈I .

• Meet: ϕ̄ ∧ ξ̄ , (ϕi ∩ ξi)i∈I .

We are now ready to define timely common knowledge.

Definition 4.4 (Timely Common Knowledge).
Let R ⊆ R and let (I, δ) be a timely-coordination spec. For
each ψ ∈ FR, we define δ-common knowledge of ψ by I,
denoted by CδIψ, to be the greatest fixed point of the func-
tion fδψ : FRI → FRI given by

fδψ : (xi)i∈I 7→

Ki

(
ψ ∩

⋂
j∈I\{i}

⊚
≤δ(i,j)xj

)
i∈I

.

6 While vectorial fixed points may alternatively be captured
by nested fixed points [1, Chapter 1], in our case we argue
that the vectorial representation better parallels the under-
lying intuition. We are not aware of either vectorial, or
nested fixed points being used in an epistemic setting be-
fore.
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We justify Definition 4.4 in three steps. First, we show
that CδIψ is well-defined and satisfies a natural induction rule
and a monotonicity property. (For proofs of all propositions
given in this paper, see Appendix C.)

Lemma 4.5. Let (I, δ) be a timely-coordination spec, let
R ⊆ R and let ψ ∈ FR.

1. CδIψ is well-defined, i.e. fδψ has a greatest fixed point.

2. Induction Rule: Every ξ̄ ∈ FRI satisfying ξ̄ ≤ fδψ(ξ̄)

also satisfies ξ̄ ≤ CδIψ.

3. CδI is monotone: ψ ⊆ φ ⇒ CδIψ ≤ CδIφ, for every
ψ, φ ∈ FR.

The induction rule is a powerful tool for analyzing situ-
ations giving rise to timely common knowledge. It states
that if ξi implies the Ki statement in Definition 4.4, with xj
substituted by ξj everywhere, then each agent i knows its
respective coordinate of CδIψ whenever ξi holds.

A timely-coordination spec is a fairly general tool for defin-
ing relative timing constraints. Particular simple instances
can capture previously studied forms of coordination. Name-
ly, if δ ≡ ∞, timely coordination coincides with eventual
coordination, and for any ε < ∞, the form of coordination
obtained by setting δ ≡ ε closely relates to ε-coordination
(and hence to perfect coordination when δ ≡ 0). Indeed, for
coordinate-wise stable ensembles (see Appendix C.4) and
for ensembles with at most a single point per agent per run
(see Section 5 for an example), δ ≡ ε precisely captures
ε-coordination and δ ≡ 0 specifies perfect coordination. Fur-
thermore, timely common knowledge is closely related to
the corresponding variants of common knowledge, for each
of these special cases of constant δ. (See Appendix D.2 for
the precise details.) Our second step is to show that timely
common knowledge closely corresponds to timely coordina-
tion, in the same sense in which common knowledge cor-
responds to perfect coordination, and variants of common
knowledge to their respective forms of coordination. (See,
once again, Appendix B.2.) The following theorem estab-
lishes this correspondence. (While phrasing this theorem,

and henceforth, we use the shorthand notation ∪ξ̄ ,
⋃
i∈I ξi,

for every ξ̄ = (ξi)i∈I ∈ FRI .)

Theorem 4.6. Let R ⊆ R and let (I, δ) be a timely-
coordination spec.

1. CδIψ constitutes a δ-coordinated I-ensemble, for every
ψ ∈ FR.

2. ∪CδIψ ⊆ ψ, for every ψ ∈ FR.

3. If ē ∈ FRI is a δ-coordinated I-ensemble satisfying
∪ē ⊆ ψ for some ψ ∈ FR, then ē ≤ CδIψ.

4. If ē ∈ FRI is a δ-coordinated I-ensemble, then
ē ≤ CδI (∪ē).

5. If ē ∈ FRI is a δ-coordinated I-ensemble, then
∪ē = ∪CδI (∪ē).

Theorem 4.6 highlights some key properties of the fun-
damental connection between δ-coordination and δ-common
knowledge: (Parts 1, 4 and 5 are analogues of Theorems B.4,
B.5 and B.6, the latter part being stronger in a sense than its

counterparts from Theorems B.5 and B.6 regarding eventual-
and ε-common knowledge, respectively.) Parts 1–3 charac-
terise δ-common knowledge of ψ as the greatest δ-coordi-
nated event ensemble that implies ψ.7 Moreover, Part 3
provides convenient means to prove that timely common
knowledge holds. Part 4 says that regardless of the way
a δ-coordinated ensemble is formed (be it using δ-common
knowledge of some event ψ, or otherwise), the fact that
its i’th coordinate holds implies that the i’th coordinate of
δ-common knowledge of (the disjunction of) this ensemble
holds as well. Finally, part 5 captures the fact that the union
of any δ-coordinated ensemble is a fixed point of ∪CδI , and,
together with Part 1, implies the idempotence of ∪CδI . Our
third step is demonstrating the usefulness of timely common
knowledge, which we do in the next section.

5. TIMELY-COORDINATED RESPONSE
We now harness the machinery developed in the previous

sections to study a class of coordination problems. In these
problems, the occurrence of a particular event φ must trigger
responses by a set I ⊆ I of agents, and the responses must
be timely coordinated according to a given spec δ.8 The
triggering event φ may be the arrival of a car at the Car
Wash, the ringing of a smoke alarm, or some other event
that requires a response. A run r during which φ occurs
(i.e. (r, t) ∈ φ for some t ∈ T) is called φ-triggered. Follow-
ing in the spirit of [5] and generalizing their definitions (see
Appendix D.1), we define this class of coordination problems
as follows.

Definition 5.1 (Timely-Coordinated Response).
A timely-coordinated response problem, or TCR, is a
quintuplet τ = (γ, φ, I, δ, ᾱ), where γ is a context, φ ∈ FR is
an event, (I, δ) is a timely-coordination spec and ᾱ = (αi)i∈I
is a tuple of actions, one for each i ∈ I. A protocol P is said
to solve a TCR τ = (γ, φ, I, δ, ᾱ) if for every r ∈ R(P, γ),

• If r is φ-triggered and φ first occurs in r at tφ ∈ T,
then each agent i ∈ I responds (i.e. performs αi) in r

exactly once, at a time ti ≥ tφ s.t. for every (i, j) ∈ I 2̄,
it holds that tj ≤ ti + δ(i, j).

• If r is not φ-triggered, then none of the agents in I
respond in r.

We say that τ is solvable if there exists a protocol P ∈ P
that solves it. We now show that attaining timely common
knowledge is a necessary condition for action in a protocol
solving timely-coordinated response, in the sense that an
agent cannot respond unless is has attained its respective
coordinate of timely common knowledge.9 Indeed, Theo-

7 Neither eventual- nor ε-common knowledge give way for
a clean analogous characterisation. (See Appendix D.2 for
more details.)
8 For ease of exposition, we assume that each agent is associ-
ated with exactly one action. Essentially the same analysis
applies if we allow each agent to be associated with more
than one response action.
9 In the following propositions, we work in the universe
ΩR(P,γ) defined by the system of runs of the given proto-
col in question. All knowledge and temporal operators are
therefore relative to this universe. Furthermore, we slightly
abuse notation by writing φ to refer to φ ∩ΩR(P,γ), i.e. the
restriction of φ to this universe.
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rem 4.6(3) implies:10

Corollary 5.2. Let P ∈ P be a protocol solving a TCR
τ = (γ, φ, I, δ, ᾱ), and let r ∈ R(P, γ) be a φ-triggered run.
If i ∈ I responds at time ti in r, then (r, ti) ∈

(
CδI (⊚≤0φ)

)
i
.

In fact, timely common knowledge is not only necessary
for solving a TCR, but also sufficient for doing so. (See be-
low.) Indeed, we now argue that timely common knowledge
can be used to design time-optimal solutions for arbitrary
TCRs. For the notion of time-optimality to be well defined,
we define it with regard to each family of protocols that
are the same in all aspects, except for possibly the time
at which (and whether) agents respond. To this end, we
restrict ourselves to protocols that may be represented as
a pair P = (P−ᾱ, Pᾱ), s.t. the output of P is a Cartesian
product of the outputs of its two parts, where Pᾱ speci-
fies whether to respond, while P−ᾱ specifies everything else.
(Natural examples for such protocols are those in which the
choice of whether to respond is deterministic.) Furthermore,
we restrict ourselves to contexts in which none of ᾱ affect
the agents’ transitions in any way (and hence do not affect
any future states or actions). Under these conditions, given
two protocols P = (P−ᾱ, Pᾱ) and P ′ = (P−ᾱ, P

′
ᾱ) that share

same non-response component P−ᾱ, there exists a natural
isomorphism σ : R(P, γ)

∼−→ R(P ′, γ), in which correspond-
ing runs agree in all aspects except for possibly the times at
which (and whether) responses are performed; we thus say
that two such protocols are run-equivalent. Furthermore,
we slightly abuse notation by writing R(P−ᾱ, γ) to refer to
both R(P, γ) and R(P ′, γ), which coincide using σ. We say
that a protocol P = (P−ᾱ, Pᾱ) is a time-optimal solution for
a TCR τ if P solves τ and, moreover, responses are never
performed in P later than in any solution P ′ of τ that is
run-equivalent to P . More formally, we demand that for ev-
ery φ-triggered r ∈ R(P, γ) and for every i ∈ I, if i responds
at time ti in r and at time t′i in σ(r) ∈ R(P ′, γ) (with σ
as above), then necessarily ti ≤ t′i. It should be noted that
it is not a priori clear that TCRs admit time-optimal so-
lutions. We now show not only that all solvable TCRs do,
but moreover, that for every solution there exists a run-
equivalent time-optimal solution and that all time-optimal
solutions have each agent responding at the first instant at
which it attains its respective coordinate of timely common
knowledge.11

Corollary 5.3. Let τ = (γ, φ, I, δ, ᾱ) be a solvable TCR
and let P = (P−ᾱ, Pᾱ) be a protocol solving it. The run-
equivalent protocol P ′ = (P−ᾱ, P

′
ᾱ) in which every i ∈ I

responds at the first instant at which
(
CδI (⊚≤0φ)

)
i

holds (in
ΩR(P−ᾱ,γ)), is a time-optimal solution for τ .

Indeed, we may now formalize our previous statement re-
garding timely common knowledge being necessary and suf-
ficient for solving a TCR τ = (γ, φ, I, δ, ᾱ): a protocol P is

10 Observe that ⊚≤0 stands for the temporal operator “pre-
viously”.

11 As noted in Appendix C, in some runs of certain systems
R(P−ᾱ, γ) in a continuous-time model, the set of times at

which
(
CδI (⊚≤0φ)

)
i

holds does not attain its infimum value.
It is possible to similarly show that in such pathological
cases, no time-optimal protocol that is run-equivalent to P
exists.

run-equivalent to a solution of τ iff CδI (⊚≤0φ) is attained in
each of its φ-triggered runs. (See Corollary C.13.)

Attaining true (not timely) common knowledge of a fact
of interest is often an effective and intuitive way of synchro-
nization, which may also be used to solve TCRs. However,
in addition to such a solution being suboptimal in many
cases, timely common knowledge is often attainable even
when common knowledge is not. In the Car Wash setting,
for example, if the arrival of a car is guaranteed to be ob-
served by each robot (privately) within at most 2 time units,
then the TCR can be readily solved (and timely common
knowledge attained) even though techniques of [17] may be
used to show that the arrival of the car might never become
common knowledge.

We conclude this section by noting that in contexts sup-
porting full-information protocols (see, e.g. [12]), the above
tools may be applied to obtain both a globally time-optimal
solution to, as well as a solvability criterion for, arbitrary
TCRs. We defer the details to the full paper.

6. A CONSTRUCTIVE DEFINITION FOR
TIMELY COMMON KNOWLEDGE

The analysis of Section 5 provides us with time-optimal
solutions for timely-coordinated response. The fly in the
ointment, though, is how to implement these solutions, i.e.
how to check whether a certain coordinate of timely common
knowledge holds, given the state of the corresponding agent.
We now take a step in this direction, which also sheds some
more light on the fixed-point analysis of the previous section,
and makes the notion of timely common knowledge more
concrete. Under natural assumptions (see Theorem C.20 for
details), we obtain, for every i ∈ I:

(CδIψ)i =
⋂

(i,i2,...,in)∈I∗̄
Ki⊚

δ(i,i2)Ki2⊚
δ(i2,i3)Ki3 · · ·⊚

δ(in−1,in)Kinψ,

(1)

where I ∗̄ ,
{

(i1, . . . , in) ∈ I∗ | ∀m : im 6= im+1

}
denotes

the set of all finite non-stuttering sequences of elements of I.
Note that for δ ≡ 0 (perfect coordination), (1) yields in
each coordinate a familiar definition (see Observation A.4) of
common knowledge as an infinite conjunction: (cf. the more
popular Definition A.3, which is generalized by eventual-
and ε-common knowledge, but is symmetric in nature, and
therefore less natural for generalization in our setting.)

CIψ =
⋂

(i1,...,in)∈I∗̄
Ki1Ki2Ki3 · · ·Kinψ.

The formulation of timely common knowledge in terms of
an infinite conjunction provides a constructive interpretation
of the time-optimal solution from Corollary 5.3. Roughly
speaking, each agent i ∈ I should respond at the first in-
stant at which all nested-knowledge formulae of the form
Ki ⊚

δ(i,i2) Ki2 ⊚
δ(i2,i3) Ki3 · · ·⊚δ(in−1,in) Kin ⊚

≤0 φ hold for
all (i, i2, . . . , in) ∈ I ∗̄. (See Corollary C.22 for the precise
phrasing.) While this may appear to take us a step closer
to implementing time-optimal solutions, a näıve implemen-
tation may still require potentially infinitely many tests. In
fact, as in the case of common knowledge, in practice timely
common knowledge may be established using the induction
rule of Theorem 4.6(3). We also refer the reader to [16,
Chapters 6 and 9] for a study of the causal structure of
these tests, which uses a different set of tools and which is,
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therefore, out of the scope of this paper.

7. CONCLUDING REMARKS
This paper suggests a broader connection between epis-

temic analysis and distributed coordination than was previ-
ously realized. The novel concept of timely common knowl-
edge provides a formal connection between distributed pro-
tocols and a new form of equilibria, thus bringing distributed
and multi-agent protocols closer to the realm of games, even
in the absence of utilities and preferences. It should be
noted, however, that the equilibrium in our analysis is not
merely among strategies; in the Car Wash scenario, for ex-
ample, the particular time instants at which the various
robots act are at a temporal-epistemic equilibrium.

While this paper introduces vectorial fixed-point epistemic
analysis as a tool for defining timely common knowledge,
we believe that it will prove to be applicable well beyond
the scope of problems considered here. We are currently
pursuing generalizations and variations on the techniques
presented in this paper for varying purposes, from general-
izations of timely common knowledge to analyses of signif-
icantly different tasks, such as distributed agreement prob-
lems, which do not involve any form of timely coordination.

Fixed points, be they scalar or vectorial, be they temporal-
epistemic or of any other kind, provide formal, yet intuitive,
means of capturing equilibria in multi-agent systems. Many
systems around us, from subatomic physical systems to as-
trophysical ones, and from animal societies to stock markets,
exist in some form of equilibrium, possibly reached as a re-
sult of a long-forgotten spontaneous symmetry breaking. It
is thus only natural to conjecture that fixed-point analyses
of distributed algorithms and multi-agent systems hold the
potential to provide significant further insights that are yet
to be discovered.
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APPENDIX
A. KNOWLEDGE AND

COMMON KNOWLEDGE
We first survey a few immediate (and well-known) proper-

ties of the knowledge operator, which is defined in Section 3.

Observation A.1. Let R ⊆ R and let i ∈ I. By defini-
tion of Ki, we have:

• Knowledge Axiom: Kiψ ⊆ ψ, for every ψ ∈ FR.

• Positive Introspection Axiom: KiKiψ = Kiψ, for every
ψ ∈ FR.

• Monotonicity: ψ ⊆ φ ⇒ Kiψ ⊆ Kiφ, for every
ψ, φ ∈ FR.

• Ki commutes with intersection:
Ki(∩Ψ) =

⋂
{Kiψ | ψ ∈ Ψ}, for every set of events

Ψ ⊆ FR.

We now build upon the definition of knowledge and define
the notions of“everyone knows”and of“common knowledge”.

Definition A.2 (Everyone Knows). Let R ⊆ R and

let I ⊆ I. For every ψ ∈ FR, denote EIψ ,
⋂
i∈I Kiψ.

One popular, constructive definition of common knowl-
edge [14] is the following, defining that an event is common
knowledge to a set of agents when all know it, all know that
all know it, etc.

Definition A.3 (Common Knowledge). Let R ⊆ R
and let I ⊆ I. For every ψ ∈ FR, denote CIψ ,

⋂∞
n=1 EI

nψ,

where EI
0ψ , ψ and EI

nψ , EIEI
n−1ψ for every n ∈ N.

Observation A.4. Equivalently, by Definition A.2,

CIψ =
⋂

(i1,...,in)∈I∗
Ki1 · · ·Kinψ =

⋂
(i1,...,in)∈I∗̄

Ki1 · · ·Kinψ,

where I ∗̄ ,
{

(i1, . . . , in) ∈ I∗ | ∀m ∈ [n − 1] : im 6= im+1

}
denotes the set of all finite non-stuttering sequences of ele-
ments of I.

B. BACKGROUND: SYMMETRIC FORMS
OF COORDINATION

In this section, we survey a few forms of coordination pre-
viously defined and analyzed by Halpern and Moses [17], as
formulated for ensembles in [12, Section 11.6]. We reformu-
late these using events and adapt them to our notation.

B.1 Definitions
Definition B.1 (Perfect Coordination).

Let R ⊆ R and let I ⊆ I. An I-ensemble ē ∈ FRI is said
to be perfectly coordinated (in R) if ei = ej for every
i, j ∈ I.

Definition B.2 (Eventual Coordination [17, 12]).
Let R ⊆ R and let I ⊆ I. An I-ensemble ē ∈ FRI is said to
be eventually coordinated (in R) if for every i, j ∈ I and
for every (r, t) ∈ ei, there exists t′ ∈ T s.t. (r, t′) ∈ ej.

Definition B.3 (ε-Coordination [17, 12]).
Let R ⊆ R, let I ⊆ I and let ε ≥ 0. An I-ensemble ē ∈ FRI
is said to be ε-coordinated (in R) if for every i ∈ I and for
every (r, t) ∈ ei, there exists an interval T ⊆ T of length at
most ε, s.t. t ∈ T and s.t. for every j ∈ I there exists t′ ∈ T
s.t. (r, t′) ∈ ej.

B.2 Fixed-Point Analysis
While phrasing the propositions in this section, and hence-

forth, we use the shorthand notation ∪ξ̄ ,
⋃
i∈I ξi, for every

I-ensemble ξ̄ = (ξi)i∈I ∈ FRI .

Theorem B.4 ([17, 12]). Let R ⊆ R and let I ⊆ I.
1. (CIψ)i∈I constitutes a perfectly coordinated I-ensemble,

for every ψ ∈ FR.

2. If ē ∈ FRI is a perfectly-coordinated I-ensemble, then
ei ⊆ CI(∪ē) for every i ∈ I.

3. If ē ∈ FRI is a perfectly-coordinated I-ensemble, then
∪ē = CI(∪ē).

Theorem B.5 ([17, 12]). Let R ⊆ R and let I ⊆ I.
1. For every ψ ∈ FR, the function f�ψ : FR → FR given by

x 7→ ∩i∈I�Ki(ψ∩x) has a greatest fixed point, denoted
by C�I ψ — for eventual common knowledge of ψ by
I.

2. (KiC
�

I ψ)i∈I constitutes an eventually-coordinated I-en-
semble, for every ψ ∈ FR.

3. If ē ∈ FRI is an eventually-coordinated I-ensemble,
then ei ⊆ KiC

�

I (∪ē) for every i ∈ I.

4. If ē ∈ FRI is an eventually-coordinated I-ensemble,
then ∪ē ⊆ C�I (∪ē).

We note that for ε ≡ 0, ε-coordination is the same as
perfect coordination, and thus the following theorem also
implies Theorem B.4 as a special case thereof.

Theorem B.6 ([12]). Let R ⊆ R, let I ⊆ I and let
ε ≥ 0. For every ψ ∈ FR, denote

EεI (ψ) ,

(r, t) ∈ ΩR

∣∣∣∣∣∣
∃T ⊆ T :

t ∈ T & sup{T − T} ≤ ε &
∀i ∈ I ∃ t′ ∈ T : (r, t′) ∈ Kiψ

 .

1. For every ψ ∈ FR, the function fεψ : FR → FR given
by x 7→ EεI (ψ ∩ x)) has a greatest fixed point, denoted
by CεIψ — for ε-common knowledge of ψ by I.

2. (KiC
ε
Iψ)i∈I constitutes an ε-coordinated I-ensemble, for

every ψ ∈ FR.

3. If ē ∈ FRI is an ε-coordinated I-ensemble, then
ei ⊆ KiC

ε
I (∪ē) for every i ∈ I.

4. If ē ∈ FRI is an ε-coordinated I-ensemble, then
∪ē ⊆ CεI (∪ē).
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C. PROOFS

C.1 Preliminaries

Observation C.1. Let R ⊆ R and i ∈ I. By the positive
introspection axiom, the event Kiψ is i-local for every ψ ∈
FR.

Definition C.2. To aid the readability of the proofs be-
low, we define ∆ = Z ∪ {∞} — the set of suprema of
sets of time differences. (For every timely-coordination spec
(I, δ), this is the range of δ. See the definition of a timely-
coordination spec in Section 4 for more details.)12

Observation C.3. By definition of ⊚≤ε,

• ⊚≤∞ = �.

• ⊚≤0ψ means “ψ has occurred, either now or in the
past”.

• Additivity: ⊚≤ε1⊚≤ε2ψ = ⊚≤ε1+ε2ψ for every ε1, ε2∈∆
and for every ψ ∈ FR.

• Monotonicity: (ε1≤ε2 & ψ⊆φ) ⇒ ⊚
≤ε1ψ ⊆ ⊚≤ε2φ,

for every ε1, ε2 ∈ ∆ and for every ψ, φ ∈ FR.

• ⊚≤ε(∩Ψ) ⊆
⋂
{⊚≤εψ | ψ ∈ Ψ}, for every ε ∈ ∆ and for

every set of events Ψ ⊆ FR.

Observation C.4. By definition of ⊚ε, for every event
ψ ∈ FR we have:

• ⊚ε1 ⊚≤ε2 ψ = ⊚
≤ε1
⊚
ε2 ψ = ⊚

≤ε1+ε2ψ, for every
ε1, ε2 ∈ ∆ \ {∞}.
• ⊚εψ ⊆ ⊚≤εψ, for every ε ∈ ∆ \ {∞}.
• ⊚ε commutes with intersection for every ε ∈ ∆ \ {∞}:
⊚
ε(∩Ψ) =

⋂
{⊚εψ | ψ ∈ Ψ} for every set of events

Ψ ⊆ FR.

C.2 Proofs of Propositions from Section 4
The soundness of our definition of timely common knowl-

edge is based on the following part of Tarksi’s celebrated
theorem.

Definition C.5 (Complete Lattice). A lattice L is
called complete if each subset S ⊆ L has both a supremum
(i.e. least upper bound, denoted

∨
S) and an infimum (i.e.

greatest lower bound, denoted
∧
S).

Theorem C.6 (Tarski [29]). Let L be a complete lat-
tice. Every monotone function f : L → L has a greatest
fixed point. Furthermore, this greatest fixed point is given by∨{

l ∈ L | l ≤ f(l)
}

.

Observation C.7. FRI , equipped with the lattice struc-
ture from Definition 4.3, constitutes a complete lattice; the
supremum of every subset of FRI is given by coordinate-wise
union, and its infimum — by coordinate-wise intersection.

Proof of Lemma 4.5. By monotonicity of Ki for every
i ∈ I and of ⊚≤ε for every ε ∈ ∆, we obtain that fδψ is mono-
tone. By Observation C.7, and by Tarski’s Theorem C.6,
the set of fixed points of fδψ has a greatest element, which

12 As noted above, we more generally define the set of time
differences as ∆ = (T − T) ∪ {∞}. E.g. if T = R≥0, then
∆ = (−∞,∞].

equals
∨{

ξ̄ ∈ FRI | ξ̄ ≤ fδψ(ξ̄)
}

. This proves both that CδIψ
is well-defined (part 1 of the lemma) and the induction rule
for timely common knowledge (part 2).

To prove monotonicity of CδI (part 3), let ψ, φ ∈ FR s.t.
ψ ⊆ φ. Once again, by monotonicity of Ki for every i ∈ I,
we obtain that fδψ(ϕ̄) ≤ fδφ(ϕ̄) for every ϕ̄ ∈ FRI . By sub-

stituting ϕ̄ , CδIψ, and by definition of CδIψ, we obtain
CδIψ = fδψ(CδIψ) ≤ fδφ(CδIψ). By directly applying the in-

duction rule for timely common knowledge with ξ̄ , CδIψ,
we obtain that CδIψ ≤ CδIφ.

Proof of Theorem 4.6. We begin the proof of part 1
by noting that for every i ∈ I, by definition CδIψ = fδψ(CδIψ),

and therefore (CδIψ)i is of the form Ki(· · · ). Hence, by Ob-

servation C.1, CδIψ is an I-ensemble. Let (i, j) ∈ I 2̄ and
(r, t) ∈ (CδIψ)i. By definition of CδI and by the knowl-
edge axiom,

(CδIψ)i = Ki

(
ψ ∩

⋂
k∈I\{i}

⊚
≤δ(i,k)(CδIψ)k

)
⊆

⊆ ψ ∩
⋂

k∈I\{i}

⊚
≤δ(i,k)(CδIψ)k ⊆ ⊚

≤δ(i,j)(CδIψ)j .

Thus, we obtain that (r, t) ∈ ⊚≤δ(i,j)(CδIψ)j . By definition

of ⊚≤δ(i,j), there exists t′ ∈ T such that t′ ≤ t + δ(i, j)
and (r, t′) ∈ (CδIψ)j , and the proof of part 1 is complete.
Similarly, we have

(CδIψ)i = Ki

(
ψ ∩

⋂
k∈I\{i}

⊚
≤δ(i,k)(CδIψ)k

)
⊆

⊆ ψ ∩
⋂

k∈I\{i}

⊚
≤δ(i,k)(CδIψ)k ⊆ ψ

for every i ∈ I, thus proving part 2 as well.
We move on to proving part 3. Let ē be a δ-coordinated

I-ensemble s.t. ∪ē ⊆ ψ. First, we show that ē ≤ fδψ(ē).
Let i ∈ I. Let (r, t) ∈ ei and let j ∈ I \ {i}. Since ē is
δ-coordinated, there exists t′ ∈ T s.t. t′ ≤ t + δ(i, j) and

(r, t′) ∈ ej . By definition of ⊚≤δ(i,j), we therefore obtain

(r, t) ∈ ⊚≤δ(i,j)ej . Thus, and since ∪ē ⊆ ψ, we have

ei ⊆ ψ ∩
⋂

j∈I\{i}

⊚
≤δ(i,j)ej .

By definition of an ensemble, ei is i-local, and thus ei =
Kiei. Hence, by monotonicity of Ki,

ei = Kiei ⊆ Ki

(
ψ ∩

⋂
j∈I\{i}

⊚
≤δ(i,j)ej

)
=
(
fδψ(ē)

)
i
.

By the induction rule for timely common knowledge, we thus
have ē ≤ CδIψ, completing the proof of part 3. Part 4 follows
from part 3 by setting ψ , ∪ē. Finally, one direction of
part 5 follows from part 4 by taking the union of both sides,
while the other follows by setting ψ , ∪ē in part 2.

C.3 Proofs of Propositions from Section 5

C.3.1 Preliminaries
In order to harness the tools of Section 4 to analyzing

timely-coordinated response, we introduce some machinery
relating agent responses in a protocol P ∈ P to an ensemble
in the space ΩR(P,γ) defined by the set of runs of P . Recall
that as mentioned above, we slightly abuse notation at times
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when working in ΩR(P,γ) for some protocol P , by writing φ
to refer to φ ∩ΩR(P,γ).

Definition C.8. Let τ = (γ, φ, I, δ, ᾱ) be a TCR and let

P ∈ P. We denote by ePᾱ ∈ FR(P,γ)
I the I-ensemble ePᾱi ,

{(r, t) ∈ ΩR(P,γ) | i performs αi at (r, t) according to P},
for every i ∈ I.

Observation C.9. Let τ = (γ, φ, I, δ, ᾱ) be a TCR and
let P ∈ P. Since the actions of each agent i ∈ I at each point
are defined by its state at that point, it follows that ePᾱi is
i-local, and thus ēPᾱ is indeed an I-ensemble.

Observation C.10. Let τ = (γ, φ, I, δ, ᾱ) be a TCR. A
protocol P ∈ P solves τ iff all the following hold in ΩR(P,γ):

• ePᾱi occurs at most once during each run r ∈ R(P, γ),
for every agent i ∈ I.

• ēPᾱ is δ-coordinated.

• ∪ēPᾱ ⊆ ⊚≤0φ. (I.e. φ must occur before or when any
response does.)

• φ ⊆ �ePᾱi , for every i ∈ I. (I.e. all responses must
occur at some point along any φ-triggered run.)

Observation C.11. Let τ = (γ, φ, I, δ, ᾱ) be a TCR. A
protocol P ∈ P is a time-optimal solution to τ iff it both
solves τ and for every protocol P ′ solving τ that is run-

equivalent to P , we have e
P ′ᾱ
i ⊆ ⊚≤0ePᾱi in ΩR(P−ᾱ,γ) for

every i ∈ I.

C.3.2 Proofs

Proof of Corollary 5.2. We must show that under
the conditions of the corollary, ēPᾱ ≤ CδI (⊚≤0φ) holds in
ΩR(P,γ)

I . Since P solves τ , by Observation C.10 we have

both that ēPᾱ is δ-coordinated and that ∪ēPᾱ ⊆ ⊚≤0φ.
Thus, by Theorem 4.6(3), we obtain ēPᾱ ≤ CδI (⊚≤0φ),
as required.

The following somewhat technically-phrased lemma lies
at the heart of Corollaries C.13 and 5.3, whose proofs follow
below.

Lemma C.12. Let τ = (γ, φ, I, δ, ᾱ) be a TCR and let
P−ᾱ be a non-response component of a protocol such that
φ ⊆ �

(
CδI (⊚≤0φ)

)
i

holds in ΩR(P−ᾱ,γ) for some i ∈ I. The
protocol P = (P−ᾱ, Pᾱ) s.t. in Pᾱ each i ∈ I responds at the
first instant at which

(
CδI (⊚≤0φ)

)
i

holds (in ΩR(P−ᾱ,γ)), is
a time-optimal solution for τ .

Proof. We note that by Theorem 4.6(1),
(
CδI (⊚≤0φ)

)
j

is j-local for every j ∈ I, and thus Pᾱ is well-defined.13 We

13 In some runs of certain contexts under a continuous-time
model, the set of times at which

(
CδI (⊚≤0φ)

)
j

holds does not

attain its infimum value, and thus “
(
CδI (⊚≤0φ)

)
j

holds for

the first time” is not necessarily a j-local event. To accom-
modate such cases, we may adapt the response component
Pᾱ s.t. each j ∈ I responds exactly 1 time unit after the in-
fimum of times at which

(
CδI (⊚≤0φ)

)
j

holds. (It is straight-

forward to show that this is indeed a j-local event). The
proof is easily adaptable to both show that this definition
yields a solution for τ and to prove that in such pathological
cases, no time-optimal solution for τ exists.

now show that P solves τ by showing that it satisfies all four
conditions of Observation C.10.

By definition of Pᾱ, for each j ∈ I the event ePᾱj oc-

curs at most once during each r ∈ R(P, γ). Let (j, k) ∈ I 2̄

and let (r, t) ∈ ePᾱj . By definition of Pᾱ, we have that

(r, t) ∈
(
CδI (⊚≤0φ)

)
j
. By Theorem 4.6(1), CδI (⊚≤0φ) is a

δ-coordinated ensemble, and thus there exists t′ ≤ t+δ(j, k)
s.t. (r, t′) ∈

(
CδI (⊚≤0φ)

)
k
. By definition of Pᾱ, there exists

t′′ ≤ t′ s.t. (r, t′′) ∈ ePᾱk . As t′′ ≤ t′ ≤ t+ δ(j, k), we obtain

that ēPᾱ is δ-coordinated.
Let j ∈ I. By Observation C.3 (monotonicity), we con-

clude that ePᾱi ⊆ ⊚≤δ(i,j)ePᾱj ⊆ �ePᾱj . By definition of

Pᾱ, we have
(
CδI (⊚≤0φ)

)
i
⊆ ⊚≤0ePᾱi . By both of these, by

the conditions of the lemma, and once again by Observa-
tion C.3 (monotonicity), we obtain φ ⊆ �

(
CδI (⊚≤0φ)

)
i
⊆

�⊚
≤0 ePᾱi ⊆ �⊚≤0

�ePᾱj = �ePᾱj . Finally, by definition of

Pᾱ and by Theorem 4.6(2), we have ∪ēPᾱ ⊆ ∪CδI (⊚≤0φ) ⊆
⊚
≤0φ, thus completing the proof of P solving τ .
We move on to show that P constitutes a time-optimal

solution to τ . Let P ′ = (P−ᾱ, P
′
ᾱ) be a protocol solv-

ing τ that is run-equivalent to P . Let j ∈ I. By Corol-

lary 5.2, we have e
P ′ᾱ
j ⊆

(
CδI (⊚≤0φ)

)
j
. By definition of Pᾱ,

we have
(
CδI (⊚≤0φ)

)
j
⊆ ⊚≤0ePᾱj . We combine these to ob-

tain e
P ′ᾱ
j ⊆ ⊚≤0ePᾱj , and thus, by Observation C.11, the

proof is complete.

Corollary C.13. Let τ = (γ, φ, I, δ, ᾱ) be a TCR and
let P ∈ P. The following are equivalent:

1. P is run-equivalent to a protocol that solves τ .

2. φ ⊆ �
(
CδI (⊚≤0φ)

)
i

in ΩR(P,γ), for every i ∈ I.

3. φ ⊆ �
(
CδI (⊚≤0φ)

)
i

in ΩR(P,γ), for some i ∈ I.

Proof.
1 ⇒ 2: Let i ∈ I. Let P ′ be a protocol solving τ that

is run-equivalent to P . Recall that ΩR(P ′,γ) ' ΩR(P,γ). By

Observation C.10, we have φ ⊆ �eP
′
ᾱ
i . By Corollary 5.2, we

have e
P ′ᾱ
i ⊆

(
CδI (⊚≤0φ)

)
i
. We combine these two with Ob-

servation C.3 (monotonicity) to obtain φ ⊆ �
(
CδI (⊚≤0φ)

)
i
.

2 ⇒ 3: Immediate.
3 ⇒ 1: Follows immediately from Lemma C.12, since

ΩR(P,γ) ' ΩR(P−ᾱ,γ).

Proof of Corollary 5.3. By Corollary C.13(1 ⇒ 2),
we have φ ⊆ �

(
CδI (⊚≤0φ)

)
i

holding inΩR(P,γ) ' ΩR(P−ᾱ,γ).
By Lemma C.12, the proof is complete.

C.4 From Fixed-Point Definition to
Nested-Knowledge Definition

C.4.1 Definitions and Propositions
In order to precisely phrase our nested-knowledge charac-

terisation of timely common knowledge, we first introduce
an additional definition.14

14 As our notation P(Gδ) may suggest, this is in fact the
set of paths in a directed graph Gδ having I as vertices
and with edges wherever δ < ∞. For an in-depth graph-
theoretic study of Gδ and of its elaborate relation to tuples
of δ-coordinated timestamps, we refer the reader to [15] or
to [16, Chapter 5]. For a study of the connection between the
graph-theoretic properties of Gδ and the required delivery
guarantees required to solve a TCR, we refer the reader to
[16, Chapter 9].
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Definition C.14. Let I be a set and let δ : I 2̄ → ∆. We
define

P(Gδ) ,
{

(i1, . . . , in)∈I ∗̄ | ∀m∈ [n−1] : δ(im, im+1) <∞
}
.

Example C.15. By the above definition, if I = {i, j},
then every element of P(Gδ) is either (i, j, i, j, i, j, . . .︸ ︷︷ ︸

n

) or

(j, i, j, i, j, i, . . .︸ ︷︷ ︸
n

), for some n ∈ N. (If |I| > 2, then P(Gδ) is

much richer.)

Second, we present a variation of a definition from [12,
Chapter 4], which we utilize in this section.

Definition C.16 (Perfect Recall).
A system R ⊆ R is said to exhibit perfect recall if for every
r ∈ R, for every i ∈ I and for every t ∈ T, the state of i at t
in r uniquely determines the set

{
ri(t
′) | t′ ∈ T \ [t,∞)

}
of

states of i in r prior to t.

Observation C.17. If P fip
γ is a full-information protocol

in a context γ, then R(P fip
γ , γ) exhibits perfect recall.

Third, we present a definition based upon [12, Chapter 4]
and some basic properties thereof.

Definition C.18 (Stability). Let R ⊆ R. An event
ψ ∈ FR is said to be stable if once ψ holds at some time
during a run r ∈ R, it continues to hold for the duration of
r. Formally, using our notation, ψ is stable iff ψ = ⊚≤0ψ.

Observation C.19. By Definition C.18,

• By Observation C.3 (additivity), ⊚≤0 is idempotent.
Thus, ⊚≤0φ is a stable event for every φ ∈ FR.

• ψ ∩ φ is a stable event for any two stable events
ψ, φ ∈ FR.

Indeed, since ⊚≤0φ is stable for every φ, we do not lose
much in the perspective of Section 5 if we restrict our study
to timely common knowledge of stable events. We can now
precisely phrase our constructive characterisation of timely
common knowledge. See the following sections for a proof
and a discussion of the various requirements of the following
theorem.

Theorem C.20. Let (I, δ) be a timely-coordination spec,
let R ⊆ R be a system exhibiting perfect recall and let ψ ∈
FR be a stable event. Assume, furthermore, that either of
the following holds:

1. δ <∞.

2. R = R(P, γ), for some protocol P and context γ s.t.
P either solves (γ, ψ, I, δ, ᾱ) for some ᾱ, or is run-
equivalent to a protocol that does.

For every i ∈ I,

(CδIψ)i =
⋂

(i,i2,...,in)∈P(Gδ)

Ki⊚
δ(i,i2)Ki2⊚

δ(i2,i3)Ki3 · · ·⊚
δ(in−1,in)Kinψ

(2)
holds in ΩR.

Observation C.21. By Observation C.17, and since it is
straitforward to show that a TCR is solvable iff it is solvable
by a full-information protocol, condition 2 of Theorem C.20
is met if R = R(P fip

γ , γ), for a context γ admitting a full-

information protocol P fip
γ s.t. (γ, ψ, I, δ, ᾱ) is solvable (by

some protocol) for some ᾱ.

Corollary C.22. The time-optimal solution from Corol-
lary 5.3, under (any of) the conditions of Theorem C.20

(with regard to R , R(P−ᾱ, γ) and ψ , ⊚≤0φ), is for each
agent i ∈ I to respond at the first instant at which all nested-
knowledge formulae of the form

Ki ⊚
δ(i,i2) Ki2 ⊚

δ(i2,i3) · · ·Kin−1 ⊚
δ(in−1,in) Kin ⊚

≤0 φ

hold (in ΩR(P−ᾱ,γ)) for all (i, i2, . . . , in) ∈ P(Gδ).

C.4.2 Background
In order to prove Theorem C.20, we perform an analysis

of timely common knowledge of stable events. For reasons
that will soon be apparent, we conduct this analysis un-
der the assumption of perfect recall. To make our analysis
somewhat cleaner and more generic, we first aim to distill
the property of sets of runs exhibiting perfect recall that is
of interest to us, namely that in such sets of runs, knowl-
edge of a stable event is itself stable. The following is given
in [12, Exercise 4.18(b)], and its proof follows directly from
the definitions of stability and of knowledge.

Claim C.23. Let R ⊆ R be a system exhibiting perfect
recall and let ψ ∈ FR. If ψ is stable, then Kiψ is stable as
well, for every i ∈ I.

C.4.3 Proof
Returning to our results and working toward proving The-

orem C.20, we first derive a stability property for timely
common knowledge (given in Claim C.25.)

Claim C.24. Let R ⊆ R be a system exhibiting perfect
recall. For every event ψ ∈ FR and for every agent i ∈ I, it
holds that ⊚≤0Kiψ ⊆ Ki ⊚

≤0 ψ.

Proof. By Observation C.3, we have ψ ⊆ ⊚≤0ψ. Thus,
by monotonicity of ⊚≤0 and of Ki, we have ⊚≤0Kiψ ⊆
⊚
≤0Ki ⊚

≤0 ψ. By Observation C.19, ⊚≤0ψ is stable, and
therefore, by Claim C.23, Ki ⊚

≤0 ψ is stable as well, and
thus equals ⊚≤0Ki ⊚

≤0 ψ, by applying Observation C.19
once more. We combine all these to obtain ⊚≤0Kiψ ⊆
⊚
≤0Ki ⊚

≤0 ψ = Ki ⊚
≤0 ψ, as required.

Claim C.25. Let (I, δ) be a timely-coordination spec and
let R ⊆ R be a set of runs exhibiting perfect recall. For every
stable ψ ∈ FR, all coordinates of CδIψ are stable.

Proof. Let i ∈ I. By Definition C.18 and by Observa-
tion C.3, it is enough to show that ⊚≤0(CδIψ)i ⊆ (CδIψ)i.
Indeed, we have

⊚
≤0 (CδIψ)i = by definition of CδI

= ⊚
≤0 Ki

(
ψ ∩

⋂
j∈I\{i}

⊚
≤δ(i,j)(CδIψ)j

)
⊆

by Claim C.24

⊆ Ki ⊚
≤0
(
ψ ∩

⋂
j∈I\{i}

⊚
≤δ(i,j)(CδIψ)j

)
⊆

by Observation C.3

⊆ Ki

(
⊚
≤0ψ ∩

⋂
j∈I\{i}

⊚
≤0
⊚
≤δ(i,j) (CδIψ)j

)
⊆

by Observation C.3 (additivity)
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⊆ Ki

(
⊚
≤0ψ ∩

⋂
j∈I\{i}

⊚
≤δ(i,j)(CδIψ)j

)
⊆

by stability of ψ

⊆ Ki

(
ψ ∩

⋂
j∈I\{i}

⊚
≤δ(i,j)(CδIψ)j

)
=

by definition of CδI

= (CδIψ)i.

Claims C.23 and C.25 lead us to consider, for stable ψ and
given perfect recall, a slightly different definition for fδψ than

the one given in Definition 4.4. This modified version of fδψ,

which we denote by gδψ, differs by the use of ⊚δ(i,j) in lieu

of ⊚≤δ(i,j), and by not intersecting over eventual knowledge
requirements.

Definition C.26. Let (I, δ) be a timely-coordination spec
and let R ⊆ R. For each ψ ∈ FR, we define a function
gδψ : FIR → FIR by

gδψ : (xi)i∈I 7→

Ki

(
ψ ∩

⋂
j∈I\{i}
δ(i,j)<∞

⊚
δ(i,j)xj

)
i∈I

,

and denote its greatest fixed point by Ç δ
I ψ.

Using an argument completely analogous to the proof of
Lemma 4.5, it may be shown that Ç δ

I ψ is well-defined. Fur-
thermore, the same argument shows that Ç δ

I also satisfies
the obvious analogues of the induction rule (with regard to
gδψ) and of the monotonicity property from Lemma 4.5.

We now present a key observation, which stands at the
heart of our proof of Theorem C.20. While, even in the
presence of perfect recall and when ψ is stable, gδψ 6= fδψ
(e.g. when applied to certain unstable events), it so happens
that under certain conditions, the greatest fixed points of
both of these functions coincide.

Lemma C.27. Let (I, δ) be a timely-coordination spec, let
R ⊆ R be a set of runs exhibiting perfect recall and let
ψ ∈ FR. Furthermore, assume that either ψ ⊆ �(CδIψ)i
for every i ∈ I, or δ <∞. If ψ is stable, then Ç δ

I ψ = CδIψ.

Proof.
≥: For every i ∈ I, we have

(CδIψ)i = by definition of CδI

= Ki

(
ψ ∩

⋂
j∈I\{i}

⊚
≤δ(i,j)(CδIψ)j

)
⊆

intersecting over fewer events

⊆ Ki

(
ψ ∩

⋂
j∈I\{i}
δ(i,j)<∞

⊚
≤δ(i,j)(CδIψ)j

)
=

by Observation C.4

= Ki

(
ψ ∩

⋂
j∈I\{i}
δ(i,j)<∞

⊚
δ(i,j)

⊚
≤0 (CδIψ)j

)
=

by Claim C.25

= Ki

(
ψ ∩

⋂
j∈I\{i}
δ(i,j)<∞

⊚
δ(i,j)(CδIψ)j

)
=

by definition of gδψ

=
(
gδψ(CδIψ)

)
i
.

Thus, by the induction rule for Ç δ
I and for gδψ, we obtain

CδIψ ≤ Ç δ
I ψ, as required.

≤: For every i ∈ I, by monotonicity of Ki we have

(Ç δ
I ψ)i = by definition of Ç δ

I

= Ki

(
ψ ∩

⋂
j∈I\{i}
δ(i,j)<∞

⊚
δ(i,j)(Ç δ

I ψ)j
)
⊆

by Observation C.4

⊆ Ki

(
ψ ∩

⋂
j∈I\{i}
δ(i,j)<∞

⊚
≤δ(i,j)(Ç δ

I ψ)j
)
⊆

as ψ ⊆ �(CδIψ)j for every j ∈ I
(expression unchanged if δ <∞)

⊆ Ki

(
ψ ∩

⋂
j∈I\{i}
δ(i,j)=∞

�(CδIψ)j ∩
⋂

j∈I\{i}
δ(i,j)<∞

⊚
≤δ(i,j)(Ç δ

I ψ)j
)
⊆

by the other direction (≥) of this

proof, and by monotonicity of �

⊆ Ki

(
ψ ∩

⋂
j∈I\{i}
δ(i,j)=∞

�(Ç δ
I ψ)j ∩

⋂
j∈I\{i}
δ(i,j)<∞

⊚
≤δ(i,j)(Ç δ

I ψ)j
)

=

as � = ⊚≤∞

= Ki

(
ψ ∩

⋂
j∈I\{i}

⊚
≤δ(i,j)(Ç δ

I ψ)j
)

=

by definition of fδψ

=
(
fδψ(Ç δ

I ψ)
)
i
.

Thus, by the induction rule for timely common knowledge,
we have Ç δ

I ψ ≤ CδIψ.15

One may wonder why we have worked so hard, and added
the additional assumption of perfect recall (among others),
to obtain CδIψ, under the above assumptions, as a fixed point
of gδψ rather than of fδψ. The answer is simple: gδψ commutes

with the meet operation, while fδψ does not. (Moreover,

as a result, gδψ is downward-continuous while fδψ, even in a

15 It should be noted that we could have saved ourselves
some hardship in this direction of the proof, by not inter-
secting over eventual knowledge requirements when defining
fδψ. While this would still have allowed us to obtain some of
our main results, such as Corollary 5.3, in this case many of
our other results regarding timely common knowledge would
have required the additional assumption that ψ ⊆ �(CδIψ)i,
reducing from their generality and usefulness. The added
strength of the approach we have chosen presents itself not
only while discussing eventual common knowledge in Ap-
pendix D.2, but in other settings [16, Section 9.3] as well.
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discrete-time model, is generally not.) This fact paves our
way toward proving Theorem C.20.

Proof of Theorem C.20. The following proof applies
to prove both parts of the theorem. As ψ is stable and R
exhibits perfect recall, by Lemma C.27,16 we obtain CδIψ =
Ç δ
I ψ.
It is easy to verify that gδψ commutes with both finite and

infinite meet. Thus, it is downward-continuous and by a
well-known theorem popularly referred to as Kleene’s fixed-
point theorem17, we obtain

Ç δ
I ψ =

∧
n∈N

(gδψ)n (ΩR
I). (3)

Since ⊚ε commutes with intersection for every ε ∈ ∆, andKi

commutes with intersection for every i ∈ I, we thus obtain,
for every i ∈ I, that

(CδIψ)i =

=
⋂
n∈N

(
(gδψ)n (ΩR

I)
)
i

=

= Kiψ ∩ Ki

(
ψ ∩

⋂
i2∈I\{i}
δ(i,i2)<∞

⊚
δ(i,i2)Ki2ψ

)
∩

∩ Ki

(
ψ ∩

⋂
i2∈I\{i}
δ(i,i2)<∞

⊚
δ(i,i2)Ki2

(
ψ ∩

⋂
i3∈I\{i2}
δ(i2,i3)<∞

⊚
δ(i2,i3)Ki3ψ

))
∩

∩ · · · =

= Kiψ ∩ Ki

( ⋂
i2∈I\{i}
δ(i,i2)<∞

⊚
δ(i,i2)Ki2ψ

)
∩

∩ Ki

( ⋂
i2∈I\{i}
δ(i,i2)<∞

⊚
δ(i,i2)Ki2

( ⋂
i3∈I\{i2}
δ(i2,i3)<∞

⊚
δ(i2,i3)Ki3ψ

))
∩

∩ · · · =

=
⋂

(i,i2,...,in)∈P(Gδ)

Ki ⊚
δ(i,i2) Ki2 ⊚

δ(i2,i3) Ki3 · · · ⊚
δ(in−1,in) Kinψ.

C.4.4 Discussion
Theorem C.20, which we have just proved, hinges on quite

a few conditions, especially when δ ≮ ∞. The two condi-
tions that are required even when δ < ∞, namely perfect
recall and stability of ψ, allow us to define gδψ using ⊚δ(i,j)

instead of ⊚≤δ(i,j). Without this modification, gδψ would not
commute with intersection, resulting, instead of (2), in⋂
(i,i2,...,in)∈P(Gδ)

Ki

(
ψ∩⊚δ(i,i2)Ki2

(
· · ·ψ∩⊚δ(in−1,in)Kin(ψ) · · ·

))
.

16 For the proof given condition 2, at this point we also
use the fact that by Corollary C.13, we have that ψ ⊆
�

(
CδI (⊚≤0ψ)

)
i

= �(CδIψ)i for every i ∈ I.
17 See [23] for an investigation of the origins of this theo-
rem, see [20, p. 348] for Kleene’s first recursion theorem and
for its proof that implies this theorem, and see [21] or [1,
Theorem 1.2.14] for a statement of this theorem in terms of
lattices, continuity and greatest fixed points.

When δ ≮∞, it is condition 2 of Theorem C.20 that allows
us to define gδψ without intersecting over eventual knowledge

requirements. Without this modification, gδψ would not be
downward-continuous. (This would also have been the case,

had gδψ been defined using ⊚≤δ(i,j) instead of ⊚δ(i,j) when
under a continuous-time model.) Without downward con-
tinuity of gδψ, Kleene’s fixed-point theorem could not have
been utilized, forcing us to go beyond the “ω’th power” of
gδψ in the r.h.s. of (3), to a greater ordinal power thereof [1,
Theorem 1.2.11]. Incidentally, this may be viewed as a con-
crete example, of sorts, of Barwise’s statement in [3] regard-
ing various definitions of common knowledge, according to
which in some models, taking only the intersection of finite
approximations (i.e. only the results of finitely-many itera-
tions of the relevant function f , starting from the top of the
lattice) yields a weaker state of knowledge than the fixed-
point of f , which is equivalent to taking the intersection of
all (i.e. including transfinite) approximations.

We conclude this section with an observation. For certain
δ functions, P(Gδ) is finite,18 and thus the intersection in
(2) is finite. (See the discussion of ordered response in Ap-
pendix D.1 for an example.) This observation may seem,
at first glance, to clash with the infinitary nature of fixed
points in general, and of greatest fixed points in particular.
It is worthwhile to note that what reconciles these is that in
this case, (gδψ)|I| is constant and therefore its value, which
is a finite intersection of nested-knowledge events, is its only
fixed point, and thus its greatest fixed point, and hence the
greatest fixed point of gδψ as well. Furthermore, by Corol-

lary C.13, solvability of τ implies that ψ ⊆ �(CδIψ)i for
every i ∈ I and thus, as noted above, Corollaries 5.2 and 5.3
would have still held had we defined fδψ without intersect-
ing over eventual-knowledge requirements (i.e. similarly to

gδψ, but using ⊚≤δ(i,j) in lieu of ⊚δ(i,j)). In this case, the

function (fδψ)|I| would have also been constant, and thus,
similarly, its value would have been its greatest fixed point,
and thus the greatest fixed point of fδψ as well.

D. COMPARISON TO, AND DERIVATION
OF PREVIOUS RESULTS

In this section, we show how some previously-known re-
sults may be derived from the novel results we have intro-
duced in this paper.

D.1 Response Problems
In this section, we survey the response problems defined

and studied by Ben-Zvi and Moses [5, 4, 6, 7], and their
knowledge-theoretic results for these problems. We reformu-
late these problems, their results, and the associated defini-
tions to match our notation, and show how our definitions
and results from Section 5 extend each one of these, even
though the tools used to derive our results are vastly differ-
ent than their tools. This provides us with a “sanity check”
of sorts, verifying that we have not committed the sin of
generalizing our tools to the extent of weakening the results
they yield for simple cases.

The first, most-basic response problem defined in [5] is
that of ordered response. In this problem, finitely many
agents I = {im}nm=1 must respond to an event in a pre-

18 This happens iff both |I| <∞ and Gδ has only trivial (i.e.
singleton) strongly connected components.
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defined order: im+1 may not respond before im does. Using
our notation, this is a special case of timely-coordinated re-
sponse, for

δ(ik, il) ,

{
0 k = l + 1

∞ otherwise.
(4)

For this problem, they have shown that whenever an agent
im responds in a solving protocol exhibiting perfect recall,
it holds that

KmKm−1 · · ·K1 ⊚
≤0 φ, (5)

and that in a full-information protocol, for each im to re-
spond as soon as (5) holds constitutes what we have defined
as a time-optimal solution.19

By Theorem C.20, we have, for δ as defined in (4), that
when τ is solvable and in the presence of perfect recall (e.g.
in a full-information protocol),(
CδI (⊚≤0φ)

)
m

=
⋂
k∈N

1≤i1<···<ik≤m

Kik · · ·Ki1 ⊚
≤0 φ =

= KmKm−1 · · ·K1 ⊚
≤0 φ.

Thus, for ordered response, Corollaries 5.2 and 5.3 reduce
to the above results.

The second problem presented in [5, 4] is a variant of the
firing squad problem [27, 10] called simultaneous response.
In this problem, all agents I must respond to an event si-
multaneously. Using our notation, this is a special case of
timely-coordinated response, for δ ≡ 0. For this problem,
they have shown that CI ⊚

≤0 φ is the associated state of
knowledge, in the same sense as above, i.e. when the agents
respond (in a solving protocol exhibiting perfect recall), they
share common knowledge of the fact that φ has occurred,
and for each agent to respond as soon as she knows that
common knowledge of ⊚≤0φ has been attained constitutes a
time-optimal solution (for a full-information protocol, when
the problem is solvable). Once again, Corollaries 5.2 and
5.3 reduce to the above results under the above assump-
tions, since by Theorem C.20 and by Observation A.4, we
have

(
CδI (⊚≤0φ)

)
i

= KiCI ⊚
≤0 φ = CI ⊚

≤0 φ, for δ ≡ 0.
The third and last problem presented in [4] is a general-

ization of both ordered response and simultaneous response,
called ordered joint response. In this problem, the agents are
partitioned into pairwise-disjoint sets I =

⋃n
m=1 Im, and the

agents in each such set must respond simultaneously, s.t. the
agents in a set Im+1 may not respond before the agents in
Im do. Under our notation, this is a special case of timely-
coordinated response, for

δ(i, j) ,

0
∃k ∈ [n] : {i, j} ⊆ Ik or

∃k ∈ [n− 1] : i ∈ Ik+1 & j ∈ Ik
∞ otherwise.

(6)

For this problem, they have shown that the associated state
of knowledge, in the above sense, for an agent i ∈ Im, is
CImCIm−1 · · ·CI1 ⊚≤0 φ.

By Theorem C.20, by Observation A.4 and by Kj com-
muting with intersection for every j ∈ I, we have, in this
case, for δ as defined in (6) and for i ∈ Im,(

CδI (⊚≤0φ)
)
i

=

19 Throughout their analysis, Ben-Zvi and Moses implicitly
assume that the problems they consider are solvable.

=
⋂

(i,i2,...,in)∈P(Gδ)

KiKi2 · · ·Kin ⊚
≤0 φ =

= Ki ◦
( ⋂

(i1,...,in)∈Im∗̄
Ki1Ki2 · · ·Kin

)
◦
( ⋂

(i1,...,in)∈(Im−1)∗̄

Ki1Ki2 · · ·Kin

)
◦

◦ · · · ◦
( ⋂

(i1,...,in)∈I1∗̄
Ki1Ki2 · · ·Kin

)
⊚
≤0 φ =

= KiCImCIm−1 · · ·CI1 ⊚
≤0 φ =

= CImCIm−1 · · ·CI1 ⊚
≤0 φ.

Thus, once more, Corollaries 5.2 and 5.3 reduce to the above
results in this case as well.

The analogous results of Ben-Zvi and Moses for the rest
of the response problems that they define (general ordered
response [4], weakly-timed response [7] and tightly-timed
response [7]) may be readily derived from our results in a
similar manner — the details are left for the reader.

Having surveyed all the above response problems, one
property, which is common to all of them (as well as to
the rest of the response problems defined by Ben-Zvi and
Moses) should be spelled out explicitly: they are all rep-
resentable as special cases of timely-coordinated response,
using δ s.t. for each (i, j) ∈ I 2̄, either δ(i, j) = ∞, or
δ(j, i) = ∞, or δ(i, j) = −δ(j, i), i.e. the difference between
the response times of i and j is bounded either from one
side at most, or tightly (i.e. specified exactly). We note that
the absence of this property in timely-coordinated response
introduced a significant amount of complexity into our anal-
ysis, both technically and conceptually, and that without it,
the machinery with which we analyzed timely-coordinated
response could have been significantly simplified. Inciden-
tally, for an analysis of timely-coordinated response that fol-
lows and extends the synchronous causality (“syncausality”)
approach of Ben-Zvi and Moses for analyzing response prob-
lems (and which makes this statement about the complexity
introduced by an arbitrary δ function more concrete), the
reader is referred to [16, Chapter 6].

D.2 Common Knowledge and Variants
For the duration of this section, fix a system R ⊆ R, an

event ψ ∈ FR and a set of agents I ⊆ I. As noted above,
while all previously-studied variants of common knowledge
that are surveyed in Appendix B (and other previously-
studied variants of common knowledge, such as continuous
common knowledge [18]) are defined as fixed points of func-
tions on FR, this is not the case with timely common knowl-
edge, which we define as a fixed point of a function on FRI .
Intuitively, as noted above, this stems from the asymmetry
of timely coordination with regard to the requirements posed
on the various agents. Given this intuition, one may expect
δ-common knowledge to reduce, for constant δ (i.e. symmet-
ric constraints), to a non-tuple fixed point in some way, and
to coincide in some sense with the previously-studied vari-
ants of common knowledge surveyed above. To show this,
we first note that CδIψ = (Ki(ψ ∩ ξi))i∈I , where ξ̄ is the

greatest fixed point of the function f̃δψ : FIR → FIR given by

f̃δψ : (xi)i∈I 7→

 ⋂
j∈I\{i}

⊚
≤δ(i,j)Kj(ψ ∩ xj)


i∈I

.
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Next, we note that if indeed δ is a constant function attain-
ing a nonnegative value, then it is straightforward to verify
that Ki(ψ ∩ ξi) = Ki(ψ ∩ (∩ξ̄)) for every i ∈ I (for ξ̄ as
defined above), yielding CδIψ = (Ki(ψ ∩ (∩ξ̄)))i∈I . More-

over, in this case ∩ξ̄ is the greatest fixed point of ∩f̃δψ. We
now review the previously studied non-tuple variants of com-
mon knowledge surveyed above, and discuss when, and how,
the above-described special case of δ-common knowledge for
constant δ generalizes them.

When δ ≡ ∞, then by definition, δ-coordination is equiva-
lent to eventual coordination, ∩f̃δψ is the function presented

in Theorem B.5(1), and thus CδIψ = (Ki(ψ ∩ C�I ψ))i∈I .
In addition, in this case Theorem 4.6(1,4,5) implies Theo-
rem B.5.

Reducing our results for timely common knowledge to
ε-common knowledge is somewhat more delicate. Assume,
for the remainder of this section, that δ ≡ ε for some finite
ε ≥ 0. (Recall that for ε = 0, ε-coordination is equivalent
to perfect coordination and Theorem B.6 reduces to Theo-
rem B.4.)

In general, ε-coordination is a stricter condition than δ-co-
ordination.20 However, for a (coordinate-wise) stable en-
semble, as well as for an ensemble consisting at most of
one point per agent per run, δ-coordination is equivalent to
ε-coordination — this follows from observing that given a
δ-coordinated ensemble, taking only the first point (or in
a continuous-time model, the infimal point) of each agent
in each run (and no points for runs in which the original
ensemble contained no points for said agent) yields an ε-
coordinated (and hence also δ-coordinated) ensemble. If we
restrict ourselves to stable ψ and to protocols exhibiting
perfect recall, then by Claim C.25, every coordinate of CδIψ
is stable. Under these conditions, it may be verified that

20 This stems from two main “reasons”:

1. δ-coordination is defined using ⊚≤δ(i,j) rather than
⊚

[−δ(j,i),δ(i,j)], which we define to mean “at some time
no earlier than −δ(j, i) from now and no later than
δ(i, j) from now”. It may be readily verified that all the
results in this paper hold for such a definition as well, as
long as this replacement is performed in the definition
of fδψ as well. The only difference is that Claim C.25,
stating that δ-common knowledge is stable, yields to
different proof strategies in this case, e.g. showing that
(⊚≤0(CδIψ)i)i∈I ≤ fδψ((⊚≤0(CδIψ)i)i∈I) and applying
the induction rule for timely common knowledge.

2. Timely coordination is based on pairwise constraints.
The results presented in this paper may be quite read-
ily generalized to deal with arbitrary timing constraints
of various natures, such as, e.g. for some J ⊆ I, “For
every i ∈ J and for every (r, t) ∈ ei, there exists a time
interval T ⊆ T of length at most δJ , s.t. t ∈ T and s.t.
there exist (tj)j∈J ∈ T J satisfying (r, tj) ∈ ej for every
j ∈ J”. (Whatever the timing constraints are, the gen-
eralized definition of fδψi simply intersects on all con-
straints pertaining to i.) Under such a generalization,
ε-coordination is equivalent to δ-coordination, when
setting δI ≡ ε in the above constraint example, and
when providing no further constraints. Furthermore,
in this case the generalization of f̃δψ satisfies that ∩f̃δψ
is the function presented in Theorem B.6(1), and thus
the appropriate generalization of Theorem 4.6(1,4,5) re-
duces to Theorem B.6.

It remains to be seen whether such generalizations as de-
scribed in this footnote are of any real added value.

KiC
ε
Iψ, for every i ∈ I, is stable as well.21 In this case, by

Lemma C.27, CδIψ is the greatest fixed point of gδψ and thus,

CδIψ = (Ki(ψ ∩ ξ))i∈I , where ξ is the greatest fixed point of

∩g̃δψ, where g̃δψ is defined analogously to f̃δψ, but using ⊚δ(i,j)

in lieu of ⊚≤δ(i,j). Analogously to the proof of Lemma C.27,
but in a less cumbersome way (as δ <∞), it may be shown
that in this case CεIψ is the greatest fixed point of ∩g̃δψ as

well, and thus CδIψ = (Ki(ψ ∩ CεIψ))i∈I ,
22 and hence The-

orem 4.6(1,4,5) reduces to Theorem B.6. In the absence of
stability of ψ, or in the absence of perfect recall (at least of
the “relevant events”), things stop working so well. Indeed,
as noted above, in such cases δ-coordination does not neces-
sarily coincide with ε-coordination, and consequently, exam-
ples may be constructed in which CδIψ 6= (Ki(ψ ∩CεIψ))i∈I .

The above discussion raises an interesting question: why
have we not defined CδIψ as (Kiξi)i∈I instead of defining it

as (Ki(ψ ∩ ξi))i∈I? (for ξ̄ the greatest fixed point of f̃δψ.)
Indeed, the connection between such a definition and the
previously-studied variants of common knowledge is much
cleaner to describe [16, Chapter 10], and it yields results
broadly similar to those presented in this paper [16, Chap-
ters 7,8]. Nonetheless, much like (KiC

ε
Iψ)i∈I , and some-

what like (KiC
�

I ψ)i∈I , such a definition does not seem to
naturally lend to a characterisation along the lines of “the
greatest δ-coordinated ensemble contained in ψ”,23 making
it more cumbersome to use than the definition we presented
in Section 4.

21 This may be proved by showing that given stability of ψ
and perfect recall, it holds that ⊚≤0CεIψ ⊆ EεI (ψ∩⊚≤0CεIψ).

22 Another way to derive this equality is by using [12, Exer-
cise 11.17(d)], which shows that, for every i ∈ I, if ψ is stable
and given perfect recall, KiC

ε
Iψ = Ki(∩n∈N(⊚εEI)

nψ), and
to apply (2). It should be noted, though, that the proof
hinted to by [12, Exercise 11.17(d)] strongly relies on a dis-
crete modeling of time, and breaks down in a continuous-
time model, unlike the proof that we sketch above.

23 While the ensemble defined by eventual common knowl-
edge of an event of the form �ψ is the greatest eventually-
coordinated I-ensemble ē satisfying ∪ē ⊆ �ψ (the proof of
this statement is left to the reader), we note that analogous
characterisations for the ensembles defined by ε-common
knowledge and by eventual common knowledge (of events
not necessarily of the form �ψ) are, however, more elusive
to phrase. (Moreover, parts 2–4 of Theorems B.5 and B.6
do not uniquely define these variants of common knowl-
edge either.) In contrast, we note that (Ki(ψ ∩ CεIψ))i∈I
(resp. (Ki(ψ ∩ C�I ψ))i∈I) may be naturally characterised
as the greatest ε-coordinated (resp. eventually-coordinated)
I-ensemble whose union is contained in ψ.
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ABSTRACT
The article introduces a ceteris paribus modal logic inter-
preted on the equivalence classes induced by sets of propo-
sitional atoms. This logic is used to embed two logics of
agency and games, namely atemporal STIT and the coali-
tion logic of propositional control (CL−PC). The embed-
dings highlight a common ceteris paribus structure under-
pinning the key modal operators of both logics, they clarify
the relationship between STIT and CL−PC, and enable the
transfer of complexity results to the ceteris paribus logic.
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1. INTRODUCTION
In a strategic game, the α-effectivity of a set of players

consists in those sets of outcomes of the game for which the
players have some collective action which forces the game
to end up in that set, no matter what the other players
do [MP82]. So, if a set of outcomes X belongs to the α-
effectivity of a set of players J , then each agent in J can fix
an individual action such that, for all actions of the other
players, the game will end up in X.

It was already observed in [vBGR09] that the sort of
reasoning underlying the notion of α-effectivity is of a ce-
teris paribus nature. Evaluating the outcomes that can be
reached in a game once a set of players J has fixed their
actions, amounts to considering what necessarily will be the
case under the ceteris paribus condition ‘all current actions
of J being equal’. It has been shown in [vBGR09] how this
intuition can be used, for instance, to give a modal formu-
lation of Nash equilibria.

The present paper builds on that idea and systematically
explores the ceteris paribus structure of two main logics of
agency and games based on the α-effectivity concept: STIT
[BPX01, Hor01] (the logic of seeing to it that) in its atem-
poral version [HS08], and the coalitional logic of proposi-
tional control (CL−PC) [vdHW05]. To articulate the anal-
ysis, whose main tool will consist of embedding results, the
paper introduces and studies a simple ceteris paribus logic
based on propositional equivalence.

TARK 2013, Chennai, India.
Copyright 2013 by the authors.

Structure of the paper.
Section 2 introduces a logic called propositional equivalence
ceteris paribus logic (PECP in short), which will be used as
yardstick to analyze the game logics addressed in the paper.
The logic will be axiomatized and briefly compared with ex-
isting modal logics of ceteris paribus reasoning.
Section 3 provides a study of the relationship between the
atemporal version of STIT and PECP. We show that PECP
embeds atemporal group STIT—the fragment of atemporal
STIT in which both actions of individuals and groups are
represented—under the assumption that the agents’ choices
are bounded. We call the latter atemporal ‘bounded’ group
STIT. Moreover, we show that PECP embeds atemporal in-
dividual STIT—the variant of atemporal STIT in which only
the actions of individuals are represented. The former em-
bedding is used to transfer complexity results to PECP. We
also present an embedding in PECP of a variant of atempo-
ral group STIT in which groups are nested (i.e., given two
sets of agents J and J ′ either J ⊆ J ′ or viceversa).
Section 4 provides an embedding of coalition logic of proposi-
tional control into atemporal ‘bounded’ group STIT and, in-
directly, it provides an embedding of coalition logic of propo-
sitional control into PECP.
We conclude in Section 5. Longer proofs are collected in a
technical appendix at the end of the paper.

2. A CETERIS PARIBUS LOGIC BASED ON
PROPOSITIONAL EQUIVALENCE

2.1 Equivalence modulo a set of atoms
Consider a structure (W,V ) where W is a set of states,

and V : P −→ 2W a valuation function from a countable
set of atomic propositions P to subsets of W . We define a
simple notion of propositional equivalence between states in
W , modulo subsets of P.

Definition 1. (Equivalence modulo X) Given a pair (W,V ),
X ⊆ P and |X| < ω, the relation ∼X⊆W 2 is defined as:

w ∼VX w′ ⇐⇒ ∀p ∈ X :
(
w ∈ V (p)⇐⇒ w′ ∈ V (p)

)
When X is a singleton (e.g. p), we will often write ∼Vp
instead of ∼V{p}. Also, in order to avoid clutter, we will

often drop the reference to V in ∼VX .

Intuitively, two states w and w′ are equivalent up to set X,
or X-equivalent, if and only if they satisfy the same atoms
in X (according to a given valuation V ). The finiteness of
X is clearly not essential in the definition. It is assumed
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because, as we will see, each set X will be taken to model
a set of actions of some agent in a game form and sets of
actions are always assumed to be finite.

We state the following simple fact without proof.

Fact 1. (Properties of ∼P ) The following holds for any
set of states W , valuation V : P −→ 2W and finite sets
X,Y ⊆ P:

(i) ∼X is an equivalence relation on W ;

(ii) if X ⊆ Y then ∼Y ⊆ ∼X ;

(iii) if X is a singleton, ∼X induces a bipartition of W ;

(iv) ∼X ∩ ∼Y = ∼X∪Y ;

(v) ∼∅ = W 2.

2.2 A modal logic of ∼X
In this section we consider a simple modal language inter-

preted on relations ∼X and axiomatize its logic on the class
of structures (W,V ). The key modal operator of the lan-
guage will be 〈X〉, whose intuitive meaning is ‘ϕ is the case
in some state which is X-equivalent to the current one’ or, to
stress a ceteris paribus reading, ‘ϕ is possible all things ex-
pressed in X being equal’. We call the resulting logic propo-
sitional equivalence ceteris paribus logic, PECP in short.

2.2.1 Syntax of PECP.
Let P be a countable set of atomic propositions. The

language LPECP(P) is defined by the following BNF:

LPECP(P) : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 〈X〉ϕ

where p ranges over P and X is a finite subset of atomic
propositions (X ⊆ P and X finite). Note that as the set of
finite subsets of atomic propositions is countable, the lan-
guage LPECP(P) is also countable. The Boolean connectives
>,∨,→,↔ and the dual operators [X] are defined as usual.

The set SF (ϕ) of subformulas of a formula ϕ is defined
inductively as follows:

• SF (p) = {p};

• SF (¬ϕ) = {¬ϕ} ∪ SF (ϕ);

• SF (ϕ ∧ ψ) = {ϕ ∧ ψ} ∪ SF (ϕ) ∪ SF (ψ);

• SF (〈X〉ϕ) = {〈X〉ϕ} ∪ SF (ϕ).

We say that a signature X appears in ϕ if there exists a
formula ψ such that 〈X〉ψ ∈ SF (ϕ).

2.2.2 Semantics of PECP
This is the class of models we will be working with:

Definition 2. (PECP-models) Given a countable set P,
a PECP-model for LPECP(P) is a tuple M = (W,V ) where:

• W is a non-empty set of states;

• V : P −→ 2W is a valuation function.

Intuitively, a PECP-model consists just of a state-space and a
valuation function for a given set of atoms. The satisfaction
relation is defined as follows:

Definition 3. (Satisfaction for PECP-models) Let M =
(W,V ) be an PECP-model for LPECP(P), w ∈W and ϕ,ψ ∈
LPECP(P):

M, w |= p ⇐⇒ w ∈ V (p);

M, w |= ¬ϕ ⇐⇒ M, w 6|= ϕ;

M, w |= ϕ ∧ ψ ⇐⇒ M, w |= ϕ andM, w |= ψ;

M, w |= 〈X〉ϕ ⇐⇒ ∃w′ ∈W : w ∼VX w′ andM, w′ |= ϕ

Formula ϕ is PECP-satisfiable, if and only if there exists
a model M and a state w such that M, w |= ϕ. For-
mula ϕ is valid in M, noted M |= ϕ, if and only if for
all w ∈ W , M, w |= ϕ. Finally, ϕ is PECP-valid, noted
|=PECP ϕ, if and only if it is valid in all PECP-models. The
logical consequence of formula ϕ from a set of formulae,
noted Φ |=PECP ϕ, is defined as usual.

So, modal operators are interpreted on the equivalence rela-
tions ∼X induced by the valuation of the model. It is worth
observing that the logic of this class of models is not in-
variant under uniform substitution, suffice it to mention a
validity such as [{p}]p ∨ [{p}]¬p.

2.2.3 Axiomatics of PECP
We can obtain an axiom system for PECP by a reduction

technique. Let X,Y range over finite elements of 2P, ϕ,ψ
over LPECP(P), and p over P:

(P) all tautologies of propositional calculus

(K) [∅](ϕ→ ψ)→ ([∅]ϕ→ [∅]ψ)

(T) ϕ→ 〈∅〉ϕ
(4) 〈∅〉〈∅〉ϕ→ 〈∅〉ϕ
(5) 〈∅〉ϕ→ [∅]〈∅〉ϕ

(Reduce) [X]ϕ↔
∧
π⊆X

∧
p∈π

p ∧
∧

p∈X\π

¬p

→
[∅]

∧
p∈π

p ∧
∧

p∈X\π

¬p

→ ϕ


And it is closed under the following inference rules (`PECP
has its usual meaning):

(MP) if `PECP ϕ and `PECP ϕ→ ψ then `PECP ψ
(N) if `PECP ϕ then `PECP [∅]ϕ

The first thing to notice is that the system consists of S5
plus the Reduce axiom. Logic S5 is known to be sound
and strongly complete for the class of models where the ac-
cessibility relation is the total relation W 2 [BdRV01], and
modality [∅] is here axiomatized as one would axiomatize
the global modality (cf. properties (i) and (v) in Fact 1).

Having said this, soundness and strong completeness of
the above system are easy to establish. For soundness, it
suffices to show that Reduce is PECP-valid, which follows
straightforwardly from Definition 1. Intuitively, the axiom
reduces [X]ϕ by taking care of all the possible truth-value
combinations of the atoms in X. If a given combination, e.g.,(∧

p∈π p ∧
∧
p∈X\π ¬p

)
, is true at a given state (for some π),

then in all accessible states, if that combination is true, then
ϕ is also true.

95



To obtain completeness we proceed as customary in DEL
[vKv07], by using axiom Reduce and the following rule of
substitution of provable equivalents (REP) to remove the oc-
currences of those 〈X〉 and [X] operators from formulae
where X 6= ∅:

(REP) if `PECP ϕ↔ ϕ′ then `PECP ψ ↔ ψ[ϕ/ϕ′]

where ψ[ϕ/ϕ′] is the formula that results from ψ by replacing
zero or more occurrences of ϕ, in ψ, by ϕ′.

One can show that REP is derivable for every operator [X]
as follows: first one can show that each [X] operator satisfies
the Axiom K and the rule of necessitation N. Let us provide
the syntactic proofs of this. For notational convenience we
use the following abbreviation:

π̂
def
=

∧
p∈π

p ∧
∧

p∈X\π

¬p



Derivation of K for [X]:

1. ` [X](ϕ→ ψ) ↔
∧
π⊆X

(π̂ → [∅] (π̂ → (ϕ→ ψ)))

by Reduce

2. ` (π̂ → (ϕ→ ψ)) → ((π̂ → ϕ) → (π̂ → ψ))

by P

3. `
∧
π⊆X

(π̂ → [∅] (π̂ → (ϕ→ ψ))) →

∧
π⊆X

(π̂ → [∅] ((π̂ → ϕ) → (π̂ → ψ)))

by P, 2 and RM for [∅] (if ` ϕ→ ψ then ` [∅]ϕ→ [∅]ψ)

4. `
∧
π⊆X

(π̂ → [∅] ((π̂ → ϕ) → (π̂ → ψ))) →

∧
π⊆X

(π̂ → ([∅](π̂ → ϕ) → [∅](π̂ → ψ)))

by K and P

5. `
∧
π⊆X

(π̂ → ([∅](π̂ → ϕ) → [∅](π̂ → ψ))) →

(
∧
π⊆X

(π̂ → [∅] (π̂ → ϕ)) →
∧
π⊆X

(π̂ → [∅] (π̂ → ψ)))

by P

6. ` (
∧
π⊆X

(π̂ → [∅] (π̂ → ϕ)) →

∧
π⊆X

(π̂ → [∅] (π̂ → ψ))) ↔

([X]ϕ→ [X]ψ)

by Reduce

7. ` [X](ϕ→ ψ) → ([X]ϕ→ [X]ψ)

from 1 and 3-6

Derivation of N for [X]:

1. ` ϕ
hypothesis

2. ` [∅]ϕ
from 1 by N for [∅]

3. `
∧
π⊆X

[∅] (π̂ → ϕ)

from 2 by the S5 theorem [∅]ϕ→ [∅](ψ → ϕ)

4. `
∧
π⊆X

(π̂ → [∅] (π̂ → ϕ))

from 3 by P

5. ` [X]ϕ

from 4 by Reduce and MP

Then one proves that REP is derivable by an induction rou-
tine analogous to the one used in [Che80, Th. 4.7].

We opted for this axiomatization in virtue of its simplic-
ity, but alternative systems are of course possible. One in
particular is worth mentioning. It first reduces 〈p〉 operators
by axiom:

〈p〉ϕ↔ ((p ∧ 〈∅〉(p ∧ ϕ)) ∨ (¬p ∧ 〈∅〉(¬p ∧ ϕ))) (1)

This states that 〈p〉ϕ is equivalent to either the case in which
the current state satisfies p and there exists a (possibly dif-
ferent) p-state where ϕ is true, or the case where ¬p is true
and there exists a (possibly different) ¬p-state where ϕ is
true (recall property (iii) in Fact 1). Given the above re-
duction, one can then use axioms to enforce the appropriate
behavior of ∼X relations where X consists of more than one
atom. To this aim, axioms can be used that are known to
be canonical for properties (ii) and (iv) of Fact 1, namely:

〈X ∪ Y 〉ϕ→ 〈X〉ϕ (2)

〈X〉i ∧ 〈Y 〉i→ 〈X ∪ Y 〉i (3)

where i ranges over a set of nominals. A complete sys-
tem could then be obtained by axiomatizing the behavior
of nominals—through axioms and rules used in hybrid logic
[AT06]. From that system, a named canonical model could
be built (i.e., a canonical model where all maximal consis-
tent sets contain exactly one nominal) where the axioms in
Formulae 1-3 would enforce the desirable properties on the
canonical relations.

2.3 Exponentially embedding PECP into S5

The property expressed by axiom Reduce enables a truth-
preserving translation of PECP into S5. This translation is,
however, such that the translated formula is exponentially
larger by a tower of exponents of height equal to the modal
depth of the original formula.

In this section we propose a translation that is single expo-
nential and preserves satisfiability. Take the standard modal
language L�(P) with one modal operator � defined on the
set of atoms P. S5-models are structuresM = (W,V ) where
W is a set of states, and V : P −→ 2W a valuation function.
Given an S5-model M = (W,V ) and a state w ∈ W , the
truth conditions are defined as follows:

M, w |= �ϕ ⇐⇒ ∀u ∈W :M, u |= ϕ

S5-satisfiability is defined as usual. It is possible to define
an exponential truth-preserving reduction tr : LPECP(P) −→
L�(P) as follows:

• tr(ϕ0) = pϕ0 ∧
∧
ϕ∈SF (ϕ0)

�(pϕ ↔ tr1(ϕ))
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where pϕ are fresh atomic propositions and tr1 is defined as
follows:

tr1(p) = p for p ∈ P

tr1(¬ϕ) = ¬tr1(ϕ)

tr1(ϕ ∧ ψ) = tr1(ϕ) ∧ tr1(ψ)

tr1([∅]ϕ) = �pϕ

tr1([X]ϕ) =
∧
π⊆X

∧
p∈π

p ∧
∧

p∈X\π

¬p

→
�

∧
p∈π

p ∧
∧

p∈X\π

¬p

→ pϕ


Intuitively, the translation is designed to operate like axiom
Reduce but avoiding exponential blow-up to pile up with
the modal depth of the formula. The atomic propositions
pϕ in tr1([X]ϕ) avoid the non-elementary size of tr(ϕ0). The
definition of tr1([∅]ϕ) corresponds to the degenerated case
of tr1([X]ϕ) where X = ∅.The following theorem states the
satisfiability preservation. The proof is given in Appendix
A.

Theorem 1. (tr preserves satisfiability) Let ϕ0 be a PECP-
formula. We have equivalence between ϕ0 is PECP-satisfiable
and tr(ϕ0) is S5-satisfiable.

As a consequence, we also obtain the following result.

Corollary 1. (Decidability) The satisfiability problem
for PECP is decidable and in NEXPTIME.

Proof. The satisfiability problem for S5 is decidable and
in NP [BdRV01]. The result follows from Theorem 1 and a
decision procedure may work as follows: in order to check
that ϕ is satisfiable we compute the formula tr(ϕ) and we
apply a NP-decision procedure to check whether tr(ϕ) is
S5-satisfiable or not.

Notice that if the cardinality of each X that appears in oper-
ators [X] of ϕ is bounded by a fixed integer, then the trans-
lation tr becomes polynomial in the size of ϕ. Thus, as S5-
satisfiability problem is NP-complete, the PECP-satisfiability
problem with a bounded cardinality restrictions over set of
atomic propositions in modal operators is in NP. As it is
trivially NP-hard, it is NP-complete.

In Section 3, we will embed the atemporal version of STIT
(the logic of seeing to it that) into PECP thereby obtaining
lower bounds results.

2.4 PECP and modal ceteris paribus logics
Before moving to the next section, we briefly compare

PECP with two works in the modal logic of ceteris paribus
reasoning: release logic, and the logic of ceteris paribus pref-
erence.

Release logic has been introduced and studied in [KM03,
KM00] in order to provide a modal logic characterization
of a general notion of irrelevancy. Modal operators in re-
lease logic are S5 operators indexed by subsets of a finite set
Iss of abstract elements denoting the issues that are taken
to be irrelevant, or that can be released, while evaluating
the formula in the scope of the operator. A release model
is therefore a tuple (W, {∼rX}X⊆Iss, V ) where all ∼rX are a
equivalence relations with the additional constraint that if

X ⊆ Y then ∼rX⊆∼rY , that is, by releasing more issues one
obtains a more granular relation. This is, more precisely,
the semantics of release operators:

M, w |= ♦Xϕ ⇐⇒ ∃w′ ∈W : w ∼rX w′ andM, w′ |= ϕ

where X ⊆ Iss.
One can easily observe that, by Fact 1 (clause (ii)), PECP

models are release models where Iss = P and where the
release relation ∼rX=∼−X . Vice versa, for Iss = P, not
all release models are PECP models. As a consequence, the
logic of 〈−X〉 operators in PECP is a conservative extension
of the logic of ♦X release operators.

Preference logic has also long been concerned with so-
called ceteris paribus preferences, that is, preferences incor-
porating an “all other things being equal” condition. A first
logical analysis of such preferences dates back to [Von63],
where dyadic modal operators are studied representing state-
ments like ‘ϕ is preferred to ψ, ceteris paribus’. More re-
cently, [vBGR09] has provided a modal logic of ceteris paribus
preferences based on standard unary modal operators. Leav-
ing the preferential component of such logic aside, its ceteris
paribus fragment concerns sentences of the form 〈Γ〉ϕ whose
intuitive meaning is ‘there exists a state which is equivalent
to the evaluation state with respect to all the formulae in the
finite set Γ and which satisfies ϕ’, where the formulae in Γ
are drawn from the full language. It is easy to see that logic
PECP is, in fact, the fragment of the ceteris paribus logic
where Γ is allowed to consist only of a finite set of atoms.

3. PECP EMBEDDING OF ATEMPORAL STIT

In this section, we investigate the possibility of embed-
ding the logic of agency STIT into PECP. STIT logic (the
logic of seeing to it that) [BPX01, Hor01] is one of the most
prominent logical accounts of agency. It is the logic of con-
structions of the form “agent i (or group J) sees to it that
ϕ”. STIT has a non-standard modal semantics based on
the concepts of moment and history. However, as shown by
[BHT08, HS08], the basic STIT language without temporal
operators can be ‘simulated’ in a standard Kripke semantics.

3.1 Atemporal group STIT

First let us recall the syntax and the semantics of atem-
poral group STIT. The language of this logic is built from
a countable set of atomic propositions P and a finite set of
agents AGT = {1, . . . , n} and is defined by the following
BNF:

LG−STIT(P, AGT ) : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | [J : stit]ϕ

where p ranges over P and J ranges over 2AGT . The con-
struction [J : stit]ϕ is read “group J sees to it that ϕ is true
regardless of what the other agents choose”. We define the

dual operator 〈J : stit〉ϕ def
= ¬[J : stit]¬ϕ. When J = ∅,

the construction [∅ : stit]ϕ is read “ϕ is true regardless of
what every agent chooses” or simply “ϕ is necessarily true”.

Definition 4 (STIT-Kripke model [HS08]). A STIT-
Kripke model M = (W, {RJ}J⊆AGT , V ) is a 3-tuple where:

• W is a non-empty set of worlds;

• for all J ⊆ AGT , RJ is an equivalence relation such
that:
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i) RJ ⊆ R∅;
ii) RJ =

⋂
j∈J R{j};

iii) for all w, u1, . . . , un ∈W , if u1 ∈ R∅(w), . . . , un ∈
R∅(w) then

⋂
1≤j≤nR{j}(uj) 6= ∅;

• V : P→ 2W is a valuation function for atomic propo-
sitions;

with RJ(w) = {u ∈W : (w, u) ∈ RJ} for any J ∈ 2AGT .

The partition induced by the equivalence relation RJ is
the set of possible choices of the group J .1 Indeed, in STIT
a choice of a group J at a given world w is identified with the
set of possible worlds RJ(w). We call RJ(w) the set of pos-
sible outcomes of group J ’s choice at world w, in the sense
that group J ’s current choice at w forces the possible worlds
to be in RJ(w). The set R∅(w) is simply the set of possible
outcomes at w, or said differently, the set of outcomes of the
current game at w. According to Condition (i), the set of
possible outcomes of a group J ’s choice is a subset of the set
of possible outcomes. Condition (ii), called additivity, means
that the choices of the agents in a group J is made up of
the choices of each individual agent and no more. Condition
(iii) corresponds to the property of independence of agents:
whatever each agent decides to do, the set of outcomes cor-
responding to the joint action of all agents is non-empty.
More intuitively, this means that agents can never be de-
prived of choices due to the choices made by other agents.
In [LS11] we supposed determinism for the group AGT , that
is to say that the set of outcomes corresponding to a joint
action of all agents is a singleton. Horty’s group STIT logic
[Hor01] does not suppose this. Here we deal with Horty’s
version of STIT. So a STIT model is a game form in which
a joint action of all agents might determine more than one
outcome.

Example 1. The tupleM = (W,R∅, R{1}, R{2}, R{1,2}, V )
defined by:

• W = {w, u, v, r, s, t, z};

• R∅ = W ×W ;

• R{1} = {w, u, v}2 ∪ {r, s}2 ∪ {t, z}2;

• R{2} = {w, r, t}2 ∪ {u, v, s, z}2;

• R{1,2} = {(w,w), (r, r), (s, s), (t, t), (z, z),

(u, u), (v, v), (u, v), (v, u)};

• for all p ∈ P, V (p) = ∅.

is a STIT-Kripke model. Figure 1 shows the model M. The
equivalence classes induced by the equivalence relation R{1}
are represented by ellipses and correspond to the choices of
agent 1. The equivalence classes induced by the equivalence
relation R{2} are represented by rectangles and correspond to
the choices of agent 2. The choice of group {1, 2} at a given
world is determined by the intersection of the choice of agent
1 and the choice of agent 2 at this world. For example, the
choice of agent 1 at world u is {w, u, v} whereas the choice

1One can also see the partition induced by the equivalence
relation Rj as the set of actions that agent j can try, where
the notion of trying corresponds to the notion of volition
studied in philosophy of action [O’S74, McC74].

w u v

r s

t z

Figure 1: The model M

of agent 2 at world u is {u, v, s, z}. The choice of group
{1, 2} at u is {u, v}. Note that Condition (iii) of Definition
4 ensures that for any choice of agent 1 and for any choice
of agent 2 the intersection between these two choices is non-
empty. That is, for any equivalence class induced by the
relation R{1} and for any equivalence class induced by the
relation R{2}, the intersection between these two equivalence
classes is non-empty.

Given a STIT-Kripke model M = (W, {RJ}J⊆AGT , V )
and a world w inM, the truth conditions of STIT formulae
are the following:

M, w |= p ⇐⇒ w ∈ V (p);

M, w |= ¬ϕ ⇐⇒ M, w 6|= ϕ;

M, w |= ϕ ∧ ψ ⇐⇒ M, w |= ϕ andM, w |= ψ;

M, w |= [J : stit]ϕ ⇐⇒ ∀v ∈ RJ(w) :M, v |= ϕ

where RJ(w) = {u ∈W | (w, u) ∈ RJ}.

We are not able to embed group STIT into PECP because
of many reasons. The first one is that the group STIT satisfi-
ability problem is undecidable if there are more than 3 agents
[HS08].2 The second one is that group STIT does not have
the finite model property. Indeed in [HS08], a translation
from the product logic S5n to group STIT logic is given and
as S5n does not have the finite model property [GKWZ03],
atemporal group STIT will also not have it. On the contrary
PECP inherits the finite model property from S5. Indeed, if
a formula ϕ is PECP-satisfiable, Theorem 1 says that tr(ϕ)
is S5-satisfiable. But as S5 has the polynomial model prop-
erty, there exists a polynomial-sized S5-model for tr(ϕ) in
the size of tr(ϕ). In other words, there exists an exponential
S5-model for tr(ϕ) in the size of ϕ. Theorem 1 ensures that
there exists an exponential PECP-model for ϕ in the size of
ϕ.

We will nevertheless embed a variant of group STIT under
the assumption that every agent has a finite and bounded
number of actions in his repertoire. For every agent j, a Rj-
equivalence class Rj(u) corresponds to an action of agent j.
We say that agent j has kj actions in a STIT model if and
only if there are exactly kj Rj-equivalence classes in M.

The game structure in STIT-models should be enforced
in PECP-models. That is why we introduce special atomic
propositions to encode the game structure. Without loss of
generality, we assume that the set P contains special atomic
propositions repj1, rep

j
2, . . . for all agents j which are used to

represent the actions of the agents. Let k be the maximal
number of actions: k = maxj∈AGT kj . For every agent, we

2See [LS11] for a study of some decidable fragments of group
STIT.
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represent its actions by numbers ` in {0, . . . , k − 1} and some
atomic propositions encode the binary representation of `.
Let m be an integer that represents the number of digits we
need to represent an action. For instance let m = dlog2ke
(the ceiling of the logarithm of k). For a given agent j, Rj

m =
{repj1, . . . , repjm} is the set atomic propositions that represent
the binary digits of an action of agent j. We suppose that
if j 6= i then Rj

m ∩Ri
m = ∅.

Example 2. For example, in the model of Example 1,
agent 1 has k1 = 3 actions and agent 2 has k2 = 2 actions.
So k = 3 and m = dlog23e = 2. We have R1

m = {rep11, rep12}
and R2

m = {rep21, rep22}. Then for instance, we may represent
the action of agent 1 corresponding to R{1}(w) = {w, u, v}
by the valuation ¬rep11 ∧ ¬rep12, the action of agent 1 cor-
responding to {r, s} by rep11 ∧ ¬rep12, the action of agent 1
corresponding to {t, z} by ¬rep11 ∧ rep12, the action of agent
2 corresponding to {w, r, t} by ¬rep21 ∧ ¬rep22 and the action
of agent 2 corresponding to {u, v, s, z} by rep21 ∧ ¬rep22.

Let Rm =
⋃
j∈AGT Rj

m be the set of all atomic propo-
sitions used to denote actions. Let us define the following
PECP formula:

GRIDm
def
=

∧
x∈Rm

[∅]((x→ 〈Rm \ {x}〉¬x)∧

(¬x→ 〈Rm \ {x}〉x))

This formula enforces a STIT model to contain all possible
valuations over Rm. A model that satisfies GRIDm is then
interpreted as a game form where each valuation of Rj

m rep-
resents an action of player j.

We now define a translation from LG−STIT to LPECP(P) as
follows:

tr2(p) = p for p ∈ P

tr2(¬ϕ) = ¬tr2(ϕ)

tr2(ϕ ∧ ψ) = tr2(ϕ) ∧ tr2(ψ)

tr2([J : stit]ϕ) = [
⋃
j∈J

Rj
m]tr2(ϕ)

The translation tr2 should be parameterized by m. For no-
tational convenience, in what follows we write tr2 instead of
trm2 leaving implicit the parameter m.

The set
⋃
j∈J R

j
m represents all the atomic propositions

used to represented actions of the coalition J . We then have
the following theorem whose proof is given in Appendix B
at the end of the paper.

Theorem 2. Let us consider a group STIT formula ϕ.
Let m be an integer. Then the following items are equivalent:

1. ϕ is STIT-satisfiable in a STIT-model where each agent
has at most 2m actions;

2. ϕ is STIT-satisfiable in a STIT-model where each agent
has exactly 2m actions;

3. GRIDm ∧ tr2(ϕ) is PECP-satisfiable.

3.2 Atemporal individual STIT

In this subsection, we consider the following fragment of
STIT called atemporal individual STIT 3:

LI−STIT(P, AGT ) : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | [{j} : stit]ϕ

where p ranges over P and j ranges over AGT .
This fragment of STIT, axiomatized by Xu in [Xu98],

has the exponential finite model property (see Lemma 7 in
[BHT08]). Moreover, as the following theorem highlights, it
can be embedded in the logic PECP.

Theorem 3. Let us consider a STIT formula ϕ of the
individual STIT fragment. Let m be the length of ϕ. Then
the following three items are equivalent:

1. ϕ is STIT-satisfiable

2. ϕ is STIT-satisfiable in a model where each agent has
at most 2m actions;

3. GRIDm ∧ tr2(ϕ) is PECP-satisfiable.

Proof. 1 ⇒ 2 Consider a STIT formula ϕ of the indi-
vidual STIT fragment. If ϕ is STIT-satisfiable and m is the
length of ϕ, then ϕ is STIT-satisfiable in a model where there
are at most 2m worlds (see Lemma 7 in [BHT08]). This im-
plies that there are at most 2m actions in that model.

The implications 2 ⇒ 3 and 3 ⇒ 1 come from Theorem
2.

Thanks to Theorem 3, we reduce the NEXPTIME-complete
satisfiability problem of individual STIT [BHT08] to the
PECP-satisfiability problem. As the reduction is polyno-
mial, we obtain the following lower bound complexity result
for the PECP-satisfiability problem.

Corollary 2. The PECP-satisfiability problem is
NEXPTIME-hard.

3.3 Group STIT where coalitions are nested
In this subsection we address the satisfiability problem of

the fragment of PECP consisting of formulae ϕ of LPECP such
that the sets of atomic propositions that appear in any op-
erator [X] occurring in ϕ form a linear set of sets of atomic
propositions. More formally, if [X] and [X ′] are two oper-
ators occurring in ϕ then either X ⊆ X ′ or X ′ ⊆ X. For
instance, the formula [{p, q}](ψ ∧ [{p}][{p, q, r, s}]ϕ) belongs
to the fragment because {p} ⊆ {p, q} ⊆ {p, q, r, s}. On the
contrary, the formula [{p}]p∧ [{q}]p is not an element of this
fragment of PECP.

We call the satisfiability problem of this fragment of PECP
the PECP-nested satisfiability problem. Due to the embed-
ding proposed in Theorem 2 of STIT into PECP, we provide
the following lower bound complexity result for the PECP-
nested satisfiability problem. The proof is given in Appendix
C.

Theorem 4. The PECP-nested satisfiability problem is
PSPACE-hard.

The following theorem provides an upper bound complex-
ity result for this fragment of PECP. The proof is given in
Appendix D.

3Some authors ([Bro08a, Wan06]) use the term ‘multi-agent
STIT’ to designate the logic where operators are of the form
[{j} : stit]. Here we prefer to use the more explicit term
‘individual STIT’ as in [HS08].
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Theorem 5. The PECP-nested satisfiability problem is in
PSPACE.

This concludes our analysis of STIT logics via PECP. In
the next section we move to the coalition logic of proposi-
tional control.

4. RELATING STIT WITH CL−PC, AND PECP

WITH CL−PC
In this section we study the relationships between PECP,

atemporal ‘bounded’ group STIT, and another well-known
game logic, the logic CL−PC (coalition logic of propositional
control).4 Specifically, we show that CL−PC can be embed-
ded into atemporal ‘bounded’ group STIT and, by the fact
that atemporal ‘bounded’ group STIT can be embedded into
PECP (Section 3.1), we indirectly show that CL−PC can be
embedded into PECP.

CL−PC was introduced by [vdHW05] as a formal language
for reasoning about capabilities of agents and coalitions in
multiagent environments. In this logic the notion of capa-
bility is modeled by means of the concept of control. In
particular, it is assumed that each agent i is associated with
a specific finite subset Pi of the finite set of all propositions
P. Pi is the set of propositions controlled by the agent i.
That is, the agent i has the ability to assign a (truth) value
to each proposition Pi but cannot affect the truth values of
the propositions in P \Pi. In the variant of CL−PC studied
by [vdHW05] it is also assumed that control over proposi-
tions is exclusive, that is, two agents cannot control the same
proposition (i.e., if i 6= j then Pi ∩ Pj = ∅). Moreover, it
is assumed that control over propositions is complete, that
is, every proposition is controlled by at least one agent (i.e.,
for every p ∈ P there exists an agent i such that p ∈ Pi).

The preceding concepts and assumptions are precisely for-
mulated in the following section, which illustrates the syntax
and the formal semantics of CL−PC.

4.1 Syntax and semantics of CL−PC
The language of CL−PC is built from a finite set of atomic

propositions P and a finite set of agents AGT = {1, . . . , n},
and is defined by the following BNF:

LCL−PC(P, AGT ) : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 3Jϕ

where p ranges over P and J ranges over 2AGT . Operator
3J is called cooperation modality, and the construction 3Jϕ
means that “group J has the contigent ability to achieve ϕ”.

Definition 5 (CL−PC model). A model for CL−PC
is a tuple M = (P1, . . . ,Pn, X) where:

• P1, . . . ,Pn is a partition of P among the agents in
AGT ;

• X ⊆ P is the set of propositions which are true in the
initial state.

For every group of agents J ⊆ AGT , let PJ =
⋃
i∈J Pi be

the set of atomic propositions controlled by the group J .
Moreover, for every group J ⊆ AGT and for every set of

4In [Ger06] generalizations of some of the assumptions un-
derlying CL−PC have been studied. Here we only consider
the original version of CL−PC proposed by van der Hoek &
Wooldridge.

atomic propositions X ⊆ P, let XJ = X ∩PJ be the set of
atomic propositions in X controlled by the group J . Sets
XJ are called J-valuations.

Given a CL−PC model M = (P1, . . . ,Pn, X), the truth
conditions of CL−PC formulae are the following:

M |= p ⇐⇒ p ∈ X;

M |= ¬ϕ ⇐⇒ M 6|= ϕ;

M |= ϕ ∧ ψ ⇐⇒ M |= ϕ andM |= ψ;

M |= 3Jϕ ⇐⇒ ∃X ′J ⊆ PJ :M
⊕

X ′J |= ϕ

whereM
⊕
X ′J is the CL−PC model (P1, . . . ,Pn, X

′′) such
that:

X ′′AGT\J = XAGT\J

X ′′J = X ′J

That is, 3Jϕ is true at a given model M if and only if,
the coalition J can change the truth values of the atoms
that it controls in such a way that ϕ will be true afterwards
(i.e., given the actual truth-value combination of the atoms
which are not controlled by J , there exists a truth-value
combination of the atoms controlled by J which ensures ϕ).

Let us illustrate the CL−PC semantics with an example.

Example 3. Let AGT = {1, 2, 3}, P = {p, q, r}, P1 =
{p}, P2 = {q} and P3 = {r}.

Consider the CL−PC model M = (P1,P2, ,P3, {r}). We
have that:

M |= 3{1,2}((p ∧ q ∧ r) ∨ (p ∧ ¬q ∧ r)).
Indeed, there exists a set of atoms X ′{1,2} ⊆ P{1,2} controlled

by {1, 2} such that M
⊕
X ′{1,2} |= ((p∧q∧r)∨ (p∧¬q∧r)).

For example, we have {p} ⊆ P{1,2} and
(P1,P2,P3, {p, r}) |= ((p ∧ q ∧ r) ∨ (p ∧ ¬q ∧ r)), where
(P1,P2,P3, {p, r}) =M

⊕
{p}.

4.2 Embedding CL−PC into STIT

The aim of this section is to provide an embedding of
CL−PC into the variant of atemporal group STIT with bounded
choices (atemporal ‘bounded’ group STIT) that have been
presented in Section 3.1.

Let us provide the following STIT formulae which catpure
four basic assumptions of CL−PC:

EXC+ def
=

∧
p∈P

∧
i,j∈AGT :i6=j

(〈∅ : stit〉[{i} : stit]p→

¬〈∅ : stit〉[{j} : stit]p)

EXC−
def
=

∧
p∈P

∧
i,j∈AGT :i6=j

(〈∅ : stit〉[{i} : stit]p→

¬〈∅ : stit〉[{j} : stit]¬p)

COMPL
def
=

∧
p∈P

∨
i∈AGT

[∅ : stit]([{i} : stit]p ∨ [{i} : stit]¬p)

GRID∗
def
=

∧
X⊆P

〈∅ : stit〉(
∧
p∈X

p ∧
∧

p∈P\X

¬p)

Formulae EXC+ and EXC− mean that control over atomic
propositions in P is exclusive (i.e., there is no proposition
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in P which can be forced to be true or false by more than
one agent), whereas formula COMPL means that exercise of
control over atomic propositions in P is complete (i.e., for
every proposition in P there exists at least one agent who
either forces it to be true or forces it to be false). Finally,
formula GRID∗ means that all the possible truth-value com-
binations of the atomic propositions in P are possible. Note
that EXC+, EXC−, COMPL and GRID∗ are well-formed
STIT formulae because of the assumption that the set P is
finite.5

We define the following translation from LCL−PC(P, AGT )
to LSTIT(P, AGT ):

tr3(p) = p for p ∈ P

tr3(¬ϕ) = ¬tr3(ϕ)

tr3(ϕ ∧ ψ) = tr3(ϕ) ∧ tr3(ψ)

tr3(3Jϕ) = 〈AGT \ J : stit〉tr3(ϕ)

The following theorem highlights that ‘bounded’ group
STIT embeds CL−PC. The proof is given in Appendix E.

Theorem 6. Let m = |P|. Then, a CL−PC formula ϕ is
CL−PC-satisfiable if and only if (EXC+∧EXC−∧COMPL∧
GRID∗) ∧ tr3(ϕ) is satisfiable in a STIT model where each
agent has at most 2m actions.

As PECP embeds atemporal ‘bounded’ group STIT (The-
orem 2 in Section 3.1), from Theorem 6 it follows that PECP
also embeds CL−PC. Indeed, given a CL−PC-satisfiable for-
mula ϕ, one can use the translation tr2 given in Section
3.1 in order to find a corresponding STIT formula which is
STIT-satisfiable. Then, one uses the preceding translation
tr3 in order to find a corresponding PECP formula which is
PECP-satisfiable.

Corollary 3. Let m = |P|. Then, a CL−PC formula ϕ
is CL−PC-satisfiable if and only if GRIDm ∧ tr2((EXC+ ∧
EXC− ∧ COMPL ∧GRID∗) ∧ tr3(ϕ)) is PECP-satisfiable.

5. CONCLUSIONS
The paper has introduced a modal logic that arises by in-

terpreting modal operators on the equivalence relations in-
duced by finite sets of propositional atoms. This logic, called
PECP, has been axiomatized, embedded (exponentially) into
S5, and its relation to existing formalisms has been briefly
discussed. PECP has then been used as a tool to compare
two logics of agency and games—atemporal STIT and the
coalitional logic of propositional control CL−PC—showing
that CL−PC can be embedded in STIT and that, in turn,
STIT can be embedded in PECP. These embedding preserve
satisfiability and the paper has taken stock of them to pro-
vide a complexity analysis of logic PECP.

Moreover, via logic S5, one can easily show that embed-
dings in the other directions are also possible. S5, we have
seen, embeds PECP, but is also directly embeddable in all
the mentioned logic, which all contain the universal modal-
ity, in the following forms: 〈∅〉 in PECP, 〈AGT \ ∅ : stit〉
in atemporal STIT and 3AGT in CL−PC. All in all, this
illustrates a nice uniformity in the logical tools that seem to
be needed to talk about α-effectivity and, we believe, that

5This assumption is also made by van der Hoek &
Wooldridge in [vdHW05].

PECP offers a good paradigm for systematizing existing log-
ics of game forms.

Directions of future work are manifold. First of all, we
plan to look for principled generalizations of some of the as-
sumptions underlying the logics studied: e.g., independence
of agents in STIT such as “agent j and agent i are indepen-
dent as far as the set of atomic propositions X is concerned”,
restriction to control over atomic propositions in CL−PC.
Secondly, we intend to push further our study of the rela-
tionship between ceteris paribus logics and existing logics
of agency and cooperation including the logic of “bringing
it about that” [GR05], the logic STIT with time [Bro08b,
Lor12] and Coalition Logic [Pau02]. Finally, in this paper
we have shown that PECP and atemporal individual STIT
have the same high complexity of the satisfiability problem
when we consider the whole languages. The study of efficient
syntactic fragments is then important and we intend to pur-
sue this study in parallel both for PECP and for atemporal
individual STIT. We expect that several complexity results
about fragments of atemporal STIT may be transferred to
fragments of PECP and viceversa.
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APPENDIX
A. PROOF OF THEOREM 1

Let ϕ0 be a PECP-formula. We have equivalence between
ϕ0 is PECP-satisfiable and tr(ϕ0) is S5-satisfiable.

Proof. ⇒ Suppose that there exists a PECP-modelM =

(W,V ) and a world w ∈ W such that M, w |= ϕ0. Let
V ′ be the valuation V modified such that pϕ is true in ex-
actly all worlds u such that M, u |= ϕ. Let M′ be the
S5-model defined as (W,V ′). A standard induction provides
that M′, w |= tr(ϕ0). More precisely, let us prove by in-
duction that for all ϕ ∈ SF (ϕ0), we have M, u |= ϕ iff
M′, u |= tr1(ϕ) for all u ∈W .

• Propositional case: for all atomic propositions p, we
have M, u |= p iff u ∈ V (p) iff u ∈ V ′(p) iff M′, u |=
tr1(p).

• Negation: M, u |= ¬ϕ iff M, u 6|= ϕ iff M′, u 6|= ϕ iff
M′, u |= ¬ϕ.

• Conjunction: M, u |= ϕ ∧ ψ iff M, u |= ϕ and M, u |=
ψ iff M′, u |= tr1(ϕ) and M′, u |= tr1ψ) iff M, u |=
tr1(ϕ ∧ ψ).

• Case of a formula of the form [X]ϕ:

M, u |= [X]ϕ

iff for all v ∈W , u ∼VX v implies M, v |= ϕ

iff for all v ∈W , u ∼VX v implies M′, v |= pϕ

(by construction of V ′)

iff M′, u |= tr1([X])ϕ

By construction of V ′, we haveM′, w |=
∧
ϕ∈SF (ϕ0)

�(pϕ ↔
tr1(ϕ)). As M, w |= ϕ0 we have M, w |= tr1(ϕ0) thus
M, w |= pϕ0 by construction of V ′. As a result, M, w |=
tr(ϕ0).
⇐ Suppose that there exists a S5 model M′ = (W,V )

and a world w ∈ W such that M′, w |= tr(ϕ0). We define
the relations ∼X where X ⊆ P as in the Definition 1. LetM
be the PECP-model equal to (W,V ). A standard induction
provides that M, w |= ϕ0. More precisely, let us prove by
induction that for all ϕ ∈ SF (ϕ0), we have M, u |= ϕ iff
M′, u |= tr1(ϕ) for all u ∈W .

• Propositional case: for all atomic propositions p, we
have M, u |= p iff u ∈ V (p) iff u ∈ V ′(p) iff M′, u |=
tr1(p).

• Negation: M, u |= ¬ϕ iff M, u 6|= ϕ iff M′, u 6|= ϕ iff
M′, u |= ¬ϕ.

• Conjunction: M, u |= ϕ ∧ ψ iff M, u |= ϕ and M, u |=
ψ iff M′, u |= tr1(ϕ) and M′, u |= tr1ψ) iff M, u |=
tr1(ϕ ∧ ψ).

• Case of a formula of the form [X]ϕ:

M, u |= [X]ϕ

iff for all v ∈W , u ∼VX v implies M, v |= ϕ

iff for all v ∈W , u ∼VX v implies M′, v |= tr1(ϕ)

(by induction)

iff for all v ∈W , u ∼VX v implies M′, v |= pϕ

(because, as M′, w |= tr(ϕ0) we have that

for all v ∈W , M′, v |= (pϕ ↔ tr1(ϕ)))

iff M′, u |= tr1([X])ϕ
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As M′, w |= tr(ϕ0), we have that M′, w |= (pϕ0 ↔ tr1(ϕ0))
and M′, w |= pϕ0 . Thus, M′, w |= tr1(ϕ0). Hence M, w |=
ϕ0.

B. PROOF OF THEOREM 2
Let us consider a group STIT formula ϕ. Let m be an

integer. Then the following items are equivalent:

1. ϕ is satisfiable in a model where each agent has at most
2m actions;

2. ϕ is satisfiable in a model where each agent has exactly
2m actions;

3. GRIDm ∧ tr2(ϕ) is PECP-satisfiable.

Proof. 1 ⇒ 2 Let M0 = (W 0, {R0
J}J⊆AGT , V 0) be a

STIT-model with at most 2m actions per agent and w ∈
W 0 such that M0, w |= ϕ. We construct a sequence of
models Mj = (W j , {RjJ}J⊆AGT , V

j) such that all agents
j′ ∈ {1, . . . , j} have exactly 2m actions inMj and such that
Mj is bisimilar to Mj−1. We construct Mj from Mj−1 as
follows. Let Rj−1

{j} (w1), . . . , Rj−1
{j} (wk) be an enumeration of

Rj−1
{j} - classes (that is, actions for agents j), where k ≤ 2m.

Let (Copy`)`∈{k+1,...,2m} be a family of disjoint copies of

Rj−1
{j} (w1). We write uCv to say that u = v or v is a copy of u

or u is a copy of v. The modelMj = (W j , {RjJ}J⊆AGT , V
j)

is defined as follows:

• W j = W j−1 ∪
⋃
`∈{k+1,...,2m} Copy`;

• Rj{j} = Rj−1
{j} ∪

⋃
`∈{k+1,...,2m} {(u, v) | u, v ∈ Copy`}

• Rj{j′} = C ◦Rj−1
{j′} ◦C for all j′ 6= j;

• V j(p) = {v ∈W j | vCu and u ∈ V j−1(p)}.

This construction makes thatMj andMj−1 are bisimilar
and by induction we have that all agents j′ ∈ {1, . . . , j} have
exactly 2m actions inMj . Finally, we haveMn, w |= ϕ and
each agent has exactly 2m actions in Mn.

2 ⇒ 3 Let us consider a STIT model
M = (W, {RJ}J⊆AGT , V ) in which each agent has exactly
2m actions. Let w ∈ W be such that M, w |= ϕ. For all
j ∈ AGT , let R{j}(wj,1), . . . , R{j}(wj,2m) be an enumera-
tion of all R{j}-classes in M. Let us extend V such that in
all worlds of R{j}(wj,i) the valuations of the atomic propo-

sitions in Rj correspond to the binary digits in the binary
representation of i. For all d ∈ {1, . . . ,m}:

• V (repjd) =
⋃
i=1..2m| the dth digit of i is 1R{j}(wj,i)

Independence of agents inM ensures thatM, w |= GRIDm.
We prove thatM, u |= tr2(ψ) iffM, u |= ψ by induction over
all subformulae ψ of ϕ.

3 ⇒ 1 Let M = (W,V ) be a PECP-model and w ∈ W
such thatM, w |= GRIDm∧tr2(ϕ). We defineRJ =∼⋃

j∈J Rj .

The resulting Kripke-model M′ = (W, {RJ}J⊆AGT , V ) is
a STIT-model where each agent has exactly 2m actions.
In particular, it satisfies the independence of agents be-
cause M, w |= GRIDm. We prove that M, u |= tr2(ψ) iff
M′, u |= ψ by induction over all subformulae ψ of ϕ.

C. PROOF OF THEOREM 4
The PECP-nested satisfiability problem is PSPACE-hard.

Proof. We reduce the satisfiability problem of STIT-
formulae where coalitions are taken from a linear set of
coalitions, which is PSPACE-complete [Sch12] to the PECP-
nested satisfiability problem: we use the translation tr2 of
Subsection 3.1. Let ϕ be a STIT-formula. We have ϕ is
STIT-satisfiable iff tr2(ϕ) is PECP-satisfiable.
⇒ As it stated in [Sch12], the STIT where coalitions

are taken from a linear set of coalitions has the exponen-
tial model property. So the result of Theorem 2 is true.
Hence if ϕ is STIT-satisfiable then GRIDm∧tr2(ϕ) is PECP-
satisfiable (where m is the length of ϕ). Hence tr2(ϕ) is
PECP-satisfiable.
⇐ Suppose that there exists a PECP-modelM = (W,V )

and w ∈W such thatM, w |= tr2(ϕ). We defineRJ =∼⋃
j∈J .

Then the STIT model M′ = (W, (RJ)J∈ϕ, V ) is such that
M′, w |= ϕ. Remark that we do not need to specify all the
relations RJ for all J . As long as RJ is specified for all coali-
tions J that appear in ϕ and that RJ ⊆ RJ′ if J ′ ⊆ J , we
can extend the Kripke model M′ to a completely specified
STIT-model also satisfying ϕ.6

D. PROOF OF THEOREM 5
The PECP-nested satisfiability problem is in PSPACE.

Proof. We reduce the PECP-nested satisfiability prob-
lem to the satisfiability problem of STIT where coalitions
are taken from a linear set of coalitions. We define the set
AX = {jp such that p ∈ X} where jp is a fresh agent cor-
responding to the atomic proposition p. Let us define the
following translation:

• tr4(p) = p;

• tr4(¬ϕ) = ¬tr4(ϕ);

• tr4(ϕ ∧ ψ) = tr4(ϕ) ∧ tr4(ψ);

• tr4([X]ϕ) = [AX : stit]tr4(ϕ).

Let us consider a fixed PECP-formula ϕ. We recall that
a signature X appears in ϕ if there exists a formula ψ such
that 〈X〉ψ ∈ SF (ϕ). We have also to define the following
formula

CONTROL = [∅ : stit]∧
X appearing in ϕ∧
p∈X(p↔ [AX : stit]p)∧

(¬p↔ [AX : stit]¬p).

tr4(ϕ)∧CONTROL is a STIT-formula which is computable
in polynomial time and which satisfies the condition of nest-
ing over groups (i.e., for any two operators [J : stit] and [J ′ :
stit] occurring in the formula either J ⊆ J ′ or J ′ ⊆ J). We
also have that ϕ is PECP-satisfiable iff tr4(ϕ)∧CONTROL
is satisfiable in a STIT-model.
⇒ Suppose that there exists an PECP-modelM = (W,V )

and w ∈ W such that M, w |= ϕ. We define RAX =∼X .
Then the STIT modelM′ = (W, (RAX )X∈ϕ, V ) is such that
M′, w |= tr4(ϕ)∧CONTROL. Remark that we do not need
to specify all the relations RJ for all J . As long as RJ is spec-
ified for all coalitions J that appear in tr4(ϕ)∧CONTROL
and that RJ ⊆ RJ′ if J ′ ⊆ J , we can extend the Kripke

6See [Sch12] for more details about this construnction.
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model M′ to a completely specified STIT-model also satis-
fying tr4(ϕ) ∧ CONTROL.7

⇐ Suppose that there exists a STIT-model
M′ = (W, (RAX )X∈ϕ, V ) and a world w ∈ W such that
M′, w |= tr4(ϕ) ∧ CONTROL. As M′, w |= CONTROL,
we have ∼X= RAX . This is the reason why if we define
M = (W, {∼X}X∈2P , V ). Consequently, we have M, w |=
ϕ.

E. PROOF OF THEOREM 6
Let m = |P|. Then, a CL−PC formula ϕ is CL−PC satis-

fiable if and only if (EXC+ ∧EXC− ∧COMPL∧GRID∗)∧
tr3(ϕ) is satisfiable in a STIT model where each agent has
at most 2m actions.

Proof. Let us suppose |P| = m.
⇒ LetM∗ = (P1, . . . ,Pn, X

∗) be a CL−PC model such
that M∗ |= ϕ, where P1, . . . ,Pn is a partition of P among
the agents in AGT . We build the STIT
model M = (W, {RJ}J⊆AGT , V ) as follows:

• W = {X : X ⊆ P},
• for all J ⊆ AGT and for all X,X ′ ∈ W , (X,X ′) ∈ R′J

if and only if XJ = X ′J ,

• for all p ∈ P and for all X ∈ W , X ∈ V (p) if and only
if p ∈ X,

where for any X ⊆ P and for any J ⊆ AGT , XJ = X ∩PJ

(with PJ =
⋃
i∈J Pi). The size of M is 2m. It follows that

the number of RAGT -equivalence classes (alias joint actions)
is equal or lower than 2m. Consequently, the number of
actions for every agent is bounded by 2m.

It is straightforward to prove that for all X ∈W we have
M, X |= EXC+ ∧ EXC− ∧ COMPL ∧ GRID∗. Moreover,
by induction on the structure of ϕ, we prove thatM, X∗ |=
tr3(ϕ). The only interesting case is ϕ = 3Jψ:

M∗ |= 3Jψ iff there exists XJ ⊆ PJ s.t. M∗
⊕

XJ |= ψ

iff there exists XJ ⊆ PJ s.t.

M, XJ ∪X∗AGT\J |= tr3(ψ) (by I.H.)

iff M, X∗ |= 〈AGT \ J : stit〉tr3(ψ)

⇐ LetM = (W, {RJ}J⊆AGT , V ) be a STIT model where
the number of actions for every agent is bounded by 2m and
w0 ∈ W such that M, w0 |= (EXC+ ∧ EXC− ∧ COMPL ∧
GRID∗) ∧ tr3(ϕ).

For any i ∈ AGT , let

Ctrl i = {p ∈ P : ∀v ∈W,
M, v |= [{i} : stit]p or

M, v |= [{i} : stit]¬p
}

be the set of atoms in P controlled by agent i. For any
J ⊆ AGT , let CtrlJ =

⋃
i∈J Ctrli.

Lemma 1. For all J ⊆ AGT , X ⊆ P, πX ⊆ X and
w ∈W we have:

(i) if CtrlJ = X then CtrlAGT\J = P \X,

(ii) if M, w |=
∧
p∈π+

X
p ∧

∧
p∈π−

X
¬p and CtrlJ = X then,

for all v ∈ RJ(w), we haveM, v |=
∧
p∈π+

X
p∧
∧
p∈π−

X
¬p,

(iii) if CtrlJ = X then, for all π′P\X ⊆ P \X, there exists
v ∈ RJ(w) such thatM, v |=

∧
p∈π′+

P\X
p∧
∧
p∈π′−

P\X
¬p.

7Again see [Sch12] for more details about this construction.

where for any X ⊆ P and for any πX ⊆ X, π+
X = πX and

π−X = X \ πX .

Proof. (i) Let us suppose that p 6∈ CtrlJ . We are

going to prove that p ∈ CtrlAGT\J . From p 6∈ CtrlJ it
follows that for all w ∈ W we have M, v |= ¬p for some
v ∈ RJ(w). This implies that for all i ∈ J and for all
w ∈ W we have M, w |= ¬[{i} : stit]p ∧ ¬[{i} : stit]¬p.
FromM, w0 |= COMPL it follows that there is i ∈ AGT \J
such that M, w |= [{i} : stit]p ∨ [{i} : stit]¬p for all w ∈
W . The latter implies that p ∈ CtrlAGT\J . The other
direction (i.e., p ∈ CtrlJ implies p 6∈ CtrlAGT\J) follows

from M, w0 |= EXC+ ∧ EXC−.

(ii) Let us suppose that M, w |=
∧
p∈π+

X
p ∧

∧
p∈π−

X
¬p

and CtrlJ = X. By the fact that relations RJ are reflexive,
it follows that, for all p ∈ π+

X , there exists i ∈ J such that
M, w |= [{i} : stit]p and for all p ∈ π−X there exists i ∈ J
such that M, v |= [{i} : stit]¬p. From the latter it follows
that for all p ∈ π+

X we have M, w |= [J : stit]p and for all
p ∈ π−X we have M, v |= [J : stit]¬p. Therefore, for all
v ∈ RJ(w), we have M, v |=

∧
p∈π+

X
p ∧

∧
p∈π−

X
¬p.

(iii) Let us suppose that CtrlJ = X and let us con-

sider an arbitrary π′P\X ⊆ P \ X and w ∈ W . From
M, w0 |= GRID∗ it follows that there exists v ∈ W such
that M, v |=

∧
p∈π′+

P\X
p ∧

∧
p∈π′−

P\X
¬p. By item (ii), the

latter implies that there exists v ∈ W such that M, v |=
[AGT \ J : stit](

∧
p∈π′+

P\X
p ∧

∧
p∈π′−

P\X
¬p). From the con-

straint of independence of agents it follows that there exists
v ∈ RJ(w) such that M, v |=

∧
p∈π′+

P\X
p ∧

∧
p∈π′−

P\X
¬p.

We transform the STIT model M in a CL−PC model
M∗ = (P1, . . . ,Pn, X

∗) as follows:

• for all p ∈ P, p ∈ X∗ if and only if w0 ∈ V (p),

• for all p ∈ P and for all i ∈ AGT , p ∈ Pi if and only if
p ∈ Ctrli.

By the item (i) of Lemma 1 it is easy to check that M∗
is indeed a CL−PC model. In particular, P1, . . . ,Pn is a
partition of P among the agents in AGT .

By induction on the structure of ϕ and by using Lemma
1 it is straightforward to prove that M∗ |= ϕ. The only
interesting case is ϕ = 3Jψ:

M, w0 |=〈AGT \ J : stit〉tr3(ψ)

iff M, v |= tr3(ψ) for some v ∈ RAGT\J(w0)

iff there exists XJ ⊆ PJ s.t.

(P1, . . . ,Pn, XJ ∪X∗AGT\J) |= ψ

(by I.H., and items (ii) and (iii)

of Lemma 1)

iff M∗ |= 3Jψ

This completes the proof.
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ABSTRACT
We study conditions relating to the impossibility of agreeing
to disagree in models of interactive KD45 belief (in contrast
to models of S5 knowledge, which are used in nearly all
the agreements literature). We show that even when the
truth axiom is not assumed it turns out that players will
find it impossible to agree to disagree under fairly broad
conditions.1
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1. INTRODUCTION
One of the strongest assumptions underpinning the stan-

dard model of knowledge, known as S5, is the truth axiom,
which essentially states that ‘everything that a player knows
is true’. This is equivalent, from one perspective, to as-
serting that no mistakes are ever made in the processing of
signals.

Mistakes, of course, abound around us, and sometimes
such mistakes can have significant consequences. Consider,
for example the following scenario (a variation of an ex-
ample appearing in [Hart and Tauman (2004)]): There are
two traders. They trade on a daily basis, and since a trade
involves one trader selling and the other buying, they can
at least observe each others’ willingness to trade. We may
imagine that these two traders are the ‘market leaders’, in
the sense that their actions are followed by others in the
market and copied.

Let Ω be the set of all states of the world, with Ω con-
taining nine states; Ω = {1, 2, . . . , 9}. For simplicity we
will assume that there is a common prior p over Ω, with
p(ω) = 1/9 for all states ω. The private information of the

∗Research supported in part by the European Research
Council under the European Commission’s Seventh Frame-
work Programme (FP7/2007 - 2013)/ERC grant agreement
no. 249159, and in part by Israel Science Foundation grants
538/11 and 212/09.
1 What follows is an extended abstract for TARK, not a full
paper.

TARK 2013, Chennai, India.
Copyright 2013 by the authors.

two traders, Anne and Bob are summarized by partitions
ΠA and ΠB respectively, with

ΠA = 1234|5678|9

and

ΠB = 123|456|789.

One standard interpretation of the structure of such par-
titional knowledge is that Anne and Bob receive signals. If
the true state is 2, for example, Anne receives a signal that
enables her to rule out the states 5, 6, 7, 8, 9, and she there-
fore knows that the true state is one of 1, 2, 3, 4. Bob, at the
true state 3, receives a signal that enables him to rule out
the states 4, 5, 6, 7, 8, 9, and he therefore knows that the true
state is one of 1, 2, 3. Specifically, suppose that Bob may re-
ceive any one of three signals, σ1, σ2, σ3, where σ1 informs
Bob that the true state is one of 1, 2, 3, σ2 informs Bob that
the true state is one of 4, 5, 6, and σ3 informs Bob that the
true state is one of 7, 8, 9 (we will be less interested in this
example with specifying Anne’s possible signals).

Signal States
σ1 → {1, 2, 3}
σ2 → {4, 5, 6}
σ3 → {7, 8, 9}

Figure 1: Bob’s signals and their interpretation

when there are no processing errors.

So far, so standard. Now consider the possibility of a
mistake in signals processing on the part of Bob. Suppose
that Bob inputs the signals he receives into a black box
that he has been assured outputs 1, 2, 3, 4, 5, 6, or 7, 8, 9 if
the input is σ1,σ2, or σ3 respectively. Unbeknownst to Bob
(and to Anne), however, Bob’s black box is defective; when
either σ1 or σ2 are given as input, the box outputs 4, 5, 6
(hence even if, e.g., the true state is 1 Bob thinks the true
state is one of {4, 5, 6}.

Signal States
σ1 → {4, 5, 6}
σ2 → {4, 5, 6}
σ3 → {7, 8, 9}

Figure 2: Bob’s signal processing error.

Consider next the event E = {4, 9}. This event will be
interpreted as a ‘good’ outcome (e.g., company earnings are
about to rise), with the complement representing a ‘bad’
event that ought to trigger the sale of shares. Suppose that
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the true state is 2, and that each one of the two traders
behaves each day according to the following rule:{

Buy if the probability of E is 0.3 or more;
Sell if the probability of E is less than 0.3.

Given these assumptions, the following sequence of actions
transpires. On Day 1, Anne, who processes signals correctly,
supposes that the true state is one of 1, 2, 3, 4, judges the
probability of E to be 1/4 and seeks to sell shares. Bob
erroneously supposes that the true state is one of 4, 5, 6,
judges the probability of E to be 1/3, and therefore buys
shares from Anne.

Since Bob was willing to buy on Day 1, Anne ‘learns’ that
the true state is not in 1, 2, 3. She therefore erroneously
supposes on Day 2 that the true state is 4 and offers to buy
on Day 2. Bob does the same. By Day 3, it is ‘common
knowledge’ that 4 is the ‘true state’ – Bob’s error has now
become Anne’s error. Both traders seek to buy as many
shares as they can, to their detriment, and a bubble has
developed.

[Geanakoplos (1989)] and [Morris (1996)] show that in
knowledge models that satisfy the truth axiom (but are not
necessarily S5) more information is always beneficial for a
player, in the sense that with more information a rational
player will never choose an action that gives him less in ex-
pectation than an action that he chooses when he has less
information. Without the truth axiom, that no longer holds
true. Indeed, as the example here shows, without the truth
axiom, not only is the ‘mistaken’ player in danger of choosing
detrimental actions, his errors can cascade and ‘infect’ other
players to their detriment: in Day 1 above, Anne makes the
right decision in seeking to sell shares, but on Day 2, due
to Bob’s mistake, she is buying shares. Arguably, Anne has
been mistaken all along, in accepting Bob’s reports at face
value, without considering the possibility that Bob might be
mistaken.

The above story motivates the study of agreement and dis-
agreement in models of belief as opposed to models of knowl-
edge, which is the standard setting of most of the agreement
literature.

2. PRELIMINARIES

2.1 Belief Structures
Fix a finite set of players I and a finite set of states of the

world2 denoted by Ω. Subsets of Ω are called events. The
set of probability distributions over Ω is denoted by ∆(Ω).

A type function ti over Ω for player i is defined by as-
signing, for each ω, a probability distribution ti(ω) ∈ ∆(Ω)
representing player i’s beliefs at ω. We associate with each
type function ti a partition Πi of Ω defined3 by Πi(ω) =
{ω′ | ti(ω′) = ti(ω)}. If we impose on a type function the
property that ti(ω)(Πi(ω)) = 1, then the type functions is
partitional. A probabilistic belief structure over Ω is then a
set of partitional type functions (ti)i∈I over Ω.

A function bi : Ω → 2Ω \ ∅ is a possibility function. The
event bi(ω) is interpreted as the set of states that are consid-

2 In the basic definitions of elements of belief structures we
largely follow [Samet (2011)].
3 The presentation here reverses most presentations of belief
structures, in which partitions are given and used to define
type functions; here we are starting with type functions and
using them to define the partitions.

ered possible for i at ω, while all other states are excluded by
i at ω. We will call a possibility function bi : Ω → 2Ω \ {∅}
that is measurable with respect to a partition Πi and satisfies
bi(ω) ⊆ Πi(ω) for each ω ∈ Ω a KD45 possibility function.

A belief structure over Ω is a set of pairs Π = (Πi, bi)i∈I ,
where each bi is a KD45 possibility function with respect to
the partition Πi of Ω. We will sometimes also call such a
structure a KD45 belief structure.

The general structure of a model of KD45 belief of a player
i is of an over-arching partition Πi, with each partition el-
ement π ∈ Πi furthermore partitioned into bi(ω) and fi(ω)
(using an arbitrary ω ∈ π). Every element ω′ ∈ fi(ω) is
mapped by bi into bi(ω), where it is ‘trapped’, in the sense
that bi(bi(ω

′)) = bi(ω
′) = bi(ω).

A probabilistic belief structure (ti)i∈I over Ω induces a
belief structure (Πi, bi)i∈I over Ω, where Πi is the partition
of Ω into the types of player i and bi(ω) is the set of states
in Πi(ω) that have positive ti(ω) probability. Conversely,
every belief structure over Ω is induced by a probabilistic
belief structure over Ω. We will sometimes make use of this
by choosing, for a given belief structure Π = (Πi, bi)i∈I , an
arbitrary probabilistic belief structure (tbi )i∈I that induces
Π.

2.2 Delusion
Let Π = (Πi, bi)i∈I be a belief structure. If ω ∈ bi(ω) then

bi is non-deluded at ω. If ω /∈ bi(ω) then bi is deluded at ω;
in this case we will also sometimes say that ω is a deluded
state for player i. This is where we are dropping the ‘truth
axiom’: if one accepts the truth axiom there are never any
deluded states for any player.

If there is at least one state at which bi is deluded, then bi
is delusional, and we will similarly say that the correspond-
ing belief operator Bi is delusional if this is the case. It is
straight-forward to show that a belief structure Π is non-
delusional for all players if and only if it is an S5 structure,
and it is similarly straight-forward to show that a state ω
is non-deluded for player i if and only if tbi (ω) = 0 for any
probabilistic belief structure (tbi )i∈I that induces Π.

Definition 1. A KD45 belief structure at which at all states
ω ∈ Ω either a) every player i is deluded at ω or b) every
player i is non-deluded at ω will be called a non-singular
structure. �

In examples, we will compactly express KD45 belief struc-
tures by separating states in different partition elements of
Πi by the square boxes. Within each partition element we
will denote states that are in the same component of bi(ω)
by an oval box.

For example, if we write�� ��1 2 3 4 5
�� ��6 7 8

�� ��9

then the intention is, for example, that 5, 6 and 7 are all in
the same partition element, i.e., Πi(5) = {5, 6, 7}, but 5 is a
delusional state such that bi(5) = {6, 7}.

3. BELIEF REVISION
The general approach we will follow is: in standard S5

concepts and formulae, replace Πi by bi and see what hap-
pens. We will apply this now to Bayesian belief revision.
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3.1 Standard belief revision and priors
Let µ be a probability distribution over Ω, and let Πi be a

partition of of Ω. The (standard) revision of µ at ω according
to Πi is the probability distribution µ̂(ω) such that

µ̂(ω)(ω′) =

{
µ(ω′)

µ(Πi(ω))
if ω′ ∈ Πi(ω)

0 otherwise
(1)

if µ(Πi(ω)) > 0; otherwise it is undefined.
We may interpret this as follows: ex ante the player has

a prior probability distribution of full support. When up-
dating following a signal, the player excludes states outside
bi(ω), i.e. gives them zero probability. Since the player mis-
takes the reading of the signal, it is possible that he or she
ends up giving the true state ω zero probability.

Let f be a random variable over Ω, µ be a probability
distribution over Ω, and Πi a partition of Ω. Then the con-
ditional expected value of f at ω is

Eµi (f | Πi(ω)) :=
1

µ(Πi(ω))

∑
ω′∈Πi(ω)

f(ω′)µ(ω)(ω′), (2)

if µ(Πi(ω)) 6= 0 (otherwise it is not defined).
Let (ti)i∈I be a probabilistic belief structure over Ω, with

(Πi)i∈I the corresponding partition. A (standard) prior for
ti is a probability distribution µ ∈ ∆(Ω), such that µ̂(ω) =
ti(ω) at each ω, where µ̂(ω) is the standard revision of µ at
ω according to Πi as defined in Equation (1). A (standard)
common prior for (ti)i∈I is a probability distribution µ ∈
∆(Ω) that is a prior for each ti.

Given a probabilistic belief structure (ti)i∈I with corre-
sponding partition (Pi)i∈I , player i’s posterior expected value
of f at ω is

Etii (f | Πi(ω)) :=
∑

ω′∈Πi(ω)

ti(ω
′)f(ω′). (3)

If there is a common prior µ, then for any random vari-
able f the posterior expected value of each player equals the
conditional expected value of f relative to µ and Πi, i.e.,
Etii (f | Πi(ω)) = Eµi (f | Πi(ω)).

3.2 Delusional belief revision
Now replace Πi by bi in Equations (1) and (3).
Let µ be a probability distribution over Ω, and let bi be a

belief structure over Ω with corresponding partition Πi. We
introduce here the delusional revision of µ at ω according to
bi, defining it as the probability distribution µ̂(ω) such that

µ̂(ω)(ω′) =

{
µ(ω′)
µ(bi(ω))

if ω′ ∈ bi(ω)

0 otherwise
(4)

if µ(bi(ω)) > 0; otherwise it is undefined.
Let f be a random variable over Ω, let µ be a probability

distribution over Ω, and let bi be a belief structure over Ω
with corresponding partition Πi. Then the delusional con-
ditional expected value of f at ω according to bi is

Eµi (f | bi(ω)) :=
1

µ(bi(ω))

∑
ω′∈bi(ω)

f(ω′)µ(ω)(ω′), (5)

if µ(Πi(ω)) 6= 0 (otherwise it is not defined).
Let (ti)i∈I be a probabilistic belief structure over Ω, with

(Πi)i∈I the corresponding partition. Let bi be the belief

structure induced by ti. A delusional prior for ti is a proba-
bility distribution µ ∈ ∆(Ω), such that µ̂(ω) = ti(ω) at each
ω, where µ̂(ω) is the delusional revision of µ at ω according
to bi as defined in Equation (4). A common delusional prior
for (ti)i∈I is a probability distribution µ ∈ ∆(Ω) that is a
prior for each ti.

Let φi be a standard prior for ti, and suppose that for
a state ω, ti(ω)(ω) = 0, and therefore that ω ∈ Πi(ω) but
ω /∈ bi(ω). Then by Equation (1) it must be the case that
φi(ω) = 0. The same reasoning does not hold for a delusional
prior; a standard prior is a delusional prior, but the converse
is not necessarily true.

Example 1. Consider a one-player probabilistic belief struc-
ture over a state space Ω = {ω1, ω2, ω3} defined by

t(ωk)(ω1) = 0; t(ωk)(ω2) =
1

2
; t(ωk)(ω3) =

1

2

for k ∈ {1, 2, 3}:

t =

0︷︸︸︷
ω1

1
2︷︸︸︷
ω2

1
2︷︸︸︷
ω3 .

This induces a belief structure

b(ω1) = b(ω2) = b(ω3) = {ω2, ω3},

with ω1 a deluded state, visualised as

ω1

�� ��ω2 ω3

The probability structure has only one (standard) prior,
µ = (0, 1/2, 1/2), but it has an infinite number of delusional
priors. The set of delusional priors includes, for example,
(0, 1/2, 1/2) and (1/3, 1/3, 1/3). �

3.3 Interpersonal Belief Credibility
S5 knowledge structures, by dint of satisfying the truth

axiom, satisfy the property that
⋂
i∈I bi(ω) 6= ∅ for all states

ω ∈ Ω.
In KD45 belief structures there may be states at which⋂
i∈I bi(ω) = ∅. When ⋂

i∈I

bi(ω) 6= ∅

for all states ω we will say that the belief structure satisfies
interpersonal belief credibility.

4. COMMON BELIEF
Denote b(ω) =

⋃
i∈I bi(ω) and let bm be the composition

of the function k repeated m times. Furthermore, define for
each ω the common belief set bQ(ω) of ω in Ω by

bQ(ω) :=
⋃
m≥1

bm(ω) (6)

S5 knowledge structures are naturally partitioned into
common knowledge components. Let {Ω, (ki)i∈I)} be a knowl-
edge structure. The meet is the finest common coarsening
of the players’ partitions. Each element of the meet of Π
is called a common knowledge component of Π. Denote by
C(ω) the common knowledge component of a state ω in a
knowledge structure.
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Let T ⊆ Ω be a common knowledge component. T can
be characterised in several ways. One way is by knowledge
chains. Defining k : Ω → 2Ω by k(ω) :=

⋃
i∈I Πi(ω) and

for m ≥ 0 letting km be the composition of the function k
repeated m times, it is well known that T =

⋃
m≥1 k

m(ω)
for any ω ∈ T .

In addition, in S5 knowledge structures, a common knowl-
edge component at ω can be characterised by the fact that

C(ω) =
⋃
ω∈T

Πi(ω).

for all players i ∈ I
The corresponding statement in KD45 does not hold, i.e.,

it is not always the case that bQ(ω) =
⋃
ω′∈Ω0

bi(ω
′) for some

ω0 ⊆ Ω. When it does we will want to take note of this.

Definition 2. There is strong common belief in truth at a
state ω if there exists Ω0 ⊆ Ω such that bQ(ω) =

⋃
ω′∈Ω0

bi(ω
′)

for all i ∈ I. �

Proposition 1. There is strong common belief in truth
at every state iff the belief structure is non-singular.

5. AGREEMENT IN BELIEF STRUCTURES

5.1 Standard No Betting

Definition 3. An n-tuple of random variables {f1, . . . , fn}
is a bet if

∑n
i=1 fi = 0. �

Definition 4. Let (ti)i∈I be a probabilistic belief struc-
ture. Then a bet is an agreeable bet at ω (relative to (ti))
if Etii (f | Πi(ω)) > 0 for all i ∈ I. A bet f is a common
knowledge agreeable bet at ω if it is common knowledge at ω
that f is an agreeable bet. �

The main characterisation of the existence of common pri-
ors in S5 knowledge models in the literature is what is some-
times known as the No Betting Theorem: a finite type space
has a common prior if and only if there does not exist a com-
mon knowledge agreeable bet at any ω. In the special case of
a two-player probabilistic belief structure where the random
variable is the characteristic function

1H(ω) =

{
1 if ω ∈ H
0 if ω /∈ H

where H is an event, this characterisation implies the semi-
nal Aumann Agreement Theorem ([Aumann (1976)]), which
states that if it is common knowledge at a state of the world
that player 1 ascribes probability η1 to event H and player
2 ascribes probability η2 to the same event, then η1 = η2.

5.2 KD45 No Betting

Definition 5. Let (ti)i∈I be a probabilistic belief structure
and (bi)i∈I a belief structure induced by (ti)i∈I . A bet f is
a common belief agreeable bet at ω if it is common belief at
ω that f is an agreeable bet. �

With these definitions, we can now ask whether an ana-
logue to the No Betting Theorem of S5 models holds in the
KD45 setting. Given a probabilistic belief structure (ti)i∈I ,
does the existence of a common delusional prior imply that
there is no common belief agreeable bet?

The answer to this question is no, as the following exam-
ple4 shows.

Example 2. Let Ω = {ω1, ω2, ω3}. Consider the two-
player probabilistic belief structure (t1, t2) defined by

t1(ωk)(ω1) =
1

3
; t1(ωk)(ω2) =

1

3
; t1(ωk)(ω3) =

1

3
,

and

t2(ωk)(ω1) = 0; t2(ωk)(ω2) =
1

2
; t2(ωk)(ω3) =

1

2

for k ∈ {1, 2, 3}:

t1 =

1
3︷︸︸︷
ω1

1
3︷︸︸︷
ω2

1
3︷︸︸︷
ω3 ,

t2 =

0︷︸︸︷
ω1

1
2︷︸︸︷
ω2

1
2︷︸︸︷
ω3 .

This induces the belief structure (b1, b2)

b1(ω1) = b1(ω2) = b1(ω3) = {ω1, ω2, ω3},

and

b2(ω1) = b2(ω2) = b2(ω3) = {ω2, ω3},

visualised as �� ��ω1 ω2 ω3

ω1

�� ��ω2 ω3

For this belief structure, µ = (1/3, 1/3, 1/3) is a common
delusional prior. Let H = {ω1, ω2}. Then it is common
belief at every state ω that Et11 (1H | b1(ω)) = 2/3, while
Et22 (1H | b2(ω)) = 1/2. �

To recapitulate something resembling the No Betting The-
orem in belief structures, we add a new definition.

Definition 6. There is weak common belief in truth5 at a
state ω if there exists a state ω′ ∈ bQ(ω) at which there is
strong common belief in truth. �

An equivalent way of stating the content of Definition 6
is as follows: there is weak common belief in truth at ω iff
there exists a state ω′ ∈ bQ(ω) such that⋃

ω′′∈bQ(ω′)

bi(ω
′′) =

⋃
ω′′∈bQ(ω′)

bj(ω
′′)

for all i, j ∈ I. This can be read intuitively as the players
‘eventually’ getting to strong common belief in truth as they
follow chains in the common belief set.

A belief structure version of the No Betting Theorem can
be attained if we assume weak common belief in truth.

4 This example is inspired by an example in [Collins (1997)].
5 Although weak common belief in truth may seem abstract
at first reading, it arises naturally in the study of interactive
belief models. Concepts very similar to that of weak com-
mon belief in truth are introduced and used in [Battigalli
and Bonanno (1999)] and [Tarbush (2011)].
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Theorem 1. Let (ti)i∈I be a probabilistic belief structure
over Ω and let ω be a state at which there is weak common
belief in truth. Then there is a common delusional prior if
and only if there is no common belief agreeable bet at ω.

Since strong common belief in truth implies weak com-
mon belief in truth, and in a non-singular probabilistic be-
lief structure there is strong common belief in truth at ev-
ery state, Theorem 2 (which is close in content to a result
appearing in [Bonanno and Nehring (1999)]) follows from
Theorem 1 as a corollary.

Theorem 2. Let (ti)i∈I be a non-singular probabilistic
belief structure over Ω. Then there is a common delusional
prior if and only if there is no common belief agreeable bet
at any state ω ∈ Ω.

Example 3. The state space consists of {0, 1, 2, 3, 4, 5, 6, 7}.
There are two players, i and j. The belief structure

((Πi, bi), (Πj , bj))

is as follows:
Player i’s beliefs are�� ��1

�� ��2 3 4
�� ��5

�� ��6 7

Player j’s beliefs are�� ��1 2 3 4
�� ��5 6 7

The states 3 and 4 are delusional states for both player i
and player j, hence they perceive the same world. Note also
that bi(3) = {5} while bj(3) = {1, 2}, and this structure
therefore does not satisfy interpersonal belief credibility. In
fact, the structure can naturally be divided into two ‘certainty
components’, {1, 2} and {5, 6, 7}; at states 3 and 4, player i
is certain that the true component is {5, 6, 7} while player j
is certain that the true component is {1, 2}.

The above belief structure can be induced by the following
non-singular probabilistic belief structure (ti, tj):

ti =

1︷︸︸︷
1

1︷︸︸︷
2

0︷︸︸︷
3

0︷︸︸︷
4

1︷︸︸︷
5

1/2︷︸︸︷
6

1/2︷︸︸︷
7

tj =

1/2︷︸︸︷
1

1/2︷︸︸︷
2

0︷︸︸︷
3

0︷︸︸︷
4

1/3︷︸︸︷
5

1/3︷︸︸︷
6

1/3︷︸︸︷
7

This probabilistic belief structure has an infinite number
of common delusional priors; for example,

µ = (
1

7
,

1

7
,

1

14
,

1

14
,

1

7
,

1

7
,

1

7
).

There can therefore be no common belief disagreement.
We close by noting the following. Suppose that are work-

ing in the standard S5 knowledge model (hence that the play-
ers make ‘no mistakes’, that is, they revise beliefs perfectly
correctly), and that the players start out with two separate
priors, given by

µi = (
1

7
,

1

7
,

1

28
,

3

28
,

1

7
,

1

7
,

1

7
)

and

µj = (
1

7
,

1

7
,

1

14
,

1

14
,

1

7
,

1

7
,

1

7
).

Then the players will revise their beliefs into the following
posteriors

t̂i =

1︷︸︸︷
1

1︷︸︸︷
2

1/8︷︸︸︷
3

3/8︷︸︸︷
4

1/2︷︸︸︷
5

1/2︷︸︸︷
6

1/2︷︸︸︷
7

t̂j =

1/3︷︸︸︷
1

1/3︷︸︸︷
2

1/6︷︸︸︷
3

1/6︷︸︸︷
4

1/3︷︸︸︷
5

1/3︷︸︸︷
6

1/3︷︸︸︷
7 .

Defining a bet (fi,−fi) by

fi = (1/4, 1/4,−6, 3,−1/8, 1/32, 1/32),

it can be checked that this bet is common knowledge agree-
able at every state. But if the players make mistakes, using
delusional revision with both players having deluded states
at 3 and 4, then instead of t̂i and t̂j they will derive the
posteriors ti and tj, which as we have seen have a common
delusional prior precluding disagreement. �
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APPENDIX
Proof of Theorem 1. We first add a definition and a
lemma, for the sake of proving the theorem.

Definition 7. Let (ti)i∈I be a probabilistic belief structure
over Ω with corresponding partition profile Π := (Πi)i∈I ,
and let X ⊂ Ω be a subset of Ω. Define Π restricted to
X, denoted ΠX , to be the partition profile over X given by
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ΠX
i (ω) := Πi(ω)∩X for any state ω. Further, for each i ∈ I

let tXi be any type function over (X,ΠX) that satisfies the
property that for any ω ∈ Ω, ti(ω)(ΠX

i )tXi (ω) = ti(ω). �

Intuitively, ΠX
i is the partition of X derived from the par-

tition Πi of Ω by ‘ignoring all states outside of X’. It then
follows intuitively that tXi (ω), for each state ω ∈ X, is ti(ω)
scaled relative to the other states in ΠX

i (ω) in such a way
that

∑
ω∈X t

X
i (ω) = 1.

For a random variable f , denote

EXi (f | ΠX
i (ω)) :=

∑
ω′∈ΠX

i (ω)

tXi (ω′)f(ω′).

A bet {f1, . . . , fn} is an agreeable bet relative to (tXi )i at
ω ∈ X if EXi (f | ω) > 0 for all i ∈ I. We will say that it
is simply an agreeable relative to (tXi )i if it is an agreeable
bet relative to (tXi )i at all states ω ∈ X.

Lemma 1. Let (ti)i∈I be a probabilistic belief structure
over Ω, let ω ∈ Ω and let X be a non-empty subset of bQ(ω),
the common belief set of ω. Suppose that there exists an
agreeable bet relative to (tXi )i. Then there exists an agree-
able bet relative to bQ(ω).

Proof. Let f be an agreeable bet relative to (tXi )i. If
X = bQ(ω), there is nothing to prove.

Otherwise, we distinguish a few cases:

1. Suppose that there exists a state ω′′ ∈ X such that
bi(ω

′′) \ X 6= ∅ for some i ∈ I. Let ω′ ∈ bi(ω
′′) \ X

(hence ti(ω
′) > 0), and let ε := EXi (fi | ΠX

i (ω′)) =
EXi (fi | ΠX

i (ω′′)). By assumption, ε > 0 (since f is an
agreeable bet relative to (tXi )i). Set Y := X ∪ ω′.
Next, let f i(ω

′) be a negative real number satisfying

0 > f i(ω
′) >

−(1− tYi (ω′))

tYi (ω′)
ε ,

and for j 6= i, set f j(ω
′) := −f i(ω′)/(n−1) > 0, where

n = |I|.
Clearly, by construction,

∑
j∈I f j(ω

′) = 0. Complete

the definition of f by letting f(ω′′′) := f(ω′′′) for all
ω′′′ ∈ X. It is straightforward to check that f is an
agreeable bet relative to (tYi )i∈I .

2. Suppose that there is a state ω′ ∈ bQ(ω) \X such that
bi(ω

′) ∩X 6= ∅. Set Y := X ∪ ω′.
We distinguish two sub-cases:

(a) If ti(ω
′) = 0, then for all j ∈ I \ i let f j(ω

′) be

any arbitrary positive number, and set f i(ω
′) =

−
∑
j∈I\i f j(ω

′). Then f is an agreeable bet rela-

tive to (tYi )i∈I .

(b) If ti(ω
′) > 0, let ε := EXi (fi | ΠX

i (ω′)). By as-
sumption, ε > 0 (since bi(ω

′) ∩X 6= ∅ and f is an
agreeable bet relative to (tXi )i). From this point,
define f j for all j ∈ I exactly as in Case 1 above,

yielding an agreeable bet relative to (tYi )i∈I .

Now simply repeat this procedure as often as necessary
to extend the agreeable bet to every state in the finite set
bQ(ω).
Completion of the proof of Theorem 1. Let (ti)i∈I be
a probabilistic belief structure over Ω, and let ω be a state
at which there is weak common belief in truth, and hence

there is ω′ ∈ bQ(ω) at which there is strong common belief
in truth, i.e., ⋃

ω′′∈bQ(ω′)

bi(ω
′′) =

⋃
ω′′∈bQ(ω′)

bj(ω
′′)

for all i, j ∈ I. If we restrict attention solely to the states in
bQ(ω′), we can consider the operators bi for all i to constitute
an S5 knowledge structure over bQ(ω).

In one direction, suppose that there is a common delu-
sional prior µ. Then µ restricted to bQ(ω′) is a common
(standard) prior over bQ(ω′) regarded as a knowledge struc-
ture, hence there can be no common knowledge agreeable bet
at any state in bQ(ω′). If there were a common belief agree-
able bet at ω, then that bet would be a common knowledge
agreeable bet over bQ(ω′) regarded as a knowledge structure,
which we just showed cannot happen. The contradiction es-
tablishes that there is no common belief agreeable bet at
ω.

In the other direction, suppose that there is no common
delusional prior. Then there can be no common (standard)
prior over bQ(ω′) regarded as a knowledge structure, because
if there were such a prior µ, it could be extended to a com-
mon delusional prior µ̂ over all of bQ(ω) simply by setting

µ̂(ω′′) =

{
µ(ω′′) if ω′′ ∈ bQ(ω′)
0 otherwise.

We can then apply the standard No Betting Theorem for
knowledge structures to conclude that there is a common
knowledge agreeable bet {f1, . . . , fn} over bQ(ω′) as a knowl-
edge structure, which is a common belief agreeable bet over
bQ(ω′) as a belief structure. Applying Lemma 1, this can be
extended to a common belief agreeable bet over all of bQ(ω),
which is what was needed to be shown.
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ABSTRACT
Most work on manipulation assumes that all preferences are
known to the manipulators. However, in many settings elec-
tions are open and sequential, and manipulators may know
the already cast votes but may not know the future votes.
We introduce a framework, in which manipulators can see
the past votes but not the future ones, to model online coali-
tional manipulation of sequential elections, and we show that
in this setting manipulation can be extremely complex even
for election systems with simple winner problems. Yet we
also show that for some of the most important election sys-
tems such manipulation is simple in certain settings. This
suggests that when using sequential voting, one should pay
great attention to the details of the setting in choosing one’s
voting rule.

Among the highlights of our classifications are: We show
that, depending on the size of the manipulative coalition, the
online manipulation problem can be complete for each level
of the polynomial hierarchy or even for PSPACE. We obtain
the most dramatic contrast to date between the nonunique-
winner and unique-winner models: Online weighted ma-
nipulation for plurality is in P in the nonunique-winner
model, yet is coNP-hard (constructive case) and NP-hard
(destructive case) in the unique-winner model. And we ob-

tain what to the best of our knowledge are the first PNP[1]-
completeness and PNP-completeness results in the field of
computational social choice, in particular proving such com-
pleteness for, respectively, the complexity of 3-candidate
and 4-candidate (and unlimited-candidate) online weighted
coalition manipulation of veto elections.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent systems; F.1.2 [Computation by Ab-

stract Devices]: Modes of Computation; F.2.2 [Analysis

of Algorithms and Problem Complexity]: Nonnumer-
ical Algorithms and Problems

General Terms
Theory

Keywords
Computational complexity, computational social choice,
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elections, manipulation, online algorithms, preferences, se-
quential voting

1. INTRODUCTION
Voting is a widely used method for preference aggrega-

tion and decision-making. In particular, strategic voting (or
manipulation) has been studied intensely in social choice
theory (starting with the celebrated work of Gibbard [19]
and Satterthwaite [29]) and, in the rapidly emerging area
of computational social choice, also with respect to its algo-
rithmic properties and computational complexity (starting
with the seminal work of Bartholdi, Tovey, and Trick [3];
see the surveys [15, 16]). This computational aspect is par-
ticularly important in light of the many applications of vot-
ing in computer science, ranging from meta-search heuristics
for the internet [14], to recommender systems [18] and mul-
tiagent systems in artificial intelligence (see the survey by
Conitzer [11]).

Most of the previous work on manipulation, however, is
concerned with voting where the manipulators know the
nonmanipulative votes. Far less attention has been paid
(see the related work below) to manipulation in the midst
of elections that are modeled as dynamic processes.

We introduce a novel framework for online manipulation,
where voters vote in sequence and the current manipulator,
who knows the previous votes and which voters are still to
come but does not know their votes, must decide—right at
that moment—what the “best” vote to cast is. So, while
other approaches to sequential voting are stochastic, game-
theoretic (yet different from our approach, see Footnote 1),
or axiomatic in nature (again, see the related work), our
approach to manipulation of sequential voting is shaped by
the area of “online algorithms” [8], in the technical sense of
a setting in which one (for us, each manipulative voter) is
being asked to make a manipulation decision just on the ba-
sis of the information one has in one’s hands at the moment
even though additional information/system evolution may
well be happening down the line. In this area, there are dif-
ferent frameworks for evaluation. But the most attractive
one, which pervades the area as a general theme, is the idea
that one may want to “maxi-min” things—one may want to
take the action that maximizes the goodness of the set of out-
comes that one can expect regardless of what happens down
the line from one time-wise. For example, if the current ma-
nipulator’s preferences are Alice > Ted > Carol > Bob and
if she can cast a (perhaps insincere) vote that ensures that
Alice or Ted will be a winner no matter what later voters
do, and there is no vote she can cast that ensures that Alice
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will always be a winner, this maxi-min approach would say
that that vote is a “best” vote to cast.

It will perhaps be a bit surprising to those familiar with
online algorithms and competitive analysis that in our model
of online manipulation we will not use a (competitive) ratio.
The reason is that voting commonly uses an ordinal pref-
erence model, in which preferences are total orders of the
candidates. It would be a severely improper step to jump
from that to assumptions about intensity of preferences and
utility, e.g., to assuming that everyone likes her nth-to-least
favorite candidate exactly n times more than she likes her
least favorite candidate.

Related Work.
Conitzer and Xia [37] (see also the related paper by

Desmedt and Elkind [13]) define and study the Stackel-
berg voting game (also quite naturally called, in an earlier
paper that mostly looked at two candidates, the roll-call
voting game [30]). This basically is an election in which
the voters vote in order, and the preferences are common
knowledge—everyone knows everyone else’s preferences, ev-
eryone knows that everyone knows everyone else’s prefer-
ences, and so on out to infinity. Their analysis of this game
is game-theoretically shaped; they compute a subgame per-
fect Nash equilibrium from the back end forward. Under
their work’s setting and assumptions, for bounded numbers
of manipulators manipulation is in P, but we will show that
in our model even with bounded numbers of manipulators
manipulation sometimes (unless P = NP) falls beyond P.1

The interesting“dynamic voting”work of Tennenholtz [33]
investigates sequential voting, but focuses on axioms and
voting rules rather than on coalitions and manipulation.
Much heavily Markovian work studies sequential decision-
making and/or dynamically varying preferences; our work
in contrast is nonprobabilistic and focused on the complex-
ity of coalitional manipulation. Also somewhat related to,
but quite different from, our work is the work on possible
and necessary winners. The seminal paper on that is due to
Konczak and Lang [25], and more recent work includes [36,

1Our work too is game-theoretically connected. Although in
our model we are asking whether we can reach our goal no
matter what the future nonmanipulators do, if one thinks
about what the actual effect of this is, one can see that
our setting is in effect well-captured by what is known as
a 2-player combinatorial game (combinatorial games are a
particular type of complete-information sequential game).
In our setting, the goal of one player in this game will be to
ensure that the winner set (which of course heavily depends
on what moves have occurred already and on the election
system) will have nonempty intersection with a certain sub-
set of the candidates, and the goal of the other player will
be to ensure that that does not happen. Of course, the for-
mer player is in effect the currently-under-consideration and
still-to-vote members of the manipulative coalition, and the
latter player is capturing the same except regarding non-
manipulators. So, the key differences between [37] and our
work regard goals and coalitionality. For them, each player
(and they may have many players) is in effect a completely
separate agent, with a preference order, and is trying to see
if a change as an individual will make a more preferred can-
didate win. For us, the manipulative voters function as a
coalition, and one that has an all-or-nothing goal, and there
are no gradations within that goal in terms of our analy-
sis (despite the fact that we use a preference order when
speaking of the coalition), and we are in effect a two-player
combinatorial game.

7, 1, 5, 6, 10, 4, 27]; the biggest difference is that those are,
loosely, one-quantifier settings, but the more dynamic set-
ting of online manipulation involves numbers of quantifiers
that can grow with the input size. Another related research
line studies multi-issue elections [38, 39, 40, 41]; although
there the separate issues may run in sequence, each issue
typically is voted on simultaneously and with preferences
being common knowledge.

2. PRELIMINARIES

Elections.
A (standard, i.e., simultaneous) election (C,V ) is speci-

fied by a set C of candidates and a list V , where we assume
that each element in V is a pair (v, p) such that v is a voter
name and p is v’s vote. How the votes in V are represented
depends on the election system used—we assume, as is re-
quired by most systems, votes to be total preference orders
over C. For example, if C = {a, b, c}, a vote of the form
c > a > b means that this voter (strictly) prefers c to a and
a to b.

We introduce election snapshots to capture sequential
election scenarios as follows. Let C be a set of candidates
and let u be (the name of) a voter. An election snapshot for
C and u is specified by a triple V = (V<u, u, Vu<) consist-
ing of all voters in the order they vote, along with, for each
voter before u (i.e., those in V<u), the vote she cast, and
for each voter after u (i.e., those in Vu<), a bit specifying if
she is part of the manipulative coalition (to which u always
belongs). That is, V<u = ((v1, p1), (v2, p2), . . . , (vi−1, pi−1)),
where the voters named v1, v2, . . . , vi−1 (including perhaps
manipulators and nonmanipulators) have already cast their
votes (preference order pj being cast by vj), and Vu< =
((vi+1, xi+1), (vi+2, xi+2), . . . , (vn, xn)) lists the names of the
voters still to cast their votes, in that order, and where
xj = 1 if vj belongs to the manipulative coalition and xj = 0
otherwise.

Scoring Rules.
A scoring rule for m candidates is given by a scoring vec-

tor α = (α1, α2, . . . , αm) of nonnegative integers such that
α1 ≥ α2 ≥ · · · ≥ αm. For an election (C, V ), each candidate
c ∈ C scores αi points for each vote that ranks c in the ith
position. Let score(c) be the total score of c ∈ C. All candi-
dates scoring the most points are winners of (C, V ). Some of
the most popular voting systems are k-approval (especially
plurality, aka 1-approval) and k-veto (especially veto, aka 1-
veto). Their m-candidate, m ≥ k, versions are defined by
the scoring vectors (1, . . . , 1

| {z }

k

, 0, . . . , 0
| {z }

m−k

) and (1, . . . , 1
| {z }

m−k

, 0, . . . , 0
| {z }

k

).

When m is not fixed, we omit the phrase “m-candidate.”

Manipulation.
The (standard) weighted coalitional manipulation prob-

lem [12], E-Weighted-Coalitional-Manipulation (abbrevi-
ated by E-WCM), for any election system E is defined as
follows: Given a candidate set C, a list S of nonmanipula-
tive voters each having a nonnegative integer weight, a list T
of the nonnegative integer weights of the manipulative voters
(whose preferences over C are unspecified), with S ∩ T = ∅,
and a distinguished candidate c ∈ C, can the manipulative
votes T be set such that c is a (or the) E winner of (C,S∪T )?

Asking whether c can be made “a winner” is called the
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nonunique-winner model and is the model of all notions in
this paper unless mentioned otherwise. If one asks whether
c can be made a “one and only winner,” that is called the
unique-winner model. We also use the unweighted variant,
where each vote has unit weight, and write E-UCM as a
shorthand. Note that E-UCM with a single manipulator
(i.e., ‖T‖ = 1 in the problem instance) is the manipulation
problem originally studied in [3, 2]. Conitzer, Sandholm,
and Lang [12] also introduced the destructive variants of
these manipulation problems, where the goal is not to make
c win but to ensure that c is not a winner, and we denote
the corresponding problems by E-DWCM and E-DUCM.
Finally, we write E-WC6=∅M, E-UC6=∅M, E-DWC6=∅M, and
E-DUC6=∅M to indicate that the problem instances are re-
quired to have a nonempty coalition of manipulators.

Complexity-Theoretic Background.
We assume the reader is familiar with basic complexity-

theoretic notions such as the complexity classes P and
NP, the class FP of polynomial-time computable functions,
polynomial-time many-one reducibility (≤p

m), and hardness
and completeness with respect to ≤p

m for a complexity class.
Meyer and Stockmeyer [28] and Stockmeyer [31] intro-

duced and studied the polynomial hierarchy, PH =
S

k≥0 Σp

k,

whose levels are inductively defined by Σp
0 = P and Σp

k+1 =

NPΣ
p

k , and their co-classes, Πp

k = coΣp

k for k ≥ 0. They also
characterized these levels by polynomially length-bounded
alternating existential and universal quantifiers. PNP is the
class of problems solvable in deterministic polynomial time
with access to an NP oracle. PNP[1] is the restriction of PNP

where only one oracle query is allowed. P ⊆ NP ∩ coNP ⊆
NP ∪ coNP ⊆ PNP[1] ⊆ PNP ⊆ Σp

2 ∩ Πp
2 ⊆ Σp

2 ∪ Πp
2 ⊆ PH ⊆

PSPACE, where PSPACE is the class of problems solvable
in polynomial space. The quantified boolean formula prob-
lem, QBF, is a standard PSPACE-complete problem. QBFk

(Q̃BFk) denotes the restriction of QBF with at most k quan-
tifiers that start with ∃ (∀) and then alternate between ∃
and ∀, and we assume that each ∃ and ∀ quantifies over a set
of boolean variables. For each k ≥ 1, QBFk is Σp

k-complete

and Q̃BFk is Πp

k-complete [32, 35].

3. OUR MODEL OF ONLINE MANIPULA-
TION

The core of our model of online manipulation in sequential
voting is what we call the magnifying-glass moment, namely,
the moment at which a manipulator u is the one who is go-
ing to vote, is aware of what has happened so far in the
election (and which voters are still to come, but in general
not knowing what they want, except in the case of voters,
if any, who are coalitionally linked to u). In this moment, u
seeks to “figure out” what the “best” vote to cast is. We will
call the information available in such a moment an online
manipulation setting (OMS, for short) and define it formally
as a tuple (C,u, V, σ, d), where C is a set of candidates; u
is a distinguished voter; V = (V<u, u, Vu<) is an election
snapshot for C and u; σ is the preference order of the ma-
nipulative coalition to which u belongs; and d ∈ C is a
distinguished candidate. Given an election system E , define
the problem online-E-Unweighted-Coalitional-Manipulation
(abbreviated by online-E-UCM), as follows: Given an OMS
(C, u, V, σ, d) as described above, does there exist some vote

that u can cast (assuming support from the manipulators
coming after u) such that no matter what votes are cast by
the nonmanipulators coming after u, there exists some c ∈ C
such that c ≥σ d and c is an E winner of the election? By
“support from the manipulators coming after u” we mean
that u’s coalition partners coming after u, when they get to
vote, will use their then-in-hand knowledge of all votes up to
then to help u reach her goal: By a joint effort u’s coalition
can ensure that the E winner set will always include a candi-
date liked by the coalition as much as or more than d, even
when the nonmanipulators take their strongest action so as
to prevent this. Note that this candidate, c in the problem
description, may be different based on the nonmanipulators’
actions. (Nonsequential manipulation problems usually fo-
cus on whether a single candidate can be made to win, but
in our setting, this “that person or better” focus is more
natural.) For the case of weighted manipulation, each voter
also comes with a nonnegative integer weight. We denote
this problem by online-E-WCM.

We write online-E-UCM[k] in the unweighted case and
online-E-WCM[k] in the weighted case to denote the prob-
lem when the number of manipulators from u onward is
restricted to be at most k.

Denote the corresponding destructive problems by
online-E-DUCM, online-E-DWCM, online-E-DUCM[k], and
online-E-DWCM[k]. In online-E-DUCM we ask whether the
given current manipulator u (assuming support from the
manipulators after her) can cast a vote such that no mat-
ter what votes are cast by the nonmanipulators after u, no
c ∈ C with d ≥σ c is an E winner of the election, i.e., u’s
coalition can ensure that the E winner set never includes d or
any even more hated candidate. The other three problems
are defined analogously.

Note that online-E-UCM generalizes the original un-
weighted manipulation problem with a single manipulator
as introduced by Bartholdi, Tovey, and Trick [3]. Indeed,
their manipulation problem in effect is the special case of
online-E-UCM when restricted to instances where there is
just one manipulator, she is the last voter to cast a vote,
and d is the coalition’s most preferred candidate. Simi-
larly, online-E-WCM generalizes the (standard) coalitional
weighted manipulation problem (for nonempty coalitions of
manipulators). Indeed, that traditional manipulation prob-
lem is the special case of online-E-WCM, restricted to in-
stances where only manipulators come after u and d is the
coalition’s most preferred candidate. If we take an anal-
ogous approach except with d restricted now to being the
most hated candidate of the coalition, we generalize the cor-
responding notions for the destructive cases. We summarize
these observations as follows.

Proposition 1. For each election system E , it holds
that (1) E-UC6=∅M ≤p

m online-E-UCM, (2) E-WC6=∅M ≤p
m

online-E-WCM, (3) E-DUC6=∅M ≤p
m online-E-DUCM, and

(4) E-DWC6=∅M ≤p
m online-E-DWCM.

Corollary 2 below follows immediately.

Corollary 2. (1) For each election system E such that
the (unweighted) winner problem is solvable in polynomial
time, it holds that E-UCM ≤p

m online-E-UCM. (2) For each
election system E such that the weighted winner problem
is solvable in polynomial time, it holds that E-WCM ≤p

m

online-E-WCM. (3) For each election system E such that
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the winner problem is solvable in polynomial time, it holds
that E-DUCM ≤p

m online-E-DUCM. (4) For each elec-
tion system E such that the weighted winner problem is
solvable in polynomial time, it holds that E-DWCM ≤p

m

online-E-DWCM.

We said above that, by default, we will use the nonunique-
winner model and all the above problems are defined in
this model. However, we will also have some results in the
unique-winner model, which will, here, sharply contrast with
the corresponding results in the nonunique-winner model.
To indicate that a problem, such as online-E-UCM, is in the
unique-winner model, we write online-E-UCMUW and ask
whether the current manipulator u (assuming support from
the manipulators coming after her) can ensure that there
exists some c ∈ C such that c ≥σ d and c is the unique E
winner of the election.

4. GENERAL RESULTS

Theorem 3. (1) For each election system E whose
weighted winner problem can be solved in polynomial time,2

the problem online-E-WCM is in PSPACE. (2) For each
election system E whose winner problem can be solved in
polynomial time, the problem online-E-UCM is in PSPACE.
(3) There exists an election system E with a polynomial-
time winner problem such that the problem online-E-UCM
is PSPACE-complete. (4) There exists an election system E
with a polynomial-time weighted winner problem such that
the problem online-E-WCM is PSPACE-complete.

The proof of Theorem 3 is deferred to the appendix. The
following theorem shows that for bounded numbers of ma-
nipulators the complexity crawls up the polynomial hierar-
chy. The theorem’s proof is based on the proof given above,
except we need to use the alternating quantifier characteriza-
tion due to Meyer and Stockmeyer [28] and Stockmeyer [31]
for the upper bound and to reduce from the Σp

2k-complete
problem QBF2k rather than from QBF for the lower bound.

Theorem 4. Fix any k ≥ 1. (1) For each election system
E whose weighted winner problem can be solved in polyno-
mial time, the problem online-E-WCM[k] is in Σp

2k. (2) For
each election system E whose winner problem can be solved
in polynomial time, the problem online-E-UCM[k] is in Σp

2k.
(3) There exists an election system E with a polynomial-time
winner problem such that the problem online-E-UCM[k] is
Σp

2k-complete. (4) There exists an election system E with a
polynomial-time weighted winner problem such that the prob-
lem online-E-WCM[k] is Σp

2k-complete.

Note that the (constructive) online manipulation prob-
lems considered in Theorems 3 and 4 are about ensuring
that the winner set always contains some candidate in the
σ segment stretching from d up to the top-choice. Now
consider “pinpoint” variants of these problems, where we
ask whether the distinguished candidate d herself can be
guaranteed to be a winner (for nonsequential manipula-
tion, that version indeed is the one commonly studied).

2We mention in passing here, and henceforward we will not
explicitly mention it in the analogous cases, that the claim
clearly remains true even when“polynomial time”is replaced
by the larger class “polynomial space.”

Denote the pinpoint variant of, e.g., online-E-UCM[k] by
pinpoint-online-E-UCM[k]. Since our hardness proofs in
Theorems 3 and 4 make all or no one a winner (and as
the upper bounds in these theorems also can be seen to hold
for the pinpoint variants), they establish the correspond-
ing completeness results also for the pinpoint cases. We
thus have completeness results for PSPACE and Σp

2k for
each k ≥ 1. What about the classes Σp

2k−1 and Πp

k, for
each k ≥ 1? We can get completeness results for all these
classes by defining appropriate variants of online manipula-
tion problems. Let OMP be any of the online manipulation
problems considered earlier, including the pinpoint variants
mentioned above. Define freeform-OMP to be just as OMP,
except we no longer require the distinguished voter u to be
part of the manipulative coalition—u can be in or can be
out, and the input must specify, for u and all voters af-
ter u, which ones are the members of the coalition. The
question of freeform-OMP is whether it is true that for all
actions of the nonmanipulators at or after u (for specificity
as to this problem: if u is a nonmanipulator, it will in the
input come with a preference order) there will be actions
(each taken with full information on cast-before-them votes)
of the manipulative coalition members such that their goal
of making some candidate c with c ≥σ d (or exactly d, in
the pinpoint versions) a winner is achieved. Then, when-
ever Theorem 4 establishes a Σp

2k or Σp

2k-completeness re-
sult for OMP, we obtain a Πp

2k+1 or Πp

2k+1-completeness
result for freeform-OMP and for k = 0 manipulators we ob-
tain Πp

1 = coNP or coNP-completeness results. Similarly,
the PSPACE and PSPACE-completeness results for OMP
we established in Theorem 3 also can be shown true for
freeform-OMP.

On the other hand, if we define a variant of OMP by
requiring the final voter to always be a manipulator, the
PSPACE and PSPACE-completeness results for OMP from
Theorem 3 remain true for this variant; the Σp

2k and Σp

2k-
completeness results for OMP from Theorem 4 change
to Σp

2k−1 and Σp

2k−1-completeness results for this variant;
and the above Πp

2k+1 and Πp

2k+1-completeness results for
freeform-OMP change to Πp

2k and Πp

2k-completeness results
for this variant, k ≥ 1.

Finally, as an open direction (and related conjecture),
we define for each of the previously considered vari-
ants of online manipulation problems a full profile ver-
sion. For example, fullprofile-online-E-UCM[k] (for a given
election system E) is the function problem that, given
an OMS without any distinguished candidate, (C,u, V, σ),
returns a length ‖C‖ bit-vector that for each candi-
date d ∈ C says if the answer to “(C, u, V, σ, d) ∈
online-E-UCM[k]?” is “yes” (1) or “no” (0). The func-
tion problem fullprofile-pinpoint-online-E-UCM[k] is defined
analogously, except regarding pinpoint-online-E-UCM[k].

It is not hard to prove, as a corollary to Theorem 4, that:

Theorem 5. For each election system E whose winner
problem can be solved in polynomial time, (1) the problem

fullprofile-online-E-UCM[k] is in FPΣ
p

2k
[O(log n)], the class of

functions computable in polynomial time given Turing access
to a Σp

2k oracle with O(log n) queries allowed on size n in-

puts; (2) fullprofile-pinpoint-online-E-UCM[k] is in FP
Σ

p

2k
tt ,

the class of functions computable in polynomial time given
truth-table access to a Σp

2k oracle.
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We conjecture that both problems are complete for the
corresponding class under metric reductions [26], for suit-
ably defined election systems with polynomial-time winner
problems.

If the full profile version of an online manipulation prob-
lem can be computed efficiently, we clearly can also easily
solve each of the decision problems involved by looking at the
corresponding bit of the length ‖C‖ bit-vector. Conversely,
if there is an efficient algorithm for an online manipulation
decision problem, we can easily solve its full profile version
by running this algorithm for each candidate in turn. Thus,
we will state our later results only for online manipulation
decision problem.

Proposition 6. Let OMP be any of the online manipula-
tion decision problems defined above. Then fullprofile-OMP
is in FP if and only if OMP is in P.

5. RESULTS FOR SPECIFIC NATURAL
VOTING SYSTEMS

The results of the previous section show that, simply put,
even for election systems with polynomial-time winner prob-
lems, online manipulation can be tremendously difficult.
But what about natural election systems? We will now take
a closer look at important natural systems. We will show
that online manipulation can be easy for them, depending on
which particular problem is considered, and we will also see
that the constructive and destructive cases can differ sharply
from each other and that it really matters whether we are
in the nonunique-winner model or the unique-winner model.
Finally, in studying the complexity of online manipulation
of veto elections, we obtain (as Theorems 11 and 12) what to

the best of our knowledge are the first PNP[1]-completeness
and PNP-completeness results in the field of computational
social choice.

Theorem 7. (1) online-plurality-WCM (and thus also
online-plurality-UCM) is in P. (2) online-plurality-DWCM
(and thus also online-plurality-DUCM) is in P.

Theorem 7 refers to problems in the nonunique-winner
model. By contrast, we now show that online manipulation
for weighted plurality voting in the unique-winner model
is coNP-hard in the constructive case and is NP-hard in
the destructive case. This is perhaps the most dramatic,
broad contrast yet between the nonunique-winner model
and the unique-winner model, and is the first such contrast
involving plurality. The key other NP-hardness versus P
result for the nonunique-winner model versus the unique-
winner model is due to Faliszewski, Hemaspaandra, and
Schnoor [17], but holds only for (standard) weighted ma-
nipulation for Copelandα elections (0 < α < 1) with exactly
three candidates; for fewer than three both cases there are
in P and for more than three both are NP-complete. In
contrast, the P results of Theorem 7 hold for all numbers
of candidates, and the NP-hardness and coNP-hardness re-
sults of Theorem 8 hold whenever there are at least two
candidates.

Theorem 8. (1) online-plurality-DWCMUW is NP-hard,
even when restricted to only two candidates (and this
also holds when restricted to three, four, ... candidates).

(2) online-plurality-WCMUW is coNP-hard, even when re-
stricted to only two candidates (and this also holds when
restricted to three, four, ... candidates).

Proof. For the first statement, we prove NP-hardness of
online-plurality-DWCMUW by a reduction from the NP-
complete problem Partition: Given a nonempty sequence
(w1, w2, . . . , wz) of positive integers such that

Pz

i=1 wi =
2W for some positive integer W , does there exist a set
I ⊆ {1, 2, . . . , z} such that

P

i∈I wi = W ? Let m ≥ 2.
Given an instance (w1, w2, . . . , wz) of Partition, construct
an instance ({c1, . . . , cm}, u1, V, c1 > c2 > · · · > cm, c1) of
online-plurality-DWCMUW such that V contains m+ z − 2
voters v1, . . . , vm−2, u1, . . . , uz who vote in that order. For
1 ≤ i ≤ m− 2, vi votes for ci and has weight (m− 1)W − i,
and for 1 ≤ i ≤ z, ui is a manipulator of weight (m− 1)wi.
If (w1, w2, . . . , wz) is a yes-instance of Partition, the manip-
ulators can give (m−1)W points to both cm−1 and cm, and
zero points to the other candidates. So cm−1 and cm are tied
for the most points and there is no unique winner. On the
other hand, the only way to avoid having a unique winner
in our online-plurality-DWCMUW instance is if there is a tie
for the most points. The only candidates that can tie are
cm−1 and cm, since all other pairs of candidates have differ-
ent scores modulo m− 1. It is easy to see that cm−1 and cm
tie for the most points only if they both get exactly (m−1)W
points. It follows that (w1, w2, . . . , wz) is a yes-instance of
Partition.

For the second part, we adapt the above construc-
tion to yield a reduction from Partition to the com-
plement of online-plurality-WCMUW. Given an in-
stance (w1, w2, . . . , wz) of Partition, construct an in-
stance ({c1, . . . , cm}, bu, V, c1 > c2 > · · · > cm, cm) of
online-plurality-WCMUW such that V contains m + z − 1
voters v1, . . . , vm−2, bu, u1, . . . , uz who vote in that order. For
1 ≤ i ≤ m − 2, vi has the same vote and the same weight
as above, bu is a manipulator of weight 0, and for 1 ≤ i ≤ z,
ui has the same weight as above, but in contrast to the case
above, ui is now a nonmanipulator. By the same argument
as above, it follows that (w1, w2, . . . , wz) is a yes-instance
of Partition if and only if the nonmanipulators can ensure
that there is no unique winner, which in turn is true if and
only if the manipulator can not ensure that there is a unique
winner. ❑

Theorem 9. For each scoring rule α = (α1, . . . , αm),
online-α-WCM is in P if α2 = αm and is NP-hard oth-
erwise.

Theorem 10. For each k, online-k-approval-UCM and
online-k-veto-UCM are in P.

Proof. Consider 1-veto. Given an online-1-veto-UCM in-
stance (C, u, V, σ, d), the best strategy for the manipulators
from u onward (let n1 denote how many of these there are)
is to minimize maxc<σd score(c). Let n0 denote how many
nonmanipulators come after u. We claim that (C, u, V, σ, d)
is a yes-instance if and only if d is ranked last in σ or there ex-
ists a threshold t such that (1)

P

c<σd
(maxscore(c)⊖t) ≤ n1

(so those manipulators can ensure that all candidates ranked
<σ d score at most t points), where “⊖” denotes proper
subtraction (x ⊖ y = max(x − y, 0)) and maxscore(c) is c’s
score when none of the voters from u onward veto c, and
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(2)
P

c≥σd
(maxscore(c) ⊖ (t − 1)) > n0 (so those nonma-

nipulators cannot prevent that some candidate ranked ≥σ d
scores at least t points).

For 1-veto under the above approach, in each situation
where the remaining manipulators can force success against
all actions of the remaining nonmanipulators, u (right then
as she moves) can set her and all future manipulators’ ac-
tions so as to force success regardless of the actions of the
remaining nonmanipulators. For k-approval and k-veto,
k ≥ 2, that approach provably cannot work (as will be ex-
plained right after this proof); rather, we sometimes need
later manipulators’ actions to be shaped by intervening non-
manipulators’ actions. Still, the following P-time algorithm,
which works for all k, tells whether success can be forced.
As a thought experiment, for each voter v from u onwards in

sequence do this: Order the candidates in {c | c ≥σ d} from
most to least current approvals, breaking ties arbitrarily,
and postpend the remaining candidates ordered from least
to most current approvals. Let ℓ be k for k-approval and
‖C‖− k for k-veto. Cast the voter’s ℓ approvals for the first
ℓ candidates in this order if v is a manipulator, and other-
wise for the last ℓ candidates in this order. Success can be
forced against perfect play if and only if this P-time process
leads to success. ❑

In the above proof we said that the approach for 1-veto
(in which the current manipulator can set her and all fu-
ture manipulators’ actions so as to force success indepen-
dent of the actions of intervening future nonmanipulators)
provably cannot work for k-approval and k-veto, k ≥ 2.
Why not? Consider an OMS (C, u, V, σ, d) with candidate
set C = {c1, c2, . . . , c2k}, σ being given by c1 >σ c2 >σ

· · · >σ c2k, and d = c1. So, u’s coalition wants to en-
force that c1 is a winner. Suppose that v1 has already cast
her vote, now it’s v2 = u’s turn, and the order of the fu-
ture voters is v3, v4, . . . , v2j , where all v2i, 2 ≤ i ≤ j, be-
long to u’s coalition, and all v2i−1 do not. Suppose that v1
was approving of the k candidates in C1 ⊆ {c2, c3, . . . , c2k},
‖C1‖ = k. Then u must approve of the k candidates in C1,
to ensure that c1 draws level with the candidates in C1 and
none of these candidates can gain another point. Next, sup-
pose that nonmanipulator v3 approves of the k candidates in
C3 ⊆ {c2, c3, . . . , c2k}, ‖C3‖ = k. Then v4, the next manip-
ulator, must approve of all candidates in C3, to ensure that
c1 draws level with the candidates in C3 and none of these
candidates can gain another point. This process is repeated
until the last nonmanipulator, v2j−1, approves of the candi-
dates in C2j−1 ⊆ {c2, c3, . . . , c2k}, ‖C2j−1‖ = k, and v2j , the
final manipulator, is forced to counter this by approving of
all candidates in C2j−1, to ensure that c1 is a winner. This
shows that there can be arbitrarily long chains such that the
action of each manipulator after u depends on the action of
the preceding intervening nonmanipulator.

We now turn to online weighted manipulation for veto
when restricted to three candidates. We denote this restric-
tion of online-veto-WCM by online-veto|3-WCM.

Theorem 11. online-veto|3-WCM is PNP[1]-complete.

Moving from three to four candidates increases the com-
plexity, namely to PNP-completeness, and that same bound
holds for unlimitedly many candidates. Although this is
a strict increase in complexity from PNP[1]-completeness
(unless the polynomial hierarchy collapses [24]), member-
ship in PNP still places this problem far below the general

PSPACE bound from earlier in this paper. The proof of
Theorem 12 is deferred to the appendix. Immediately from
Theorems 10 and 12, we have that the full profile variants of
online-k-veto-UCM and online-k-approval-UCM are in FP
and that fullprofile-online-veto-WCM is in FPNP.

Theorem 12. online-veto-WCM is PNP-complete, even
when restricted to only four candidates.

6. UNCERTAINTY ABOUT THE ORDER
OF FUTURE VOTERS

So far, we have been dealing with cases where the order
of future voters was fixed and known. But what happens
if the order of future voters itself is unknown? Even here,
we can make claims. To model this most naturally, our
“magnifying-glass moment” will focus not on one manipula-
tor u, but will focus at a moment in time when some voters
are still to come (as before, we know who they are and which
are manipulators; as before, we have a preference order σ,
and know what votes have been cast so far, and have a dis-
tinguished candidate d). And the question our problem is
asking is: Is it the case that our manipulative coalition can
ensure that the winner set will always include d or some-
one liked more than d with respect to σ (i.e., the winner

set will have nonempty intersection with {c ∈ C | c ≥σ d}),
regardless of what order the remaining voters vote in. We
will call this problem the schedule-robust online manipula-
tion problem, and will denote it by SR-online-E-UCM. (We
will add a “[1,1]” suffix for the restriction of this problem to
instances when at most one manipulator and at most one
nonmanipulator have not yet voted.) One might think that
this problem captures both a Σp

2 and a Πp
2 issue, and so

would be hard for both classes. However, the requirement
of schedule robustness tames the problem (basically what
underpins that is simply that exists-forall-predicate implies
forall-exists-predicate), bringing it into Σp

2. Further, we can
prove, by explicit construction of such a system, that for
some simple election systems this problem is complete for
Σp

2 .

Theorem 13. (1) For each election system E whose win-
ner problem is in P, SR-online-E-UCM is in Σp

2. (2) There
exists an election system E , whose winner problem is in P,
such that the problem SR-online-E-UCM (indeed, even
SR-online-E-UCM[1, 1]) is Σp

2-complete.

7. CONCLUSIONS AND OPEN QUES-
TIONS

We introduced a novel framework for online manipulation
in sequential voting, and showed that manipulation there
can be tremendously complex even for systems with simple
winner problems. We also showed that among the most im-
portant election systems, some have efficient online manipu-
lation algorithms but others (unless P = NP) do not. It will
be important to, complementing our work, conduct typical-
case complexity studies (although we mention in passing
that unless the polynomial hierarchy collapses, no heuristic
algorithm for any NP-hard problem can have a subexponen-
tial error rate, see the discussion in the survey [23]). We
have extended the scope of our investigation by studying
online control [22, 21] and will also study online bribery.
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APPENDIX. DEFERRED PROOFS
We provide here deferred proofs of two of our results that
were not proven in the paper’s body. Most other proofs not
in the body can be found in the technical report version [20].

Proof of Theorem 3. The proof of the first statement
(which is analogous to the proof of the first statement in
Theorem 4) follows from the easy fact that online-E-WCM
can be solved by an alternating Turing machine in polyno-
mial time, and thus, due to the characterization of Chandra,
Kozen, and Stockmeyer [9], by a deterministic Turing ma-
chine in polynomial space. The proof of the second case is
analogous.

We construct an election system E establishing the third
statement. Let (C, u, V, σ, d) be a given input. E will look
at the lexicographically least candidate name in C. Let c
represent that name string in some fixed, natural encoding.
E will check if c represents a tiered boolean formula, by which
we mean one whose variable names are all of the form xi,j

(which really means a direct encoding of a string, such as
“x4,9”); the i, j fields must all be positive integers. If c does
not represent such a tiered formula, everyone loses on that
input. Otherwise (i.e., if c represents a tiered formula), let
width be the maximum j occurring as the second subscript in
any variable name (xi,j) in c, and let blocks be the maximum
i occurring as the first subscript in any variable name in c.
If there are fewer than blocks voters in V , everyone loses.
Otherwise, if there are fewer than 1 + 2 · width candidates
in C, everyone loses (this is so that each vote will involve
enough candidates that it can be used to set all the variables
in one block). Otherwise, if there exists some i, 1 ≤ i ≤
blocks , such that for no j does the variable xi,j occur in c,
then everyone loses. Otherwise, order the voters from the
lexicographically least to the lexicographically greatest voter
name. If distinct voters are allowed to have the same name
string (e.g., John Smith), we break ties by sorting according
to the associated preference orders within each group of tied
voters (second-order ties are no problem, as those votes are
identical, so any order will have the same effect). Now,
the first voter in this order will assign truth values to all
variables x1,∗, the second voter in this order will assign truth
values to all variables x2,∗, and so on up to the blocksth
voter, who will assign truth values to all variables xblocks,∗.

How do we get those assignments from these votes? Con-
sider a vote whose total order over C is σ′ (and recall that
‖C‖ ≥ 1 + 2 · width). Remove c from σ′, yielding σ′′. Let
c1 <σ′′ c2 <σ′′ · · · <σ′′ c2·width be the 2 · width least pre-
ferred candidates in σ′′. We build a vector in {0, 1}width as
follows: The ℓth bit of the vector is 0 if the string that names
c1+2(ℓ−1) is lexicographically less than the string that names
c2ℓ, and this bit is 1 otherwise.

Let bi denote the vector thus built from the ith vote (in
the above ordering), 1 ≤ i ≤ blocks . Now, for each variable
xi,j occurring in c, assign to it the value of the jth bit of bi,
where 0 represents false and 1 represents true. We have now
assigned all variables of c, so c evaluates to either true or
false. If c evaluates to true, everyone wins, otherwise every-
one loses. This completes the specification of the election
system E . E has a polynomial-time winner problem, as any
boolean formula, given an assignment to all its variables,
can easily be evaluated in polynomial time.

To show PSPACE-hardness, we ≤p
m-reduce the PSPACE-

complete problem QBF to the problem online-E-UCM. Let
y be an instance of QBF. We transform y into an instance
of the form (∃x1,1, x1,2, . . . , x1,k1

) (∀x2,1, x2,2, . . . , x2,k2
) · · ·

(Qℓ xℓ,1, xℓ,2, . . . , xℓ,kℓ
) [Φ(x1,1, x1,2, . . . , x1,k1

, x2,1, x2,2, . . . ,
x2,k2

, . . . , xℓ,1, xℓ,2, . . . , xℓ,kℓ
)] in polynomial time, where

Qℓ = ∃ if ℓ is odd and Qℓ = ∀ if ℓ is even, the xi,j are
boolean variables, Φ is a boolean formula, and for each i,
1 ≤ i ≤ ℓ, Φ contains at least one variable of the form xi,∗.
This quantified boolean formula is ≤p

m-reduced to an
instance (C, u, V, σ, c) of online-E-UCM as follows:

1. C contains a candidate whose name, c, encodes Φ,
and in addition C contains 2 · max(k1, . . . , kℓ) other
candidates, all with names lexicographically greater
than c—for specificity, let us say their names are the
2 ·max(k1, . . . , kℓ) strings that immediately follow c in
lexicographic order.

2. V contains ℓ voters, 1, 2, . . . , ℓ, who vote in that or-
der, where u = 1 is the distinguished voter and all
odd voters belong to u’s manipulative coalition and all
even voters do not. The voter names will be lexico-
graphically ordered by their number, 1 is least and ℓ
is greatest.

3. The manipulators’ preference order σ is to like candi-
dates in the opposite of their lexicographic order. In
particular, c is the coalition’s most preferred candi-
date.

This is a polynomial-time reduction. It follows immediately
from this construction and the definition of E that y is in
QBF if and only if (C, u, V, σ, c) is in online-E-UCM.

To prove the last statement, simply let E be the election
system that ignores the weights of the voters and then works
exactly as the previous election system. ❑ Theorem 3

Proof of Theorem 12. We first show that
online-veto-WCM is in PNP. The proof is reminiscent of the
proof for 1-veto in Theorem 10. Let (C, u, V, σ, d) be a given
instance of online-veto-WCM with C = {c1, c2, . . . , cm} and
c1 >σ c2 >σ · · · >σ cm. Suppose d = ci. Our PNP algorithm
proceeds as follows:

1. Compute the minimal threshold t1 such that there ex-
ists a partition (Ai+1, . . . , Am) of the weights of the manip-
ulators from u onward such that for each j, i+ 1 ≤ j ≤ m,
maxscore(cj) −

P

Aj ≤ t1, where maxscore(cj) is cj ’s score
when none of the voters from u onward veto c. That is, by
having manipulators from u onward with weights in Aj veto
cj , the manipulators from u onward can ensure that none
of the candidates they dislike more than d exceeds a score
of t1.

2. Compute the minimal threshold t2 such that there
exists a partition (A1, . . . , Ai) of the weights of the non-
manipulators after u such that for each j, 1 ≤ j ≤ i,

117



maxscore(cj) −
P

Aj ≤ t2. That is, if the nonmanipulators
after u with weights in Aj veto cj , none of the candidates
that the manipulators like as least as much as d exceeds a
score of t2.

3. Accept if and only if t1 ≤ t2.

Note that the first two steps of the algorithm can both be
done in FPNP by using an NP oracle that checks whether
there exists a partition of the specified kind.

It remains to show that online-veto|4-WCM is PNP-hard.

We will reduce from the standard PNP-complete problem
MAXSATASG=, which is the set of pairs of 3cnf formu-
las3 that have the same maximal satisfying assignment [34].
To be precise, we will assume that our propositional vari-
ables are x1, x2, . . .. If xn is the largest propositional vari-
able occurring in φ, we often write φ(x1, . . . , xn) to make
that explicit. An assignment for φ(x1, . . . , xn) is an n-
bit string α such that αi gives the assignment for variable
xi. We will sometimes identify α with the binary integer
it represents. For φ a formula, maxsatasg(φ) is the lexi-
cographically largest satisfying assignment for φ. If φ is
not satisfiable, maxsatasg(φ) is not defined. And we de-
fine MAXSATASG= as the set of pairs of 3cnf formulas
(φ(x1, . . . , xn), ψ(x1, . . . , xn)) such that φ and ψ are satisfi-
able 3cnf formulas, and maxsatasg(φ) = maxsatasg(ψ).

The OMS that we will construct will have four candi-
dates, a >σ b >σ c >σ d, and the distinguished candidate
will be b. Looking at the PNP algorithm above, we can
see that determining whether the OMS can be manipulated
basically amounts to determining whether the nonmanipu-
lator weights have a “better” partition than the manipulator
weights.

So, we will associate formulas with multisets of positive
integers, and their satisfying assignments with subset sums.
This already happens in the standard reduction from 3SAT
to SubsetSum. However, we also want larger satisfying as-
signments to correspond to “better” subset sums. In order
to do this, we use Wagner’s variation of the 3SAT to Sub-
setSum reduction [34]. Wagner uses this reduction to prove
that determining whether the largest subset sum up to a
certain bound is odd is a PNP-hard problem.

Lemma 14. Let φ(x1, . . . , xn) be a 3cnf formula.
Wagner’s reduction maps this formula to an instance
(k1, . . . , kt, L) of SubsetSum with the following properties:

1. For all assignments α, φ[α] if and only if there exists
a subset of k1, . . . , kt that sums to L+ α.

2. For all K such that 2n ≤ K ≤ 2(2n − 1), no subset of
k1, . . . , kt sums to L+K.

Proof of Lemma 14. The first claim is immediate from
the proof of Theorem 8.1(3) from [34]. For the second claim,
note that L + K ≤ L + 2(2n − 1) < L + 6n. In Wagner’s
construction, L = 3 · · · 3

| {z }

m

1 · · · 1
| {z }

n

0 · · · 0
| {z }

n

in base 6, where m is

the number of clauses in φ. So, (L + K)’s representation
in base 6 is 3 · · · 3

| {z }

m

1 · · · 1
| {z }

n

followed by n digits. It is easy

to see from Wagner’s construction that the subset sums of

3We denote a formula in conjunctive normal form by cnf
formula, and a 3cnf formula is a cnf formula with exactly
three literals per clause.

this form that can be realized are exactly L + β, where β
is a satisfying assignment of φ. Since K ≥ 2n, K is not
even an assignment, and thus no subset of k1, . . . , kt sums
to L+K. ❑ Lemma 14

Let φ(x1, . . . , xn) and ψ(x1, . . . , xn) be 3cnf formulas,
and consider instance (φ, ψ) of MAXSATASG=. With-
out loss of generality, we assume that x1 does not actu-
ally occur in φ or ψ. We will define an OMS (C, u, V, σ, b)
with C = {a, b, c, d} and σ = a > b > c > d such
that (φ, ψ) ∈ MAXSATASG= if and only if (C, u, V, σ, b)
is a positive instance of online-veto-WCM. Note that
MAXSATASG= corresponds to optimal solutions being
equal, while online-veto-WCM corresponds to one optimal
solution being at least as good as the other. We will first
modify the formulas such that we also look at the optimal
solution for one formula being at least as good as the optimal
solution for the other. The following is immediate.

Claim 15. (φ, ψ) ∈ MAXSATASG= if and only if φ ∧ ψ
is satisfiable and maxsatasg(φ ∧ ψ) ≥ maxsatasg(φ ∨ ψ).

It will also be very useful if one of the formulas is always
satisfiable. We can easily ensure this by adding an extra
variable that will correspond to the highest order bit of the
satisfying assignment. Recall that x1 does not occur in φ or
ψ.

Claim 16. (φ, ψ) ∈ MAXSATASG= if and only if φ∧ψ∧
x1 is satisfiable and

maxsatasg(φ ∧ ψ ∧ x1) ≥ maxsatasg(φ ∨ ψ ∨ x1).

Now we would like to apply the reduction from Lemma 14
on φ ∧ ψ ∧ x1 and φ ∨ ψ ∨ x1. But wait! This reduction is
defined for 3cnf formulas, and φ∨ψ∨x1 is not in 3cnf. Since
φ and ψ are in 3cnf, it is easy to convert φ∨ψ ∨ x1 into cnf
in polynomial time. Let g be the standard reduction from
CNF-SAT to 3SAT. We can rename the variables such that
g has the following property: For ξ(x1, . . . , xn) a cnf for-
mula, g(ξ)(x1, . . . , xn, xn+1, . . . , xn̂) is a 3cnf formula such
that n̂ > n and such that for all assignments α ∈ {0, 1}n,
ξ[α] if and only if there exists an assignment β ∈ {0, 1}n̂−n

such that g(ξ)[αβ].

Let bψ(x1, . . . , xn̂) = g(φ ∨ ψ ∨ x1). Let bφ(x1, . . . , xn̂) =
φ ∧ ψ ∧ (x1 ∨ x1 ∨ x1) ∧ (xn̂ ∨ xn̂ ∨ xn̂).

Claim 17. • bφ and bψ are in 3cnf and bψ is satisfiable.

• (φ, ψ) ∈ MAXSATASG= if and only if bφ is satisfiable

and maxsatasg(bφ) ≥ maxsatasg( bψ).

Proof of Claim 17. From the previous claim we know
that if (φ, ψ) ∈ MAXSATASG=, then φ ∧ ψ ∧ x1 is satisfi-

able and thus bφ is satisfiable. Also from the previous claim,
if (φ, ψ) ∈ MAXSATASG=, then maxsatasg(φ ∧ ψ ∧ x1) ≥
maxsatasg(φ ∨ ψ ∨ x1). Let α be the maximal satisfying
assignment of φ ∧ ψ ∧ x1. Then α1n̂−n is the maximal sat-

isfying assignment of bφ. Let α′ be the maximal satisfying
assignment of φ∨ψ∨x1. Then α′β is the maximal satisfying

assignment of bψ for some β. Since α ≥ α′, it follows that
α1n̂−n ≥ α′β.

For the converse, suppose that bφ is satisfiable and

maxsatasg(bφ) ≥ maxsatasg( bψ). Let γ be the maximal satis-

fying assignment of bφ and let γ′ be the maximal satisfying
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assignment of bψ. Then the length-n prefix of γ is the maxi-
mal satisfying assignment of φ∧ψ∧x1 and the length-n prefix
of γ′ is the maximal satisfying assignment of φ∨ψ∨x1. Since
γ ≥ γ′, the n-bit prefix of γ is greater than or equal to the
n-bit prefix of γ′. ❑ Claim17

We now apply Wagner’s reduction from Lemma 14 to bφ

and bψ. Let k1, . . . , kt, L be the output of Wagner’s reduc-

tion on bφ and let k′1, . . . , k
′
t′ , L

′ be the output of Wagner’s

reduction on bψ.
As mentioned previously, we will define an OMS

(C, u, V, σ, b) with C = {a, b, c, d} and σ = a > b >
c > d such that (φ,ψ) ∈ MAXSATASG= if and only if
(C, u, V, σ, b) is a positive instance of online-veto-WCM. Be-
cause we are looking at veto, when determining the outcome
of an election, it is easiest to simply count the number of ve-
toes for each candidate. Winners have the fewest vetoes.
For ĉ a candidate, we will denote the total weight of the
voters that veto ĉ by vetoes(ĉ).

There are four voters in V<u: one voter of weight L vetoing
a, one voter of weight L + 2L′ + 2(2n̂ − 1) −

P

k′i vetoing
b, one voter of weight L′ vetoing c, and one voter of weight
L′ + 2L + 2(2n̂ − 1) −

P

ki vetoing d. Let u = u1. Vu<

consists of t− 1 further manipulators u2, . . . , ut followed by
t′ nonmanipulators u′

1, . . . , u
′
t′ . The weight of manipulator

ui is ki and the weight of nonmanipulator u′
i is k′i.

It remains to show that the reduction is correct. First
suppose that (φ, ψ) is in MAXSATASG=. By Claim 17, this

implies that bφ and bψ are satisfiable 3cnf formulas such that

maxsatasg(bφ) ≥ maxsatasg( bψ). Let α = maxsatasg(bφ). We
know from Lemma 14 that there exists a subset of k1, . . . , kt

that sums to L+α. The manipulators corresponding to this
subset will veto c, so that c receives L + α vetoes from the
manipulators. The remaining manipulators will veto d, i.e.,
d receives (

P

ki)−L−α vetoes from the manipulators. After
the manipulators have voted, vetoes(a) = L, vetoes(b) = L+
2L′+2(2n̂−1)−

P

k′i, vetoes(c) = L′+L+α, and vetoes(d) =
L′+L+2(2n̂−1)−α. Since α ≤ 2n̂−1, vetoes(c) ≤ vetoes(d).
We will show that no matter how the nonmanipulators vote,
a or b is a winner. Suppose for a contradiction that after
the nonmanipulators have voted, vetoes(a) > vetoes(c) and
vetoes(b) > vetoes(c). If that were to happen, there would
be a subset of k′1, . . . , k

′
t′ summing to K such that L+K =

vetoes(a) > vetoes(c) = L + L′ + α and L + 2L′ + 2(2n̂ −
1)−K = vetoes(b) > vetoes(c) = L+L′ +α. It follows that
α < K−L′ < 2(2n̂−1) and there exists a subset of k′1, . . . , k

′
t′

that sums to L′ + (K −L′). It follows from Lemma 14 that

K−L′ is a satisfying assignment for bψ. But that contradicts

the assumption that maxsatasg(bφ) ≥ maxsatasg( bψ).
The proof of the converse is very similar. Suppose that

(φ, ψ) 6∈ MAXSATASG=. By Claim 17, bψ is satisfiable. Let

α = maxsatasg( bψ). By Claim 17, either bφ is not satisfi-

able or maxsatasg(bφ) < α. Suppose the manipulators vote
such that c receives K vetoes from some of them. With-
out loss of generality, assume all other manipulators veto
d, so that d receives (

P

ki) −K vetoes from the manipula-
tors. We know from Lemma 14 that there exists a subset of
k′1, . . . , k

′
t′ that sums to L′ +α. After the manipulators have

voted, the nonmanipulators will vote such that a receives
L′ + α vetoes from the nonmanipulators and the remaining
nonmanipulators will veto b, i.e., b receives (

P

k′i) − L′ − α

vetoes from the nonmanipulators. So, vetoes(a) = L+L′+α,

vetoes(b) = L+L′ + 2(2n̂ − 1)−α, vetoes(c) = L′ +K, and
vetoes(d) = L′+2L+2(2n̂−1)−K. We will show that neither
a nor b is a winner. Since α ≤ 2n̂ − 1, vetoes(a) ≤ vetoes(b).
So it suffices to show that a is not a winner. If a were a
winner, vetoes(a) ≤ vetoes(c) and vetoes(a) ≤ vetoes(d).
This implies that α ≤ K − L ≤ 2(2n̂ − 1). It follows from

Lemma 14 that K −L is a satisfying assignment for bφ. But

that contradicts the assumption that either bφ is not satisfi-

able or maxsatasg(bφ) < α. ❑ Theorem 12
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ABSTRACT
This paper deals with the automated synthesis of implementations
of knowledge-based programs with respect to two synchronous se-
mantics (clock and synchronous perfect recall). An approach to
the synthesis problem based on the use of symbolic representa-
tions is described. The method has been implemented as an ex-
tension to the model checker MCK. Two applications of the imple-
mented synthesis system are presented: the muddy children puzzle
(where performance is compared to an explicit state method for a
related problem implemented in the model checker DEMO), and a
knowledge-based program for a dynamic leader election problem
in a ring of processes.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification; F.4.1
[Mathematical Logic]: Modal Logic

General Terms
Theory, Verification

Keywords
Synthesis, Logic of Knowledge, Knowledge-based Programs

1. INTRODUCTION
One of the main motivations for the application of epistemic

logic in computer science has been the observation that it provides
a beneficial level of abstraction through which to view distributed
systems. A range of problems in distributed computing have been
studied from this perspective, including protocols for agreement
[17, 8, 9, 27], message transmission [19], atomic commitment [15,
25], clock synchronization [26, 28], leader election [18], and secure
communication [35, 1, 2, 24, 36].

Many of these analyses are based on first expressing the solution
to a problem in terms of the relation between an agent’s actions
and its knowledge, and then seeking to understand the conditions
under which the agent has the requisite knowledge. A first codifica-
tion of the approach was the semantic notion of knowledge-based
protocols of [16], and the idea was refined and given a syntactic
basis in the knowledge-based programs of [11, 10]. The latter pro-
vide a simple guarded command programming notation (in the style
of Unity [7]), in which the guards in conditional statements are
not just expressions over the agent’s local variables, but may also

TARK 2013, Chennai, India.
Copyright 2013 by the authors.

contain formulas of epistemic logic asserting some property of the
agent’s knowledge.

Knowledge-based programs resemble standard proagrams, but
they do not have a straightforward operational semantics. Instead,
they are semantically more like a specification, in that they stand
in an implementation relation to standard programs. To obtain an
implementation, one must replace the knowledge conditions in the
program by expressions in the agents’ local variables that are equiv-
alent, when running the resulting standard program. Because of
the fixpoint nature of this semantics, in general, a knowledge-based
program could have no, one, or many behaviourally distinct imple-
mentations. There are, however, some syntactic and semantic con-
ditions under which implementations are guaranteed to be unique
[11]. One of these is that the formulas appearing in the knowledge
conditions are free of temporal operators and that the semantics of
the knowledge operators is synchronous, in the sense that agents
always know the current time.

The early literature on knowledge in distributed computing and
knowledge-based programs is confined to “pencil and paper" anal-
yses. In recent years, automated tool support for knowledge-based
analysis has begun to be developed, in the form of epistemic model
checkers [13, 23, 30, 20, 37], which are able to automatically verify
whether standard programs satisfy epistemic specifications. These
model checkers have been applied to a number of case studies in
which it is verified that a proposed implementation of a knowledge-
based program is indeed an implementation [3, 2, 24]. However,
the approach applied in these studies still requires that the proposed
implementation be derived manually. Since the implementations
may make use of subtle sources of information, this can be a highly
nontrivial task, although the examples automatically constructed by
the model checker when checking an incorrect implementation can
provide useful information to guide the search [3, 1].

Our contribution in this paper is to develop the first practical tool
for automated synthesis of knowledge-based program implementa-
tions, by extending methods from epistemic model checking. The
main contributions of the paper are as follows:

1. We develop a practical syntax for knowledge-based programs
that extends the Unity style programs of [11] to encompass
use of knowledge in assignment statements, as well as se-
quential structure.

2. We show how existing symbolic techniques for epistemic
model checking may be extended to yield an approach to au-
tomated synthesis of knowledge-based program implemen-
tations. Our techniques work for the special case of atempo-
ral knowledge-based programs with respect to two distinct
synchronous semantics for knowledge, the clock and syn-
chronous perfect recall semantics, in which, as noted above,
unique implementations are guaranteed to exist.
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3. We have implemented these algorithms as an extension of
the epistemic model checker MCK. One benefit of building
on the existing model checking technology is that properties
of the implementation derived can directly be verified, with
many of the computational steps required for verification al-
ready performed by the synthesis procedure.

4. We conduct a number of validation case studies of knowledge-
based program implementation using the resulting tool, con-
sidering two types of examples. In the first, the muddy chil-
dren puzzle, we compare the performance of our symbolic
synthesis approach to the performance of the model checker
DEMO. DEMO does not synthesize implementations of know-
ledge-based programs, but solves a closely related model
checking problem using an explicit state rather than symbolic
technique. The second example we consider is a knowledge-
based program for a leader election protocol in a ring of pro-
cesses.

The structure of the paper is as follows. In Section 2, we review
the basics of epistemic model checking and a symbolic technique
used in the implementation of such systems. We develop a syntax
and semantics for knowledge-based programs in Section 3. Sec-
tion 4 describes the basis for a symbolically implementable proce-
dure for synthesis of knowledge-based program implementations.
The application of this procedure to a number of examples is dis-
cussed in Section 5. Section 6 discusses related work, and we make
some concluding remarks in Section 7.

2. EPISTEMIC MODEL CHECKING
In this section, we recall the background we require from epis-

temic logic (following [10]) and epistemic model checking (follow-
ing [34]).

Let Prop be a set of atomic proposition and let Ags be a finite
set of agents. The temporal-epistemic logic that we work with has
the syntax

φ ::= p | ¬φ | φ1 ∧ φ2 | Xφ | Kiφ

where p ∈ Prop and i ∈ Ags. Intuitively, formula Xφ expresses
that φ holds at the next time, and Kiφ expresses that agent i knows
that φ holds. A formula is atemporal if it does not make use of the
temporal operator X.

At all times, each agent i is assumed to be in some local state that
records all the information that it can access at that time. The en-
vironment e records “everything else that is relevant”. Let S be the
set of environment states and let Li be the set of local states of agent
i. A global state s of a multi-agent system is a tuple (se, s1, ..., sn)
such that se ∈ S and si ∈ Li for all i ∈ Ags.

A run r is a function from time to global states, i.e., r : N →
S × L1 × ... × Ln. A pair (r,m) consisting of a run r and a time m is
called a point. A system R is a set of runs. We call R ×N the set of
points of R. If r(m) = (se, s1, .., sn) then for x ∈ Ags ∪ {e} we write
rx(m) for sx and rx(0..m) for rx(0)...rx(m). Relative to a system R,
we define the setKi(r,m) = {(r′,m′) ∈ R×N | ri(m) = r′i (m

′)} to be
the set of points that are indistinguishable from the point (r,m) for
agent i.

An interpreted system I is a tuple (R, π) such that R is a system
and π : R × N → P(Prop) is an assignment giving an interpreta-
tion to the atomic propositions at each point. Given an interpreted
system I, a point (r,m), and a formula φ, we define the relation
I, (r,m) |= φ inductively by

• I, (r,m) |= p if p ∈ π(r,m)

• I, (r,m) |= ¬φ if not I, (r,m) |= φ

• I, (r,m) |= φ1 ∧ φ2 if I, (r,m) |= φ1 and I, (r,m) |= φ2

• I, (r,m) |= Xφ if I, (r,m + 1) |= φ

• I, (r,m) |= Kiφ if I, (r′,m′) |= φ for all points (r′,m′) ∈
Ki(r,m)

Since interpreted systems are infinite structures and for model
checking we require a finite input, we generate interpreted systems
from finite structures. A (finite state) transition model M for agents
Ags is a tuple M = (S , I, {Oi}i∈Ags,→, π), where S is a (finite) set
of states, I ⊆ S is the set of initial states, each Oi : S → O is
a function representing the observation that agent i makes at each
state, →⊆ S 2 is a serial transition relation over states in S , and
π : S → P(Prop) is a propositional assignment. Let ki(s) = {s′ ∈
S | Oi(s) = Oi(s′)} be the set of states that are indistinguishable
from state s for agent i, based on its observation.

A path ρ from a state s of M is a finite or infinite sequence of
states s0 s1..., such that s0 = s and sk → sk+1 for all k < |ρ| − 1,
where |ρ| is the total number of states in ρ. Given such a path ρ,
we use ρ(m) to denote the state sm. A fullpath from a state s is an
infinite path from s. A path ρ is initialized if ρ(0) ∈ I.

To obtain a system from a finite state transition model M, we
treat the states of M as the states of the environment, and obtain
runs from paths by adding local states at each point. This can be
done in a variety of ways, representing different levels to which
agents recall their observations. We call the level of recall a view
and deal with the views obs, clk and spr representing recall only
of the current observation, recall of the current observation and the
time and synchronous perfect recall, respectively.

For each initialized fullpath ρ and viewV ∈ {obs, clk, spr}, we
define a run ρV. The state of the environment at time m is given by
ρVe (m) = ρ(m) in each case, and the agents’ local states are assigned
as follows:

• V = obs: the local state of agent i at time m is ρobsi (m) =

Oi(ρ(m));

• V = clk: the local state of agent i at time m is ρclki (m) =

(m,Oi(ρ(m)));

• V = spr: the local state of agent i at time m is ρspri (m) =

Oi(ρ(0))...Oi(ρ(m)).

Given a system M and a viewV, we writeRV(M) for the set of runs
ρV where ρ is an initialized full-path of M. The interpretation π of
M lifts to an interpretation πV on the global states in RV(M), de-
fined by πV((s, l1, . . . , ln)) = π(s). We define the interpreted system
obtained from M using view V by IV(M) = (RV(M), πV). Given
a finite model M, a view V, and a formula φ, we write M |=V φ if
IV(M), (r, 0) |= φ for all r ∈ RV(M).

The model checking problem is to determine, given a finite state
transition model M, a viewV and a temporal epistemic formula φ,
whether IV(M) |= φ. Epistemic model checkers are software sys-
tems that solve this problem. A number of such systems have been
implemented. MCK [13] supports all three views, MCMAS [23],
Verics [20] and MCTK [30] work with the observational view. These
systems use a variety of temporal logics for the temporal expres-
siveness in formulas. MCK supports a superset of the language
defined above.

Before concluding this section, we define a presentation of stan-
dard S5n Kripke-structures that will be used later. An epistemic
model is a tuple M = (S , {Oi}i∈Ags, π), where the components are of
the same type as the similarly named components in state transition
models. Given a model M, a state s ∈ S , and an atemporal formula
φ, the relation M, s |= φ can be recursively defined as follows:
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Figure 1: A decision tree and its reduced OBDD

• M, s |= p if p ∈ π(s)

• M, s |= ¬φ if not M, s |= φ

• M, s |= φ1 ∧ φ2 if M, s |= φ1 and M, s |= φ2

• M, s |= Kiφ if M, s′ |= φ for all states s′ such that Oi(s) =

Oi(s′)

It is easily seen that for atemporal formulas ψ that are boolean com-
binations of formulas of the form Kiφ (for a fixed i), for all s, s′ ∈ S
with Oi(s) = Oi(s′) we have M, s |= ψ iff M, s′ |= ψ, i.e., the truth
value of ψ depends only on Oi(s). For o ∈ Oi(S ), we may therefore
define the relation M, o |=i ψ if M, s |= ψ for some (equivalently,
all) s ∈ S with Oi(s) = o.

2.1 Symbolic Data Structures
MCK supports a number of different algorithmic approaches to

solving the epistemic model checking problem. One of these is
based on symbolic model checking using (reduced) ordered binary
decision diagrams (BDD) [6]. These are data structures defined as
follows.

Let V be a set of variables. A V-assignment is a function s :
V → {0, 1}. Write Assgts(V) for the set of all V-assignments, and
s[v 7→ x] for the function that is identical to s except that it takes
value x on input v. A V-indexed boolean function is a mapping
f : Assgts(V) → {0, 1}. Note that such functions are able to repre-
sent sets X ⊆ Assgts(V) by their characteristic functions fX , map-
ping s to 1 just in case s ∈ X. One way to represent such a function
f is using a binary tree of height n, with each level corresponding
to one of the variables in V , and leaves labelled from {0, 1}. This
tree can in turn be thought of as a finite state automaton on alphabet
{0, 1}. Reduced ordered binary decision diagrams (BDD’s in the se-
quel) more compactly represent such a function as a dag of height
n, with binary branching, by applying the usual finite state automa-
ton minimization algorithm. A very simple example of this for the
function f (a, b, c) = a xor b is illustrated in Figure 1. In some
cases, the degree of compaction obtained in the minimal dag repre-
sentation is considerable. We note that the amount of compaction
obtained is sensitive to the variable ordering used, and finding a
variable ordering that minimizes the result is NP-hard, though there
exist good heuristics, such as sifting [29].

Given this minimal representation of V-indexed boolean func-
tions, it is moreover possible to compute (in practice, often in rea-
sonable time) some operations on these functions, by means of al-
gorithms that take as input the BDD representation of the input
functions and returns the BDD representation of the result. The
operations for which this can be done include the following:

• Boolean operations∧,¬, defined pointwise on functions. E.g.,
if f , g : Assgts(V) → {0, 1}, then f ∧ g : Assgts(V) → {0, 1}
is defined by ( f ∧ g)(s) = f (s) ∧ g(s).

• Boolean quantification ∃,∀, e.g., if f : Assgts(V) → {0, 1}
and v ∈ V then ∃v( f ) : Assgts(V \ {v}) → {0, 1} maps s ∈
Assgts(V \ {v}) to f (s[v 7→ 0]) ∨ f (s[v 7→ 1]).

• variable substitution: if f : Assgts(V) → {0, 1} and U ⊆ V
and U′ are sets with U′ ∩ (V \ U) = ∅, and σ : U → U′ is a
bijection, then fσ : Assgts((V \ U) ∪ U′) → {0, 1} maps s :
Assgts((V \U)∪U′) to s′, where s′(v) is s(v) when v ∈ V \U
and s(σ−1(v)) when v ∈ U′.

Symbolic model checking, as implemented in MCK, then pro-
ceeds using BDD representations of sets and relations relevant to
model checking. For example, the set I of initial states of a sys-
tem can be represented as a BDD-encoded boolean function fI in-
dexed by the state variables V . Relations can be represented using
“primed" versions of the state variables V , defined by V ′ = {v′ | v ∈
V}. A relation such as the transition relation→ of a model can then
be represented as a function f→ indexed by variables V ∪ V ′, such
that if s and t are assignments to V , we have s→ t iff f→(s∪ t′) = 1,
where t′ is obtained from t by renaming each variable v to its primed
counterpart v′. Operations such as the composition of a relation
and a set can then be performed at the level of the BDD represen-
tation, e.g. {t ∈ S | s ∈ I ∧ s → t} is represented by the function
∃V( fI × 1V′ ∧ f→)σ on V , where fI × 1V′ trivially extends fI by
adding (irrelevant) variables V ′, and σ renames the variables V ′ to
the variables V by removing the prime symbol.

3. KNOWLEDGE-BASED PROGRAMS
Knowledge-based analyses of systems typically concern the in-

teraction between agents’ knowledge and their actions. Knowledge-
based programs [11, 10] have been proposed to capture such rela-
tionships in a program-like notation, with actions chosen according
to conditions expressed in epistemic logic.

The original presentation of knowledge-based programs used a
very simplified (Unity style [7]) programming notation, consisting
of a single infinitely repeated do loop containing a set of guarded
statements of the form φ→ a where φ is an epistemic formula and a
an action. We develop here a slightly richer and more structured no-
tation, using sequential composition and an epistemic assignment
statement. The notation is based on the modelling notation already
employed by MCK. We focus on atemporal programs with a syn-
chronous semantics for knowledge (either the clock or synchronous
perfect recall semantics), since this is a case in which unique im-
plementations are guaranteed to exist.

Since, in general, even atemporal knowledge-based programs
may not have finite state implementations under the perfect recall
semantics, we also limit ourselves to terminating programs, so omit
looping from the language. Our handling of parallelism and ac-
tions (signals) is somewhat in the spirit of synchronous languages
such as Esterel [5]. To give the semantics of knowledge-based pro-
grams, we use a formulation based on [32], which allows flexibility
in choice of view based on a notion of environment that replaces the
notion of context of [11, 10].

3.1 Standard Programs: Syntax
Define a standard program over a set V of variables and a set

A of atomic statements to be either the terminated program ε or a
sequence P of the form stat1 ; . . . ; statk, where the stati are sim-
ple statements and ‘;’ denotes sequential composition. Each simple
statement stati is either an atomic statement in A or a nondetermin-
istic branching statement of the form

if g1 → a1 [] g2 → a2 [] . . . [] gk → ak fi
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where each ai is an atomic statement in A and the gi are boolean
expressions over V called guards. Intuitively, a nondeterministic
branching statement executes by performing one of the assignments
ai for which the corresponding guard gi is true. If several guards
hold simultaneously, one of the corresponding actions is selected
nondeterministically. We treat P as identical to P; ε. The length of
a program is the number of simple statements it contains. We use
standard programs to describe both the behavior of agents and the
environment in which they operate. The type of atomic statements
used in these two cases is different.

Environment models are used to represent how states of the envi-
ronment are affected by actions of the agents. Formally, we define
an environment model to be a tupleMe = (Ags,Acts,Vare, Inite, τ)
where Ags is a set of agents, Acts is a set of actions available to the
agents, Vare is a set of (boolean) environment variables1, Inite is an
initial condition, in the form of a boolean formula over Vare, and τ
is a transitions clause for the environment e, expressed in the form
of a standard program.

In addition to the environment variables Vare, an additional set
ActVar(Me) = {i.a | i ∈ Ags, a ∈ Acts} of (boolean) action vari-
ables are generated for each modelMe. Intuitively, i.a represents
that agent i performs action a. The transitions clause is a standard
program over the set of variables in Vare ∪ ActVar(Me) and the
set of atomic actions of the form x := expr, where x ∈ Vare and
expr is a boolean expresssion over Vare ∪ ActVar(Me). The state-
ment x := expr represents that the value of the expression expr, is
assigned to the variable x.

Protocols are used to describe the behaviour of the agents. A pro-
tocol for agent i in environment modelMe (of length m) is a tuple
Proti = (PVari,LVari,OVari, Initi,Actsi,Progi) where PVari ⊆ Vare

is a set of parameter variables2, LVari is a set of local variables,
OVari ⊆ PVari ∪ LVari is a set of observable variables, Initi is an
initial condition, in the form of a formula over LVari, and Progi is
standard program of length m. The guards in Progi are over the set
of variables PVari ∪ LVari. The atomic statements in P have the
form

� a | x1 := expr1, ..., xm := exprm �

where a ∈ Acts∪ {nil} and each x1 := ei is an assignment statement
with xi in LVari and ei an expression over PVari∪LVari. Intuitively,
such an atomic statement is executed by emitting action a as a sig-
nal to the environment: when agent i performs the action, the vari-
able i.a is set to be true (and all other action variables i.b set to be
false.) The environment transition clause then runs to update the
environment variables. Concurrently, the statement performs the
simultaneous assignment x1 := expr1, ..., xm := exprm in a single
step of computation. That is, the expressions ei are first evaluated
in the state from which the atomic statement is performed, and their
values are then simultaneously assigned to the variables xi. We ab-
breviate an atomic statement of the form � nil | x := expr � to
x := expr, and also abbreviate� nil | � to skip.

A joint protocol (of length m) is a tuple Prot associating a proto-
col Proti (of length at most m) with each i ∈ Ags. A system model
is a pair S = (Me,Prot) consisting of an environment model Me

and a joint protocol Prot for Me. This represents a set of agents
running particular protocols in the context of a given environment.
1To simplify the presentation we assume here that all variables are
boolean; our implementation also allows variables to have a de-
clared finite type.
2In the concrete MCK syntax these may be given using new vari-
ables in a parameter declaration as aliases for environment vari-
ables. This allows sharing of protocol code between agents run-
ning similar programs but with different parameter bindings; see
the examples below.

3.2 Standard Programs: Semantics
We now show how a system model generates a finite state tran-

sition model. To do so, we first convert the system model into a
simple form of parallel program and provide these programs with
an operational semantics.

We assume we are given a system model S = (Me,Prot), where
Me = (Ags,Acts,Vare, Inite, τ) and

Proti = (PVari,LVari,OVari, Initi,Actsi,Progi)

for i ∈ Ags. We define global states with respect to this model to be
boolean assignments s over the set of variables Vare ∪

⋃
i∈Ags LVari.

We also define the parallel program

Prog(S) = τ ||i∈Ags Progi .

This is an expression representing |Ags| + 1 components, i.e., the
specially identified environment component τ, a program over en-
vironment variables, and the |Ags| components Progi, representing
programs associated to the agents.

Intuitively, the operational semantics of these parallel statements
defines a transition relation on global states. The definition of the
transition relation is given in three stages, captured in the following
rule:∧

i∈Ags (s, Pi) ↪→ � ai | αi �; P′i , (s ∪ a, τ) −→∗ (s′ ∪ a, ε),
θ = {x 7→ e(s) |“x := e” ∈ αi, i ∈ Ags}

(s, τ||i∈AgsPi)→ (s′θ, τ||iP′i )

The explanation of this statement is as follows: in the first stage,
given a global state s, with its remaining computation represented
by program Pi, each agent i first generates an atomic statement
a =� ai | αi � as well as a program P′i , to be run after this atomic
statement has executed. This is represented formally by a relation
(s, Pi) ↪→ a; P′i . In the second stage, the actions in these state-
ments are then combined into a joint atomic action a, viewed as
an assignment making the action variables i.ai true for i ∈ Ags,
and all other action variables false. This assignment is added to the
current global state, and the environment program τ then causes
a transition of the environment state, expressed by the statement
(τ, s ∪ a) −→∗ (s′ ∪ a, ε) that represents that the environment pro-
gram τ, when executed with respect to joint action a, runs to termi-
nation having caused the global state to change from s to s′ (only
the environment variables change during the running of τ). Finally,
the local states are updated, by executing the assignments αi locally
at each agent. This is captured by first defining the substitution θ
that defines the update to be performed, based on the values e(s) of
expressions e in the state s, and then applying that substitution to
the global state s′ (represented by s′θ).

The relations used above are defined by the following rules:

(s, ε) ↪→ skip; ε (s, a; P) ↪→ a; P
s |= gi

(s, if g1 → a1 [] . . . [] gm → am fi; P) ↪→ ai; P

s |=
∧

i∈Ags ¬gi

(s, if g1 → a1 [] . . . [] gm → am fi; P) ↪→ skip; P

(s, P) ↪→ x := e; P′, θ = [x 7→ e(s)]
(s, P)→ (sθ, P′)

(The rules for ↪→ apply to both the environment program and
the agent protocols; the last rule applies only to steps of the envi-
ronment computation.)

We can now define a model M(S) = (S , I, {Oi}I∈Ags,→, π) for
each system model S. The components are given as follows: S is
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the set of pairs (s, τ||i∈AgsPi), where s is a global state of S and each
Pi is a protocol for agent i, the set I is the set of pairs (s,Prog(S))
such that s |= Inite ∧

∧
i∈Ags Initi, the function Oi is defined by

Oi((s, τ||i∈AgsPi)) = s � OVari, the transition relation→ is as defined
above, and π associates each variable with its value, i.e. v ∈ π(s) iff
s(v) = 1.

Note that, given a view V, we obtain from M(S) an interpreted
system IV(M(S)). We use this construction of interpreted systems
to give semantics to knowledge based programs.

3.3 Knowledge-based protocols
The syntax of knowledge-based protocols is given as a general-

ization of the definitions above. A knowledge-based protocol for
agent i in environmentMe, is a tuple

Pi = (PVari,LVari,OVari, Initi,Actsi, Progi) ,

where the components are exactly as for a protocol for agent i in
environmentMe, except that in the program Progi, both the guards
g in conditional statements and the expressions e in the assignments
in atomic statements may be formulas of the logic of knowledge.
Figure 2(a) gives an example of such a program, (corresponding
to a stage of the well-known “Muddy Children" problem, which
we discuss in more detail in Section 5). A joint knowledge-based
protocol is a tuple P = {Pi}i∈Ags consisting of a knowledge-based
protocol Pi for each agent i.

To give semantics to knowledge-based protocols, we define a re-
lation of implementation between knowledge-based protocols and
standard protocols. Intuitively, an implementation is a standard
protocol that is structurally similar to the knowledge-based proto-
col, except that knowledge formulas have been replaced by expres-
sions in the local variables, where such expressions are equivalent
to the knowledge formulas. To make sense of this equivalence we
need to evaluate the knowledge formulas in an interpreted system:
for this we take the system generated by the standard protocol.

We first give the semantics with respect to the clock view. Note
that since programs are sequences stat1; . . . ; statm of simple state-
ments, each such simple statement can be associated with a time of
occurrence, viz., stati occurs at time i − 1. In case stati is a condi-
tional statement if g1 → a1 [] . . . [] gk → ak fi we also say that each
of the atomic statements a j occur at time i − 1. (Intuitively, it takes
no time to evaluate the guard g j.) Given a knowledge-based pro-
gram Progi, we transform it into its skeleton, denoted skell(Progi),
by replacing each knowledge formula φ in a guard g or assigned
expression e, occurring at time t, by a new variable vt

φ, whose name
indicates both the time t and the formula being replaced. (More pre-
cisely, we replace the maximal subformulas φ that contain knowl-
edge operators but do not contain “non-observable" variables in
PVari \ OVari.) Let skellVar(Progi) be the set of such new vari-
ables in skell(Progi). We define skell(P) = {skell(Progi)}i∈Ags and
skellVar(P) = ∪i∈AgsskellVar(Progi).

Next, let θ be a substitution mapping each skeleton variable vt
φ ∈

skellVar(Progi), for i ∈ Ags, to a boolean expression on the observ-
able variables of agent i’s protocol Pi. If we apply this substitution
to skell(Progi), we obtain a standard program skell(Progi)θ. We
write Piθ for the result of replacing the knowledge-based program
Progi in Pi by Progiθ. This is a standard protocol for agent i.

Similarly, if P = {Pi}i∈Ags is a joint knowledge-based protocol,
and θ is a substitution satisfying the condition above for all agents i,
we write Pθ for the joint standard protocol {Piθ}i∈Ags. We now define
Pθ to be an implementation of the joint knowledge-based protocol
Pwith respect to the view clk if Iclk(M(Me, Pθ)) |= Xt(φ⇔ θ(vt

φ))
for all vt

φ ∈ skellVar(P). That is, in the system obtained with respect
to the view clk by running the standard protocol Pθ in the envi-

ronment Me, each knowledge formula φ in P is equivalent to the
concrete expression θ(vt

φ) on the local state variables that replaces
it in the standard protocol (at the time t that this formula is relevant
to the behaviour of the program).

Since the definition of implementation of a knowledge-based
program is stated as a constraint on substitutions, it is not clear
whether there exist any substitutions satisfying this constraint, or
whether such substitutions are unique. The following theorem states
that in fact, given our assumptions, there is essentially a unique im-
plementation.

THEOREM 1. If P is a joint atemporal knowledge-based pro-
tocol for environment Me, then there exists a substitution θ such
that skell(P)θ is an implementation of P inMe with respect to clk.
Moreover, for all substitutions θ, θ′ such that skell(P)θ and skell(P)θ′

are implementations of P inMe with respect to clk, we have that
Iclk(M(Me, Pθ)) |= Xt(θ(vt

φ)⇔ θ′(vt
φ)) for all vt

φ ∈ skellVar(P).

The result is similar to a result of [11]. Note that although θ(vt
φ)

and θ′(vt
φ) may be distinct formulas, they are equivalent, in the

context of any implementation, at the time of their relevance to
the behaviour of the implementation. It follows that the systems
Iclk(M(Me, Pθ)) andIclk(M(Me, Pθ

′)) are isomorphic with respect
to the variables ofMe and P.

We now consider the synchronous perfect recall semantics. In
this case, an agent’s knowledge is semantically defined using not
just the agent’s current observation, but also using its past observa-
tions. Implementations of knowledge-based programs with respect
to this semantics are therefore permitted to refer to these past ob-
servations. To enable this, we first introduce some new “history"
variables to represent the past observations, and then state the per-
fect recall semantics as an application of the clock semantics.

Given a joint knowledge-based program P of length m, let Ph be
the knowledge based program obtained after making the following
modifications to P:

1. if OVari is the set of observable variables for agent i, replace
this by the set OVarh

i = OVari∪{v@k | v ∈ OVari, 0 ≤ k < m};

2. replace LVari by LVari ∪ {v@k | v ∈ OVari, 0 ≤ k < m};

3. replace each atomic statement � a | α � at time k in Progi
by the statement � a | α, β �, where β is the collection of
assignments v@k := v for v ∈ OVari.3

Intuitively, each variable v@k is a new local observable variable
that records the value of the original observable variable v of agent
i at time k. We now define an implementation of P in Me with
respect to the synchronous perfect recall semantics to be an im-
plementation of Ph inMe with respect to the clock semantics. By
Theorem 1, such implementations are also guaranteed to exist and
are behaviourally unique.

4. SYNTHESIS
The semantics for knowledge-based programs requires that the

(semantically unique) implementing substitution θ for all knowl-
edge conditions be given, and then verified for correctness. We
now describe an incremental construction of this substitution that
serves as the basis for our symbolic synthesis procedure. For the
remainder of this section we fix an environment model Me and a
joint knowledge-based program P. Let N be the maximal time of

3Our implementation optimizes this by sharing history of observed
environment variables between agents.
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(a)
if Kimuddyi ∨ Ki¬muddyi →� SayYes | �

[] ¬(Kimuddyi ∨ Ki¬muddyi)→� SayNo | � fi (b)
if v0

Kimuddyi∨Ki¬muddyi
→� SayYes | �

[] v0
¬(Kimuddyi∨Ki¬muddyi)

→� SayNo | � fi

Figure 2: A knowledge-based program (a) and its skeleton (b)

occurrence of any knowledge condition in P. Let skell(Progi) =

stati
1; . . . stati

m.
For the clock semantics, we work with epistemic Kripke struc-

tures M(S ) = (S , {Oi}, π), where S is a set of assignments to Vare ∪⋃
i∈Ags LVari, the observation functions are just restrictions to the

observable variables, i.e., Oi(s) = s � OVari, and and π is just the
trivial interpretation on S , i.e., v ∈ π(s) iff s(v) = 1.

In particular, for k = 0 . . .N we define structures Mk = M(S k) by
defining the sets S k. At the same time, we define the substitution θ.
These definitions proceed inductively, as follows. First, we define
S 0 to be the set of assignments s such that s |= Inite ∧

∧
i∈Ags Initi.

This determines M0.
Assuming that Mk has been constructed, we next define the im-

plementation θ(vk
φ) of each knowledge condition φ in Progi at time

k. This implementation is required to be a boolean expression over
the set OVari of observable variables for agent i. Rather than give
this formula explicitly, we characterize it by describing the assign-
ments o to these variables on which the formula is satisfied. For
vk
φ ∈ skellVar(Progi), we let θ(vk

φ) be any formula such that for all
o = Oi(s) with s ∈ S k, we have o |= θ(vk

φ) iff Mk, o |=i φ. (This does
not necessarily uniquely define θ(vk

φ) on all possible observations,
but leaves some flexibility to optimize the size of the formula by
choosing its value appropriately on the “don’t-care” observations,
applying ideas familiar from digital circuit design theory [21].)

Next, we define

S k+1 = {t | ∃s ∈ S k((s, τ ||i∈Ags stati
kθ) −→ (t, τ ||i∈Ags ε))} .

That is, we run the k-th step of the knowledge-based programs us-
ing the implementations of the knowledge conditions as just de-
fined from Mk, using the operational semantics −→ for standard
programs. (Note that the substitution θ has not yet been completely
defined, but it has already been sufficiently defined to provide a
value for each vk

φ in stati
k, so that stati

kθ is a standard program not
containing any skeleton variables v j

ψ.) This now gives the structure
Mk+1 = M(S k+1).

The following result states that the substitution obtained by this
process provides an implementation of P.

THEOREM 2. Let θ be the substitution defined above. Then Pθ
implements P inMe with respect to the view clk.

The iteration using the epistemic structures Mk in this construc-
tion is a generalization of an algorithm already in use in MCK for
model checking standard programs with respect to specifications of
the form Xkφ, with φ an atemporal formula, interpreted with respect
to the clock semantics. In the case of standard programs, the substi-
tution θ is the empty substitution, and the construction simplifies to
the existing algorithm in that case. The existing algorithm was al-
ready implemented symbolically using BDD’s (see section 2.1) to
represent the structures Mk, and the implementation is easily gen-
eralized to cover the extensions above. The main change is that
it is now required at each stage to evaluate the applicable knowl-
edge formulas φ in the structures Mk. This is done using an ex-
isting algorithm that computes a BDD representation of the set of
states of Mk satisfying φ, given the BDD representation of Mk. The
concrete condition θ(vk

φ) is then extracted as a boolean expression
over observable variables that holds in Mk at the same assignments

to observable variables as the formula φ. (Note that since φ is a
boolean combination of observable variables and formulas Kiψ, its
satisfaction depends only on observable variables.)

Since the semantics of knowledge-based programs with respect
to the synchronous perfect recall semantics has been introduced
above by means of a reduction to the clock case, we note that we
also obtain a procedure for synthesis of implementations with re-
spect to the synchronous perfect recall semantics. The only change
required is the introduction of history variables as described above.

5. EXAMPLES
In this section we discuss the performance of the symbolic syn-

thesis approach on a number of simple examples, and compare it to
an explicit state approach to a closely related problem.

The explicit state approach is essentially that implemented in
DEMO [37], which is the only other model epistemic checker that
presently has the expressive power to handle a problem close to
the knowledge-based program synthesis problem that our system is
able to handle. However, compared to our formulation, DEMO
does not include knowledge-based programs as an explicit con-
struct, it does not attempt to synthesize a concrete implementation
of such a programs, and it can handle only situations where the
atomic propositions do not change value over time.

DEMO deals with the evaluation of statements (M, S ) |= [U,T ]φ,
where M is an epistemic model, S is a set of states of that model,
U is an epistemic update and T is a set of states of U. More pre-
cisely, M = (W, {∼i}i∈Ags, π) where W is a set of worlds, each ∼i

is an equivalence relation on W, and π : W → Prop is an inter-
pretation of the atomic propositions. The update structure U has
the form (E, {∼E

i }i∈Ags, pre), where E is a set of events, each ∼E
i is

an equivalence relation on E representing events that agent i is not
able to distinguish, and pre maps E to formulas (since it is all we
will need, we assume here that these formulas are atemporal but
possibly epistemic formulas in our language). Intuitively, pre(e) is
a pre-condition for the occurrence of event e. The update of M by U
is then defined to be the epistemic structure M ◦ U = (W ′, {∼′i }, π

′)
where W ′ = {(w, e) ∈ W × E | M,w |= pre(e)}, the relation ∼′i
is defined by (w1, e1) ∼′i (w2, e2) if w1 ∼i w2 and e1 ∼

E
i e2, and

π′(w, e) = π(w). The statement (M, S ) |= [U,T ]φ, where S ⊆ W
and T ⊆ E, holds just when M ◦ U, (w, e) |= φ for all w ∈ S and
e ∈ T with w |= pre(e).

In the special case where actions do not change the values of
propositions (one example where this holds is the Muddy Chil-
dren problem, discussed below) we can encode each stage of a
knowledge-based program as an update. Suppose that each agent
i = 1 . . . n has atomic statement

if gi
1 → ai

1 [] . . . [] gi
ki
→ ai

ki
fi

where the gi
j are atemporal epistemic formulas. Then the parallel

composition of these statements corresponds to a set E = Πn
i=1{1 . . . ki}

with pre( j1, . . . jn) =
∧

i=1...n gi
ji
. If the effect of the actions ai

j on ob-
servable variables (as described in the environment model) can be
captured by indistinguishability relations on E, then we can encode
the stage of the knowledge-based program as an update.

One difference is immediately apparent however: in DEMO, the
epistemic model M, the update structure U, and the structure M◦U
are all represented by an explicit enumeration of their states. Be-
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muddy: Bool[Agent]
info: Bool[Agent]

init_cond = (Exists x:Agent() (muddy[x])) /\ Forall x:Agent() (info[x] == muddy[x])

agent Child0 "child" ( info[Child1], info[Child2], info[Child3] )
agent Child1 "child" ( info[Child2], info[Child3], info[Child0] )
agent Child2 "child" ( info[Child3], info[Child0], info[Child1] )
agent Child3 "child" ( info[Child0], info[Child1], info[Child2] )

transitions
begin
info[Child0] := Child0.SayYes; info[Child1] := Child1.SayYes;
info[Child2] := Child2.SayYes; info[Child3] := Child3.SayYes
end

protocol "child" ( info1: observable Bool, info2: observable Bool, info3: observable Bool )
begin
if (Knows Self muddy[Self]) \/ (Knows Self neg muddy[Self]) -> << SayYes >>
[] otherwise -> skip fi;
if (Knows Self muddy[Self]) \/ (Knows Self neg muddy[Self]) -> << SayYes >>
[] otherwise -> skip fi;
if (Knows Self muddy[Self]) \/ (Knows Self neg muddy[Self]) -> << SayYes >>
[] otherwise -> skip fi;
if (Knows Self muddy[Self]) \/ (Knows Self neg muddy[Self]) -> << SayYes >>
[] otherwise -> skip fi

end

Figure 3: A knowledge-based program for muddy children (perfect recall version)

cause of the cartesian products in the definition, the size of these
state spaces potentially grows exponentially in the number of agents
(and the number of updates applied to an initial structure), although
DEMO applies a quotient under a maximal bisimulation that may
reduce the size of these spaces in some cases. Our symbolic rep-
resentation, on the other hand, has the potential to avoid this expo-
nential blow-up. (The benefit is only potential because BDD repre-
sentations, though they often prove to be small in practice, are also
not guaranteed to be small in all cases.) It is therefore interesting to
investigate whether this potential benefit is realized in interesting
cases. We now explore this question for the well-known Muddy
children problem.

5.1 Muddy children
The muddy children puzzle [10] can be stated as follows:

A group of n children have been playing outside,
and some have mud on their foreheads. Each child can
see the forehead of the others but cannot see his or her
own forehead. Father says to group, “At least one of
you has mud on your forehead". He then repeated asks
following question: “Do you know whether or not you
have mud on your forehead?" The children give their
answers (‘Yes" or “No" ) simultaneously each time the
question is asked, and each child observes the answers
given by the other children.

Assuming that the children are perfect reasoners, have perfect re-
call and are honest, the expected behaviour is that if k out of n of the
children are muddy, then all children will answer “No" until round
k, in which all the muddy children answer “Yes” and the clean chil-
dren answer “No". We note also that from round k + 1 all children
answer “Yes".

The puzzle can be represented as a knowledge-based program.
Figure 3 gives the representation of the environment and the chil-
dren’s protocol in the concrete syntax of our MCK implementa-
tion, for the perfect recall case with n = 4. Father’s statement is
captured by means of the statement init_cond, which defines

the set of initial states. Since these are common knowledge, it
is initially common knowledge that there is at least one muddy
child. (The existential/universal quantifiers are restricted to finite
types and are just a syntactic sugar for disjunction/conjunction.) An
agent’s observable variables OVari are declared using the keyword
observable. Each observable variable adds complexity to the
BDD computation and, in the perfect recall semantics, is moreover
replicated at each moment of time. To minimize these costs, we use
a variable info[x] that represents the new information concern-
ing agent x at each step. Initially this variable is used to represent
whether agent x is muddy, and at later steps it represents whether
agent x has just said “Yes". Each agent observes all the variables
info[x] for the other agents (it can always deduce whether it
would itself have said “Yes" at the previous step).

Symmetry of the children’s behaviour is handled by giving a
general description, the knowledge-based protocol "child". The
knowledge-based program consists of a repeated sequence of if
statements, in which the keyword otherwise represents the nega-
tion of the disjunction of all the preceding guards. The agent
statements create fresh instances of the general protocol, in which
the the parameters of the instance are aliased to the correspond-
ing environment variables, and the keyword Self in the protocol
is interpreted as the agent being defined. In particular, each such
statement says that a child can observe (via the observable variables
seei) the new information about the other children. The environ-
ment’s transitions clause simply stores the childrens’ answers to the
boolean variables info[x] for x ∈ Ags.

The representation we use for a clock semantics version is slightly
different. Here, we cannot rely on agents to remember whether they
initially observed other children to be muddy, or whether they said
“Yes" in the previous step. We therefore make observable to all
agents an array said, representing the previous statements of all
the agents, and also include an observable variable for the muddi-
ness of each other child. Interpreting this version with respect to the
clock semantics yields exactly the same behaviour of the children
in the implementation as the perfect recall version, viz., if there are
k muddy children then these children first say “Yes" at stage k.
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To represent the puzzle in DEMO, each step of the knowledge
based program needs to be represented as an update structure U =

(E, {∼i}i∈Ags, pre), in which the events E correspond to possible ob-
servations that are made by the children after they reply to father’s
question. Thus, for n agents, the set of events E = {0, 1}n, with
e ∼i e′ iff e = e′, and for each tuple e = (e1, . . . , en) ∈ E we have
that pre(e) =

∧n
i=1 φi where φi = (Kimuddy[i]) ∨ (Ki¬muddy[i]) if

ei = 1 and φi = ¬((Kimuddy[i]) ∨ (Ki¬muddy[i])) if ei = 0. Since
DEMO runs in the Haskell interpreter, it is possible to represent U
succinctly as a Haskell program, but to perform the update calcu-
lation DEMO needs to construct the set E explicitly, so necessarily
performs an exponential amount of work.

The experimental results4 comparing the performance of our sym-
bolic approach to the DEMO modelling are shown in Table 1. In
addition to synthesis, we check, for the MCK program, the for-
mula Xnφ where φ =

∧
i∈Ags(Kimuddy[i] ∨ Ki¬muddy[i]) which

expresses that after n rounds, all the children know whether they
are muddy. For the DEMO program, we check φ after updating n
times.

Note that for n muddy children, we are dealing with an initial
state space of 2n−1 states and a deterministic solution protocol that
runs for n steps, giving n · (2n − 1) points in the relevant part of the
interpreted system. The results demonstrate that our symbolic ap-
proach does in practice scale significantly better when dealing with
this exponentially growing problem, particularly in the case of the
clock semantics version. (Recall that the synthesized behaviour is
exactly the same as for the perfect recall interpretation.) DEMO’s
performance rapidly degrades as the number of agents increases,
whereas our symbolic approach to the clock semantics is able to
very efficiently handle problems of larger scale. On the other hand,
DEMO is implicitly computing the perfect recall solution, so an ar-
guably the fairer comparison is with the MCK perfect recall model.
Here too our approach scales better, e.g., handling 10 agents in time
comparable to DEMO’s time for 7 agents. However, after initially
lagging DEMO’s explicit state approach, the total running time for
the larger cases that can be handled becomes more than two orders
of magnitude better.

5.2 Leader Election
The second example we consider concerns maintaining knowl-

edge of the leader on a ring of agents. We suppose that there are n
agents numbered i = 1 . . . n, with agent i able to send messages to
agent (i mod n)+1. Each agent has an observable input buffer that
is able to store one message. The agent also observes its own agent
number. An agent can crash at any time, and once crashed, remains
crashed. The leader at time t is defined as the highest numbered
agent that has not crashed by time t (and otherwise 0).

In each round, the environment first crashes a subset of the agents.
All uncrashed agents may send a message. The network delivers
any message that an agent is trying to send to the intended recipi-
ent, provided that the sender has not crashed. If agent i has crashed,
then the network detects this, and in place of the message that agent
i would have sent, the network delivers the message that was in
agent i’s buffer to agent (i mod n) + 1. (Intuitively, if the network
cannot deliver a message to an agent it sends it to the next agent in
the ring.) Each message is reliably marked with a “from" field, so
that the recipient can determine the original sender of the message.
(Note that this means also that when it receives a message that is
marked as from an agent other than the ("lower" numbered) agent
to its left, an agent can deduce that all agents between itself and the

4Our experiments were conducted on a Ubuntu Linux system
(3.06GHz Intel Core i3 with 4G memory). Each process is allo-
cated up to 500M memory.

original sender of the message have crashed.)
Note that the definition of the leader is a global property. Since it

takes at least n rounds of communication for any information about
a node to reach all other nodes, if the leader crashes then another
distant non-crashed agent cannot know about the crash for several
steps: agents distant from the leader therefore cannot know whether
the actual leader is still alive, so cannot know who is the leader.
We therefore focus on a weaker property than knowledge of who
is the leader. We say that agent i’s presumed leader is the largest
agent number mi for which agent i considers it possible that mi is
the leader. To help acquire and spread this knowledge, the agents
inform each other about their presumed leader: in each round, each
(noncrashed) agent i sends its neighbour a message “from i: j"
stating that its presumed leader is j.

Figure 4 shows our MCK representation of the knowledge-based
protocol. (For space reasons we omit the program for the environ-
ment.) To help identify crashes in the first step, we set the message
in agent i’s buffer at time 0 to be from i: 0. The atomic statement
� Sendj | presumed := j �, performed by agent i, has the effect
(encoded in the program for the environment) of causing the mes-
sage “from i: j" to be delivered to the right neighbour of agent i
provided that the agent has not crashed. The assignment to local
variable presumed stores the current presumed value.

It can be seen that the state space for this problem grows rapidly:
since a run is determined by the time at which each agent crashes,
if at all, for n agents there are (k + 1)n runs of length k. Ta-
ble 2 shows the performance of our symbolic synthesis procedure
as we increase the number of steps of the protocol. (We do not
give a comparison to DEMO. This problem is beyond the scope of
DEMO, because it handles only static propositions, whereas in this
problem the propositions change value over time.)

We have confirmed by model checking a manual solution for
the 3 agent case that that under both the clock and perfect recall
semantics, at each step, an agent knows that the leader is not A3
just when one of the following holds:

1. it knew this already in the previous step, because it already
had presumed < 3,

2. it receives a message from another agent that must have passed
through a chain of failures including A3, or

3. it receives a message “from j: y" with y < 3, which implies
that agent j knows that A3 is not the leader, or

4. it receives the message “from 3: 0", which implies that A3
failed in the first step.

Essentially the same predicate (with 2 in place of 3) captures the
circumstances under which an agent knows that the leader is not 2,
provided it also knows that the leader is not 3.

Manually verifying a nonterminating protocol that uses the above
predicates at each step to determine the current presumed leader,
we can verify that the following properties holds in the resulting
protocol (for the case of 3 agents): at all times all noncrashed
agents are greater than or equal to the actual leader, and if there are
no more crashes after time t, then within 2 steps all non-crashed
agent’s presumed leaders are the same as the actual leader.

6. RELATED WORK
Our focus in this paper has been on the pragmatics of knowledge-

based program syntax and on synthesis using a particular data struc-
ture for the symbolic representation of knowledge-based program
implementations. A number of works have approached the problem
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protocol "elect" (crashed : Bool, my_num: observable LeaderNum,
from_field: observable LeaderNum, message: observable LeaderNum)

presumed: LeaderNum

init_cond = presumed == 3

begin
if (neg crashed) /\ neg Knows Self neg leader == 3 -> <<Send3 | presumed := 3 >>
[] (neg crashed) /\ (Knows Self neg leader == 3 )

/\ neg Knows Self neg leader == 2 -> <<Send2 | presumed := 2 >>
[] (neg crashed) /\ (Knows Self neg leader == 3 )

/\ (Knows Self neg leader == 2 )
/\ neg Knows Self neg leader == 1 -> <<Send1 | presumed := 1 >>

[] otherwise -> skip fi;
(repeat if statement)
end

Figure 4: A knowledge-based protocol for leader election

No. of Children 4 5 6 7 8 9 10
DEMO 0.54 5.79 71.11 897.28 9,995.10 > 36,000

MCK clk 0.32 0.88 2.03 6.32 9.09 20.23 57.30
MCK spr 1.14 5.96 13.13 58.92 96.12 484.22 1,239.60

Table 1: Running Times (seconds) of Muddy Children

No. of Agents, Length of Run
Semantics 2 3 4 5 6 7 8 9 10

3, MCK clk 2.35 4.42 8.58 9.95 21.42 29.56 28.39 33.92 35.58
3, MCK spr 11.26 10.43 63.01 170.16 1,607.82 5,971.44 26,624.59 > 36,000

Table 2: Performance of synthesis on election protocol (seconds)

of constructing implementations from a more theoretical perspec-
tive.

Besides identifying the synchronous atemporal case, that we have
treated here, as one in which unique implementations exist, in [11]
it is shown that deciding the existence of an implementation with
respect to the observational view in a finite state environment is
PSPACE complete, even when the knowledge conditions are ex-
pressed using linear time temporal logic operators. Since model
checking LTL is also PSPACE complete but is still considered prac-
tical, this might suggest that this knowledge-based program imple-
mentation problem should also be tractable; unfortunately the al-
gorithm in question requires guessing an implementation from an
exponentially large set and then verifying it, so it is not clear that
this is the case.

We have focussed on programs of bounded length. It is shown
in [32] that the problem of determining whether an atemporal for-
mula of the form Kiφwhere φ is propositional, holds at a given view
of length n in the implementation of a knowledge-based program
with respect to the synchronous perfect recall view can be as hard
as PSPACE-complete. Besides indicating that we cannot expect to
always obtain tractable implementations in the perfect recall case
even for programs of bounded length, this result also has impli-
cations for nonterminating knowledge-based programs: it implies
that implementations of such programs are not finite state encod-
able in general. However, this does not preclude the practicality of
synthesis in particular cases.

For example, it is shown in [31] that finite state implementa-
tions of nonterminating knowledge-based programs are guaranteed
to exist in the case of the clock view, as well as broadcast envi-
ronments and environments with a single agent with synchronous
perfect recall. A formal verification of these results is described
in [12]. The implementation approach we have considered in the

present paper can in principle be extended to construct such imple-
mentations, but we have not yet experimented with this.

A general scheme that constructs a finite state implementation
with respect to the perfect recall semantics in the (undecidable) sit-
uation that one exists is described in [33]. The construction exploits
a quotient by the maximal bisimulation on temporal slices, that is
similar to the optimization used in the DEMO implementation. We
refer to Section 5 for a comparison of our approach to the epistemic
update logic problem considered in DEMO.

A number of papers have also applied model checking of knowl-
edge properties to synthesize distributed control strategies [4, 14,
22]. However, the approach taken in these works is weaker than
that in knowledge-based programs. Roughly, it corresponds to tak-
ing just one iteration of the fixpoint operator for a knowledge-based
program, so that it is not guaranteed that the implementing condi-
tion is equivalent to the desired knowledge property in the protocol
synthesized.

7. CONCLUSION
Our contribution in this paper has been to take the first step to-

wards the goal of a practical tool, based on symbolic methods, for
knowledge-based program implementation. We have demonstrated
that the approach works on two modest scale examples. In future
work, we plan to undertake further application case studies. We
also intend to develop optimizations of our initial implementation:
we believe that many avenues remain open for improvement of the
performance of our system. We also plan to extend it in directions
such as handling non-termination and probabilistic knowledge.
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ABSTRACT
The paper considers epistemic properties of linear commu-
nication chains. It describes a sound and complete logical
system that, in addition to the standard axioms of S5 in a
multi-modal language, contains two non-trivial axioms that
capture the linear structure of communication chains.

1. INTRODUCTION
In this paper we study epistemic properties of linear com-

munication protocols that we call communication chains.
An example of such a protocol is the Telephone game1 de-
picted in Figure 1: person P picks a random four-letter
word a and communicates it to Q. Person Q changes at
most one letter in a, and communicates it to person R as b.
Finally, R again changes at most one letter in b and com-
municates it to S as c. For instance, sequence (a, b, c) could
be (byte, bite, cite). We refer to such a sequence as a run of
the protocol.

P Q R S

byte

a b c

bite cite

Figure 1: Telephone Game.

Note that anyone who knows the value of message a on
the run r1 = (byte, bite, cite) will be able to conclude that
c 6= book. We say that channel a on run r1 “knows” that
c 6= book and write it as r1  2a(c 6= book). Note also that
anyone who knows the value of a on the run r1 will also be
able to conclude that anyone knowing the value of b on the
same run will be able to conclude that c 6= book. We write
this as r1  2a2b(c 6= book).

Formulas that are true on one run might not be true on
another run of the same protocol. For example, if r2 =
(toon, torn, tort), then r2 1 2a(c 6= book) since a person who
only knows the value of a on run r2 cannot distinguish this
run from (toon, boon, book). One can consider statements
that are true on any run of the Telephone game protocol.
Examples of such statements are:

2b(a 6= book)→ 2b(c 6= book),

2a(c 6= book)→ 2b(c 6= book).
1This game is also known as Chinese Whispers, Grapevine,
Broken Telephone, Whisper Down the Lane, and Gossip.

The first of these statements is true due to the symmetry
of the Telephone game: if (a, b, c) is a run then (c, b, a) is
also a run. This property is not necessarily true for all pro-
tocols. The second statement, although it is written in the
language specific to the Telephone game, can be stated in
the form which is true on each run of each protocol over the
communication chain depicted in Figure 1:

2apc → 2bpc, (1)

where pc is an arbitrary atomic proposition about the value
of the message c. In this paper we study that type of “uni-
versal”statements that are true on each run of each protocol.

As we will see later, runs can be viewed as Kripke worlds,
so all formulas provable in multi-modal version of S5 are
“universal” statements in our sense. In addition to S5 theo-
rems, however, our logical system included many facts that
reflect the linear structure of the communication chain. The
above formula (1) is one of them. Other, less obvious exam-
ples are:

2a3cϕ→ 2b3cϕ,

2a2cϕ→ 2a2b2cϕ,

2b(2aϕ ∨ 2cψ)→ (2bϕ ∨ 2bψ),

where ϕ and ψ are arbitrary formulas and 3c, as usual in
modal logic, stands for ¬2c¬. We will prove soundness of
these principles in Section 4.

The main result of this paper is a sound and complete
axiomatization of all properties that are true on each run of
each protocol of a given communication chain.

A communication chain can also be interpreted as a time-
line. Then, formula 2kϕ means that anyone, who has com-
plete information about a moment k in history, knows that
ϕ is true. For example, one can say,

22012(In the past, dinosaurs roamed the Earth)→
22011(In the past, dinosaurs roamed the Earth).

This interpretation connects our work with other works on
axiomatizations reasoning about time [2, 3, 8, 10, 11]. These
works, however, are very different from ours in the syntax
and semantics that they use. Properties like the the three
formulas above cannot be expressed in their language.

Epistemic logic for reasoning about communication graphs,
in a language significantly different from ours, was proposed
by Pacuit and Parikh [9]. They prove decidability of their
logical system, but do not give a complete explicit axioma-
tization.
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This work is also connected to works on information flow
on graphs [1, 4, 5, 6, 7], that study properties of nonde-
ducibility, functional dependency, and fault tolerance pred-
icates. Unlike these works, this paper is using modal lan-
guage. We discuss possible generalization of our work to
arbitrary communication graphs in the conclusion.

2. SYNTAX AND SEMANTICS
In the informal discussion above, we have implicitly as-

sumed that communication chains have finite length. In the
formal presentation through the rest of the paper we con-
sider infinite chains whose communication channels are la-
beled by consecutive integer numbers (see Figure 2). This is

-1 0. . .     -2 1    . . .2

Figure 2: Infinite Chain.

done in order to simplify our presentation. Our results still
hold for finite chains. Furthermore, any finite chain can be
viewed as an infinite chain in which a fixed default message
is sent through a cofinite number of channels.

We also assume that for each k ∈ Z there is a (possibly
infinite) set Pk of “atomic propositions” about channel k and
that sets Pk and Pm are disjoint for each k 6= m.

Next we define formulas in our language. The set of all
formulas will be denoted by Φ(Z). By Φ(A) we denote the
set of formulas whose “outermost” modalities have form 2k

for some k ∈ A and “outermost” atomic propositions belong
to Pk for some k ∈ A. Thus, for example,

2k(2mϕ→ 2nψ) ∈ Φ({k})

2m2kϕ→ 2n2kψ ∈ Φ({m,n}).

Definition 1. For each A ⊆ Z, set Φ(A) is the minimal
set of formulas such that

1. ⊥ ∈ Φ(A),

2. Pk ⊆ Φ(A), for each k ∈ A,

3. if ϕ ∈ Φ(A) and ψ ∈ Φ(A), then ϕ→ ψ ∈ Φ(A).

4. if ϕ ∈ Φ(Z), then 2kϕ ∈ Φ(A), for each k ∈ A.

We assume that the boolean connectives ∧, ∨, and ¬ are
defined through → and ⊥ in the standard way. As common
in modal logic, by 3kϕ we denote formula ¬2k¬ϕ.

In the Telephone game example in the introduction, we
have assumed that all messages are four-letter words. In
general, we will allow each channel k to have its own set of
possible values Vk. In the same example, we have assumed
that each person changes at most one letter in the word.
In general, we assume that there are local conditions that
specify relations between values of the adjacent channels.
In addition, for any k ∈ Z, any v ∈ Vk, and any p ∈ Pk, we
use predicate Tr(v, p) to specify if an atomic proposition p
is “true” when the value of the channel k is v.

Definition 2. A triple ({Vk}k∈Z, {Lk}k∈Z, T r) is called
a protocol if

1. Vk is an arbitrary set (of “values”), for each k ∈ Z.

2. Lk ⊆ Vk−1×Vk is an arbitrary (“local condition”) pred-
icate, for each k ∈ Z.

3. Tr is a binary predicate such that Tr ⊆
⋃

k∈Z(Vk×Pk).

Definition 3. For any protocol ({Vk}k∈Z, {Lk}k∈Z, T r),
a run is an arbitrary function r(k) on Z such that r(k) ∈ Vk

and (r(k − 1), r(k)) ∈ Lk for each k ∈ Z.

Next is the core definition of this paper. It formally defines
the semantics of the modality 2k.

Definition 4. For any given protocol

P = ({Vk}k∈Z, {Lk}k∈Z, T r),

we define relation  between an arbitrary run r of the pro-
tocol P and an arbitrary formula ϕ ∈ Φ(Z) as follows:

1. r 1 ⊥,

2. r  p if Tr(r(k), p), where p ∈ Pk.

3. r  ϕ→ ψ if r 1 ϕ or r  ψ,

4. r  2kϕ if r′  ϕ for each r′ such that r′(k) = r(k).

Note that relation r′(k) = r(k) between runs r′ and r is an
equivalence relation. Thus, the set of all runs of any given
protocol acts as a set of possible worlds of an S5 Kripke
frame.

3. AXIOMS
Our logical system is an extension of the multi-modal ver-

sion of S5 by additional properties that deal with atomic
propositions and topological structure of the communication
chain. As will be shown in the next section, the traditional
transitivity and S5 axioms of the modal logic S5 follow from
a more general2 Self-Awareness axiom below.

1. Distributivity: 2k(ϕ→ ψ)→ (2kϕ→ 2kψ),

2. Reflexivity: 2kϕ→ ϕ,

3. Self-Awareness: ϕ→ 2kϕ, where ϕ ∈ Φ({k}),

4. Gateway: 2kϕ → 2nϕ, where ϕ ∈ Φ(A) and either
k < n ≤ min(A) or max(A) ≤ n < k,

5. Disjunction: 2k(ϕ∨ψ)→ 2kϕ∨2kψ, where ϕ ∈ Φ(A),
ψ ∈ Φ(B), and max(A) ≤ k ≤ min(B).

We write ` ϕ if ϕ ∈ Φ(Z) is provable from the axioms
above and propositional tautologies in the language Φ(Z)
using the Modus Ponens inference rule and the Necessitation
inference rule:

ϕ

2kϕ
.

We write X ` ϕ if ϕ is provable from the theorems of our
system and the additional set of axioms X using only Modus
Ponens inference rule.

2The Self-Awareness axiom includes, for example, the prin-
ciple p→ 2kp for p ∈ Pk, which is not provable in S5.
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4. EXAMPLES
Soundness of our logical system will be shown in the next

section. Here we give several examples of proofs in our for-
mal system.

Proposition 1 (transitivity). ` 2kϕ → 2k2kϕ for
each ϕ ∈ Φ(Z) and each k ∈ Z.

Proof. Note that 2kϕ ∈ Φ({k}). Thus, by the Self-
Awareness axiom, ` 2kϕ→ 2k2kϕ.

Proposition 2 (S5 axiom). ` 3kϕ→ 2k3kϕ, for each
ϕ ∈ Φ(Z) and each k ∈ Z.

Proof. Note that 3kϕ ∈ Φ({k}). Thus, by the Self-
Awareness axiom, ` 3kϕ→ 2k3kϕ.

Proposition 3. If k ≤ m ≤ n and ϕ ∈ Φ(Z), then

` 2k3nϕ→ 2m3nϕ.

Proof. Note that 3nϕ ∈ Φ({n}). Thus, by the Gateway
axiom, ` 2k3nϕ→ 2m3nϕ.

Proposition 4. If k ≤ m ≤ n and ϕ ∈ Φ(Z), then

` 2k2nϕ→ 2k2m2nϕ.

Proof. Note that 2nϕ ∈ Φ({n}). Hence, by the Gate-
way axiom, ` 2k2nϕ → 2m2nϕ. Thus, by the Necessi-
tation rule, ` 2k(2k2nϕ → 2m2nϕ). Then, by the Dis-
tributivity axiom, ` 2k2k2nϕ → 2k2m2nϕ. Therefore,
` 2k2nϕ→ 2k2m2nϕ by Proposition 1.

Proposition 5. If k ≤ m ≤ n and ϕ,ψ ∈ Φ(Z), then

` 2m(2kϕ ∨ 2nψ)→ (2mϕ ∨ 2mψ).

Proof. Note that 2kϕ ∈ Φ({k}) and 2nψ ∈ Φ({n}).
Hence, by the Disjunction axiom,

` 2m(2kϕ ∨ 2nψ)→ (2m2kϕ ∨ 2m2nψ). (2)

At the same time, by the Reflexivity axiom, ` 2kϕ → ϕ.
Hence, by the Necessitation rule, ` 2m(2kϕ → ϕ). Thus,
by the Distributivity axiom, ` 2m2kϕ → 2mϕ. One can
similarly show that ` 2m2nψ → 2mψ. Therefore, from
Statement (2), ` 2m(2kϕ ∨ 2nψ)→ (2mϕ ∨ 2mψ).

5. SOUNDNESS
Soundness of propositional tautologies and the Modus Po-

nens inference rule is straightforward. We will prove sound-
ness of the Necessitation rule and of the remaining five ax-
ioms as separate lemmas.

Lemma 1 (necessitation). If r  ϕ for any run r of
any protocol, then r  2kϕ for any run r of any protocol.

Proof. Consider any run r. It will be sufficient to show
that r′  ϕ for each r′ such that r′(k) = r(k), which is true
due to the assumption of the lemma.

Lemma 2 (distributivity). For any run r of a proto-
col P , if r  2k(ϕ→ ψ) and r  2kϕ, then r  2kψ.

Proof. Let r′ be any run of P such that r′(k) = r(k).
We will show that r′  ψ. Indeed, by the first assumption,
r′  ϕ → ψ. By the second assumption, r′  ϕ. Therefore,
by Definition 4, r′  ψ.

Lemma 3 (reflexivity). For any run r of a protocol
P , if r  2kϕ, then r  ϕ.

Proof. Lemma follows from Definition 4 and the fact
that r(k) = r(k).

In the proofs of the soundness of the next three axioms,
we use the following auxiliary lemma:

Lemma 4. For any A ⊆ Z, any formula ϕ ∈ Φ(A), and
any runs r, r′ of the protocol ({Vk}k∈Z, {Lk}k∈Z, T r) such
that r(a) = r′(a) for every a ∈ A, r  ϕ if and only if
r′  ϕ.

Proof. Induction on structural complexity of formula ϕ.
If ϕ ≡ ⊥, then the required follows from Definition 4.

If ϕ ≡ p ∈ Pa is an atomic proposition for some a ∈
A, then r  p, by Definition 4 is equivalent to Tr(r(a), p).
At the same time, Tr(r(a), p) is equivalent to Tr(r′(a), p)
due to the assumption that r(a) = r′(a). Finally, again by
Definition 4, Tr(r′(a), p) is equivalent to r′  p.

If ϕ ≡ ϕ1 → ϕ2, then r  ϕ1 → ϕ2 is equivalent to
disjunction of r 1 ϕ1 and r  ϕ2 by Definition 4. The
disjunction, by the Induction Hypothesis, is equivalent to
the disjunction of r′ 1 ϕ1 and r′  ϕ2. Which, in turn, is
equivalent to r′  ϕ1 → ϕ2 by Definition 4.

Finally, assume that ϕ ≡ 2aψ for some a ∈ A. Without
loss of generality, we suppose r  2aψ and will prove r′ 
2aψ. Indeed, let r′′ be any run of the protocol such that
r′′(a) = r′(a). It will be sufficient to show that r′′  ψ.
Note that r′′(a) = r′(a) = r(a). Thus, r′′  ψ due to the
assumption r  2aψ and Definition 4.

Lemma 5 (self-awareness). For any run r of a pro-
tocol P , any k ∈ Z, and any ϕ ∈ Φ({k}), if r  ϕ, then
r  2k(ϕ).

Proof. Consider any run r′ such that r′(k) = r(k). It
will be sufficient to show that r′  ϕ, which is true due to
the assumption r  ϕ and Lemma 4.

Lemma 6 (gateway). For any A ⊆ Z, any ϕ ∈ Φ(A),
any run r, and any k, n ∈ Z such that k < n ≤ min(A) or
max(A) ≤ n < k, if r  2kϕ, then r  2nϕ.

Proof. Without loss of generality, assume that k < n ≤
min(A). Let r′ be any run such that r(n) = r′(n). We will
show that r′  ϕ. Indeed, consider function r+(x) on Z such
that

r+(x) =

{
r(x) if x < n,
r′(x) otherwise.

We will show that r+ is a run of the protocol. It trivially
satisfies local conditions Lx for all x 6= n. To show that local
condition Ln is satisfied notice that Ln(r+(n− 1), r+(n)) is
equivalent to Ln(r(n− 1), r′(n)). Then it is also equivalent
to Ln(r(n − 1), r(n)) due to the assumption r(n) = r′(n).
Statement Ln(r(n − 1), r(n)) is true because r is a run of
the protocol.

Note that r+(k) = r(k) by the assumption k < n. Thus,
r+  ϕ by the assumption r  2kϕ. Hence, r′  ϕ by
Lemma 4 and due to the fact that r+(a) = r′(a) for each
a ∈ A.

Lemma 7 (disjunction). For any A,B ⊆ Z, any ϕ ∈
Φ(A), any ψ ∈ Φ(B), any run r, and any integer k ∈ Z
such that max(A) ≤ k ≤ min(B), if r  2k(ϕ ∨ ψ), then
r  2kϕ ∨ 2kψ.
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Proof. Suppose that r 1 2kϕ ∨ 2kψ. Thus, by Defini-
tion 4, r 1 2kϕ and r 1 2kψ. Hence, by Definition 4, there
are runs r1 and r2 where r1(k) = r(k) = r2(k) such that
r1 1 ϕ and r2 1 ψ.

Consider function r+(x) on Z such that

r+(x) =

{
r1(x) if x ≤ k,
r2(x) if x ≥ k.

This function is well defined since r1(k) = r2(k). It satisfies
local conditions of the protocol since runs r1 and r2 do.
Thus, r+ is a run of the protocol. Note that r+(a) = r1(a)
for each a ∈ A and r+(b) = r1(b) for each b ∈ B. Hence,
by Lemma 4, r+ 1 ϕ and r+ 1 ψ. Thus, by Definition 4,
r+ 1 ϕ ∨ ψ. This is a contradiction with the assumption
r  2k(ϕ ∨ ψ) and the fact that r+(k) = r1(k) = r(k).

6. COMPLETENESS
In this section we will prove the completeness of our logical

system with respect to the semantics defined above. We
start with two technical lemmas.

Lemma 8. ` 2k(ϕ ∧ ψ)→ (2kϕ ∧ 2kψ).

Proof. It will be sufficient to prove that ` 2k(ϕ∧ψ)→
2kϕ. Note that (ϕ ∧ ψ) → ϕ is a propositional tautology.
Thus, ` 2k((ϕ ∧ ψ)→ ϕ) by the Necessitation rule. Hence,
` 2k(ϕ ∧ ψ)→ 2kϕ, by the Distributivity axiom.

Lemma 9. For any disjoint subsets A ⊆ Z, B ⊆ Z, any
family of formulas {ϕi}i∈A∪B, and any k ∈ Z such that
max(A) ≤ k ≤ min(B),

` 2k

( ∨
i∈A∪B

ϕi

)
→

(
2k

(∨
i∈A

ϕi

)
∨ 2k

(∨
i∈B

ϕi

))
.

Proof. Note the the following formula is a propositional
tautology in our language:∨

i∈A∪B

ϕi →

(∨
i∈A

ϕi ∨
∨
i∈B

ϕi

)
.

Hence, by the Necessitation Rule,

` 2k

( ∨
i∈A∪B

ϕi →

(∨
i∈A

ϕi ∨
∨
i∈B

ϕi

))
.

Thus, by the Distributivity axiom,

` 2k

( ∨
i∈A∪B

ϕi

)
→ 2k

(∨
i∈A

ϕi ∨
∨
i∈B

ϕi

)
.

Therefore,

` 2k

( ∨
i∈A∪B

ϕi

)
→ 2k

(∨
i∈A

ϕi

)
∨ 2k

(∨
i∈B

ϕi

)
,

by the Disjunction axiom.

Theorem 1. If 0 ϕ, then there is a protocol P and a run
r of the protocol P such that r 1 ϕ.

Proof. Assume that 0 ϕ. Let X0 be a maximal and
consistent subset of Φ(Z) containing ¬ϕ. Let X be the set
of all maximal consistent subsets of Φ(Z).

Definition 5. For any X,Y ∈ X let X ∼k Y mean that
ψ ∈ X if and only if ψ ∈ Y for each ψ ∈ Φ({k}).

Lemma 10. For any X ∈ X and any ψ such that 2kψ /∈
X, there is Y ∈ X such that Y ∼k X and ¬ψ ∈ Y .

Proof. We will first show that the following set is con-
sistent: {σ ∈ Φ({k}) | σ ∈ X} ∪ {¬ψ}. Indeed, let there be
σ1, . . . , σn ∈ Φ({k}) ∩X such that

` σ1 → (σ2 → · · · → (σn → ψ) . . . ).

By the Necessitation rule,

` 2k(σ1 → (σ2 → · · · → (σn → ψ) . . . )).

By multiple applications of the Distributivity axiom,

` 2kσ1 → (2kσ2 → · · · → (2kσn → 2kψ) . . . ).

By multiple applications of the Self-Awareness axiom,

` σ1 → (σ2 → · · · → (σn → 2kψ) . . . ).

Hence, by multiple applications of the Modus Ponens rule,
σ1, σ2, . . . , σn ` 2kψ. Thus, X ` 2kψ, which is a contra-
diction with maximality of X and the assumption 2kψ /∈
X. Let Y be a maximal consistent set containing {σ ∈
Φ({k}) | σ ∈ X} ∪ {¬ψ}.

We are only left to show that if σ ∈ Y , then σ ∈ X for each
σ ∈ Φ({k}). Indeed, assume that σ /∈ X. Then, ¬σ ∈ X by
the maximality of X. Hence, ¬σ ∈ Y due to the choice of
Y . Therefore, σ /∈ Y due to consistency of Y .

Lemma 11. ∼k is an equivalence relation on X, for each
k ∈ Z.

We now will define protocol P = ({Vk}k∈Z, {Lk}k∈Z, T r).

Definition 6. Let Vk be the set of equivalence classes of
X with respect to relation ∼k.

By [X]k we mean the equivalence class of element X with
respect to the equivalence relation ∼k.

Definition 7. Lk(α, β) if set α ∩ β is not empty.

Definition 8. For any p ∈ Pk and any set X ∈ X,
Tr([X]k, p) is true if p ∈ Y for each Y ∼k X.

In other words, Tr([X]k, p) iff p ∈ ∩ [X]k. This concludes
the definition of the protocol P .

Lemma 12. For each ψ ∈ Φ(A), any run r of the protocol
P , any k ∈ Z, and any X ∈ X, if 2kψ ∈ X, X ∈ r(k), and
either k ≤ n ≤ min(A) or max(A) ≤ n ≤ k, then 2nψ ∈ Z
for each Z ∈ r(n).

Proof. Without loss of generality, let k ≤ n ≤ min(A).
Induction on n. If n = k, then 2kψ ∈ X implies, by Defini-
tion 5, that 2kψ ∈ Z for each Z ∼k X. Therefore, 2kψ ∈ Z
for each Z ∈ r(k).

Assume now that k < n. By Ln condition, there exists Y
such that Y ∈ r(n − 1) ∩ r(n). By the Induction Hypothe-
sis, 2n−1ψ ∈ Y . Hence, by the Gateway axiom, Y ` 2nψ.
Hence, 2nψ ∈ Y by maximality of Y . Thus, by the Defini-
tion 5, 2nψ ∈ Z for each Z ∼n Y . Therefore, 2nψ ∈ Z for
each Z ∈ r(n).
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Recall that value of any run r under protocol P is an
equivalence class of X. Thus, ∩ r(k) is a set of formulas. We
will refer to this intersection in the next lemma.

Lemma 13. For any non-empty set A ⊆ Z and any set
of formulas {ψa}a∈A such that ψa ∈ Φ({a}) for each a ∈ A
and any X ∈ r(k), if

2k

∨
a∈A

ψa ∈ X

and either k ≤ min(A) or max(A) ≤ k, then there is a0 ∈ A
such that ψa0 ∈ ∩ r(a0).

Proof. Without loss of generality, assume k ≤ min(A).
We will prove the lemma by induction on the size of set A.

Base Case. Suppose that A = {a0}. By Lemma 12, as-
suming n = a0, we have 2a0ψa0 ∈ X for each X ∈ r(a0).
Hence, due to maximality of the set X and the Reflex-
ivity axiom, ψa0 ∈ X for each X ∈ r(a0). Therefore,
ψa0 ∈ ∩ r(a0).

Induction Step. Suppose that |A| > 1. Let X0 be any set
from r(min(A)). By Lemma 12, assuming n = min(A), we
have

2min(A)

∨
a∈A

ψa ∈ X0.

Hence, by Lemma 9 and due to maximality of X0,

2min(A)

ψmin(A) ∨
∨

a∈A\{min(A)}

ψa

 ∈ X0.

By the Disjunction axiom,

X0 ` 2min(A)ψmin(A) ∨ 2min(A)

∨
a∈A\{min(A)}

ψa.

Hence, due to maximality of the set X0, one of the following
statements is true:

2min(A)ψmin(A) ∈ X0,

2min(A)

∨
a∈A\{min(A)}

ψa ∈ X0.

In either case, the required follows from the Induction Hy-
pothesis.

Lemma 14. For any non-empty set A ⊆ Z and any set
of formulas {ψa}a∈A such that ψa ∈ Φ({a}) for each a ∈ A
and any X ∈ r(k), if

2k

∨
a∈A

ψa ∈ X,

then there is a0 ∈ A such that ψa0 ∈ ∩ r(a0).

Proof. By Lemma 9 and due to maximality of X,

2k

∨
a∈A
a≤k

ψa ∨
∨
a∈A
a>k

ψa

 ∈ X.
By the Disjunction axiom,

X ` 2k

∨
a∈A
a≤k

ψa

 ∨ 2k

∨
a∈A
a>k

ψa

 .

Hence, due to maximality of the set X, one of the following
statements is true:

2k

∨
a∈A
a≤k

ψa

 ∈ X or 2k

∨
a∈A
a>k

ψa

 ∈ X.
In either case, the required follows from Lemma 13.

Lemma 15. r  ψ if and only if ψ ∈ ∩ r(k), for each
k ∈ Z, each run r of the protocol P , and each ψ ∈ Φ({k}).

Proof. Induction on structural complexity of formula ψ.
If ψ ≡ ⊥, then the required follows from consistency of the
set r(k) and Definition 4. If ψ is an atomic proposition, then
the required follows from Definition 8.

Assume that ψ ≡ σ → σ′ for some σ, σ′ ∈ Φ({k}).
(⇒) : Suppose that r  σ → σ′. Thus, r 1 σ or r  σ′.
In the first case, by the Induction Hypothesis, σ /∈ ∩ r(k).
Hence, there is X ∈ r(k) such that σ /∈ X. Thus, σ → σ′ ∈
X due to maximality of the set X. Hence, by Definition 5,
σ → σ′ ∈ Y , for each Y ∼k X. Therefore, σ → σ′ ∈ ∩ r(k).

In the second case, by the Induction Hypothesis, σ′ ∈
∩ r(k). Thus, σ′ ∈ X for each X ∈ r(k). Hence, σ → σ′ ∈ X
for each X ∈ r(k) due to maximality of set X. Therefore,
σ → σ′ ∈ ∩ r(k).
(⇐) : Suppose that r 1 σ → σ′. Thus, r  σ and r 1 σ′.
Then, by the Induction Hypothesis, σ ∈ ∩ r(k) and σ′ /∈
∩ r(k). Hence, there is X ∈ r(k) such that σ ∈ X and
σ′ /∈ X. Thus, by maximality of the set X and the Modus
Ponens rule, σ → σ′ /∈ X. Therefore, σ → σ′ /∈ ∩ r(k).

Finally, assume that ψk ≡ 2kσ. Let
∧

i

∨
j σ

i
j be the con-

junctive normal form of the formula σ such that σi
j ∈ Φ({j})

for each i and each j. Note that the following formula is
provable in propositional logic without any additional modal
axioms:

σ →
∧
i

∨
j

σi
j .

Thus, by the Necessitation Rule,

` 2k

(
σ →

∧
i

∨
j

σi
j

)
.

By the Distributivity axiom,

` 2kσ → 2k

(∧
i

∨
j

σi
j

)
. (3)

One can similarly show that

` 2k

(∧
i

∨
j

σi
j

)
→ 2kσ. (4)

(⇐) : Suppose that 2kσ ∈ ∩ r(k). Let r′ be any run of
the protocol such that r(k) = r′(k). We will show that
r′ 

∧
i

∨
j σ

i
j .

Note that 2kσ ∈ ∩ r(k) implies that 2kσ ∈ ∩ r′(k), be-
cause of the assumption r(k) = r′(k). Hence, 2kσ ∈ X for
each X ∈ r′(k). Thus, taking into account Statement (3),

2k

(∧
i

∨
j

σi
j

)
∈ X.
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Then, by Lemma 8,

2k

(∨
j

σi
j

)
∈ X.

for each X ∈ r′(k) and each i. Hence by Lemma 14, for each
i there is j0 such that σi

j0 ∈ ∩ r
′(j0). Thus, by the Induction

Hypothesis, for each X ∈ r′(k) and each i there is j0 such
that r′  σi

j0 . Hence, r′ 
∧

i

∨
j σ

i
j .

(⇒) : Suppose that 2kσ /∈ ∩ r(k). Thus, there is X ∈ r(k)
such that 2kσ /∈ X. Then, due to Statement (4),

2k

(∧
i

∨
j

σi
j

)
/∈ X.

Hence, by Lemma 10, there is Y ∼k X such that

¬
∧
i

∨
j

σi
j ∈ Y.

Thus, due to the maximality of Y , there is i0 such that

¬
∨
j

σi0
j ∈ Y.

Hence, due to the maximality of Y , for each j,

¬σi0
j ∈ Y. (5)

Consider function rY such that rY (n) = [Y ]n for each n ∈ Z.
Note that Y ∈ [Y ]n−1 ∩ [Y ]n. Thus, [Y ]n−1 ∩ [Y ]n is not
empty for any n ∈ Z. Therefore, r is a run of the protocol
P . By Definition 5, Statement (5) implies that ¬σi0

j ∈ Y
′

for each j and each Y ′ ∼j Y . Hence, ¬σi0
j ∈ ∩ rY (j) for

each j. Thus, by the Induction Hypothesis, rY  ¬σi0
j for

each j. Then,

rY  ¬
∨
j

σi0
j .

Hence,

rY  ¬
∧
i

∨
j

σi
j .

In other words, rY  ¬σ. Therefore, r 1 2kσ.

To finish the proof of the theorem, assume that
∧

i

∨
j ϕ

i
j is

the conjunctive normal form of the formula ¬ϕ such that
ϕi

j ∈ Φ({j}) for each i and each j. Consider r such that
r(n) = [X0]n for each n ∈ Z. Note that X0 ∈ [X0]n−1 ∩
[X0]n. Thus, [X0]n−1 ∩ [X0]n is not empty for any n ∈ Z.
Therefore r is a run of the protocol P .

Recall that ¬ϕ ∈ X0. Thus,
∧

i

∨
j ϕ

i
j ∈ X0. Hence,∨

j ϕ
i
j ∈ X0 for each i due to maximality of the set X0.

Hence, again due to maximality of X0, for each i there is ji
such that ϕi

ji ∈ X0. Hence, by Lemma 15, r  ϕi
ji for each

i. Thus, r 
∧

i

∨
j ϕ

i
j . Therefore, r  ¬ϕ. In other words,

r 1 ϕ.

7. CONCLUSIONS

7.1 Directed Chains
Although edges representing channels a, b, and c in Fig-

ure 1 are drawn as directed, none of our definitions so far
have used them as such. The “directness” of these edges can
be captured by restricting the class of all protocols to these

that satisfy the additional continuity condition [1]: for each
v ∈ Vk−1 there is u ∈ Vk such that Lk(v, u). This require-
ment, however, does not change any of our results and the
existing proof of completeness still holds because the pro-
tocol constructed in the proof of completeness satisfies the
continuity condition. Indeed, for any [X]k−1 ∈ Vk−1 one
can just take [X]k ∈ Vk and notice that Lk is true because
X ∈ [X]k−1 ∩ [X]k.

7.2 Communication Networks
Communication chains can be generalized to non-linear

communication networks like the one depicted in Figure 3.
Intuitively it is clear that if 2a2fϕ on this network, then

a

b d

f

c e

Figure 3: Communication Network.

this knowledge of a is acquired through channels b and c.
This is an example of a more general form of the Gateway
axiom for communication networks. However, straightfor-
ward formalization of this principle

2a2fϕ→ (2b2fϕ ∨ 2c2fϕ)

is not true since the encrypted evidence of 2fϕ could have
traveled through channels b and d and the encryption key
through channels c and e. Thus, neither b nor c alone would
have knowledge of 2fϕ under such a protocol. The right
way to formalize the Gateway principle in this setting is

2a2fϕ→ (2b,c2fϕ),

where 2b,cψ means that anyone who knows values b and c
will be able to conclude ψ. In general, Definition 4 can be
modified to say

4. r  2Aϕ if r′  ϕ for each r′ such that r′(a) = r(a)
for all a ∈ A.

Then, the Gateway axiom can be stated as follows: if every
path from each edge in set A to each edge in set B goes
through an edge in set G, then

2Aϕ→ 2Gϕ,

for each ϕ ∈ Φ(B). Similarly, the Disjunction axiom can
be rephrased for communication networks as: if every path
from each edge in set A to each edge in set B goes through
an edge in set G, then

2G(ϕ ∨ ψ)→ (2Gϕ) ∨ (2Gψ),

for each ϕ ∈ Φ(A) and each ψ ∈ Φ(B).
Both of these axioms are sound in the stated form. How-

ever, our proof of completeness heavily relies on equivalence
relation ∼k and it is not clear how relations ∼A for multiple
A all of which might contain k should work together. Thus,
a complete axiomatization of epistemic logic for non-linear
communication networks remains an open problem.
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ABSTRACT
Knowledge-based programs (KBPs) are high-level protocols
describing the course of action an agent should perform as
a function of its knowledge. The use of KBPs for expressing
action policies in AI planning has been surprisingly over-
looked. Given that to each KBP corresponds an equivalent
plan and vice versa, KBPs are typically more succinct than
standard plans, but imply more on-line computation time.
Here we make this argument formal, and prove that there
exists an exponential succinctness gap between knowledge-
based programs and standard plans. Then we address the
complexity of plan existence. Some results trivially follow
from results already known from the literature on planning
under incomplete knowledge, but many were unknown so
far.

1. INTRODUCTION
Knowledge-based programs (KBPs) [7] are high-level pro-

tocols which describe the actions an agent should perform
as a function of its knowledge, such as, typically, if Kϕ
then π else π′, where K is an epistemic modality and π,
π′ are subprograms.

Thus, in a KBP, branching conditions are epistemically
interpretable, and deduction tasks are involved at execution
time (on-line). KBPs can be seen as a powerful language
for expressing policies or plans, in the sense that epistemic
branching conditions allow for exponentially more compact
representations. In contrast, standard plans (as in contin-
gent planning) or standard policies (as in POMDPs) either
are sequential or branch on objective formulas, and hence
can be executed efficiently, but they can be exponentially
larger (see for instance [1]).

Having said this, KBPs have surprisingly been overlooked
in the perspective of planning. Initially developed for dis-
tributed computing, they have been considered in AI for
agent design [5] and game theory [10]. For planning, the
only works we know of are by Reiter [17], who gives an
implementation of KBPs in Golog; Classen and Lakemeyer
[6], who implement KBPs in a decidable fragment of the
situation calculus; Herzig et al. [9], who discuss KBPs for

∗This work was supported by the French National Research
Agency under grant ANR-10-BLAN-0215 (LARDONS).

TARK 2013, Chennai, India.
Copyright 2013 by the authors.

propositional planning problems, and Laverny and Lang [12,
13], who generalize KBPs to belief -based programs allowing
for uncertain action effects and noisy observations. None of
these papers really addresses computational issues.

A few papers in the AI planning literature have stud-
ied planning with incomplete knowledge where the agent’s
knowledge is represented by means of epistemic modalities,
such as Petrick and Bacchus [16]. Another recent stream
of work focuses on describing planning problems within the
framework of Dynamic Epistemic Logic (Löwe et al. [14],
Bolander and Andersen [3]). Nilogy and Ramanujam [15]
also make use of epistemic logic for planning with “action
trials”, where action feedback corresponds to the action suc-
ceeding or failing. However, in all these papers, epistemic
formulas are used only for representing the current knowl-
edge state and the effects of actions, not in branching con-
ditions, which bear on observations only.

Recently, [11] have started to address the computational
issues of planning with knowledge-based programs, by iden-
tifying the complexity of plan verification under various as-
sumptions on the available constructs for plans and the avail-
able actions. Even if they briefly address the succinctness of
knowledge-based programs compared to standard plans, the
discussion remains at an informal level; moreover they do
not consider at all the plan existence problem, which is even
more important for practical planning purposes than plan
verification. This paper contributes to fill these two gaps.

We define knowledge-based programs and planning prob-
lems in Section 3. Section 4 formally relates KBPs to stan-
dard plans, by showing that both have the same expres-
sivity, but that KBPs are exponentially more succinct than
standard plans. Section 5 focuses on the plan existence prob-
lem. We could think that because KBPs and standard plans
are equally expressive, KBP existence is equivalent to stan-
dard plan existence, the complexity of which has been in-
vestigated, especially by Rintanen [18]. This is partly true,
and indeed some results about KBP existence directly fol-
low from these earlier results. This is however not true for
(a) “small” KBP existence problems, where the objective
is to find a small enough KBP allowing to reach the goal;
(b) purely epistemic plan existence, which have surprisingly
been ignored. Our main results are the following: (a) the
existence of a bounded-size solution KBP is EXPSPACE-
complete, and falls down to Σp3-complete if loops are disal-
lowed, to Σp2-complete for the restriction to ontic actions and
the restriction to epistemic actions and positive goals; (b)
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purely epistemic plan existence is PSPACE-complete, and
coNP-complete if the goal is a positive epistemic formula.
Further issues are briefly evoked in the conclusion.

2. PRELIMINARIES
A KBP is executed by an agent in an environment. We

model what the agent knows about the current state (of
the environment and internal variables) in the propositional
epistemic logic S5. Let X = {x1, . . . , xn} be propositional
symbols. A state is a valuation of X; e.g., x1x2 is the state
where x1 is false and x2 is true. We sometimes use the
notation xε with x1 = x and x0 = x̄. A knowledge state M
for S5 is a nonempty set of states (those the agent considers
possible): at any point in time, the agent has a knowledge
state M ⊆ 2X and the current state is some s ∈ M . For
instance, M = {x1x̄2, x̄1x2} means that the agent knows x1

and x2 have different values in the current state.
Formulas of S5 are built up from X, the usual connectives,

and the knowledge modality K. An S5 formula is objective
if it does not contain any occurrence of K. Objective formu-
las are denoted by ϕ, ψ, etc. whereas general S5 formulas
are denoted by Φ, Ψ etc. For an objective formula ϕ, we
denote by Mods(ϕ) the set of all states which satisfy ϕ (i.e.,
Mods(ϕ) = {s ∈ 2X , s |= ϕ}). The size |Φ| of an S5 for-
mula Φ is the total number of occurrences of propositional
symbols, connectives and modality K in Φ. It is well-known
(see, e.g., [7]) that any S5 formula is equivalent to a formula
without nested K modalities; therefore we disallow them.
An S5 formula Φ is purely subjective if objective formulas
occur only in the scope of K, and a purely subjective S5

formula is in knowledge negative normal form (SKNNF) if
the negation symbol ¬ occurs only in objective formulas (in
the scope of K) or directly before a K modality. Note that
any purely subjective S5 formula Φ can be rewritten into
an equivalent SKNNF of polynomial size using de Morgan’s
laws. An SKNNF formula is positive if the negation sym-
bol never appears in front of a K modality. For instance,
K¬(p∧q)∨¬(Kr∨K¬r) is not in SKNNF, but is equivalent
to the SKNNF formula K¬(p ∧ q) ∨ (¬Kr ∧ ¬K¬r), which
is not a positive SKNNF, whereas K¬(p∧ q)∧ (Kr∨K¬¬r)
is a positive SKNNF.

The satisfaction of a purely subjective formulas depends
only on a knowledge state M , not on the actual current state
(see, e.g., [7]): M satisfies an atom Kϕ, written M |= Kϕ,
if for all s ∈M , s |= ϕ, and the semantics for combinations
of atoms with ¬,∧,∨ is defined as usual.

3. KNOWLEDGE-BASED PROGRAMS AND
PLANNING PROBLEMS

We briefly recall the essential definitions about KBPs [11].
Given a set AO of ontic actions and a set AE of epistemic
actions, a knowledge-based program (KBP) is defined induc-
tively as follows:

• the empty plan πλ is a KBP;

• any action α ∈ AO ∪AE is a KBP;

• if π and π′ are KBPs, then π;π′ is a KBP;

• if π, π′ are KBPs and Φ is a formula in SKNNF , then
if Φ then π else π′ endif is a KBP;

• if π is a KBP and Φ is a formula in SKNNF, then
while Φ do π endwhile is a KBP.

The class of while-free KBPs is obtained by omitting the
while construct. The size |π| of a KBP π is defined to be
the number of occurrences of actions, plus the size of branch-
ing conditions, in π. Finally, we sometimes view while-free
KBPs as trees, with some nodes labelled by actions and
having one child (the KBP following this action), and some
nodes labelled by an epistemic formula and having two chil-
dren (for if constructs). Accordingly, we refer to branches
of KBPs.

Let X ′ = {x′ | x ∈ X}, denoting the values of vari-
ables after an action has been taken. An ontic action α
is represented by its theory Σα, which is a propositional for-
mula over X ∪ X ′ such that for all states s ∈ 2X , the set

{s′ ∈ 2X
′
| ss′ |= Σα} is nonempty, and is exactly the set

of possible states after α is performed in s. For instance,
with X = {x1, x2}, the action α which nondeterministically
reinitializes the value of x1 has the theory Σα = (x′2 ↔ x2).
Observe that ontic actions are nondeterministic in general;
moreover, when taking such an action the agent does not
know which outcome occurred. We sometimes omit the
“‘frame axioms” of the form x′i ↔ xi from Σα, e.g., we write
x′1 ↔ ¬x1 for the action of switching x1, whatever the other
variables.

Now, an epistemic action α is represented by its feedback
theory Ωα, which is a list of positive epistemic atoms of the
form Ωα = (Kϕ1, . . . ,Kϕn). For instance, the epistemic
action which senses the value of an objective formula ϕ is
denoted by test(ϕ), and its feedback theory is Ωtest(ϕ) =
(Kϕ,K¬ϕ). We require that feedbacks be exhaustive (ϕ1 ∨
· · · ∨ ϕn is tautological), so that in any state an epistemic
action yields a feedback, but we do not require them to be
mutually exclusive; if several feedbacks are possible in some
state, one is chosen nondeterministically at execution time.

Operational Semantics.
The agent executing a KBP starts in some knowledge state

M0, and at any timestep t until the execution terminates, it
has a current knowledge state M t. When execution comes
to a branching condition Φ, Φ is evaluated in the current
knowledge state (i.e., the agent decides whether M t |= Φ
holds).

The knowledge state M t is defined inductively as the pro-
gression of M t−1 by the action executed between t − 1
and t. Formally, given a knowledge state M ⊆ 2X and
an ontic action α, the progression of M by α is defined

to be Prog(M,α) = M ′ ⊆ 2X
′

defined by M ′ = {s′ ∈
2X

′
| s ∈ M, ss′ |= Σα}. Now given an epistemic action

α, a knowledge state M , and a feedback Kϕi ∈ Ωα with
M 6|= K¬ϕi, the progression of M by Kϕi is defined to be
Prog(M,Kϕi) = {s ∈ M | s |= ϕi}. The progression is
undefined when M |= K¬ϕi.

Example 1. Consider a system composed of three com-
ponents; for each i = 1, 2, 3, we have a propositional symbol
ok i meaning that component i is in working order, an action
repair(i) that makes ok i true, and an action test(i) that re-
turns the truth value of ok i; for instance, Σrepair(1) = ok ′1 ∧
(ok ′2 ↔ ok2) ∧ (ok ′3 ↔ ok3) and Ωtest(1) = (Kok1,K¬ok1).
Let π = π1;π2;π3, where πi is defined as

if ¬(Kok i ∨K¬ok i) then test(i) endif ;
if K¬ok i then repair(i) endif

With M0 = Mods((ok1 ↔ (ok2 ∧ ok3)) ∧ (¬ok2 ∨ ¬ok3)),
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Prog(M0, repair(1)) is M1 = Mods(ok1 ∧ (¬ok2 ∨ ¬ok3)),
Prog(M1,Kok2) is M2 = Mods(ok1 ∧ ok2 ∧ ¬ok3)), and
Prog(M2, repair(3)) is M3 = Mods(ok1 ∧ ok2 ∧ ok3).

Finally, a trace τ of a KBP π in a knowledge state M0

is a sequence of knowledge states, either infinite, i.e., τ =
(M i)i≥0, or finite, i.e., τ = (M0,M1, . . . ,MT ), which cor-
responds to the iterated progression of M0 by the actions in
π, given an outcome s ∈ 2X (resp. a feedback Kϕ) for each
ontic (resp. epistemic) action encountered. We say that two
KBPs π and π′ are equivalent (resp. equivalent in M0) if
they have exactly the same traces in any initial knowledge
state (resp. in M0).

KBPs as Plans.
We define a knowledge-based planning problem P to be

a tuple (I, AO, AE , G), where I = Mods(ϕ0) is the initial
knowledge state, G is an SKNNF S5 formula called the goal,
and AO (resp. AE) is a set of ontic (resp. epistemic) actions
together with their theories. Then a KBP π (using actions
in AO ∪AE) is said to be a (valid) plan for P if all its traces
in I are finite, and for all traces (M0, . . . ,MT ) of π with
M0 = I, MT |= G holds.

Interesting restrictions of knowledge-based planning prob-
lems are obtained either by restricting the form of KBPs (by
disallowing loops, or by bounding the size of the KBP), by
restricting the set of actions allowed (by requiring all actions
to be ontic or all actions to be epistemic), or by adding a re-
striction on the goal (by requiring it to be a positive KNNF).
The restriction to positive goals deserves some comments.
After all, one may think that goals should always be pos-
itive – and in most of practical cases they will indeed be:
why should a robot care about not knowing something? The
more it knows, the easier it is to make accurate decisions.
This is true in a single-agent environment. Now, even if our
paper does not address full multi-agent environments (which
are much more complex to handle), it allows to represent at
least a simple class of multi-agent planning problems, where
only one agent is able to act but other agents observe its
actions and feedbacks. But there might be facts which the
acting agent wants to avoid the other to learn, and under
the assumption that observations are considered as public
announcements, the acting agent will also want not to learn
these facts1.

4. SUCCINCTNESS
So as to measure the benefit of using KBPs as plans, we

compare them to what we call standard policies. We define
such policies exactly as KBPs, but allowing branching on
feedbacks just obtained via an epistemic action, rather than
on unrestricted epistemic formulas. What we have in mind
here is to compare KBPs to reactive policies, for which the
next action to take can be found efficiently at execution time.

Definition 1 (standard policy). A standard policy
is a KBP in which the last action executed before any branch-
ing if Φ or while Φ is an epistemic action a such that Φ
is some Kϕi ∈ Ωa.
1The reader has certainly experienced the situation where
the screen of her laptop, connected to a videoprojector, ap-
pears on a screen in front of everyone and each of her actions
(reading email, inspecting the contents of a directory. . . )
could possibly reveal some information she does not want
everyone to see.

Hence evaluating a branching condition of a standard pol-
icy at execution time only requires to compare the feed-
back just obtained to the branching condition Φ. Particular
cases of standard policies are policies for partially observable
Markov decision processes (POMDPs), which alternate the
following steps: (i) taking an (ontic) action, (ii) receiving an
observation about the current state, and (iii) branching on
the observation received. Observe however that our defini-
tion is more general, in that the alternation between decision
and observation+branching steps is unrestricted, and that
loops are allowed. For instance, our definition also encom-
passes sequential plans (of the form a1; a2; . . . ; an), but also
controllers with finite memory [4].

Clearly, for every initial knowledge state MO and every
KBP π, there is a standard policy equivalent to π in M0.
Such a policy can be obtained by simulating all possible ex-
ecutions of π in M0 and, for each one, evaluating all (epis-
temic) branching conditions. We only give an example here
(a formal definition is given in the Appendix — Definition 4
and Proposition 11).

Example 2. The standard policy associated with π and
M0 in Example 1 is the following:

repair(1); test(2);
if K¬ok2 then

repair(2);
test(3);
if K¬ok3 then repair(3) endif

else repair(3)
endif

Such translations are of course not guaranteed to be poly-
nomial, which raises the issue whether KBPs are more suc-
cinct than standard policies. We first give a formal definition
of succinctness.

Definition 2 (succinctness). Let C = (Cn)n∈N be a
class of KBPs (or standard policies), and let P = (Pn)n∈N be
a family of planning problems. Then C is said to be succinct
for P if there is a polynomial p : N→ N and a family (πn)n∈N
of KBPs satisfying πn ∈ Cn, |πn| ∈ O(p(n)), and such that
πn is a valid plan for Pn.

A class C is said to be as succinct as a class C′ if for all
families P of planning problems such that C′ is succinct for
P, C is also succinct for P. It is said to be more succinct
than C′ if in addition, there is a family P of planning prob-
lems for which C is succinct but C′ is not.

Note that our definition of being more succinct is quite
demanding, since not only it requires that there is no poly-
size KBP in C′ equivalent to π ∈ C, but also it requires that
there is no polysize KBP which is valid for the same problem
(may it be nonequivalent to π).

Clearly, because standard policies are defined as particular
cases of KBPs, the latter are always at least as succinct than
the former. We now show that KBPs are more succinct than
standard policies, even under several restrictions.

Proposition 1. If NP 6⊆ P/poly holds, while-free KBPs
with atomic epistemic branching conditions are more suc-
cinct than while-free standard policies.

Proof. For all n ∈ N, we exhibit a KBP πn as in the
claim which essentially reads a 3CNF formula over n vari-
ables (hidden in the initial state), and either makes sure that
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it is unsatisfiable, or builds a model. This KBP has size
polynomial in n. Now assume there is a while-free standard
policy π′ of size polynomial in |π|, and hence in n, which
is a valid plan for the same problem. Then because stan-
dard policies can be executed with constant-time delay and
because π′ is while-free, execution of π′ would be a (pos-
sibly nonuniform) polytime algorithm for 3SAT, yielding
3SAT ∈ P/poly and hence, NP ⊆ P/poly. The construction
of the KBP πn and the definition of the knowledge-based
planning problem Pn are detailed in the Appendix (Propo-
sition 12).

Observe that the proof even shows that there are plan-
ning problems with succinct while-free KBPs (with atomic
branching conditions) but with no compact while-free plan
with polynomial-delay execution (cf. the notion of a compact
sequential-access representation [1]). Observe however that
if loops are allowed, then there does exist a compact stan-
dard policy for the 3SAT problem (for instance, the DPLL
algorithm). However, it turns out that there are problems
with succinct KBPs (with loops) but with no succinct stan-
dard policy at all (even with loops).

Proposition 2. KBPs are more succinct than standard
policies.

Proof. There is a KBP π of size polynomial in n (in
particular, manipulating a number of variables polynomial
in n) with exactly one trace in some precise initial knowl-

edge state M0, of size 22n

− 1 [11, Proposition 5]. Now
Proposition 13 in the Appendix shows that given a KBP π,
a planning problem P can be built efficiently, for which all
valid plans are equivalent to π in M0 (up to a polynomial
number of void actions), and for which π is indeed valid.
Towards a contradition, assume that there is a valid stan-
dard policy π′ for P . Then π′ has exactly one trace, of size
22n

− 1 (up to a polynomial). But if π′ has size polyno-
mial in n, then it can manipulate at most n variables, and
because it is a standard policy it can be in at most 2n|π′| dif-
ferent configurations (values of variables plus control point).
Hence it cannot have a terminating trace of length greater
than 2n|π|, a contradiction.

We conclude this section by considering the succintness gap
induced by loops in KBPs.

Proposition 3. KBPs are more succinct than while-free
KBPs.

Proof. Assume towards a contradiction that for each
KBP π, there is an equivalent while-free KBP π′ satisfy-
ing |π′| ≤ p(|π|). Then there is an algorithm showing that
verifying a KBP (with loops) is a problem in ΣP

3 (Propo-
sition 14 in the Appendix). Since on the other hand we
know that verifying an unrestricted KBP is an EXPSPACE-
hard problem [11, Proposition 6], we get a contradiction
with ΣP

3 ⊆ PSPACE ( EXPSPACE (Savitch’s theorem). Fi-
nally, given a polynomial-size KBP π for which there is no
equivalent polynomial-size while-free KBP, we build a prob-
lem which has only π and equivalent KBPs as valid plans
(Proposition 13 in the Appendix), and this problem shows
that KBPs are more succinct than while-free KBPs.

5. COMPLEXITY OF PLAN EXISTENCE

We now consider the problem of deciding whether there
exists a valid KBP for a given planning problem. Since the
main benefit of using KBPs is to get succinct (and read-
able) plans, we insist on the “small KBP existence” prob-
lem, where we ask whether there exists a valid KBP within
a given size bound.

Definition 3 (existence). The plan existence prob-
lem takes as input a knowledge-based planning problem P =
(I, AO, AE , G) and asks whether there exists a valid KBP π
for P . The bounded size plan existence problem takes as in-
put a knowledge-based planning problem P = (I, AO, AE , G)
and an integer k encoded in unary, and asks whether there
exists a KBP π for P satisfying |π| ≤ k.

We start with the complexity of plan existence, that is,
without a size bound.

Proposition 4. Plan existence is 2-EXPTIME-complete.
It is EXPSPACE-complete if only ontic actions are allowed.

Proof. The first two results follow from the fact that
there is a valid KBP for a given knowledge-based planning
problem P if and only if there is a valid standard policy for
P (Proposition 11 in the Appendix), together with known
results by Rintanen [18] and by Haslum and Jonsson [8].

Proposition 5. While-free KBP existence restricted to
epistemic actions is PSPACE-complete.

Proof. Write WFE-Existence for the problem of while-
free KBP existence. We introduce a variant, called WFOE-
Existence (for “While-Free Ordered Epistemic”), in which
a total order < on AE is given as an additional input, and
the question is whether there is a valid KBP for P , in which
actions occur in the order < in any execution. Then we show
QBF ≤P WFOE-Existence ≤P WFE-Existence.

The reductions are given in the Appendix (Propositions 17
and 18). Because QBF is PSPACE-complete, it follows that
WFE-Existence is PSPACE-hard. Finally, because only
epistemic actions are available, the state never changes, and
hence executing the same epistemic action twice in an execu-
tion is useless. It follows that we are essentially searching for
a tree of height at most |AE |, and membership in PSPACE
easily follows.

Proposition 6. While-free KBP existence restricted to
epistemic actions and positive goals is coNP-complete.

Proof. This proof is essentially by a reduction to validity
in S5 (Proposition 16 in the Appendix).

Proposition 7. Bounded KBP existence is EXPSPACE-
complete.

Proof. For hardness, we reduce the problem of verify-
ing that a KBP π is valid for a planning problem P =
(I, AO, AE , G) to plan existence, by building a planning
problem P ′ with bound k = |π| for which π is valid if and
only if it is valid for P , and every valid plan is equivalent
to π. For this we use Proposition 13 with the construction
initialized with I and G. Hence if π is valid for P , then P ′

has a plan of size at most k (namely, π), and if π is not valid
for P , then P ′ has no valid plan. Because verification is an
EXPSPACE-hard problem [11, Proposition 6], we get hard-
ness. Membership follows from the fact that a plan π can be
guessed, that verifying that it is valid is in EXPSPACE [11,
Proposition 6 again], and from NEXPSPACE = EXPSPACE
(Savitch’s theorem).
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Proposition 8. While-free bounded KBP existence is Σp3-
complete. Hardness holds even if the goal is restricted to be
a positive epistemic formula.

Proof. Since solutions have bounded size, membership
in ΣP

3 follows from the fact that while-free KBP verification
is in Πp

2 [11, Proposition 2]. For hardness, we give a reduc-
tion from QBF3,∃ (Proposition 19 in the Appendix).

Proposition 9. While-free bounded KBP existence re-
stricted to ontic actions is ΣP

2-complete.

Proof. Because there is no feedback, there is no need
for branching, therefore there is a plan of size at most k
if and only if there is a valid plan which is a sequence of
at most k actions. The bounded KBP existence problem is
therefore equivalent to the bounded plan existence problem,
which is known to be ΣP

2-complete [2] if the goal is positive
atomic. Now membership in ΣP

2 in the general case follows
from the fact that verifying a plan can be done by comput-
ing the memoryful progression [11] in polynomial time, then
checking that it entails the goal using a coNP-oracle.

As for purely epistemic planning problems, things are easy
only in the case of positive goals.

Proposition 10. While-free bounded KBP existence re-
stricted to epistemic actions and to positive goals is ΣP

2-
complete.

Proof. Since the goal Γ is positive epistemic and the
state cannot change, executing more epistemic actions can-
not render a valid plan invalid. In particular, removing all
branching conditions and linearizing a valid plan gives a
valid plan. Hence there is a valid plan of size ≤ k if and
only if there is a sequence of k epistemic actions which is
a valid plan. Hence the problem can be solved by guess-
ing a plan a1; . . . ; ak and checking

∧k
i=1(

∨
Kϕj∈Ωai

ϕj) |= Γ,

which can be done by a call to a coNP-oracle. Now for hard-
ness, we give a reduction from QBF2,∃ (Proposition 20 in
the Appendix).

6. CONCLUSION
Our contributions are twofold. First, we have made formal

the succinctness gap obtained by the possibility to branch on
complex epistemic formulas instead of simply branching on
observations. Second, we have obtained several nontrivial
results on the complexity of KBP existence for a planning
problem. The results are synthesized in the table below.
Note that as far as unbounded KBP existence is concerned,
whether loops are allowed or not does not make a difference:
since valid plans are required to stop, every valid KBP with
loops can be rewritten into an equivalent while-free KBP.
This remark helps us having all cells of the left column filled.

unbounded bounded
general 2-EXPTIME-c. EXPSPACE-c.

while-free (wf) 2-EXPTIME-c. Σp3-c.
ontic EXPSPACE-c. ?

wf, ontic EXPSPACE-c. Σp2-c.
wf, epistemic PSPACE-c. ?

wf, epist.+pos. goals coNP-c. Σp2-c.

We do not know the complexity of KBP existence for
while-free epistemic actions and arbitrary (not necessarily

positive) goals (we only know that it is Σp2-hard, and in Σp3).
Neither do we know the complexity of bounded plan exis-
tence with ontic actions and loops (other than membership
in EXPSPACE).
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[1] C. Bäckström and P. Jonsson. Limits for compact

representations of plans. In Proc. ICAPS 2011, pages
146–153, 2011.

[2] Chitta Baral, Vladik Kreinovich, and Raul Trejo.
Computational complexity of planning and
approximate planning in presence of incompleteness.
In IJCAI, pages 948–955, 1999.

[3] Thomas Bolander and Mikkel Birkegaard Andersen.
Epistemic planning for single and multi-agent systems.
Journal of Applied Non-Classical Logics, 21(1):9–34,
2011.

[4] B. Bonet, H. Palacios, and H. Geffner. Automatic
derivation of finite-state machines for behavior
control. In Proc. AAAI-10, 2010.

[5] R.I. Brafman, J.Y. Halpern, and Y. Shoham. On the
knowledge requirements of tasks. Journal of Artificial
Intelligence, 98(1–2):317–350, 1998.

[6] J. Claßen and G. Lakemeyer. Foundations for
knowledge-based programs using es. In KR, pages
318–318, 2006.

[7] R. Fagin, J. Halpern, Y. Moses, and M. Vardi.
Reasoning about Knowledge. MIT Press, 1995.

[8] P. Haslum and P. Jonsson. Some results on the
complexity of planning with incomplete information.
In Proc. 5th European Conference on Planning
(ECP 1999), pages 308–318, 1999.

[9] A. Herzig, J. Lang, and P. Marquis. Action
representation and partially observable planning in
epistemic logic. In Proceedings of IJCAI03, pages
1067–1072, 2003.

[10] J.Halpern and Y. Moses. Characterizing solution
concepts in games using knowledge-based programs.
In Proceedings of IJCAI-07, 2007.
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APPENDIX
A. SUCCINCTNESS

Definition 4. Let π be a KBP and M0 be an initial
knowledge state. The standard policy f(π,M0) induced by
π and M0 is defined inductively as follows:

• if π is the empty KBP, then f(π,M0) is the empty
standard policy,

• if π is α;π′ for an ontic action α ∈ AO, then f(π,M0)
is α; f(π′,Prog(M0, α)),

• if π is α;π′ for an epistemic action α ∈ AE, then
f(π,M0) is

α;
if Kϕ1 then f(π′,Prog(M0,Kϕ1))
else if Kϕ2 then f(π′,Prog(M0,Kϕ2))
else . . .
endif

with {Kϕ1,Kϕ2, . . . } = Ωα,

• if π is if Φ then π1 else π2 endif ;π′, then (i) if M0 |=
Φ holds then f(π,M0) is f(π1;π′,M0), and (ii) other-
wise ( i.e., M0 6|= Φ) f(π,M0) is f(π2;π′,M0),

• if π is while Φ do π1 endwhile ;π′, then (i) if M0 |=
Φ holds then f(π,M0) is f(π1;π,M0), and (ii) other-
wise ( i.e., M0 6|= Φ) f(π,M0) is f(π′,M0).

Proposition 11. Let π be a KBP and M0 be an initial
knowledge state. Then π and the standard policy f(π,M0)
are equivalent in M0.

Proof. It is easily shown by induction on the structure
of π that for every possible outcome (resp. feedback) of
an ontic (resp. epistemic) action taken in π, the iterated
progression of M0 by π or f(π,M0) are the same.

Proposition 12. There is a family of planning problems
P = (Pn)n∈N for which there is a succinct family of while-
free KBPs (πn)n∈N, and any family of KBPs for P is a (pos-
sibly nonuniform) family of algorithms for 3SAT.

Proof. Let n ∈ N, implicitly defining a set of n Boolean
variables and the SAT problem for 3CNF formulas over n
variables. The variables and actions involved in the con-
struction of πn are the following:

• n unobservable Boolean variables x1, . . . , xn, intuitively
storing an assignment ~x to the variables of a 3CNF
formula (this assignment is arbitrary and unknown to
the agent),

• O(n3 × 3 logn) Boolean variables `i,j,k (i = 1, . . . , n3,
j = 1, 2, 3, k = 1, . . . , logn), intuitively encoding a
3CNF formula ϕ (`i,j,k represents the kth bit of the
encoding of the literal in position j in the ith clause) ;
the value of these variables, i.e., the 3CNF formula, is
arbitrary, but can be “read” by a KBP through epis-
temic actions test(`i,j,k),

• an unobservable variable s (“satisfied”) which is neces-
sarily false if ~x does not satisfy ϕ ; to model this, the
initial knowledge state is defined to be

M0
n =

∧
i=1,...,n3

¬χi → ¬s

where χi is true if and only if ~x satisfies the ith clause
of ϕ (that is, χi is∨

x∈{x1,...,xn

(
(x ∧

∨
j

`i,j = x) ∨ (x̄ ∧
∨
j

`i,j = x̄)

)
where `i,j = x is appropriately encoded over the “bits”
`i,j,k),

• ontic actions x+
i and x−i , for i = 1, . . . , n, setting xi to

1 or 0, respectively.

The goal Gn of the planning problem Pn is either to know
that s is false (Ks̄) or to know that ~x is a model of ϕ
(K(~x |= ϕ), expressed using a formula using the variables χi
as above).

We claim that the KBP πn defined as follows is a valid
plan for Pn:

test(`1,1,1); test(`1,1,2); . . . ; test(`n3,3,logn);
if Ks̄ then stop
else

if K¬(ϕ ∧ x1) then x−1 else x+
1 endif

. . .
if K¬(ϕ ∧ xn) then x−n else x+

n endif

where K¬(ϕ∧xi) is a shorthand for K¬(χ1∧· · ·∧χn3 ∧xi).
Indeed, because the value of s cannot change during the

execution, s is guaranteed to be false if and only if the (ar-
bitrary) initial assignment ~x does not satisfy ϕ. Because
the initial value of ~x cannot be observed, this is true if and
only if ϕ is unsatisfiable. Otherwise, by definition an assign-
ment to ~x can be built which satisfies ϕ. Finally, Pn encodes
3SAT for formulas of n variables, and πn is a valid plan for
it.

Proposition 13. Given a KBP π and an initial knowlege
state M0, one can build a knowledge-based planning problem
P = (I, AO, AE , G) in time polynomial in |π|, so that π is
valid for P and all KBPs which are valid for P are equivalent
to π (up to additional variables in P and to a polynomial
number of void actions).

Proof. Using a polynomial number of void actions (with
theory Σ =

∧
x∈X x

′ ↔ x for ontic actions and Ω = {K>}
for epistemic actions), we first normalize π so that it starts
with an ontic action, then epistemic and ontic actions al-
ternate, and finally that only ontic actions occur right be-
fore and right after any occurrence of if Φ then , else ,
endif , while Φ do , and endwhile . By duplicating ac-

tions, we also ensure that any action is used at most once in
π; for example, we duplicate a to a1, a2, a3, with Σai = Σa,
for the first, second, and third occurrences of a in π. All
these steps can clearly be performed in polynomial time.

We now describe how I, AO, AE , and G are computed
from π. The constructions are performed iteratively, start-
ing with I = M0, AO (resp. AE) being the set of ontic (resp.
epistemic) actions occurring in π, and G = K>.

We describe in details how to handle the case when π is
a sequence of actions. Handling of branching and loops will
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be described more briefly, but relies on the same techniques.
So let π = a1; . . . ; ak with a1, a3, . . . being ontic actions and
a2, a4, . . . being epistemic actions.

We first introduce two fresh variables, ok and s, and re-
place I with I ∧Kok and G with G ∧Kok ∧ ¬(Ks ∨Ks̄).
Intuitively, ok is known to be true at the beginning and
must be known to be true at the end, but taking any ontic
action at another moment than π does will assign it to false
as a side-effect. Now the value of s (standing for “secret”) is
not known initially and must not be known at the end, but
taking any epistemic action at another moment than π does
will reveal its value.

Now for each sequence of actions ai; ai+1; ai+2 in π, where
ai, ai+2 are ontic and ai+1 is epistemic, we introduce two
fresh variables, ri+1 (standing for “ready” to execute ai+1)
and pi+2. Intuitively, ai will assign ri+1 to 1, and ai+1 will
reveal the value of pi+2 (only in case ri+1 is known to be
true). Then ai+2 is duplicated into two actions, exactly one
of which has to be chosen, depending on the value of pi+2.
In this manner, we force ai+2 to occur only after a sequence
ai; ai+1 in any valid plan.

More precisely, in AO and AE we:

• replace Σai with Σai ∧ r′i+1,

• replace Ωai+1 with {K(ϕ ∧ ri+1 → pεi+2),K(ϕ ∧ r̄i+1) |
Kϕ ∈ Ωai+1 , ε = 0, 1},
• replace ai+2 with two ontic actions, namely api+2 and

ap̄i+2 defined by{
Σapi+2

= Σai+2 ∧ (ok ′ ↔ ok ∧ pi+2) ∧ r̄′i+2

Σap̄i+2
= Σai+2 ∧ (ok ′ ↔ ok ∧ p̄i+2) ∧ r̄′i+2

and make them reinitialize pi+2, that is, the frame ax-
iom p′i+2 ↔ pi+2 is not in Σapi+2

,Σap̄i+2
.

Note that because the process is iterated, the first transfor-
mation is in fact applied to Σapi

and Σap̄i
.

Moreover, for any other epistemic action a 6= ai+1, we

• replace Ωa with {K(ϕ ∧ (ri+1 → sε)) | Kϕ ∈ Ωa, ε =
0, 1} or, in the general case where this transformation
has already been performed for ri1 , . . . , rik , we replace
it with

{K(ϕ∧(ri1∨· · ·∨rik ∨ri+1)→ sε) | Kϕ ∈ Ωa, ε = 0, 1}

Finally, for handling the last action we introduce a fresh
variable stop, and we replace I with I ∧ stop, G with G ∧
Kstop, Σak with Σak ∧ stop′, we replace ok ′ ↔ ok ∧ pεi with
ok ′ ↔ ok ∧ pεi ∧ stop in all other (ontic) action theories, and
duplicate each feedback Kω in other action theories into
K(ω ∧ (stop → sε)), ε = 0, 1. For handling the first action,
we replace I with I ∧Kr1, add r̄1 to σa1 , and add feedbacks
Kr1 → sε, ε = 0, 1, to all epistemic actions.

We now claim that P as defined above has (a plan equiv-
alent to) π as a valid plan, and that any other valid plan for
it is equivalent to π (in both cases, up to void actions and
additional variables).

As regards validity of π, consider the plan π′ obtained
from π by replacing all subsequences ai; ai+1; ai+2 with

ai; ai+1; if Kpi+2 then api+2 else ap̄i+2 endif

Then clearly, when execution comes to ai+1, ri+1 is true (and
known to be so), hence one of the feedbacks K(ri+1 → pεi+2)
is obtained, revealing the truth value of pi+2. Hence api+2

or ap̄i+2 is correctly chosen for preserving achievement of the
goal Kok . Moreover, because for all j < i, the value of
rj has been reinitialized by action aj , the feedback of ai+1

gives no clue about the value of s (through K(rj → sε)),
preserving the goal ¬(Ks ∨Ks̄).

Now let π′ be any plan which is valid for P , and consider
a fixed sequence of outcomes for ontic actions and feedbacks
for epistemic actions, with the aim of showing that π′ takes
(up to void actions) the same actions as π, in the same order.
The proof works by induction.

First assume that π′ takes an ontic action ai 6= a1 as
its first action. Then because of the effect ok ′ → ri and
since the value of ri is not known in the initial state I,
the goal Kok is not preserved. Since no action allows to
set it back, this is a contradiction with the validity of π′.
Now assume that π′ takes an epistemic action ai as its first
action. Then because r1 is true in the initial state, ai reveals
the value of s, a contradiction again since this value cannot
change along the execution. Moreover, by construction the
knowledge state resulting from taking a1 satisfies Kr̄1 and
Kr2, no variable ri (i 6= 2) is known to be true in it, and
the value of no variable pi is known.

We now consider the second action taken by π′. Because
r1 is false this cannot be a1, and because the value of pi
is known for no i, this cannot be api nor ap̄i , for any ontic
action ai. Hence this is an epistemic action, but because r2

is true this can only be a2 (otherwise the value of s would
be revealed). Now by construction, the resulting knowledge
state satisfies Kr̄1 and Kr2, no variable ri (i 6= 2) is known
to be true in it, the value of p3 is known in it, and finally
the value of no other pi is known.

Finally consider the third action taken by π′. Taking any
ontic action other than ap3 or ap̄3 would result in a blind choice
of api or ap̄i since the value of pi (i 6= 3) is not known. Now
taking an epistemic action other than a2 would reveal the
value of s (since r2 is known to be true). Finally, either π′

takes a2 again, which amounts to a void action, or it takes
a3. Now by construction, after a3 is taken the knowledge
state satisfies Kr4, no variable ri (i 6= 4) is known to be
true (since a3 assigns r3 to false), and the value of no pi is
known (since a3 reinitializes p3). Hence we are in the same
situation as after the first action has been taken, and the
induction goes on, which concludes for KBPs π which are
simple sequences of actions.

We now briefly show how to handle subprograms of the
form

a; if Kϕ then b; . . . else c; . . . endif ; . . .

We introduce a new fluent, f (“forbidden”), and add ¬Kf to
the initial knowledge state and to the goal. Recall that due
to the normalization step, actions a, b, c are all ontic. Then
we

• replace Σa with Σa ∧ r′b,c,

• replace Σb with Σb ∧ ok ′ ↔ (ok ∧ rb,c ∧ ϕ) ∧ r̄′b,c,

• replace Σc with Σc∧ok ′ ↔ (ok∧rb,c∧(f ′ ↔ f∨ϕ))∧r̄′b,c.

and as in the case of sequences, we add feedbacks to all epis-
temic actions, so that they reveal the value of s if executed
when rb,c is known to be true. The construction ensures that
executing b while Kϕ is not true results in ¬Kok , hence vio-
lating the goal, and that executing c while Kϕ is true results
in Kf , again violating the goal.
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Finally, subprograms of the form

while Kϕ do a; . . . ; b endwhile ; c

are handled exactly as if they were

if Kϕ then (a; . . . ; b; if Kϕ then a else c) else c;

The fact that the two occurrences of a refer to exactly the
same action simulate a “goto” construct and hence, ensure
that a valid plan loops when necessary.

Proposition 14. If while-free KBPs are as succinct as
KBPs (with loops), then verifying a KBP with loops is a
problem in ΣP

3 .

Proof. Let p be a polynomial such that for all KBPs π,
there is an equivalent while-free KBP π′ satisfying |π′| ≤
p(|π|). Then given a KBP π and a planning problem P ,
verifying that π is valid for P can be done by the following
algorithm, which essentially guesses an equivalent while-free
π′ and verifies it instead of directly verifying π:

1. guess a while-free KBP π′ of size at most p(|π|),
2. check that π′ and π are equivalent; the complement can

be decided as follows:

(a) guess a trace τ of size |π′| and the corresponding
sequence of outcomes of ontic actions and feedbacks
of epistemic actions,

(b) from the outcomes and feedbacks, compute the cor-
responding trace of π,

(c) check that at some point, π and π′ are not in the
same knowledge state,

3. verify that π′ is valid for P .

The traces in Item 2 can be represented in space polynomial
in |π′| using memoryful progression [11]. Checking that π
and π′ are in different knowledge states at some point can
be done by verifying that their memoryful progressions are
not equivalent over the variables of this timepoint, which is
a problem in ΣP

2(guess a disagreeing assignment and check
that it can be extended to a model of one progression but
none of the other).

Finally, Item 2 can be solved by a call to a ΣP
2-oracle.

Moreover, verifying a while-free KBP (Item 3) is a problem
in Πp

2 [11, Proposition 2]. Finally, we get a nondeterminis-
tic algorithm using a ΣP

2-oracle (or a Πp
2-oracle), hence the

whole problem is in ΣP
3 .

B. PLAN EXISTENCE

Proposition 15. Plan existence is ΣP
2-hard if only epis-

temic actions are allowed.

Proof. We give a reduction from QBF2,∃. Let

∀a1 . . . an∃b1 . . .∃bpϕ

be a QBF formula. We define an epistemic planning problem
P = (I, ∅, AE , G) by:

• I = K>,

• AE = {test(a1), . . . , test(an)},
• G = ¬K¬ϕ ∧

∧n
i=1(Kai ∨Kāi).

Clearly, any valid plan for P must perform all actions in
all branches, since test(ai) is the only action revealing the
value of ai. Hence, there is a valid plan for P if and only if
performing all actions in sequence constitutes a valid plan
π. Now this KBP π is valid for P if and o nly if for every
~a ∈ 2{a1,...,an}, it holds K~a |= ¬K¬ϕ, that is, for every

~a ∈ 2{a1,...,an}, there is a ~b ∈ 2{b1,...,bp} with ~a~b |= ϕ.

Proposition 16. Plan existence is coNP-complete if only
epistemic actions are allowed and the goal is restricted to be
a positive epistemic formula.

Proof. We first show membership. Because the goal
is positive, it is easy to see that adding epistemic actions
cannot render a valid plan invalid, and hence the problem
amounts to deciding whether performing all actions in se-
quence constitutes a valid plan π. Because there are no on-
tic actions, and hence the state never changes, this amounts
to checking that the formula

∧
a∈AE

(
∨

Kϕi∈Ωa
ϕi) entails

G. We conclude by observing that this formula has size
polynomial in |AE | and that the entailment test is one in
propositional logic, hence in coNP.

Hardness follows from the following reduction from Un-
satisfiability: a propositional formula ϕ is unsatisfiable
if and only if the planning problem with no action, initial
knowledge state K> and goal K¬ϕ has a plan.

Proposition 17. There is a polynomial-time reduction
from QBF to WFOE-Existence.

Proof. Let ψ = ∃a1∀b1 . . .∃ak∀bkϕ be a QBF, where
a1, . . . , ak and b1, . . . , bk are Boolean variables (restricting
the quantifiers to scope over only one variable is without loss
of generality, since any QBF can be rewritten in this manner
by introducing dummy variables). We define the following
instance P = (I, ∅, AE , G,<) of WFOE-Existence, where
intuitively ai (resp. āi) is encoded by “revealing the value
of xi” (resp. “not revealing the value of xi”), and bi (resp.
b̄i) is encoded by “yi is (known to be) true” (resp. false):

• I = K>,

• AE = {test(xi) | i = 1, . . . , k}∪{test(yi) | i = 1, . . . , k},

• G = ϕ with


ai replaced with Kxi ∨Kx̄i
āi replaced with ¬Kxi ∧ ¬Kx̄i
bi replaced with Kyi
b̄i replaced with Kȳi

,

• < is (test(x1), test(y1), test(x2), . . . , test(xk), test(yk)).

Assume first that there is a strategy σ witnessing the validity
of ψ, and build a KBP π from σ by:

• replacing any decision node ai ← 1 with the action
test(xi),

• replacing any decision node ai ← 0 with the empty
KBP,

• replacing any branching node on bi with 1-child σ1 and
0-child σ0 with the KBP

test(yi); if Kyi then π1 else π0 endif

where π1 (resp. π0) is obtained recursively from σ1

(resp. σ0).

Clearly, the order of actions in π follows <. Now by con-
struction, test(xi) (resp. test(yi)) is the only action reveal-
ing the value of xi (resp. yi), and validity of π for P follows.

Conversely, let π be a KBP for P , and let πN be its nor-
malized, equivalent KBP, obtained by
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• removing all nonatomic branching conditions, e.g., by
replacing a test if Φ∧Ψ then . . . endif with the test
if Φ then if Ψ then . . . endif ,

• replacing each negative atomic branching condition of
the form ¬K` with K¯̀ if it has test(`) as an ancestor on
its branch, and with K> otherwise (then simplifying),

• removing any occurrence of test(`) which has test(`) as
its parent,

• pushing up any test, e.g., if K`, right after the ac-
tion test(`) on the same branch, and reorganizing the
KBP as necessary (since we are not concerned with size
bounds, it does not matter if this incurs an explosion
in size).

Then define a strategy σ from πN by

• replacing test(xi) with a decision node ai ← 1,

• ignoring actions test(yi),

• replacing if Kxi then π1 else π0 endif with σ1 or
with σ0, arbitrarily, where σ1 (resp. σ0) is obtained
recursively from π1 (resp. π0),

• replacing if Kyi then π1 else π0 endif with a branch-
ing node on bi, with 1-child σ1 and 0-child σ0.

Clearly, σ witnesses the validity of the QBF ψ. Why σ1 or
σ0 can be chosen arbitrarily in the third item is because xi
and x̄i play a symmetric role in P .

Proposition 18. There is a polynomial-time reduction
from WFOE-Existence to WFE-Existence.

Proof. Let P = (I, ∅, AE , G,<) be an instance of WFOE-
Existence, and write AE = {a1, . . . , an} with ai < ai+1 for
all i. We define an instance P ′ = (I ′, ∅, A′E , G′) which forces
the actions to occur in order in any valid plan. To do so,
for each action ai ∈ AE we essentially (i) duplicate ai into
two actions, api and ani , and (ii) modify the feedback of ai−1

such that it reveals the value of an otherwise hidden variable
pi−1. Then we modify the goal G so that api must be taken
if ai−1 yielded Kpi−1, and ani must be taken if ai−1 yielded
Kp̄i−1 (“p” stands for “positive” and “n” for “negative”). In
this manner, a valid plan must execute ai−1 before ai, for
otherwise it cannot choose between api and ani .

More precisely, for each action ai ∈ AE we introduce two
fresh variables, pi and ni, and four more, µpi , µ

n
i , µ

p̄
i , µ

n̄
i ,

which act as mutexes between the “twin” actions api and
ani . Then we define the following actions:

• api , representing the action to take when ai−1 yielded
Kpi−1 or Kn̄i−1, with feedback theory Ωapi

= {K(ϕ ∧
pδi ∧ (µpi )

ε) | Kϕ ∈ Ωai , δ, ε = 0, 1},
• ani (dually), with feedback theory Ωani = {K(ϕ ∧ nδi ∧

(µni )ε) | Kϕ ∈ Ωai , δ, ε = 0, 1},
• ap̄i , representing the “pass” action when ai−1 yielded

Kpi−1 or Kn̄i−1, with feedback theory Ωap̄i
= {K(pδi ∧

(µp̄i )
ε) | δ, ε = 0, 1},

• an̄i , with feedback theory Ωan̄i = {K(nδi ∧ (µn̄i )ε) | δ, ε =

0, 1}.
We define A′E to be {api , a

n
i , a

p̄
i , a

n̄
i | i = 1, . . . , n}, and we

define the goal G′ to be:

G∧


∧n
i=2 (Kpi−1 ∨Kn̄i−1)→ (Kpi ∨Kp̄i)

∧
∧n
i=2 (Kp̄i−1 ∨Kni−1)→ (Kni ∨Kn̄i)

∧
∧

i=1,...,n
a,b∈{p,n,p̄,n̄}

a6=b

(¬Kµai ∧ ¬Kµ̄ai ) ∨ (¬Kµbi ∧ ¬Kµ̄bi )

Finally, we define I ′ = I, and we show that there is a valid
KBP π for P if and only if there is a valid KBP π′ for P ′.

First let π be a valid KBP for P . We build a KBP π′ as fol-
lows. We replace each occurrence of an action ai in π with
if Kpi−1 ∨ Kn̄i−1 then api else ani endif . Now for each

nonoccurrence of ai in π, i.e., at each place where ai−1 oc-
curs right before ai+d, d > 1, we insert a “pass” action by in-
serting the KBP if Kpi−1∨Kn̄i−1 then ap̄i else an̄i endif .
It is easily shown by induction on π′ that each time a variant
of action ai is taken, either the value of pi−1 or the value of
ni−1 is indeed known, and validity of π′ follows.

Conversely, let π′ be a valid KBP for P ′. Because of
the mutexes µai , at most one variant of each action ai can
occur along any branch of π′. Moreover, if, say, api occurs
twice along a branch, then the deepest occurrence can be
removed without changing the validity of π′, since there are
only epistemic actions and hence, the state never changes.
Finally, because of the first and second sets of clauses in G′,
starting from the first action in π′ all other actions must
follow in order. Hence a valid KBP π for P can be built by
replacing api or ani with a, ignoring all “pass” actions ap̄i , a

n̄
i ,

and finally removing all tests on fresh variables pi, ni, and
µai ’s, keeping the “else” or “then” subprogram arbitrarily.
By construction, the resulting KBP π is valid for P , and the
order of actions in π respects <.

Proposition 19. While-free bounded KBP existence with
a positive epistemic goal is Σp3-hard.

Proof. Let ψ = ∃a1 . . . an∀b1 . . . bp∃c1 . . . cqϕ be an in-
stance of QBF3,∃. Without loss of generality, we assume
n = p (otherwise we add dummy variables). We define an
instance P = (I, AO, AE , G) of while-free bounded KBP ex-
istence by:

• I = K>,

• AO = {α+
i , α

−
i | i = 1, . . . , n} ∪ {γ+

j , γ
−
j | j = 1, . . . , q},

where:

– α+
i (resp. α−i ) assigns 1 (resp. 0) to ai and, as a

side effect, nondeterministically reassigns all bj ’s,

– γ+
i (resp. γ−j ) assigns 1 (resp. 0) to cj ,

• AE = {test(ai ↔ bi) | i = 1, . . . , n},
• G = Kϕ ∧

∧p
j=1(Kbj ∨Kb̄j),

• k = 2n+ (|ϕ|+ 3)q.

Assume that ψ is a positive instance of qbf3,∃. Then there

exists an assignment ~a ∈ 2{a1,...,an} and a conditional as-
signment f : 2{b1,...,bp} → 2{c1,...,cq} such that for each
~b ∈ 2{b1,...,bp}, ~a~bf(~b) satisfies ϕ. Let α∗i = α+

i if ai is
assigned 1 in ~a and α∗i = α−i if it is assigned 0. Let π be the
following KBP:

α∗1; . . . ;α∗n; test(a1 ↔ b1); . . . ; test(an ↔ bn);
if K(ϕ→ c1) then γ+

1 else γ−1 ;
. . . ;
if K(ϕ→ cq) then γ+

q else γ−q ;

Clearly, π is a valid plan for P , and its size is 2n+(|ϕ|+3)q.
Conversely, assume I is a negative instance of QBF3,∃,

that is, for every assignment ~a ∈ 2{a1,...,an} there is an as-
signment g(~a) ∈ 2{b1,...,bp} such that for each ~c ∈ 2{c1,...,cq},
~ag(~a)~c satisfies ¬ϕ. We claim that there is no valid plan
π for P — and a fortiori, no valid plan of size at most
≤ 2n + (|ϕ| + 3)q. Indeed, assume there is a plan π for P .
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First, the only way of knowing the truth value of the bi’s it
to perform test(ai ↔ bi) after an action α+

i or α−i . There-
fore, every execution of π must contain at least an action
α+
i or α−i and further on, test(ai ↔ bi). Moreover, if an-

other action α+
j or α−j appears later in the execution, after

test(ai ↔ bi) has been performed, then, because all variables
b1, . . . , bp are nondeterministically reassigned, test(ai ↔ bi)
has to be performed again after that. Therefore, each exe-
cution of π must contain, in a first part, at least an action
α+
i or α−i for every i, then, in a second part, all actions

test(ai ↔ bi) and no action α+
i nor α−i (but possibly some

actions γ+
i or γ−i ).

Now consider an execution e of π, and for i = 1, . . . , n,
let vi(e) = 1 (resp. 0) if the last occurrence of an action

α+
i or α−i is α+

i (resp. α−i ), and let ~a(e) ∈ 2{a1,...,an} be
the corresponding assignment. Moreover, consider the point
in the execution e just after the last action α+

i or α−i has
been performed. After this point, all actions test(ai ↔ bi)
are executed. Consider the particular execution e′ where the
results of these actions are such that the revealed truth value
of the variables b1, . . . , bp constitute exactly the assignment
g(~a). The actions γ+

i , γ
−
i taken (before or after this point

or after it) result in an assignment ~c of c1, . . . , cq. Now, by
assumption, ~ag(~a)~c does not satisfy ϕ, therefore this partic-
ular execution does not satisfy the goal, contradicting the
validity of π.

Proposition 20. While-free bounded KBP existence re-
stricted to epistemic actions and to positive goals is ΣP

2-hard.

Proof. We give a reduction from QBF2,∃. Let ψ =
∃a1 . . . an∀b1 . . .∃bpϕ be a QBF formula. We build a plan-
ning problem P as follows:

• we use propositional symbols a1, . . . , an, b1, . . . , bp, c,
d1, . . . , dn,

• AE = {α1, . . . , αn, β1, . . . , βn} defined by the feedback
theories

Ωαi = { K(c→ ai) ∧ di,K(c→ ai) ∧ ¬di,
K(c ∧ ¬ai ∧ di),K(c ∧ ¬ai ∧ ¬di) }

Ωβi = { K(c→ ¬ai) ∧ di,K(c→ ¬ai) ∧ ¬di,
K(c ∧ ai ∧ di),K(c ∧ ai ∧ ¬di) }

• G =
∧
i=1,...,n(Kdi ∨K¬di) ∧ (Kc ∨K(c→ ϕ)),

• k = n.

If ψ is valid then let ~a ∈ 2{a1,...,an} be an assignment which
witnesses this fact. Let π the KBP γ1; . . . ; γn, where γi is
αi if ~a assigns 1 to ai, and γi is βi if it assigns 0 to it. After
every possible execution of π, either the agent knows c, or

it knows
∧
i(c → ~a); in the latter case, because ~a~b |= ϕ

for all ~b, the agent knows c → ϕ, hence in both cases the
second part of the goal is satisfied. Finally, by construction
the agent knows the truth value of each di, and hence π is
a valid plan containing exactly n actions.

Conversely, assume that there is a valid plan of size ≤ n.
Because the agent must learn the truth value of each di, π
must contain αi or βi for each i, and since π is of size n,
it contains exactly one of αi or βi for each i. Now consider
the execution of π in which the sequence of observations
is of the form K(c → aε11 ) ∧ dδ11 , . . . ,K(c → aεnn ) ∧ dδnn .
After this execution, the agent does not know c, therefore,
since π is valid, it knows c → ϕ. This means that

∧
i(c →

aεii )∧
∧
i d
δi
i entails K(c→ ϕ), which entails

∧
i(c→ aεii ) |=

c → ϕ, which is itself equivalent to
∧
i a
εi
i |= ϕ and hence,

∃a1 . . . an∀b1 . . .∃bpϕ is a valid instance of QBF2,∃.
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ABSTRACT
The paper investigates properties of the conditional indepen-
dence relation between pieces of information. This relation
is also known in the database theory as embedded multi-
valued dependency. In 1980, Parker and Parsaye-Ghomi
established that the properties of this relation can not be
described by a finite system of inference rules. In 1995, Her-
rmann proved that the propositional theory of this relation
is undecidable. The main result of this paper is a complete
recursively enumerable axiomatization of this theory.

1. INTRODUCTION
In this paper, we study the properties of interdependencies

between pieces of information. We call these pieces secrets
to emphasize the fact that they might be unknown to some
parties. For example, if secret a is the area of a triangle and
secret p is the perimeter of the same triangle, then there is
an interdependence between these secrets in the sense that
not every value of secret a is compatible with every value
of secret p. If there is no interdependence between two se-
crets, then we say that the two secrets are independent. In
other words, secrets a and b are independent if each possi-
ble value of secret a is compatible with each possible value
of secret b. We denote this relation between two secrets
by a ‖ b. This relation was introduced by Sutherland [18]
and is sometimes referred to as nondeducibility. Halpern
and O’Neill [6] proposed a closely related notion called f -
secrecy. Donders, More, and Naumov described properties
of a multi-argument variation a1 ‖ a2 ‖ · · · ‖ an of the same
relation under the assumption that the secrets are generated
over an undirected graph [12], a directed acyclic graph [2],
or a hypergraph [11] with a fixed topology.

Independence relation can be generalized to relate two sets
of secrets. If A and B are two such sets, then A ‖ B means
that any consistent combination of values of secrets in set A
is compatible with any consistent combination of values of
secrets in set B. Note that “consistent combination” is an
important condition here since some interdependence may
exist between secrets in set A even while the entire set of
secrets A is independent from the secrets in set B. A sound
and complete axiomatization of this relation between sets of
secrets was given by More and Naumov [10]:

1. Empty Set: ∅ ‖ A,

2. Monotonicity: A,B ‖ C → A ‖ C,

3. Symmetry: A ‖ B → B ‖ A,

4. Exchange: A,B ‖ C → (A ‖ B → A ‖ B,C),

where here and everywhere below by A,B we mean the
union of the sets A and B. The same axioms were shown by
Geiger, Paz, and Pearl [3] to provide a complete axiomati-
zation of the independence relation between sets of random
variables in probability theory. More recently, the same sys-
tem was shown to be sound an complete with respect to
concurrency [14] and game [15] semantics.

Suppose now that a, b, c, and d are four secrets with inte-
ger values such that a+b+c+d ≡ 0 (mod 2). Note that a ‖ b
is true since every possible value of a is consistent with any
possible value of b. At the same time, if values of c and d are
fixed, then not every possible value of secret a is compatible
with every possible value of secret b. We will say that secrets
a and b are not independent conditionally on c, d and denote
this by ¬(a ‖c,d b). On the other hand, if only value of c is
fixed, then any value of a is still consistent with any value
of b. We write this as a ‖c b. In general, conditional inde-
pendence relation A ‖C B can be defined between any three
disjoint sets of secrets. This relation, which is also known
in the database theory as embedded multivalued dependency,
has many non-trivial properties. For example, later we will
show soundness of the following principles:

A ‖C B ∧A ‖B,C D → A ‖C B,D,

A,B ‖C D → A ‖B,C D,

B ‖A C∧ E ‖B D∧ D ‖C F ∧ E ‖D F ∧ A ‖E F → E ‖A F.

Parker and Parsaye-Ghomi [16] have shown that this rela-
tion can not be described by a finite system of inference
rules. Herrmann [7, 8] proved the undecidability of the
propositional theory of this relation. Lang, Liberatore, and
Marquis [9] studied complexity of conditional independence
between sets of propositional variables. Studený [17] has
shown that the related conditional independence in proba-
bility theory has no complete finite characterization. More
recently, Grädel and Väänänen discussed (incomplete) logi-
cal systems describing properties of the conditional indepen-
dence in propositional and first order languages [4] and sug-
gested model checking game semantics for these systems [5].

The main result of this paper is a complete infinite recur-
sively enumerable axiomatization of the propositional theory
of the relation A ‖C B. This work builds on the techniques
from our previous TARK paper [13], where we gave a com-
plete axiomatization of a different ternary knowledge rela-
tion. The “diagram” notion used in the current paper is a
generalization of the “diamond” notations from the previous
paper.
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2. SYNTAX AND SEMANTICS
We assume a fixed alphabet of “secret” variables: a, b, . . . .

Definition 1. By the set of formulas Φ we mean the
minimal set of formulas such that

1. ⊥ ∈ Φ,

2. A ‖C B ∈ Φ for each pairwise disjoint sets of secret
variables A, B, and C,

3. ϕ1 → ϕ2 ∈ Φ if ϕ1, ϕ2 ∈ Φ.

As usual, all other boolean connectives are assumed to be
defined through the implication and the constant false.

Definition 2. A protocol is a pair P = 〈V,R〉, where,

1. for any secret variable a, set V (a) is an arbitrary set
of “values” of secret a,

2. R is a set of functions r on secret variables such that
r(a) ∈ V (a) for any secret variable a. Elements of R
will be called “runs” of the protocol.

For any set of secret variables A and any runs r1 and r2,
we write r1 ≡A r2 if r1(a) = r2(a) for any a ∈ A. The next
definition is the core definition of this paper. Item 3 below
formally defines conditional independence relation between
sets of secrets.

Definition 3. For any protocol P = 〈V,R〉 and any for-
mula ϕ ∈ Φ, we define the binary relation P � ϕ as follows:

1. P 2 ⊥,

2. P � A ‖C B if and only if, for any r1, r2 ∈ R, such that
r1 ≡C r2, there is r ∈ R such that r1 ≡A,C r ≡B,C r2.

3. P � ϕ→ ψ if and only if P 2 ϕ or P � ψ.

3. GRAPH NOTATIONS
In this paper we deal with graphs that might have di-

rected as well as undirected edges. An example G of such
graph is depicted in Figure 1. We use word “path” for any
sequences of adjacent vertices without taking into account
the directions of edges. For example, sequence of vertices
v1, v2, v3 is a path in graph G. The graphs that we consider
are “labeled”. By that we mean that each edge of the graph
is labeled with a set of secret variables. If vertices u and w
of the graph are connected by a path such that each edge
of the path is labeled with a set containing label x, then we
write u ∼x w. For example, v1 ∼a v3 in graph G. We allow
paths that consist of just a single vertex. This assumption
implies that relation u ∼x w is an equivalence relation on
graphs for any fixed label x.

v1 v3c

v2

a,b a,d

Figure 1: Graph G

For any set of labels X, we write u ∼X w if u ∼x w for
each x ∈ X. For example, v1 ∼a,c v3 in graph G. Note that

a-path and c-path from v1 to v3 are not the same. Relation
u ∼X w is also an equivalence relation on vertices for any
fixed set of secret variables X. Sometimes we draw only a
fragment of a graph. To show that vertices u and w are in
relation u ∼X w on the whole graph, we connect vertices u
and w in our partial drawing by a double line labeled with
set X. For example,

v1 v3a,c

is a partial drawing of the graph G from Figure 1.

4. DIAGRAMS
The description of the axiomatic system for conditional in-

dependence proposed in this paper is using the notion of a di-
agram. Informal drawing similar to our diagrams have been
used before to visualize arguments about specific properties
of conditional independence. See, for example, illustrations
in Parker and Parsaye-Ghomi [16]. In this work, however,
we give such drawings a precise mathematical definition and
show, through the proof of completeness theorem, that all
properties of conditional independence can be observed by
analyzing the diagrams.

A diagram is a labeled graph with a special structure.
For each diagram ∆ there is a set of formulas [∆] that, in-
formally, is used to “construct” the diagram. Formally, the
diagrams and the corresponding sets of formulas are defined
below.

Definition 4. For any set of secret variables Q, the set
of diagram Diag(Q) is the minimal set such that

1. it contains the “basic” diagram ∆0 consisting of two
vertices, called v+ and v−, and an undirected edge be-
tween v+ and v− labeled with Q:

v+ v�Q

By definition, set [∆0] is empty.

2. For any pair-wise disjoint sets A, B, and C, and any
two vertices u and v of a diagram ∆ ∈ Diag(Q), such
that u ∼C v, there is a diagram ∆′ ∈ Diag(Q):

u vC

vnew

A,C B,C

Δ

Δ'

…       ...       …

such that

(a) Diagram ∆′, in addition to all vertices of the di-
agram ∆, contains a new vertex vnew,

(b) Diagram ∆′, in addition to all edges of the dia-
gram ∆, contains two new directed edges (u, vnew)
and (v, vnew) labeled by sets A∪C and B ∪C re-
spectively.
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(c) [∆′] = [∆] ∪ {A ‖C B}.

If diagrams ∆ and ∆′ are related as described above, then
we say that diagram ∆′ is an extension of the diagram ∆.
The same diagram ∆ has multiple extensions. The unique
vertices v+ and v− from which construction of a diagram ∆
was started will be referred to as v+

∆ and v−∆. Note that if
∆ ∈ Diag(Q), then v+

∆ ∼Q v−∆.

v+ v�C

v1

A,C B,C

Figure 2: Diagram ∆1 ∈ Diag(C)

For example, diagram ∆1 in Figure 2 is obtained from the
basic diagram through a single extension using sets A, B,
and C. Thus, [∆1] = {A ‖C B}.

v+ v�A

v1

B,A C,A

v3

D,C

F,C

v2

E,B

D,B

v4

E,D F,D

Figure 3: Diagram ∆2 ∈ Diag(A)

On the other hand, diagram ∆2 in Figure 3 can be con-
structed from the basic diagram by first adding vertex v1,
next v2, next v3, and finally v4. Alternatively, the order
can be v1, v3, v2, and v4. In either case, [∆2] = {(B ‖A
C), (E ‖B D), (D ‖C F ), (E ‖D F )}. Note that vertex v4

was added in spite of the lack of a direct edge from vertex
v2 to vertex v3. For the diagram to extand to v4 we only
require v2 ∼D v3.

Definition 5. Let

t = (A1, A2, A3;B1, B2, B3;C1, C2, C3;D)

be a tuple of disjoint sets of labels. We say that diagram
∆ ∈ Diag(C1∪C2∪C3) renders tuple t if diagram ∆ contain
vertices w1 and w2 such that

v+
�

v��

w1 w2

A 1
,A
3,
C
1,
C
3

B 2
,B
3,
C
2,
C
3

B 1
,B 3
,C 1
,C 3

A
2 ,A
3 ,C
2 ,C
3

D

C1,C2,C3

or, in other words, w1 ∼A1,A3,C1,C3 v+
∆; w1 ∼B1,B3,C1,C3

v−∆; w2 ∼A2,A3,C2,C3 v
+
∆; w2 ∼B2,B3,C2,C3 v

−
∆; w1 ∼D w2.

For example, Diagram ∆1, depicted in Figure 2, renders
(with w1 = v1 and w2 = v+) tuple

(A,∅,∅;∅, D,B;∅,∅, C;∅)

for an arbitrary set of secrets D, because

v+ v�

v1 v�

A,C

B,
C
,D

B,C C

∅

C

.

Here, of course, we use the fact that v− ∼B,C,D v− for each
set of secrets D.

As another example, Diagram ∆2, depicted in Figure 3,
renders (with w1 = v+ and w2 = v4) tuple

(∅,∅, E;∅, F,∅;A,∅,∅;∅),

because

v+ v�

v+ v4

E

?

A

FA,E

A

.

5. AXIOMS
In this section we introduce a logical system describing

properties of conditional independence. The axioms of the
system are:

1. Symmetry: A ‖C B → B ‖C A,

2. Monotonicity: A ‖C B,D → A ‖C B,

3. Diagram:

∧[∆] → (A1, B1, C1 ‖A3,B3,C3,D A2, B2, C2 →
A1, A2, A3 ‖C1,C2,C3 B1, B2, B3),

if diagram ∆ renders tuple

(A1, A2, A3;B1, B2, B3;C1, C2, C3;D)

and ∧[∆] stands for conjunction of all formulas in [∆].

We write ` ϕ if formula ϕ ∈ Φ is provable from the above
axioms and propositional tautologies in the language Φ using
Modes Ponens inference rule. We write X ` ϕ if formula ϕ
is provable in our logical system using an additional set of
axioms X.

Theorem 1. The set of axioms of this logical system is
recursively enumerable.

Proof. The statement of the theorem follows from re-
cursive enumerability of diagrams, recursive enumerability
of tuples, and decidability of “diagram renders tuple” rela-
tion.
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6. EXAMPLES
In this section we give several examples of formal proofs

in our logical system. The soundness of the axioms will
be shown in Section 7. We start with the three non-trivial
properties of the conditional independence mentioned in the
introduction.

Proposition 1. ` A ‖C B ∧A ‖B,C D → A ‖C B,D.

Proof. Consider diagram ∆1 depicted in Figure 2. As
we have shown in Section 4, this diagram renders tuple
(A,∅,∅;∅, D,B;∅,∅, C;∅). Thus, by the Diagram axiom,

` [∆1]→ (A ‖B,C D → A ‖C B,D).

Recall from Section 4 that [∆1] = {A ‖C B}. Therefore,
` A ‖C B → (A ‖B,C D → A ‖C B,D).

Proposition 2. ` A,B ‖C D → A ‖B,C D.

Proof. Consider basic diagram ∆3:

v+ v�B,C

This diagram renders (with w1 = v+ and w2 = v−) tuple
(A,∅,∅;∅, D,∅;B,∅, C;∅) because

v+ v�B,C

v+ v�

A,B,C C,D

∅

B,C C

.

Hence, by the Diagram axiom,

` ∧[∆3]→ (A,B ‖C D → A ‖B,C D).

Recall that ∆3 is a basic diagram. Thus, by Definition 4,
set [∆3] is empty. Therefore, ` A,B ‖C D → A ‖B,C D.

Proposition 3.

` B ‖A C∧E ‖B D∧D ‖C F∧E ‖D F∧A ‖E F → E ‖A F.

Proof. Consider diagram ∆2 depicted in Figure 3. As
we have shown in Section 4, this diagram renders tuple

(∅,∅, E;∅, F,∅;A,∅,∅;∅).

Thus, by the Diagram axiom,

` [∆2]→ (A ‖E F → E ‖A F ).

Recall from Section 4 that

[∆2] = {(B ‖A C), (E ‖B D), (D ‖C F ), (E ‖D F )}.

Therefore,

` B ‖A C∧E ‖B D∧D ‖C F∧E ‖D F∧A ‖E F → E ‖A F.

As our final example, we prove the Exchange axiom men-
tioned in the introduction. Although it is a property of
non-conditional independence, it can be rephrased in the
language of the conditional independence.

Proposition 4.

` A,B ‖∅ C → (A ‖∅ B → A ‖∅ B,C).

Proof. Suppose that A,B ‖∅ C. Thus, A ‖B C by
Proposition 2. Therefore, by Proposition 1 and due to the
assumption A ‖∅ B, we can conclude that A ‖∅ B,C.

7. SOUNDNESS
We prove soundness of each axiom as a separate lemma.

Lemma 1 (symmetry). For any protocol P = (V,R),
if P � A ‖C B, then P � B ‖C A.

Proof. Assume that r1 ≡C r2 for some runs r1, r2 ∈ R.
Thus, r2 ≡C r1. Hence, by the assumption of the lemma,
there is r ∈ R such that r2 ≡A,C r ≡B,C r1. Therefore,
r1 ≡B,C r ≡A,C r2.

Lemma 2 (monotonicity). For any P = (V,R), if
P � A ‖C B,D, then P � A ‖C B.

Proof. Assume that r1 ≡C r2 for some runs r1, r2 ∈ R.
Hence, by the assumption of the lemma, there is r ∈ R such
that r1 ≡A,C r ≡B,D,C r2. Therefore, r1 ≡A,C r ≡B,C

r2.

Next, we establish a technical lemma that is used in the
proof of soundness of the Diagram axiom.

Lemma 3. For any diagram ∆ ∈ Diag(Q) and any pro-
tocol P = (V,R) such that P � δ for each δ ∈ [∆], if
r+, r− ∈ R and r+ ≡Q r−, then there is a function ρ that
maps vertices of the diagram ∆ into runs in R that satisfies
the following conditions:

1. ρ(v+
∆) = r+ and ρ(v−∆) = r−,

2. if v1 ∼S v2, then ρ(v1) ≡S ρ(v2).

Proof. Induction on the number of vertices in diagram
∆. If ∆ is a basic diagram, then define ρ to be such that
ρ(v+

∆) = r+ and ρ(v−∆) = r−. Condition 2 is satisfied because
of the assumption r+ ≡Q r−.

Suppose now that diagram ∆′ is obtained from diagram
∆ by adding a new vertex vnew, connected to vertices u and
v by edges labeled with sets A ∪ C and B ∪ C respectively,
such that u ∼C v. By the induction hypothesis, there is a
function ρ on the vertices of the diagram ∆ that satisfies
conditions 1. and 2. of this lemma. In particular, ρ(u) ≡C

ρ(v). We will show how function ρ could be extended to the
vertex vnew preserving conditions 1. and 2.

Note that A ‖C B ∈ [∆′], by Definition 4. Hence, by the
assumption of this lemma, P � A ‖C B. Therefore, there
is a run r ∈ R such that ρ(u) ≡A,C r ≡B,C ρ(v). Define
ρ(vnew) = r.

To finish the proof of the lemma, we need to show that if
vnew ∼S w, where w 6= vnew is a vertex in the diagram ∆′,
then ρ(vnew) ≡S ρ(w). Note that vertex w is also a vertex
in the diagram ∆, because w 6= vnew. Thus, Set S could
be partitioned into sets S1 and S2 such that: S1 ⊂ A ∪ C,
S2 ⊂ B∪C, u ∼S1 w and v ∼S2 w. Hence, by the induction
hypothesis, ρ(u) ≡S1 ρ(w) and ρ(v) ≡S2 ρ(w). Thus,

ρ(vnew) = r ≡S1 ρ(u) ≡S1 ρ(w),

ρ(vnew) = r ≡S2 ρ(v) ≡S2 ρ(w).

Therefore, ρ(vnew) ≡S ρ(w).

Lemma 4 (diagram). For any protocol P = (V,R), if

1. diagram ∆ renders tuple

(A1, A2, A3;B1, B2, B3;C1, C2, C3;D),
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2. P � δ for each δ ∈ [∆],

3. P � A1, B1, C1 ‖A3,B3,C3,D A2, B2, C2

then P � A1, A2, A3 ‖C1,C2,C3 B1, B2, B3.

Proof. Let r+, r− ∈ R be such that r+ ≡C1,C2,C3 r−.
We will prove the existence of a run r ∈ R such that

r+ ≡A1,A2,A3,C1,C2,C3 r,

r− ≡B1,B2,B3,C1,C2,C3 r.

By Lemma 3, there is a function ρ that maps vertices
of the diagram into runs of the protocol P that satisfies
conditions 1. and 2. of Lemma 3.

By Definition 5, there are vertices w1 and w2 in the di-
agram ∆ that satisfy conditions 1.-5. of that definition.
In particular, w1 ∼A3,C3 v+

∆ and w2 ∼A3,C3 v+
∆. Thus,

w1 ∼A3,C3 w2. Similarly, w1 ∼B3,C3 w2. By condition 5.
of Definition 5, w1 ∼D w2. Therefore, w1 ∼A3,B3,C3,D w2.
Thus, by the assumption 3. of this lemma, there is a run
r ∈ R such that

ρ(w1) ≡A1,B1,C1,A3,B3,C3,D r (1)

ρ(w2) ≡A2,B2,C2,A3,B3,C3,D r (2)

By Definition 5,

w1 ∼A1,A3,C1,C3 v
+
∆

w2 ∼A2,A3,C2,C3 v
+
∆.

Hence, by condition 2. of Lemma 3,

ρ(w1) ≡A1,A3,C1,C3 r
+

ρ(w2) ≡A2,A3,C2,C3 r
+.

Finally, taking into account equations (1) and (2),

r+ ≡A1,A2,A3,C1,C2,C3 r.

Similarly, r− ≡B1,B2,B3,C1,C2,C3 r.

8. COMPLETENESS
In the rest of the paper we establish completeness of our

logical system.

Theorem 2 (completeness). For any ϕ ∈ Φ, if 0 ϕ,
then there is a protocol P such that P 2 ϕ.

Suppose that 0 ϕ. Let X be any maximal consistent subset
of Φ containing formula ¬ϕ.

8.1 Chains of Diagrams
The chains of diagrams is a technical construction that we

use to prove of the completeness theorem.

Definition 6. A Q-chain is an infinite sequence of di-
agrams ∆0,∆1, . . . ,∆n, . . . from Diag(Q) such that ∆0 is
the basic diagram and diagram ∆i+1 is an extension of the
diagram ∆i for each i ≥ 0.

Lemma 5. For any Q-chain ∆0,∆1, . . . ,∆n, . . . , any la-
bel p, any n, and any N ≥ n, if x and y are vertices on a
diagram ∆n and x ∼p y on diagram ∆N , then x ∼p y on
diagram ∆n.

Proof. Suppose that there is n ≤ k < N such that x ∼p

y on diagram ∆k+1, but not on diagram ∆k. By Definition 4,
diagram ∆k+1 is obtained from diagram ∆k by adding vertex
w connected to vertices u and v by edges labeled with sets
A ∪ C and B ∪ C, such that u ∼C v on diagram ∆k.

Since x ∼p y on diagram ∆k+1, but not on diagram ∆k,
there must be a path labeled by p between vertices x and
y on diagram ∆k+1 that goes through both added edges:
(u,w) and (w, v). Hence, p ∈ (A∪C)∩ (B ∪C). By Defini-
tion 1, sets A, B, and C are disjoint. Thus, p ∈ C. Recall,
however, that u ∼C v on diagram ∆k. Therefore, x ∼p y
on diagram ∆k, which is a contradiction with the choice of
k.

Definition 7. A Q-chain ∆0,∆1,∆2, . . . is called sound
if [∆n] ⊆ X for each n ≥ 0.

Definition 8. A Q-chain ∆0,∆1,∆2, . . . is complete if
for any A ‖C B ∈ X, for any n ≥ 0 and any two vertices
u, v of the diagram ∆n such that u ∼C v, there is N ≥ n and
a vertex w in the diagram ∆N such that relations u ∼A,C w
and w ∼B,C v hold in diagram ∆N .

Lemma 6. For any set of secrets Q, there is a Q-chain
which is complete and sound with respect to the set X.

Proof. The statement of the lemma follows from the
Definition 4 and the fact that set X is countable.

8.2 Chain Protocol
We now show how a chain of diagrams can be converted

into a protocol with certain desirable properties. Later, sev-
eral such protocols will be combined into one in order to
finish the proof of the completeness theorem.

Lemma 7. For each finite set of secrets Q there is a pro-
tocol P such that

1. protocol P has at least one run,

2. P � A ‖C B for each sets of secret variables A, B, and
C such that A ‖C B ∈ X,

3. P 2 P ‖Q R for each sets of secret variables P and R
such that P ‖Q R /∈ X.

Proof. By Lemma 6, there is Q-chain of diagrams

∆0,∆1,∆2, . . . ,

which is complete and sound with respect to the set X. Let
V0 ⊂ V1 ⊂ V2 ⊂ . . . be the sets of vertices of these diagrams.

For any label a and any two vertices u, v ∈
⋃

i Vi, we say
that vertices u and v are a-equivalent if there is k such that
u ∼a v in diagram ∆k. Let V al(a) be the set of equivalence
classes on

⋃
i Vi with respect to this equivalence relation.

For any v ∈
⋃

i Vi and any label a, define function rv(a)
to be equal to the a-equivalence class of v:

rv(a) = [v]a.

Let R = {rv | v ∈
⋃

i Vi}. This concludes the definition
of the protocol P = (V al,R). We will now show that this
protocol satisfies conditions 1., 2., and 3. of the lemma.

To prove the first condition, notice that set
⋃

i Vi is not
empty, because it contains vertices v+ and v− from the basic
diagram ∆0. Thus, set {rv | v ∈

⋃
i Vi} is also not empty.
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To prove the second condition, consider any ru, rv ∈ R
such that ru ≡C rv. We will show that there is rw ∈ R such
that ru ≡A,C rw ≡B,C rv. Indeed, ru ≡C rv implies that
[u]c = [v]c for each c ∈ C. Thus, for each c ∈ C, vertices u
and v are c-equivalent. Hence, there must exists n ≥ 0 such
that u ∼C v in ∆n. By Definition 8, there is N ≥ n and a
vertex w in the diagram ∆N such that relations u ∼A,C w
and w ∼B,C v hold in diagram ∆N . Thus, [u]x = [w]x for
each x ∈ A∪C and [w]y = [v]y for each y ∈ B∪C. Therefore,
ru ≡A,C rw ≡B,C rv.

To prove the third condition, assume the opposite: P �
P ‖Q R. Consider vertices v+ and v− of the based diagram
∆0. By Definition 4, v+ ∼Q v− on diagram ∆0. Thus,
[v+]q = [v−]q for each q ∈ Q. Hence, rv+ ≡Q rv− . Then, by
the assumption P � P ‖Q R, there must be a run rw such
that rv+ ≡P,Q rw ≡R,Q rv− . Hence, [v+]t = [w]t for each
t ∈ P ∪Q and [w]t = [v−]t for each t ∈ R ∪Q. Thus,

v+ v�

w

P,Q R,
Q

Q

.

Let n be the smallest integer such that ∆n contains vertex
w. By Definition 4, there are vertices u and v in diagram
∆n such that

1. vertex w is only connected in diagram ∆n to u and v,

2. edge (u,w) is labeled with a set A,

3. edge (w, v) is labeled with set B,

4. u ∼A∩B v in diagram ∆n−1, and

5. A \B ‖A∩B B \A ∈ [∆n].

Since chain ∆0,∆1, . . . is sound with respect to set X, the
last condition above implies that

A \B ‖A∩B B \A ∈ X.

By Monotonicity axiom,

X ` A \B ‖A∩B P ∩ (B \A), R ∩ (B \A), Q ∩ (B \A).

By Symmetry axiom,

X ` P ∩ (B \A), R ∩ (B \A), Q ∩ (B \A) ‖A∩B A \B.

By Monotonicity axiom,

X ` P ∩ (B \A), R ∩ (B \A), Q ∩ (B \A) ‖A∩B
P ∩ (A \B), R ∩ (A \B), Q ∩ (A \B).

Again by Symmetry axiom,

X ` P ∩ (A \B), R ∩ (A \B), Q ∩ (A \B) ‖A∩B
P ∩ (B \A), R ∩ (B \A), Q ∩ (B \A).

In other words,

X ` P ∩ (A \B), R ∩ (A \B), Q ∩ (A \B)

‖P∩(A∩B),R∩(A∩B),Q∩(A∩B),(A∩B)\(P∪Q∪R)

P ∩ (B \A), R ∩ (B \A), Q ∩ (B \A).

We now apply the Diagram axiom (see Figure 4) with

v+ v�Q

v
u

w

A ∩ B

A \ B B \ A

P ∩ (A \ B)

P ∩ (A ∩ B)

P ∩ (A ∩ B)

P ∩ (B \ A)

Q ∩ (A \ B)

Q ∩ (A ∩ B) Q ∩ (A \ B)

Q ∩ (A ∩ B)

R ∩ (A \ B)

R ∩ (A ∩ B)

Q ∩ (A \ B)

Q ∩ (A ∩ B)

R ∩ (B \ A)

R ∩ (A ∩ B)

Q ∩ (A \ B)

Q ∩ (A ∩ B)

Figure 4: Diagram ∆n.

A1 = P ∩ (A \B) A2 = P ∩ (B \A)

B1 = R ∩ (A \B) B2 = R ∩ (B \A)

C1 = Q ∩ (A \B) C2 = Q ∩ (B \A)

A3 = P ∩ (A ∩B)

B3 = R ∩ (A ∩B)

C3 = Q ∩ (A ∩B)

D = (A ∩B) \ (P ∪Q ∪R)

to conclude that

X ` P ∩ (A \B), P ∩ (B \A), P ∩ (A ∩B)

‖Q∩(A\B),Q∩(B\A),Q∩(A∩B) (3)

R ∩ (A \B), R ∩ (B \A), R ∩ (A ∩B).

Recall that w ∼P∪Q v+ and w ∼R∪Q v−. At the same time,
vertex w is only connected in diagram ∆n to u and v, edge
(u,w) is labeled with a set A, and edge (w, v) is labeled
with set B. Hence, P ∪ Q ⊆ A ∪ B. Thus, statement (3)
implies that X ` P ‖Q R, which is a contradiction with the
assumption.

8.3 Protocol Composition
In this section we introduce a way to combine several dif-

ferent protocols over (S,G) into a single protocol.

Definition 9. For any protocols P1 = (V1, R1), . . . ,Pn =
(Vn, Rn), let P1 × · · · × Pn be a protocol (V,R) such that

1. V (a) = V1(a)× · · · × Vn(a), for each a ∈ S,

2. R is a set of all functions r(x) = 〈r1(x), . . . , rn(x)〉 for
all r1 ∈ R1, . . . , rn ∈ Rn.

Lemma 8. Let P1 = (V1, R1), . . . ,Pn = (Vn, Rn) be pro-
tocols such that set Rk is not empty for each k ≤ n. Then
P1× · · · ×Pn � A ‖C B if and only if Pk � A ‖C B for each
k ≤ n.
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Proof. (⇒) : Suppose that r1
k, r

2
k ∈ Rk are such that

r1
k ≡C r2

k. We will show that there is a run rk ∈ Rk such
that r1

k ≡A,C rk ≡B,C r2
k.

Let (V,R) be protocol P1 × · · · × Pn. Consider any runs

r1 ∈ R1, . . . , rk−1 ∈ Rk−1, rk+1 ∈ Rk+1, . . . , rn ∈ Rn.

Such runs exists due to the assumption of the lemma. Let
r1, r2 ∈ R be such that for each secret variable x,

r1(x) = 〈r1(x), . . . , rk−1(x), r1
k(x), rk+1(x), . . . , rn(x)〉,

r2(x) = 〈r1(x), . . . , rk−1(x), r2
k(x), rk+1(x), . . . , rn(x)〉.

Note that r1
k ≡C r2

k implies that r1(c) ≡C r2(c). Hence,
by the assumption of the lemma, there is a run r ∈ R such
that r1 ≡A,C r ≡B,C r2. Let rk(x) be defined to be the
k-th component of r(x) for each secret variable x. Thus, by
Definition 9, rk ∈ Rk. Finally, r1 ≡A,C r ≡B,C r2 implies
that r1

k ≡A,C rk ≡B,C r2
k.

(⇐) : Suppose that r1, r2 ∈ R are such that r1 ≡C r2. We
will show that there is r ∈ R such that r1 ≡A,C r ≡B,C

r2. Assume that r1(x) = 〈r1
1(x), . . . , r1

n(x)〉, and r2(x) =
〈r2

1(x), . . . , r2
n(x)〉. Assumption r1 ≡C r2 implies that r1

k ≡C

r2
k for each k ≤ n. Thus, by the assumption of the lemma,

there are runs r1 ∈ R1, . . . , rn ∈ Rn such that r1
k ≡A,C

rk ≡B,C r2
k for each k ≤ n. Define r(x) = 〈r1(x), . . . , rn(x)〉,

Therefore, r1 ≡A,C r ≡B,C r2.

8.4 Completeness: final steps
We are now ready to finish the proof of the completeness

theorem. Let S be the finite set of all variables that appear
in the formula ϕ. Let Q1, . . . , Qn be all subsets of S. By
Lemma 7, there are protocols P1, . . . ,Pn such that

1. Pk � A ‖C B for each sets of secret variables A, B,
and C such that A ‖C B ∈ X,

2. Pk 2 P ‖Qk R for each sets of secret variables P and
R such that P ‖Qk R /∈ X.

Let P = P1 × · · · × Pn.

Lemma 9. For each ψ ∈ Φ that only uses secret variables
from set S, P � ψ if and only if ψ ∈ X.

Proof. Induction on the structural complexity of for-
mula ψ. Case ψ being ⊥ follows from the assumption of
consistency of X and Definition 3. The induction case ψ ≡
ψ1 → ψ2 follows from the maximality and consistence of set
X in the standard way. We are only left to consider the case
when ψ is an atomic formula P ‖Q R for some P,Q,R ⊆ S.
Assume that Q = Qk0 .
(⇒) : Suppose that X 0 P ‖Q R. Thus, Pk0 2 P ‖Q R
due to the choice of the protocol Pk0 . Note that each of the
protocols P1, . . . ,Pn has at least one run due to Lemma 7.
Thus, by Lemma 8, P 2 P ‖Q R.
(⇐) : If X ` P ‖Q R, then, Pk 2 P ‖Q R for each k ≤ n due
to the choice of the protocols P1, . . . ,Pn. Note again that
each of the protocols P1, . . . ,Pn has at least one run due to
Lemma 7. Thus, by Lemma 8, P � P ‖Q R.

Recall now that ¬ϕ ∈ X. Hence, ϕ /∈ X due to consis-
tency of X. Therefore, P 2 ϕ by Lemma 9. This concludes
the proof of Theorem 2.

9. CONCLUSION
In this paper we gave a recursively enumerable axiomati-

zation of propositional properties of relation A ‖C B, assum-
ing that sets A, B, and C are pair-wise disjoint. Although
Definition 3 is meaningful if the sets are not disjoint, our
completeness proof will not work (see Lemma 5). At the
same time, it is interesting to point out that due to Defi-
nition 3, statement B ‖A B means that any two runs that
agree on A also agree on B. Thus, B ‖A B represents func-
tional dependency relation between values of A and B. Func-
tional dependency alone was axiomatized by Armstrong [1].
It appears that allowing sets A, B, and C to be non-disjoint
leads to a significantly more powerful language. Complete
axiomatization of all properties expressible in such language
remains an open question.
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[17] Milan Studený. Conditional independence relations
have no finite complete characterization. In
Information Theory, Statistical Decision Functions
and Random Processes. Transactions of the 11th
Prague Conference vol. B, pages 377–396. Kluwer,
1990.

[18] David Sutherland. A model of information. In
Proceedings of Ninth National Computer Security
Conference, pages 175–183, 1986.

155



When is an example a counterexample?

[Extended Abstract]

Eric Pacuit
University of Maryland

TiLPS, Tilburg University
e.j.pacuit@uvt.nl

Arthur Paul Pedersen
Department of Philosophy
Carnegie Mellon University

ppederse@andrew.cmu.edu

Jan-Willem Romeijn
Faculty of Philosophy
Groningen University
j.w.romeijn@rug.nl

ABSTRACT
In this extended abstract, we carefully examine a purported
counterexample to a postulate of iterated belief revision. We
suggest that the example is better seen as a failure to ap-
ply the theory of belief revision in sufficient detail. The
main contribution is conceptual aiming at the literature on
the philosophical foundations of the AGM theory of belief
revision [1]. Our discussion is centered around the obser-
vation that it is often unclear whether a specific example
is a “genuine” counterexample to an abstract theory or a
misapplication of that theory to a concrete case.

1. INTRODUCTION
Starting with the seminal paper [1], the so-called AGM the-
ory of belief revision has been extensively studied by logi-
cians, computer scientists, and philosophers. The general
setup is well-known, and we review it here to fix ideas and
notation.

Let K be a belief set, a set of propositional formulae closed
under classical consequence representing an agent’s initial
collection of beliefs. Given a belief ϕ that the agent has
acquired, the set K ∗ ϕ represents the agent’s collection of
beliefs upon acquiring ϕ. A central project in the theory of
belief revision is to study constraints on functions ∗mapping
a belief set K and a propositional formula ϕ to a new belief
set K ∗ ϕ. For reference, the key AGM postulates are listed
in the Appendix (Section A). This simple framework has
been analyzed, extended, and itself revised in various ways
(see [2] for a survey of this literature), and much has been
written about the status of its philosophical foundations (cf.
[10, 21, 20]).

The basic AGM theory does not explicitly address the
question of how to respond to a sequence of belief changes.
The only salient constraint on iterated revision implied by
the eight AGM postulates is the requirement that (K ∗ϕ) ∗
ψ ⊆ K ∗ (ϕ ∧ ψ) provided ¬ψ 6∈ K ∗ ϕ. 1 However, if
¬ψ ∈ K ∗ ϕ, there is no constraint on (K ∗ ϕ) ∗ ψ. Various
authors have attempted to rectify this situation, proposing
additional rationality constraints on belief revision given a

1By AGM 7 (K ∗ (ϕ ∧ ψ) ⊆ Cn(K ∗ ϕ ∪ {ψ})) and AGM 8
(¬ψ 6∈ K ∗ϕ then Cn(K ∗ϕ∪ {ψ}) ⊆ K ∗ (ϕ∧ψ)), we have
K ∗ (ϕ ∧ ψ) = Cn(K ∗ ϕ ∪ {ψ}) provided that ¬ψ 6∈ K ∗ ϕ,
whence by an application of AGM 3 ((K ∗ϕ) ∗ψ ⊆ Cn((K ∗
ϕ) ∪ {ψ})), it follows that (K ∗ ϕ) ∗ ψ ⊆ Cn(K ∗ ϕ ∪ {ψ}) if
¬ψ 6∈ K ∗ ϕ.

TARK 2013, Chennai, India. 2013, Chennai, India
Copyright 2013 by the authors.

sequence of input beliefs [8, 9, 5, 15, 16, 18, 21, 6]. Two
postulates which have been extensively discussed in the lit-
erature are the following constraints:

I1 If ψ ∈ Cn({ϕ}) then (K ∗ ψ) ∗ ϕ = K ∗ ϕ

I2 If ¬ψ ∈ Cn({ϕ}) then (K ∗ ϕ) ∗ ψ = K ∗ ψ

Each of these postulates have some intuitive appeal. Pos-
tulate I1 demands if ϕ → ψ is a theorem (with respect to
the background theory), then first learning ψ followed by the
more specific information ϕ is equivalent to directly learning
the more specific information ϕ. Postulate I2 demands that
first learning ϕ followed by learning a piece of information
ψ incompatible with ϕ is the same as simply learning ψ out-
right. So, for example, first learning ϕ and then ¬ϕ should
result in the same belief state as directly learning ¬ϕ. 2

Many recent developments in this area have been offered
on the basis of analyses of concrete examples. These range
from toy examples—such as the infamous muddy children
puzzle, the Monty Hall problem, and the Judy Benjamin
problem—to everyday examples of social interaction. Dif-
ferent frameworks are then judged, in part, on how well
they conform to the analyst’s intuitions about the perceived
relevant set of examples. This raises an important issue: Im-
plicit assumptions about what the agents know and believe
about the situation being modeled often guide the analyst’s
intuitions. In many cases, it is crucial to make these under-
lying assumptions explicit.

The following simple example illustrates the type of im-
plicit assumption that we have in mind. There are two
opaque boxes, labeled 1 and 2, each containing a coin. The
believer is interested in the status of the coins in each box.
Suppose that Ann is an expert on the status (heads up or
tails up) of the coin in box 1 and that Bob is an expert on the
status (heads up or tails up) of the coin in box 2. Currently
the believer under consideration does not have an opinion
about whether the coins are lying heads up or tails up in
the boxes; more specifically, the believer thinks that all four
possibilities are equally plausible. Suppose that both Ann
and Bob report that their respective coins are lying tails

2Of course, one might object to this on the basis of the ob-
servation that if the believer is in a situation in which she
is receiving inconsistent evidence, then she should recognize
this and accordingly adopt beliefs about the source(s) of in-
formation. This issue of higher order evidence is interesting
(cf. [7]), but we set it aside in this paper. We are interested
in situations in which the believer never loses her trust in
the process generating evidence. AGM theory may be the
only theory applicable in such situations.
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up. Since both experts are trusted, this is what the believer
believes. Now further suppose that there is a third expert,
Charles, who is considered more reliable than both Ann and
Bob. What should the believer think about the coin in box
2 after receiving a report from Charles that the coin in box
1 is lying heads up?

Of course, an answer to this question depends in part on
the believer’s initial opinions about the relationship between
the coins in the two boxes. If the believer initially thinks
that the status of the coins are independent and that the
reports from Ann and Bob are independent, then she should
believe that the coin in box 2 is lying tails up. However, if
she has reason to think that the coins, or reports about the
coins, are somehow correlated, upon learning that the coin
in box 1 is lying heads up, she may be justified in changing
her belief about the status of the coin in box 2.

Robert Stalnaker [21] has discussed the potential role that
such meta-information, as illustrated in the above example,
plays in the evaluation of proposed counterexamples to the
AGM postulates. The general message is that once salient
meta-information has been made explicit, many of the pur-
ported counterexamples to the AGM theory of belief revision
do not demonstrate a failure of the theory itself, but rather
a failure to apply the theory correctly and include all the
relevant components in the model. 3 After an illuminat-
ing discussion of a number of well-known counterexamples
to the AGM postulates, Stalnaker proposes two “genuine”
counterexamples to postulates I1 and I2 for the theory of
iterated belief revision. The conclusion Stalnaker draws in
his discussion is that“. . . little of substance can be said about
constraints on iterated belief revision at a level of abstrac-
tion that lacks the resources for explicit representation of
meta-information” (pg. 189).

In this extended abstract, we carefully examine one of
Stalnaker’s purported counterexamples (Section 4), provide
a model for it that complies with the AGM postulates, sug-
gesting that it is again better seen as a failure to apply the
theory of belief revision in sufficient detail. We end with a
critical discussion of the opposition between genuine coun-
terexamples and misapplications of the theory (Section 6).

2. STALNAKER’S EXAMPLE
An indicated in the introduction, Stalnaker [21] proposes
counterexamples to both postulates I1 and I2. In this ex-
tended abstract, we only have space to discuss one of the
examples (the full paper has an extensive discussion of both
examples). We discuss an example which is “clearer and a

3This is not to say that there are no genuine conceptual
problems with the AGM theory of belief revision. The point
raised here is that it is often unclear what exactly a spe-
cific counterexample to an AGM postulate demonstrates
about the abstract theory of belief revision. This is nicely
explained by Stalnaker in his analysis of Hans Rott’s well-
known counterexample to various AGM postulates (see [20]):

... Rott seems to take the point about meta-
information to explain why the example conflicts
with the theoretical principles, whereas I want
to conclude that it shows why the example does
not conflict with the theoretical principles, since
I take the relevance of the meta-information to
show that the conditions for applying the prin-
ciples in question are not met by the example.
asdf (pg. 204)

more decisive problem” for I2.

Example. Suppose that two fair coins are flipped and
placed in two boxes. Two independent and reliable observers
deliver reports about the status (heads up or tails up) of the
coins in the opaque boxes. On the one hand, Alice reports
that the coin in box 1 is lying heads up, and on the other
hand, Bert reports that the coin in box 2 is lying heads up.

Two new independent witnesses, whose reliability trumps
that of Alice’s and Bert’s, provide additional reports on the
status of the coins. Carla reports that the coin in box 1
is lying tails up, and Dora reports that the coin in box 2 is
lying tails up. Finally, Elmer, a third witness considered the
most reliable overall, reports that the coin in box 1 is lying
heads up.

Let Hi be the proposition expressing the statement that
the coin in box i is lying heads up (i = 1, 2). Similarly, for
i = 1, 2, let Ti be the proposition expressing the statement
that the coin in box i is lying tails up. After the first belief
revision, the belief set is K′ = K ∗(H1∧H2), where K is the
agent’s original set of beliefs. After receiving the reports, the
belief set is K′ ∗ (T1 ∧T2) ∗H1. As Stalnaker suggests, since
Elmer’s report is irrelevant to the status of the coin in box 2,
it seems natural to assume that H1∧T2 ∈ K′∗(T1∧T2)∗H1.

Now to the hitch. Since (T1 ∧ T2) → ¬H1 is a theorem
(given the background theory), by I2 it follows that K′ ∗
(T1 ∧ T2) ∗H1 = K′ ∗H1. Yet since H1 ∧H2 ∈ K′ and H1

is consistent with H2, we must have H1 ∧ H2 ∈ K′ ∗ H1,
which yields a conflict with the assumption that H1 ∧ T2 ∈
K′ ∗ (T1 ∧ T2) ∗H1.

Stalnaker diagnoses the situation as follows:

...[Postulate I2] directs us to take back the total-
ity of any information that is overturned. Specif-
ically, if we first receive information α, and then
receive information that conflicts with α, we should
return to the belief state we were previously in,
before learning α. But this directive is too strong.
Even if the new information conflicts with the
information just received, it need not necessarily
cast doubt on all of that information.
asdf (pg. 207–208)

It seems that, for lack of independent guidelines of how we
must identify the component of the evidence that needs over-
turning to accommodate the new information, the epistemic
advice provided by AGM conflicts with the intuitively cor-
rect answer.

But what are we to do with this apparent conflict? In
what follows we attempt to model Stalnaker’s puzzling ex-
ample. This is a conceptual paper aiming to contribute to
the literature on the philosophical foundations of the theory
of belief revision (cf. [10, 21, 20]). Accordingly, it is not
our main goal to extend this theory, resolve the problems,
and be done with it. Our focus lies rather on the fact that
it is unclear how to appropriately respond to a purported
counterexample to a postulate of iterated belief revision. To
illustrate, the foregoing example may be regarded as demon-
strating either:

1. There is no suitable way to formalize the scenario in
such a way that the AGM postulates (possibly includ-
ing postulates of iterated belief revision) can be saved;
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2. The AGM framework can be made to agree with the
scenario but does not furnish a systematic way to for-
malize the relevant meta-information; or

3. There is a suitable and systematic way to make the
meta-information explicit, but this is something that
the AGM framework cannot properly accommodate.

The first response is very drastic and, indeed, the models
presented in the next section may be taken to show that
the meta-information driving the belief change can be made
suitably explicit. The second response to the example is
already well-appreciated in the literature on belief revision
(cf. the discussion of sources of evidence in [6] and “ontol-
ogy” in [10]). Of interest to us for this paper is the third
response, which is concerned with the absence of guidelines
for applying the theory of belief revision.

In other words, we suggest that there is a problem with
the AGM theory, and that this problem arises because a
clear distinction between counterexample and misapplica-
tion has yet to be drawn. It is not clear from the theory of
belief revision how its applications are supposed to be orga-
nized, and hence it is not clear whether the examples reveal
shortcomings in the theory or rather in its application. Stal-
naker suggests that his purported counterexamples turn on
independence:

There are different kinds of independence—conceptual,
causal and epistemic—that interact, and one might
be able to say more about constraints on ratio-
nal belief revision if one had a model theory in
which causal-counterfactual and epistemic infor-
mation could both be represented. There are fa-
miliar problems, both technical and philosoph-
ical, that arise when one tries to make meta-
information explicit, since it is self-locating (and
auto-epistemic) information, and information about
changing states of the world. (pg. 208)

Part of our response is to show how models from AGM belief
revision can accommodate such considerations. In addition,
we offer a different perspective on the third response to the
counterexample.

This shift in perspective has a positive part and a negative
part. On the one hand, we argue that probabilistic models
can facilitate an explicit incorporation of meta-information
underlying rational belief changes for many examples. Fur-
thermore, these models can offer principled ways to distin-
guish genuine counterexamples from misapplications of the
AGM theory of belief revision. In the example at hand, the
salient categories are the event and report structure, and the
belief states that range over them.

On the other hand, the connection between AGM theory
and probabilistic models of belief revision offers an oppor-
tunity to exploit various insights from critical discussions
concerning probabilistic models of belief dynamics. At the
end of our paper, we critically discuss two such insights.
The first insight draws attention to the absence of a gen-
uine belief dynamics in probabilistic models: Bayesian mod-
els and their extensions are completely static. The second
insight draw attention to a relationship with a result due
to [13] identifying situations in which conditioning in so-
called “naive” spaces matches conditioning in so-called “so-
phisticated” spaces (in which the relevant meta-information
is made explicit).

3. A HEURISTIC TREATMENT
We begin with a heuristic treatment of Stalnaker’s coun-
terexample to postulate I2, serving to explain the role that
the Bayesian model of Section 4 plays to respond to Stal-
naker’s challenge to an AGM theory of iterated belief revi-
sion.

The heuristic treatment is cast in the semantic model of
AGM belief revision introduced in Grove’s seminal paper
[12]. The key idea is to describe the belief state of an agent
as a set of possible worlds and a plausibility relation on this
set of states (formally, a plausibility ordering is a reflex-
ive, transitive and well-founded relation). To illustrate, in
the example there are four possible worlds corresponding
to the configurations of the coins in the two boxes. Ini-
tially, the believer considers all the configurations of the
coins equally plausible. The agent believes any proposition
implied by the set of most plausible worlds. A belief revi-
sion policy describes how to modify a plausibility ordering
given a nonempty subset of the set of states (intuitively, this
subset represents a belief that the agent has acquired).

A number of different belief revision policies have been
identified and explored in the literature (cf. [20, 3, 22]). For
our discussion of Stalnaker’s counterexample, we focus on
the so-called radical upgrade belief revision policy: If ϕ
is a set of worlds, the radical upgrade with ϕ, denoted ⇑ϕ,
defines a new plausibility relation as follows: all the states
in ϕ become strictly more plausibility than all the states not
in ϕ, while the ordering for states within ϕ and outside of ϕ
remains the same.

Starting from an initial model in which the believer con-
siders all positions of the coins equally plausible, the belief
changes in Stalnaker’s counterexample can be represented
as follows:

H1H2 T1T2

H1T2 T1H2

M0

T1T2 H1T2

T1H2

H1H2

M1

⇑H1H2

T1H2 H1T2

H1H2

T1T2

M2

⇑T1T2

T1H2

T1T2

H1H2

H1T2

M3

⇑EH1

Interpret this diagram as follows: Each state is labeled by
the position of the coins in the different boxs. The ordering
is represented by the straight lines, with the states at the
bottom the most plausible overall. For example, in model
M2, since the state T1T2 is the most plausible overall, the
agent believes that the coins in both boxs are lying tails up.
Each transition corresponds to a radical upgrade with the
identified set (we write ⇑ w instead of ⇑ {w}, and the last
transition is with the event EH1 = {H1H2, H1T2}).

The above formalization highlights the crucial issue raised
by Stalnaker’s example: A side effect of first learning that

158



both coins are lying heads up followed by learning that both
coins are lying tails up is that the agent comes to believe that
the coins in the two boxs are correlated. Note that in the
third model M2, the state H1H2 is ranked more plausible
than both H1T2 and T1H2. This is not necessarily problem-
atic provided the agent’s initial beliefs about the learning
situation warrant such a conclusion. However, such meta-
information is not made explicit in the description of the
example. This leaves open the possibility of a counterintu-
itive reading of the example in which it is not rational for
the believer to come to the conclusion that the coins are
correlated.

Our suggestion is not that it is impossible to define a be-
lief revision policy that incorporates the assumption that
the believer takes it for granted that the coins are indepen-
dent. Indeed, the following sequence represents such a belief
revision policy:

H1H2 T1T2

H1T2 T1H2

M0

T1H2 H1T2

T1T2

H1H2

M1

H1H2

T1H2 H1T2

H1H2

T1T2

M2

T1T2

T1H2

T1T2

H1T2

H1H2

M3

EH1

In the above formalization, each time the agent learns some-
thing about the position of the coins, the initial belief that
the position of the coins are independent is retained. This
leaves open the question of whether one can find a defensi-
ble belief revision policy generating such a sequence of belief
changes. The models from sections 4 and 5 demonstrate that
this question has an affirmative answer. The models provide
a systematic way to explicitly describe the meta-information
in the background underlying an application of the AGM
theory of belief revision. However, as we argue in Section
6, this does not entirely resolve the issue that Stalnaker’s
raises.

4. BAYESIAN MODELS
In what follows, we sketch a Bayesian model formalizing
salient meta-information in the example from Section 2. The
model demonstrates that such information can be suitably
captured in terms of a coherent set of revision rules. Of
course, the model may be unsatisfactory to someone seeking
to extend AGM belief revision theory with rules for iteration.
Many Bayesian modeling choices, most notably concerning
the representation of belief, are at odds with AGM theory.
However, as we show in Section 5, the Bayesian model can be
refined to cover belief revision policies in the style of AGM
and, for example, Darwiche and Pearl [9] while retaining the
formalization of salient intuitions. To be sure, we make no

claim to a general model covering all cases and all poten-
tially relevant meta-information. But in the example under
discussion we think that insufficient detail has been offered
to warrant any such claim in the first place.

The Basic Formalization
To fix ideas, a Bayesian model of Example 1 consists of an
algebra over a set of states including all relevant proposi-
tions and a probability function expressing the agent’s be-
liefs about these propositions as held at consecutive stages
of her epistemic development. We lay down this basic struc-
ture, subsequently presenting three related probability func-
tions accommodating meta-information.

The hypotheses at stake in the example concern the results
of coin tosses in the two boxes, denoted Xi

j with i ∈ {0, 1}
for tails up 0 and heads up 1, respectively, and j ∈ {1, 2}
for boxes 1 and 2 respectively (here, for convenience, we use
numerals rather than letters for the boxes). Furthermore,
there are five reports, denoted Rijt, each with i ∈ {0, 1} for
a report of tails up or heads up and j ∈ {1, 2} for boxes 1
and 2, and t ∈ {0, 1, 2, 3} for the four update stages in the
epistemic development of the agent. Letting Xj = {X0

j , X
1
j }

and Rjt = {R0
jt, R

1
jt}, we can write the state space Ω as

Ω = X1 ×X2 × (
∏

t=1,2,3

R1t ×R2t)

Thus a state ω ∈ Ω is of the form

ω = (Xi1
1 , X

i2
2 , R

i3
11, R

i4
21, R

i5
12, R

i6
22, R

i7
13, R

i8
23),

where ik ∈ {0, 1} for each k = 1, . . . , 8. We take the algebra
F to be the power set of Ω. Because reports and coins are
mostly considered in pairs, we will use the abbreviations
Xik = Xi

1 ∩Xk
2 and Ruvt = Ru1t ∩Rv2t.

The beliefs of the agent are represented as probability
functions over this algebra, Pt : F → [0, 1]. Summarizing
the set of reports received up and until stage t by the event
St, and taking X as the proposition of interest, the agent
belief’s are determined by Bayesian conditioning:

Pt(X) = P0(X|St) = P0(X)
P0(St|X)

P0(St)
.

In terms of the example, if we are interested in whether the
coin in box 2 landed heads, X1

2 , the agent’s belief state is a
function of the probability conditional upon the reports of
Alice and Bob, P1(X1

2 ) = P0(X1
2 |R11

1 ).
Since the two coins are fair and independent, the priors are

P0(Xik) = 1
4

for all i, k = 0, 1. We can now fill in the prob-
ability assignments to express the specific meta-information
at stake in the example. The crucial point is that we can set
the initial likelihoods in accordance with different intuitions
about the meta-information in the example.

The reports are independent
In this case, after receiving the reports about the coins, the
agent assigns high probability to the coin in box 1 lying
heads up and the coin in box 2 lying tails up. According to
the example, the the content of the reports are very proba-
ble, while the content of subsequent reports are even more
probable, thereby cancelling out the impact of preceding re-
ports. We can express this in the likelihoods of the hypothe-
ses Xik. For each combination of j and t, let Q be the event
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Xi
j ∩Xk

3−j ∩ St−1 ∩Rv(3−j)t. We have:

P0(Rujt | Q) =
1

1 + γt
×

{
1 if u = i,

γt if u 6= i.
(1)

The above expression fixes the probability of all report com-
binations given any state of the coins. Note that the likeli-
hoods are independent of the reports St−1 of the preceding
stage t, and that the reports Rujt and Rv(3−j)t at stage t
are independent of each other too. Moreover, notice that γ
is the same for each report, expressing that reports at the
same stage are equally reliable. Finally, the value γ is close
to zero, since the content of the reports are probable.4

These priors and likelihoods determine a full probability
function P0 over F . By Bayes’ rule, each probabilistic judg-
ment at a later update stage is thereby fixed as well. We
obtain the following posteriors:

Time t 0 1 2 3

After learning > R11
1 R00

2 R1
13

Odds for X11 1 1 γ2 γ

Odds for X10 1 γ γ 1

Odds for X01 1 γ γ γ3

Odds for X00 1 γ2 1 γ2

Prob. Evidence 1 1
4

1
4
γ2 1

4
γ3

After the first update stage with R11
1 , when the agent has

received reports on the coins in both boxes, she is highly
confident that both coins have landed heads. After the sec-
ond pair of reports R00

2 , the agent is confident that both
coins have landed tails. Finally, after Elmer’s report R1

13,
the agent has revised her opinion about the coin in box 1
while leaving her opinion about the coin in box 2 unchanged.

Natural assumptions about the relationship amongst the
reports, however, lead the agent to assign high probability
to the event that both coins are lying heads up, as predicted
by postulate I2.

The reports are dependent
The meta-information in the example may be such that
Elmer’s report also encourages the agent to change her mind
about the coin in the second box. We can organize the
Bayesian model in such a way that Elmer’s report indeed has
these consequences. Specifically, for t < 3 we may choose

P0(Ruvt |Xik ∩ St−1) =

1
1+2γ1+t+γ2+t

×


1 if u = i and v = k,

γ1+t if either u 6= i, v = k

or u = i, v 6= k,

γ2+t if both u 6= i, v 6= k.

and use the likelihood of Equation (1) for t = 3. This indi-
cates that to some extent, the reports stand or fall together:
if one of the reports at a particular stage is false, the other

4In order for later reports to overrule earlier ones, it suf-
fices to assume that for t > 1, the likelihoods are all 1

1+γ2
.

The present likelihoods indicate that reports also become
increasingly reliable.

one is less reliable as well. In this case, deteriorating re-
liability is a factor γ, but we may organize the likelihoods
differently to obtain different dependencies.

With the likelihood functions set up as above, we obtain
the following posterior probability assignments:

Time t 0 1 2 3

After learning > R11
1 R00

2 R1
13

Odds for X11 1 1 γ 1

Odds for X10 1 γ2 γ2 γ

Odds for X01 1 γ2 γ2 γ4

Odds for X00 1 γ3 1 γ2

Prob. Evidence 1 1
4

1
4
γ3 1

4
γ4

In words, the first two belief changes of the agent are as be-
fore: for small γ the beliefs shift from X11 to X00 with the
pairs of reports. But after the final report about the coin in
box 1, the agent also revises her opinion about the coin in
box 2. Importantly, this arises not because the final report
about the coin in box 1 has a direct bearing on our beliefs
concerning the coin in box 2, but rather because in shift-
ing the probability mass back towards X1

1 , the dominating
factor in the probability for X1

2 becomes P3(X1
2 |X1

1 ). The
belief dynamics is in this sense similar to the dynamics of
so-called analogical predictions (cf. [19]).

It might be suggested that the foregoing analysis somehow
fails to unfold what Stalnaker has in mind:

Because my sources were independent, my be-
lief revision policies, at one stage, will give prior-
ity to the [possibilities of one report being false]
over the [possibility of both reports being false].
(Were I to learn that [one report] was wrong, I
would continue to believe [the other report] and
vice versa.). (p. 207)

In a footnote, Stalnaker adds, “nothing [in] the theory as it
stands provides any constraints on what counts as a single
input, or any resources for representing the independence of
sources.”

We agree with the assertion that the AGM theory does not
itself furnish such resources and so in this sense the theory
is lacking. Indeed, the assertion has likeminded friends, who
when read air similar platitudes about other axiomatic the-
ories offering minimal rationality principles, theories which
also abstain from imposing substantial constraints on admis-
sible states of belief. But the assertion does not also serve
as a compelling excuse to advertise a poorly posed example
as a counterexample. A good counterexample is packaged
for self-assembly, equipped with details obviously relevant to
its evaluation and relevant to its challenge in a meaningful
debate about its significance.

In the present case, Stalnaker neglects to elaborate upon
the form of independence relevant to the example, and he
has not articulated the example in a way univocally suggest-
ing a particular form of independence. Even for a familiar
form of independence, the incomplete example may be sup-
plemented with details which conform to a reading according
to which the truth of either report is vastly more probable,
independently of the truth of the other report. Yet the de-
ficient example may also seek assistance with details which
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conform to another reading in which independence finds ex-
pression in terms of correlated reliability of the two reports,
a reading consistent with independently varying reports.

Thus, a reply suggesting that our analysis somehow fails
to unfold what Stalnaker has in mind simultaneously under-
takes an obligation to articulate an argument supporting the
claim that a relevantly different reading warrants recognition
as an image of Stalnaker’s thoughts—or at least recognition
over our proposed readings.

Elmer and Carla’s reports are correlated
With some imagination, we can also provide a model in
which the pairs of reports are independent in the strictest
sense, and in which Elmer’s report is fully responsible for the
belief change regarding both coins. To achieve this we em-
ploy the likelihoods of Equation (1) for the first two stages,
but for the report of Elmer we use a rather gerrymandered
set of likelihoods:

P0(Ru13|Xik ∩Rvw2 ∩ S1) =

1
1+γ2+γ3+γ5

×


1 if u = i 6= v and w 6= k,

γ2 if u = i 6= v and w = k,

γ3 if u 6= i = v and w 6= k,

γ5 if u 6= i = v and w = k.

Notice that the conditions on the right cover all combi-
nations of indexes i, k, and v, but only half of their combi-
nations with u. The likelihood for the opposite values of u
follow, because the probability of Ru13 and R1−u

13 must add
up to 1.

Of course we may vary the exact conditions under which
Elmer’s report overturns the reports of both Carla and Dora.
Moreover, as before, the specific numerical values chosen
for the likelihoods only matter up to order of magnitude.
The likelihoods given here make sure that until stage 2 the
posteriors are as determined by Equation (1), and we have:

Time t 2 3

After learning R11
1 ∧R00

2 R1
13

Odds for X11 γ2 1

Odds for X10 γ γ

Odds for X01 γ γ2

Odds for X00 1 γ3

Prob. Evidence 1
4
γ2 1

4
γ4

Importantly, the likelihoods used to arrive at these posteri-
ors square with the example provided by Stalnaker: Elmer’s
report is most probably reliable and indeed overturns the
report by Carla. But the likelihoods are organized in such a
way that they also overturn Dora’s report under particular
circumstances.

The full story of the agent might be that Carla and Dora
use the same method to determine the state of their respec-
tive coins. Elmer almost always defers to Carla, unless he
suspects something is amiss with her method, in which case
he resorts to his own superior judgment. But he will only
suspect something if in actual fact both Carla and Dora re-
port falsely. Accordingly, conditional on both Carla’s and

Dora’s reports being false, the agent expects Elmer’s report
to be true and hence at odds with Carla’s. Similarly, on the
condition that Carla’s and Dora’s report are both true, the
agent considers it extremely probable that Elmer’s report is
true and in agreement with Carla’s. Finally, if either Carla’s
or Dora’s report is false, the agent considers Elmer’s report
to be most probably in line with Carla’s, although less prob-
ably so if Carla’s report is actually the false one. The agent
imagines that Elmer tends to agree with Carla because he
does not suspect anything is wrong with her method, and
hence most likely defers to her.

Taking a step back, we admit that there will be many more
ways of filling in the priors and likelihoods so as to represent
particular aspects of the meta-information. However, the
details of the full solution space need not concern us here.
At this point, we simply note that the puzzle allows for
Bayesian models that accommodate a range of intuitions.

5. NONSTANDARD PROBABILITY
As we have already noted, the Bayesian model in the previ-
ous section does not, by itself, offer a response to Stalnaker’s
challenge to the AGM-based theory of iterated belief revi-
sion. In this section, we explain precisely how the Bayesian
model does in fact suggest a solution to Stalnaker’s chal-
lenge which is in line with the standard assumption of the
AGM theory of belief revision. The key step is to forge a
connection between the AGM theory of belief revision and
nonstandard probability measures. This connection between
AGM and nonstandard probability measures is not surpris-
ing given the results in Appendix B of [17] relating non-
monotonic logics with nonstandard probabilities.5

The key observation is that our discussion of the Bayesian
model in the previous section and the conclusions we draw
regarding Stalnaker’s example do not depend on the spe-
cific values of the likelihoods used to calculate the agents’
posterior beliefs. What is important are the order of mag-
nitudes. Indeed, we can assume that the likelihoods are
arbitrarily small and still derive the same qualitative conse-
quences about belief change from the model. So if we repre-
sent the agents’ full belief states by nonstandard probability
measures and reinterpret the Bayesian model in those terms,
we obtain a model that complies to the AGM postulates,
and that nevertheless captures the role of meta-information
in the desired way.

In the remainder of this section, we formally connect the
nonstandard probability measures and the AGM theory of
belief revision.

Definition 1. Let A be an algebra over a set of states Ω,
and let ∗R be a nonstandard model of the reals. A ∗R-
valued probability function on A is a mapping µ : A → ∗R
satisfying the following properties:

(i) µ(A) ≥ 0 for every A ∈ A ;

(ii) µ(Ω) = 1;

(iii) For all disjoint A,B ∈ A : µ(A ∪B) = µ(A) + µ(B).

We say that µ is regular if µ(A) > 0 for every A ∈ A ◦

(where A ◦ is A without the emptyset).
5In what follows, we assume the reader is familiar with the
basic concepts of nonstandard analysis. See [11] for a dis-
cussion.
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For a limited hyperreal6 r ∈ ∗R, let st(r) be the unique real
number infinitely close to r. Given a ∗R-valued probability
function µ on an algebra A , a collection B ⊆ A , an event
E ∈ A , and r ∈ ∗[0, 1], let:

str(µ(B|E)) :=

{
{A ∈ B : st(µ(A|E)) ≥ r} if µ(E) > 0;

{A ∈ B : st(µ(A)) ≥ r} otherwise.

When A is finite, we associate a set Kµ ∈ A by setting:

Kµ :=
⋂

st1(µ(A |Ω)).

Observe that Kµ is consistent, since whenever st(µ(A)) = 1
and st(µ(B)) = 1 for some A,B ∈ A , st(µ(A) + µ(B) −
µ(A ∪ B))) = st(µ(A)) + st(µ(B)) − st(µ(A ∪ B))) and so
st(µ(A∩B)) = 1. Deifne an operator ∗µ by setting for every
E ∈ A :

Kµ ∗µ E :=

{⋂
st1(µ(A |E)) if E ∈ A ◦;

∅ otherwise.

As before, we omit subscripts when there is no danger of con-
fusion. The precise connection between nonstandard prob-
ability measures and the AGM theory of belief revision is
given by the following Proposition:

Proposition 1. Let A be a finite algebra over Ω, and let
K ∈ A ◦. Then ∗ is a belief revision operator for K if and
only if there is a regular ∗R-valued probability function µ on
A such that K = Kµ and ∗ = ∗µ.

Remark 1. There is also an important connection with
lexicographic probability systems in the sense of of [4] (cf.
[14] for a full discussion). Given a finite algebra A , there is
an obvious one-to-one correspondence between conditional
probability functions and lexicographic probability systems
with disjoint supports. However, even on a finite algebra,
there is no nontrivial one-to-one correspondence between lex-
icographic probability systems with disjoint supports and ∗R-
valued probability functions. In addition, it is clear from
the connection between lexicographic probability systems and
conditional probability functions that in general while it may
be that ∗P = ∗P ′ and KP = KP ′ it does not follow that
P = P ′ and indeed ∗µ = ∗µ′ and Kµ = Kµ does not entail
that µ = µ′.

Remark 2. If one wishes to admit zero probabilities in
the nonstandard setting, one may introduce the concept of
a ∗R-valued (full) conditional probability function, there-
upon defining a revision operator as for ∗R-valued probabil-
ity functions, without the implicit requirement of regularity.

With this connection between the AGM postulates and
Bayesian models using nonstandard probability measures in
place, let us return to the example of Stalnaker. In virtue of
the connection, we can now reinterpret the Bayesian mod-
els of the example to obtain models for the dynamics of
full belief that comply to the AGM postulates, while ac-
commodating the role of meta-information in the right way.
Specifically, we can make γ, the central parameter in the
definition of the likelihoods in Section 4, arbitrarily small.
In the tables detailing the probabilistic belief states from the
example, we thereby set all entries to the extremal values 0

6A hyperreal r ∈ ∗R is said to be limited if there is a (stan-
dard) natural number n such that |r| ≤ n.

or 1. Depending on how the meta-information on the de-
pendence of reports is spelled out, the belief dynamics thus
retains the desired qualitative features.

6. COUNTEREXAMPLES VS MISAPPLICA-
TIONS

The immediate upshot of the analysis in the previous section
is that the puzzle from [21] does not present insurmountable
problems for a theory of iterated belief revision. After all,
the nonstandard probabilistic models present us with a for-
mally worked out revision policy. In what follows we present
an evaluation of what this analysis achieves and a more nu-
anced view on the status of the counterexample.

We would like to flag that it is not clear from his pa-
per that Stalnaker thinks the example reveals fundamental
limitations for the AGM theory of iterated belief revision.
Therefore, rather than thinking that the models prove him
wrong, we think of their potential virtue as being more pos-
itive: they indicate how a belief revision policy can incorpo-
rate particular kinds of meta-information. The nonstandard
Bayesian models allow us to systematically accommodate
information that, in the words of Stalnaker, pertains to the
conceptual, causal, and epistemic relations among factual
information items. We chose to focus on information that
concerns the reliability of the reports provided, and the re-
lations that obtain between those reliabilities. The claim
is certainly not that we have thereby exhausted the meta-
information that may be relevant in the puzzle. But at least
we have illustrated how such meta-information may come
into play in a Bayesian model complying to the basic AGM
postulates.

Our illustration allows us to draw some general lessons
about the balance between counterexamples and misapplica-
tions in the context of modeling belief dynamics. The mod-
els bring out how tentative counterexamples can be over-
come by carefully explicating various aspects from the prob-
lematic example case. Several categories of analysis deserve
further analysis. First, a proper conceptualization of the
event and report structure is crucial: we need a sufficiently
rich structure of events, messages, epistemic states and the
like to express all the meta-information. Note, however, that
such a conceptualization is never part and parcel of the the-
ory about the belief dynamics itself. A theory needs to be
able to accommodate the conceptualization, but other than
that it hardly counts in favor of a theory that the modeler
gets this conceptualization right. Secondly it stands out that
we must allow ourselves all the requisite tools for represent-
ing beliefs. In the puzzles at hand, the language must allow
us to separate reports by different agents from the content
of the reports. And most importantly, the expressions of
belief must allow for some notion of graded disbelief or, as
one may also put it, memory.

It may be thought that we think any purported counterex-
ample can in the end be accommodated by a nonstandard
Bayesian model or similar structure, and that any type of
meta-information is amenable to the kind of treatment just
illustrated. Are there any genuine counterexamples to be
had, or do we want to reduce everything to misapplication?
Here we get to the negative part of our perspective on the
discussion on counterexamples to the theory of belief revi-
sion. We do believe that the theory of AGM belief revision
and its probabilistic counterpart may have fundamental lim-
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itations. In the remainder of this section, we first consider
one specific aspect in which the probabilistic models we have
provided miss the mark, suggesting that the counterexam-
ples still stand unresolved. Secondly, we sketch some results
from [13] on how far Bayesian models can come in capturing
meta-information, and thereby provide a prospect for the
construction of counterexamples.

Researchers coming from the literature on iterated be-
lief revision and current dynamic logics of belief revision,
may be unsatisfied with the Bayesian models presented here
as a solution to Stalnaker’s counterexample. The Bayesian
models represent belief change by conditioning (or one of
its generalization, such as Jeffrey or Adam’s conditioning).
It can be argued that this is not a truly dynamic model
of belief change. If the challenge from Stalnaker’s example
is to capture the belief changes while maintaining the dy-
namic character, then the Bayesian models presented here
do not present a proper rebuttal. In turn, we suggest that
purported counterexample must place more emphasis on the
dynamic aspect of the problem.

This raises an interesting question for future research.
There seems to be a trade-off between a rich set of states
and event structure, and a rich theory of “doxastic actions”
(eg., as found in the literature on dynamic logics of belief
revision [22, 3]). How should we resolve this trade-off when
analyzing counterexamples to postulates that are intended
to apply to belief changes over time. More generally, what
is it about a dynamic model of belief revision that makes it
truly dynamic?

We now turn to another prospect of genuine counterex-
amples to the theory of belief revision. For readers familiar
with the flexibility of Bayesian models, it is not surpris-
ing that they allow us to formalize the relevant aspects of
the meta-information in Stalnaker’s example. The challenge
seems rather to find out under what conditions we can ig-
nore the meta-information, which is often not specified in
the description of an example. Halpern and Grünwald [13]
identify such a condition for Bayesian models, called coars-
ening at random or CAR for short. They study situations in
which conditioning on a “naive” space gives the same results
as conditioning on a“sophisticated”space’. Generally speak-
ing, a “sophisticated” space is one that includes an explicit
description of the relevant meta-information (eg., the reports
from the sources and how they may be correlated). In the
full paper we show how to apply this condition to the AGM
framework. Or more precisely, we generalize the condition
from [13] to nonstandard probability measures and then use
the general link between AGM and nonstandard probability
measures to apply the condition to AGM. In this extended
abstract, however, we only have space to sketch the main
idea of our result.

As indicated, CAR tells us how probabilities in naive and
sophisticated spaces need to relate in order for updating by
conditionalisation to be a correct inference rule in the naive
space. But recall that in the generalization to nonstandard
probability models, such updates follow the AGM postu-
lates. The direct link to the examples given above is that
whenever we run into a tentative counterexample, we can
blame the failures of the update rule on a failure of CAR
and start the repairs by building a more sophisticated state
space. In cases like that, the culprit is arguably the applica-
tion of the theory of belief revision: in a more refined space
the update will again comply to AGM.

The same line of reasoning can now be used to clarify when
misapplication turns into counterexample. In particular, we
might argue that genuine counterexamples to AGM are cases
in which we cannot blame failures of CAR. We see at least
two ways in which this might happen. First, we might simply
have no formalization of the problem case that allows for a
representation of the update as a conditioning operation.
Perhaps we cannot construct a sophisticated space, because
the report or event structure does not allow for the definition
of a partition of possible learning events. And second, it may
so happen that AGM outputs an unintuitive epistemic state,
even though we have employed an independently motivated
formalization of the problem case. Attempts to redo the
construction of a sophisticated space, just in order to remedy
the failure of CAR, will be contrived. Instead, it may seem
fair to blame the theory of belief revision itself.

In sum, we submit that the condition CAR may help us to
formulate a principled distinction between misapplications
of, and genuine counterexamples against a theory for belief
dynamics. The appropriate response to the former is to
refine the model and run the belief dynamics on the more
refined space. Genuine counterexamples of the theory, on
the other hand, are such that refinements of the model are
impossible or contrived.

7. CONCLUSION
Our contribution in this paper is conceptual. First we have
made explicit the meta-information implicit in one of Stal-
naker’s counterexample to a postulate of iterated belief re-
vision. We have done so by identifying the salient meta-
information in a heuristic model using plausibility order-
ings, by formalizing this information in a Bayesian model,
and finally by generalizing this Bayesian model towards non-
standard probability models and showing that such models
comply to the AGM postulates. This link between AGM and
nonstandard probabilities allows us to use the characteriza-
tion of the CAR condition to classify when a more refined
state space can be used to explain the counterexample. Gen-
uine counterexamples to AGM and iterated belief revision
are cases when we cannot blame the structure of the state
space. Our eventual goal is to develop a framework in which
this intuition can be used to classify purported counterex-
amples.
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APPENDIX
A. THE AGM POSTULATES

In what follows, K is a deductively closed and consistent
set of propositional formulas and ϕ,ψ are propositional for-
mulas. Furthermore, Cn(X) denotes the propositional con-
sequences of a set X of formulas.

The following are the basic revision postulates of AGM
belief revision:

AGM 1 (Closure) K ∗ ϕ = Cn(K ∗ ϕ).

AGM 2 (Success) ϕ ∈ K ∗ ϕ.

AGM 3 (Inclusion) K ∗ ϕ ⊆ Cn(K ∪ {ϕ}).
AGM 4 (Vacuity) If ¬ϕ 6∈ K, then

Cn(K ∪ {ϕ}) ⊆ K ∗ ϕ.

AGM 5 (Consistency) If Cn({ϕ}) 6= For(L),
then K ∗ ϕ 6= For(L).

AGM 6 (Extensionality) If Cn({ϕ}) = Cn({ψ}),
then K ∗ ϕ = K ∗ ψ.

These six basic postulates are elementary requirements of
belief revision and taken by themselves are much too per-
missive. Additional postulates are required to rein in this
permissiveness and to reflect a conception of relational belief
revision.

AGM 7 K ∗ (ϕ ∧ ψ) ⊆ Cn((K ∗ ϕ) ∪ {ψ}).
AGM 8 If ¬ψ /∈ K ∗ ϕ, then

Cn(K ∗ ϕ ∪ {ψ}) ⊆ K ∗ (ϕ ∧ ψ).

In the context of a propositional model (where K is now
a set of states and E,F are also sets of states), all eight
postulates may be reduced to four:

Success (∗1) K ∗ E ⊆ E.

Conditionalization (∗2) If K ∩ E 6= ∅, then
K ∗ E = K ∩ E.

Consistency (∗3) If E 6= ∅, then K ∗ E 6= ∅.
(Arrow) (∗4) If (K ∗ E) ∩ F 6= ∅, then

(K ∗ E) ∩ F = K ∗ (E ∩ F ).

We say that ∗ is a belief revision operator for K if it satisfies
postulates (∗1) – (∗4). See [20] for an extended discussion.

A.1 AGM and conditional probability
In order to facilitate the relationship between the AGM

theory of belief revision and nonstandard probability mea-
sures, we point out the relationship between AGM and con-
ditional probability measures.

Definition 2. Let A be an algebra over a set of states Ω.
A (full) conditional probability function on A is a mapping
P : A ×A → R satisfying the following properties:

(i) P (·|E) is a finitely additive probability function for ev-
ery E ∈ A ◦;

(ii) P (A|E) = 1 for every A,E ∈ A such that E ⊆ A;

(iii) For all A,B,E ∈ A such that A ⊆ B ⊆ E:

P (A|E) = P (A|B)P (B|E).

Here A ◦ is A without the null event ∅. Observe that
P (·|∅) ≡ 1.

Given a conditional probability function P on a finite al-
gebra A , we associate a set KP ∈ A by setting:

KP := supp P (·|Ω),
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where as usual supp P (·|E) denotes the probabilistic sup-
port of P (·|E), i.e., the smallest set in A receiving proba-
bility one on the condition that E obtains. Define a belief
revision operator ∗P by setting for every E ∈ A :

KP ∗P E := supp P (·|E).

We drop subscripts when the context is clear. The following
is easily verified.

Lemma 1. Let P be a conditional probability function on
a finite algebra A over Ω. Then ∗P is a belief revision op-
erator for KP .

We also have the converse for consistent K, resulting in the
following proposition.

Proposition 2. Let A be a finite algebra over Ω, and let
K ∈ A ◦. Then ∗ is a belief revision operator for K if and
only if there is a conditional probability function P on A
such that K = KP and ∗ = ∗P .

This concludes our exposition of AGM in relation to con-
ditional probability functions.

A.2 Nonstandard probability
We now show how a similar link can be forged between

AGM and nonstandard probability functions, admitting the
possibility of arbitrarily small probability values.

Recall that given a ∗R-valued probability function µ on
an algebra A , a collection B ⊆ A , an event E ∈ A , and
r ∈ ∗[0, 1]:

str(µ(B|E)) :=

{
{A ∈ B : st(µ(A|E)) ≥ r} if µ(E) > 0;

{A ∈ B : st(µ(A)) ≥ r} otherwise.

Where A is finite, we associate a set Kµ ∈ A :

Kµ :=
⋂

st1(µ(A |Ω)).

Define an operator ∗µ by setting for every E ∈ A :

Kµ ∗µ E :=

{⋂
st1(µ(A |E)) if E ∈ A ◦;

∅ otherwise.

As before, we omit subscripts when there is no danger of
confusion.

Lemma 2. Let µ be a regular ∗R-valued probability func-
tion on a finite algebra A over Ω. Then ∗µ is a belief revi-
sion operator for Kµ.

Proof. Clearly postulates (∗1) and (∗3) are satisfied.
While routine, for the sake of completeness we verify postu-
lates (∗2) and (∗4) in turn.

(∗2) Suppose that K ∩ E 6= ∅. Let A ∈ A be such that
K ∗ E ⊆ A. Then st(µ(A|E)) = 1. Observe that:

st(µ(A ∪ Ec)) = st(µ(E)µ(A|E) + µ(Ec))

= st(µ(E))st(µ(A|E)) + st(µ(Ec))

= st(µ(E) + µ(Ec))

= 1.

It follows that K ∩ E ⊆ A, establishing that K ∩ E ⊆
K ∗E. Now let A ∈ A be such that K ∩E ⊆ A. Then
K ⊆ A ∪ Ec and so st(µ(A ∪ Ec)) = 1, whence:

st(µ(E)) = st(µ(Ac ∩ E)) + st(µ(A ∩ E))

= st(µ(A ∩ E))

= st(µ(A|E))st(µ(E)).

Thus, since K∩E 6= ∅, it follows that st(µ(E)) > 0 and
therefore st(µ(A|E)) = 1, whereby K ∗ E ⊆ A. Hence,
K ∗ E ⊆ K ∩ E.

(∗4) Suppose that (K ∗E)∩F 6= ∅. Let A ∈ A be such that
K ∗ (E ∩ F ) ⊆ A. Then st(µ(A|E ∩ F )) = 1, so:

st(µ(A ∪ F c|E)) = 1− st(µ((Ac ∩ F )|E))

= 1− st(µ(Ac|F ∩ E))st(µ(F |E))

= 1.

Hence, (K∗E)∩F ⊆ A, showing that (K∗E)∩F ⊆ K∗
(E∩F ). Now let A ∈ A be such that (K ∗E)∩F ⊆ A.
Then st(µ(A ∪ F c|E)) = 1, and since (K ∗E) ∩ F 6= ∅,
it follows that st(µ(F |E)) 6= 0, so:

st(µ(A|E ∩ F ))) = 1− st(µ(Ac|E ∩ F )))

= 1− st(
µ((Ac ∩ F )|E)

µ(F |E)
)

= 1− st(µ((Ac ∩ F )|E))

st(µ(F |E))

= 1.

Therefore, K∗(E∩F ) ⊆ A, so K∗(E∩F ) ⊆ (K∗E)∩F ,
as desired.

Proposition 3. Let A be a finite algebra over Ω, and let
K ∈ A ◦. Then ∗ is a belief revision operator for K if and
only if there is a regular ∗R-valued probability function µ on
A such that K = Kµ and ∗ = ∗µ.

Proof. The ‘if’ part has been established in Lemma 2.
We turn to the ‘only if’ part. Let P be a conditional prob-
ability function on A such that K = KP and ∗ = ∗P , as
given by Proposition 2. Then there is a partition (πm)m<n of
Ω in A and a sequence (µm)m<n of real-valued probability
functions on A such that:

(a) πm = supp µm for each m < n;

(b) P (·|E) = µmin{m:E∩πm 6=∅}(·|E) for every E ∈ A ◦.

Define a regular ∗R-valued probability function µ on A by
setting for every A ∈ A :

µ(A) := µ0(A) +
∑

0<m<n

(µm(A)− µ0(A))εm,

where ε is a positive infinitesimal. We claim that (i) KP =
Kµ and that (ii) ∗P = ∗µ. Clearly K ∗P ∅ = K ∗µ ∅. Now
let E ∈ A ◦. Set m0 := min{m : E ∩ πm 6= ∅}, and for each
m < n, let νm := 0 if m = 0 and µm otherwise. Then for
every A ∈ A :

st(µ(A|E))

= st(
µ0(A∩E)+

∑
0<m<n(µm(A∩E)−µ0(A∩E))εm

µ0(E)+
∑

0<m<n(µm(E)−µ0(E))εm
)

= st(
µm0

(A|E)+
∑
m0<m<n

µm(A∩E)−νm(A∩E)
µm0

(E)
εm−m0

1+
∑
m0<m<n

µm(E)−νm(E)
µm0 (E)

εm−m0
)

=
st(µm0

(A|E)+
∑
m0<m<n

µm(A∩E)−νm(A∩E)
µm0 (E)

εm−m0 )

st(1+
∑
m0<m<n

µm(E)−νm(E)
µm0

(E)
εm−m0 )

= µm0(A|E).

Then by property (b), claims (i) and (ii) follow, thereby
establishing the desired conclusion.

Remark 3. The sequence (µm)m<n of real-valued prob-
ability functions in the proof of Proposition 3 is a lexico-
graphic probability system as discussed in Remark 1.
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ABSTRACT
Moses & Nachum ([7]) identify conceptual flaws in Bacharach’s
generalization ([3]) of Aumann’s seminal “agreeing to dis-
agree” result ([1]). Essentially, Bacharach’s framework re-
quires agents’ decision functions to be defined over events
that are informationally meaningless for the agents. In this
paper, we argue that the analysis of the agreement theorem
should be carried out in information structures that can
accommodate for counterfactual states. We therefore de-
velop a method for constructing such “counterfactual struc-
tures” (starting from partitional structures), and prove a
new agreement theorem within such structures. Further-
more, we show that our approach also resolves the concep-
tual flaws in the sense that, within our framework, decision
functions are always only defined over events that are infor-
mationally meaningful for the agents.

Categories and Subject Descriptors
J.4 [Social and behavioral sciences]: Economics; I.2.4
[Knowledge Representation Formalisms and Meth-
ods]: Frames and scripts

General Terms
Theory

Keywords
Agreeing to disagree, knowledge, belief, counterfactuals

1. INTRODUCTION
In [3], Bacharach generalized Aumann’s seminal “agree-

ing to disagree” result ([1]) to the non-probabilistic case.
Essentially, he isolated the relevant properties that hold of
conditional probabilities, and of the common prior assump-
tion - which drive the original result - and imposed them
as independent conditions on general decision functions in
partitional information structures. As such, he was able to
isolate and interpret the underlying assumptions of the orig-
inal result as (i) an assumption of “like-mindedness”, which
requires agents to take the same action given the same infor-
mation, and (ii) an assumption that he claimed is analogous
to requiring the agents’ decision functions to satisfy Savage’s
Sure-Thing Principle ([9]). This principle is intended to cap-
ture the intuition that “if an agent takes the same action in

TARK 2013, Chennai, India.
Copyright 2013 by the authors.

every case when she is more informed, she takes the same
action in the case when she is more ignorant”.

However, in [7], Moses & Nachum found conceptual flaws
in Bacharach’s analysis, showing that his interpretations of
“like-mindedness” and of the Sure-Thing Principle are prob-
lematic. Indeed, given that Bacharach is operating within
partitional information structures, the information of agents
is modeled as partitions of the state space. Furthermore, de-
cision functions are defined over sets of states in a manner
that is supposed to be consistent with the information that
each agent has - in this way, decisions can be interpreted
as being functions of agents’ information. In Bacharach’s
set-up, like-mindedness requires the decision function of an
agent i to be defined over elements of the partitions of other
agents j. But, except for the trivial case in which agent
i’s partition element corresponds exactly to that of agent j,
there is no sense in requiring i’s function to be defined over
j’s partition element since that element is informationally
meaningless to agent i. The Sure-Thing Principle is also
problematic. An agent’s decision function is said to satisfy
the Sure-Thing Principle if whenever the decision over each
element of a set of disjoint events is x, the decision over
the union of all those events is also x. Notably, this implies
that an agent’s decision function must be defined over the
union of her partition elements, but again, this is informa-
tionally meaningless for that agent since there is no partition
element of that agent that corresponds to a union of her par-
tition elements. More generally, Moses & Nachum show that
Bacharach’s set-up is such that the domains of the agents’
decision functions contain elements that are informationally
meaningless for the agents.

The basic premise of this paper is that the Sure-Thing
Principle ought to be understood as an inherently counter-
factual notion, and so any analysis that involves this princi-
ple but is carried out in an information structure that does
not explicitly model the counterfactuals must be lacking in
some way. Indeed, one could reformulate the intuition that
the Sure-Thing Principle is intended to capture as: “If the
agent takes the same action in every case when she is more
informed, she would take the same action if she were more
ignorant”.

This distinction is important, but cannot be captured
within Bacharach’s framework because his analysis in [3] is
carried out in partitional structures, and all information in
those structures must be factual (in the sense that any belief
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that an agent holds must be true). In this paper, we there-
fore develop a method of transforming any given partitional
structure into an information structure that explicitly in-
cludes the relevant counterfactual states. We interpret these
“counterfactual structures” as being more complete pictures
of the situation that is being modeled in the original parti-
tional structure. The new set-up allows us to provide new
formal definitions of the Sure-Thing Principle and of like-
mindedness, that sit well with intuition, and we prove a new
agreement theorem within these counterfactual structures.

Ultimately we show that our set-up resolves the concep-
tual issues raised by [7], in the sense that within counter-
factual structures, decision functions are always only de-
fined over events that are informationally meaningful for the
agents.

In section 2 we present the formal definitions required
to analyze information structures, and in section 3 we set
up the framework of Bacharach, prove his version of the
agreement theorem and provide Moses & Nachum’s argu-
ment regarding the conceptual flaws. In section 4 we de-
velop a method for constructing counterfactual structures,
provide new definitions for the Sure-Thing Principle and for
like-mindedness, and prove a new agreement theorem within
such structures. Furthermore, we show that our approach
resolves the conceptual flaws. Finally, in section 5 we re-
late our approach to other results and proposed solutions
to the conceptual flaws found in the “agreeing to disagree”
literature, and section 6 concludes. All proofs are in the
appendix.

2. INFORMATION STRUCTURES
This section introduces the formal apparatus that will be

used to derive the agreement theorem. In large part, the
formal definitions given are completely standard.

2.1 General information structures
Let Ω denote a finite set of states and N a finite set of

agents. A subset e ⊆ Ω is called an event. For every agent
i ∈ N , define a binary relation Ri ⊆ Ω × Ω, called a reach-
ability relation. So, we say that the state ω ∈ Ω reaches
the state ω′ ∈ Ω if ωRiω

′. It terms of interpretation, if
ωRiω

′, then at ω, agent i considers the state ω′ possible.
An information structure S = (Ω, N, {Ri}i∈N ) is entirely
determined by the state space, the set of agents, and the
reachability relations.

The reachability relations {Ri}i∈N are said to be:

1. Serial if ∀i ∈ N,∀ω ∈ Ω,∃ω′ ∈ Ω, ωRiω
′.

2. Reflexive if ∀i ∈ N, ∀ω ∈ Ω, ωRiω.

3. Transitive if ∀i ∈ N,∀ω, ω′, ω′′′ ∈ Ω, if ωRiω
′&ω′Riω

′′,
then ωRiω

′′.

4. Euclidean if ∀i ∈ N,∀ω, ω′, ω′′′ ∈ Ω, if ωRiω
′&ωRiω

′′,
then ω′Riω

′′.

We have not yet imposed any particular restrictions on
the reachability relations. We will therefore provide the def-
initions below in a general setting, with the understanding
that they will only be applied in (i) S5, (ii) KD45 and (iii) a
special class of KD4 structures. Respectively, this is when

the reachability relations are (i) equivalence relations (re-
flexive and Euclidean), (ii) serial, transitive and Euclidean,
and (iii) serial and transitive.

A possibility set at state ω for agent i ∈ N is defined by

bi(ω) = {ω′ ∈ Ω|ωRiω
′} (1)

A possibility set bi(ω) is therefore, simply the set of all states
that i considers possible at ω. In terms of notation, let us
have Bi = {bi(ω)|ω ∈ Ω}. For any e ⊆ Ω, a belief operator
is given by

Bi(e) = {ω ∈ Ω|bi(ω) ⊆ e} (2)

Also, for any e ⊆ Ω, and any G ⊆ N , a mutual belief operator
is given by

MG(e) = ∩i∈GBi(e) (3)

This operator can be iterated by lettingM1
G(e) = MG(e) and

Mm+1
G (e) = MG(Mm

G (e)) for m ≥ 1. For any e ⊆ Ω, and
any G ⊆ N , we can thus define a common belief operator,

CG(e) = ∩∞m=1MG(e) (4)

Finally, we say that a state ω′ ∈ Ω is reachable among
the agents in G from a state ω ∈ Ω if there exists ω ≡
ω0, ω1, ω2, ..., ωn ≡ ω′ such that for each k ∈ {0, 1, ..., n −
1}, there exists an agent i ∈ G such that ωkRiωk+1. The
component TG(ω) (among the agents in G) of the state ω is
the set of all states that are reachable among the agents in
G from ω. Common belief can now be given an alternative
characterization,

CG(e) = {ω ∈ Ω|TG(ω) ⊆ e} (5)

This is standard, and for example follows [6, p. 12].

2.2 Partitional structures
Consider an information structure S = (Ω, N, {Ri}i∈N )

and suppose that the reachability relations {Ri}i∈N are equiv-
alence relations. Then, we say that S is a partitional struc-
ture. Indeed, the remark below shows that in this case, the
information structure S becomes a standard partitional, or
S5, or “knowledge” structure (see for example, [1]).

Remark 1. Suppose S = (Ω, N, {Ri}i∈N ) is a partitional
structure. For any agent i ∈ N , ω ∈ bi(ω), and any bi(ω)
and bi(ω

′) are either identical or disjoint; and, Bi is a par-
tition of the state space.

Note that in a partitional structure, at any state ω, an agent
i considers any of the states in bi(ω) (including ω itself)
possible. The belief operator becomes the standard “knowl-
edge” operator, and satisfies the following properties, which
are well-known in the literature:

K Bi(¬e ∪ f) ∩Bi(e) ⊆ Bi(f) Kripke

D Bi(e) ⊆ ¬Bi(¬e) Consistency

T Bi(e) ⊆ e Truth

4 Bi(e) ⊆ Bi(Bi(e)) Positive Introspection

5 ¬Bi(e) ⊆ Bi(¬Bi(e)) Negative Introspection

Note that in a partitional structure, the operator CG has
the familiar interpretation of being the“common knowledge”
operator. Furthermore, since this reduces to a completely
standard framework, we easily obtain familiar results, such
as the proposition below.
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Proposition 1. Suppose S = (Ω, N, {Ri}i∈N ) is a par-
titional structure. Then, for any ω ∈ Ω and any i ∈ G,
∪ω′∈TG(ω)bi(ω

′) = TG(ω).

2.3 Belief structures
Suppose now that the reachability relations {Ri}i∈N in

an information structure S = (Ω, N, {Ri}i∈N ) are serial,
transitive and Euclidean. Then, say we that S is a belief
structure. Indeed, the information structure S becomes a
standard KD45 structure, for example, as presented in [6].

Remark 2. Suppose S = (Ω, N, {Ri}i∈N ) is a belief struc-
ture. For any agent i ∈ N , and any ω ∈ Ω, bi(ω) 6= ∅, and
if ω ∈ bi(ω′), then bi(ω) = bi(ω

′).

It is important to note that although every possibility set
must be non-empty, it can be the case that ω 6∈ bi(ω). This
means that at state ω, agent i considers states other than ω
to be possible, and not ω itself. The agent is therefore “de-
luded”. (In fact, this terminology is directly borrowed from
[6, p. 5]). Unsurprisingly, the belief operator now no longer
satisfies the truth property T, but it does satisfy K, D, 4,
and 5.

The salient point here is that the set-up presented has
very close analogues in the literature, and allows us to drop
- among other things - the property T of the belief operator,
as compared with partitional structures. This will be impor-
tant when including counterfactual states since by their very
nature, these will be used to model information that can be
false.

3. AGREEING ON DECISIONS
In this section, we present the original set-up of [3], derive

his version of the agreement theorem, and then outline its
inherent conceptual flaws which were originally raised in [7].

3.1 The original result
The original result was derived in a partitional informa-

tion structure. The set-up in this entire section therefore
assumes that we are working with a partitional structure
S = (Ω, N, {Ri}i∈N ). Notably, this means that Bi is taken
to be a partition of the state space for every agent i ∈ N
(see Remark 1).

For every agent i ∈ N , an action function δi : Ω → A,
which maps from states to actions, specifies agent i’s action
at any given state as a function of i’s possibility set at that
state (which is intended to represent i’s“information”at that
state); so the value of the action function will fully depend
on the partition Bi. A decision function Di for agent i, maps
from a field F of subsets of Ω into a set A of actions. That
is,

Di : F → A (6)

Following the terminology of [7], we will say that the agent
i using the action function δi follows the decision function
Di if for all states ω ∈ Ω, δi(ω) = Di(bi(ω)).

Bacharach imposes two main restrictions in order to de-
rive his result, namely, the Sure-Thing Principle and like-
mindedness. The definitions of these terms are given below.

Definition 1. The decision function Di of agent i satisfies
the Sure-Thing Principle if whenever for all e ∈ E , Di(e) = x
then Di(∪e∈Ee) = x, where E ⊆ F is a non-empty set of
disjoint events.

In terms of interpretation, we can think of an event as rep-
resenting some information and a decision over that event as
determining the action that is taken as a function of that in-
formation. The union of events is intended to capture some
form of “coarsening” of the information. So, following [7],
the Sure-Thing Principle is intended to capture the intuition
that “If the agent takes the same action in every case when
she is more informed, she takes the same action in the case
when she is more ignorant”. Regarding like-mindedness, we
have the following definition.

Definition 2. Agents are said to be like-minded if they
have the same decision function.

That is, over the same subsets of states, the agents take
the same action if they are like-minded. This is intended to
capture the intuition that given the same information, the
agents would take the same action.

Theorem 1. Let S = (Ω, N, {Ri}i∈N ) be a partitional
structure. Then within S, if the agents i ∈ N are like-
minded (as defined in Definition 2) and follow the decision
functions {Di}i∈N (as defined in (6)) that satisfy the Sure-
Thing Principle (as defined in Definition 1), then for any
G ⊆ N , if CG(∩i∈G{ω′ ∈ Ω|δi(ω′) = xi}) 6= ∅ then xi = xj
for all i, j ∈ G.

This theorem states that if the actions taken by each mem-
ber of a group of like-minded agents, who follow decision
functions that satisfy the Sure-Thing Principle, are com-
mon knowledge among that group, then the members of the
group must all take the same action. That is, the agents
cannot “agree to disagree” about what action to take.

3.2 Conceptual flaws
[7] find conceptual flaws in the set-up of [3] outlined above.

In broad terms, they find that the requirements that Bacharach
imposes on the decision functions forces them to be defined
over sets of states, the interpretation of which is meaning-
less within the information structure he is operating in. For-
mally, consider the following definition.

Definition 3. Let S = (Ω, N, {Ri}i∈N ) be some arbitrary
information structure. We say that an event e is a possible
belief for agent i in S if there exists a state ω ∈ Ω such that
e = bi(ω).

When S is a partitional structure, this definition corresponds
exactly to e being a “possible state of knowledge” as defined
in [7]. In [7], it is shown that

1. The Sure-Thing Principle forces decisions to be defined
over unions of possibility sets, but no union of possi-
bility sets can be a possible belief for any agent (see
[7, Lemma 3.2]).

2. The assumption of like-mindedness forces the decision
function of an agent i to be defined over the possibility
sets of agents j 6= i, but - other than the case when
they correspond trivially - these are not possible beliefs
for agent i (see [7, Lemma 3.3]).
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In other words, Bacharach’s framework requires the decision
functions to be defined over events that are not possible
beliefs for the agents (within the information structure).

4. COUNTERFACTUAL STRUCTURES
The basic premise of this paper is that the Sure-Thing

Principle ought to be understood as an inherently counter-
factual notion, and so any analysis that involves this princi-
ple but is carried out in an information structure that does
not explicitly model the counterfactuals must be lacking
in some way. Indeed, one could reformulate the intuition
that the Sure-Thing Principle is intended to capture as: “If
the agent takes the same action in every case when she is
more informed, she would take the same action if she were
more ignorant” (where “more ignorant” has a well-defined
meaning). This is counterfactual in the sense that there
is no requirement for the agent to actually be more igno-
rant. Rather, the requirement is that the agent would take
the same action in the situation where she imagines herself,
counterfactually, to be more ignorant.

This distinction is important, but cannot be captured
within Bacharach’s framework. Indeed, the analysis in [3]
is carried out in partitional structures. However, since the
truth property T holds in such structures, every conceivable
belief must be factual, and so by definition, counterfactual
situations cannot be considered.1 In this section, we there-
fore develop a method of transforming any given partitional
structure into an information structure that explicitly in-
cludes the relevant counterfactual states. We interpret such
“counterfactual structures” as being more complete pictures
of the situation being modeled in the original partitional
structure. We then provide new formal definitions for the
Sure-Thing Principle and for like-mindedness and derive a
new agreement theorem within these new structures. Ulti-
mately this will resolve the conceptual issues raised by [7],
in the sense that within counterfactual structures, decision
functions are defined only over events that are possible be-
liefs for the agents.

4.1 Set-up with counterfactual states
In this section we define a method of transforming any

given partitional structure into an information structure that
explicitly includes the relevant counterfactual states.

It will be useful to introduce some new definitions. Sup-
pose S = (Ω, N, {Ri}i∈N ) is a partitional structure. For
every agent i ∈ N , define Ii(ω) = {ω′ ∈ Ω|ωRiω

′}. Triv-
ially, Ii(ω) is the equivalence class of the state ω, and for
each i ∈ N , Ii = {Ii(ω)|ω ∈ Ω} is a partition of the state
space (by Remark 1). Finally, let us define,

Γi = {∪e∈Ee|E ⊆ Ii, E 6= ∅} (7)

Clearly, Γi consists of all the partition elements of i, and of
all the possible unions across those partitions elements.

Construction of counterfactuals. Let S = (Ω, N, {Ri}i∈N )
be a partitional structure. We can immediately define Ii(ω) =
{ω′ ∈ Ω|ωRiω

′}, the partition Ii = {Ii(ω)|ω ∈ Ω}, and the
set Γi (described above) for every i ∈ N . From S, we can
create a new structure S ′ = (Ω′, N, {R′i}i∈N ), which we call

1An agent i’s belief in an event E if factual if Bi(E) ⊆ E.

the counterfactual structure of S, where Ω′ = Ω ∪ Λ, Λ is a
set of states distinct from Ω, and R′i ⊆ Ω′×Ω is a reachabil-
ity relation for every i ∈ N . The construction of the set Λ
and of the reachability relations {R′i}i∈N is described below.

• For every i ∈ N , and for every e ∈ Γi, create a set Λe
i of

new states, which contains exactly one duplicate λe
i,ω

of the state ω for every ω ∈ Ω (so |Λe
i | = |Ω|). We say

that the counterfactual state λe
i,ω is the counterfactual

of ω for agent i with respect to the event e. The set of
states Λ is simply the set of all counterfactual states.
Namely, Λ = ∪i∈N ∪e∈Γi Λe

i .2

• We now describe the process to construct the reacha-
bility relations {R′i}i∈N . For every agent i ∈ N , start
with R′i = Ri. We will add new elements to R′i ac-
cording to the following method: For every λ ∈ Λ, if
λ = λe

i,ω for some ω ∈ Ω and e ∈ Γi, then (i) if ω ∈ e
(that is, if λe

i,ω is the duplicate of a state in e), then for
every ω′ ∈ e, add (λe

i,ω, ω
′) as an element to R′i, and

(ii) if ω 6∈ e, then for every ω′ ∈ Ii(ω), add (λe
i,ω, ω

′) as
an element to R′i. Finally, if λ = λe

j,ω for some ω ∈ Ω,
and e ∈ Γj where j ∈ N\{i}, then for every ω′ ∈ Ii(ω),
add (λe

j,ω, ω
′) as an element to R′i. Nothing else is an

element of R′i.

This is best explained by means of an example. Con-
sider a partitional structure S with Ω = {ω0, ω1, ω2, ω3, ω4},
N = {a, b}, and partitions Ia and Ib as represented in Figure
1. In Figures 2-4, we represent a selection of substructures of
the counterfactual structure S ′ of S.3 Figure 2 shows the set

of counterfactual states Λ
{ω3,ω4}
a , as well as Ω, and the reach-

ability relations, R′i ⊆ Λ
{ω3,ω4}
a × Ω, of both agents across

these two sets. The reachability relations R′i ⊆ Ω × Ω are
left out, but they are unchanged (relative to S) and therefore
identical to what is shown in Figure 1. Note that each state

in Λ
{ω3,ω4}
a is simply a duplicate of a corresponding state

in Ω. For agent b, every state λ
{ω3,ω4}
a,ω simply points to all

the states ω′ ∈ Ib(ω) (and nothing else). For agent a, every

state λ
{ω3,ω4}
a,ω such that ω ∈ {ω0, ω1, ω2} simply points to

all the states ω′ ∈ Ia(ω) (and nothing else). However, for a

state ω ∈ {ω3, ω4}, every state λ
{ω3,ω4}
a,ω points to both ω3

and ω4 (and nothing else), even though Ii(ω3)∩ Ii(ω4) = ∅.
A similar patterns holds in Figures 3 and 4 which are there
as additional examples for the reader. For practical reasons,
we do not represent the full sets Λ and R′i ⊆ Ω′ × Ω in a
single diagram; and, note that even when taken together
Figures 1-4 do not offer a complete picture of S ′.

The counterfactual structure of a partitional structure has
several interesting properties, which we derive below.

Proposition 2. Suppose that S ′ = (Ω′, N, {R′i}i∈N ) is
the counterfactual structure of a partitional structure S =

2Note that the indexing of the sets Λe
i by both e and i is

crucial. Indeed, one must note that for any i ∈ N , and for

any e, e′ ∈ Γi such that e 6= e′, Λe
i ∩ Λe′

i = ∅. Furthermore,
for any i, j ∈ N such that i 6= j, if e ∈ Γi and e′ ∈ Γj ,

Λe
i ∩ Λe′

j = ∅ (even if e = e′).
3Consider any two information structures S+ =
(Ω+, N, {R+

i }i∈N ) and S− = (Ω−, N, {R−i }i∈N ). We
say that S− is a substructure of S+ if Ω− ⊆ Ω+ and
R−i ⊆ R

+
i for every i ∈ N .
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Figure 1: Ω and the partitions Ia and Ib

λa,ω0
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Figure 2: Λ
{ω3,ω4}
a ∪Ω and R′i ⊆ Λ

{ω3,ω4}
a ×Ω for i ∈ {a, b}

(Ω, N, {Ri}i∈N ). Then the reachability relations {R′i}i∈N
are serial and transitive.

Proposition 3. Suppose that S ′ = (Ω′, N, {R′i}i∈N ) is
the counterfactual structure of a partitional structure S =
(Ω, N, {Ri}i∈N ). Then for any agent i ∈ N , (i) for any
ω ∈ Ω′, bi(ω) 6= ∅, and if ω ∈ bi(ω′), bi(ω) ⊆ bi(ω′), and (ii)
for any ω ∈ Ω, bi(ω) = Ii(ω).

From the above, we have that counterfactual structures
of partitional structures belong to the class of KD4 struc-
tures. In particular, the belief operator now only satisfies
properties K, D, and 4; so“negative introspection”no longer
holds, relative to belief structures. (See section 5.2 for fur-
ther discussion of this point). Note however that within
the counterfactual structure S ′ = (Ω′, N, {R′i}i∈N ) of a par-
titional structure S = (Ω, N, {Ri}i∈N ), the substructure
(Ω, N, {Ri}i∈N ) of S ′ corresponds exactly to the original
structure S and is therefore partitional. A further result
will be useful.

Proposition 4. Suppose that S ′ = (Ω′, N, {R′i}i∈N ) is
the counterfactual structure of a partitional structure S =
(Ω, N, {Ri}i∈N ). Then for any ω ∈ Ω′ and any G ⊆ N ,
(i) if ω′ ∈ TG(ω), then ω′ ∈ Ω, and (ii) for any i ∈ G,
∪ω′∈TG(ω)bi(ω

′) = TG(ω).

4.2 The agreement theorem
We will now adapt the main definitions required to derive

the agreement theorem within the counterfactual structure
of a partitional structure.

Throughout this section, we consider a partitional struc-
ture S = (Ω, N, {Ri}i∈N ), and the counterfactual struc-
ture S ′ = (Ω′, N, {R′i}i∈N ) of S. As before, we can define
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Ii(ω) = {ω′ ∈ Ω|ωRiω
′}, the partition Ii = {Ii(ω)|ω ∈ Ω},

and the set Γi for every i ∈ N .

A decision function Di for an agent i ∈ N maps from Γi

to a set of actions. That is,

Di : Γi → A (8)

We now say that an action function δi : Ω′ → A follows de-
cision function Di if for all states ω ∈ Ω′, δi(ω) = Di(bi(ω)).
The following proposition guarantees that this is well-defined.

Proposition 5. Suppose that S ′ = (Ω′, N, {R′i}i∈N ) is
the counterfactual structure of a partitional structure S =
(Ω, N, {Ri}i∈N ). Then for any ω ∈ Ω′, bi(ω) ∈ Γi.

Below, we provide definitions for the Sure-Thing Principle
and like-mindedness that are analogous to the ones proposed
by Bacharach. We elaborate on their interpretations in sec-
tion 4.4.

Definition 4. The decision function Di of agent i satisfies
the Sure-Thing Principle if for any non-empty subset E of
Ii, whenever for all e ∈ E , Di(e) = x then Di(∪e∈Ee) = x.

The domain Γi includes all possible unions of elements of
the partition Ii, so this is well-defined. Furthermore, note
that E must be a set of disjoint events.4

Definition 5. Agents i and j are said to be like-minded
if for any e ∈ Γi and any e′ ∈ Γj , if e = e′ then Di(e) =

4This contrasts with [7] who, in their solution, propose
adopting a version of the Sure-Thing Principle that does
not require the disjointness of events.
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Dj(e
′).5

Theorem 2. Let S ′ = (Ω′, N, {R′i}i∈N ) be the counter-
factual structure of a partitional structure S = (Ω, N, {Ri}i∈N ).
Then, within S ′, if the agents i ∈ N are like-minded (as
defined in Definition 5) and follow the decision functions
{Di}i∈N (as defined in (8)) that satisfy the Sure-Thing Prin-
ciple (as defined in Definition 4), then for any G ⊆ N , if
CG(∩i∈G{ω′ ∈ Ω′|δi(ω′) = xi}) 6= ∅ then xi = xj for all
i, j ∈ G.

Although this agreement theorem might appear to have
many similarities with the previous one, it is conceptually
entirely distinct. In particular, we show below (in section
4.3) that we were able to obtain the result while avoiding the
conceptual flaws that were discussed in section 3.2. We also
provide an interpretation of Theorem 2 and of counterfactual
structures of partitional structures more generally in section
4.4.

4.3 Solution to the conceptual flaws
As discussed in section 3.2, Bacharach’s framework re-

quires the decision functions to be defined over events that
are not possible beliefs for the agents. The proposition below
shows that this is not the case in our set-up.

Proposition 6. Suppose that S ′ = (Ω′, N, {R′i}i∈N ) is
the counterfactual structure of a partitional structure S =
(Ω, N, {Ri}i∈N ). Then for any e ∈ Γi, there exists an ω ∈ Ω′

such that bi(ω) = e. (In fact, there exists a state λe
i,ω ∈ Λ

for some ω ∈ e such that bi(λ
e
i,ω) = e).

This proposition, in conjunction with Proposition 5, shows
that in our set-up, the domain of the decision function of
every agent is exactly the set of all possible beliefs for that
agent. Indeed, our decision functions are defined over unions
of partition elements, but these are possible beliefs for the
agents because for every such union, there exists a coun-
terfactual state at which the possibility set is precisely that
union. We therefore avoid the first point in the conceptual
flaws raised by [7]. Regarding the second point, the deci-
sion function Di of agent i is now only defined over events
in Γi. There is therefore no requirement for the function
to determine the agent’s action in the case where the event
corresponds to a partition element of another agent.

4.4 Interpretation
In this section, we provide an interpretation of our as-

sumptions, showing that the formal definitions of the Sure-
Thing Principle and of like-mindedness given in our set-up
match well with intuition. We also provide an interpretation
of the agreement theorem in counterfactual structures, and
of those structures more generally.

Our notion of like-mindedness is straightforward: Over
the same information, like-minded agents take the same ac-
tion. However, our definition has an advantage over Bacharach’s
which is that an agent i is not required to consider what ac-
tion to take over the partition elements of another agent j.

5In contrast with the previous definition, we do not say that
agents are like-minded if they have the “same” decision func-
tions since the domains of the decision functions will now
typically be different for different agents.

With regards to the Sure-Thing Principle, the proposi-
tion below, in particular part (ii), allows us to interpret our
version of the principle as capturing the intuition that: “If
the agent takes the same action in every case when she is
more informed, she would take the same action if she were
(secretly) more ignorant”.

Proposition 7. Suppose that S ′ = (Ω′, N, {R′i}i∈N ) is
the counterfactual structure of a partitional structure S =
(Ω, N, {Ri}i∈N ). Then, (i) for any e ⊆ Ω′, and ω, ω′ ∈ Ω′,

bi(ω) ⊆ e and bi(ω
′) ⊆ e if and only if bi(λ

bi(ω)∪bi(ω′)
i,ω′′ ) ⊆ e

(for some ω′′ ∈ Ω). (ii) For any e ⊆ Ω′, and ω, ω′ ∈ Ω,

bi(ω) ⊆ e and bi(ω
′) ⊆ e if and only if bi(λ

bi(ω)∪bi(ω′)
i,ω ) ⊆ e.

Indeed, suppose S ′ = (Ω′, N, {R′i}i∈N ) is the counterfac-
tual structure of a partitional structure S = (Ω, N, {Ri}i∈N ).
Now consider an agent i, and two partition elements Ii(ω),
Ii(ω

′) ∈ Ii (where ω, ω′ ∈ Ω), and suppose that her deci-
sion function is such that Di(Ii(ω)) = Di(Ii(ω

′)) = x. The
Sure-Thing Principle requires that Di(Ii(ω) ∪ Ii(ω′)) = x.
Propositions 6 shows that the possibility set that corre-

sponds to Ii(ω) ∪ Ii(ω′) is bi(λ
Ii(ω)∪Ii(ω′)
i,ω ). Proposition 7

part (ii) shows that for any event e, i believes e at the coun-

terfactual state λ
Ii(ω)∪Ii(ω′)
i,ω if and only if i also believes e

at the states within each of those partition elements. In-
formally, if we can call a belief in an event “information”,
then the information that i has at the counterfactual state
preserves only the information that is the same across both
the partition elements. In this sense, the information that
i has at the counterfactual state is the information that i
would have if she were just more ignorant than at a state in
either of the partition elements.6 Furthermore, by construc-
tion of counterfactual structures, there is no state ω′′′ ∈ Ω′

and no j ∈ N such that (ω′′′, λ
Ii(ω)∪Ii(ω′)
i,ω ) ∈ R′j ; and, for

any j 6= i, (λ
Ii(ω)∪Ii(ω′)
i,ω , ω′′′) ∈ R′j for every ω′′′ ∈ Ij(ω)

only. In words, this means that at this counterfactual state,
i may have become “more ignorant”, but the information of
all other agents is unchanged. The information at this state
therefore truly captures the fact that i is imagining herself
secretly to be more ignorant. The situation is counterfactual
since all other agents still believe that i has the information
that she does in the partition Ii.

We believe that this interpretation of the Sure-Thing Prin-
ciple matches well with intuition. In particular, given that
the principle finds its origins in single-agent decision theory
(see [9]), it makes sense that the requirement on the deci-
sions in cases where the agents are more ignorant is imposed
only when ignorance is secret - in the sense that the infor-
mation of all other agents is unchanged.

More generally, our interpretation of the counterfactual
structure S ′ of a partitional structure S is therefore that
it is simply a more complete picture of the situation that
is being modeled by the structure S since it also includes
states in which the agents imagine themselves (secretly, and
counterfactually) to be more ignorant. The inclusion of
these states turns out to be relevant in deriving appropriate
formal definitions of the Sure-Thing Principle and of like-
mindedness, and in resolving the conceptual flaws regarding
6In fact, it corresponds to being just “less informed”, in a
sense similar to that given in [8].
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the domain of the decision functions. Indeed, we can think
of the substructure S of S ′ as representing the “actual” situ-
ation, and the counterfactual states Λ are essentially “fake”
in the sense that they do not actually occur. However, they
are connected to the “actual” states in Ω in a manner that
captures every possible way in which every agent could be
secretly more ignorant relative to the “actual” situation; and
although the “fake” states do not occur, the decision func-
tions are essentially defined at such states (More precisely,
they are defined over possibility sets that are defined as such
states).7 This turns out to be crucial: Theorem 2 is derived
by showing that when the actions of agents are commonly
known, the Sure-Thing Principle and like-mindedness imply
that the actions must be the same precisely in the case when
the decision functions are based on the information at some
counterfactual (or “fake”) states. The equality at the coun-
terfactual states then carries over to the decisions over the
information in the “actual” situation, and therefore agents
cannot agree to disagree.

5. RELATION TO THE LITERATURE
We now discuss our approach in relation to other solutions

that were proposed regarding the conceptual flaws. We then
also compare our construction of the counterfactual states
to other models that carry out a related exercise.

5.1 Other solutions
[7] propose a solution to the conceptual flaws that they

found in the result of [3]. Essentially, they define a“relevance
projection”, which maps from sets of states to the “relevant
information”at that set of states (see [7, p. 158]). They then
impose conditions on this projection and on the decision
functions to derive a new agreement theorem. However, it
is not always obvious how a projection satisfying their condi-
tions ought to be found. In contrast, the approach presented
here offers a constructive method of obtaining a structure in
which the analysis can be carried out.8 Furthermore, our
Sure-Thing Principle does require the disjointness of events,
which their version does not.

[2] also propose a solution using a purely syntactic ap-
proach. The approach presented here is completely set-
theoretic. Furthermore, they impose the condition that higher-
order information must be irrelevant to the agents’ decision,
which we do not impose here.

Finally, [8] presented a very interesting solution to the
conceptual flaws by redefining the Sure-Thing Principle en-
tirely. Roughly, Samet’s “Interpersonal Sure-Thing Princi-
ple” states that if agent i knows that agent j is more in-
formed than he is, and knows that j’s action is x, then i
takes action x. Combining this with the assumption of the
existence of an “epistemic dummy” - an agent who is less
informed than every other agent - [8] proves a new agree-
ment theorem in paritional structures. The large differences
in the assumptions make a formal comparison between the
approach here and in [8] difficult.

7Notice that this shows that our counterfactual structures
are particular “impossible-world” structures (e.g. see [12]).
We return to this point in section 5.
8Also, the resulting counterfactual structure does satisfy
properties that resemble, in spirit, the conditions imposed
on the relevance projection.

5.2 Action models
Loosely speaking, it was shown that the information at

the counterfactual states in a counterfactual structure cor-
responds to secretly “losing” information. It turns out that
secretly “gaining” information is well-studied in the dynamic
epistemic logic literature (e.g. [4]). Action models formalize
how the underlying structure (both the state space and the
reachability relations) must be modified to model various
protocols by which agents may gain some new information.

It was shown, [11, Theorem 17], that in the case of secretly
gaining new information, a partitional structure would have
to be transformed into a belief structure. In this paper, we
have defined a method of modeling secret loss of information
by transforming a partitional structure into a (counterfac-
tual) structure that belongs to the KD4 class. In partic-
ular, this means that “negative introspection” is dropped
as a property of the belief operator. We have not shown
that it is necessary to drop negative introspection in order
to model secret loss of information, so in principle, it re-
mains an open question as to whether it is possible to define
a purely semantic transformation of a partitional structure
(i.e. only involving the states and the reachability relations)
that can model secret loss of information where the resulting
structure is a belief structure in which the primitives of the
original model (i.e. the original state space and partitions
over them) are unchanged.9

5.3 Counterfactuals
General set-theoretic information structures have been pro-

posed to model counterfactuals (e.g. see [5]), especially in
relation to the literature on backwards induction. In exten-
sive form games, to implement the backwards induction so-
lution, agents must consider what they would do at histories
of the game that might never be reached. They must there-
fore be able to define what they would do in situations that
never occur. This therefore bears some resemblance to our
set-up in which agents are required to have decisions that
are defined over information at counterfactual (or “fake”)
states that never actually occur, but there are important
differences which we briefly outline below.

There is a multitude of ways in which counterfactuals can
be modeled, and we cannot hope to survey the literature
here. However, it will suffice to say that a general approach
to modeling counterfactuals proceeds in roughly the follow-
ing manner: One defines a “closeness” relation on states and
then says that a state ω belongs to the event “If f were the
case, then e would be true” if e is true in all the closest
states to ω where f is true. It is possible to then augment
this approach with epistemic operators and decisions, but
the salient point is simply that the standard approach to
counterfactuals aims to be quite general, in capturing all
possible hypothetical situations f .

In contrast, we only model counterfactuals for a very par-
ticular set of hypothetical situations, namely, every possible

9[10] analyzes counterfactuals in KD45 structures. How-
ever, his initial structures are KD45, whereas the point
made here is regarding a method that would transform a
partitional structure into a KD45 structure while building
the relevant counterfactual states and leaving the primitives
of the original model unchanged.
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situation (relative to the “actual” situation) in which every
agent considers herself to be secretly more ignorant. This
is not done by imposing a closeness relation, but by creat-
ing a new set of “fake” counterfactual states and carefully
re-wiring them to the “actual” states. (Note however, that
the resulting information at the counterfactual states was
shown to be interpretable as being secretly “just” more ig-
norant than in the “actual” situation being considered, so
in this sense, the counterfactual state can be seen as being
“close” to the actual situation). As a result, it is not obvi-
ous to see how the method developed here can be applied to
studying backwards induction, which requires considering a
richer set of hypothetical situations, but the method is well-
adapted for the analysis of agreement theorems carried out
in this paper.

Note that there is another approach to modeling coun-
terfactuals that is related to ours. What is known as the
“impossible-worlds” approach (e.g. [12]) augments informa-
tion structures with a new set of states and with modified
reachability relations. The set of states in the original struc-
ture are then referred to as “possible”, or “normal”, worlds,
while the ones in the new set are referred to as “impossible”,
or “non-normal”. In our framework, these actually corre-
spond to our “actual” states Ω, and our “fake” states Λ (and
the reachability relations are modified from Ri to R′i for
every i). The counterfactual structures presented here can
therefore be seen as specific “impossible-worlds” structures.
However, we are not aware of any paper that use impossible-
worlds structures as a tool for modeling counterfactuals in
the manner presented here.

6. CONCLUSION
We provided a constructive method for creating an in-

formation structure that includes the relevant counterfac-
tual states (starting from a partitional structure). This new
counterfactual structure is interpreted as providing a more
complete picture of the situation that is being modeled by
the original partitional structure. As such, our analysis of
the agreement theorem is carried out in such structures.

Having provided new formal definitions for the Sure-Thing
Principle and for like-mindedness, we prove an agreement
theorem within such structures, and show that we can in-
terpret our version of the Sure-Thing principle as capturing
the intuition that: “If the agent takes the same action in
every case when she is more informed, she would take the
same action if she were (secretly) more ignorant”. We also
show that our version of like-mindedness has more desirable
properties than Bacharach’s. Furthermore, we show that
our approach resolves the conceptual issues raised by [7],
in the sense that within counterfactual structures, decision
functions are defined only over events that are possible be-
liefs for the agents.

Therefore, in providing a constructive method for creating
counterfactual structures, our approach achieves the goal of
maintaining an interpretation of the underlying assumptions
of the agreement theorem that fits well with intuition, while
simultaneously resolving the conceptual issues (identified in
[7]) regarding the domain of the decision functions.
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ABSTRACT
We identify a subproblem of the model-checking problem for the
epistemicµ-calculus which is decidable. Formulas in the instances
of this subproblem allow free variables within the scope of epis-
temic modalities in a restricted form that avoids embodying any
form of common knowledge. Our subproblem subsumes known
decidable fragments of epistemicCTL/LTL, may express win-
ning strategies in two-player games with one player having imper-
fect information and non-observable objectives, and, with a suitable
encoding, decidable instances of the model-checking problem for
ATLiR.

1. INTRODUCTION
The epistemicµ-calculus is an enrichment of theµ-calculus on

trees with individual epistemic modalitiesKa (and its dual, de-
notedPa). It is designed with the aim that, like the classical modal
µ-calculus, it would subsume most combinations of temporal and
epistemic logics. The epistemicµ-calculus is more expressive than
linear or branching temporal epistemic logics [15, 24], proposi-
tional dynamic epistemic logics [25], or the alternating epistemic
µ-calculus [6]. On the other hand, some gaps in its expressive
power seem to exist, as witnessed by recent observations in [6]
showing that formulas like⟪a⟫p1Up2 are not expressible in the
Alternating Epistemicµ-calculus. This expressivity gap can be re-
produced in the epistemicµ-calculus, though the epistemicµ-cal-
culus is richer than the alternatingµ-calculus.

The model-checking problem for epistemicµ-calculus is unde-
cidable in the presence of a semantics with perfect recall, as it is
more expressive than combinations of temporal epistemic logics
that include the common knowledge operator. A rather straightfor-
ward fragment of the epistemicµ-calculus which has a decidable
model-checking problem is the one in which knowledge modali-
ties apply only to closed formulas, that is, formulas in which all
second-order variables are bound by some fixpoint operator. The
decidability of this fragment follows from recent results on the de-
cidability of the emptiness problem for two player games [7].

However more expressive fragments having a decidable model-
checking problem seem to exist. For example, winning strategies
in two-player games in which one player has imperfect informa-
tion and non-observable winning conditions can be encoded as fix-
point formulas in the epistemicµ-calculus, but not in the above-
mentioned restricted fragment. The same holds for some formulas

∗Work partially supported by the ANR research project
“EQINOCS” no. ANR-11-BS02-0004

TARK 2013, Chennai, India.
Copyright 2013 by the authors.

in ATL with imperfect information and perfect recall (ATLiR)
[23, 5]: theATL formula ⟪a⟫ ◻ p can be expressed in a modal
µ-calculus of knowledge as

νZ. ⋁
α∈Acta

Ka(p ∧ ⋀
β∈ActAg∖{a}

[α,β]Z)

And there are variants ofATLiR for which the model-checking
problem is decidable [10]. Note that a translation of each instance
of the model-checking problem forATL into instances of the model-
checking problems for the epistemicµ-calculus is also possible but
requires the modification of the models.

Our aim in this paper is to identify a larger and decidable class
of instances of the model-checking problem for the epistemicµ-
calculus. The fragment we propose here allows an epistemic modal-
ity Ka to be applied to a non-closedµ-calculus formulaφ, but in
such a way that avoids expressing properties that construct any vari-
ant of common knowledge for two or more agents. Roughly, the
technical restriction is the following: two epistemic operators, re-
ferring to the knowledge of two different agentsa andb, can be
applied to non-closed parts of a formula only if the two agents have
compatibleobservations in the systemM in the sense that the ob-
servability relation of one of the agents is a refinement of the ob-
servability relation of the other. Similar restrictions have been pro-
posed for various combinations of temporal epistemic logics [12],
or for the synthesis problem in distributed environments [18, 27,
13]. The variant presented here relies on aconcretesemantics, in
the sense of [9], with the observability relation for each agenta
being identified, in the given systemM , by a subsetΠa of atomic
propositions. We require this in order to syntactically define our
decidable subproblem: the compatibility of two observability rela-
tions ∼a and∼b is specified by imposing that eitherΠa ⊆ Πb or
vice-versa.

The epistemicµ-calculus with perfect recall has a history-based
semantics: for each finite transition systemT , the formulas of the
epistemicµ-calculus must be interpreted over thetree unfolding
of T . This makes it closer with the tree interpretations of theµ-
calculus from [11]. For the classicalµ-calculus, there are two ways
of proving that the satisfiability and the model-checking problem
for the tree interpretation of the logic are decidable: either by pro-
viding translations to parity games, or by means of a Finite Model
Theorem which ensures that a formula has a tree interpretation iff it
has astate-basedinterpretation over a finite transition system (this
is known to be equivalent with memoryless determinacy for parity
games, see e.g. [4]).

The generalization of the automata approach does not seem to
be possible for epistemicµ-calculus, mainly due to the absence
of an appropriate generalization of tree automata equivalent with
the epistemicµ-calculus. So we take the approach of providing
a generalization of the Finite Model Theorem for our fragment of
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the epistemicµ-calculus. This result says roughly that the tree in-
terpretation of a formula over the tree unfolding of a given finite
transition systemT which contains the epistemic operatorsKa or
Pa is exactly the “tree unfolding” of the finitary interpretation of
the formula in a second transition systemT ′, which is obtained by
determinizing the projection ofT onto the observations of agent
a, a construction that is common for decidable fragments of tem-
poral epistemic logics. Our contribution consists in showing that
this construction can be applied for all instances in our model-
checking subproblem. The proof is given in terms of commutative
diagramms between boolean algebraic operators that are the inter-
pretations of non-closed formulas.

The model checking subproblem is non-elementary hard due to
the non-elementary hardness of the model-checking problem for
the linear temporal logic of knowledge [26]. In the full version of
this paper [3], we provide a self-contained proof of this result, by
a reduction of the emptiness problem for star-free regular expres-
sions.

The rest of the paper is divided as follows: in the next section we
recall the semantics of theµ-calculus and adapt it to our epistemic
extension, both for the tree interpretation and the finitary interpre-
tation. We then give, in the third section, our weak variant of the
Finite Model Theorem for the classicalµ-calculus. The fourth sec-
tion serves for introducing our fragment of the epistemicµ-calculus
and for proving the decidability of its model-checking problem. We
end with a section with conclusions and comments.

An extended version of this paper with proofs is available as [3].

2. PRELIMINARIES
We start by fixing a series of notions and notations used in the

rest of the paper.
A∗ denotes the set of words overA. The length ofα ∈ A∗, is

denoted∣α∣ and the prefix ofα up to positioni is denotedα[1..i].
Hence,α[1..0] = ε is the empty word. The prefix ordering onA∗

is denoted⪯ (≺ for the strict prefix ordering).
Given a setA and an integern ∈ N, anA-tree of outdegree≤ n

is a partial functiont ∶ [1 . . . n]∗ ⇀ A whose support, denoted
supp(t), is a prefix-closed subset of the finite sequences of integers
in [1 . . . n]. A nodeof t is an element of its support. Apath in t is
a pair(x,ρ) consisting of a nodex and the sequence oft-labels of
all the nodes which are prefixes ofx, ρ = (t(x[1 . . . i]))

0≤i≤∣x∣
.

Boolean operators:Given a setA, abooleanA-operatoris a map-
ping f ∶ (2A)n → 2

A.

For anA-operatorf ∶ (2A)n → 2
A, a tuple of setsB1, . . . ,Bn ⊆

A and somek ≤ n we denotefk(B1, . . . ,Bk−1,●,Bk+1 , . . . ,Bn) ∶
2
A → 2

A theA-operator with

fk(B1, . . . ,Bk−1,●,Bk+1, . . . ,Bn)(B)
= f(B1, . . . ,Bk−1,B,Bk+1 , . . . ,Bn)

Note that whenf is monotone,fk(B1, . . . ,Bk−1,●,Bk+1, . . . ,Bn)
is monotone too.

Following the Knaster-Tarski theorem, any monotoneA-operator
f ∶ 2A → 2

A has a unique least and greatest fixpoint, denotedlfpf ,
resp.gfpf . We may then define twoA-operators,lfpk

f ∶ (2A)n →
2
A andgfpk

f ∶ (2A)n → 2
A, respectively as:

lfp
k
f(B1, . . . ,Bn) = lfpfk(B1,...,Bk−1,●,Bk+1,...,Bn)

gfp
k
f(B1, . . . ,Bn) = gfpfk(B1,...,Bk−1,●,Bk+1,...,Bn)

Note that both theseA-operators are constant in theirk-th argu-
ment. It is well-known that both operators are monotone iff is
monotone.

3. THE µ-CALCULUS OF KNOWLEDGE
Syntax: The syntax of theepistemicµ-calculus is based on

the following sets of symbols: a finite set ofagentsAg, a family
of sets ofatomic propositions(Πa)a∈Ag for which we denoteΠ =
⋃a∈Ag Πa and a set offixpoint variablesZ = {Z1,Z2, . . .}.

The grammar for the formulas of the epistemicµ-calculus is:

ϕ ∶∶= p ∣ ϕ ∧ϕ ∣ ¬ϕ ∣ AXϕ ∣Kaφ ∣ µZ.ϕ
wherep ∈ Π, a ∈ Ag andZ ∈ Z, and with the usual restriction that
an operatorµZ may be applied on formulas in which the variable
Z has only positive occurrences.

Formulas of the typeKaφ are read asagenta knows thatφ holds.
µZ is the least fixpointoperator, whileAX is the usualnexttime
operator from CTL, universally quantified over the successors of
the current state.

Several derived operators can be defined as usual:

1. The dual ofAX is denotedEX and defined asEXφ ≡
¬AX¬φ.

2. The dual ofKa is denotedPa and defined asPaφ ≡ ¬Ka¬φ.
Paφ reads asagenta considers thatφ is possible.

3. The greatest fixpoint operator is denotedνZ and defined as
νZ.φ ≡ ¬µZ.¬φ[Z/¬Z], whereφ[Z/¬Z] is the result of
the syntactic substitution of each occurrence ofZ with ¬Z
in φ.

As usual, for a subset of agentsA ⊆ Ag we may denoteEA the
“everybody knows” operator,EAφ = ⋀a∈AKaφ.

Since our model checking construction relies heavily on formu-
las being interpreted as monotone mappings and, on the other side,
set complementation (which is the usual interpretation of negation)
is not a monotone operator we will prefer the following syntaxin
positive formfor the epistemicµ-calculus:

ϕ ∶∶= p ∣ ¬p ∣ Z ∣ ϕ ∧ϕ ∣ ϕ ∨ ϕ ∣ AXϕ ∣ EXϕ ∣
Kaφ ∣ Paφ ∣ µZ.ϕ ∣ νZ.ϕ

It is easy to see that each formula of the epistemicµ-calculus can
be transformed into a formula in positive form, by pushing nega-
tions through the operators and using the definitions of the dual
operators.

The fragment of the epistemicµ-calculus which does not involve
the knowledge operatorKa (or its dualPa) is called here theplain
µ-calculus,or simply theµ-calculus, when there’s no risk of con-
fusion. As usual, we say that a formulaφ is closedif each variable
Z in φ occurs in the scope of a fixpoint operator forZ.

We will also briefly consider in this paper themodal epistemic
µ-calculus, for the sake of comparison with other combinations
of temporal and epistemic logics. The language of this variant of
the epistemicµ-calculus is based on a family of sets(Acta)a∈Ag,
meant to represent actions available to each agent at a given state.
Its grammar is the following:

ϕ ∶∶= p ∣ ϕ ∧ϕ ∣ ¬ϕ ∣ ⟨α⟩ϕ ∣Kaφ ∣ µZ.ϕ
wherep ∈ Π, a ∈ Ag, α ∈ ⨉a∈Ag Acta andZ ∈ Z, and bear-
ing the same restriction on the utilization of the fixpoint operators.
Formulas of the type⟨α⟩ϕ read asthere exists anα-successor of
the current state in whichϕ holds. The dual of the⟨α⟩ operator is
denoted[α].
3.1 Semantics
The tree semanticsof the epistemicµ-calculus is given in terms
of 2Π∪Z -trees endowed with a family of relations(∼a)a∈Ag with
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∼a⊆ supp(t) × supp(t). The nodes of the tree represent instant
descriptions of the system state, while the relation∼a models the
indistinguishabilityrelation which disallows agenta to tell apart
two behaviors of the system.

Formaly, given a treet and the family of relations(∼a)a∈Ag,
each formulaφ which contains variablesZ1, . . . ,Zn is associated
with a supp(t)-operator∥φ∥ ∶ (2supp(t))n → 2

supp(t) defined by
structural induction, as follows:

● The atomp is interpreted as the constantsupp(t)-operator
∥p∥ ∶ (2supp(t))n → 2

supp(t) defined as follows:

∥p∥(S1, . . . , Sn) = {x ∈ supp(t) ∣ p ∈ π(t(x))}

● The semantics of the boolean operators is classical:

∥¬φ∥ = supp(t) ∖ ∥φ∥
∥φ1 ∧ φ2∥ = ∥φ1∥ ∩ ∥φ2∥

● Each variableZi ∈ Z is interpreted as thei-th projection
on (2supp(t))n, that is, as the operator∥Zi∥ ∶ (2supp(t))n →
2
supp(t) with

∥Zi∥(S1, . . . , Sn) = Si,∀S1, . . . , Sn ⊆ supp(t)

● The nexttime operatorAX is mapped to asupp(t)-operator,
denotedAX ∶ 2supp(t) → 2

supp(t), such that for eachS ⊆
supp(t),
AX(S) = {x ∈ supp(t) ∣ ∀i ∈ N if xi ∈ supp(t) thenxi ∈ S}
Then the semantics of formulas of the typeAXφ is defined
as:

∥AXφ∥ = AX ○ ∥φ∥

● Each epistemic operatorKa is mapped to asupp(t)-ope-
rator denotedKa ∶ 2supp(t) → 2

supp(t), such that for each
S ⊆ supp(t),
Ka(S) = {x ∈ supp(t) ∣ ∀y ∈ supp(t), if x ∼a y theny ∈ S}
Then the semantics of formulas of the typeKaφ is defined
as:

∥Kaφ∥ =Ka ○ ∥φ∥

● The fixpoint operators are interpreted as usual:

∥µZi.φ∥ = lfpi∥φ∥
We denotet ⊧ φ iff ε ∈ ∥φ∥.

The semantics of the epistemicµ-calculus can be also described
without set complementation, by keeping the definition of negation
only for atomic formulas, and appending the following definitions:

∥¬p∥(S1, . . . , Sn) = {x ∈ supp(t) ∣ p /∈ π(t(x))}
EX(S) = {x ∈ supp(t) ∣ ∃i ∈ N with xi ∈ supp(t) andxi ∈ S}
∥EXφ∥ = EX ○ ∥φ∥
Pa(S) = {x ∈ supp(t) ∣ ∃y ∈ supp(t) with x ∼a y andy ∈ S}
∥Paφ∥ = Pa ○ ∥φ∥
∥νZi.φ∥ = gfpi

∥φ∥

Note that, this way, all operators are interpreted as monotonesupp(t)-
operators, which is more convenient for manipulating fixpoints.

As we are interested in the model-checking problem, we will
only work with finitely-generated trees as models for the epistemic

µ-calculus. These finitely-generated models occur as unfoldings of
multi-agent systems, whose definition is recalled here.

A multi-agent systemis a tupleM = (Q,Ag, δ, q0,Π, (Πa)a∈Ag,

π) with Ag being the set of agents,Q the set of states,q0 the initial
state of the system,δ ⊆ Q ×Q, Π the set ofatomic propositions,
π ∶ Q → 2

Π is thestate labelingand for alla ∈ Ag, Πa ⊆ Π is the
set of atomsobservable byagenta. A run in the systemM is an in-
finite sequence of statesρ = q0q1q2... such that(qi, qi+1) ∈ δ for all
i ≥ 0. The set of finite runs inM is denotedRuns(M). Through-
out this paper we consider only finite systems, withQ = {1, . . . , n}
andq0 = 1, and we assume thatQ contains only reachable states.

TheQ-tree representing theunfolding of a multi-agent system
M is denotedtM and defined by

supp(tM) = {x ∈ N
∗ ∣ 1x ∈ Runs(M)} andtM(x) = x[∣x∣]

The actual tree that can be used as a model of the epistemicµ-cal-
culus isπ(tM) = π ○ tM ∶ supp(tM)⇀ 2

Π. We denote this tree as
πtM .

The family of indistinguishability relations(∼a)a∈Ag that we
consider in this paper are defined as follows: for any two positions
x, y ∈ supp(tM) with ∣x∣ = ∣y∣, we denotex ∼a y if for any n ≤ ∣x∣
we have that

π(t(x[1..n])) ∩Πa = π(t(y[1..n])) ∩Πa

This way, the indistinguishability relation∼a models the fact that
agenta has perfect knowledge of the absolute time and remembers
all his past observations – that is,∼a is asynchronous and perfect
recall indistinguishability.

Definition 1. The model-checking problem for the epistemic
µ-calculus is the problem of deciding, given a multi-agent system
M and a closed formulaφ, whetherπtM ⊧ φ.

The undecidability of the model-checking problem for combi-
nations of temporal and epistemic logics based on a synchronous
and perfect recall semantics and containing the common knowl-
edge operator [26, 25], together with the connections between the
epistemicµ-calculus and such temporal epistemic logics that are
explored in the next section, imply the following result:

THEOREM 1. The model-checking problem for the epistemicµ-
calculus is undecidable.

The semantics of themodal epistemicµ-calculus is a slight
variation of the above semantics, in that we utilize a different type
of trees, as mappingst ∶ N⇀ 2

Π∪Z ×⨉a∈Ag Acta. We decompose
such a tree ast = (tnode, tedge): the tree ofnodesis tnode(x) =
t(x)

2Π∪Z
, while the tree ofedgesis tedge(x)t(x)

⨉a∈Ag Acta
. The

only item that changes in the above list of semantic rules for opera-
tors is that we replace the definition of the nextttime operator with
the following definition of the a boolean operator⟨α⟩ ∶ 2supp(t) →
2
supp(t): for eachS ⊆ supp(t),
⟨α⟩(S) = {x ∈ supp(t) ∣ ∃i ∈ N with xi ∈ supp(t) andxi ∈ S}

A family of indistinguishability relations in such a tree model for
the modal epistemicµ-calculus is, like in the non-modal case, a
family of relations(∼a)a∈Ag with ∼a⊆ supp(t) × supp(t).

Then, finite presentations of tree models for the modal epistemic
µ-calculus aremulti-agent systems with transition labels, which are
tuplesM = (Q,Ag, (Acta)a∈Ag , δ, q0,Π, (Πa)a∈Ag, π) with δ ⊆
Q×⨉a∈Ag Acta×Q and all the other components bearing the same
name and definition as in (plain) multi-agent systems.

The tree representing theunfoldingof M , denotedtM also, is
defined inductively as follows:
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● ε ∈ supp(tM) and tnode(ε) = q0; tedge(ε) is left uncon-
strained.

● If x ∈ supp(tM) andtnode(x) = q, then for each stater and
tuple of actionsα ∈ ⨉a∈Ag Acta, for whichq

α
Ð→ r ∈ δ, there

exists a succesor ofx denotedxir,α, andt(xir,α) = (r,α).

● All successors of a nodex are obtained by the previous rule.

The family of indistinguishability relations is defined in a slightly
different way for unfoldings of transition-labeled multi-agent sys-
tems, as agents may know their own past actions. Formally, for two
nodesx, y ∈ supp(tM) and an agenta ∈ Ag we putx ∼a y if for
anyn ≤ ∣x∣ we have that

π(tnode(x[1..n])) ∩Πa = π(tnode(y[1..n])) ∩Πa

t
edge(x[1..n])

a
= t

edge(y[1..n])
a

The modal epistemicµ-calculus can be translated into the (non-
modal) epistemicµ-calculus by converting each action nameαa ∈

Acta into an atomic proposition, so the main results of this paper
generalize easily to this calculus.

3.2 Comparison with other temporal epistemic
frameworks

In this subsection we discuss the relationship between the epis-
temicµ-calculus and other temporal epistemic logics or game mod-
els with imperfect information and perfect recall.

First, it is easy to see that the epistemicµ-calculus is more ex-
pressive than linear or branching temporal epistemic logics with
common knowledge operators [15]. This was already noted e.g.
in [24], since the following fixpoint formula defines the common
knowledge operator for two agents:Ca,bφ = νZ.(φ∧KaZ∧KbZ).

Secondly, the (modal variant of the) epistemicµ-calculus is more
expressive than the alternating epistemicµ-calculus of [6], due
to the possibility to insert knowledge operators “in between” the
quantifiers that occur in the semantics of the coalition operators.
More precisely, for any instance of the model-checking problem
for the alternating epistemicµ-calculus, letActA, denote, for each
set of agentsA ⊆ Ag, the cartesian product of the set of action
symbols for each agent inA, ActA = ⨉a∈AActa. Then:

⟪A⟫Xφ = ⋁
α∈ActA

(Ka ⋀
β∈ActAg∖A

[α,β]φ)

⟦A⟧Xφ = ⋀
α∈ActA

(Pa ⋁
β∈ActAg∖A

[α,β]φ)

Recall briefly that thestrategy operator⟪A⟫φ says that the agents
in the group (coalition)A have astrategyensuring that, whatever
the other agents do, the objectiveφ is achieved on each resulting
run. Also the strategy must be based on the observability of each
agent of the system state. See [5] for a recent account on alternating
temporal logics.

The relationship withATLiR is more involved, as we detail in
the sequel. Formulas of the type⟪A⟫ ◻ p can be expressed as the
fixpoint formulaνZ. ⋁

α∈Acta

Ka(p ∧ ⋀
β∈ActAg∖{a}

[α,β]Z).

On the other hand, formulas containing the until operator cannot
be translated into the epistemicµ-calculus. The reason is explained
in [6]: in formulas of the type⟪a⟫◇p the objectivep might not be
observable by the agenta, who might only be able to know, in the
future of some given time instant, that sometimes in the past of that
future moment (but after the reference instant), the objective was
achieved on all identically observable traces.

However, for the decidable case of coalitions based on distributed
knowledge [10], a translation exists for each instance of the model-
checking problem. We provide here this translation for simple
reachability formulas: given anATLiR formulaφ = ⟪a⟫p1Up2, a
multi-agent systemM and a finite runρ in M , the instance of the
model-checking problemM,ρ ⊧ φ can be translated to an instance
of the model-checking problem in the epistemic modalµ-calculus
of the following formula:

φ̃ = µZ. ⋁
α∈Acta

Ka(p2 ∨ pastp2 ∨ (p1 ∧ ⋀
β∈ActAg∖{a}

[α,β]Z)) (1)

and themodifiedsystemM ′, in which the new atomic proposition
pastp2 labels all the states occurringafter a state carrying ap2 and
lying on runs which extendρ. This mechanism is similar with the
“bookkeeping” employed in the two-player games utilized in [10]
for checking whether the same formulaφ holds at a state of a multi-
agent system.

Formally, given a multi-agent system
M = (Q,Ag, δ, q0,Π, (Πa)a∈Ag, π, (Acta)a∈Ag), we build the sys-
temM ′

= (Q′,Ag, δ′, q′0,Π, (Πa)a∈Ag, π
′, (Act′a)a∈Ag) in which:

● Q′
= Q × {0,1} andq′0 = (q0,0).

● π′(q,0) = π(q), π′(q,1) = π(q) ∪ {pastp2}.
● Act′a0

= Acta0
× {0,1} andAct′b = Actb for all b ≠ a0.

● For any transitionq
(α,β)
ÐÐÐ→ r withα ∈ Acta0

andβ = (βb)b≠a0
,

we put inδ′ the following transitions:

– (q,0) ((α,0),β)
ÐÐÐÐÐ→ (r,0)

– (q,1) ((α,x),β)
ÐÐÐÐÐ→ (r,1), x ∈ {0,1}

– (q,0) ((α,1),β)
ÐÐÐÐÐ→ (r,1) if p2 ∈ π(q)

– (q,0) ((α,1),β)
ÐÐÐÐÐ→ (r,0) if p2 /∈ π(q)

Note that, given a nodex ∈ supp(tM ′), if we replace, on the path
from the root tox, all actions of the type(α,0) with α, we get a
run in tM corresponding with a note oftM . We denote this corre-
sponding node asx

M
. Furthermore, for each nodex ∈ supp(tM),

we denotex ↑M
′

the node insupp(tM ′) with (x ↑M ′)
M
= x and

having the property that on the path from the root oftM ′ to x↑M
′

,
a’s actions are only of the type(α,1).

The following proposition gives the connection between the in-
stances of the model-checking problem inM andM ′:

PROPOSITION 2. For each nodex in the treetM , x ⊧ φ =

⟪a0⟫p1Up2 if and only ifx↑M
′

⊧ φ̃, with φ̃ defined as follows:

φ̃ = µZ. ⋁
α∈Acta0

Ka0
(p2 ∨ pastp2 ∨ (p1 ∧ ⋀

β∈ActAg∖{a0}

[α,β]Z))

The same property holds forφ = ⟦a0⟧p1Up2 (which reads “agent
a0 cannot avoidp1Up2”) and

φ̃ = µZ. ⋀
α∈Acta0

Pa0
(p2 ∨ pastp2 ∨ (p1 ∧ ⋁

β∈ActAg∖{a0}

⟨α,β⟩Z))

The problem ofsolving multi-player games with imperfect infor-
mationcan also be translated into the epistemicµ-calculus. Recall
that a (synchronous) two-player game is a tuple

G = (Q,Act0,Act1, δ,Q0,Obs0,Obs1, o0, o1, par)
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with Q denoting the set of states,Act0 (respAct1) denoting the set
of actions available to player 0 (resp. player 1),δ ⊆ Q × Act0 ×
Act1 ×Q denoting the transition relation,Obs0, resp.Obs1 denot-
ing finite sets of observations available to agent 0 (resp. agent 1),
o0 ∶ Q → Obs0, resp.o1 ∶ Q → Obs1 denoting the observability
relation for each player andpar ∶ Q → N defining thepriority of
each state.

A player i (i ∈ {0,1}) plays by choosing afeasible strategy,
which is a mappingσ ∶ (Obsi)∗ → Acti. A strategy fori is win-
ning when each runs that is compatible with that strategy satisfies
the property that the maximal priority of a state which occurs in-
finitely often in the run is even. The winning condition might be
non-observable to playeri, as there might exist statesq1, q2 ∈ Q
that are identically observable by playeri, i.e. oi(q1) = oi(q2),
might have different priorities.

The set of winning strategies for a player in a multi-player game
with imperfect information is then expressible within the epistemic
µ-calculus, similarly to the encoding of the set of winning strategies
in a parity game into theµ-calculus from e.g. [11, 22]. Assuming
that the largest priority inQ is even and the atomic propositionpk
holds exactly in all states with priorityk, the following epistemic
modalµ-calculus formula encodes the winning strategies for player
i:

νZnµZn−1 . . . µZ1. ⋁
α∈Acti

Ka ⋁
k≤n

(pk ∧ ⋀
β∈Act1−i

[α,β]Zk)

provided that playeri’s indistinguishability in the multi-agent sys-
tem constructed fromG is based onObsi.

3.3 Revisiting the decidability of the model
checking problem for the tree semantics
of the plain µ-calculus

In this subsection we provide a variant of the Finite Model The-
orem for theµ-calculus, which will serve as a basis for our search
of a decidable subproblem of the model-checking problem for the
epistemicµ-calculus.

Given a multi-agent systemM = (Q,Ag, δ, q0,Π, (Πa)a∈Ag , π),
and an agenta ∈ Ag, we define the relationΓM

a ⊆ Q×Q as follows:
(q, r) ∈ ΓM

a if for any runρ in M ending inq (i.e. ρ[∣ρ∣] = q) there
exists a runρ′ ending inr with ρ ∼a ρ′.

We now define a second semantics for the epistemicµ-calcu-
lus, which works on theset of statesof a multi-agent systemM ,
necessary for the decision problem. This semantics is the extension
of the state-based semantics for theµ-calculus [21] by defining a
state-based semantics for the epistemic operators.

Formally, each formulaφwhich contains variablesZ1, . . . ,Zn is
associated with aQ-operator⌈φ⌉M ∶ (2Q)n → 2

Q, again by struc-
tural induction (we provide here the semantics for the epistemic
µ-calculus in positive form):

● ⌈p⌉M resp.⌈¬p⌉M are the constantQ-operators

⌈p⌉M(S1, . . . , Sn) = {q ∈ Q ∣ p ∈ π(q)}
⌈¬p⌉M(S1, . . . , Sn) = {q ∈ Q ∣ p /∈ π(q)}

● ⌈Zi⌉M ∶ (2Q)n → 2
Q is thei-th projectionQ-operator, i.e.

givenS1, . . . , Sn ⊆ Q, ⌈Zi⌉M(S1, . . . , Sn) = Si.

● ⌈φ1 ∨ φ2⌉M = ⌈φ1⌉M ∪ ⌈φ2⌉M , and⌈φ1 ∧ φ2⌉M = ⌈φ1⌉M ∩
⌈φ2⌉M .

● Both nexttime modalities are associated withQ-operators
AXf ,EXf ∶ 2Q → 2

Q such that:

⌈AXφ⌉M = AX
f ○ ⌈φ⌉, ⌈EXφ⌉M = EX

f ○ ⌈φ⌉

where:

AX
f(S) = {q ∈ Q ∣ ∀r ∈ Q if (q, r) ∈ δ thenr ∈ S}

EX
f(S) = {q ∈ Q ∣ ∃r ∈ Q with (q, r) ∈ δ andr ∈ S}

● Each pair of epistemic operatorsKa/Pa is associated with a
pair ofQ-operatorsKf

a , P
f
a ∶ 2Q → 2

Q such that:

⌈Paφ⌉M = P f
a ○ ⌈φ⌉

⌈Kaφ⌉M =Kf
a ○ ⌈φ⌉

where:

K
f
a (S) = Γa(S) ={q ∈ Q ∣ ∀s ∈ Q, if (s, q) ∈ Γa thens ∈ S}

P
f
a (S) = Γa(S) ={q ∈ Q ∣ ∃s ∈ S s.t.(s, q) ∈ Γa}

● ⌈µZi.φ⌉M = lfpi⌈φ⌉M and⌈νZi.φ⌉M = gfpi⌈φ⌉M .

In the sequel, when the multi-agent systemM is fixed, we will
utilize the notation⌈ϕ⌉ instead of⌈ϕ⌉M .
The following result, giving the connection between the tree se-
mantics and the state-based semantics for theµ-calculus, contains
the essence of the Finite Model Theorem forµ-calculus. The result
is proved by structural induction on the formulaφ in [3]:

THEOREM 3. Given a multi-agent systemM = (Q,Ag, δ, q0,Π,

(Πa)a∈Ag, π) in whichQ = {1, . . . , n} andq0 = 1, and a (plain)
µ-calculus formulaφ, the following diagram1 commutes:

(2Q)n ⌈φ⌉ - 2
Q

(2supp(tM))n
(t−1M )n ? ∥φ∥- 2

supp(tM)

t−1M?
(2)

We also say that the diagram 2 holds (or commutes) for the formula
φ in the systemM .

The commutativity of diagram 2 is based on some commutativity
properties for the tree operators and the state operators associated
with all the logical operators of theµ-calculus. For instance, the
AX operator satisfies the following commutativity property:

2
Q AXf

- 2
Q

2
supp(tM )

(t−1M )n ?
AX- 2

supp(tM)

t−1M?
(3)

Our search will be directed towards finding particular instances
of the model-checking problem where similar commutative dia-
grams can be provided for the epistemic operators involved in the
given epistemicµ-calculus formula.

4. A FRAGMENT OF THE EPISTEMIC
µ-CALCULUS WITH A DECIDABLE
MODEL CHECKING PROBLEM

In this section, we first introduce some additional notations and
notions. Given a multi-agent systemM and two agentsa1, a2 ∈

Ag, we say that the two agentshave compatible observabilityif
eitherΠa1

⊆ Πa2
or Πa1

⊇ Πa2
.

1The category in which this diagram holds isSet, the category of
sets.
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Given a formulaφ, let Tφ denote the syntactic tree ofφ. The
following fixes the definition ofTφ by structural induction, as it
will be needed in the rest of the proof. Note that, in our definition of
Tφ, each node labeled with avariablealso has asuccessor, labeled
with ⊺. This convention brings the property that each node inTφ

whose formula is a variable has a closed subformula (which is⊺):

● supp(Tp) = {ǫ}, Tp(ǫ) = p,

● supp(T¬p) = {ǫ}, T¬p(ǫ) = ¬p,

● supp(TZ) = {ǫ,1}, TZ(ǫ) = Z, TZ(1) = ⊺,

● supp(TOpφ1
) = {ǫ} ∪ {1x ∣ x ∈ supp(Tφ1

)}, TOpφ1
(ǫ) =

Op, TOpφ1
(1x) = Tφ1

(x), whereOp ∈ {AX,EX,Ka, Pa,
µZ, νZ}

● supp(Tφ1Opφ2
) = {ǫ} ∪ {1x ∣ x ∈ supp(Tφ1

)} ∪ {2x ∣ x ∈
supp(Tφ2

)}, Tφ1Opφ2
(ǫ) = Op, Tφ1Opφ2

(1x) = Tφ1
(x),

Tφ1Opφ2
(2x) = Tφ2

(x), Op ∈ {∧,∨}.
We then denoteform(x) the subformula ofφ whose syntactic tree
is Tφ

x
, i.e. the subtree ofTφ rooted atx, and say thatx is closed

if form(x) is closed.
We then say that an epistemic operatorOp ∈ {Ka, Pa ∣ a ∈ Ag}

is non-closedat a nodex in a formulaφ if form(x) is not closed,
Op labels a nodey ⪰ x and for all the nodesy′ lying on the path
betweenx andy we have thatform(y′) is not closed.

For each nodex ∈ supp(Tφ), we also defineAgNClφ(x) as the
set of agentsa for whichKa or Pa is not closed atx. In addition,
given two distinct nodesx1 ≺ x2 with x2 being closed, we say that
x2 is anearest closed successorof x1 if no other closed node lies
on the path fromx1 to x2.

Definition 2. A formulaφ is said tomix observations of agents
a and b (or also: agentsa, b havemixed observationsin φ) if the
following property holds

For some epistemic operatorsOpa ∈ {Ka, Pa}, Opb ∈
{Kb, Pb} there exists a nodex of Tφ such that both
Opa andOpb are not closed atx.

Thenon-mixing model-checking problemfor the epistemicµ-
calculus is the problem of deciding whethertM ⊧ φ for a given
multi-agent systemM and a closed formulaφ bearing the restric-
tion that any two agentsa, b which have mixed observations inφ
have compatible observability inM .

All instances of the model-checking problem forKBn [15, 16],
that is,CTL with individual knowledge operators, are formulas of
theµ-calculus of non-mixing epistemic fixpoints. Other instances
of this model-checking problem consist of the following formulas

µZ1.(p ∨Ka(EX.Z1) ∧ νZ2.(q ∧ Z1 ∧Ka(EXZ2)))
µZ1.(p ∨Ka(EX.Z1) ∧ νZ2.(q ∧Kb(EXZ2)))

in pair with systemsM in which Πa ⊆ Πb. Also any instance of
the model-checking problem for the following common knowledge
formula:

Ca,bφ = νZ.(φ ∧KaZ ∨KbZ)
and with systemsM in which a andb do not have compatible ob-
servability, is not an instance of the non-mixing model-checking
problem.

THEOREM 4. The non-mixing model-checking problem for the
epistemicµ-calculus is decidable.

The crux of the proof relies on a commutativity property relat-
ing t−1M with the operatorsKa/Kf

a , resp.Pa/P f
a , similar with the

properties relatingt−1M with AX/AXf in diagram 3. Unfortunately,
such a commutativity property does not hold forKa in any multi-
agent systemM , as is shown in the following example.

1,p1 2,p13,p1

Figure 1: A one-agent system withΠa = {p1}.

EXAMPLE 5. For the one-agent system in Fig. 1 we have that
t−1M (Kf

a ({1,3})) ≠Ka(t−1M ({1,3})), as

t
−1
M (Kf

a ({1,3})) = {x ∈ supp(tM) ∣ x[∣x∣] = 1}
Ka(t−1M({1,3})) = {x ∈ supp(tM) ∣ x[∣x∣] = 1∨

(x[∣x∣] = 3 ∧ ∣x∣ is odd)}.

Definition 3. Given two multi-agent systemsMi = (Qi,Ag, δi,
qi0,Π, (Πa)a∈Ag , πi) (i = 1,2) over the same set of atomic propo-
sitions, we say thatM1 is an in-splitting of M2 if there exists a
surjective mapping withχ ∶ Q1 → Q2, satisfying the following
properties:

1. For eachq, r ∈ Q1, if (q, r) ∈ δ1 then(χ(q), χ(r)) ∈ δ2.
Moreover, for any(q′, r′) ∈ δ2 there exist(q, r) ∈ δ1 such
thatχ(q) = q′, χ(r) = r′.

2. For eachq ∈ Q1, π2(χ(q)) = π1(q).

3. For eachq ∈ Q1, outdeg(χ(q)) = outdeg(q), where
outdeg(q) is the number of transitions leavingq.

4. χ(q10) = q20 .

The in-splitting is anisomorphism wheneverχ is a bijection.

We will call the mappingχ as anin-splitting mapping. Also, we

writeχ ∶M1

Ins
ÐÐ→M2 to denote the fact thatχ is a witness forM1

being an in-splitting ofM2.
Note that an in-splitting mapping (term borrowed from symbolic

dynamics [19]) represents a surjective functional bisimulation be-
tween two transition systems. The following proposition can be
seen as a generalization of this remark (the proof is given in [3]):

PROPOSITION 6. Consider two multi-agent systemsMi = (Qi,

Ag, δi, q
i
0,Π, (Πa)a∈Ag, πi) (i = 1,2) over the same set of atoms,

connected by an in-splitting mappingχ ∶ M1

Ins
ÐÐ→ M2. Then for

any plainµ-calculus formulaφ the following diagram commutes:

(2Q1)n ⌈φ⌉M1 - 2
Q1

(2Q2)n
(χ−1)n 6

⌈φ⌉M2 - 2
Q2

χ−1
6

(4)

REMARK 7. Proposition 6 does not hold for any epistemicµ-
calculus formula. To see this, consider the system depicted in Fig. 2,
which is an in-splitting of the system from Fig. 1, obtained by split-
ting state3 in Fig. 1 in two states, denoted3 and4 in Fig. 2, (i.e.
χ(1) = 1, χ(2) = 2, χ(3) = χ(4) = 3) with transitions(3,4) ∈ δ
and(4,4) ∈ δ.
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1,p1 2,p13,p14,p1

Figure 2: An in-splitting of the system from Fig. 1.

Note that we have

⌈Kf
aX⌉M2

({1,2,3}) = {1,3}
⌈Kf

aX⌉M1
({1,2,3}) = {1,2,3}

and hence⌈Kf
aX⌉M1

○χ−1 ≠ χ−1 ○ ⌈Kf
aX⌉M2

.
The following notion corresponds with the “subset construction”

used for model-checking LTLK/CTLK [26, 8] or solving 2-player
parity games with one player having incomplete information [7]:

Definition 4. Given a multi-agent systemM = (Q,Ag, δ, q0,Π,
(Πa)a∈Ag, π), we define the multi-agent system

∆
pre
a (M) = (Q̃pre

,Ag, δ̃, q̃0,Π, (Πa)a∈Ag , π̃)
as follows:

● Q̃pre
= {(s,S) ∣ s ∈ Q,S ⊆ {q ∈ Q ∣ πa(q) = πa(s)}} and

q̃0 = (q0,{q0}).
● δ̃ is composed of all tuples of the form((s,S), (r,R))where
(s, r) ∈ δ andR = {r′ ∈ Q ∣ πa(r′) = πa(r) and∃s′ ∈
S with (s′, r′) ∈ δ}.

● π̃(s,S) = π(S) = π(s).
The a-distinction of M , denoted∆a(M), is the restriction of
∆

pre
a (M) to reachable states, i.e.,

∆a(M) = (Q̃,Ag, δ̃ ∣Q̃, q̃0,Π, (Πa)a∈Ag, π̃ ∣Q̃)
whereQ̃ = {s̃ ∈ Q̃pre ∣ s̃ is reachable from̃q0}.

Given a multi-agent systemM = (Q,Ag, δ, q0,Π, (Πa)a∈Ag , π),
and an agenta ∈ Ag, we say thatM is a-distinguished if Γ

M
a

(relation defined on page 5) is acongruence relation, that is, an
equivalence relation with the following property:

for anyq, r ∈ Q, if (q, r) ∈ ΓM
a , (q, q′) ∈ δ, (r, r′) ∈ δ and

πa(q′) = πa(r′), then(q′, r′) ∈ ΓM
a . (5)

We utilize from now on the notationΓa whenever the systemM is
understood from the context.

PROPOSITION 8. 1. For any multi-agent systemM ,∆a(M)
is an in-splitting ofM . We denote this in-splitting as∆−1

a,M ∶
∆a(M) → M . Whenever the systemM is clear from the
context, we use the notation∆−1

a instead of∆−1
a,M .

2. For any agenta ∈ Ag we have that∆a(M) is a-distin-
guished.

PROPOSITION 9. For any multi-agent systemM and two agents
a, b ∈ Ag with Πa ⊆ Πb, if M is b-distinguished, then∆a(M) is
b-distinguished too.

PROPOSITION 10. For any multi-agent systemM , the follow-
ing diagram commutes iffM is a-distinguished:

2
Q Kf

a - 2
Q

2
supp(tM )

t−1M ?
Ka- 2

supp(tM )

tM
−1

?
(6)

The same holds if the pairKa/Kf
a is replaced withPa/P f

a .

Definition 5. We say that the pair of epistemic operatorsKa/Kf
a ,

resp. Pa/P f
a , commutes forM if the diagram 6 is commutative

for the respective pair.

Proposition 10 gives the first restricted form which ensures the
commutativity of diagram 2 for formulas of the epistemicµ-calcu-
lus. The second restricted form in which the pairKa/Kf

a (resp.
Pa/P f

a ) commutes for a system is stated as point 2 in the next
proposition:

PROPOSITION 11. Consider two multi-agent systemsMi = (Qi,
Ag, δi, q

i
0,Π, (Πa)a∈Ag, πi) with Qi = {1, . . . , ni}, (i = 1,2),

related by an in-splittingχ ∶ M1

Ins
ÐÐ→ M2, and define the tree

mappingχ̂ ∶ supp(tM1
) Ins
ÐÐ→ supp(tM2

), whereχ̂(ε) = ε and
χ̂(xi) = χ̂(x) ⋅ χ(i), for anyx ∈ supp(tM1

) andi ∈ Q1. Then the
following properties hold:

1. χ̂ is a tree isomorphism betweentM1
andtM2

andtM2
○ χ̂ =

χ ○ tM1
.

2. For any closed formulaφ of the epistemicµ-calculus for
which the diagram 2 commutes in the systemM2, the fol-
lowing property holds:

∥φ∥M1
= t

−1
M1
(χ−1(⌈φ⌉M2

))

REMARK 12. The previous proposition tells us that, forclosed
formulas of the epistemicµ-calculus for which diagram 2 com-
mutes inM2, in the eventuality that the systemM2 needs to be
replaced with a “larger” systemM1 (for reasons related with the
“subset construction” that ensures the first type of commutativity of
Ka/Pa), the validity ofφ on the treetM1

can be recovered from the
set of statesχ−1(⌈φ⌉M2

), through the inverse tree mappingt−1M1
.

We have now the essential ingredients that ensure the decid-
ability of the model-checking problem for theµ-calculus of non-
mixing epistemic fixpoints. The algorithm runs as follows: we pro-
ceed by constructing theQ-operator interpretations of the subfor-
mulas ofφ on the given systemM , in a bottom-up traversal of the
syntactic treeTφ. As long as we only treat subformulas not contain-
ing any epistemic operator, Theorem 3 ensures that these boolean
operators are correct finitary abstractions of the tree semantics of
our subformulas.

The first time we encounter inTφ an epistemic operator, say,
Ka, s.t. the subformula in the current node isKaφ

′, we need to
replaceM with its a-distinction, ∆a(M), in order for the appro-
priate diagram to commute. This replacement is easier whenφ′ is
a closed plainµ-calculus formula. By combining Propositions 11
and 10, the tree semantics of the formulaKaφ

′ can be computed
using the boolean operatorKf

a (∆−1
a (⌈φ′⌉M)) in ∆a(M), where

∆
−1
a (⌈φ′⌉M) represents the set of states in∆a(M) on whichφ′

holds.
The procedure is different whenφ′ is not closed. In this sit-

uation, we cannot determinizeM , as observed in the remark 7.
Therefore we need to descend along the syntactic tree toall the
“nearest” nodes whose formulas are closed, and only there apply
thea-distinction construction, as required by Proposition 11.

Suppose even further thatφ′ itself contains other knowledge op-
erators, and some other knowledge operatorKb is encountered dur-
ing this descent. The “nonmixing” assumption on our formula im-
plies that this other agentb has compatible observability with oura
(Ka andKb are not closed at the node associated withKa). There-
fore, thea-distinction of the models applied at lower levels com-
mutes withKb, fact which is ensured by Proposition 10 when the
two agents have compatible observability.
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This whole process ends when we arrive in the root of the syn-
tactic tree, with an in-splittingM ′ of the initial systemM and a
(constant) boolean operatorσ, which gives the finitary abstraction
of the set of nodes of the treetM whereφ holds. The following
paragraphs formalize this process.

PROOF OFTHEOREM4. Given a formulaφ in the µ-calculus
of non-mixing epistemic fixpoints and a multi-agent systemM , we
associate with each nodex of Tφ an in-splitting mapping, denoted
T Ins
φ (x), such that the following properties hold:

1. For the rootǫ we haveT Ins
φ (ǫ) = idM . Also for any non-

closed nodex in supp(Tφ), we have thatT Ins
φ (x) = idM ′ ,

whereM ′ is an in-splitting ofM .

2. For anyx,xi ∈ supp(Tφ), i ∈ {1,2}, codom(T Ins
φ (x)) =

dom(T Ins
φ (xi)),

3. For any nodesx1, x2 ∈ supp(Tφ) with x1 ⪯ x2, define first
the in-splitting mappingbetweenx1 andx2 as:

T
Ins
φ (x1...x2) = T Ins

φ (x1) ○ ... ○ T Ins
φ (x2)

Then, for any leavesx1, x2 in Tφ we have that
T Ins
φ (ǫ...x1) = T Ins

φ (ǫ...x2), whereǫ is the root ofTφ.

4. For any nodex1 which is a nearest closed successor of the
root ǫ, if AgNClφ(ǫ) = {a1, . . . , ak} andΠa1

⊆ . . . ⊆ Πak
,

thenT Ins
φ (x1) has the form:

T
Ins
φ (x1) =∆−1

a1
○ . . . ○∆

−1
ak
○ χ, for someχ,

Assuming thatT Ins
φ is constructed with all the properties above,

we denoteInS(T Ins
φ ) = T Ins

φ (ǫ...x) wherex is any leaf inTφ. In
the sequel, whenever we want to emphasize a property of the root
of the syntactic treeTφ, we denote itǫφ.

The construction ofT Ins
φ proceeds by structural induction onφ.

For the base caseφ = p or φ = ¬p, we putT Ins
p (ǫ) = T Ins

¬p (ǫ) =
idM , for anyp ∈ Π. Also forφ = Z, Z ∈ Z, note that, by construc-
tion, the root ofTZ has a leaf successor which is the only child
node. Then,T Ins

Z (ǫ) = T Ins
Z (1) = idM .

For the induction case, take a formulaφ = Op.φ′ whereOp ∈
{AX,EX,µZ,νZ}, and assumeT Ins

φ′ (x) is defined. Then we put
T Ins
φ (1x) = T Ins

φ′ (x) for any nodex of supp(Tφ′), andT Ins
φ (ǫφ) =

idM ′ , whereM ′
= dom(T Ins

φ′ (ǫφ
′)).

Supposeφ = Kaφ
′ or φ = Paφ

′. Note that for each node1x
which is not closed inTφ, the nodex is not closed inTφ′ either.
Then we putT Ins

φ (1x) = T Ins
φ′ (x) = idM ′ , with M ′ the appropri-

ate multi-agent system. We also putT Ins
φ (ǫφ) = idM0

for the ap-
propriateM0. Furthermore, for each closed node1x1 ∈ supp(Tφ)
which isnot a nearest closed successor ofǫφ, we putT Ins

φ (1x1) =
T Ins
φ′ (x1).
Take further a node1x1 which is a nearest closed successor of

the rootǫφ and assumeAgNCL(ǫφ) = {a1, ..., ak}. By the above
property 4 in the induction hypothesis, the in-splitting mapping in
x1 is T Ins

φ′ (x1) = ∆−1
a1
○ . . . ○∆−1

ak
○ χ with Πa1

⊆ . . . ⊆ Πak
. On

the other hand, by the assumption thatφ is a nonmixing formula,a
must have compatible observability with all the agentsa1, . . . , ak.
Therefore, there must exist somei ≤ k such thatΠa1

⊆ . . . ⊆ Πai ⊆

Πa ⊆ Πai+1 ⊆ . . . ⊆ Πak
. We then define

T
Ins
φ (1x1) =∆−1

a1
○ . . . ○∆

−1
ai
○∆

−1
a ○∆

−1
ai+1

○ . . . ○∆
−1
ak
○ χ

Note that the domain and the codomain of each∆
−1
aj

, (j ≤ i) are

different inT Ins
φ from those inT Ins

φ′ , due to the insertion of∆−1
a .

According to the above constructions forφ =Kaφ
′ of φ = Paφ

′,
all the four properties are satisfied byT Ins

φ , the fourth one resulting
from the construction of the in-splitting mapping for the nearest
closed successors of the root.

Finally, takeφ = φ1Opφ2 (Op ∈ {∧,∨}). If T Ins
φ1
= T Ins

φ2
, put

T Ins
φ (1x) = T Ins

φ1
(x) for all nodesx ∈ supp(Tφ1

), T Ins
φ (2x) =

T Ins
φ2
(x) for all x ∈ supp(Tφ2

) andT Ins
φ (ǫ) = idM .

Suppose nowT Ins
φ1
≠ T Ins

φ2
. ConsiderAgNCl(1) = {a1, . . . , ak}

andAgNCl(2) = {b1, . . . , bl} with Πa1
⊆ . . . ⊆ Πak

andΠb1 ⊆

. . . ⊆ Πbl . Take then a nodex1 which is a nearest closed successor
of the root ofTφ1

, ǫφ1 , and a nodex2 which is a nearest closed
successor ofǫφ2 . By the induction hypothesis we have:

T
Ins
φ1
(x1) =∆−1

a1
○ . . . ○∆

−1
ak
○χ1 InS(T Ins

φ1
) = T Ins

φ1
(x1) ○ χ′1

T
Ins
φ2
(x2) =∆−1

b1
○ . . . ○∆

−1
bl
○ χ2 InS(T Ins

φ2
) = T Ins

φ2
(x2) ○ χ′2

with appropriate in-splittingsχ1, χ
′
1, χ2, χ

′
2.

On the other hand, by the assumption onφ being nonmixing, for
any i ≤ k, j ≤ l, the two agentsai andbj must have compatible
observability. It therefore follows that there exists a reordering of
the union{a1, . . . , ak} ∪ {b1, . . . , bl} as {c1, . . . , cm} such that
Πci ⊆ Πci+1 for all i ≤m − 1. Denote then:

χ0 =∆
−1
c1
○ . . . ○∆

−1
cm

By Proposition 9,χ0 is ac-distinction for anyc ∈ {a1, . . . , ak} ∪
{b1, . . . , bl}. Also, by property 2 of the induction hypothesis,χ0 is
independent of the choice of the nodesx1, x2.

The same property from the induction hypothesis also ensures
that, for any nearest closed successorx2 of εφ2 , there exist in-
splittingsχφ2,x2

2
, χ̃

φ2,x2

2
such that:

T
Ins
φ2
(x2) =∆−1

b1
○ . . . ○∆

−1
bl
○ χ

φ2,x2

2
(7)

InS(T Ins
φ2
) = T Ins

φ (x2) ○ χ̃φ2,x2

2
(8)

We will then constructT Ins
φ (⋅) as follows:

1. For each closed nodex which is a leaf inTφ1
but not a near-

est closed successor ofǫφ1 , we putT Ins
φ (1x) = T Ins

φ1
(x) ○

χ2 ○χ
′
2.

2. For each non-leaf, closed nodex in Tφ1
which is not a near-

est closed successor ofǫφ1 we copyT Ins
φ (1x) = T Ins

φ1
(x).

3. For each nearest closed successorx of ǫφ1 which is not a leaf
in Tφ1

we putT Ins
φ (1x) = χ0 ○ χ1.

4. For each closed nodex which is a leaf inTφ1
and a nearest

closed successor ofǫφ1 , we putT Ins
φ (1x) = χ0 ○ χ1 ○ χ

′
1 ○

χ2 ○χ
′
2.

5. For each closed nodex which is not a nearest closed succes-
sor ofǫφ2 we copyT Ins

φ (2x) = T Ins
φ2
(x).

6. For each closed nodex which is a nearest closed successor
of ǫφ2 we putT Ins

φ (2x) = χ0 ○χ1 ○χ
′
1 ○χ

φ2,x
2

, whereχφ2,x
2

is the in-splitting mapping associated with the nodex as in
Identity 8 above.

7. For the rootǫ and the non-closed nodesx of Tφ, T Ins
φ (ǫ) =

idM ′ andT Ins
φ (x) = idM ′′ , with M ′ andM ′′ appropriate

multi-agent systems.

It’s not difficult to see that the resulting mappingT Ins
φ2
(⋅) sat-

isfies the five desired properties. More specifically, property 2
amounts to the following identity:

InS(T Ins
φ ) = χ0 ○ χ1 ○ χ

′
1 ○ χ2 ○ χ

′
2
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Now we may show howT Ins
φ can be used to build our algorithm.

Let Mx denote the multi-agent system which is thedomainof the
in-splittingT Ins

φ (x), and denoteQx its state-space. Also, for con-
venience, we denoteMx the multi-agent system which represents
thecodomainof T Ins

φ (x), andQx its state-space. Note that when
x,x1 ∈ supp(Tφ), Mx = Mx1, and similarlyMx = Mx2 when
x2 ∈ supp(Tφ).

Once we built the treeT Ins
φ , we associate with each nodex in Tφ

aQx-operator that will give all the information on the satisfiability
of form(x) in the given model. Formally, we build the treeT str

φ

whose domain issupp(Tφ)∖{x ∣ Tφ(x) = ⊺} and which associates
with each nodex a Qx-operatorT str

φ (x) ∶ (2Qx)n → 2
Qx . The

construction will be achieved such that

∥form(x)∥ ○ (t−1Mx
)n = t−1Mx

○ T
str
φ (x) (9)

for each nodex with form(x) ≠ ⊺.
The construction proceeds bottom-up onsupp(Tφ). We actually

build two trees,T str
φ andT

str

φ , such thatT
str

φ (x) ∶ (2Qx)n → 2
Qx

andT str
φ (x) = T

str

φ (x) ○ [(T Ins
φ (x))−1]

n

, that is,

T
str
φ (x)(S1, . . . , Sn) = T str

φ (x)((T Ins
φ (x))−1(S1, . . . , Sn))

(10)
Note that, once we buildT

str

φ (x) for a nodex, T str
φ (x) is defined

by Identity 10, so we only explain the construction forT
str

φ (x).
For nodesx that are leaves inTφ with Tφ(x) = p ∈ Π, we put

T
str

φ (x) = ⌈p⌉M , the constantQx-operator. Recall that we do not
defineT str

φ (x) for Tφ(x) = ⊺.

For Tφ(x) = Zi ∈ Z we putT
str

φ (x)(S1, . . . , Sn) = Si, thei-th

projection on(2Qx)n.
For nodesx with Tφ(x) = Op ∈ {AX,EX,Ka, Pa ∣ a ∈ Ag}

we put

T
str

φ (x)(S1, . . . , Sn) = Op
f(T str

φ (x1)(S1, . . . , Sn))
ForTφ(x) = ∧ we put

T
str

φ (x)(S1, . . . , Sn) =
(T str

φ (x1)(S1, . . . , Sn)) ∩ (T str
φ (x2)(S1, . . . , Sn))

and similarly forTφ(x) = ∨, with ∩ replaced with∪ in the above

formula definingT
str

φ (x)(S1, . . . , Sn).
ForTφ(x) = µZi with 1 ≤ i ≤ n we put

T
str

φ (x) = lfpi
⌈Tstr

φ
(x1)⌉

and, similarly, forTφ(x) = νZi we define

T
str

φ (x) = gfpi
⌈Tstr

φ
(x1)⌉

The validity of Identity 9 follows then from Propositions 10 and 11.
The final step consists in checking whetherqε0 ∈ T

str
φ (ε), where

qε0 is the initial state in the multi-agent systemMε associated with
the root ofTφ. The result of this check gives the answer to the
problem whetherε ⊧ φ in tM .

The following result follows from a similar result for LTLK from
[26]. A self-contained proof can be found in [3]:

THEOREM 13. The model checking problem for theµ-calculus
of non-mixing epistemic fixpoints is hard for non-elementary time.

5. CONCLUSIONS AND COMMENTS
We have presented a fragment of the epistemicµ-calculus hav-

ing a decidable model-checking problem. We argued in the intro-
duction that the decidability result does not seem to be achievable
using tree automata or multi-player games. Two-player games with
one player having incomplete information and with non-observable
winning conditions from [7] do not seem to be appropriate for the
whole calculus as they are only equivalent with a restricted type
of combinations of knowledge operators and fixpoints. We con-
jecture that the formulaνZ(p ∨ AX.PaZ) is not equivalent with
any (tree automaton presentation of a) two-player game with path
winning conditions. Translating this formula to a generalized tree
automaton seems to require specifying a winning condition on con-
catenations of finite paths in the tree with “jumps” between two
identically-observable positions in the tree. This conjecture extends
the non-expressivity results from [6] relatingATL andµ −ATL.

The second reason for which the above-mentioned generaliza-
tion would not work comes from results in [9] showing that the
satisfiability problem for CTL or LTL is undecidable with the con-
crete observability relation presented here. It is then expectable that
if a class of generalized tree automata is equivalent with theµ-cal-
culus of non-mixing epistemic fixpoints, then that class would have
an undecidable emptiness problem and only its “testing problem”
would be decidable. Therefore, the classical determinacy argument
for two-player games would not be translatable to such a class of
automata.
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ABSTRACT
The main aim of the present paper is to use a proof system
for hybrid modal logic to formalize what are called false-
belief tasks in cognitive psychology, thereby investigating
the interplay between cognition and logical reasoning about
belief. We consider two different versions of the Smarties
task, involving respectively a shift of perspective to another
person and to another time. Our formalizations disclose
that despite this difference, the two versions of the Smarties
task have exactly the same underlying logical structure. We
also consider the Sally-Anne task, having a somewhat more
complicated logical structure, presupposing a “principle of
inertia” saying that a belief is preserved over time, unless
there is belief to the contrary.

1. INTRODUCTION
In the area of cognitive psychology there is a reasoning

task called the Smarties task. The following is one version
of the Smarties task.

A child is shown a Smarties tube where unbe-
knownst to the child the Smarties have been re-
placed by pencils. The child is asked: “What do
you think is inside the tube?” The child answers
“Smarties!” The tube is then shown to contain
pencils only. The child is then asked: “If your
mother comes into the room and we show this
tube to her, what will she think is inside?”

It is well-known from experiments that most childred above
the age of four correctly say “Smarties” (thereby attributing
a false belief to the mother) whereas younger children say
“Pencils” (what they know is inside the tube). For autistic1

children the cutoff age is higher than four years, which is
one reason to the interest in the Smarties task.

The Smarties task is one out of a family of reasoning tasks
called false-belief tasks showing the same pattern, that most
children above four answer correctly, but autistic children
have to be older. This was first observed in the paper [4]

1Autism is a psychiatric disorder with the following three
diagnostic criteria: 1. Impairment in social interaction. 2.
Impairment in communication. 3. Restricted repetitive and
stereotyped patterns of behavior, interests, and activities.
For details, see Diagnostic and Statistical Manual of Mental
Disorders, 4th Edition (DSM-IV), published by the Ameri-
can Psychiatric Association.

TARK 2013, Chennai, India.
Copyright 2013 by the authors.

in connection with another false-belief task called the Sally-
Anne task. Starting with the authors of that paper, many
researchers in cognitive psychology have argued that there is
a link between autism and a lack of what is called theory of
mind, which is a capacity to imagine other people’s mental
states, for example their beliefs. For a very general formula-
tion of the theory of mind deficit hypothesis of autism, see
the book [3].

Giving a correct answer to the Smarties task involves a
shift of perspective to another person, namely the mother.
You have to put yourself in another person’s shoes, so to
speak. Since the capacity to take another perspective is a
precondition for figuring out the correct answer to the Smar-
ties task and other false-belief tasks, the fact that autistic
children have a higher cutoff age is taken to support the
claim that autists have a limited or delayed theory of mind.
For a critical overview of these arguments, see the book [23]
by Keith Stenning and Michiel van Lambalgen. The books
[23] and [3] not only consider theory of mind at a cognitive
level, such as in connection with false-belief tasks, but they
also discuss it from a biological point of view.

In a range of works van Lambalgen and co-authors have
given a detailed logical analysis (but not a full formalization)
of the reasoning taking place in the Smarties task and other
false-belief tasks in terms of closed-world reasoning as used
in non-monotonic logics, see in particular [23]. The analy-
sis of the Smarties task of [23] (in Subsection 9.4.4) makes
use of a modality B for belief satisfying two standard modal
principles.2 The first principle is B(φ→ ψ)→ (Bφ→ Bψ)
(principle (9.5) at page 251 in [23]). The second principle is
the rule called necessitation, that is, from φ derive Bφ (this
principle is not mentioned explicitly in [23], but is implicit
in the analysis given at the bottom of page 256). These
two principles together imply that belief is closed under log-
ical consequence, that is, Bψ can be derived from φ → ψ
together with Bφ, which at least for human agents is im-
plausible (when the modal operator stands for knowledge,
this is called logical omniscience).

In the present paper we give a logical analysis of the per-
spective shift required to give a correct answer to the Smar-
ties and Sally-Anne tasks, and we demonstrate that these
tasks can be fully formalized in a hybrid-logical proof sys-
tem not assuming principles implying logical omniscience,
namely the natural deduction system described in Chapter

2Strictly speaking, the modality B in [23] is not formalized
in terms of modal logic, but in terms of what is called event
calculus, where B is a predicate that can take formulas as
arguments.
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4 of the book [8], and the paper [7] as well. Beside not suf-
fering from logical omniscience, why is a natural deduction
system for hybrid modal logic appropriate to this end?

• The subject of proof-theory is the notion of proof and
formal, that is, symbolic, systems for representing proofs.
Formal proofs built according to the rules of proof
systems can be used to represent—describe the struc-
ture of—mathematical arguments as well as arguments
in everyday human practice. Beside giving a way to
distinguish logically correct arguments from incorrect
ones, proof systems also give a number of ways to char-
acterize the structure of arguments. Natural deduction
style proofs are meant to formalize the way human be-
ings actually reason, so natural deduction is an obvious
candidate when looking for a proof system to formalize
the Smarties task in.

• In the standard Kripke semantics for modal logic, the
truth-value of a formula is relative to points in a set,
that is, a formula is evaluated “locally” at a point,
where points usually are taken to represent possible
worlds, times, locations, epistemic states, persons, states
in a computer, or something else. Hybrid logics are
extended modal logics where it is possible to directly
refer to such points in the logical object language,
whereby locality can be handled explicitly, for exam-
ple, when reasoning about time one can formulate a
series of statements about what happens at specific
times, which is not possible in ordinary modal logic.
Thus, when points in the Kripke semantics represent
local perspectives, hybrid-logical machinery can han-
dle explicitly the different perspectives in the Smarties
task.

For the above reasons, we have been able to turn our in-
formal logical analysis of the Smarties and Sally-Anne tasks
into formal hybrid-logical natural deduction proofs closely
reflecting the shift between different perspectives.

The natural deduction system we use for our formaliza-
tions is a modified version of a natural deduction system
for a logic of situations similar to hybrid logic, originally
introduced in the paper [19] by Jerry Seligman. The mod-
ified system was introduced in the paper [7], and later on
considered in Chapter 4 of the book [8], both by the present
author. In what follows we shall simply refer to the modified
system as Seligman’s system.

Now, Seligman’s system allows any formula to occur in it,
which is different from the most common proof systems for
hybrid logic that only allow formulas of a certain form called
satisfaction statements. This is related to a different way of
reasoning in Seligman’s system, which captures particularly
well the reasoning in the Smarties and Sally-Anne tasks. We
prove a completeness result which also says that Seligman’s
system is analytic, that is, we prove that any valid formula
has a derivation satisfying the subformula property. Analyt-
icity guarentees that any valid argument can be formalized
using only subformulas of the premises and the conclusion.
The notion of analyticity goes back to G.W. Leibniz (1646–
1716) who called a proof analytic if and only if the proof
is based on concepts contained in the proven statement, the
main aim being to be able to construct a proof by an analysis
of the result, cf. [2].

The present paper is structured as follows. In the second
section we recapitulate the basics of hybrid logic, readers

well-versed in hybrid logic can safely skip this section. In
the third section we introduce Seligman’s natural deduction
system for hybrid logic. In the fourth and fifth sections we
formalize two versions of the Smarties task using this system,
and in the sixth section we formalize the Sally-Anne task.
A discussion can be found in the seventh section, in the
eightth section there are some brief remarks on other work,
and in the final section some remarks on further work. In
the appendix we prove the above mentioned completeness
result, which also demonstrates analyticity.

2. HYBRID LOGIC
The term“hybrid logic”covers a number of logics obtained

by adding further expressive power to ordinary modal logic.
The history of what now is known as hybrid logic goes back
to the philosopher Arthur Prior’s work in the 1960s. See the
handbook chapter [1] for a detailed overview of hybrid logic.
See the book [8] on hybrid logic and its proof-theory.

The most basic hybrid logic is obtained by extending or-
dinary modal logic with nominals, which are propositional
symbols of a new sort. In the Kripke semantics a nominal is
interpreted in a restricted way such that it is true at exactly
one point. If the points are given a temporal reading, this en-
ables the formalization of natural language statements that
are true at exactly one time, for example

it is five o’clock May 10th 2007

which is true at the time five o’clock May 10th 2007, but false
at all other times. Such statements cannot be formalized in
ordinary modal logic, the reason being that there is only
one sort of propositional symbol available, namely ordinary
propositional symbols, which are not restricted to being true
at exactly one point.

Most hybrid logics involve further additional machinery
than nominals. There is a number of options for adding
further machinery; here we shall consider a kind of opera-
tor called satisfaction operators. The motivation for adding
satisfaction operators is to be able to formalize a statement
being true at a particular time, possible world, or something
else. For example, we want to be able to formalize that the
statement “it is raining” is true at the time five o’clock May
10th 2007, that is, that

at five o’clock May 10th 2007 it is raining.

This is formalized by the formula @ar where the nominal a
stands for “it is five o’clock May 10th 2007” as above and
where r is an ordinary propositional symbol that stands for
“it is raining”. It is the part @a of the formula @ar that
is called a satisfaction operator. In general, if a is a nomi-
nal and φ is an arbitrary formula, then a new formula @aφ
can be built (in some literature the notation a : φ is used in-
stead of @aφ). A formula of this form is called a satisfaction
statement. The formula @aφ expresses that the formula φ is
true at one particular point, namely the point to which the
nominal a refers. Nominals and satisfaction operators are
the most common pieces of hybrid-logical machinery, and
are what we need for the purpose of the present paper.

In what follows we give the formal syntax and semantics
of hybrid logic. It is assumed that a set of ordinary proposi-
tional symbols and a countably infinite set of nominals are
given. The sets are assumed to be disjoint. The metavari-
ables p, q, r, . . . range over ordinary propositional symbols
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and a, b, c, . . . range over nominals. Formulas are defined
by the following grammar.

S ::= p | a | S ∧ S | S → S | ⊥ | �S | @aS

The metavariables φ, ψ, θ, . . . range over formulas. Negation
is defined by the convention that ¬φ is an abbreviation for
φ→ ⊥. Similarly, ♦φ is an abbreviation for ¬�¬φ.

Definition 2.1. A model for hybrid logic is a tuple

(W,R, {Vw}w∈W )

where

1. W is a non-empty set;

2. R is a binary relation on W ; and

3. for each w, Vw is a function that to each ordinary
propositional symbol assigns an element of {0, 1}.

The pair (W,R) is called a frame. Note that a model for
hybrid logic is the same as a model for ordinary modal logic.
Given a model M = (W,R, {Vw}w∈W ), an assignment is a
function g that to each nominal assigns an element of W .
The relation M, g, w |= φ is defined by induction, where g is
an assignment, w is an element of W , and φ is a formula.

M, g, w |= p iff Vw(p) = 1
M, g, w |= a iff w = g(a)

M, g, w |= φ ∧ ψ iff M, g, w |= φ and M, g, w |= ψ
M, g, w |= φ→ ψ iff M, g, w |= φ implies M, g, w |= ψ

M, g, w |= ⊥ iff falsum
M, g, w |= �φ iff for any v ∈W such that wRv,

M, g, v |= φ
M, g, w |= @aφ iff M, g, g(a) |= φ

By convention M, g |= φ means M, g, w |= φ for every ele-
ment w of W and M |= φ means M, g |= φ for every assign-
ment g. A formula φ is valid if and only if M |= φ for any
model M.

3. SELIGMAN’S SYSTEM
In this section we introduce Seligman’s natural deduction

systems for hybrid logic. Before defining the system, we shall
sketch the basics of natural deduction. Natural deduction
style derivation rules for ordinary classical first-order logic
were originally introduced by Gerhard Gentzen in [11] and
later on developed much further by Dag Prawitz in [16, 17].
See [24] for a general introduction to natural deduction sys-
tems. With reference to Gentzen’s work, Prawitz made the
following remarks on the significance of natural deduction.

. . . the essential logical content of intuitive log-
ical operations that can be formulated in the
languages considered can be understood as com-
posed of the atomic inferences isolated by Gentzen.
It is in this sense that we may understand the
terminology natural deduction.

Nevertheless, Gentzen’s systems are also natu-
ral in the more superficial sense of corresponding
rather well to informal practices; in other words,
the structure of informal proofs are often pre-
served rather well when formalized within the
systems of natural deduction. ([17], p. 245)

Similar views on natural deduction are expressed many places,
for example in a textbook by Warren Goldfarb.

What we shall present is a system for deductions,
sometimes called a system of natural deduction,
because to a certain extent it mimics certain nat-
ural ways we reason informally. In particular,
at any stage in a deduction we may introduce a
new premise (that is, a new supposition); we may
then infer things from this premise and eventu-
ally eliminate the premise (discharge it). ([13],
p. 181)

Basically, what is said by the second part of the quotation
by Prawitz, and the quotation by Goldfarb as well, is that
the structure of informal human arguments can be described
by natural deduction derivations.

Of course, the observation that natural deduction deriva-
tions often can formalize, or mimic, informal reasoning does
not itself prove that natural deduction is the mechanism
underlying human deductive reasoning, that is, that formal
rules in natural deduction style are somehow built into the
human cognitive architecture. However, this view is held by
a number of psychologists, for example Lance Rips in the
book [18], where he provides experimental support for the
claim.

. . . a person faced with a task involving deduction
attempts to carry it out through a series of steps
that takes him or her from an initial description
of the problem to its solution. These intermedi-
ate steps are licensed by mental inference rules,
such as modus ponens, whose output people find
intuitively obvious. ([18], p. x)

This is the main claim of the“mental logic”school in the psy-
chology of reasoning (whose major competitor is the“mental
models” school, claiming that the mechanism underlying hu-
man reasoning is the construction of models, rather than the
application of topic-neutral formal rules).

We have now given a brief motivation for natural deduc-
tion and proceed to a formal definition. A derivation in a
natural deduction system has the form of a finite tree where
the nodes are labelled with formulas such that for any for-
mula occurrence φ in the derivation, either φ is a leaf of the
derivation or the immediate successors of φ in the derivation
are the premises of a rule-instance which has φ as the con-
clusion. In what follows, the metavariables π, τ , . . . range
over derivations. A formula occurrence that is a leaf is called
an assumption of the derivation. The root of a derivation
is called the end-formula of the derivation. All assumptions
are annotated with numbers. An assumption is either undis-
charged or discharged. If an assumption is discharged, then
it is discharged at one particular rule-instance and this is in-
dicated by annotating the assumption and the rule-instance
with identical numbers. We shall often omit this informa-
tion when no confusion can occur. A rule-instance annotated
with some number discharges all undischarged assumptions
that are above it and are annotated with the number in ques-
tion, and moreover, are occurrences of a formula determined
by the rule-instance.

Two assumptions in a derivation belong to the same parcel
if they are annotated with the same number and are occur-
rences of the same formula, and moreover, either are both
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Figure 1: Rules for connectives

φ ψ
(∧I)

φ ∧ ψ

φ ∧ ψ
(∧E1)

φ

φ ∧ ψ
(∧E2)

ψ

[φ]
···
ψ

(→ I)
φ→ ψ

φ→ ψ φ
(→ E)

ψ

[¬φ]
···
⊥

(⊥)∗

φ

a φ
(@I)

@aφ

a @aφ
(@E)

φ

[♦c]
···

@cφ
(�I)†

�φ

�φ ♦e
(�E)

@eφ

∗ φ is a propositional letter.
† c does not occur free in �φ or in any undischarged as-
sumptions other than the specified occurrences of ♦c.

undischarged or have both been discharged at the same rule-
instance. Thus, in this terminology rules discharge parcels.
We shall make use of the standard notation

[φr]
··· π
ψ

which means a derivation π where ψ is the end-formula and
[φr] is the parcel consisting of all undischarged assumptions
that have the form φr.

We shall make use of the following conventions. The
metavariables Γ, ∆, . . . range over sets of formulas. A
derivation π is called a derivation of φ if the end-formula of
π is an occurrence of φ, and moreover, π is called a deriva-
tion from Γ if each undischarged assumption in π is an oc-
currence of a formula in Γ (note that numbers annotating
undischarged assumptions are ignored). If there exists a
derivation of φ from ∅, then we shall simply say that φ is
derivable.

A typical feature of natural deduction is that there are two
different kinds of rules for each connective; there are rules
called introduction rules which introduce a connective (that
is, the connective occurs in the conclusion of the rule, but
not in the premises) and there are rules called elimination
rules which eliminate a connective (the connective occurs in
a premiss of the rule, but not in the conclusion). Introduc-
tion rules have names in the form (. . . I . . .), and similarly,
elimination rules have names in the form (. . . E . . .).

Now, Seligman’s natural deduction system is obtained
from the rules given in Figure 1 and Figure 2. We let N′H
denote the system thus obtained. The system N′H is taken
from [7] and Chapter 4 of [8] where it is shown to be sound
and complete wrt. the formal semantics given in the previ-

Figure 2: Rules for nominals

φ1 . . . φn

[φ1] . . . [φn][a]
···
ψ

(Term)∗

ψ

[a]
···
ψ

(Name)†

ψ

∗ φ1, . . . , φn, and ψ are all satisfaction statements and there
are no undischarged assumptions in the derivation of ψ be-
sides the specified occurrences of φ1, . . . , φn, and a.
† a does not occur in ψ or in any undischarged assumptions
other than the specified occurrences of a.

ous section. As mentioned earlier, this system is a modified
version of a system originally introduced in [19]. The system
of [19] was modified in [7] and [8] with the aim of obtaining
a desirable property called closure under substitution, see
Subsection 4.1.1 of [8] for further explanation.

4. A FIRST EXAMPLE
The way of reasoning in Seligman’s system is different

from the way of reasoning in most other proof systems for
hybrid logic3. In this section we give the first example of
reasoning using the (Term) rule (displayed in Figure 2).

Beside the (Term) rule, the key rules in the example are
the rules (@I) and (@E) (displayed in Figure 1), which are
the introduction and elimination rules for the satisfaction
operator. The rule (@I) formalizes the following informal
argument.

It is Christmas Eve 2011; it is snowing, so at
Christmas Eve 2011 it is snowing.

And the rule (@E) formalizes the following.

It is Christmas Eve 2011; at Christmas Eve 2011
it is snowing, so it is snowing.

The (Term) rule enables hypothetical reasoning where rea-
soning is about what is the case at a specific time, possibly
different from the actual time. Consider the following infor-
mal argument.

At May 10th 2007 it is raining; if it is raining it
is wet, so at May 10th 2007 it is wet.

The reasoning in this example argument is about what is
the case at May 10th 2007. If this argument is made at a
specific actual time, the time of evaluation is first shifted
from the actual time to a hypothetical time, namely May
10th 2007, then some reasoning is performed involving the
premise “if it is raining it is wet”, and finally the time of
evaluation is shifted back to the actual time. The reader
is invited to verify this shift of time by checking that the
argument is correct, and note that the reader himself (or
herself) imagines being at the time May 10th 2007. Note
that the premise “if it is raining it is wet” represents a causal
relation holding at all times.

3We here have in mind natural deduction, Gentzen, and
tableau systems for hybrid logic, not axiom systems. Proof
systems of the first three types are suitable for actual reason-
ing, carried out by a human, a computer, or in some other
medium. Axiom systems are usually not meant for actual
reasoning, but are of a more foundational interest.
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Now, in a temporal setting, the side-condition on the rule
(Term) requiring that all the formulas φ1, . . . , φn, ψ are
satisfaction statements (see Figure 2) ensures that these for-
mulas are temporally definite, that is, they have the same
truth-value at all times, so the truth-value of these formu-
las are not affected by a shift of temporal perspective. The
rule would not be sound if the formulas were not temporally
definite.

We now proceed to the formalization of the above argu-
ment about what is the case at May 10th 2007. We make
use of the following symbolizations
p It is raining
q It is wet
a May 10th 2007

and we take the formula p → q as an axiom since it repre-
sents a causal relation between p and q holding at all times
(note that we use an axiom since the relation p → q holds
between the particular propositions p and q, we do not use
an axiom schema since the relation obviously does not hold
between any pair of propositions).4 Then the argument can
be formalized as the right-hand-side derivation in Figure 3.

It is instructive to see how the right-hand-side derivation
in Figure 3 is built, so at the left-hand-side of the figure we
have displayed the derivation to which the (Term) rule is
applied, whereby the right-hand-side derivation is obtained.
Thus, the application of the (Term) rule in the right-hand-
side derivation delimits a piece of reasoning taking place
at a certain hypothetical time, which is the left-hand-side
derivation.

The above example argument is similar to an example
given in the paper [19]. The following is a slightly reformu-
lated version.

In Abu Dabi alcohol is forbidden; if alcohol is
forbidden Sake is forbidden, so in Abu Dabi Sake
is forbidden.

Thus, the example of [19] involves spatial locations rather
than times, and the shift is to a hypothetical place, namely
the city of Abu Dabi.

Formally, the shift to a hypothetical point of evaluation
effected by the rule (Term) can be seen by inspecting the
proof that the rule (Term) is sound: The world of evalu-
ation is shifted from the actual world to the hypothetical
world where the nominal a is true (see Figure 2), then some
reasoning is performed involving the delimited subderiva-
tion which by induction is assumed to be sound, and finally
the world of evaluation is shifted back to the actual world.
Soundness of the system N′H, including soundness of the
rule (Term), is proved in Theorem 4.1 in Section 4.3 of [8].

4One of the anonymous reviewers asked why the premise “if
it is raining it is wet” is formalized as p → q using classical
implication, rather than a form of non-monotonic implica-
tion. Like in many cases when classical logic is used to for-
malize natural language statements, there is an idealization
in our choice of classical implication. We think this ideal-
ization is justified since our main goal is to formalize the
perspective shift involved in the example argument, which
we presume is orthogonal to the issue of non-monotonicity.
We note in passing that our premise “if it is raining it is wet”
corresponds to the premise “if alcohol is forbidden Sake is
forbidden”in Seligman’s example argument briefly described
below, and Seligman also uses classical implication, or to be
precise, machinery equivalent to classical implication, [19].
See also Footnote 6.

The rule (Term) is very different from other rules in proof
systems for hybrid logic, roughly, this rule replaces rules for
equational reasoning in other systems, see for example the
rules in the natural deduction system given in Section 2.2 of
the book [8].

In passing we mention that the way in which the (Term)
rule delimits a subderivation is similar to the way subderiva-
tions are delimited by so-called boxes in linear logic, and
more specifically, the way a subderivation is delimited by
the introduction rule for the modal operator � in the nat-
ural deduction system for S4 given in [5], making use of
explicit substitutions in derivations.

5. THE SMARTIES TASK
(TEMPORAL SHIFT VERSION)

In this section we will give a formalization which has ex-
actly the same structure as the formalization in the previ-
ous section, but which in other respects is quite different. It
turns out that a temporal shift like the one just described in
the previous section also takes place in the following version
of the Smarties task, where instead of a shift of perspective
to another person, there is a shift of perspective to another
time.5

A child is shown a Smarties tube where unbe-
knownst to the child the Smarties have been re-
placed by pencils. The child is asked: “What do
you think is inside the tube?” The child answers
“Smarties!” The tube is then shown to contain
pencils only. The child is then asked: “Before
this tube was opened, what did you think was
inside?”

See [14] for more on the temporal version of the Smarties
task. Below we shall formalize each step in the logical rea-
soning taking place when giving a correct answer to the task,
but before that, we give an informal analysis. Let us call the
child Peter. Let a be the time where Peter answers the first
question, and let t be the time where he answers the second
one. To answer the second question, Peter imagines him-
self being at the earlier time a where he was asked the first
question. At that time he deduced that there were Smar-
ties inside the tube from the fact that it is a Smarties tube.
Imagining being at the time a, Peter reasons that since he at
that time deduced that there were Smarties inside, he must
also have come to believe that there were Smarties inside.
Therefore, at the time t he concludes that at the earlier time
a he believed that there were Smarties inside.

We now proceed to the full formalization. We first extend
the language of hybrid logic with two modal operators, D
and B. We make use of the following symbolizations
D Peter deduces that ...
B Peter believes that ...
p There are Smarties inside the tube
a The time where the first question is asked

and we take the principle Dφ→ Bφ as an axiom schema (it
holds whatever proposition is substituted for the metavari-
able φ, hence an axiom schema). This is principle (9.4) in

5The author thanks Michiel van Lambalgen for mentioning
the Smarties task in an email exchange where the author
suggested that the shift of perspective in the hybrid-logical
rule (Term) could be of relevance in connection with the
theory of mind view of autism.
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Figure 3: First example formalization (before and after application of the (Term) rule)
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q
(@I)

@aq
(Term)

@aq

Figure 4: Formalization of the child’s reasoning in the Smarties task (both temporal and person version)
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[23].6 Then the shift of temporal perspective in the Smarties
task can be formalized very directly in Seligman’s system as
the derivation in Figure 4. Recall that the derivation is
meant to formalize each step in Peters’s reasoning at the
time t where the second question is answered. The premise
@aDp in the derivation says that Peter at the earlier time a
deduced that there were Smarties inside the tube, which he
remembers at t.

Note that the formalization in Figure 4 does not involve
the � operator, so this operator could have been omitted to-
gether with the associated rules (�I) and (�E) in Figure 1.
Since this proof system is complete, the � operator satisfies
logical omniscience. The operators D and B are only taken
to satisfy the principle Dφ→ Bφ, as mentioned above.

Compare the derivation in Figure 4 to the right-hand-side
derivation in Figure 3 in the previous section and note that
the structure is exactly the same. Note that what we have
done is that we have formalized the logical reasoning tak-
ing place when giving the correct answer “Smarties”. Note
also that the actual content of the tube, namely pencils, is
not even mentioned in the formalization, so it is clear from
the formalization that the actual content of the tube is not
relevant to figure out the correct answer. Accordingly, our
formalization does not tell what goes wrong when a child
incorrectly answers “Pencils”.

6. THE SMARTIES TASK
(PERSON SHIFT VERSION)

As a stepping stone between the temporal version of the

6 Analogous to the question in Footnote 4, it can be asked
why we use classical implication in Dφ → Bφ, rather than
a form of non-monotonic implication. Again, the answer is
that this is an idealization, but we presume that the per-
spective shift involved in the Smarties task is orthogonal to
the issue of non-monotonicity, at least from a logical point
of view. In this connection we remark that principle (9.4)
in [23] also uses classical implication (the non-monotonicity
in the logical analysis of the Smarties task of [23] does not
concern principle (9.4), but other principles).

Smarties task we considered in the previous section, and the
Sally-Anne task we shall consider in the next section, we
in the present section take a look again at the version of
the Smarties task described in the introduction. The only
difference between the version in the introduction and the
version in the previous section is the second question where

“Before this tube was opened, what did you think
was inside?”

obviously gives rise to a temporal shift of perspective, whereas

“If your mother comes into the room and we show
this tube to her, what will she think is inside?”

gives rise to a shift of perspective to another person, namely
the imagined mother.

To give a correct answer to the latter of these two ques-
tions, the child Peter imagines being the mother coming
into the room. Imagining being the mother, Peter reasons
that the mother must deduce that there are Smarties inside
the tube from the fact that it is a Smarties tube, and from
that, she must also come to believe that there are Smarties
inside. Therefore, Peter concludes that the mother would
believe that there are Smarties inside.

The derivation formalizing this argument is exactly the
same as in the temporal case dealt with in previous section,
Figure 4, but the symbols are interpreted differently, namely
as
D Deduces that ...
B Believes that ...
p There are Smarties inside the tube
a The imagined mother

So now nominals refer to persons rather than times. Ac-
cordingly, the modal operator B now symbolize the belief
of the person represented by the point of evaluation, rather
than Peter’s belief at the time of evaluation, etc. Thus, the
premise @aDp in the derivation in Figure 4 says that the
imagined mother deduces that there are Smarties inside the
tube, which the child doing the reasoning takes to be the
case since the mother is imagined to be present in the room.

191



Incidentally, letting points in the Kripke model represent
persons is exactly what is done in Arthur Prior’s egocentric
logic, see Section 1.3 in the book [8], in particular pp. 15–
16. In egocentric logic the accessibility relation represents
the taller-than relation, but this relation is obviously not
relevant here.

7. THE SALLY-ANNE TASK
In this section we will give a formalization of a somewhat

more complicated reasoning task called the Sally-Anne task.
The following is one version.

A child is shown a scene with two doll protago-
nists, Sally and Anne, having respectively a bas-
ket and a box. Sally first places a marble into
her basket. Then Sally leaves the scene, and in
her absence, the marble is transferred by Anne
and hidden in her box. Then Sally returns, and
the child is asked: “Where will Sally look for her
marble?”

Most children above the age of four correctly responds where
Sally must falsely believe the marble to be (in the basket)
whereas younger children respond where they know the mar-
ble to be (in the box). Again, for autists, the cutoff is higher.

Below we shall formalize the correct response to the task,
but before that, we give an informal analysis. Let us call
the child Peter again. Let t1 be the time where he answers
the question. To answer the question, Peter imagines him-
self being Sally at an earlier time t0 before she leaves the
scene, but after she places the marble in her basket. Imag-
ining being Sally, he reasons as follows: At the time t0 Sally
believes that the marble is in the box since she can see it.
At the time t1, after she has returned, she deduces that the
marble is still in the box as she has no belief to the con-
trary, and since Sally deduces that the marble is in the box,
she must also come to believe it. Therefore, Peter concludes
that Sally believes that the marble is in the box.

In our formalization we make use of a tiny fragment of
first-order hybrid logic, involving the unary predicate P (t),
the binary predicate t < u, and the modal operators S, D
and B, but no quantifiers. We make use of the following
symbolizations
p(t) The marble is in the basket at the time t
t < u The time t is before the time u
S Sees that ...
D Deduces that ...
B Believes that ...
a The person Sally

We also make use of the following three principles

Sφ→ Bφ
Dφ→ Bφ
Bφ(t) ∧ t < u ∧ ¬B¬φ(u)→ Dφ(u)

The first two are versions of principles (9.2) and (9.4) in the
book [23] and the third is similar to principle (9.11) in that
book. In order to make the formalization more compact,
and also more in the spirit of natural deduction style, we
do not take the principles as axiom schemas, but instead we
turn them into the following proof-rules.

Sφ
(R1)

Bφ

Dφ
(R2)

Bφ

Bφ(t) t < u ¬B¬φ(u)
(R3)

Dφ(u)

The second and third proof-rule together formalizes a “prin-
ciple of inertia” saying that a belief is preserved over time,
unless there is belief to the contrary.

We liberalize the side-condition on the (Term) rule such
that the formulas φ1, . . . , φn, and ψ may include formulas
on the form t < u, since we assume that the truth-values
of such formulas are not changed by the perspective shift
effected by the rule.

With this machinery in place, the shift of person per-
spective in the Sally-Anne task can be formalized as the
derivation in Figure 5. Recall that this derivation is meant
to formalize the child’s reasoning at the time t1 where the
question is answered. The first premise @aSp(t0) in the
derivation says that Sally (the reference the nominal a) at
the earlier time t0 saw that the marble was in the basket,
which the child remembers. The third premise @a¬B¬p(t1)
says that Sally at the time t1 does not believe that the mar-
ble is not in the basket, which the child realizes as Sally was
absent when the marble was transferred to the box.

Note that the actual position of the marble at the time
t1 is irrelevant to figure out the correct response. Note that
in the Sally-Anne task there is a shift of person perspective
which we deal with in a modal-logical fashion letting points
of evaluation stand for persons, like in the person version of
the Smarties task in the previous section, but there is also
a temporal shift in the Sally-Anne task, from the time t0 to
the time t1, which we deal with using first-order machinery.

8. DISCUSSION
In the introduction of the present paper we remarked that

reasoning in Seligman’s system is different from reasoning in
the most common proof systems for hybrid logic, and that
reasoning in Seligman’s system captures well the reasoning
in the Smarties and Sally-Anne tasks, in particular the in-
volved shift between different local perspectives.

More can be said about this difference between the proof
systems and how local perspectives are (or are not) repre-
sented. A truth-bearer is an entity that is either true or
false. According to Peter Simons’ paper [22], there have
historically been two fundamentally opposed views of how
truth-bearers have their truth-values.

One view takes truth to be absolute: a truth-
bearer’s truth-value (whether truth or falsity) is
something it has simpliciter, without variation
according to place, time, by whom and to whom
it is said. The other view allows a truth-bearer’s
truth-value to vary according to circumstances:
typically time or place, but also other factors may
be relevant. ([22], p. 443)

Peter Simons calls the first view the absolute view and the
second the centred view. It is well-known that Arthur Prior
often expressed sympathy for what is here called the centred
view, most outspoken with respect to time, one reason being
that he wanted to allow statements to change truth-value
from one time to another. What a truth-bearer’s truth-value
varies according to, is by Simons called a location.

I understand ’location’ broadly to include not
just spatial location but also temporal location,
spatiotemporal location, modal location, and more
broadly still location in any relational structure.
I consider that the concept of an object being
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Figure 5: Formalization of the child’s reasoning in the Sally-Anne task

@aSp(t0) t0 < t1 @a¬B¬p(t1)
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(Term)
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located at a position among other positions is a
formal concept, applicable topic-neutrally in any
field of discourse. This means that logical consid-
erations about location are not limited in extent
or parochial in interest. ([22], p. 444)

The proposition expressed in the quotation above is de-
fended in Simons’ paper [21]. See also the paper [20]. Ob-
viously, a frame for modal and hybrid logic is a mathemat-
ically precise formulation of Simons’ concept of a location,
see Definition 2.1.

What does all this have to do with proof systems for hy-
brid logic? The distinction between the absolute view and
the centred view is useful for describing proof systems and
the formulas that occur in them. The basic building blocks
of the most common proof systems for hybrid logic are sat-
isfaction statements, and satisfaction statements have con-
stant truth-values, so the basic building blocks of such sys-
tems are absolute, although it is arguable that such systems
have both absolute and centred features since arbitrary sub-
formulas of satisfaction statements do have varying truth-
values, and therefore have to be evaluated for truth at some
location. On the other hand, the basic building blocks of
Seligman’s system are arbitrary formulas, and arbitrary for-
mulas have varying truth-values, so this system is centred,
involving local perspectives in the reasoning.

9. SOME REMARKS ON OTHER WORK
Beside analysing the reasoning taking place when giving

a correct answer to a reasoning task, the works by van Lam-
balgen and co-authors also analyse what goes wrong when
an incorrect answer is given. We note that Stenning and
van Lambalgen in [23] warn against simply characterizing
autism as a lack of theory of mind. Rather than being an
explanation of autism, Stenning and van Lambalgen see the
theory of mind deficit hypothesis as “an important label for
a problem that needs a label”, cf. [23], p. 243. Based on
their logical analysis, they argue that another psychologi-
cal theory of autism is more fundamental, namely what is
called the executive function deficit theory. Very briefly, ex-
ecutive function is an ability to plan and control a sequence
of actions with the aim of obtaining a goal in different cir-
cumstances.

The paper [15] reports empirical investigations of closed-
world reasoning in adults with autism. Incidentally, accord-
ing to the opening sentence of that paper, published in 2009,
“While autism is one of the most intensively researched psy-
chiatric disorders, little is known about reasoning skills of

people with autism.”
With motivations from the theory of mind literature, the

paper [25] models examples of beliefs that agents may have
about other agents’ beliefs (one example is an autistic agent
that always believes that other agents have the same beliefs
as the agent’s own). This is modelled by different agents
preference relations between states, where an agent prefers
one state over another if the agent considers it more likely.
The beliefs in question turn out to be frame-characterizable
by formulas of epistemic logic.

The paper [10] reports empirical investigations of what
is called second-order theory of mind, which is a person’s
capacity to imagine other people’s beliefs about the person’s
own beliefs (where first-order theory of mind is what we
previously in the present paper just have called theory of
mind). The investigations in [10] make use of a second-order
false-belief task, as well as other tasks.

The paper [12] does not deal with false-belief tasks or the-
ory of mind, but it is nevertheless relevant to mention since
it uses formal proofs to compare the cognitive difficulty of
deductive tasks. To be more precise, the paper associates
the difficulty of a deductive task in a version of the Master-
mind game with the minimal size of a corresponding tableau
tree, and it uses this measure of difficulty to predict the em-
pirical difficulty of game-plays, for example the number of
steps actually needed for solving a task.

The method of reasoning in tableau systems can be seen
as attempts to construct a model of a formula: A tableau
tree is built step by step using rules, whereby more and
more information about models for the formula is obtained,
and either at some stage a model can be read off from the
tableau tree, or it can be concluded that there cannot be
such a model (in fact, in the case of [12], any formula under
consideration has exactly one model, so in that case it is a
matter of building a tableau tree that generates this model).
Hence, if the building of tableau trees is taken to be the
underlying mechanism when a human is solving Mastermind
tasks, then the investigations in [12] can be seen to be in line
with the mental models school (see the third section of the
present paper).

A remark from a more formal point of view: The tableau
system described in [12] does not include the cut-rule7. Much
has been written on the size of proofs in cut-free proof sys-
tems, in particular, the paper [6] gives examples of first-

7The cut-rule says that the end of any branch in a tableau
tree can extended with two branches with φ on the one
branch and ¬φ on the other (expressing the bivalence of
classical logic).
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order formulas whose derivations in cut-free systems are
much larger than their derivations in natural deduction sys-
tems, which implicitly allow unrestricted cuts (in one case
more than 1038 characters compared to less than 3280 char-
acters). Similarly, the paper [9] points out that ordinary
cut-free tableau systems have a number of anomalies, one
of them being that for some classes of propositional formu-
las, decision procedures based on cut-free systems are much
slower than the truth-table method (in the technical sense
that there is no polynomial time computable function that
maps truth-table proofs of such formulas to proofs of the
same formulas in cut-free tableau systems). Instead of pro-
hibiting cuts completely, the paper [9] advocates allowing a
restricted version of the cut-rule, called the analytic cut-rule.

10. FUTURE WORK
We would like to extend the work of the present paper

to further false-belief tasks, perhaps using different hybrid-
logical machinery (and moreover, to see if we can also use
hybrid-logical proof-theory to analyse what goes wrong when
incorrect answers are given). Not only will formalization of
further reasoning tasks be of interest on their own, but we
also expect that such investigations can be feed back into
logical research, either as corroboration of the applicability
of existing logical constructs, or in the form of new logical
constructs, for example new proof-rules or new ways to add
expressive power to a logic.

We are also interested in further investigations in when
two seemingly dissimilar reasoning tasks have the same un-
derlying logical structure, like we in the present paper have
disclosed that two different versions of the Smarties task
have exactly the same underlying logical structure. Such
investigations might be assisted by a notion of identity on
proofs (exploiting the longstanding effort in proof-theory to
give a notion of identity between proofs, that is, a way to
determine if two arguments have common logical structure,
despite superficial dissimilarity).

More speculatively, we expect that our formalizations can
contribute to the ongoing debate between two dominating
views on theory of mind, denoted theory-theory and simulation-
theory. According to theory-theory, theory of mind should
be viewed as an explicit theory of the mental realm of an-
other person, like the theories of the physical world usually
going under the heading “naive physics”, whereas according
to simulation-theory, theory of mind should be viewed as
a capacity to put yourself in another person’s shoes, and
simulate the person’s mental states.
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APPENDIX
A. PROOF OF ANALYTICITY

Usually, when considering a natural deduction system, one
wants to equip it with a normalizing set of reduction rules
such that normal derivations satisfy the subformula prop-
erty. Normalization says that any derivation by repeated
applications of reduction rules can be rewritten to a deriva-
tion which is normal, that is, no reduction rules apply. From
this it follows that the system under consideration is ana-
lytic.

Now, the works [7] and Section 4.3 by the present author
devise a set of reduction rules for N′H obtained by transla-
tion of a set of reduction rules for a more common natural
deduction system for hybrid logic. This more common sys-
tem, which we denote NH, can be found in [7] and in [8],
Section 2.2. All formulas in the system NH are satisfac-
tion statements. Despite other desirable features, it is not
known whether the reduction rules for N′H are normalizing,
and normal derivations do not always satisfy the subformula
property. In fact, Chapter 4 of the book [8] ends somewhat
pessimistically by exhibiting a normal derivation without the
subformula property. It is remarked that a remedy would
be to find a more complete set of reduction rules, but the
counter-example does not give a clue how such a set of re-
duction rules should look.

In what follows we shall take another route. We prove
a completeness result saying that any valid formula has a
derivation in N′H satisfying a version of the subformula
property. This is a sharpened version of a completeness
result for N′H originally given in [7] and in Section 4.3 of
[8] (Theorem 4.1 in [8]). Thus, we prove that N′H is ana-
lytic without going via a normalization result. So the proof
of the completeness result does not involve reduction rules.
The result is mathematically weaker than normalization to-
gether with the subformula property for normal derivations,
but it nevertheless demonstrates analyticity. Analyticity is
a major success criteria in proof-theory, one reason being
that analytic provability is a step towards automated the-
orem proving (which obviously is related to Leibniz’ aim
mentioned in the intoduction of the present paper).

In the proof below we shall refer to NH as well as a trans-
lation (·)◦ from NH to N′H given in [7] and Section 4.3
of [8]. This translates a derivation π in NH to a deriva-
tion π◦ in N′H having the same end-formula and parcels
of undischarged assumptions. The reader wanting to follow
the details of our proof is advised to obtain a copy of the
paper [7] or the book [8]. The translation (·)◦ satisfies the

following.

Lemma A.1. Let π be a derivation in NH. Any formula
θ occuring in π◦ has at least one of the following properties.

1. θ occurs in π.

2. @aθ occurs in π for some satisfaction operator @a.

3. θ is a nominal a such that some formula @aψ occurs
in π.

Proof. Induction on the structure of the derivation of π.
Each case in the translation (·)◦ is checked.

Note that in item 1 of the lemma above, the formula θ must
be a satisfaction statement since only satisfaction statements
occur in π. In what follows @dΓ denotes the set of formulas
{@dξ | ξ ∈ Γ}.

Theorem A.2. Let π be a normal derivation of @dφ from
@dΓ in NH. Any formula θ occuring in π◦ has at least one
of the following properties.

1. θ is of the form @aψ such that ψ is a subformula of φ,
some formula in Γ, or some formula of the form c or
♦c.

2. θ is a subformula of φ, some formula in Γ, or some
formula of the form c or ♦c.

3. θ is a nominal.

4. θ is of the form @a(p → ⊥) or p → ⊥ where p is a
subformula of φ or some formula in Γ.

5. θ is of the form @a⊥ or ⊥.

Proof. Follows from Lemma A.1 above together with
Theorem 2.4 (called the quasi-subformula property) in Sub-
section 2.2.5 of [8].

We are now ready to give our main result, which is a sharp-
ened version of the completeness result given in Theorem 4.1
in Section 4.3 of [8].

Theorem A.3. The first statement below implies the sec-
ond statement. Let φ be a formula and Γ a set of formulas.

1. For any modelM, any world w, and any assignment g,
if, for any formula ξ ∈ Γ, M, g, w |= ξ, thenM, g, w |=
φ.

2. There exists of derivation of φ from Γ in N′H such
that any formula θ occuring in the derivation has at
least one of the five properties listed in Theorem A.2.

Proof. Let d be a new nominal. It follows that for any
model M and any assignment g, if, for any formula @dξ ∈
@dΓ, M, g |= @dξ, then M, g |= @dφ. By completeness of
the system NH, Theorem 2.2 in Subsection 2.2.3 of the book
[7], there exists a derivation π of @dφ from @dΓ in NH. By
normalization, Theorem 2.3 in Subsection 2.2.5 of the book,
we can assume that π is normal. We now apply the rules
(@I), (@E), and (Name) to π◦ obtaining a derivation of
φ from Γ in N′H satisfying at least one of the properties
mentioned in Theorem A.2.

Remark: If the formula occurrence θ mentioned in the the-
orem above is not of one of the forms covered by item 4 in
Theorem A.2, and does not have one of a finite number of
very simple forms not involving propositional symbols, then
either θ is a subformula of φ or some formula in Γ, or θ is
of the form @aψ such that ψ is a subformula of φ or some
formula in Γ. This is the version of the subformula property
we intended to prove.
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ABSTRACT
We propose a general framework for strategic voting when a
voter may lack knowledge about other votes or about other
voters’ knowledge about her own vote. In this setting we de-
fine notions of manipulation and equilibrium. We also model
action changing knowledge about votes, such as a voter re-
vealing its preference or as a central authority performing a
voting poll. Some forms of manipulation are preserved un-
der such updates and others not. Another form of knowledge
dynamics is the effect of a voter declaring its vote. We envis-
age Stackelberg games for uncertain profiles. The purpose
of this investigation is to provide the epistemic background
for the analysis and design of voting rules that incorporate
uncertainty.

Keywords
social choice, voting, epistemic logic, dynamics

1. INTRODUCTION
A well-known fact in social choice theory is that strategic

voting, also known as manipulation, becomes harder when
voters know less about the preferences of other voters. Stan-
dard approaches to manipulation in social choice theory [13,
24] as well as in computational social choice [5] assume that
the manipulating voter knows perfectly how the other vot-
ers will vote. Some approaches [11, 4] assume that voters
have a probabilistic prior belief on the outcome of the vote,
which encompasses the case where each voter has a proba-
bility distribution over the set of profiles. A recent paper [9]
extends coalitional manipulation to incomplete knowledge,
by distinguishing manipulating from non-manipulating vot-
ers and by considering that the manipulating coalition has,
for each voter outside the coalition, a set of possible votes
encoded in the form of a partial order over candidates. Still,
we think that the study of strategic voting under complex
belief states has received little attention so far, especially
when voters are uncertain about the uncertainties of other
voters, i.e., when we model higher-order beliefs of voters.

An extreme case of uncertainty is when a voter is com-
pletely ignorant about other votes. In that case, if a ma-
nipulation under incomplete knowledge is defined in a pes-
simistic way, i.e., if it is said to be successful if it succeeds for
all possible votes of other voters, voting rules may well be
non-manipulable. For the special case where all other vot-

TARK 2013, Chennai, India.
Copyright 2013 by the authors.

ers are non-strategic this is shown for most common voting
rules in [9].

In the first place we model how uncertainty about the pref-
erences of other voters may determine a strategic vote, and
how a reduction in this uncertainty may change a strategic
vote. We restrict ourselves to the case where uncertainty is
over a number of well-described alternatives, including the
true state of affairs, between which the voter is unable to
distinguish.

We also investigate the dynamics of uncertainty. The un-
certainty reduction may be due to receiving information on
voting intentions in polls or to voters directly telling you
their preference. For simplicity we assume that received
information is correct, or rather, we only model the con-
sequences of incorporating new information after the deci-
sion to consider the information reliable. Such informative
actions can then be modelled as truthful public announce-
ments [23].

Another form of dynamics is the dynamics of declaring
votes. Declaring votes can be modeled as assignments (ontic
/ factual change). Just as there may be uncertainty about
truthful votes, there may also be uncertainty about declared
votes. Consider the following. Half of the votes are declared.
It is not known whether candidate x or y has taken the lead,
but z has clearly lost. You still have to vote. Does this in-
fluence your strategy? Another example is that of safe ma-
nipulation [25], where the manipulating voter announces her
vote to a (presumably large) set of voters sharing her pref-
erences but is unsure of how many will follow her. Finally,
consider Stackelberg voting games, wherein voters declare
their votes in sequence, following a fixed, exogeneously de-
fined order. Our framework applies to Stackelberg voting
games with uncertainty about profiles.

There are several ways of expressing incomplete knowl-
edge about the linear order of a voter. The literature on
possible and necessary winners assumes that it is expressed
by a collection of partial strict orders (one for each voter),
while Hazon et al. [15] consider it to consist of a collec-
tion of probability distributions, or a collection of sets of
linear orders (one for each voter). Whereas the latter is
more expressive (some sets of linear orders do not corre-
spond to the set of extensions of a partial order), the for-
mer is more succinct. Ours is a more expressive modelling
than both modes of representation, because an uncertain
profile can be any set of profiles. A set of profiles such as
{(a �1 b �1 c, a �2 b �2 c), (b �1 a �1 c, b �2 a �2 c)}
expresses uncertainty (ignorance) which candidate voters 1
and 2 rank first, but knowledge (certainty) that voters 1 and
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2 have identical preferences — which is not possible in [15],
and a fortiori also not in [17] and subsequent works on the
possible winner problem. Of course, this mode of represen-
tation is also the less succinct of all. However, succinctness
and complexity issues will play no role yet in this paper,
where we focus on modelling and expressivity.

Somewhat surprisingly, there are yet more complex sce-
narios that cannot be seen as uncertainty between a number
of given profiles: it may be that a voter cannot distinguish
between two situations with identical profiles, because in the
first case yet another voter has some uncertainty about the
profile, but in the other case not.

Our investigation is restricted in various ways: (i) we
model uncertainty and manipulability of individuals but not
of coalitions, (ii) we model knowledge but not belief, and,
in the dynamics, truthful announcements but not lying, (iii)
we model incomplete knowledge (uncertainty) but not other
forms of incompleteness, and (iv) as already said, we have
not investigated complexity and succinctness. The reason
for these restrictions is our desire to, first, present this com-
plete logical framework for voters uncertain about profiles.
Later we wish to broaden our scope. Let us briefly comment
on these issues here.

Epistemic and voting notions for coalitions are treated in
Section 8 in some detail.

There are many scenarios wherein voters may have incor-
rect beliefs about preferences, or where information chang-
ing actions are intended to deceive. I may incorrectly believe
that you prefer a over b, whereas you really prefer b over a. I
may tell you that I prefer a over b, but I may be lying. Such
scenarios can also be modelled in epistemic logic, with the
same tools and techniques as presented in this paper, but we
have restricted ourselves to knowledge: reliable beliefs. This
is already a far and high enough jump from the typical so-
cial choice theory perspective of reliable common knowledge
of preferences, and we think that the variety of phenomena
described within the restriction of knowledge and reliable
information already sufficiently demonstrate the expressive
power of the extension of voting with uncertainty.

The study of uncertain votes is different from the study
of other forms of incompleteness, e.g., when the number of
voters or candidates may be unknown — the only form of
incompleteness that we model is incomplete knowledge in
the form of inability to determine which of a number of
well-defined alternatives is the case. Here, we also restrict
ourselves.

Complexity issues will be occassionally referred to in run-
ning text and in the concluding Section 9.

A link between epistemic logic and voting has first been
given, as far as we know, in [8]—they use knowledge graphs
to indicate that a voter is uncertain about the preference
of another voter. A more recent approach, within the area
known as social software, is [21]. The recent [9] walks a mid-
dle way namely where equivalence classes are called infor-
mation sets, as in treatments of knowledge and uncertainty
in economics, but where the uncertain voter does not take
the uncertainty of other voters into account.

2. VOTING
This section recalls standard voting terminology.
Assume a finite set N = {1, . . . , n} of n voters (or agents),

and a finite set C = {a, b, c, . . . } of m candidates (or alterna-
tives). Voter variables are i and j, and candidate variables

are x and y (and x1, x2, ...).

Definition 1 (Vote) For each voter i a vote �i ⊆ C×C is
a linear order on C.

If voter i prefers candidate a to candidate b in vote �i, we
write a �i b. Vote variables are �i, �′i, etc. Instead of
x1 �i · · · �i xn we also write i : x1 . . . xn, or depict it
vertically in a table.

Definition 2 (Profile) A profile P is a collection {�1, . . . ,�n}
of n votes.

Let O(C) be the set of linear orders of C. Then O(C)n is the
set of all profiles for N . Profile variables are P, P ′, .... If
P ∈ O(C)n, �i ∈ P , and �′i ∈ O(C), then P [�i/�′i] is the
profile wherein �i is substituted by �′i in P .

Definition 3 (Voting rule) A voting rule is a function
F : O(C)n → C from the set of profiles to the set of can-
didates.

The voting rule determines which candidate wins the elec-
tion — F (P ) is the winner. A voting correspondence C :
O(C)n → 2C \ {∅} maps a profile to a nonempty set of tied
cowinners. To obtain a voting rule from a voting correspon-
dence (to obtain a unique winner from a non-empty set of
cowinners) we assume an exogeneously specified tie-breaking
mechanism, that is a total order � over candidates.

Voters cannot be assumed to vote according to their pref-
erences. Relative to a given profile P , a vote �i ∈ P can be
called the truthful vote or preference. A voter may change
her truthful vote if this improves the outcome of the voting.
This is called a manipulation or strategic vote.

Definition 4 (Manipulation) Let i ∈ N , P ∈ O(C)n and
�i ∈ P , and let �′i ∈ O(C). If F (P [�i/�′i]) �i F (P ), then
�′i is a successful manipulation by voter i.

Of course some votes that are not truthful still do not im-
prove the outcome — relative to the truthful vote �i ∈ P ,
any �′i ∈ O(C) can be called a possible vote. Finally, there
is the case of the declared vote, after which a voter can no
longer change her vote. Information on declared votes may
be available to other voters (such as in Stackelberg games),
and that may change their subsequent strategic votes. This
is an overview of different votes.

• truthful vote / preference

• strategic vote / successful manipulation

• possible vote

• declared vote

We now define stable outcomes of the voting rule. The
combination of a profile P and a voting rule F defines a
strategic game: a player is a voter, an individual strategy
for a player is a vote (an individual strategy for a player in
the game theoretical sense may not be a strategic vote in the
social choice theoretical sense), a strategy profile (of players)
is therefore a profile in our defined sense (of voters), and the
preference of a player among the outcomes is according to
his preferred vote: given voter i with truthful vote �i ∈ P ,
and profiles P ′, P ′′, i prefers outcome F (P ′) over outcome
F (P ′′) in the game theoretical sense iff F (P ′) �i F (P ′′).
The relevant equilibrium notion is:

Definition 5 (Equilibrium profile) Given a profile P , a
profile P ′ is an equilibrium profile iff no agent has a suc-
cessful manipulation.
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In the view of a voting process as a game, an equilibrium
profile corresponds to a Nash equilibrium.

Manipulation and equilibrium for coalitions will be ad-
dressed in Section 8, later.

3. KNOWLEDGE PROFILES
We model uncertainty about voting in the sense of incom-

plete knowledge about votes. The terminology to describe
such uncertainty that we introduce in this section is fairly
standard in modal logic [12], but its application to social
choice theory is novel. The novelty consists in taking models
with profiles instead of valuations of propositional variables.
An expression like b �i a is a proposition ‘voter i prefers
candidate b over candidate a’, which is true or false for any
given profile; and from that perspective, a profile is nothing
but a collection where for all voters all such variables are
given a value true or false: a valuation.

Definition 6 (Knowledge profile) Given is the set O(C)n
of all profiles for a set N = {1, . . . , n} of n voters. A pro-
file model is a structure P = (S, {∼1, . . . ,∼n}, π), where
S is a domain of abstract objects called states; where for
i = 1, . . . , n, ∼i is an indistinguishability relation that is an
equivalence relation; and where valuation π : S → O(C)n as-
signs a profile to each state. A knowledge profile is pointed
structure Ps where P is a profile model and s is a state in
the domain of P.

If s ∼i s
′, π(s) = P , and π(s′) = P ′, then voter i is uncertain

if the profile is P or P ′; e.g. if j : bca in P and j : cba in
P ′, then voter i is uncertain if voter j prefers b over c or c
over b. Instead of ‘voter i is uncertain if’ we also say ‘voter
i does not know that’. We can do this formally in a logical
language interpreted on knowledge profiles.

Definition 7 (Logical language) The language L over the
set of voters N = {1, . . . , n} and the set of preferences is de-
fined as follows, where i is an agent and a, b ∈ C:

ϕ ::= a �i b | ¬ϕ | ϕ ∧ ϕ | Kiϕ

A profile P is defined in L by abbreviation as the description
of the valuation (the conjunction of all its terms a �i b and
all its excluded terms ¬(a �i b)). Similarly, a vote �i is
defined in L by abbreviation as the i-part of that.

An element of the language is called a formula, ϕ is a formula
variable. Formula Kiϕ stands for ‘voter i knows that ϕ’. We
have allowed ourselves to overload the meaning of a �i b,
as it is really the name for the atomic proposition uniquely
interpreted (below) as the truth of a �i b.

Definition 8 (Semantics) The interpretation of formulas
in a knowledge profile is defined as follows:

Ps |= a �i b iff a �i b, where �i ∈ π(s)
Ps |= ¬ϕ iff Ps 6|= ϕ
Ps |= ϕ ∧ ψ iff Ps |= ϕ and Ps |= ψ
Ps |= Kiϕ iff for every t such that s ∼i t,Pt |= ϕ

Given a knowledge profile Ps and a proposition ϕ, agent
i knows that ϕ if and only if ϕ holds for all states in P
indistinguishable for i from s (i.e., for all s′ ∈ P such that
s ∼i s

′). The expression Ps 6|= ϕ stands for ‘It is not the
case that Ps |= ϕ’. If Ps |= ϕ for all s ∈ S, we write P |= ϕ
(ϕ is valid on P) and if this is the case for all P, we say
that ϕ is valid, and we write |= ϕ. Propositions like ‘voter i
knows the profile’ now have a precise description.

Example 1 Consider the following P consisting of three
states s, t, u and for two voters 1 and 2. State s is assigned
to profile P , wherein a �1 c �1 b �1 d and d �2 c �2 b �2 a,
etc. States that are indistinguishable for a voter i are linked
with an i-labelled edge. The partition for 1 on the domain is
therefore {{s, t}, {u}}, and the partition for 2 on the domain
is {{s}, {t, u}}.

1 2
a d
c c
b b
d a

——1——

1 2
a d
c c
b b
d a

——2——

1 2
d d
c c
b b
a a

s, P t, P u, P ′

States s and t have been assigned the same profile P but have
different epistemic properties. In s, 2 knows that 1 prefers
a over d, whereas in t 2 does not know that. We list some
such relevant formulas:

• Ps |= K2 a �1 d

• Pt 6|= K2 a �1 d

• P |= (�1 → K1 �1) ∧ (�2 → K2 �2)
(Both voters know there preference.)

The example demonstrates than we cannot do away with
states. Sometime, different states are being assigned the
same profile. But in many typical scenarios different states
are assigned different profiles, and then we can truly say that
the uncertainty of a voter is about a collection of profiles.

We now define the notion of ‘voter i changes her vote’ in
L.

Definition 9 (Changing a vote) We define P ↔i P
′ as

P → �i ∧ P ′ → �′i ∧
∨

j 6=i,a,b∈C

(a �j b↔ a �′j b)

Given the abbreviations defined, P → �i stands for �i ∈ P .
Formula P → �i says that there is a vote �′i such that
P ′ = P [�i/�′i].

Surprisingly, our logic of knowledge and voter preferences,
that we extend with dynamics in the next sections, is not
in fact a dynamic logic of preference [19]. Given that, the
following perspective may be of interest. In our models, the
preferences are modelled as propositional variables. These
induce preferences between states by enriching the model
with total orders expressing that: one state is more preferred
than another one, if the outcome of the truthful vote for the
profile of the first state is more preferred than the outcome
of the vote for the profile of the second state.

Definition 10 (Models for knowledge and preference)
Given a knowledge profile Ps with P = (S, {∼1, . . . ,∼n}, π)
the induced preference knowledge profile P�s is defined as
P� = (S, {∼1, . . . ,∼n}, {�1, . . . ,�n}, π) where �i is de-
fined as: for all s, t ∈ S, s �i t iff F (π(s)) �i F (π(t)).

Thus we reclaim the epistemic plausibility models of [3] (and
therefore, indirectly, approaches as [19]), although not in the
meaning of ‘agent i considers state s more plausible than
state t’, but in the sense of ‘voter i prefer the outcome of
voting of the profile in s to the outcome of voting of the pro-
file in t’. As there, one has a choice between global prefer-
ences or ‘local’ preferences (intersection of global preferences
with equivalence classes). This embedding seems important
enough to mention as a result:

198



Proposition 1 The epistemic logic of votes can be embed-
ded into epistemic plausibility logic.

Proof. We refer to the embedding of Definition 10.

4. MANIPULATION AND KNOWLEDGE
In a knowledge profile it may be that a voter can manipu-

late the vote but does not know that, because she considers it
possible that another profile is the case in which she cannot
manipulate the vote. Such situations call for more refined
notions of manipulation that also involve knowledge. They
can be borrowed from the knowledge and action literature
[26, 16].

Given is a knowledge profile Ps where π(s) = P . If voter
i can manipulate P , then voter i also can manipulate Ps.
The uncertainty is about what the profile is. But this does
not affect that P is the actual profile.

In our modelling, if the voter can manipulate P , she al-
ways considers it possible that she can manipulate P . This
is a consequence of modelling uncertain knowledge instead of
uncertain belief. However, there are situations wherein she
considers it possible that she can manipulate, but where in
fact she cannot manipulate, namely if she considers a state
possible with a profile that is not the profile in the actual
state.

A curious situation is the one wherein in all states that the
voter considers possible there is a successful manipulation,
but where, unfortunately, this is not the same strategic vote
in all such states! So she knows that she has a successful
manipulation, but she does not know what the manipulation
is. This is called de dicto knowledge of manipulation.

A stronger form of knowing is when there is a vote that is
strategic in the profile for any state that the voter considers
possible. This is called de re knowledge of manipulation.

A further situation of interest for voting theory is when
(a) in any profile that the voter considers possible she can
vote such that the outcome is either the same or better than
when she had voted sincerely, and when (b) for at least one
possible profile the outcome is better. This can be called
weakly successful manipulation. (It is somewhat unclear if
the qualification weak should apply to the manipulation or
to the knowledge, as it is a property of a set of profiles.)

Definition 11 (Knowledge of manipulation)
Given a knowledge profile Ps.

• Voter i can successfully manipulate Ps if she can success-
fully manipulate the profile π(s).

• Voter i considers possible that she can successfully ma-
nipulate Ps if there is a t such that s ∼i t and she can
successfully manipulate π(t).

• Voter i knows ‘de dicto’ that she can successfully manip-
ulate Ps, if for all t such that s ∼i t she can successfully
manipulate π(t).

• Voter i knows ‘de re’ that she can successfully manipulate
Ps if there is a vote �′i such that for all t such that s ∼i t,
�′i is a successful manipulation for profile π(t).

• Voter i knows ‘de re’ that she can weakly successfully ma-
nipulate Ps if: (a) there is a vote �′i such that for all t
such that s ∼i t, either �′i is a successful manipulation
for profile π(t) or the outcome of that vote in π(t) does
not change, and (b) there is a t such that s ∼i t and �′i
is a successful manipulation for profile π(t).

There is also a weakly successful version of ‘de dicto’ knowl-

edge of manipulation.

These notions of knowledge of manipulation do not assume
that voters know their own vote, although to apply them
under these circumstances could lead to counterintuitive re-
sults.

If voter i knows ‘de re’ that she can manipulate the elec-
tion, she has the ability to manipulate, namely by strate-
gically voting �′i. On the other hand, ‘de dicto’ manipula-
tions do not have any practical interest, since the voter does
not seem to have the ability to manipulate the election. It
is akin to ‘game of chicken’ type equilibria in game theory
[20]. Therein, for each strategy of a player there is a comple-
mentary strategy of the other player such that the pair is an
equilibrium. This cannot be guaranteed without coordina-
tion. Example 2, below, illustrates ‘de dicto’ manipulability.

Example 2 We consider manipulation with voting accord-
ing to the Borda voting rule. Consider three agents, four
candidates, and two profiles P and P ′ that are indistinguish-
able for agent 1, but that agents 2 and 3 can tell apart; as
follows.

1 2 3
c d b
b a d
a c c
d b a

——1——

1 2 3
c d b
b a a
a c c
d b d

P P ′

There is also a tie-breaking preference b � c � d � a. The
difference between the profiles P and P ′ is that 3 prefers d
over a in P but a over d in P ′. We prove that 1 can manipu-
late the election if the profile is P , and that 1 can manipulate
the election if the profile is P ′, but that the manipulation for
P gives a worse outcome for P ′, and that the manipulation
for P ′ gives a worse outcome for P . Therefore she is not
effectively able to manipulate the outcome of the election.

In Borda, the ranks for each candidate in each vote are
added, and the candidate with the highest sum wins, modulo
the tie-breaking preference. The preferred candidate gets 3
points, the 2nd choice 2 points, etc. First, the outcome when
all three agents give their truthful vote. We write xyzw when
there are x points for a, y for b, z for c, w for d.

profile count observation outcome
P 3555 b, c, d are tied b
P ′ 5553 a, b, c are tied b

Voter 1 can manipulate P or P ′ by downgrading b. But this
is tricky, because it comes at the price of making a or d, or
both, more preferred. This price is indeed too high:

In P , 1 can achieve a better outcome by �′1 defined as
1 : cabd. Let Q = P [�1/�′1], and Q′ = P [�1/�′1]. Although
1 prefers the winner in Q over the winner in P , the winner
in Q′ is less preferred by her than the winner in P ′:

profile count observation outcome
Q 4455 c, d are tied c
Q′ 6453 a

In P ′, 1 can achieve a better outcome by �′′1 defined as
1 : cdba. Let R = P [�1/�′′1 ], and R′ = P [�1/�′′1 ]. Now,
1 prefers the winner in R′ over the winner in P ′, but the
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winner in R is less preferred by her than the winner in P :

profile count observation outcome
R 2457 1’s worst dream d
R′ 4455 c, d are tied c

For the record, the winners for all different votes for voter
1 where c is most preferred.

1 : cbad 1 : cabd 1 : cdba 1 : cadb 1 : cdab 1 : cbda
b(3555) c(4455) d(2457) d(4356) d(3357) d(2556)
b(5553) a(6453) c(4455) a(6354) c(5355) b(4554)

In the language L we cannot say that the outcome of the
election in P is preferred by a voter to the outcome of the
election in P ′. For that, we need to add primitives P �i P

′

to the language. These act as background knowledge. They
encode the voting function so that its results are available
in all states and in all profile models.

Definition 12 (Language L+) We expand the set of propo-
sitional variables with P �i P

′ for any P, P ′ ∈ O(C)n, and
we add the following clause to the semantics:

Ps |= P �i P
′ iff F (P ) �i F (P ′)

The variables P �i P
′ mean that voter i prefers the candi-

date chosen by the votes in P over the candidate chosen by
the votes in P ′. This is a(n) (inefficient) way to encode the
voting function. We observe that the semantics is indeed
independent from state s and profile model P . These are
model validities |= P �i P

′.
All notions of manipulation in Definition 11 are definable

in the extended language L+.

Definition 13 Let Ps be a knowledge profile with profile P .

• Voter i has a successful manipulation:

P ∧ (P → �i) ∧
∨
P ′

(P ′ �i P ∧ (P ′ ↔i P ))

• Voter i has a successful manipulation �′i:

P ∧ (P → �i) ∧ (P ′ → �′i) ∧ (P ′ ↔i P ) ∧ P ′ �i P

• Voter i knows de dicto that she has a successful manipu-
lation:

P ∧ (P → �i) ∧Ki

∨
P ′

((P ′ ↔i P )) ∧ P ′ �i P )

• Voter i knows de re that she has a successful manipulation:

P ∧ (P → �i) ∧
∨
�′

i
[((P ′ ↔i P ) ∧ P ′ �i P ∧ P ′ → �′i))∧

Ki(P
′′ → ((P ′ ↔i P

′′) ∧ P ′ �i P
′′))

De re knowledge of weak manipulation is similarly defined.

Proposition 2 Knowledge of manipulation is definable in
L+.

Proof. As evidenced in Definition 13.

5. EQUILIBRIUM AND KNOWLEDGE
Determining equilibria under incomplete knowledge comes

down to decision taking under incomplete knowledge. There-
fore we have to choose a decision criterion. Expected utility
makes no sense here, because we didn’t start with proba-
bilities over profiles in the first place, nor with utilities. In

the absence of prior probabilities, the following three cri-
teria make sense. (i) The insufficient reason (or Laplace)
criterion considers all possible states in a given situation as
equiprobable. This criterion was used in [1] to determine
equilibria of certain (Bayesian) games of imperfect informa-
tion. (ii) The maximum regret criterion selects the decision
minimizing the maximum utility loss, taken over all possible
states, compared to the best decision, had the voter known
the true state. (iii) The pessimistic (or Wald, or maximin)
criterion compares decisions according to their worst possi-
ble consequences. The latter criterion, that we also call risk
averse, is one that fits well our probability-free and utility-
free model; this was also the criterion chosen in [9]. The
only assumption here is that the probability distribution is
positive in all states. We now fix this criterion for the rest
of the paper. (Pessimistic, optimistic, and yet other crite-
ria only assuming positive probability are applied to social
choice settings in the recent [21]. We think their interesting
results can be modelled as games using our setting.)

In the presence of knowledge, the definition of an equi-
librium extends naturally. The trick is that for each agent,
the combination of an agent i and an equivalence class [s]∼i

for that agent (for some state s in the knowledge profile)
defines a so-called virtual agent (we model these imperfect
information games as Bayesian games [14]). Thus, agent i
is multiplied in as many virtual agents as there are equiva-
lences classes for ∼i in the model.

In our setting we can almost think of these equivalence
classes as sets of indistinguishable profiles. Almost but not
quite: we recall that states with different properties in a
given equivalence class, or states in different equivalence
classes, may be assigned the same profile.

An equilibrium is then a combination of votes such that
none of the virtual agents has an interest to deviate. A in-
tuitively more appealing solution than virtual agents, also
applied in [1], is to stick to the agents we already have,
but change the set of votes into a larger set of conditional
votes — where the conditions are the equivalence classes for
the agents. This we will now follow in the definition below.
For risk-averse voters we can effectively determine if a con-
ditional profile is an equilibrium without taking probability
distributions into account, unlike in the more general setting
of Bayesian games that it originates with.

Definition 14 (Conditional equilibrium) Given is a knowl-
edge profile model P such that every voter knows her prefer-
ence (truthful vote). For each agent i, a conditional vote is
a function [�]i : S/∼i → O(C), i.e., a function that assigns
a vote to each equivalence class for that agent. A condi-
tional profile is a collection of n conditional votes, one for
each agent. A conditional voting game is then a (standard)
strategic game where voters declare conditional votes. A con-
ditional profile is an equilibrium iff no agent has a successful
manipulation in any of its equivalence classes.

The outcome of a conditional profile consisting of conditional
votes is a n-tuple of vectors (x1, . . . , xm) where voter i has
m equivalence classes. The definition of equilibrium for the
conditional voting game is derived from the Bayesian game
form. It is not the standard form of strategic games! Con-
sider a case for two equivalence classes for a voter 1 where
two outcome vectors for 1 are (a, d) and (d, a), and a �i d.
We cannot say which of these two are preferred: therefore,
the outcomes for 1 are not ordered, and therefore, it does
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not define a standard strategic game. However, if we only
vary 1’s vote in the first argument (equivalence class) or in
the second argument, the outcomes are ordered. This is the
Bayesian game computation of equilibrium, where we deter-
mine manipulability for each virtual agent. Therefore, in
the definition we did not write ‘A conditional profile is an
equilibrium iff no agent has a successful manipulation’ but
‘(. . . ) iff no agent has a successful manipulation in any of
its equivalence classes.’

The requirement in Def. 14 that voters need to know their
preference (truthful vote), is because the value they asso-
ciate with that class is the worst outcome. This might oth-
erwise be undefined.

Example 3 We recall Example 1. There are two voters 1,
2, and four candidates a, b, c, d. Consider a plurality vote
with a tie-breaking rule b � a � c � d.

First consider the profile P defined as

1 2
a d
c c
b b
d a

If 1 votes for her preference a and 2 votes for his preference
d, then the tie prefers a, 2’s least preferred candidate. If
instead 2 votes c, a will still win. But if 2 votes b, b wins.
We observe that (a, b) and (b, b) are equilibria pairs of votes,
and that for 1 voting a is dominant.

This is also apparent from the voting matrix (wherein equi-
libria are boxed), and even more so when we express the pay-
offs for both voters by their ranking for the winner, as on the
right.

1\2 a b c d

a a b a a

b b b b b
c a b c d
d a b d d

1\2 a b c d

a 30 11 30 30

b 11 11 11 11
c 30 11 22 03
d 30 11 03 03

Example 4 We now add uncertainty to the setting of Ex-
ample 3. Consider another profile P ′, that is as P , but where
1’s vote is 1 : dcba. Now consider a knowledge profile as fol-
lows. It remains the case that the actual profile is P ; voter 2
is uncertain which of P and P ′ is the case; whereas voter 1
knows that. (It is tempting to add: voter 1 of course knows
that, as he knows his own vote; but our framework equally
applies to situations where he does not, e.g., because he has
not yet made up his mind.) And, as one should always add:
1 and 2 know that this is the uncertainty about the profile.
This knowledge profile PP consists of states t and u.

1 2
a d
c c
b b
d a

——2——

1 2
d d
c c
b b
a a

t, P u, P ′

What are the conditional equilibria of P? Votes (a, b) and
(b, b) still lead to elect b and are the equilibria in state t with
profile P . The only equilibrium vote for for state u with
profile P ′ is (d, d)—the preferences are identical for 1 and
2, and d is their top candidate.

We argue our way towards the equilibria of this conditional
voting game. There are two. Of course, alternatively to this
argument one can directly determine these are equilibria by
applying Definition 14 in a 16 × 4 matrix (below). Recall
that we assumed that voters are risk-averse.

First, consider voter 1. For each equivalence class of 1, we
have to determine her optimal vote. If the profile is P , 1’s
vote for a is dominant, so no matter what strategic consid-
erations 2 may have due to the additional uncertainty about
the profile, does not make a difference. Voter 1 votes a. If
the profile is P ′, d is dominant for 1.

Next, consider voter 2. Because 2 is risk-averse he will
vote b. Because if 2 votes d and the profile is P , a wins
because 1 votes a, as this is dominant for 1 (or b wins because
1 votes b); whereas if the profile is P ′ and 2 votes d, then d
wins because 1 votes d, which is dominant there. The worst
outcome of these two is a (or b). Whereas if 2 votes b, the
worst outcome is b. (The votes c and a can be eliminated
from consideration as well.)

The two equilibria that we can associate with this knowl-
edge profile are below. The conditional vote for 1 in the first
equilibrium actually is actually defined as: [�]1({t}) = �1

and [�]1({u}) = �′1; and the vote for 2 is conditional to one
equivalence class — in other words, it is unconditional. The
equivalent verbose formulation is more intelligable.

• (if 1 prefers a then a and if 1 prefers d then d, b),

• (if 1 prefers a then b and if 1 prefers d then d, b).

In particular, 2 does not know that d is his equilibrium vote
in P ′, because he considers it possible that the profile is P ,
where, if 2 votes d, 1 votes a (or 1 can improve her outcome
by voting a), in which case 2 is worse off than d.

We can represent the game by a 16× 4 matrix (Table 1).
A conditional vote ab for 1 means: in t she votes a and in u
she votes b. The outcome triples xyz represent: (worst and
only) outcome for 1 in equivalence class of t, (worst and
only) outcome for 1 in equivalence class of u; (worst) out-
come for 2 in equivalence class of {t, u}. The table contains
much symmetry. We omitted the table in terms of ranked
outcomes. A triple like aaa corresponds to ranked outcome
144: the equal winners a for voter 1 are ranked according
to different profiles, a is preferred in state t / in profile P ,
hence 1, but a is least preferred in state u / in profile P ′,
hence 4. In Table 1, the third of a triple xyz is necessarily
equal to the least preferred of x and y, but this is an artifact
of the example (namely, that the two equivalence classes for
1 together comprise the equivalence class for 2).

Example 5 We can add further uncertainty to Example 5.

1 2
a d
c c
b b
d a

——1——

1 2
a d
c c
b b
d a

——2——

1 2
d d
c c
b b
a a

s, P t, P u, P ′

Consider a third state that has the same profile P as the
actual state, but that has different epistemic properties: 2 is
not uncertain about the profile there, but 1 cannot distinguish
this from the other state for P wherein 2 is uncertain about
the profile. This is the profile model from Example 1.

Will 1 vote differently in s and t? In fact, she will not, nor
will 2, and the conditional equilibria votes remain the same;
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1\2 a b c d
aa aaa bbb aaa aaa
ab aba bbb aaa aaa
ac aaa bbb aca aca

ad aaa bbb aaa ada
ba baa bbb baa baa
bb bbb bbb bbb bbb
bc baa bbb bcb bcb

bd baa bbb bbb bdb
ca aaa bbb caa caa
cb aaa bbb cbb cbb
cc aaa bbb ccc ccc
cd aaa bbb ccc cdc
da aaa bbb caa daa
db aaa bbb cbb dbb
dc aaa bbb ccc dcc
dd aaa bbb ccc ddd

Table 1: Conditional equilibria

strictly, 2’s vote should depend on his equivalence class, but
as 2’s choice is the same either way, namely b, his vote is
more succinctly described as an unconditional: b.

We did not yet attempt to characterize conditional equi-
libria in the logic of the previous sections, as we did for
manipulation and knowledge of manipulation (Def. 9 and
13). This might be interesting for epistemic game theory [2,
22], but even so we only deal with the special case of voting
games.

6. DYNAMICS: REVEALING PREFERENCE
We can extend the modal logical setting for voting and

knowledge of the previous sections with logical operations
that are dynamic in character. In the context of voting, two
obvious choices here are public announcement of a proposi-
tion (such as an agent revealing her true preference), and
declaring a vote. Such actions can be modelled as semantic
operations Ps 7→ Ps|ϕ (for propositions ϕ, e.g., respectively,
ϕ = �i for revealing her preference) and Ps 7→ P�i:=>

s

(for voter i declaring vote �i). In this section we deal with
public announcement, in the next section, with public as-
signment.

A well-known dynamic feature of epistemic logics is truth-
ful public announcement [23]. Given a knowledge profile Ps,
the requirement for execution of public announcement of ϕ
is that ϕ is true in Ps, and the way to execute it is to re-
strict the model P to all the states where ϕ is true. We can
then investigate the truth of propositions in that model re-
striction: we can evaluate formulas of form [ϕ]ψ, for ‘After
announcement of ϕ, ψ (is true)’, such as: ‘After 1 reveals
her preference (truthful vote) to 2, 2 knows that he has a
successful manipulation’. We need to add a clause to the
logical language for these announcements and define their
semantics. The model restriction to the ϕ-states is denoted
as Ps|ϕ.

Definition 15 (Public announcement) We add an in-
ductive clause [ϕ]ϕ to the logical language L (i.e., a dynamic
modal operator with an argument of type formula followed by

a postcondition also of type formula). Its semantics is:

Ps |= [ϕ]ψ iff Ps |= ϕ implies Ps|ϕ |= ψ,

where Ps|ϕ = (S′,∼′1, . . . ,∼′n, π′) such that S′ = {t ∈ S :
Pt |= ϕ}, ∼′i = ∼i ∩ (S′ × S′), and π′(a �i b) = π(a �i

b) ∩ S′.

Example 6 Consider again Examples 1 and 4, with plural-
ity voting. In state t (for profile P ), after voter 1 informs
voter 2 of her true preference (a public announcement), the
uncertainty in the model disappears and 1 and 2 commonly
know that the profile is P . The equilibrium vote remains
(b, b). So this seems not a big deal.

On the other hand, in state u voter 1 has an incentive to
make her preference known to 2: after that, 2’s equilibrium
vote changes from b to d, and the equilibrium profile is now
(d, d). And that is a big deal.

The transitions can be depicted as follows:

1 2
a d
c c
b b
d a

⇐

1 2
a d
c c
b b
d a

——2——

1 2
d d
c c
b b
a a

⇒

1 2
d d
c c
b b
a a

t, P t, P u, P ′ u, P ′

We can now formalize statements as

Pt |= ¬K2 a �1 c ∧ [a �1 c]K2 a �1 c.

There are two obvious ways to interpret such public an-
nouncements in voting theory: (i) when voters make an-
nouncements about their own preferences (and such that
these announcements are trusted by other voters), and, more
properly from the viewpoint of public announcement logic,
(ii) when external observers, such as a central authority, re-
veal preferences to voters. The last can be interpreted as
holding a voting poll. Successive voting polls reduce the un-
certainty for the individual voter of the preferences (truthful
vote) of other voters. And this may determine the strategic
vote.

Two obvious results are that:

Proposition 3 Knowledge of weakly successful manipula-
tion is not preserved after update.

Proof. We recall Definition 11. For the weak form of
manipulation there were two requirements: (a) the profile
of at least one state in a given equivalence class for voter
i needs to have a manipulation, and (b) the profiles of all
states in that equivalence class must have either equal or
better outcome. The state with a manipulation need not
be the actual state, therefore, after model restriction the
existential requirement (a) may no longer hold. This holds
for ‘de re’ as well as ‘de dicto’ knowledge.

Proposition 4 Knowledge of successful manipulation is pre-
served after update.

Proof. The profiles of all states have a manipulation, a
universal property that is preserved after update.

7. DYNAMICS OF DECLARING VOTES
A voter i declaring a vote �i can be modelled in dynamic

epistemic terms as an assignment (a.k.a. ontic change, in
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contrast to an informative change like an announcement and
coalition deliberation). A succinct way to model this is to
expand the knowledge profiles with a duplicate set of propo-
sitional variables expressing voter preference, initially all set
to false. To distinguish the preference (truthful vote) from
the declared vote we keep writing �i for the former whereas
we write�i for the latter. So, the set of variables a �i b en-
code the preferences of the voters, whereas variables a�i b
encode their declared votes.

The action of declaring a vote �i, defined by preferences
a �i b, sets the value of the propositions encoding �i in
the model to true: these are the assignments a �i b := >
executed for all a�i b in�i. If we assume that the declared
vote is public, then this assignment can be executed in all
states of the knowledge profile. The dynamic epistemic logic
equivalent to achieve that is a public assignment [29, 27].

Definition 16 (Public assignment) We add an inductive
clause [a �i b := >]ϕ to the logical language. For the se-
mantics, given a knowledge profile Ps, Ps |= [a�i b := >]ϕ
iff (Pa�ib)s |= ϕ, where Pa�ib is as P except that π(a �i

b) = D(P). By abbreviation we define �i := > as the se-
quential execution of all assignments a �i b := T for all
terms a�i b in �i.

Assignments need not be to ‘true’ (>) but can be to any
formula. Such an assignment a �i b := ψ has semantics
π(a �i b) = {t ∈ D(P) | Pt |= ψ. Declaring one’s prefer-
ence, the truthful vote, can then be seen as the assignment
�i := �i.

Example 7 Consider a�1 b�1 c. The assignment declar-
ing this vote is the sequence of three assignments a�1 b :=
>, b�1 c := >, a�1 c := >, abbreviated as �i := >.

Example 8 Another continuation of Example 4 is with declar-
ing votes. If in state t voter 2 declares his vote, i.e., fixes d as
the candidate of his choice, 1 votes a, because with the given
tie b � a � d � c, her preference a now gets elected. We
can simulate this assignment as the sequence of d�2c := >,
d�2b := >, d�2a := > (or as the assignment of prefer-
ence to the declared vote: �2 := �2). For simplicity this is
depicted as making d bold.

1 2
a d
c c
b b
d a

——2——

1 2
d d
c c
b b
a a

⇒

1 2

a d
c c
b b
d a

——2——

1 2

d d
c c
b b
a a

t, P u, P ′ t, P ′ u, P ′

We have no results yet for the interaction of declaring
votes and revealing voter preference, but Stackelberg games
are the obvious games of interest here.

Axiomatization and completeness. All four logics pro-
posed in this work have sound and complete axiomatizations
with respect to the class of profile models. However, this is
not remarkable. We have therefore omitted these axiomati-
zations, for that see the cited references.

8. CHAIR AND COALITIONS
We have some modelling results concerning matters rel-

evant for social choice theory that we have chosen not to

incorporate in the main story, as not to lose focus there:
how to model the central authority, and group notions of
preference and knowledge.

8.1 Central authority
Apart from the n voters, it seems convenient to distin-

guish yet another agent: a designated agent named 0, the
central authority, or chair. We recall that the tie-breaking
preference �tie is a linear order on candidates. Apart from
applying the tie, the central authority may perform other
kinds of actions such as fixing the agenda. This also opens
the door to the logical modelling of well-studied problems
in computational social choice, such as control by the chair,
or determining possible winners. The main reason not to
model the chair it that her role is uniform throughout the
model (throughout any knowledge profile model). We as-
sume that there is no uncertainty on what the voting rule
(and the tie-breaking preference) is. So in that sense it is
exogenous.

The universal relation S×S on a knowledge profile model
can be seen as the indistinguishability relation of the agent
0, the central authority. On a connected model (i.e., when
there is always a path between any two states in the model)
this is the same as common knowledge of the voters. The
computational tasks of the central authority, be it deter-
mining the possible winners or finding strategic actions such
as agenda fixing or any other form of control, can only be
harder on knowledge profiles as it has to take uncertainty
into account. By identifying the central authority with an
agent with universal ignorance we can be precise about how
much harder.

A partial profile in the social choice literature corresponds
in a profile model to the set of profiles completing it, with
identity access for all voters, and indistinguishable for the
central authority, as in the following example. (The set of
partial profiles then seems to consist of such disconnected
parts.)

Example 9 The following depicts the partial profile (b �1

a �1 c, a �2 {b, c}). Voters 1 and 2 have identity access on
the profile model. The central authority is agent 0.

1 2
b a
a b
c c

——0——

1 2
b a
a c
c b

8.2 Coalitional manipulation
Group notions play an important role in social choice the-

ory. We consider coalitions G ⊆ N . As straightforward
generalizations of (individual) preference �i, (individual)
manipulation, (weak) equilibrium, and (weak) equilibrium
of a conditional voting game, we can also define: coalitional
preference �G, and successful manipulation by a coalition G.
A profile P ′ is a strong equilibrium profile iff no coalition has
a successful manipulation.

Group notions also play an important role in epistemic
logic. Two notions useful in our setting are common knowl-
edge and distributed knowledge. Given a knowledge profile,
a proposition is commonly known if it is true in all states
reachable (from the actual state of the knowledge profile)
by arbitrarily long finite paths in the model (reflexive tran-
sitive closure of access for all voters in the coalition). With
the interpretation of common knowledge of coalition G we
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can thus associate an equivalence relation ∼G (defined as
(
⋃

i∈G ∼i)
∗). A proposition is distributedly known in a

knowledge profile, if it is true in the intersection of accessi-
bility relations in the actual state (the relation

⋂
i∈G ∼i).

If there is no uncertainty about the profile, the voters have
common knowledge about the profile. This assumption is al-
most always made in social choice theory. It is important
to observe that in the presence of uncertainty this strong
form of common knowledge disappears, but that still some
form of common knowledge remains: all agents have com-
mon knowledge of the structure of the profile model. This
means that they have common knowledge of the set of states,
the accessibility relations of the knowledge model, and what
profiles these states stand for. The only thing they do (or
rather, may) not know is the designated point of the profile
model: what the preferences (truthful votes) are.

Coalitions play a big role in voting, partly because in re-
alistic settings the power of individual voters is very limited.
Now by analogy, just as the vote of an individual agent de-
pends on her knowledge, the vote of a coalition would seem
to depend on the common knowledge of that coalition. But
that seems wrong. In voting theory, the power of a coalition
means the power of a set of agents that can decide on a joint
action as a result of communication between them. Com-
munication makes the uncertainty about each others’ pro-
files disappear. In terms of knowledge profiles, this means
that we are talking about another model, namely the model
where for all agents i ∈ G, ∼i is refined to

⋂
i∈G ∼i. What

determines the voting power of a coalition seems rather its
distributed knowledge.

We are still exploring the implications of these observa-
tion, and should note that also other choices can be made
to model the power of a coalition in voting.

Knowledge of manipulation and equilibria of conditional
voting games can also be defined for coalitions but have been
left out of this presentation.

9. CONCLUSION, FURTHER RESEARCH
We presented a formal logical semantics for the interac-

tion of voting and knowledge. The semantic primitive is the
knowledge profile: a profile including uncertainty of voters
about what the actual profile is. This reveals different no-
tions for knowledge of manipulation, such as de re knowledge
of manipulation and de dicto knowledge of manipulation,
and novel notions for equilibria, such as conditional equi-
librium for risk-averse voters. Dynamic operations on such
knowledge profiles can also be modelled, and their effects
on manipulation, where we distinguished public announce-
ments, such as revealing true preferences, from public as-
signments, i.e., declaring votes.

As far as the formalization is concerned, our setting is
very similar to that of the recent literature on robust mech-
anism design [7], which generalizes classical mechanism de-
sign by weakening the common knowledge assumptions of
the environment among the players and the planner. In [7]
uncertainty is modelled with information partitions. The
main technical difference is that in our setting, as in classi-
cal social choice theory, preferences are ordinal, whereas in
(robust) mechanism design preferences are numerical pay-
offs, which allows for payments (which we don’t). This con-
nection with mechanism design, however, is certainly worth
exploring further. (We are very grateful to an anonymous
reviewer for pointing this connection to us.)

The logical setting defined in the paper allows us to repre-
sent various classes of situations already studied specifically
in (computational) social choice, thus offering a general rep-
resentation framework in which, of course, new classes of
problems will be representable as well, thus providing an
homogeneous, unified representation framework. In some of
the classes of problems we need one more agent, the chair.
The chair may have preferences, but does not vote. In some
classes of problems the dynamics plays a crucial role in defin-
ing these problems, both as announcements (revealing pref-
erence) and assignments (declaring votes). Here are a few
such problems:

1. possible and necessary winners [17]: there is one more
agent (the chair), who has an incomplete knowledge
of each of the votes; the voters’ knowledge is does not
matter. x is a possible winner if the chair does not
know that x is not a (co)winner, and a necessary win-
ner if the chair knows that x is a (co)winner

2. Stackelberg voting games [30]: voters express their votes
in sequence, in a commonly known order. Their pref-
erences are common knowledge. The votes are an-
nounced publicly and each voter thus know the vote
of the voters which speak before him.

3. sequential voting games with abstention [10]: voters ex-
press their votes in sequence, preferences are common
knowledge; the voting rule is plurality; voters have the
choice to vote or to abstain; voting is costly.

4. control by adding or removing voters or candidates [6]:
the chair has a perfect knowledge of the voters’ pref-
erences; voters have no knowledge (and thus are sup-
posed to vote truthfully); the chair may add or remove
some candidates as well as register or unregister voters.

5. sequential voting on multi-issue domains [18]: the set
of alternatives is a combinatorial domains, therefore
the valuations are preference relations over tuples of
values; voters vote in sequence, issue by issue, and the
value for the (binary) issue is chosen by majority, and
then communicated to the voters.
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ABSTRACT
Propositional Dynamic Logic or PDL was invented as a logic
for reasoning about regular programming constructs. We
propose a new perspective on PDL as a multi-agent strategic
logic (MASL). This logic for strategic reasoning has group
strategies as first class citizens, and brings game logic closer
to standard modal logic. We demonstrate that MASL can
express key notions of game theory, social choice theory and
voting theory in a natural way, we give a sound and complete
proof system for MASL, and we show that MASL encodes
coalition logic. Next, we extend the language to epistemic
multi-agent strategic logic (EMASL), we give examples of
what it can express, we propose to use it for posing new
questions in epistemic social choice theory, and we give a cal-
culus for reasoning about a natural class of epistemic game
models. We end by listing avenues for future research and by
tracing connections to a number of other logics for reasoning
about strategies.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic]: Modal Logic; F.4.1 [Mathe-
matical Logic]: Proof Theory; I.2.3 [Artificial Intelli-
gence]: Deduction and Theorem Proving

Keywords
Strategies, Strategic Games, Coalition Logic, Modal Logic,
Dynamic Logic, Voting Theory

1. INTRODUCTION
In this paper we propose a simple and natural multi-agent

strategy logic, with explicit representations for individual
and group strategies. The logic can be viewed as an ex-
tension of the well-known propositional logic of programs
PDL. We show that the logic can express key notions of
game theory and voting theory, such as Nash equilibrium,
and the properties of voting rules that are used to prove the
Gibbard-Satterthwaite theorem.

Unlike most other game logics, our logic uses explicit rep-
resentations of group strategies in N -player games, with
N ≥ 2, and treats coalitions as a derived notion.

∗A full version of this paper is available at www.cwi.nl/
~jve/papers/13

TARK 2013, Chennai, India.
Copyright 2013 by the author.

The logic we propose follows a suggestion made in Van
Benthem [4] (in [11]) to apply the general perspective of ac-
tion logic to reasoning about strategies in games, and links
up to propositional dynamic logic (PDL), viewed as a gen-
eral logic of action [29, 19]. Van Benthem takes individual
strategies as basic actions and proposes to view group strate-
gies as intersections of individual strategies (compare also
[1] for this perspective). We will turn this around: we take
the full group strategies (or: full strategy profiles) as basic,
and construct individual strategies from these by means of
strategy union.

A fragment of the logic we analyze in this paper was pro-
posed in [10] as a logic for strategic reasoning in voting (the
system in [10] does not have current strategies).

The plan of the paper is as follows. In Section 2 we re-
view key concepts from strategic game theory, and hint at
how these will show up in our logic. Section 3 does the
same for voting theory. Section 4 gives a motivating ex-
ample about coalition formation and strategic reasoning in
voting. Section 5 presents the language of MASL, and gives
the semantics. Next we show, in Section 6, that the key
concepts of strategic game theory and voting theory are
expressible in MASL. Section 7 extends the proof system
for PDL to a sound and complete proof system for MASL.
Section 8 gives an embedding of coalition logic into MASL.
Section 9 extends MASL to an epistemic logic for reason-
ing about knowledge in games, Section 10 gives examples of
what EMASL can express, and Section 11 sketches a calcu-
lus for EMASL. Section 12 concludes.

Key contributions of the paper are a demonstration of how
PDL can be turned into a game logic for strategic games, and
how this game logic can be extended to an epistemic game
logic with PDL style modalities for game strategies and for
epistemic operators. This makes all the logical and model
checking tools for PDL available for analyzing properties of
strategic games and epistemic strategic games.

2. GAME TERMINOLOGY
A strategic game form is a pair

(n, {Si}i∈{1,...,n})

where {1, . . . , n} with n > 1 is the set of players, and each
Si is a non-empty set of strategies (the available actions for
player i). Below we will impose the restriction that the game
forms are finite: each Si is a finite non-empty set.

We useN for the set {1, . . . , n}, and S for S1×· · ·×Sn, and
we call a member of S a strategy profile. Thus, a strategy
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profile s is an n-tuple of strategies, one for each player. If s
is a strategy profile, we use si or s[i] for its i-th component.
Strategy profiles are in one-to-one correspondence to game
outcomes, and in fact we can view s ∈ S also as a game
outcome [22].

Consider the prisoner’s dilemma game PD for two players
as an example. Both players have two strategies: c for co-
operate, d for defect. The possible game outcomes are the
four strategy profiles (c, c), (c, d), (d, c), (d, d).

c d
c c, c c, d
d d, c d, d

It is useful to be able to classify game outcomes. A P -
outcome function for game form (N,S) is a function o :
S → P .

For the example of the PD game, o could be a function
with range {x, y, z, u}2, as follows:

c d
c x, x y, z
d z, y u, u

If C ⊆ N , we let SC =
Q

i∈C Si be the set of group
strategies for C. If s ∈ SC and t ∈ SN−C we use (s, t) for
the strategy profile that results from combining s and t, i.e.,
for the strategy profile u given by

u[i] = s[i] if i ∈ C, u[i] = t[i] otherwise.

The group strategies for the PD game coincide with the
strategy profiles.

An abstract game G is a tuple

(N,S, {≥i}i∈N ),

where (N,S) is a game structure, and each ≥i is a prefer-
ence relation on S1 × · · · × Sn. These preference relations
are assumed to be transitive, reflexive, and complete, where
completeness means that for all different s, t ∈ S, one of
s ≥i t, t ≥i s holds.

In the PD game example, with the output function as
above, the preferences could be fixed by adding the infor-
mation that z > x > u > y.

The preference relations may also be encoded as numerical
utilities. A payoff function or utility function for a player i
is a function ui from strategy profiles to real numbers. A
payoff function ui represents the preference ordering ≥i of
player i if s ≥i t iff ui(s) ≥ ui(t), for all strategy profiles
s, t.

A strategic game G is a tuple

(N, {Si}i∈N , {ui}i∈N )

where N = {1, . . . , n} and ui : S1 × · · · × Sn → R is the
function that gives the payoff for player i. Aim of players
in the game is to maximize their individual payoffs. We will
use u for the utility function, viewed as a payoff vector.

As an example, the PD game with payoffs as in the fol-
lowing picture, is a representation of the abstract version
above.

c d
c 2, 2 0, 3
d 3, 0 1, 1

It should be noted that payoff functions are a special case
of output functions. In the example of PD with payoffs,
we can view the payoff function as an output function with
range {0, 1, 2, 3}2.

Below, we will assume that output functions are of type
o : S → P , and we will introduce proposition letters to
range over P . This allows us to view the game forms as
modal frames, and the games including the output functions
as models, with the output function fixing the valuation by
means of “the valuation makes p true in a state s iff s ∈
o−1(p).”

A special case of this is the case where the P are payoff
vectors. Valuations that are payoff vectors allow us to ex-
press preferences of the players for an outcome as boolean
formulas (see below).

Let (s′i, s−i) be the strategy profile that is like s for all
players except i, but has si replaced by s′i. A strategy si is
a best response in s if

∀s′i ∈ Si ui(s) ≥ ui(s
′
i, s−i).

A strategy profile s is a (pure) Nash equilibrium if each
si is a best response in s:

∀i ∈ N ∀s′i ∈ Si ui(s) ≥ ui(s
′
i, s−i).

A game G is Nash if G has a (pure) Nash equilibrium.
These key notions of game theory will reappear below

when we discuss the expressiveness of MASL.

3. VOTING AS A MULTI-AGENT GAME
Voting can be seen as a form of multi-agent decision mak-

ing, with the voters as agents [14]. Voting is the process
of selecting an item or a set of items from a finite set A of
alternatives, on the basis of the stated preferences of a set
of voters. See [7] for a detailed account.

We assume that the preferences of a voter are represented
by a ballot, where a ballot is a linear ordering of A. Let
ord(A) be the set of all ballots on A.

If there are three alternatives a, b, c, and a voter prefers a
over b and b over c, then her ballot is abc.

Assume the set of voters is N = {1, . . . , n}. If we use b,b′

to range over ballots, then a profile P is a vector (b1, . . . ,bn)
of ballots, one for each voter. If P is a profile, we use Pi for
the ballot of voter i in P.

The following represents the profile P where the first voter
has ballot abc, the second voter has ballot abc, the third
voter has ballot bca, and so on:

(abc, abc, bca, abc, cab, acb).

A voting rule V for set of alternatives A is a function from
A-profiles to P+(A) (the set of non-empty subsets of A). If
V (P) = B, then the members of B are called the winners of
P under V . A voting rule is resolute if V (P) is a singleton
for any profile P.

Absolute majority is the voting rule that selects an alter-
native with more than 50 % of the votes as winner, and re-
turns the whole set of alternatives otherwise. This is not the
same as plurality, which selects an alternative that has the
maximum number of votes as winner, regardless of whether
more than half of the voters voted like this or not.

Strategizing is replacing a ballot b by a different one, b′,
in the hope or expectation to get a better outcome, where
better is“closer to b” in some sense. There are many ways to
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interpret ‘better’, and the particular choice does not matter.
The way we will adopt (suggested in [32]) is to stipulate that
X is better than Y if X weakly dominates Y , that is, if every
x ∈ X is at least as good as every y ∈ Y and some x ∈ X is
better than some y ∈ Y .

Formally: If X,Y ⊆ A X 6= ∅, Y 6= ∅, and b ∈ ord(A),
then X >b Y if ∀x ∈ X∀y ∈ Y : x = y or x is above y in b,
and ∃x ∈ X∃y ∈ Y : x is above y in b.

Let P ∼i P′ express that profiles P and P′ differ only in
the ballot of voter i.

A voting rule is strategy-proof if P ∼i P′ implies V (P) ≥b
V (P′), where b = Pi (so ≥b expresses ‘betterness’ accord-
ing to the i-ballot in P).

To analyze voting as a game, think of casting an individual
vote as a strategy. If we assume that the voting rule is fixed,
this fixes the game outcome for each profile. The definition
of ‘betterness’ determines the pay-off.

Player strategies are the votes the players can cast, so
the set of individual strategies is the set A, for each player.
Strategy profiles are the vectors of votes that are cast. Out-
comes are determined by the voting rule; if the voting rule
is resolute, outcomes are in A, otherwise in P+(A). Pref-
erences are determined by the voter types, plus some stipu-
lation about how voters value sets of outcomes, given their
type, in the case of non-resolute voting rules.

4. GROUP ACTION IN VOTING GAMES
To illustrate strategic reasoning and coalition formation

in voting, we give an extended example. Suppose there are
three voters 1, 2, 3 and three alternatives a, b, c. Suppose the
voting rule is plurality. Then each player or voter has the
choice between actions a, b, and c.

Suppose 1 is the row player, 2 the column player, and 3
the table player. Then the voting outcomes are given by:

a:

a b c
a a a a
b a b a, b, c
c a a, b, c c

b:

a b c
a a b a, b, c
b b b b
c a, b, c b c

c:

a b c
a a a, b, c c
b a, b, c b c
c c c c

To determine the payoff function, we need information
about the types of the voters. Suppose voter 1 has type
(true ballot) abc. Then the betterness relation for 1 for the
possible outcomes of the vote is given by:

a > b > c and a > {a, b, c} > c.

Observe that neither {a, b, c} > b nor b > {a, b, c}. So let’s
assume these give the same payoff, and fix the payoff func-
tion for voters of type abc as

f(a) = 2, f(b) = f({a, b, c}) = 1, f(c) = 0.

If we do similarly for the other voter types, then this fixes
the strategic game for voting according to the plurality rule
over the set of alternatives {a, b, c}.

So suppose 1 has ballot abc, 2 has ballot bca, and 3 has
ballot cab. This gives the following strategic game form:

a:

a b c
a (2, 0, 1) (2, 0, 1) (2, 0, 1)

b (2, 0, 1) (1, 2, 0) (1, 1, 1)

c (2, 0, 1) (1, 1, 1) (0, 1, 2)

b:

a b c
a (2, 0, 1) (1, 2, 0) (1, 1, 1)

b (1, 2, 0) (1, 2, 0) (1, 2, 0)

c (1, 1, 1) (1, 2, 0) (0, 1, 2)

c:

a b c
a (2, 0, 1) (1, 1, 1) (0, 1, 2)

b (1, 1, 1) (1, 2, 0) (0, 1, 2)

c (0, 1, 2) (0, 1, 2) (0, 1, 2)

If the voters all cast their vote according to their true
ballot, then 1 votes a, 2 votes b and 3 votes c, and the
outcome is a tie, {a, b, c}, with payoff (1, 1, 1). This is a
Nash equilibrium: the vote cast by each player is a best
response in the strategy profile.

Now let’s change the voting rule slightly, by switching
to plurality voting with tie breaking, where abc as the tie
breaking order. This changes the plurality rule into a reso-
lute voting rule. The new strategic game becomes:

a:

a b c
a (2, 0, 1) (2, 0, 1) (2, 0, 1)

b (2, 0, 1) (1, 2, 0) (2, 0, 1)

c (2, 0, 1) (2, 0, 1) (0, 1, 2)

b:

a b c
a (2, 0, 1) (1, 2, 0) (2, 0, 1)

b (1, 2, 0) (1, 2, 0) (1, 2, 0)

c (2, 0, 1) (1, 2, 0) (0, 1, 2)

c:

a b c
a (2, 0, 1) (2, 0, 1) (0, 1, 2)

b (2, 0, 1) (1, 2, 0) (0, 1, 2)

c (0, 1, 2) (0, 1, 2) (0, 1, 2)

If the players all vote according to their true preference,
the outcome is a because of the tie breaking, with payoff
given by (2, 0, 1). But this is no longer a Nash equilibrium,
for player 2 can improve his payoff from 0 to 1 by casting vote
c, which causes the outcome to change into c, with payoff
(0, 1, 2). The strategy triple (a, c, c) is a Nash equilibrium.

So we are in a situation where the voting rule seems to
favour voter 1 with ballot abc, because the tie breaking rule
uses this order for tie breaking, and still the voter with this
ballot ends up losing the game, because the other two players
have an incentive to form a coalition against player 1.

5. A LANGUAGE FOR MASL
We will now turn to the description of strategic games

like the PD game and the voting game in terms of actions
in the spirit of PDL. We will take as our basic actions the
full strategy profiles.

The reader is urged to think of a state in a game as a
strategy vector where each player has determined her strat-
egy. Strategy expressions in the MASL language are inter-
preted as relations on the space of all game states. Individual
strategies emerge as unions of group strategies. An example
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cc cd

dc dd

c,?? c,??

c,??

c,?? c,?? c,??c,??

Figure 1: Cooperation Strategy for Player 1 in PD
Game

is the strategy for the first player in the PD game to coop-
erate. This individual strategy is represented as (c, ??), and
interpreted as in Figure 1.

Strategy terms of MASL are:

ti ::= a | ?? | !!

Here i ranges over the set of players N ; and a ranges over
the set of all strategies Si for player i. A random term “??”
denotes an individual strategy for an adversary player, and
“!!” denotes the current strategy of a player. Random terms
serve to model what adversaries do, and current terms serve
to model what happens when players stick to a previous
choice.

As will become clear below, terms of the form ?? are used
for succinctness; they could be dispensed with in favour of
explicit enumerations of individual strategies.

From strategy terms we construct MASL strategy vectors,
as follows:

c ::= (t1 . . . , tn)

The MASL strategy vectors occur as atoms and as modali-
ties in MASL formulas. Allowing strategy terms as atomic
formulas allows for succinct classification of game situations.

We assume that p ranges over a set of game outcome val-
ues, that is: we assume an outcome function o : S → P .
The language is built in the usual PDL manner by mutual
recursion of action expressions and formulas:

φ ::= > | c | p | ¬φ | φ1 ∧ φ2 | [γ]φ

γ ::= c | ?φ | γ1; γ2 | γ1 ∪ γ2 | γ∗

We will employ the usual abbreviations for ⊥, φ1 ∨ φ2,
φ1 → φ2, φ1 ↔ φ2 and 〈γ〉φ.

Let s ∈ S. Then s is a strategy profile, with individual
strategies for player i taken from Si. We refer to the i-
component of s as s[i]. Thus, if s = (a, b, b), then s[1] = a.

Let i ∈ N . Then [[·]]Si,s,i is a function that maps each ti
to a subset of Si, and [[·]]S,s is a function that maps each
strategy vector to a set of strategy profiles ⊆ S, as follows:

[[a]]Si,s,i = {a}
[[??]]Si,s,i = Si

[[!!]]Si,s,i = {s[i]}

[[(t1 . . . , tn)]]S,s = [[t1]]S1,s,1 × · · · × [[tn]]Sn,s,n

For example, let the set of individual strategies for each
player be A = {a, b, c}, and let n = 3 (as in the voting exam-
ple in Section 4). Then a strategic change by the first player
to b, while both other players stick to their vote is expressed
as (b, !!, !!). In a game state (a, b, b) this is interpreted as
{((a, b, b), (b, b, b))}.

A strategic change by the first player to b, given that the
second player sticks to her vote, while the third player may
or may not change, is expressed by (b, !!, ??). In the context of
a strategy profile s = (a, b, c), this is interpreted as follows:

[[(b, !!, ??)]]A,s = {b} × {b} × {a, b, c}.

(??, c, c) represents the group strategy where players 2 and 3
both play c. This is a strategy for the coalition of 2 and 3
against 1.

The formula that expresses that the coalition of 2 and 3
can force outcome c by both voting c is (abbreviating the
singleton outcome {c} as c):

[(??, c, c)]c.

The strategy (??, ??, c) is different from (!!, !!, c), for the lat-
ter expresses the individual strategy for player 3 of playing
c, in a context where the two other players do not change
their strategy.

The relational interpretation for coalition strategies fol-
lows the recipe proposed in [4], but with a twist. We inter-
pret a strategy for an individual player as a relation on a set
of game states, by taking the union of all full strategy rela-
tions that agree with the individual strategy. So the strate-
gies for the individual players are choices that emerge from
taking unions of vectors that determine the game outcome
completely. If we assume that the players move together,
without information about moves of the other players, then
the individual strategies are choices, but an individual choice
does not determine an outcome. Only the joint set of all
choices does determine an outcome.

So if we represent a strategy for player i as a relation, then
we have to take into account that the individual choice of i
does need information about how the others move to deter-
mine the outcome. The relation for the individual choice a
of player i is given by

[[(??, · · · , ??, a, ??, · · · , ??)]]S,s

= S1 × · · · × Si−1 × {a} × Si+1 × · · · × Sn.

This relation is computed from all choices that the other
players could make (all strategies for the other players).

Compare this with

[[(!!, · · · , !!, a, !!, · · · , !!)]]S,s =

{s[1]} × · · · {s[i− 1]} × {a} × {s[i+ 1]} × · · · {s[n]}.
This is the action where player i switches to a, while all
other players stick to their strategies.

The picture in Figure 2 gives the interpretation of the
(c, !!) strategy vector in the PD game.

This generalizes to coalitions, as follows. A strategy for a
coalition is a choice for each of the coalition members, and
the corresponding relation is the union of all full strategy
relations that agree with the coalition strategy. Compare the
definition of the [[·]]S,s function for strategy vectors above.

This gives an obvious recipe for turning strategic game
forms with outcome functions into Kripke models. Let (N,S)

209



cc cd

dc dd

c,!! c,!!

c,!! c,!!

Figure 2: Interpretation of (c, !!) in PD Game

be a strategic game form and let o : S → P be an outcome
function, and let s ∈ S be a strategy profile.

Then the truth definition for MASL, with respect to M =
(N,S, o) and s is given by:

M, s |= > always

M, s |= c iff s ∈ [[c]]S,s

M, s |= p iff s ∈ o−1(p)

M, s |= ¬φ iff M, s 6|= φ

M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2

M, s |= [γ]φ iff for all t with (s, t) ∈ [[γ]]M :

M, t |= φ

[[c]]M = {(s, t) | t ∈ [[c]]S,s}
[[?φ]]M = {(s, s) |M, s |= φ}

[[γ1; γ2]]M = [[γ1]]M ◦ [[γ2]]M

[[γ1 ∪ γ2]]M = [[γ1]]M ∪ [[γ2]]M

[[γ∗]]M = ([[γ]]M )∗,

where ◦ is used for relation composition, and ∗ for reflexive
transitive closure.

Note that it is assumed that the signature of the lan-
guage matches that of the model: for interpretation in M =
(N,S, o) with o : S → P , we assume that strategy vectors of
the language have length n, that the terms ti of the language
get interpreted as subsets of Si, and that the proposition-
ional atoms range over P .

6. EXPRESSIVENESS OF MASL
We give examples to demonstrate that MASL expresses

key concepts of game theory, voting theory, social choice
theory and iterated game playing, in a natural way.

Abbreviations.
Let (ia, !!) abbreviate the strategy vector

(!!, · · · , !!, a, !!, · · · , !!),

with a in i-th position, and !! everywhere else.
Using this, let [(i, !!)]φ abbreviate

V
a∈Si

[(ia, !!)]φ. Then

[(i, !!)]φ expresses that all strategies to which player i can
switch from the current strategy profile result in a strategy

profile where φ holds (provided that the other players keep
their strategies fixed).

Let (ia, ??) abbreviate the strategy vector

(??, · · · , ??, a, ??, · · · , ??),

with a in i-th position, and ?? everywhere else.
Using this, let [(i, ??)]φ abbreviate

V
a∈Si

[(ia, ??)]φ. Then

[(i, ??)]φ expresses that all strategies for i guarantee φ, no
matter what the other players do.

Let (??) abbreviate (??, · · · , ??) (the strategy vector that
everywhere has ??). Then 〈(??)〉φ expresses that in some
game state φ holds.

Representing Payoffs.
To represent payoffs, we will assume that basic proposi-

tions are payoff vectors u, and that the payoff values are in
a finite set U (the set of all utilities that can be assigned in
the game). Next, define ui ≥ v as

W
w∈U,w≥v u[i] = w and

ui > v as
W

w∈U,w>v u[i] = w. Then ui ≥ v expresses that
player i gets at least v, and ui > v expresses that player i
gets more than v (compare [34] for a similar approach).

Weak Dominance.
Using the above abbreviations, we can express what it

means for an i-strategy a to be weakly dominant. Intuitively,
it means that a is as least as good for i against any moves
the other players can make as any alternative b for a. In our
logic: ^

v∈U

^
b∈A−{a}

[(ib, ??)](ui ≥ v → 〈(ia, !!)〉ui ≥ v).

Nash Equilibrium.
The following formula expresses that the current strategy

profile is a Nash equilibrium:^
i∈N

_
v∈U

(ui ≥ v ∧ [(i, !!)]¬ui > v).

The following formula expresses that the game is Nash:

〈(??)〉
^
i∈N

_
v∈U

(ui ≥ v ∧ [(i, !!)]¬ui > v).

Plurality Voting.
For the application of MASL to voting, assume the output

function produces an ordered pair consisting of the outcome
of the voting rule for a profile, plus the utility vector for the
players for that profile.

Let A be the set of alternatives. Let Pa be the set of all
full strategy vectors where a gets more votes than any other
alternative. Then ^

x∈A

^
c∈Px

[c]x

expresses that the game is a voting game with plurality rule.
This is easily extended to a formula that expresses the rule
of plurality voting with tie breaking.

Resoluteness.
Assume that the proposition a expresses that a is among

the winners given the current profile. A voting rule is res-
olute if there is always exactly one winner. Viewing voting
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according to a voting rule as a game, the following formula
expresses that the game is resolute:

[(??)]
_

a∈A

(a ∧
^

b∈A−{a}

¬b).

Strategy-Proofness.
A voting rule is strategy proof if it holds for any profile

S and for any player (voter) i that changing his vote (ac-
tion) does not give an outcome that is better (according to
the preferences of i in S) that the outcome in S. This is
expressed by the following formula:

[(??)]
^
i∈N

_
v∈U

(ui ≥ v ∧ ¬〈(i, !!)〉ui > v).

Non-Imposedness.
A voting rule is (weakly) non-imposed if at least three

outcomes are possible. Viewing voting as a game, we can
use the following formula to express this:_

a∈A

_
b∈A−{a}

_
c∈A−{a,b}

(〈(??)〉a ∧ 〈(??)〉b ∧ 〈(??)〉c).

Dictatorship.
In a multi-agent game setting, a dictator is a player who

can always get what he wants, where getting what you want
is getting a payoff that is at least as good as anything any
other player can achieve. Here is the formula for that, using
the abbreviation (i, ??):_

v∈U

^
j∈N−{i}

[(??)](¬uj > v ∧ 〈(i, !!)〉ui ≥ v).

Gibbard-Satterthwaite.
The classic Gibbard-Satterthwaite theorem [15, 30] states

that all reasonable voting rules allow strategizing, or put
otherwise, that no reasonable voting rule is strategy-proof.

Resoluteness, strategy-proofness, non-imposedness and dic-
tatorship are the four properties in terms of which the Gibbard-
Satterthwaite theorem is formulated, and in fact, the theo-
rem can be stated and proved in our logic. What the theo-
rem says semantically is:

Res,SP,NI |= Dict.

It follows from the completeness of the logic (Section 7 be-
low) that for every choice of MASL language (where the
choice of language fixes the number of players/voters N and
the set of alternatives A, with |A| > 3), the following can be
proved:

Res,SP,NI ` Dict.

Meta-Strategies: Tit-for-Tat.
Tit-for-tat as a meta-strategy for the PD game [3] is the

instruction to copy one’s opponents last choice, thereby giv-
ing immediate, and rancour-free, reward and punishment.
Figure 3 gives a picture of the tit-for-tat meta-strategy for
player 2, with the states indicating the outcomes of the last
play of the game.

cc cd

dc dd

??, c

??, d

??, c

??, c

??, d

??, d

Figure 3: Tit-for-tat Meta-Strategy for Player 2 in
PD Game

This works because we may think of the current state of
the game as the result of the last play of PD, remembered in
the state. Testing the state yields the clue for whether the
reward action (??, c) or the punishment action (??, d) has to
be executed. Thus, the following MASL action expression
describes this meta-strategy for player 2.

(?(c, ??); (??, c) ∪ ?(d, ??); (??, d))∗

What this says is: if the last action by the opponent was a
c, then reward, otherwise (the last action by the opponent
was a d) punish. To turn this into a meta-strategy for player
1, just swap all pairs:

(?(??, c); (c, ??) ∪ ?(??, d); (d, ??))∗

Note that tit-for-tat for the PD game boils down to the same
thing as the copycat meta-strategy, where a player always
copies the last move of the opponent. So the player 1 copycat
and player 2 copycat meta-strategies for the PD game are
also given by the above strategy expressions.

7. A COMPLETE CALCULUS FOR MASL
To axiomatize this logic, we can use the well-known proof

system for PDL [31, 23], with appropriate axioms for the
strategy vectors added.

Call a strategy vector c = (t1 . . . , tn) determined if for no
i ∈ N it is the case that ti = ??.

Vector axioms are:

1. Effectivity:

[c]c.

2. Seriality:

〈c〉>.

3. Functionality:

〈c〉φ→ [c]φ

for all determined strategy vectors c.

4. Adversary power:
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Let c have ?? in position i, and let ci
a be the result of

replacing ?? in position i in c by a. Then:

[c]φ↔
^

a∈Si

[ci
a]φ.

Note that this uses the assumption that the set Si of
available actions for player i s finite.

5. Determinate current choice:

Let c have !! in position i, and let ci
a be the result of

replacing !! at position i in c by a. Then:

(ia, !!)→ (c↔ ci
a).

The effectivity axiom says that execution of a strategy vector
always makes the vector true.

The seriality axiom says that every strategy vector can be
executed.

The functionality axiom says that determined strategy
vectors are functional. This expresses that the outcome is
determined if every player makes a determinate choice. This
axiom does not hold for vectors that are not determined.
The vector (c, ??) has |S2| possible outcomes.

The adversary power axiom spells out what an adversary
player can do. This defines the meaning of ?? terms.

The determinate current choice axiom fixes the meaning
of !! terms.

These axioms are sound for the intended interpretation.
Completeness can be shown by the usual canonical model
construction for PDL (see [19, 6]):

Theorem 1. The calculus for MASL is complete.

MASL has the same complexity for model checking and
satisfiability as PDL: Model checking for PDL and MASL
is PTIME-complete [20]. Sat solving for PDL and MASL is
EXPTIME-complete [6]. Model checking for formulas that
use only the modal fragment of MASL (modalities without
Kleene star) can be done more efficiently, e.g., by using the
algorithm of [13] that runs in time O(|M | × |φ|).

The important thing to note is that the standard model
checking tools for modal logic and PDL can now be used for
strategic games, using the MASL extension of PDL.

8. CONNECTION TO COALITION LOGIC
Our approach links directly to coalition logic [27] (see also

[4] for this connection). Coalition logic has the following
syntax:

φ ::= > | p | ¬φ | φ ∧ φ | [C]φ

where p ranges over basic propositions, and C ⊆ N , with
N the set of agents. Intended meaning of [C]φ is that the
coalition C is able to force the game outcome to be in φ.

Again, let (N,S) be a strategic game form, let o : S →
P be an outcome function, and let s ∈ S be a strategy
profile. Assume models M of the form (N,S, o). Coalition
logic, the way it is presented in [27], is a bit mysterious
about how valuations enter into game forms, but we can fix
this by using the output functions in the same manner as
in the semantics of MASL. Formulas of coalition logic are
interpreted in strategy profiles s of M , as follows.

Recall that SC is the set of group strategy functions for C,
and that if s ∈ SC and t ∈ SN−C , then (s, t) is the strategy

profile where members of C choose according to s and all
others choose according to t.

M, s |= p iff s ∈ o−1(p).

M, s |= ¬φ iff M, s 6|= φ.

M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2.

M, s |= [C]φ iff ∃t ∈ SC∀u ∈ SN−C

M, (t, u) |= φ.

Let Ċ be the set of all strategies for coalition C against
all other players.

If we assume that for each player i the set Si of possible
strategies for i is finite, then Ċ is finite as well, and Ċ is
defined by

{(t1, . . . , tn) | ti ∈ Si if i ∈ C, ti = ?? otherwise }.

This means we can construct the formula_
c∈Ċ

[c]φ.

The translation instruction Tr for turning coalition logic into
MASL becomes:

Tr(p) := p

Tr(¬φ) := ¬Tr(φ)

Tr(φ1 ∧ φ2) := Tr(φ1) ∧ Tr(φ2)

Tr([C]φ) :=
_
c∈Ċ

[c]Tr(φ).

Induction on formula structure now proves:

Theorem 2. M, s |=CL φ iff M, s |=MASL Tr(φ).

This assumes that the set of strategies for each agent is
finite, as this is a basic assumption of MASL. This finite-
ness restriction aside, the main difference between coalition
logic and MASL is that MASL is explicit about coalition
strategies where coalition logic is not. Many key concepts
of strategic game theory and voting theory that MASL can
express are beyond the reach of coalition logic.

9. EPISTEMIC MASL
MASL uses PDL as an action logic for game actions. It

is well-known that PDL also can be given an epistemic in-
terpretation [5]. The language of Epistemic Multi Agent
Strategy Logic (EMASL) combines the strategy interpreta-
tion of PDL with the epistemic interpretation of PDL. For
that, a new set of PDL actions is thrown in, but this time
with an epistemic/doxastic interpretation. Here is the ex-
tended language:

φ ::= > | c | p | ¬φ | φ1 ∧ φ2 | [γ]φ | [α]φ

γ ::= c | ?φ | γ1; γ2 | γ1 ∪ γ2 | γ∗

α ::= i | ǐ |?φ | α1;α2 | α1 ∪ α2 | α∗

i ranges over the set N of agents. ǐ denotes the converse of
the i relation.

The interpretations of the i operators (the atoms of α
actions) can be arbitrary. Define i as (i∪ ǐ )∗, and you have a
reflexive, symmetric and transitive knowledge operator (see
[12]).
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Note that tests appear both in the action expressions and
in the epistemic expressions. Thus, actions can be condi-
tioned by knowledge, and knowledge can refer to action.
This allows the representation of strategies like “If I know
that playing a results in φ, then play a, else play b” (ac-
tion conditioned by knowledge), and the representation of
epistemic relations expressing what will become known as a
result of a certain strategy (knowledge referring to action).

To interpret this language, we define intensional game
forms from (extensional) game forms. An intensional game
form is a tuple

(N,W,R1, . . . , Rn)

where

• W is a set of pairs (G, s) where G = (N,S) is a game
form with s ∈ S,

• each Ri is a binary relation on W .

These intensional game forms can be viewed as Kripke
frames. As before, they can be turned into models by using
an output function o : S → P to define the valuation. For
that, extend o to W by means of the stipulation saying that
the output of a game-profile pair is determined by its profile
component:

o(G′, s′) = o(s′).

Since s′ ∈ S′ ⊆ S for each S′, this is well-defined.
Let M be an intensional game form (N,W,R1, . . . , Rn)

based on G = (N,S) and let o : W → P be an output
function that is extended from an output function o : S → P
for G. Let w ∈W .

Then the truth definition of EMASL formulas in M,w is
given by (only clauses that differ from the MASL version
shown):

M,w |= c iff w = ((N,S), s) and s ∈ [[c]]S,s

M,w |= [α]φ iff for all w′ with (w,w′) ∈ [[α]]M :

M,w′ |= φ

[[c]]M = {(w,w′) | w = ((N,S), s), w′ = ((N,S), t)

with t ∈ [[c]]S,s}
[[i]]M = Ri

[[ǐ ]]M = (Ri)̌

One way to base an intensional game form on a game form
G = (N,S) is by putting W = {(G, s) | s ∈ S} and

Ri = {((G, s), (G, s′)) | s[i] = s′[i]}

for all i ∈ N . Call this the epistemic lift of G, and denote it
with G#.

Then in G# the accessibility relations express that every
player can distinguish between her own actions, but not be-
tween those of other players.

For the PD game, this gives a model where every player
knows her move, and the two possible strategies for her op-
ponent. Furthermore, it is common knowledge that there
is no coordination between the actions of the two players:
the relation (R1 ∪R2)∗, denoted by the EMASL expression
(1 ∪ 2)∗, is the whole set of strategy profiles.

cc cd

dc dd

cc cdcd

cc

dc dd

dd

dc

dccc ddcd

1

1

2 2

Figure 4: Epistemic PD Game Form

This is pictured in Figure 4, with dashed lines for the
accessibilities of player 1, dotted lines for those of player 2,
and reflexive epistemic arrows omitted.

In epistemic lifts of game forms it is common knowledge
among all players what is the nature of the game; more in
particular it is common knowledge what are the available
strategic options for all players.

This assumption that the nature of the game is common
knowledge is dropped for intensional game forms that are
built by means of strategy restrictions from an (extensional)
game form.

Let G′ v G if G = (N, {Si | i ∈ N}), G′ = (N, {S′i |
i ∈ N}), and for all i ∈ N : S′i ⊆ Si. Call G′ a strategy
restriction of G.

cc cd

dc dd

cc cd

Figure 5: Restriction in PD Game.

An intensional game form built from strategy restriction
from PD is given in Figure 5. This pictures a situation where
the first player is committed to c, but the other player does
not know this. The oval indicates the actual game; this is
confused by player 2 with the full PD game (dotted lines for
the accessibility relation of player 2).

213



10. EXPRESSIVENESS OF EMASL
EMASL extends MASL, so every concept from game the-

ory, voting theory and social choice theory that is express-
ible in MASL is expressible in EMASL. Many concepts from
social choice theory have epistemic versions. Here is one ex-
ample.

Knowing Dictatorship.
A dictator in a multi agent game was defined as a player

who is always able to get the best deal. A knowing dictator
is a player who not only has this ability, but also knows that
he has it:

[i]
_

v∈U

^
j∈N−{i}

[(??)](¬uj > v ∧ 〈(i, !!)〉ui ≥ v).

As an example, consider player 2 in the game pictured in
Figure 5, with an output function giving appropriate utilities
for the PD game. Player 2 is a dictator for this game, for he
can force the outcome cd, with best payoff for 2. But player
2 is not aware of this fact: for all he knows, he could end up
in state dd, with worse payoff for him than cd.

Gibbard-Satterthwaite, Epistemically.
Resoluteness, strategy-proofness, non-imposedness, dic-

tatorship and knowing dictatorship are all expressible in
EMASL. Here is a new type of question. Consider the class
of epistemic lifts G# of strategic game forms G based on
resolute, strategy-proof and non-imposed voting rules. Then
the MASL proof of the GS theorem lifts to EMASL, so every
such game has a dictator. But does every such game also
have a knowing dictator? What are the minimum epistemic
conditions to make the epistemic GS theorem go through
in intensional games? It also make sense to formulate an
epistemic version of strategy-proofness, stating that players
do not know that they can improve their payoff by voting
strategically. This is a weakening of strategy-proofness, and
we can investigate under which epistemic conditions it is
enough to derive GS, or to derive epistemic GS.

11. A CALCULUS FOR EMASL
There are various classes of intensional game models that

one might want to axiomatize. As an example, we consider
the class of epistemic lift models (G#, o), where G = (N,S)
is a finite strategic game form and o : S → P is an output
function for G.

Notice that the axioms of MASL are sound for this class,
so that we can extend the calculus for MASL, to get a cal-
culus for reasoning about epistemic lift models, as follows.

• Propositional axioms, modus ponens, necessitation for
γ and α.

• PDL axioms for γ modalities.

• PDL axioms for α modalities.

• The five MASL vector axioms.

• φ→ [i]〈ǐ 〉φ.

• φ→ [ǐ ]〈i〉φ.

• [(ia, !!)][i](ia, !!).

•
V

j∈N−{i}[(ja, !!)]¬[i](ja, !!).

The two axioms for ǐ are the standard modal axioms for
converse. The first axiom for [i] expresses that player i can
distinguish between his own actions, and the second axiom
for [i] expresses that i cannot distinguish between the actions
of other players. This gives a sound and complete system
for reasoning about epistemic lift models.

12. RELATED AND FURTHER WORK
The present approach is closest to [4], to which it is in-

debted. Instead of constructing group strategies from indi-
vidual strategies by relation intersection, we take complete
group strategies as basic in the semantics, and construct
strategies for subgroups and individuals by relation union.

Strategic reasoning is related to multimodal logic Kn with
intersection in [1], where group strategies are constructed
from individual strategies by means of relation intersection.
Strategies are not explicit, and many key notions from game
theory are not expressible.

The present approach is close to [18, 21] where PDL is
taken as a starting point to formulate expressive STIT logics
for analzying agency in games. In [33] a special purpose logic
for reasoning about social choice functions is proposed, with
an analysis to the concept of strategy-proofness, in terms of
a modality for expressing that certain players stick to their
current choice.

Coalition logic is a close kin of Alternating-time Temporal
Logic [2, 16]. This has various extensions, of which CATL
[34] deals explicitly with strategic reasoning. An important
difference with the present approach is that ATL and CATL
focus on extensive rather than strategic games.

Strategic reasoning is also the topic of game logics such as
[24, 25, 28]. These logics focus on the theory of two-player
games, and also use the regular operations for strategy con-
struction. The imporant difference is that in game logic the
regular operations are applied to single player strategies. We
hope to study the connection with game logic and with game
algebra [17, 35] more precisely in future work.

Our work provides a framework for extending the explo-
ration of knowledge-theoretic properties of strategic voting
in [8]. In [26] the notion of knowledge manipulation in games
is discussed, which is in the compass of EMASL, as is the
analysis of the role of knowledge and ignorance in voting
manipulation in [9].

There are two important limitations of MASL and EMASL,
in the versions presented here: the restriction to finite ranges
of individual actions, and the restriction to strategic games.

The first restriction could be lifted by extending the lan-
guage with quantification over i-strategies. To lift the second
restriction, one could introduce a register for keeping track
of the players that have made their move. This would get us
closer to ATL, for such a register can be viewed as a clock.
It remains to be seen whether this extension could still be
handled naturally by a PDL-based approach.

In [5], epistemic PDL is used as a base system to which
operators for communication and change are added. In fu-
ture work, we hope to extend the framework of EMASL in
a similar way with communication and changes operators.
Communications change the epistemics of the game by in-
forming players about strategies of other players. Change
operations change the game by changing outcomes or util-
ities. The switch from plurality voting to plurality voting
with tie breaking could be modelled as such a change.
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ABSTRACT
A traditional assumption in game theory is that players are opaque
to one another—if a player changes strategies, then this change in
strategies does not affect the choice of other players’ strategies. In
many situations this is an unrealistic assumption. We develop a
framework for reasoning about games where the players may be
translucent to one another; in particular, a player may believe that
if she were to change strategies, then the other player would also
change strategies. Translucent players may achieve significantly
more efficient outcomes than opaque ones.

Our main result is a characterization of strategies consistent with
appropriate analogues of common belief of rationality. Common
Counterfactual Belief of Rationality (CCBR) holds if (1) every-
one is rational, (2) everyone counterfactually believes that everyone
else is rational (i.e., all players i believe that everyone else would
still be rational even if i were to switch strategies), (3) everyone
counterfactually believes that everyone else is rational, and counter-
factually believes that everyone else is rational, and so on. CCBR
characterizes the set of strategies surviving iterated removal of min-
imax dominated strategies: a strategy σi is minimax dominated for
i if there exists a strategy σ′i for i such that minµ′−i

ui(σ
′
i, µ
′
−i) >

maxµ−i ui(σi, µ−i).
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1. INTRODUCTION
Two large firms 1 and 2 need to decide whether to cooperate

(C) or sue (S) the other firm. Suing the other firm always has
a small positive reward, but being sued induces a high penalty p;
more precisely, u(C,C) = (0, 0);u(C, S) = (−p, r);u(S,C) =
(r,−p), u(S, S) = (r − p, r − p). In other words, we are consid-
ering an instance of the Prisoner’s Dilemma.

But there is a catch. Before acting, each firms needs to discuss
their decision with its board. Although these discussions are held
behind closed doors, there is always the possibility of the decision
being “leaked”; as a consequence, the other company may change
its course of action. Furthermore, both companies are aware of this
fact. In other words, the players are translucent to one another.

In such a scenario, it may well be rational for both companies to
cooperate. For instance, consider the following situation.

• Firm i believes that its action is leaked to firm 2 − i with
probability ε.

• Firm i believes that if the other firm 2 − i finds out that i is
defecting, then 2− i will also defect.

• Finally, pε > r (i.e., the penalty for being sued is signifi-
cantly higher than the reward of suing the other company).

Neither firm defects, since defection is noticed by the other firm
with probability ε, which (according to their beliefs) leads to a
harsh punishment. Thus, the possibility of the players’ actions be-
ing leaked to the other player allows the players to significantly
improve social welfare in equilibrium. (This suggests that it may
be mutually beneficial for two countries to spy on each other!)

Even if the Prisoner’s dilemma is not played by corporations but
by individuals, each player may believe that if he chooses to de-
fect, his “guilt” over defecting may be visible to the other player.
(Indeed, facial and bodily cues such as increased pupil size are of-
ten associated with deception; see e.g., [Ekman and Friesen 1969].)
Thus, again, the players may choose to cooperate out of fear that if
they defect, the other player may detect it and act on it.

Our goal is to capture this type of reasoning formally. We take
a Bayesian approach: Each player has a (subjective) probability
distribution (describing the player’s beliefs) over the states of the
world. Traditionally, a player i is said to be rational in a state ω if
the strategy σi that i plays at ω is a best response to the strategy
profile µ−i of the other players induced by i’s beliefs in ω;1 that is,

1Formally, we assume that i has a distribution on states, and at each
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ui(σi, µ−i) ≥ ui(σ
′
i, µ−i) for all alternative strategies σ′i for i. In

our setting, things are more subtle. Player i may believe that if she
were to switch strategies from σi to σ′i, then players other than i
might also switch strategies. We capture this using counterfactuals
[Lewis 1973; Stalnaker 1968].2 Associated with each state of the
world ω, each player i, and f(ω, i, σ′i) where player i plays σ′i.
Note that if i changes strategies, then this change in strategies may
start a chain reaction, leading to further changes. We can think of
f(ω, i, σ′i) as the steady-state outcome of this process: the state
that would result if i switched strategies to σ′i. Let µf(ω,i,σ′i)

be
the distribution on strategy profiles of −i (the players other than i)
induced by i’s beliefs at ω about the steady-state outcome of this
process. We say that i is rational at a state ω where i plays σi
and has beliefs µi if ui(σi, µ−i) ≥ ui(σ

′
i, µf(ω,i,σ′i)

) for every
alternative strategy σ′i for i. Note that we have required the closest-
state function to be deterministic, returning a unique state, rather
than a distribution over states. While this may seem incompatible
with the motivating scenario, it does not seem so implausible in our
context that, by taking a rich enough representation of states, we
can assume that a state contains enough information about players
to resolve uncertainty about what strategies they would use if one
player were to switch strategies.

We are interested in considering analogues to rationalizability in
a setting with translucent players, and providing epistemic charac-
terizations of them. To do that, we need some definitions. We say
that a player i counterfactually believes ϕ at ω if i believes ϕ holds
even if i were to switch strategies. Common Counterfactual Belief
of Rationality (CCBR) holds if (1) everyone is rational, (2) every-
one counterfactually believes that everyone else is rational (i.e., all
players i believe that everyone else would still be still rational even
if i were to switch strategies), (3) everyone counterfactually be-
lieves that everyone else is rational, and counterfactually believes
that everyone else is rational, and so on.

Our main result is a characterization of strategies consistent with
CCBR. Roughly speaking, these results can be summarized as fol-
lows:

• If the closest-state function respects “unilateral deviations”—
when i switches strategies, the strategies and beliefs of play-
ers other than i remain the same—then CCBR characterizes
the set of rationalizable strategies.

• If the closest-state function can be arbitrary, CCBR char-

state, a pure strategy profile is played; the distribution on states
clearly induces a distribution on strategy profiles for the players
other than i, which we denote µ−i.
2A different, more direct, approach for capturing our original moti-
vating example would be to consider and analyze an extensive-form
variantG′ of the original normal-form gameG that explicitly mod-
els the “leakage” of players’ actions inG, allows the player to react
to these leakage signals by choosing a new action inG, which again
may be leaked and the players may react to, and so on. Doing this
is subtle. We would need to model how players respond to receiv-
ing leaked information, and to believing that there was a change in
plan even if information wasn’t leaked. To make matters worse, it’s
not clear what it would mean that a player is “intending” to per-
form an action a if players can revise what they do as the result of
a leak. Does it mean that a player will do a if no information is
leaked to him? What if no information is leaked, but he believes
that the other side is planning to change their plans in any case?
In addition, modeling the game in this way would require a dis-
tribution over leakage signals to be exogenously given (as part of
the description of the game G′). Moreover, player strategies would
have to be infinite objects, since there is no bound on the sequence
of leaks and responses to leaks. In constrast, using counterfactuals,
we can directly reason about the original (finite) game G.

acterizes the set of strategies that survive iterated removal
of minimax dominated strategies: a strategy σi is minimax
dominated for i if there exists a strategy σ′i for i such that
minµ′−i

ui(σ
′
i, µ
′
−i) > maxµ−i ui(σi, µ−i); that is,

ui(σ
′
i, µ
′
−i) > ui(σi, µ−i) no matter what the strategy pro-

files µ−i and µ′−i are.

We also consider analogues of Nash equilibrium in our setting, and
show that individually rational strategy profiles that survive iter-
ated removal of minimax dominated strategies characterize such
equilibria.

Note that in our approach, each player i has a belief about how
the other players’ strategies would change if iwere to change strate-
gies, but we do not require i to explicitly specify how he would
respond to other people changing strategies. The latter approach,
of having each player pick a “meta-strategy” that takes as input the
strategy of other players, was explored by Howard [1971] in the
1970s. It led to complex formalisms involving infinite hierachies
of meta-strategies: at the lowest level, each player specifies a strat-
egy in the original game; at level k, each player specifies a “re-
sponse rule” (i.e., a meta-strategy) to other players’ (k − 1)-level
response rules. Such hierarchical structures have not proven useful
when dealing with applications. Since we do not require players to
specify reaction rules, we avoid the complexities of this approach.

Program equilibria [Tennenholz 2004] and conditional commit-
ments [Kalai et al. 2010] provide a different approach to avoiding
infinite hierarchies. Roughly speaking, each player i simply spec-
ifies a program Πi; player i’s action is determined by running i’s
program on input the (description of) the programs of the other
players; that is, i′ action is given by Πi(Π−i). Tennenholtz [2004]
and Kalai et al. [2010] show that every (correlated) individually
rational outcome can be sustained in a program equilibrium. Their
model, however, assumes that player’s programs (which should be
interpreted as their “plan of action”) are commonly known to all
players. We dispense with this assumption. It is also not clear how
to define common belief of rationality in their model; the study
of program equilibria and conditional commitments has considered
only analogues of Nash equilibrium.

Counterfactuals have been explored in a game-theoretic setting;
see, for example, [Aumann 1995; Halpern 1999; Samet 1996; Stal-
naker 1996; Zambrano 2004]. However, all these papers consid-
ered only structures where, in the closest state where i changes
strategies, all other players’ strategies remain the same; thus, these
approaches are not applicable in our context.

2. COUNTERFACTUAL STRUCTURES
Given a game Γ, let Σi(Γ) denote player i’s pure strategies in Γ

(we occasionally omit the parenthetical Γ if it is clear from context
or irrelevant).

To reason about the game Γ, we consider a class of Kripke struc-
tures corresponding to Γ. For simplicity, we here focus on finite
structures. A finite probability structure M appropriate for Γ is a
tuple (Ω, s,PR1, . . . ,PRn), where Ω is a finite set of states; s
associates with each state ω ∈ Ω a pure strategy profile s(ω) in the
game Γ; and, for each player i, PRi is a probability assignment
that associates with each state ω ∈ Ω a probability distribution
PRi(ω) on Ω, such that

1. PRi(ω)([[si(ω)]]M ) = 1, where for each strategy σi for
player i, [[σi]]M = {ω : si(ω) = σi}, where si(ω) denotes
player i’s strategy in the strategy profile s(ω);

2. PRi(ω)([[PRi(ω), i]]M ) = 1, where for each probability
measure π and player i, [[π, i]]M = {ω : PRi(ω) = π}.
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These assumptions say that player i assigns probability 1 to his
actual strategy and beliefs.

To deal with counterfactuals, we augment probability structures
with a “closest-state” function f that associates with each state ω,
player i, and strategy σ′i, a state f(ω, i, σi) where player i plays
σ′; if σ′ is already played in ω, then the closest state to ω where
σ′ is played is ω itself. Formally, a finite counterfactual structure
M appropriate for Γ is a tuple (Ω, s, f,PR1, . . . ,PRn), where
(Ω, s,PR1, . . . ,PRn) is a probability structure appropriate for Γ
and f is a “closest-state” function. We require that if f(ω, i, σ′i) =
ω′, then

1. si(ω
′) = σ′;

2. if σ′i = si(ω), then ω′ = ω.

Given a probability assignment PRi for player i, we define i’s
counterfactual belief at state ω (“what i believes would happen if
he switched to σ′i at ω) as

PRci,σ′i(ω)(ω′) =
∑

{ω′′∈Ω:f(ω′′,i,σ′i)=ω
′}

PRi(ω)(ω′′).

Note that the conditions above imply that each player i knows what
strategy he would play if he were to switch; that is,PRci,σ′i(ω)([[σ′i]]M ) =

1.
Let Supp(π) denote the support of the probability measure π.

Note that Supp(PRci,σ′i(ω)) = {f(ω′, i, σ′i) : ω′ ∈ Supp(PRi(ω)}.
Moreover, it is almost immediate from the definition that ifPRi(ω) =
PRi(ω′), then PRci,σ′i(ω) = PRci,σ′i(ω

′) for all strategies σ′i for
player i. But it does not in general follow that i knows his counter-
factual beliefs at ω, that is, it may not be the case that for all strate-
gies σ′i for player i, PRci,σ′i(ω)([[PRci,σ′i(ω), i]]M ) = 1. Suppose
that we think of a state as representing each player’s ex ante view
of the game. The fact that player si(ω) = σi should then be inter-
preted as “i intends to play σi at state ω.” With this view, suppose
that ω is a state where si(ω) is a conservative strategy, while σ′i
is a rather reckless strategy. It seems reasonable to expect that i’s
subjective beliefs regarding the likelihood of various outcomes may
depend in part on whether he is in a conservative or reckless frame
of mind. We can think of PRci,σ′i(ω)(ω′) as the probability that i
ascribes, at state ω, to ω′ being the outcome of i switching to strat-
egy σ′i; thus, PRci,σ′i(ω)(ω′) represents i’s evaluation of the like-
lihood of ω′ when he is in a conservative frame of mind. This may
not be the evaluation that i uses in states in the support PRci,σ′i(ω);
at all these states, i is in a “reckless” frame of mind. Moreover,
there may not be a unique reckless frame of mind, so that imay not
have the same beliefs at all the states in the support of PRci,σ′i(ω).
M is a strongly appropriate counterfactual structure if it is an

appropriate counterfactual structure and, at every state ω, every
player i knows his counterfactual beliefs. As the example above
suggests, strong appropriateness is a nontrivial requirement. As we
shall see, however, our characterization results hold in both appro-
priate and strongly appropriate counterfactual structures.

Note that even in strongly appropriate counterfactually struc-
tures, we may not have PRi(f(ω, i, σ′i)) = PRci,σ′i(ω). We
do have PRi(f(ω, i, σ′i)) = PRci,σ′i(ω) in strongly appropriate
counterfactual structures if f(ω, i, σ′i) is in the support ofPRci,σ′i(ω)

(which will certainly be the case if ω is in the support of PRi(ω)).
To see why we may not want to havePRi(f(ω, i, σ′i)) = PRci,σ′i(ω)

in general, even in strongly appropriate counterfactual structures,
consider the example above again. Suppose that, in state ω, al-
though i does not realize it, he has been given a drug that affects

how he evaluates the state. He thus ascribes probability 0 to ω. In
f(ω, i, σ′i) he has also been given the drug, and the drug in par-
ticular affects how he evaluates outcomes. Thus, i’s beliefs in the
state f(ω, i, σ′i) are quite different from his beliefs in all states in
the support of PRci,σ′i(ω).

2.1 Logics for Counterfactual Games
LetL(Γ) be the language where we start with true and the prim-

itive proposition RAT i and play i(σi) for σi ∈ Σi(Γ), and close
off under the modal operatorsBi (player i believes) andB∗i (player
i counterfactually believes) for i = 1, . . . , n, CB (common be-
lief), and CB∗ (common counterfactual belief), conjunction, and
negation. We think of Biϕ as saying that “i believes ϕ holds with
probability 1” and B∗i ϕ as saying “i believes that ϕ holds with
probability 1, even if i were to switch strategies”.

Let L0 be defined exactly like L except that we exclude the
“counterfactual” modal operators B∗ and CB∗. We first define
semantics for L0 using probability structures (without counterfac-
tuals). We define the notion of a formula ϕ being true at a state ω
in a probability structure M (written (M,w) |= ϕ) in the standard
way, by induction on the structure of ϕ, as follows:

• (M,ω) |= true (so true is vacuously true).

• (M,ω) |= play i(σi) iff σi = si(ω).

• (M,ω) |= ¬ϕ iff (M,ω) 6|= ϕ.

• (M,ω) |= ϕ ∧ ϕ′ iff (M,ω) |= ϕ and (M,ω) |= ϕ′.

• (M,ω) |= Biϕ iff PRi(ω)([[ϕ]]M ) = 1, where [[ϕ]]M =
{ω : (M,ω) |= ϕ}.

• (M,ω) |= RAT i iff si(ω) is a best response given player
i’s beliefs regarding the strategies of other players induced
by PRi.

• LetEBϕ (“everyone believesϕ”) be an abbreviation ofB1ϕ∧
. . .∧Bnϕ; and define EBkϕ for all k inductively, by taking
EB1ϕ to be EBϕ and EBk+1ϕ to be EB(EBkϕ).

• (M,ω) |= CBϕ iff (M,ω) |= EBkϕ for all k ≥ 1.

Semantics for L0 in counterfactual structures is defined in an iden-
tical way, except that we redefine RAT i to take into account the
fact that player i’s beliefs about the strategies of players −i may
change if i changes strategies.

• (M,ω) |= RAT i iff for every strategy σ′i for player i,∑
ω′∈Ω

PRi(ω)(ω′)ui(si(ω), s−i(ω
′)) ≥

∑
ω′∈Ω

PRci,σ′i(ω)(ω′)ui(σ
′
i, s−i(ω

′)).

The condition above is equivalent to requiring that∑
ω′∈Ω

PRi(ω)(ω′)ui(si(ω), s−i(ω
′)) ≥

∑
ω′∈Ω

PRi(ω)(ω′)ui(σ
′
i, s−i(f(ω′, i, σ′i))).

Note that, in general, this condition is different from requiring that
si(ω) is a best reponse given player i’s beliefs regarding the strate-
gies of other players induced by PRi.

To give the semantics for L in counterfactual structures, we now
also need to define the semantics of B∗i and CB∗:
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• (M,ω) |= B∗i ϕ iff for all strategies σ′i ∈ Σi(Γ),
PRci,σ′i(ω)([[ϕ]]M ) = 1.

• (M,ω) |= CB∗ϕ iff (M,ω) |= (EB∗)kϕ for all k ≥ 1.

It is easy to see that, like Bi, B∗i depends only on i’s beliefs; as
we observed above, if PRi(ω) = PRi(ω′), then PRci,σ′i(ω) =

PRci,σ′i(ω
′) for all σ′i, so (M,ω) |= B∗i ϕ iff (M,ω′) |= B∗i ϕ. It

immediately follows that B∗i ϕ ⇒ BiB
∗
i ϕ is valid (i.e., true at all

states in all structures).
The following abbreviations will be useful in the sequel. Let

RAT be an abbreviation for RAT 1∧ . . .∧RATn, and let play(~σ)
be an abbreviation for play1(σ1) ∧ . . . ∧ playn(σn).

2.2 Common Counterfactual Belief of Ratio-
nality

We are interested in analyzing strategies being played at states
where (1) everyone is rational, (2) everyone counterfactually be-
lieves that everyone else is rational (i.e., for every player i, i be-
lieves that everyone else would still be rational even if i were to
switch strategies), (3) everyone counterfactually believes that ev-
eryone else is rational, and counterfactually believes that everyone
else is rational, and so on. For each player i, define the formu-
las SRAT ki (player i is strongly k-level rational) inductively, by
taking SRAT 0

i to be true and SRAT k+1
i to be an abbreviation of

RAT i ∧B∗i (∧j 6=iSRAT kj ).

Let SRAT k be an abbreviation of ∧nj=1SRAT
k
j .

Define CCBR (common counterfactual belief of rationality) as
follows:

• (M,ω) |= CCBR iff (M,ω) |= SRAT kϕ for all k ≥ 1.

Note that it is critical in the definition of SRAT ki that we require
only that player i counterfactually believes that everyone else (i.e.,
the players other than i) are rational, and believe that everyone else
is rational, and so on. Player i has no reason to believe that his own
strategy would be rational if he were to switch strategies; indeed,
B∗i RAT i can hold only if every strategy for player i is rational
with respect to i’s beliefs. This is why we do not define CCBR as
CB∗RAT .3

We also consider the consequence of just common belief of ra-
tionality in our setting. DefineWRAT ki (player i is weakly k-level
rational) just as SRAT ki , except thatB∗i is replaced byBi. An easy
induction on k shows that WRAT k+1 implies WRAT k and that
WRAT k implies Bi(WRAT k).4 It follows that we could have
equivalently defined WRAT k+1

i as

RAT i ∧Bi(∧nj=1WRAT kj ).

Thus, WRAT k+1 is equivalent to RAT ∧ EB(WRAT k). As a
consequence we have the following:

PROPOSITION 2.1.: (M,ω) |= CB(RAT ) iff (M,ω) |= WRAT k

for all k ≥ 0.

3Interestingly, Samet [1996] essentially considers an analogue of
CB∗RAT . This works in his setting since he is considering only
events in the past, not events in the future.
4We can also show that SRAT k+1 implies SRAT k, but it is not
the case that SRAT ki implies B∗i SRAT

k
i , since RAT does not

imply B∗i RAT .

3. CHARACTERIZING COMMON COUN-
TERFACTUAL BELIEF OF RATIONAL-
ITY

It is well known rationalizability can be characterized in terms
of common belief of common belief of rationality in probability
structures [?; ?]. In the full version of the paper5 we show that if
we restrict to counterfactual structures that respect unilateral de-
viations—where in the closest state to ω where player i switches
strategies, everybody else’s strategy and beliefs remain same—common
counterfactual belief of rationality characterizes rationalizable strate-
gies. In a sense (which is made precise in the full version of the pa-
per), counterfactual structures respecting unilateral deviations be-
have just like probability structures (without counterfactuals).

We now characterize common counterfactual belief of rational-
ity without putting any restrictions on the counterfactual structures
(other than them being appropriate, or strongly appropriate). Our
characterization is based on ideas that come from the characteriza-
tion of rationalizability. It is well known that rationalizability can
be characterized in terms of an iterated deletion procedure, where
at each stage, a strategy σ for player i is deleted if there are no
beliefs that i could have about the undeleted strategies for the play-
ers other than i that would make σ rational [Pearce 1984]. Thus,
there is a deletion procedure that, when applied repeatedly, results
in only the rationalizable strategies, that is, the strategies that are
played in states where there is common belief of rationality, being
left undeleted. We now show that there is an analogous way of
characterizing common counterfactual belief of rationality.

3.1 Iterated Minimax Domination
The key to our characterization is the notion of minimax domi-

nated strategies.

DEFINITION 3.1.: Strategy σi for player i in game Γ is minimax
dominated with respect to Σ′−i ⊆ Σ−i(Γ) iff there exists a strategy
σ′i ∈ Σi(Γ) such that

min
τ−i∈Σ′−i

ui(σ
′
i, τ−i) > max

τ−i∈Σ′−i

ui(σi, τ−i).

In other words, player i’s strategy σ is minimax dominated with
respect to Σ′−i iff there exists a strategy σ′ such that the worst-case
payoff for player i if he uses σ′ is strictly better than his best-case
payoff if he uses σ, given that the other players are restricted to
using a strategy in Σ′−i.

In the standard setting, if a strategy σi for player i is dominated
by σ′i then we would expect that a rational player will never player
σi, because σ′i is a strictly better choice. As is well known, if σi
is dominated by σ′i, then there are no beliefs that i could have re-
garding the strategies used by the other players according to which
σi is a best response [Pearce 1984]. This is no longer the case in
our setting. For example, in the standard setting, cooperation is
dominated by defection in Prisoner’s Dilemma. But in our setting,
suppose that player 1 believes that if he cooperates, then the other
player will cooperate, while if he defects, then the other player will
defect. Then cooperation is not dominated by defection.

So when can we guarantee that playing a strategy is irrational in
our setting? This is the case only if the strategy is minimax domi-
nated. If σi is minimax dominated by σ′i, there are no counterfac-
tual beliefs that i could have that would justify playing σi. Con-
versely, if σi is not minimax dominated by any strategy, then there
5Available at http://www.cs.cornell.edu/home/halpern/papers/minimax.pdf.
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are beliefs and counterfactual beliefs that i could have that would
justify playing σi. Specifically, i could believe that the players in
−i are playing the strategy profile that gives i the best possible util-
ity when he plays σi, and that if he switches to another strategy σ′i,
the other players will play the strategy profile that gives i the worst
possible utility given that he is playing σ′i.

Note that we consider only domination by pure strategies. It
is easy to construct examples of strategies that are not minimax
dominated by any pure strategy, but are minimax dominated by a
mixed strategy. Our characterization works only if we restrict to
domination by pure strategies. The characterization, just as with
the characterization of rationalizability, involves iterated deletion,
but now we do not delete dominated strategies in the standard sense,
but minimax dominated strategies.

DEFINITION 3.2.: Define NSDk
j (Γ) inductively: let NSD0

j (Γ) =

Σj and let NSDk+1
j (Γ) consist of the strategies in NSDk

j (Γ) not
minimax dominated with respect to NSDk

−j(Γ). Strategy σ sur-
vives k rounds of iterated deletion of minimax strategies for player
i if σ ∈ NSDk

i (Γ). Strategy σ for player i survives iterated dele-
tion of minimax dominated strategies if it survives k rounds of
iterated deletion of strongly dominated for all k, that is, if σ ∈
NSD∞i (Γ) = ∩kNSDk

i (Γ).

In the deletion procedure above, at each step we remove all
strategies that are minimax dominated; that is we perform a “max-
imal” deletion at each step. As we now show, the set of strategies
that survives iterated deletion is actually independent of the dele-
tion order.

Let S0, . . . , Sm be sets of strategy profiles. ~S = (S0, S1, . . . , Sm)
is a terminating deletion sequence for Γ if, for j = 0, . . . ,m − 1,
Sj+1 ⊂ Sj (note that we use ⊂ to mean proper subset) and all
players i, Sj+1

i contains all strategies for player i not minimax
dominated with respect to Sj−i (but may also contain some strate-
gies that are minimax dominated), and Smi does not contain any
strategies that are minimax dominated with respect to Sm−i. A set
T of strategy profiles has ambiguous terminating sets if there exist
two terminating deletion sequences ~S = (T, S1, . . . , Sm), ~S′ =
(T, S′1, . . . , S

′
m′) such that Sm 6= S′m′ ; otherwise, we say that T

has a unique terminating set.

PROPOSITION 3.3.: No (finite) set of strategy profiles has am-
biguous terminating sets.

Proof: Let T be a set of strategy profiles of least cardinality that has
ambiguous terminating deletion sequences ~S = (T, S1, . . . , Sm)

and ~S′ = (T, S′1, . . . , S
′
m′), where Sm 6= S′m′ . Let T ′ be the

set of strategies that are not minimax dominated with respect to T .
Clearly T ′ 6= ∅ and, by definition, T ′ ⊆ S1∩S′1. Since T ′, S1, and
S′1 all have cardinality less than that of T , they must all have unique
terminating sets; moreover, the terminating sets must be the same.
For consider a terminating deletion sequence starting at T ′. We can
get a terminating deletion sequence starting at S1 by just appending
this sequence to S1 (or taking this sequence itself, if S1 = T ′). We
can similarly get a terminating deletion sequence starting at S′1.
Since all these terminating deletion sequences have the same final
element, this must be the unique terminating set. But (S1, . . . , Sm)
and (S′1, . . . , S

′
m′) are terminating deletion sequences with Sm 6=

S′m′ , a contradiction.

COROLLARY 3.4.: The set of strategies that survivies interated
deletion of minimax strategies is independent of the deletion order.

REMARK 3.5.: Note that in the definition of NSDk
i (Γ), we re-

move all strategies that are dominated by some strategy in Σi(Γ),
not just those dominated by some strategy in NSDk−1

i (Γ). Nev-
ertheless, the definition would be equivalent even if we had con-
sidered only dominating strategies in NSDk−1

i (Γ). For suppose
not. Let k be the smallest integer such that there exists some strat-
egy σi ∈ NSDk−1

i (Γ) that is minimax dominated by a strategy
σ′i /∈ NSDk−1

i (Γ), but there is no strategy in NSDk−1
i (Γ) that

dominates σi. That is, σ′i was deleted in some previous itera-
tion. Then there exists a sequence of strategies σ0

i , . . . , σ
q
i and

indices k0 < k1 < . . . < kq = k − 1 such that σ0
i = σ′i,

σji ∈ NSD
kj
i (Γ), and for all 0 ≤ j < q, σji is minimax domi-

nated by σj+1
i with respect to NSD

kj−1

i (Γ). Since NSDk−2(Γ) ⊆
NSDj(Γ) for j ≤ k−2, an easy induction on j shows that σqi min-
imax dominates σq−j with respect to NSDk−2 for all 0 < j ≤ q.
In particular, σq minimax dominates σ0

i = σ′ with respect to
NSDk−2.

The following example shows that iteration has bite: there exist
a 2-player game where each player has k actions and k − 1 rounds
of iterations are needed.

EXAMPLE 3.6.: Consider a two-player game, where both play-
ers announce a value between 1 and k. Both players receive in util-
ity the smallest of the values announced; additionally, the player
who announces the larger value get a reward of p = 0.5.6 That is,
u(x, y) = (y + p, y) if x > y, (x, x + p) if y > x, and (x, x)
if x = y. In the first step of the deletion process, 1 is deleted for
both players; playing 1 can yield a max utility of 1, whereas the
mininum utility of any other action is 1.5. Once 1 is deleted, 2 is
deleted for both players: 2 can yield a max utility of 2, and the min
utility of any other action (once 1 is deleted) is 2.5. Continuing this
process, we see that only (k, k) survives.

3.2 Characterizing Iterated Minimax Domi-
nation

We now show that strategies surviving iterated removal of min-
imax dominated strategies characterize the set of strategies consis-
tent with common counterfactual belief of rationality in (strongly)
appropriate counterfactual structures. As a first step, we define a
“minimax” analogue of rationalizability.

DEFINITION 3.7.: A strategy profile ~σ in game Γ is minimax
rationalizable if, for each player i, there is a set Zi ⊆ Σi(Γ) such
that

• σi ∈ Zi;

• for every strategy σ′i ∈ Zi and strategy σ′′i ∈ Σi(Γ),

max
τ−i∈Z−i

ui(σ
′
i, τ−i) ≥ min

τ−i∈Z−i

ui(σ
′′
i , τ−i).

THEOREM 3.8.: The following are equivalent:

(a) ~σ ∈ NSD∞(Γ);

(b) ~σ is minimax rationalizable in Γ;

6This game can be viewed a a reverse variant of the Traveler’s
dilemma [Basu 1994], where the player who announces the smaller
value gets the reward.
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(c) there exists a finite counterfactual structureM that is strongly
appropriate for Γ and a state ω such that

(M,ω) |= play(~σ) ∧ni=1 SRAT
k
i

for all k ≥ 0;

(d) for all players i, there exists a finite counterfactual structure
M that is appropriate for Γ and a state ω such that

(M,ω) |= play i(σi) ∧ SRAT
k
i

for all k ≥ 0.

The proof of Theorem 3.8 can be found in the full version of the
paper. In the full version of the paper, we additionally characterize
analogues of Nash equilibrium in counterfactual structures. These
results allow us to more closely relate our model to those of Ten-
nenholtz [2004] and Kalai et al. [2010].

4. DISCUSSION
We have introduced a game-theoretic framework for analyzing

scenarios where a player may believe that if he were to switch
strategies, this intention to switch may be detected by the other
players, resulting in them also switching strategies. Our formal
model allows players’ counterfactual beliefs (i.e., their beliefs about
the state of the world in the event that they switch strategies) to be
arbitrary—they may be completely different from the players’ ac-
tual beliefs.

We may also consider a more restricted model where we re-
quire that a player i’s counterfactual beliefs regarding other play-
ers’ strategies and beliefs is ε-close to player i’s actual beliefs in
total variation distance7—that is, for every state ω ∈ Ω, player
i, and strategy σ′i for player i, the projection of PRci,σ′i(ω) onto
strategies and beliefs of players −i is ε-close to the projection of
PRi(ω) onto strategies and beliefs of players −i.

We refer to counterfactual structures satisfying this property as ε-
counterfactual stuctures. Roughly speaking, ε-counterfactual struc-
tures restrict to scenarios where players are not “too” transparent to
one another; this captures the situation when a player assigns only
some “small” probability to its switch in action being noticed by
the other players.

As we show in the full paper, 0-counterfactual structures behave
just as counterfactual structures that respect unilateral deviations:
common counterfactual belief of rationality in 0-counterfactual struc-
tures characterizes rationalizable strategies. The general counter-
factual structures investigated in this paper are 1-counterfactual
structures (that is, we do not impose any conditions on players’
counterfactual beliefs). We remark that although our characteriza-
tion results rely on the fact that we consider 1-counterfactual struc-
tures, the motivating example in the introduction (the translucent
prisoner’s dilemma game) shows that even considering ε-counterfactual
structures with a small ε can result in there being strategies consis-
tent with common counterfactual belief of rationality that are not
rationalizable. We leave an exploration of common counterfactual
belief of rationality in ε-counterfactual structures for future work.
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ABSTRACT
We propose modal Markov logic as an extension of propo-
sitional Markov logic to reason under the principle of max-
imum entropy for modal logics K45, KD45, and S5. Anal-
ogous to propositional Markov logic, the knowledge base
consists of weighted formulas, whose weights are learned
from data. However, in contrast to Markov logic, in our
framework we use the knowledge base to define a proba-
bility distribution over non-equivalent epistemic situations
(pointed Kripke structures) rather than over atoms, and use
this distribution to assign probabilities to modal formulas.
As in all probabilistic representations, the central task in our
framework is inference. Although the size of the state space
grows doubly exponentially in the number of propositions
in the domain, we provide an algorithm that scales only ex-
ponentially in the size of the knowledge base. Finally, we
briefly discuss the case of languages with an infinite number
of propositions.

1. INTRODUCTION
The central reasoning task for probabilistic logics is to

infer the probability of a query formula given a knowledge
base. One such logic is propositional Markov logic [4], where
the knowledge base consists of weighted propositional formu-
las. While the weighted formulas define a probability dis-
tribution over possible worlds, and increasing the weight of
a formula increases the probability mass assigned to worlds
where the formula is true, the weights are not true proba-
bilities. Weights can be learned from data or from asser-
tions about the subjective probabilities of statements, or
from both using data and explicit assertions of subjective
probabilities [20]. In any case, the information obtained
from the training data or from an expert can be interpreted
as probabilities of the propositional formulas in the KB.
Hence, propositional Markov logic defines the probability
of formulas in two steps: first learn the weights of formu-
las in the KB given data and/or subjective probabilities of
these propositional formulas, and second, use the learned pa-
rameters to infer the probability of query formulas. Out of
all the possible distributions which satisfy the probabilistic
constraints imposed by the training data or domain expert,
the one defined by Markov logic networks is the maximum
entropy distribution [17], which makes Markov logic an ap-
pealing choice. Markov logic is not the first framework that
has been proposed for doing inference under the principle of

TARK 2013, Chennai, India.
Copyright 2013 by the authors.

maximum entropy. For example, a first-order logic language
is used in [12, 2] to reason under maximum entropy and the
maximum entropy distribution is found using conditional
probability constraints in [7, 25].

One of the common approaches for combining probabil-
ities and modal logic builds on a probability distribution
defined over possible worlds [15, 22]. Although efficient
inference algorithms for probabilistic modal logic have ap-
peared in the past [23], they have been based on using a
probabilistic Kripke structure that is explicitly given, not
learned from data or assertions about the probabilities of
formulas. In contrast, our approach generalizes maximum
entropy reasoning for propositional logics to allow both the
formulas in the knowledge base and the queries to be propo-
sitional modal logic formulas. K45, KD45 and S5 are the
modal logics typically referred to as the logics of beliefs and
knowledge. Zero-one laws have been established for such
logics [14, 21], which can make probabilistic reasoning chal-
lenging if the state space is not chosen carefully; hence, we
restrict our domain to be a finite set of epistemic situations
(pointed Kripke structures, i.e., Kripke structures with a
distinguished real world state). The advantage of these
modal logics is that to enumerate all the non-equivalent epis-
temic situations, it suffices to iterate over a finite set as long
as our set of propositional formulas Ω is finite. Although
the number of non-equivalent epistemic situations is finite

in our problem formulation, their number grows 2O(2|Ω|).
The main contributions of the paper are to show how one
can reason under the principle of maximum entropy when
simple propositional logic is replaced by either single agent
modal logic K45, KD45 or S5, and to provide an exact in-
ference algorithm based on counting, which can drastically
reduce the doubly exponential cost of a naively implemented
inference algorithm to one singly exponential in the size of
the knowledge base. We briefly discuss the case of languages
with an infinite number of propositions.

2. BACKGROUND

2.1 Markov Logic
Propositional Markov logic [4] is a knowledge represen-

tation language that uses weighted propositional formulas
to define probability distributions over truth assignments to
propositions. A propositional Markov logic network consists
of a knowledge base KB = {(wi, Fi)|i = 1, . . . ,m}, where
wi ∈ R and Fi is a propositional formula over a fixed set
of propositions Ω = {p1, . . . , p|Ω|}, and defines a probability
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distribution over truth assignments X to Ω as follows:

Pr(X = x) =
1

Z
exp(

X
i

wifi(x)) , (1)

where fi(x) = 1 if Fi is true under x, otherwise fi(x) = 0,
and where Z =

P
x∈X exp(

P
i wifi(x)) is the partition func-

tion, and X denotes the set of all possible truth assignments
to Ω, (i.e, |X | = 2|Ω|). Note that, (1) defines an exponential
family of distributions (see e.g. [26]). Exponential families
have the property that for a given set of fi they describe
the maximum entropy distribution that satisfies the set of
consistent constraints E[fi] = ci. Consistent here means
that there exists a probability distribution that satisfies all
the constraints simultaneously. We can interpret ci as the
probability of the propositional formula being satisfied un-
der a randomly chosen truth assignment x, hence (1) defines
the maximum entropy distribution over the state space of
truth assignments to the propositions with the constraints
E[fi] = ci. The probability of an arbitrary propositional
formula F over Ω is defined to be the probability of F being
true under a randomly chosen truth assignment X, i.e.:

Pr(F ) =
X

x∈X :F is satisfied under x

Pr(X = x) = E[fi] . (2)

2.2 Modal Logics K45, KD45 and S5
Modal logics K45, KD45 and S5 [3] extend propositional

or first-order logic by adding a non-truth-functional senten-
tial operators; we will again only discuss the propositional
case here. We use the symbol B to represent the modal op-
erator in the language. Where α is a well formed sentence,
then Bα is a well formed sentence. For example, if we take B
to mean “the agent knows that”, then the formula Bp∨B¬p
means that agent i knows whether or not p holds. Note that
this is quite different from the tautology Bp ∨ ¬Bp.

Different modal operators for concepts such as belief, knowl-
edge, desire, obligation, etc., can be specified by the axiom
schemas that they satisfy. In this paper, we will consider
only modal logics K45, KD45, and S5. The properties of
each of these logics is the subset of the following axioms and
rules [6]:

R1. From φ and φ ⊃ ψ infer ψ (Modus ponens)

R2. From ψ infer Bψ (Knowledge Generalization)

A1. All tautologies of propositional calculus

A2. (Bφ ∧B(φ ⊃ ψ)) ⊃ Bψ (Distribution Axiom)

A3. Bφ ⊃ φ (Knowledge Axiom)

A4. Bφ ⊃ BBφ (Positive Introspection Axiom)

A5. ¬Bφ ⊃ B¬Bφ (Negative Introspection Axiom)

A6. ¬Bfalse (Consistency Axiom)

We get K45 if we take R1, R2, A1, A2, A4, and A5. Besides
the axioms of K45, KD45 contains A6 and S5 contains A3.
S5 is generally used to represent knowledge, and KD45 be-
liefs. K45 is similar to KD45 ; however, it allows believing
in contradicting statements.

The common property of these logics is that every formula
has an equivalent representation that has depth one, i.e., if
Bφ is a subformula then φ does not contain any other modal

operators. In the rest of the paper we will always assume
that we are only dealing with depth one modal formulas.

A Kripke structure over a set of propositions Ω is a tuple
M = (S, π,K) where S 6= ∅ is the set of states, π : S → X ,
where X is the set of truth assignments over Ω and K ⊆
S × S. If s ∈ S then for a propositional formula F , we have
M, s |= F if F is satisfied under π(s). For a formula BF ,
we have M, s |= BF iff ∀(s, r) ∈ K : M, r |= F . Moreover,
M, s |= F1 ∧ F2 iff M, s |= F1 and M, s |= F2, and M, s |=
¬F iff M, s 6|= F .

For each different modal logic, Kripke structures with
different properties are associated. Reflexive, symmetric,
and transitive relations (equivalence relations) are associ-
ated with modal operators that satisfy S5. Euclidean, serial,
and transitive relations are associated with KD45. While
Euclidean, and transitive relations are associated with K45.
For a more detailed description of Kripke structures see, e.g.,
[3, 6].

A Kripke structure with a distinguished state (generally
denoting the real world) is called a pointed Kripke structure
or (epistemic) situation, hence an epistemic situation σ =
(s, S, π,K) where s ∈ S. We call two epistemic situations σ1

and σ2 equivalent if for every formula F we have σ1 |= F if
and only if σ2 |= F . Using this definition of equivalence, we
can partition situations into equivalence classes.

We can enumerate all the non-equivalent epistemic situa-
tions for K45, KD45 and S5, i.e., we can select a member
from each equivalence class by storing the worlds the agent
considers possible and a distinguished real world state [6].
The Kripke structures have a fully connected sub-graph be-
longing to the possible worlds, and there is a special state
s; in the case of S5, s is included in the fully connected
states, and in KD45, there is an outgoing arc from s to
every node representing a possible world. In both cases,
the set of possible worlds is never empty. The difference
between KD45 and K45 is that the set of possible worlds
in K45 can be empty. Let ΣK45, ΣKD45 and ΣS5 denote
the set of all possible situations we can construct using the
previous descriptions for modal logics K45, KD45 and S5,
respectively. According to [6], if a formula is satisfiable it
must be satisfiable in one of the situations in our Σ, and
since not any two members of Σ are equivalent it is enough
to consider the members of Σ to count every non-equivalent
epistemic situations exactly once. For K45, KD45, and S5, if

the set of propositions (Ω) is fixed, then |ΣK45| = 22|Ω|2|Ω|,

|ΣKD45| = (22|Ω| − 1)2|Ω|, |ΣS5| = 22|Ω|−12|Ω|, respectively.
In each case, the real world can be chosen from the possible
2|Ω| truth assignments. In K45 the worlds the agent can
consider to be possible can be any subset of all the possi-

ble worlds, i.e., can have 22|Ω| values; in KD45, the subset
cannot be empty; and in S5, since the real world must be
considered possible, we can only pick a subset of the re-

maining truth assignments. We see that |Σ| ≤ 2|Ω|22|Ω| in
all the three cases. We will denote the above mentioned sets
by ΣL(Ω), where L ∈ {K45 ,KD45 ,S5}, when we want to
emphasize their dependence on Ω.

3. DEFINING THE MAXIMUM ENTROPY
DISTRIBUTION

Since the maximum entropy distribution can be sensitive
to the choice of the state space (see, e.g., [13, 16]), we have
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to be careful when we choose our state space in order to
avoid non-intuitive results. E.g., if Ω = {p}, and we want to
reason about the knowledge of someone using modal logic
S5, a straightforward extension might seem to be to add a
“modal atom”Bp to Ω and define a probability distribution
over the modally consistent truth assignments to this set
{p,Bp}, ruling out e.g., the case when p is assigned false and
Bp is assigned true. However, it is easy to see that with an
empty KB, Pr(p) = 1

3
, which seems counter-intuitive, since

we have no reason to believe that p is more likely to be true
than to be false (analogous examples in a different domain
are given in [13]). Moreover, if Ω contains more propositions,
selection of modal atoms becomes more complicated, e.g., if
Ω = {p, q} should we choose only Bp, Bq, B¬p and B¬q as
modal atoms, or should we also include B(p ∨ q)? Without
including the latter, its probability can only be bounded but
not determined, because a truth assignment to the rest of
the modal atoms would not be sufficient to decide its truth
value.

Based on the above mentioned problems our goals should
be as follows:

(i) Assign probabilities to arbitrary modal or non-modal
formulas over a fixed set of propositions Ω based on a
set of weighted formulas KB = {(wi, Fi)} in a well-
defined way.

(ii) If KB contains only weighted non-modal formulas,
we should obtain the distribution that propositional
Markov logic would define.

(iii) If KB does not contain infinite weights and ψ sub-
sumes φ, and φ and ψ are non-equivalent, then Pr(ψ) <
Pr(φ).

These criteria can be achieved by assigning probabilities
to epistemic situations rather than to modal atoms. Given
a non-empty set of epistemic situations Σ over a fixed Ω
propositions, we define the probability of σ ∈ Σ as:

Pr(σ) =
1

Z
exp(

X
i:σ|=fi

wi) , (3)

where the partition function is defined as:

Z =
X
σ∈Σ

exp(
X
i:σ|=fi

wi) . (4)

The probability of a formula φ (modal or non-modal) is
defined as:

Pr(φ) =
X

σ∈Σ:σ|=φ

Pr(σ) . (5)

Property (i) clearly holds, no matter how we choose Σ. To
satisfy Property (ii) it must be true that c(x) = |{(M, s) ∈
Σ|π(s) = x}| has the same value for every truth assignment
x over Ω. If Σ contains every non-equivalent situations then
Property (iii) is clearly satisfied as well. Hence, if we choose
the state space to be ΣK45, ΣKD45 or ΣS5, all the desired
three conditions are satisfied.

Note that we could define the same distribution using
modal atoms as we do by defining distribution over ΣK45,
ΣKD45 or ΣS5. E.g., we define the same distribution if we
choose the modal atoms to be all the propositional atoms,
and all the depth one formulas in the form Bc, where c is a

conjunction which contains every proposition either as pos-
itive or a negative literal. However, for our goals we found
the approach to define the distribution over epistemic situa-
tions more general, because in this way Property (i) always
holds, we do not have to account for modally inconsistent
states, moreover, it is easier to decide whether Properties
(ii) and (iii) hold.

4. INFERENCE
The computationally expensive part of determining (3)

and (5) can both be reduced to the computation of a parti-
tion function (4). E.g., to infer the probability of a formula
F not present in the knowledge base KB, we first have to
create a new knowledge base KB′ = KB ∪ {(∞, F )}. If Z
and Z′ denote the partition functions corresponding to the
knowledge bases KB and KB′, respectively, then it follows

from (3), (4) and (5) that Pr(F ) = Z′

Z
.

Computing the partition function is challenging because
the size of the state space for K45, KD45 and S5 are all
doubly exponential in |Ω| as mentioned in Sec. 2.2. On the
other hand, there is much symmetry in the domain, i.e.,
many situations have the same probability; hence Σ can be
divided into equivalence classes. Similar to lifted inference
techniques for quantified probabilistic logics (a highly active
research area today, e.g. [24, 18, 11]), we show how one can
compute the partition function without explicitly iterating
through every state in the domain. Although our exact in-
ference algorithm is exponential in a quantity describing the
complexity of the knowledge base, it is vastly faster than

iterating through the 2O(2|Ω|) epistemic situations in ΣK45,
ΣKD45, or ΣS5. We are going to assume that we have access
to a propositional model counter, i.e., for any propositional
formula we can tell the number of its satisfying truth assign-
ments. (Exhaustive solvers run in exponential time, which is
sufficient for our claimed bounds, but heuristic/approximate
solvers such as, e.g., SampleSearch [10], may be more useful
in practice.) We now show how to reduce the computation
of a partition function to counting epistemic situations that
satisfy a given set of modal logic formulas. We first intro-
duce truth assignments to formulas in the knowledge base. If
KB = {(w1, F1), . . . , (wn, Fn)}, let T be the set of length n
Boolean vectors. For t ∈ T let Φ(t) be a conjunction where
the i-th term is Fi if ti = true, and it is ¬Fi if ti = false.
Members of T will partition the space of epistemic situations
Σ into disjoint sets. σ1, σ2 ∈ Σ will be in the same partition
if for every t ∈ T we have σ1 |= Φ(t) iff σ2 |= Φ(t). If σ1

and σ2 are in the same partition then Pr(σ1) = Pr(σ2). To
simplify notation, let w(t) =

P
i:ti=true wi, i.e., w(t) is the

sum of the weights of the formulas to which t assigns true.
Hence, we can rewrite (4) as:

Z =
X
t∈T

N(Φ(t)) exp(w(t)) , (6)

whereN(φ) denotes the number of epistemic situations where
φ holds, i.e., N(φ) = |{σ ∈ Σ|σ |= φ}|.

The probability of any query formula F can be written as:

Pr(F ) =
1

Z

X
t∈T

N(Φ(t) ∧ F ) exp(w(t)) . (7)

Next, we show how to compute N(F ) for different formu-
las. Table 1 contains the simple counts for different basic
formulas in K45, KD45, or S5. We use the notation c(φ) for
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the number of satisfying truth assignments of propositional
formula φ. Using the rules in (8) we can compute N(F ) for
any formula which is in CNF normal form, where each term
is either a propositional formula, or in the form Bφ or ¬Bφ,
where φ is a propositional formula. The most general form
of a conjunction is C = φ0 ∧Bψ∧ (∧ki=1¬Bφi) (we call such
conjunctions simple), since Bφ1 ∧ Bφ2 = B(φ1 ∧ φ2). The
counting of the satisfying assignments of C is done by the
inclusion-exclusion principle and by counting the members
of the complement of sets.

Example 1. If p and q are propositions and F = (p ⊃
q) ∧B(p ∨ q) ∧ ¬Bp ∧ ¬Bq:

N(F ) = N((p ⊃ q) ∧B(p ∨ q) ∧ ¬Bp ∧ ¬Bq)
= N((p ⊃ q) ∧B(p ∨ q))−ˆ

N((p ⊃ q) ∧B(p ∨ q) ∧Bp)+
N((p ⊃ q) ∧B(p ∨ q) ∧Bq)−
N((p ⊃ q) ∧B(p ∨ q) ∧Bp ∧Bq)

˜
= N((p ⊃ q) ∧B(p ∨ q))−N((p ⊃ q) ∧Bp)−

N((p ⊃ q) ∧Bq) +N((p ⊃ q) ∧B(p ∧ q))

Hence, a CNF formula with this general type of conjunc-
tions can represent any modal formula in K45, KD45, and
S5 since every formula in K45, KD45, and S5 have an equiv-
alent depth one representation (which can possibly increase
the size of the formula drastically). (To see why a depth
one representation for every formula F exists, consider the
set of modal atoms presented at the end of Sec. 3. Since
every epistemic situation can be characterized by a conjunc-
tion of these modal atoms where each literals is either a
positive or negative modal atom, we can form a depth one
formula by taking the disjunction of the situations where
F holds.) The final piece of computation of N(F ) for a
CNF formula F again uses the inclusion-exclusion principle,
replacing the computation for disjunctions with (exponen-
tially) many conjunctions.

Example 2. In modal logic S5, p and q being proposi-
tions, the use of inclusion-exclusion principle to reduce the
computation of N(F ) for the CNF formula F = (p ⊃ q) ∨
Bp) ∧ (p ∨B(p ∨ q)) proceeds as follows:

N(F ) = N(((p ⊃ q) ∨Bp) ∧ (p ∨B(p ∨ q)))
= N((p ⊃ q) ∧ (p ∨B(p ∨ q)))+

N(Bp ∧ (p ∨B(p ∨ q)))−
N((p ⊃ q) ∧Bp ∧ (p ∨B(p ∨ q)))

= N((p ⊃ q) ∧ p) +N((p ⊃ q) ∧B(p ∨ q))−
N((p ⊃ q) ∧ p ∧B(p ∨ q)) +N((Bp ∧ p)+
N(Bp ∧B(p ∨ q))−N(Bp ∧ p ∧B(p ∨ q))−
(N((p ⊃ q) ∧Bp ∧ p)+
N((p ⊃ q) ∧Bp ∧B(p ∨ q))−
N((p ⊃ q) ∧Bp ∧ p ∧B(p ∨ q)))

We see that each term can be easily computed using the rules
in Table 1 and the expressions in (8).

N(∨ki=1Bφi) =

kX
i=1

(−1)i+1
X

1≤j1<j2<...<ji≤k

N(B(φj1 ∧ . . . ∧ φji))

(8)

N(∧ki=1¬Bφi) = N(true)−
kX
i=1

(−1)i+1
X

1≤j1<j2<...<ji≤k

N(B(φj1 ∧ . . . ∧ φji))

N(φ0 ∧Bψ ∧ (∧ki=1¬Bφi)) = N(φ0 ∧Bψ)−
kX
i=1

(−1)i+1
X

1≤j1<j2<...<ji≤k

N(φ0 ∧Bψ ∧B(φj1 ∧ . . . ∧ φji))

N((∨ki=1Fi) ∧ F ) =

kX
i=1

(−1)i+1
X

1≤j1<j2<...<ji≤k

N(F ∧ Fj1 ∧ . . . ∧ Fji)

Using the established rules of counting we could give a time
complexity result of our inference algorithm for CNF for-
mulas, but instead we give results for formulas in a more
general form. The most general language L(Ω) we use is
defined as follows:

• Every propositional formula is a member of L(Ω),

• If φ is a propositional formula, then Bφ ∈ L(Ω),

• If φ ∈ L(Ω), then ¬φ ∈ L(Ω),

• If φ1, φ2 ∈ L(Ω), then φ1 ∧ φ2 ∈ L(Ω).

Hence, we only allow depth one modal formulas, however,
since in modal logics K45, KD45, and S5, every formula has
an equivalent depth one representation, we can allow this
restriction without the loss of generality.

Theorem 1. Counting the non-equivalent epistemic sit-
uations that satisfy a depth one formula F ∈ L(Ω) in K45,

KD45, or S5 can be accomplished in time 2O(|F |+|Ω|).

We use the following definition and lemma to prove The-
orem 1.

Definition 1. For a formula F let IF : Σ → {0, 1} de-
note the characteristic function of F in the space of all non-
equivalent epistemic situations, i.e., IF (σ) = 1 iff σ |= F .

The next result shows that the characteristic function of
a depth one formula can be expressed as a combination of
characteristic functions of simple conjunctions.

Lemma 1. For a depth one modal logic formula F ∈ L(Ω)
in K45,KD45 or S5, it is always possible to represent IF =PK
i=1 wiICi where every wi ∈ {−1,+1}, |Ci| ≤ |F |, every

Ci is a simple conjunction (i.e., in the form φi0 ∧ Bψi ∧
(∧lik=1¬Bφ

i
k)), and K ≤ 2|F |.

Proof. We prove the lemma by induction on the struc-
ture of F . For the base cases where F is either a proposi-
tional formula, or in the form Bφ where φ is a propositional
formula, the claim clearly holds. Suppose that F = ¬F1.
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F N(F )
K45 KD45 S5

true |ΣK45| = 2|Ω|22|Ω| |ΣKD45| = 2|Ω|(22|Ω| − 1) |ΣS5| = 2|Ω|22|Ω|−1

propositional formula φ c(φ)22|Ω| c(φ)(22|Ω| − 1) c(φ)22|Ω|−1

Bφ 2|Ω|2c(φ) 2|Ω|(2c(φ) − 1) c(φ)2c(φ)−1

φ0 ∧Bφ c(φ0)2c(φ) c(φ0)(2c(φ) − 1) c(φ0 ∧ φ)2c(φ)−1

¬Bφ |ΣK45| −N(Bφ) |ΣKD45| −N(Bφ) |ΣS5| −N(Bφ)

Table 1: Basic counting rules for K45, KD45, and S5

The claim of the lemma holds for F1 (by induction hypoth-
esis), and hence:

IF1 =

KX
i=1

wiICi . (9)

Then we have

IF = Itrue − IF1 = Itrue −
KX
i=1

wiICi . (10)

Now suppose F = F1 ∧ F2. Then:

IF = IF1IF2 =

K1X
i=1

K2X
j=1

w1
iw

2
j IC1

i
IC2

j
=

K1X
i=1

K2X
j=1

w1
iw

2
j IC1

i ∧C
2
j
.

(11)
Notice that |C1 ∧ C2| ≤ |F1| + |F2| + 1 ≤ |F | and K1K2 ≤
2|F1|+|F2| ≤ 2|F |.

Corollary 1. Since N(F ) =
P
σ∈Σ IF (σ), we have

N(F ) =

KX
i=1

X
σ∈Σ

ICi(σ) =

KX
i=1

wiN(Ci) , (12)

i.e., the problem of counting epistemic situations in which F
is satisfied has been reduced to counting epistemic situations
in which the basic conjunctions Ci are satisfied.

Now we are ready to prove Theorem 1

Proof Proof of Theorem 1. According to Corollary 1,
N(F ) =

PK
i=1 wiN(Ci). We first note that using the inclusion-

exclusion principle (see (8)) for every i we can compute

N(Ci) in time 2O(|Ci|+|Ω|). (Note that the bound on the
running time is large enough to allow counting the satisfying
assignments of the necessary propositional formulas.) Since

K ≤ 2|F | and for every i we have |Ci| ≤ |F |, computing

N(F ) can be accomplished in 2O(|F |+|Ω|).

Corollary 2. Computing the partition function in (6)
for a knowledge base consisting of formulas with depth at
most one can be accomplished in time 2O(|F |+|Ω|).

5. INFINITE DOMAINS
Although the main focus of the paper is finite domains, we

briefly discuss here the case of infinite domains. The source
of finiteness in our formulation is that there are only a finite
set of non-equivalent epistemic situations over a given set of
propositions (Ω). We now consider the questions regarding
the effect of increasing the size of Ω where the state space
is, as before, the set of non-equivalent epistemic situations:

1. Do zero-one laws hold for infinite domains?

2. Given a knowledge base of equality constraints on the
probabilities of formulas, are there formulas the prob-
ability of which have to be either 0 or 1?

The existence of zero-one laws is well-known for first-order
logic [9, 5] and for modal logic [14]. In the modal logic set-
ting, the zero-one law states that given an arbitrary formula,
the probability of it being valid in a randomly chosen Kripke
structure with N number of states converges to 1 or to 0 as
N →∞. In [14], the state space can contain multiple Kripke
structures with N states that are equivalent; hence, the size
of the state space is not bounded, despite Ω being finite.
Moreover, the focus of their paper is on the probability of a
formula being valid in a randomly chosen Kripke structure,
while we are interested in the probability of a formula being
satisfied in a randomly chosen epistemic situation. To show
the contrast, consider the case of an empty knowledge base
which defines a uniform distribution over the situations. The
probability of a proposition p being true will always be 0.5
regardless of |Ω|, hence its probability is not going to con-
verge to 0 or to 1. However, e.g. Pr(Bφ) → 0 if φ is not
a tautology, otherwise Pr(Bφ) → 1 (we can verify this by

taking the limit of N(true)
N(Bφ)

using Table 1 and that adding k

more propositions to Ω changes the value of c(φ) to c(φ)2k).
More generally:

Theorem 2. If C is a consistent simple conjunction, i.e.,
C = φ0∧Bψ∧(∧ki=1¬Bφi) where ψ and every φi is a propo-
sitional formula and β is a propositional formula s.t. C∧Bβ
is consistent as well, then lim|Ω|→∞

N(Bβ∧C)
N(C)

= 0 if ψ 6|= β,

otherwise lim|Ω|→∞
N(Bβ∧C)
N(C)

= 1.

The proof of Theorem 2 makes use of the following lemmas
(which we prove only for K45 ).

Lemma 2. If φ0, ψ and β are propositional formulas and

φ0 ∧ψ is satisfiable then lim|Ω|→∞
N(φ0∧Bψ∧Bβ)
N(φ0∧Bψ)

= 0 if ψ 6|=
β, otherwise lim|Ω|→∞

N(φ0∧Bψ∧Bβ)
N(φ0∧Bψ)

= 1.

Proof. We only prove the lemma for K45. Similar proof
works for KD45 and S5. Assume φ0, ψ and β only build
on propositions from a set Ω′ and let k = |Ω| − |Ω′|. For
a propositional formula F that builds only on propositions
from Ω′ let c′(F ) denote the number of its satisfying truth
assignments over Ω′. We have

N(φ0 ∧Bψ ∧Bβ)

N(φ0 ∧Bψ)
=

2kc′(φ0 ∧ ψ ∧ β)22kc′(ψ∧β)

2kc′(φ0 ∧ ψ)22kc′(ψ)
(13)

=
c′(φ0 ∧ ψ ∧ β)

c′(φ0 ∧ ψ)
22k(c′(ψ∧β)−c′(ψ))
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(note that N counts epistemic situations over Ω whereas c′

counts satisfying assignments over Ω′). Since if ψ 6|= β then
c′(ψ ∧ β) − c′(φ) < 0, hence the ratio converges to 0 as
k → ∞. It is easy to verify that if ψ |= β this ratio is 1 for
every k.

The next result means that as the number of extra propo-
sitions increases we can remove terms in the form ¬Bφ from
simple conjunctions.

Lemma 3. If C is a consistent simple conjunction, i.e.,
C = φ0∧Bψ∧(∧ki=1¬Bφi) where ψ and every φi is a propo-

sitional formula then lim|Ω|→∞
N(φ0∧Bψ)
N(C)

= 1.

Proof. If we expand C according to the inclusion-exclusion
principle (equation (8)) we can conclude that

lim
|Ω|→∞

N(φ0 ∧Bψ)

N(C)
= 1

since for all the other terms

lim
|Ω|→∞

N (φ0 ∧Bψ ∧B(φj1 ∧ . . . ∧ φji))

N(φ0 ∧Bψ)
= 0

according to Lemma 2.

We can prove now Theorem 2.

Proof of Theorem 2. Theorem 2 immediately follows
from the following telescopic product

N(Bβ ∧ C)

N(φ0 ∧Bψ ∧Bβ)

N(φ0 ∧Bψ ∧Bβ)

N(φ0 ∧Bψ)

N(φ0 ∧Bψ)

N(C)
(14)

where the first and third terms converge to 1 (using Lemma 3).
The claim now follows from Lemma 2 applied to the second
term.

Using Theorem 2, we can simplify the computation of
N(φ) in the limit |Ω| → ∞ for any formula φ by drop-
ping terms in the form ¬Bφ whenever we encounter a con-
junction in the most general form; in addition, we can ex-
pect to neglect the majority of the terms when using the
inclusion-exclusion rule. Unfortunately, one consequence of
Theorem 2 is that the weight of certain formulas in the
knowledge base will go to infinity as |Ω| → ∞. Consider,
e.g., the simple formula Bp in the knowledge base. If its

weight is w, then Pr(Bp) = N(Bp) exp(w)
N(Bp) exp(w)+N(¬Bp) which con-

verges to 0 for any finite w, hence 0 < Pr(Bp) < 1 cannot
be captured with any finite w as we increase |Ω|.

One way we can avoid this phenomenon is to define w as a
function of |Ω| as [16] suggests for first-order Markov logic.
Another approach would be to choose Σ not to include every
non-equivalent episetemic situations. If this were done, any
learned model would not be able to satisfy Property (iii), but
could achieve non-zero and non-one probabilities for every
modal formula with finite w values.

6. RELATED WORK
Reasoning with a knowledge base of statistical informa-

tion have been approached in many different ways. The
ones making use of the principle of maximum entropy [17]
seem to be more natural, because when multiple distribu-
tions are consistent with our knowledge base, then there is
no reason to prefer one over the other. In [12], first-order
logic is the representational language and a connection be-
tween maximum entropy reasoning is presented when unary

predicates are used. Markov logic [4] is one of the most
popular choices in the statistical relational learning com-
munity for reasoning under the maximum entropy with a
first-order logic knowledge base. Propositional Markov logic
is generalized in [7] by using different features that are ca-
pable of capturing conditional probabilities. Although we
do not mention representation of conditional probabilities,
our framework could be generalized in this direction. Max-
imum entropy models are sensitive to the choice of domain,
but whether this is a property of other kinds of models is
discussed in [13]. [16] proposes to make the weights depen-
dent on the size of the domain to counter act against the
change of marginals when the domain size changes. Hence,
it is not surprising that we eventually encountered the issue
of changing marginals in both of our chosen state spaces.
Zero-one laws for first-order logic are long known [9, 5]; for
modal logics, they were established in [14]; and for condi-
tional probabilities in [21]. In our setting when we have a
finite number of propositions our state space is always finite,
hence we only experience the convergence of the probability
of certain formulas to 0 and to 1 when we started increasing
the number of propositions. Probabilistic modal logic has
been proposed in [22] and an efficient inference algorithm in
[23]. Although their proposed framework is capable of an-
swering queries using given a probabilistic Kripke structure,
but not suitable for learning the probabilistic model given
a probabilistic knowledge base. In contrast, our approach
defines an exponential family or probability distributions,
hence the learning of the parameters of the distribution is a
convex optimization problem (see e.g. [19]).

7. CONCLUSIONS AND FUTURE WORK
In this paper we showed a way to extend propositional

Markov logic with modal operators using epistemic situa-
tions (pointed Kripke structures) as basic building blocks
of the domain. The modal logics we focused on were K45,
KD45, and S5 for a single agent. The common theme in
the modal logics we considered is that the number of non-
equivalent epistemic situations is finite, but grows doubly
exponentially with the number of propositions in the do-
main. However, we provided an exact inference algorithm
where complexity is only singly exponential in the size of
the knowledge base.

Although we only provided an exact inference algorithm,
the three main parts of computations we need to perform
for exact inference can all be approximated. Bonferroni in-
equalities can provide an approximation when we use the
inclusion-exclusion principle in our computations; in addi-
tion, our discussion of infinite domains suggest that the
bounds of the approximation will be sharp as we increase
the size of the domain. Heuristics for approximately count-
ing satisfying assignments of propositional formulas exist,
and toolboxes are readily available [10]. Finally, iterating
through all the possible truth assignments to the formulas in
the knowledge base can be avoided by sampling from the as-
signments using importance sampling (the idea is described
in [11]).

We discussed the challenges of extending the framework
to infinite domains, where the number of propositions is un-
bounded. Further examination of infinite domains is one of
our future goals.

We only discussed modal logics with a single agent, since
for multiple agents the number of non-equivalent epistemic
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situations even over a fixed set of propositions is unbounded.
Another future goal is to explore if we can do inference ef-
ficiently in the multi agent setting despite the infinite state
space.
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This paper presents a two-dimensional modal logic for rea-
soning about the changing patterns of knowledge and social
relationships in networks organised on the basis of a sym-
metric ‘friendship’ relation, providing a precise language for
exploring ‘logic in the community’ [11]. Agents are placed
in the model, allowing us to express such indexical facts as
‘I am your friend’ and ‘You, my friends, are in danger’.

The technical framework for this work is general dynamic
dynamic logic (GDDL) [4], which provides a general method
for extending modal logics with dynamic operators for rea-
soning about a wide range of model-transformations, start-
ing with those definable in propositional dynamic logic (PDL)
and extended to allow for the more subtle operators involved
in, for example, private communication, as represented in
dynamic epistemic logic (DEL) and related systems. We
provide a hands-on introduction to GDDL, introducing el-
ements of the formalism as we go, but leave the reader to
consult [4] for technical details.

Instead, the purpose of this paper is to investigate a num-
ber of conceptual issues that arise when considering com-
munication between agents in such networks, both from one
agent to another, and broadcasts to socially-defined groups
of agents, such as the group of my friends. All three compo-
nents of the communication (the sender, the message, and
the receivers) can be specified in a variety of ways that need
to be distinguished. For example, Charlie may tell Bella
‘you are in danger’ or ‘I am in danger’. He may broadcast
to all ‘my friends are in danger’, which if Bella is a friend,
will mean that that she is in danger, or send a message only
to his friends that they are in danger. All such possibilities,
together with their epistemic consequences, will be exam-
ined.

We extend the treatment of announcements to questions,
in which agents are taken to be sincere and cooperative in-
terlocutors, and consider network structure changing opera-
tions such as adding and deleting friends (with the permis-
sion of other agents) and, finally, explore the effect of all this
on the concept of common knowledge, which is more varied
and rich in the social network setting.

These issues are illustrated by a number of examples about
office gossip, cold-war spy networks and Facebook.

1. A LANGUAGE OF SOCIAL KNOWING

TARK 2013, Chennai, India.
Copyright 2013 by the authors.

M

u1

u0
p

a = n b

Figure 1: A simple EFL model

We start with a language L of epistemic friendship logic
EFL based on atoms of two types: propositional variables
ρ ∈ Prop representing indexical propositions such as ‘I am
in danger’, and (a finite set of) agent nominals n ∈ ANom
which stand for indexical propositions asserting identifica-
tion: ‘I am n’. The language is then inductively defined
as:

ϕ ::= ρ | n | ¬ϕ | (ϕ ∧ ϕ) | Kϕ | Fϕ | Aϕ

We read K as ‘I know that’ and F as ‘all my friends’ and
A as ‘every agent’. Models for this language are Kripke
models of the form M = 〈W,A, k, f, V 〉, where W is a set
(of epistemic states), A is a set (of agents), and

1. k is a family of equivalence relations ka for each agent
a ∈ A, representing the ignorance of a in distinguishing
epistemic possibilities (as for standard S5 epistemic
logic)

2. f is a family of symmetric and irreflexive relations fw
for each w ∈ W , representing the friendship relation
in state w.

3. g is a function mapping each agent nominal n ∈ ANom
to the agent g(n) ∈ A named by n. We abbreviate
g(n) to n when the model is clear from the context.

4. V is a valuation function mapping propositional vari-
ables Prop to subsets of W × A, with (w, a) ∈ V (p)
representing that the indexical proposition p holds of
agent a in state w.

For example, Figure 1 illustrates a simple model for a lan-
guage in which there is only one propositional variable p and
one agent name n. The set of states is W = {u0, u1} and the
set of agents is A = {a, b}, with g(n) = a, n naming agent a.
Both agents are ignorant about which state they are in, so
ka = kb is the universal relation. These are indicated by the
two columns of the diagram. The left column displays the
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ka relation with a thick line; the right column displays the
kb relation, similarly. The lines are non-directional because
the relations are assumed to be symmetric. In more complex
diagrams, we will assume that the relations depicted are the
reflexive, transitive closures of what is shown explicitly. The
rows of the diagram show the relations fu0 (first row) and
fu1 (second row) with dotted lines. This represents the two
agents being friends in both states of W . Again these are
non-directional because we assume symmetry. But for these
lines we do not take the reflexive, transitive closure, since
we assume that fw is irreflexive and may or may not be
transitive. Finally, that p holds only of agent a in state u0,
i.e., that V (p) = {(u0, a)} is shown by labelling the lower
left node of the diagram with p.
Models are used to interpret L in a double-indexical way, as
follows:

M,w, a |= ρ iff (w, a) ∈ V (ρ), for ρ ∈ Prop

M,w, a |= n iff g(n) = a, for n ∈ ANom

M,w, a |= ¬ϕ iff M,w, a 6|= ϕ

M,w, a |= (ϕ∧ψ) iff M,w, a |= ϕ and M,w, a |= ψ

M,w, a |= Kϕ iff M, v, a |= ϕ for every v ∈ W
such that 〈w, v〉 ∈ ka(w)

M,w, a |= Fϕ iff M,w, b |= ϕ for every b ∈ A
such that 〈a, b〉 ∈ fw(a)

M,w, a |= Aϕ iff M,w, b |= ϕ for every b ∈ A.

As usual in modal logic, we can define the duals of the op-
erators, which we write inside angle brackets: 〈K〉 = ¬K¬
‘it is epistemically possible for me that’, 〈F 〉 = ¬F¬ ‘I have
a friend who’, and 〈A〉 = ¬A¬ ‘there is someone who’. The
English glosses are not so exact and require some manipula-
tion to get proper translations, because of the way pronouns
work in English. For example, if d represents ‘I am in dan-
ger’ then 〈F 〉Kd means ‘I have a friend who knows that he
is in danger’ rather than ‘I have a friend who I know that I
am in danger’ which is not even grammatically correct.
We also use abbreviations for the hybrid-logic-like operators
@nϕ = A(n→ ϕ) (equivalently, 〈A〉(n∧ϕ)).1 So, for exam-
ple, if n is Charlie then the operator @n simply shifts the
indexical subject to Charlie, so that @nd means ‘Charlie is
in danger’.
We say that M is a named agent model, if every agent in
M has a name, i.e., for each a ∈ A, there is an n ∈ ANom
such that g(n) = a. The model depicted in Figure 1 is not a
named agent model because agent b has no name. In what
follows we will assume that all agents are named, and so
use the letters representing the agents in the diagram also
as names in the language, abusing the distinction between
n and n.
The advantage of working with named agent models is that
we can define an operator ↓n by

↓n ϕ :=
∨

m∈ANom

(m ∧ ϕ[nm])

where ϕ[nm] is the result of replacing agent nominal n by m

1Although reminiscent of hybrid logic, the ‘agent nominals’
n, binder ↓ n and now the operator @n are not exactly
the same as their hybrid-logic namesakes, but are rather
some sort of two-dimensional cousins. A true nominal, for
example, is a proposition that is logically compelled to be
satisfied by exactly one evaluation index, which in the case
of our models, would have to be the pair 〈w, a〉.

in ϕ. This provides a way of referring to ‘me’ inside the
scope of other operators, by shifting the referent of n to the
current agent. When M is a named agent model,

M,w, a |=↓n ϕ iff M [na], w, a |= ϕ.

where M [na] is the result of changing M so that n now

names a.2 This allows us to express such propositions as,
↓n FK〈F 〉n, which says ‘all my friends know they are friends
with me’, at least on the assumption that every agent has
a name. The assumption is not so restrictive, since in all
applications we have so far considered, we can assume that
a finite set of agents is specified in advance.3

Relations and change.
We will define a class of operators D and corresponding ac-
tions on models such that for each ∆ ∈ D and each M model
for L, there is an L model ∆M , and for each state w of M ,
a state ∆w of ∆M . We then extend L to a language L(D)
of dynamic epistemic friendship logic (DEFL) by adding the
elements of D as propositional operators and defining

M,w, a |= ∆ϕ iff ∆M,∆w, a |= ϕ

To define D, we use the language of propositional dynamic
logic (PDL) with basic programs K, F and A, given by

T π::=K | F | A | ϕ? | (π;π) | (π ∪ π) | π∗
F ϕ::=ρ | n | ¬ϕ | (ϕ ∨ ϕ) | 〈π〉ϕ

for ρ ∈ Prop and n ∈ ANom. The denotation of program
terms π ∈ T and formulas ϕ ∈ F in a model M are defined
in the manner shown in Table 1. Note in particular, the

[[ρ]]M = V (ρ), for ρ ∈ Prop
[[n]]M = W × {g(n)}, for n ∈ ANom
[[(ϕ ∧ ψ)]]M = [[ϕ]]M ∩ [[ψ]]M

[[¬ϕ]]M = W \ [[ϕ]]M

[[〈π〉ϕ]]M = {w ∈ W | w[[π]]Mv and v ∈ [[ϕ]]M

for some v ∈W }
[[K]]M = {〈(w, a), (v, a)〉 | ka(w, v)}
[[F ]]M = {〈(w, a), (w, b)〉 | fw(a, b)}
[[A]]M = {〈(w, a), (w, b)〉 | a, b ∈ A, w ∈W}
[[ϕ?]]M = {〈w,w〉 | w ∈ [[ϕ]]M}
[[π1;π2]]M = {〈w, v〉 | w[[π1]]Ms and s[[π2]]Mv for

some s ∈W}
[[π1 ∪ π2]]M = [[π1]]M ∪ [[π2]]M

[[π∗]]M = {〈w, v〉|w = v or wi[[π]]Mwi+1 for
some n ≥ 0, w0, . . . , wn ∈ W , w0 =
w and wn = v}

Table 1: Semantics of PDL terms and formulas

clauses for K, F and A, in which these program terms refer
to the accessibility relations of the corresponding operators
of EFL, when interpreted two-dimensionally. Complex pro-
gram terms are built up in the usual way: (π1;π2) for the

2More precisely, M [na] = 〈W×A, k, f, g[na], V 〉 where for m ∈

ANom, g[na](m) = a if m = n and g(m), otherwise.
3↓ n can be introduced as a primitive, but without the
restriction to named agent models, the resulting logic can
be shown to be undecidable by encoding tiling problems (in
the manner of [2]).
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relational composition of π1 and π2, (π1∪π2) for their union
(or choice), ϕ? for the ‘test’ consisting of a link from (w, a)
to itself iff M,w, a |= ϕ, and π∗ for the reflexive, transitive
closure of π, which is understood as a form of iteration.
Note also that we have abused notation so that formulas ϕ
of EFL, written with existential operators 〈K〉, 〈F 〉 and 〈A〉,
are also programs formulas (in F ). This is justified by the
obvious semantic equivalence:

M,w, a |= ϕ iff (w, a) ∈ [[ϕ]]M

Now the class of dynamic operators will be defined using the
theory of General Dynamic Dynamic Logic (GDDL) given in
[4], which applies to any language of PDL. We refer the
reader to that paper for full technical details, but we will
introduce those parts of the theory that are required for
present purposes.
The simplest GDDL operators are called PDL-transformations.
These consist of assignment statements which transform mod-
els by redefining the basic programs. For example, the op-
erator [K := π] acts on model M to produce a new model
[K := π]M such that

[[K]][K:=π]M = [[π]]M

On states, there is no change: [K := π]w = w, so the result-
ing DEFL operator has the following semantics:

M,w, a |=[K:=π]ϕ iff [K:=π]M,w, a |= ϕ

We must be a little careful in the choice of π so as to en-
sure that the resulting model [K := π]M is still a model
for EFL. For example, consider the program term n?;K.
In M , this relates (u0, a) to (u1, b) in case (u0, a) ∈ [[n]]M

and (u0, a)[[K]]M (u1, b), which only holds when g(n) = a,
a = b, and ka(u0, u1). Then [K := n?;K]M is the structure
〈W,A, k′, f, V 〉 in which k′a = ka and k′b = ∅, for b 6= a.
This is not a model for EFL. To make it into a model for
EFL, we need to make each ka reflexive. This can be done
with the program term >?, since [[>?]]M is the identity re-
lation. Thus taking π to be (n?;K) ∪ >? we get the model

[[K]][K:=(n?;K)∪>?]M which is the structure 〈W,A, k′′, f, V 〉 in
which k′′a = ka and k′′b is the identity relation for all b 6= a.
The application of [K := (a?;K)∪>?] to a particular model
is illustrated in Figure 2. Here, M is a named agent model,

M [K := (n?; k) ∪ >?]M

u1

u0
p

a b

u1

u0
p

a b

Figure 2: A simple PDL-transformation.

so we allow ourselves the abuse of notation involved in writ-
ing a for the name of a. In this model there are two friends,
a and b, who are both ignorant about whether they are in
state u0 or u1. p holds only of agent a in state u0, so in par-
ticular, M,u0, b |= (K¬p∧¬K〈F 〉p), which means that agent
b knows that she is not p but does not know whether she
has a friend who is p. After the action [K := (n?;K) ∪ >?]
we get the model shown on the right, in which ka is as be-
fore but now kb is the identity relation. In the transformed

model, agent b now knows that she has a friend who is p.
Thus we get the dynamic fact:

M,u0, b |= [K := (n?;K) ∪ >?]K〈F 〉p

In effect, the PDL-transformation, [K := (n?;K) ∪ >?] is
the action of revealing everything to every agent other than
n. We will consider more subtle forms of epistemic change
in subsequent sections. Now it is time for a more extended
example.

The Spy Network.
To take a Cold War example, suppose we are reasoning
about the effect of a spy network being exposed.

Bella (b) is friends with Charlie (c) and Erik (e),
neither of whom are friends with each other. Un-
known to the others is that Erik is a spy (s). The
others are not spies, and Erik knows that because
all spies know who else is a spy (we suppose).
Bella knows that Charlie is not a spy, but Char-
lie does not know about her. After the network
is exposed, all the spies and their friends will be
interrogated by the police. But just before this
happens a message is relayed to all agents reveal-
ing whether or not they are in danger, that is,
whether they are a spy (which they would know
in any case) or a friend of a spy.

A model M of the initial situation is depicted in Figure 3,
with u0 representing the actual state. In EFL we can state
pertinent facts such as @b(K¬s∧¬K〈F 〉s) ‘Bella knows that
she is not a spy but doesn’t know if a friend of hers is a
spy’. We will write d ‘I am in danger’ as an abbreviation for
(s∨ 〈F 〉s) ‘either I’m a spy or I have a spy as a friend’, and,
for convenience, we have labelled those state-agent pairs at
which d holds. Thus we can read that @b(d ∧ ¬Kd) ‘Bella
is in danger but doesn’t know it’, whereas @bK@c¬d ‘Bella
knows that Charlie is not in danger’.
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Figure 3: Spy Network

Now consider the PDL-term cutK(ϕ) defined by

(ϕ?;K;ϕ?) ∪ (¬ϕ?;K; ¬ϕ?)

This relates 〈w, a〉 to 〈v, b〉 iff a = b, ka(w, v), and either
ϕ is true of a in both states w and v or false of a in both
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states. Thus the operator [K := cutK(ϕ)] produces a new
model [K := cutK(ϕ)]M from M by removing the ka links
between states with conflicting values for ϕ (about a). Ef-
fectively, this ‘reveals’ to each agent whether or not ϕ holds
(for them). This operator was first introduced in [14].
In our example, the situation after the revelation of d ‘you
are in danger’ is given by the model [K :=cutK(d)]M , shown
in the right part of Figure 3. Notice that the kc link between
u1 and u2 are cut because M,u1, c 6|= d but M,u2, c |= d;
Charlie finds out that he is not in danger. Similarly, the kb
link between u0 and u1 is cut because Bella finds out that
she is in danger (@bKd). Finally, the ke link between u1

and u2 is cut because everyone now knows that Erik knows
whether he is in danger (although only Bella knows which).
Moreover, in the language of DEFL we can represent reason-
ing about these changes, such as the valid schema

[K :=cutK(ϕ)]A(Kϕ ∨K¬ϕ)

which states (for non-epistemic facts ϕ such as d = 〈F 〉s)
that after ϕ is revealed, everyone knows whether ϕ or not.

GDDL operators.
More complicated operators can be constructed from finite
relational structures whose elements are each associated with
a PDL transformation, and whose combined effect on the a
model is calculated by ‘integrating’ them according to a fur-
ther such transformation. A GDDL operator ∆ is something
that looks like this:

∆0

d0

∆1

d1

K′

K :=π

This represents an action d0 (highlighted as the action that
is actual performed) whose effect on the model is given by
the PDL-transformation ∆0. There is also an action d1 with
associated PDL-transformation ∆1, and the relationship be-
tween d0 and d1 is marked as K′.4 The effect of the operator
on an EFL model M with domain W is computed by forming
a product model M ′ (in the manner of [1]) whose domain
is W × {d0, d1}, in which the elements (w, di) represent the
state resulting from action d0 when the initial state is w.
The model M ′ consists of copies of two models [∆0]M with
domain W × {d0} and [∆1]M with domain W × {d1}, and
a duplication of the model occurring in ∆ itself, with, in

this case, (w, d0)[[K′]]M
′
(w, d1) for each w, v ∈ W . Finally,

the model [∆]M is computed by applying the ‘integrating’
transformation [K := π] to M ′. This uses a PDL program
term π to compute the new value for K from a combination
of relations in the copied models [∆0]M and [∆1]M and the
new relation K′ from ∆ itself.5

This somewhat complex operation is best explained by look-
ing at a simple example. Consider the case in which ∆0 is

4In the general case, as explained in [4], there may be many
actions and many new relation symbols; also, propositional
variables.
5Again, the general case is more flexible, allowing any of
the basic expressions K, F , agent nominal and propositional
variable to be reinterpreted at the integrating stage.

the PDLtransformation [K := (a?;K) ∪ >?] considered ear-
lier, and ∆1 is the identity transformation, I. We will also
take π to be (K ∪ a?;K′)∗.

[K := (a?;K) ∪ >?]

d0

I

d1

K′

K :=(K ∪ a?;K′)∗

The action of this GDDL operator on the model M consid-
ered earlier, is show in Figure 4. It represents a situation in
which an action d0 gives complete information to all agents
other than a. The occurrence of d0 is known to all agents
other than a, who stays completely in the dark. Not only is
ka unchanged in both [∆0]M (the top half of the diagram)
and [∆1]M (the bottom half), but a is also ignorant about
which of these two submodels she is in, as represented by the
vertical lines in connecting the two halves of the a column:
(w, d0)ka(w, d1) for all w ∈ W . Once again, we must check

M ∆M

v

w
p

a b

(v, d0)

(w, d0)

(v, d1)

(w, d1)

p

p

a b

Figure 4: A simple GDDL operator in action.

that the resulting model is an EFL model. In this case, it
is. The ka and kb relations are transitive thanks to the ap-
plication of the ∗ operator in the integrating transformation
[K :=(K ∪ a?;K′)∗].
We’ll say that a GDDLtransformation ∆ is a general EFL dy-
namic operator if it is in the language of PDL terms defined
above, possibly augmented with internal relations such as
K′ and also preserves the property of being a EFL-model:
whenever M is a EFL-model, so is ∆M .

2. SOCIAL ANNOUNCEMENTS
We now turn to direct communications, or ‘announcements’,
within a social network. In the standard analysis of public
announcement (PAL [7]), only the effect of announcement is
modelled without reference to the agent who made the an-
nouncement and with the simplifying assumption that the
message is received by all agents. In dynamic epistemic logic
(following [1]), private announcements, in which a message
is received by a limited set of agents are also considered.
In the general case, within a social network, an announce-
ment consists of an agent (the sender) transmitting some
information (the message) to one or more other agents (the
receivers) and each of these three components can be de-
scribed in different ways, from different perspectives.6 In
this section, we will map out some of the subtleties.
6We are aware of the attempts by others in this respect. [8]
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As a starting point, we ignore the sender and define a basic
act of communication in which a message ψ is sent (anony-
mously, we suppose) to a group of agents θ by

sendθ(ψ) = [K := (θ?; cutK(ψ)) ∪ (¬θ?;K)]

The action sendθ(ψ) reveals the truth or falsity of ψ (which
may be different for different agents) to all agents satisfying
θ, and leaves the ka relation unchanged for agents a not
satisfying θ.
To see how this works, consider send〈F 〉b(d) in the case of
our spy network. This is an anonymous announcement to
the friends of Bella (but not to Bella herself) whether or not
they are in danger. The effect of this action is shown in Fig-
ure 5. The formula θ describing the receivers of the message
is 〈F 〉b, which is satisfied by Charlie and Erik in the actual
state u0. Thus only the relations kc and ke are changed; kb
remains the same. This is by no means our final analysis of

Before
M

After
[send〈F 〉b(d)]M

u0

u1

u2

u3

d

d

c

d

s, d

s, d

b

s, d

d

s, d

e

u0

u1

u2

u3

d

d

c

d

s, d

s, d

b

s, d

d

s, d

e

Figure 5: Restricting to Bella’s friends

communication. For one thing, actions of this sort are only
‘semi-private’, i.e., directed at particular individuals, but
with others not involved in the communication still aware
that it has occurred. Later, we will need to make the anal-
ysis more complex to cope with a great degree of privacy,
in which only the sender and receivers are aware that the
communication has occurred. For example, after the com-
munication to Bella’s friends, Bella knows something that
she didn’t know before: before she knew that Charlie was
not in danger, now she knows that Charlie knows this:

M,u0, b |= [send〈F 〉b(d)]K@cK¬d

Yet before we get to the issue of privacy, we will bring the
sender into our model, and explore some subtle distinctions
about the nature of the message itself.

analysed specific types of communication network (i.e., com-
munications that take place between one agent and another,
or between an agent and a group of agents) when considering
the issue of how distributed knowledge can be established
by a group of agents through communication. Communi-
cation graphs were adopted by [6] to study communication
between agents. Agent i directly receiving information from
agent j is represented by an edge from agent i to agent j
in such graph. Neither approach considers groups of agents
described in terms of social relations.

Announcements about the sender.
The first case is that of a message sent by agent n to agents
described by θ with a message ψ, which is understood to be
about the sender, for example ‘I am in danger’. We define
[n / ψ! : θ]ϕ, the statement that ϕ holds such a communica-
tion, as

(@nKψ → [sendθ(@nψ)]ϕ)

To make sense of this, we will look at a progression of simpler
cases. First, with θ = >, the formula [n/ψ! :>]ϕ means that
ϕ holds after agent n publicly announces that ψ, noting that
it simplifies to (@nKψ → [K :=cutK(@nψ)]ϕ).
We make the rather strong assumption that the message is
known by the sender.7 Suppose, for example, that Erik,
unable to keep his secret any longer, told everyone that he
is a spy. After this, everyone would know that he is a spy
(and Bella, his friend, would know that she is in danger).
This follows from the validity of [e / s! :>]AK@es.

8 Note
that [b / s! :>]AK@bs is also true (since it is valid!). This
says that everyone would know that Bella is a spy after she
announced it. But the reason is quite different: Bella could
not announce that she is a spy, because she knows that she
isn’t.9

The second case is an announcement to a particular agent.
In this case, θ is an agent nominal m and the formula [n /
ψ! :m]ϕ means that ϕ holds after agent n announces to m
that ψ. For example, Erik may be more cautious in his
admission, telling only Bella, after which she, but not Char-
lie would know: [e / s! : b]@bK@es and (¬(b ∨ K@es) →
[e / s! : b]¬K@es) are both valid, and the latter says that
an agent who is neither Bella nor (already) knows that Erik
is a spy, still doesn’t know this after he announces it to Bella.
In the most general case, θ is a description of a group of
agents. For example, [b / ¬s! : 〈F 〉b]ϕ states that ϕ would
hold after Bella tells her friends that she is not a spy. Again
we have a useful validity: [b / ¬s! : 〈F 〉b]@bFK@b¬s, which
says that if Bella were to tell her friends that she is not a
spy then they would all know that she isn’t a spy.

Announcements about the receivers.
Announcements that are indexical about the receiver such
as ‘you are in danger’ (announced to Bella by Erik) or ‘you
are my friends’ (announced by Bella to her friends) can be
expressed with a slight change that captures the different
preconditions for announcements. We define [n :ψ!.θ]ϕ, the
statement that ϕ holds after agent n announces message ψ
(about θ) to agents satisfying θ as

(@nA(θ → ψ)→ [sendθ(ψ)]ϕ)

Again, we first consider the simple case of public announce-
ment, represented by [n :ψ! . >]ϕ, which can be seen to be
equivalent to (@nKAψ → [K := cutK(ψ)]ϕ). Consider, for
example, my announcing to everyone ‘you are in danger’.

7The standard assumption of PAL that announcements are
true is thus equivalent to supposing that they are made by
God, or some other omniscient entity. [5] studied differ-
ent types of agent (truth-teller, liar and bluffer) , how they
make announcements, and are subsequently interpreted in
communication.
8In fact, the information that Erik is a spy becomes common
knowledge, as we will see in Section 6.
9It would be enough for Bella merely not to know that she
is a spy for the announcement to be impossible.
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The precondition that I know everyone is in danger is cap-
tured by the antecedent KAd, and after the announcement
everyone knows that she is in danger, as is represented by
the validity of ↓n [n : d! .>]AKd.
The case of agent-to-agent announcement displays a nice
symmetry between the two kinds of indexical message. Agent
n announcing ‘you are in danger’ to agent m is equivalent
to announcing (again to m) that m is in danger. More gen-
erally, the following equivalences are valid

[n :ψ! . m]ϕ ↔ [n /@mψ! :m]ϕ
[n / ψ! :m]ϕ ↔ [n : @nψ! . m]ϕ

This symmetry between announcements is more delicate when
announcing to groups. Announcing ‘you are in danger’ to
each of my friends is only the same as announcing to them
‘all my friends are in danger’ on the assumption that each
friend knows only that she is my friend, and knows nothing
about the others. Without this assumption,

[n :ψ! . 〈F 〉n]ϕ ↔ [n /@nFψ! : 〈F 〉n]ϕ

is not always valid.10

For announcement to friends, an interesting new phenomenon
arises. Consider the case of my announcing ‘you are my
friend’ to my friends. That ϕ holds after such an announce-
ment is represented by [n : 〈F 〉n! . 〈F 〉n]. The message is
the same as the description of the set of receivers, so when
this is expanded, we find that the precondition for the an-
nouncement is ↓ n KA(〈F 〉n → 〈F 〉n), which is valid, so
the announcement can always be made, by anyone. But
nonetheless, it can be informative, as can be seen from the
validity of ↓n [n : 〈F 〉n! . 〈F 〉n]FK〈F 〉n, which says that af-
ter my making this announcement, my friends all know that
they are my friends, something they may not have known
before.
Finally, we note that any sender-indexical announcement to
a group θ is equivalent to a receiver-indexical announcement
to the same group θ in the case that there is at least one
receiver (A¬θ is false). The trick is that the statement ψ
about n (the sender) is then equivalent to the statement @nψ
about any (every) receiver. More formally, the following is
valid:11

(¬A¬θ → [n / ψ! : θ]ϕ ↔ [n : @nψ! . θ]ϕ)

Private announcements.
Communications of the form [n / ψ! : θ] and [n : ψ! . θ] are
only semi-private. Their effect on the model ensures that

10For a simple counterexample, consider ψ to be d and the
model M (shown left).
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The precondition of [b : d!. 〈F 〉b] is @bKA(〈F 〉b→ d), which
is equivalent to the precondition @bKFd of [b/@bFd! : 〈F 〉b]
which is satisfied in M , and the resulting two models are
shown middle and right. Yet these are easily distinguished,
by taking ϕ to be @aK@cd.

11The key observation here is that the precondition for the
sender-indexical announcement is @nKψ, which is equiva-
lent to the precondition @nKUA(θ → @nψ) when UA¬θ is
false.

every agent will know that the announcement has occurred,
if the sender satisfies the precondition, so, for example,

↓n [n / d! :m]AK(@nKd→ @mK@nd)

is valid: after I announce to m that I am in danger, everyone
will know that if I know I am in danger then m also knows
it. This is (typically) an unjustified violation of the privacy
of the communication between me and m.
To make the action sendθ(ψ) private, we embed it in a GDDL
operator similar to the one given in our earlier example.
Thus, for the sender-indexical12 version, that ϕ would hold
after the private announcement of ψ by n to agents θ is be
represented as

(@nKψ →

sendθ(@nψ)

d

I

e

K′

K := (K ∪ (¬θ?;K′))∗

ϕ)

Call this formula [[[n/ψ! : θ ]]]ϕ. Inside the GDDL operator, the
internal relation K′ represents ignorance about whether the
communication sendnθ (ψ) has occurred or not, the latter pos-
sibility represented by the identity transformation, I. The
integrating transformation [K := (K ∪ (¬θ?;K′))∗] restricts
ignorance of the K′ kind to agents other than θ and factors
this in to the new epistemic relation. The ∗ is needed to
ensure that the result is an equivalence relation. We will see
an example of this operator in action at the end of the next
section.

3. KNOWING YOUR FRIENDS
So far, the friendship relation in our models has been rel-
atively tame, remaining fixed across epistemic states. We
have used it to determine which group of agents receive a
message, and even to specify the content of a message, but
we have not yet considered ignorance about who is friends
with whom. This is where it gets really interesting. We will
explore some of the possibilities with an everyday example
of infidelity and gossip.

Peggy (p) knows that Roger (r) is cheating (c) on
his wife, Mona (m). What’s more, Roger knows
that Peggy knows, because they met accidentally
while he was with his mistress. Mona does not
know about the affair, and both Peggy and Roger
know this. The situation (for Roger) deteriorates
when he discovers that Peggy is a terrible gossip.
She is bound to have told all her friends about
his affair. What Roger does not know is whether
Mona is a friend of Peggy (she is).

We can represent the epistemic state of this network before
Peggy’s announcement with the model depicted in Figure 6,
assuming that married couples are also friends. (The grey
construction lines are only included to make the diagram
easier to read; they have no epistemic or social significance.)

12The receiver-indexical version is obtained by changing the
message and the precondition as in the simple semi-private
case.
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Figure 6: Roger’s Quandry

Note that the friendship relations are now different in dif-
ferent states. At u (the actual state) for Roger r, the state-
ments listed in Table 2 are all true. As a result, we can
compute that at w in the original model for Roger r, the
formula

↓n [p /@nc! : 〈F 〉p]@mK@nc

is true, i.e., “I don’t know that Mona will know about my
cheating after Peggy tells her friends about it.” That some

c I’m cheating

↓n K(@pK@nc∧
@m¬K@nc)

I know that Peggy (but
not Mona) knows I am
cheating.

↓n @pK@nK@pK@nc Peggy knows I know she
knows I am cheating

¬K@m〈F 〉p∧
¬K@m¬〈F 〉p

I don’t know whether
Peggy and Mona are
friends.

↓n @pK@n¬K@m〈F 〉p Peggy knows I don’t
know whether she and
Mona are friends.

Table 2: Facts about Roger

proposition ϕ holds after the announcement ‘Roger is cheat-
ing!’ that Peggy makes to her friends is given by [p/@rc! : 〈F 〉p]ϕ,
which expands and simplifies to

(@pK@rc→ [K :=(〈F 〉p?; cutK(@rc)) ∪ (¬〈F 〉p?;K)]ϕ)

When evaluated at u, the presupposition that Peggy knows
that Roger is cheating is satisfied, and so the formula ϕ
is evaluated in the transformed model shown in Figure 7.
(Note the missing vertical line in the middle.)
This is all very well, but Roger needs a little more privacy.

Before returning home to face Mona, Roger is
uneasy. He would really like to know whether or
not she knows about his affair. He already knows
that she knows if and only if she is friends with
Peggy. So if Peggy told him that they are friends,

c

c

r m p

v

u

v′

u′

Figure 7: After Peggy’s gossip

he would be prepared for Mona’s fury. But for
his planned excuses to be convincing, Mona must
not know that he knows she knows (about the
affair). It is therefore very important that Peggy
tells him in private.

Now let us suppose that the ever-loquacious Peggy announces
to Robert privately that Mona is her friend, represented as
[[[ p / 〈F 〉m! : r ]]]. Now, whether the crucial proposition ϕ

(@rK@mK@rc ∧ ¬@mK@rK@mK@rc)

(that Roger knows Mona knows he has been cheating but
Mona doesn’t know that he knows) holds must be deter-
mined by evaluating it in the model obtained by transform-
ing the one in Figure 7 using the following GDDL operator,
call it ∆:

sendr(@p〈F 〉m)

d

I

e

K′

K :=(K ∪ (m?;K′))∗

The result is shown in Figure 8.
The upper half of the diagram represent the result of ac-
tion d, Peggy telling Roger that she is friends with Mona
(sendr(@p〈F 〉m)), whereas the lower half represent the re-
sult of action e, nothing (I); it is just a copy of the model
in Figure 7. Mona is the only one of the three who doesn’t
know which action has taken place, and her ignorance is
represented by the lines connected corresponding states in
the upper and lower halves (in the m column). We see that
K@mK@rc holds of r in state (u, d), so Roger can meet
Mona prepared.13

We may wonder about the accuracy of the model in repre-
senting Roger and Mona as friends after Peggy’s announce-
ment. Changes to the social network will be considered in
Section 5.

4. ASKING QUESTIONS
As well as making announcements, agents in a social network
can ask questions. Our approach to modelling questions will

13Even the additional level of privacy offered here is still not
perfect, as it involves some change in Mona’s knowledge.
She goes from knowing that Roger doesn’t know that she is
friends with Peggy to not knowing this. However, one may
just think that privacy is a matter of degree.
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Figure 8: Peggy to Roger, privately.

assume that agents are cooperative to the extent that they
answer those questions to which they know the answer.14

A more elaborate model would consider the preferences of
agents, but that is beyond the scope of the current paper.
With this assumption, the effect of asking whether ψ of an
agent a who knows that ψ is the same as an announcement
by a that ψ. Likewise, the effect of asking whether ψ of an
agent a who knows that ¬ψ is the same as an announcement
by a that ¬ψ. In the case that a does not know whether ψ,
we assume that this also is communicated (possibly by the
mere absence of an expected reply). With this in mind, we
define [n/ψ?:m]ϕ, the proposition that ϕ holds after agent
n asks agent m whether ψ as

([m / ψ! :n]ϕ ∧ [m / ¬ψ! :n]ϕ ∧ [m / ¬(Kψ ∨K¬ψ)! :n]ϕ

In other words, ϕ holds after n asks m whether ψ just in
case ϕ holds after in all three cases: (1) m answers ‘yes’,
so announcing ψ to n (2) m answers ‘no’, so announcing
¬ψ to n and (3) m answers ‘I don’t know’, so announcing
¬(Kψ∨K¬ψ) to n. This ensures that the following are valid:

(@mK@np→ [n / p?:m]@nKp)
(@mK@n¬p→ [n / p?:m]@nK¬p)
(@m¬(K@np ∨K@n¬p)
→ [n / p?:m]@nK@m¬(K@np ∨K@n¬p))

So, for example, after Charlie c asks Erik e whether he
(Charlie) is in danger, d, he will either know that he is in
danger Kd or know that he is not in danger K¬d, or know
that Erik doesn’t know whether or not he (Charlie) is in
danger, ↓n K@e¬(K@nd ∨K@n¬d).
Sender-indexical questions can be distinguished from receiver-
indexical questions in a way that parallels the distinction for
announcements. The question ‘Are you in danger?’ from n
to m, answered positively amounts to an announcement by

14For dealing with questions in terms of issue management in
standard dynamic epistemic logic, we refer to [13]. Here we
take a short-cut that reduces the action of asking a question
to that of announcing the answer.

m to n of ‘I am in danger’, and similarly with the ‘you’ and
‘I’ reversed.
As with announcements, this model of questions assumes
that the answers are only semi-private. For example, after
Charlie asks Erik whether he is in danger, a third-party will
know that Charlie either knows whether he is in danger or
knows that Erik doesn’t know the answer. To make ques-
tioning more private, we need private announcements too.
Here we will give one simple example.

Roger approaches Peggy in private and asks her
directly whether or not she and Mona are friends.
Being sincere and cooperative, Peggy answers that
they are. Mona, of course, knows nothing of their
conversation.

This private question [[[ r : 〈F 〉m?: p ]]] is defined by direct anal-
ogy with the semi-private question [r / 〈F 〉m?: p] so that ϕ
holds after the question is asked just in case

[[[ p/〈F 〉m! : r ]]]ϕ∧[[[ p/¬〈F 〉m! : r ]]]ϕ∧[[[ p/¬(K〈F 〉m∨K¬〈F 〉m)! : r ]]]ϕ

In this case, only the precondition of [[[ p / 〈F 〉m! : r ]]] is satis-
fied, and so the results are just as depicted in Figure 8.
Questions to groups present some further challenges. How
would sincere and cooperative friends answer the question
‘Am I in danger?’? For our present strategy to work they
would have to do so by making an announcement. The prob-
lem is that if I have more than one friend who knows the
answer, more than one announcement will follow. But in
which order? Clearly, we must consider all possible orders,
which in the general case involves quantification over an ar-
bitrary number of friends. In finite named agent models this
is possible, but a bit ugly, so we will pass over the details
here.

5. CHANGING THE NETWORK
What makes networking intriguing is the dynamics of net-
work changes. You can be friends with someone one day on
Facebook, but you may drop him as a friend the following
day or add someone else. Those acts, though simple, have a
direct impact on information flow in communities. Consider
the following:

Roger, scared of the possibility that Mona will
find out about his affair from Peggy, does all that
he can to distance them. His smear campaign is
designed to break their friendship and so protect
his information.

To define the operation of deleting a friendship link, we first
define the result of cutting the friendship link between agents
n and m in one direction

cutF (n,m) = (¬n?;F ) ∪ (F ; ¬m?)

Then, to deleting the link between n and m we need to cut
in both directions:15

[−Fn,m] = [F := cutF (n,m)][F := cutF (m,n)]

It is then fairly easy to show that [[F ]][−Fnm]M= [[F ]]M \
{〈n,m〉, 〈m,n〉}, as required.16

15It is also interesting to consider asymmetric relationships
such as “following” on Twitter or “subscribing” on Facebook,
as studied in [9].

16This follows from the fact that a[[F ]][F :=cutF (n,m)]Mb iff
a[[F ]]Mb and 〈a, b〉 6= 〈n,m〉.
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Now how is this going to help Roger? Well, after the applica-
tion of [−Fmp] to the model of Figure ??, Peggy’s announce-
ment to her friends that Roger is cheating has no effect; in
fact, she has no friends to receive the message. So the model
is unchanged. In other words, in this original model, it is
true for Roger that

[−Fmp] ↓n [p /@nc! : 〈F 〉p]@m¬K@nc

‘after Peggy loses Mona as a friend, even after she tells her
friends that I am cheating, Mona won’t know.’
Next we consider adding a friend. In the basic case, we can
define the operation [+Fn,m] by analogy with deletion, but
more simply, as

[F =: F ∪ (n?;A;m?)]

But a more interesting model of adding friends follows the
protocol of Facebook and other online social networks, where-
by one must first request friendship. To capture this aspect
of network change, we need to represent whether or not an
agent wants to be friends with another agent. In a fuller
account, this could be done with a preference order, show-
ing that the agent prefers states in which they are friends to
those in which they are not. But for now, suppose that there
is some additional indexical relation dw in our models, with
dw(a, b) interpreted to mean that in state w, agent a wants
to become friends with agent b. Let D be the corresponding
modal operator.
The question ‘do you want to be my friend?’ from n to m
is thus represented by [n / 〈D〉n?:m], but as a request we
interpret this as involving an action: if the answer is ‘yes’
then we become friends; otherwise, there is no change to
the social network, thought there are consequent epistemic
changes, such as my learning that you don’t want to be my
friend. That ϕ holds after this ‘friend request’ is therefore
represented by

[add(m)]ϕ = ↓n [n / 〈D〉n?:m]((K@m〈D〉n ∧ [+Fn,m]ϕ)
∨(¬K@m〈D〉n ∧ ϕ))

A private version of this operation can be obtained by replac-
ing the announcement and network change by a GDDL-based
version.
The following validity shows some of the epistemic conse-
quence of friend requests:

↓n ((¬〈F 〉m ∧ ¬K@m〈D〉n)→
[add(m)]((K@mK〈D〉n ∧ 〈F 〉m) ∨ (K@m¬K〈D〉n ∧ ¬〈F 〉m))

If I’m not friends with m and don’t know that she wants to
be my friend, then were I to ask her, I would either know that
she knows she wants to be friends and we would be friends,
or know that she doesn’t know she wants to be friends and
we wouldn’t be friends.

6. COMMON KNOWLEDGE
In the context of social networks or communities, common
knowledge is clearly an important notion. One can easily
imagine the situations in which we want to reason about
whether or not something is commonly known in some com-
munity or among my friends. There are at least two sub-
tleties involved in making this precise. The first has to do
with identifying the group of agents who are said to have
common knowledge. This may be by means of a specific

list (‘Charlie, Bella, and Erik’), or a description (‘Charlie’s
friends’) or even an indexical description (‘friends of mine’).
Secondly, the information that is shared may be rigid ( ‘it is
common knowledge that Charlie is not a spy’) or indexical
(e.g. ‘it is common knowledge among Charlie’s friends that I
am in danger’ or ‘it is common knowledge among my friends
that they are in danger.’)
To capture all these cases, first define Ka to be (A; a?;K).
Then [Ka]ϕ means that agent a knows that ϕ, as justified
by the following equivalence:

M,w, b |= [Ka]ϕ iff M, v, a |= ϕ for all v ∈W such
that ka(w, v).

Here ϕ could be an indexical proposition, so, for example,
‘Charlie knows that he is not a spy’ would be represented
by [Kc]¬s, whereas ‘Bella knows that Charlie is not a spy’
would have to be represented as [Kb]@c¬s. Now, for com-
mon knowledge, define

cθ = (A; θ?;K)∗;A; θ?

and interpret [cθ]ϕ to mean, roughly, that there is common
knowledge among θ-agents that ϕ. So this enables us to
talk, in our formal language, about the common knowledge
of some group.This definition seems more general than the
standard notion of common knowledge (see e.g. [3]) . It is
justified by the following applications, each of which can be
suitably generalised.

1. Common knowledge among an enumerated set of agents
about a non-indexical proposition. For example, that
there is common knowledge between Bella (b) and Char-
lie (c) that Charlie is not a spy (s) can be represented
by [c(b∨c)]@c¬s.

17 To justify this claim, first note that
the standard way of defining common knowledge for a
group of agents G is to introduce a new operator CG
such that

M,w, a |= CGϕ iff M, v, a |= ϕ for all 〈u, v〉 ∈
(
⋃
a′∈G ka′)

∗

We can then prove that, for example, [c(b∨c)]@c¬s is

equivalent to C{b,c}@c¬s.
18

2. Common knowledge among a non-indexically described
group of agents about a non-indexical proposition. For
example, that it is common knowledge among Peggy’s
(p) friends that Roger (r) is cheating (c) can be repre-
sented as [c〈F 〉p]@rc. This implies that every friend of
Peggy knows that Roger is cheating (@pFK@rc), but
also that each of them knows that all of Peggy’s friends
know this (@pFK@pFK@rc), and that each of them
knows they all know that (@pFK@pFK@pFK@rc),
and so on. As such, it is not equivalent to any state-
ment of the form CGϕ. In particular, if, say, Peggy’s
only friends are Mona (m) and Nancy (n), it may

17Another concrete and interesting area of application is our
ordinary email exchange, see an interesting analysis in [12].

18The argument is simple. First note that (A; (b∨ c)?;K)∗ is

equivalent to (Kb ∪Kc)
∗. Also, since @c¬s is non-indexical,

[A; (b∨ c)?]@c¬s is equivalent to @c¬s. Thus [c(b∨c)]@c¬s is

equivalent to [(Kb ∪Kc)
∗]@c¬s, which is obviously equiva-

lent to C{b,c}@c¬s.
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not have the same truth value as C{m,n}@rc, which is
compatible with Mona’s and Nancy’s ignorance about
what Peggy’s friends (in general) know.

3. Common knowledge among a non-indexically described
group of agents about a proposition that is indexi-
cal with respect to each member of the group. This
is the subtlest case. For example, after the spy net-
work has been exposed, that it is common knowledge
among Erik’s (e) friends that they are in danger (d)
is represented by [c〈F 〉e]d. This implies that every
friend of Erik (the spy) knows that s/he is in danger
(@eFKd), that each of them knows they all know this
(@eFK@eFKd), and so on. Again, this is compati-
ble with their ignorance about the friendship relation,
so long as in all epistemically indistinguishable states,
the friends of Erik (whoever they may be) are still in
danger. The reason to have the final part A; θ? in the
above definition of cθ is this: when ϕ is indexical, we
need to ensure that it is about the members of θ. When
ϕ is not indexical, this part is redundant.

4. Common knowledge among an indexically described
group of agents about a non-indexical proposition. For
example, that it is common knowledge among my friends
that Roger is cheating is represented by ↓n [c〈F 〉n]@rc.
This is a straightforward generalisation of the previ-
ous case to an indexically specified description, with
the 〈F 〉n using the nominal n, which is bound to the
speaker by ↓n .

5. Common knowledge among an indexically described
group of agents about a proposition that is indexical
with respect to the speaker. For example, that there
is common knowledge among my friends that I am not
a spy is represented by ↓n [c〈F 〉n]@n¬s. This is really
no more complicated than the last case. Again, the in-
dexical work is all done by ↓n in creating a temporary
name ‘n’ for the speaker. Within that context, both
the description of group (〈F 〉n) and the content of the
common knowledge @n¬s are both non-indexical.

6. Common knowledge among an indexically described
group of agents about a proposition that is indexical
with respect to each member of the group. For exam-
ple, that it is common knowledge among my friends
that they are in danger represented by ↓ n [c〈F 〉n]d.
This is an obvious generalisation of the previous cases.

Other useful specifications of groups of agents as the sub-
jects of common knowledge include ‘common knowledge of
ϕ in my community’ (↓ n [c〈f∗〉n]ϕ), ‘common knowledge
of ϕ among those who know they are in danger’ ([cKd]ϕ),
‘common knowledge of ϕ among those who know they are
my friends’ (↓n [cK〈F 〉n]ϕ).

7. CONCLUDING REMARKS
What has emerged from this study is an appreciation of the
diversity of subtle logic distinctions when combining epis-
temic and social relations, especially when allowing indexi-
cal propositions, as are very common in the social setting.
Although Facebook was an inspiration for this work, we have
only scratched the surface. Facebook offers many interest-
ing features that would be good to model, such as the wall,

commenting, and liking. There are many directions in which
the rather tight assumptions of epistemic friendship logic can
be relaxed, such as by dropping symmetry for friendship, al-
lowing degrees or hierarchies of friends (as in [10]), diluting
knowledge to belief and adding preference.
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ABSTRACT
In this paper, we present an epistemic logic approach to
the compositionality of several privacy-related information-
hiding/disclosure properties. The properties considered here
are anonymity, privacy, onymity, and identity. Our initial
observation reveals that anonymity and privacy are not nec-
essarily sequentially compositional; this means that even
though a system comprising several sequential phases satis-
fies a certain unlinkability property in each phase, the entire
system does not always enjoy a desired unlinkability prop-
erty. We show that the compositionality can be guaranteed
provided that the phases of the system satisfy what we call
the independence assumptions. More specifically, we de-
velop a series of theoretical case studies of what assumptions
are sufficient to guarantee the sequential compositionality of
various degrees of anonymity, privacy, onymity, and/or iden-
tity properties. Similar results for parallel composition are
also discussed.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Modal logic; D.2.4 [Software Engi-
neering]: Software/Program Verification—Formal methods

General Terms
Security, Theory, Verification

Keywords
Epistemic logic, anonymity, privacy, compositionality, mod-
ular reasoning

1. INTRODUCTION
An information system generally consists of a number of

subsystems. If some subsystems are shown to have certain
formal properties and some others shown to have different

TARK 2013, Chennai, India.
Copyright 2013 by the authors.

properties, the question arises as to how we can deduce that
the total system has certain formal properties. Or, more
complicatedly, the system may possibly consist of a variety
of subsystems that have various degrees of multiple proper-
ties. Thus, the concept of compositionality plays a key role
in a modular approach to formal reasoning about complex
information systems.

This paper deals with a logical approach to the
compositionality of several privacy-related information-
hiding/disclosure properties. Since privacy and related
properties such as those discussed in [21, 2] have become
crucial requirements for today’s information systems, the
compositionality of those properties has also become a con-
cern. The properties considered here are anonymity, pri-
vacy, onymity, and identity (Fig. 1). Intuitively, we can
understand anonymity to be the property of hiding who
performed a certain specific action, privacy that of hiding
what was performed by a certain specific agent, onymity
that of disclosing who performed a certain specific action,
and identity that of disclosing what was performed by a cer-
tain specific agent. A series of previous studies by Halpern
and O’Neill [12], Mano et al. [19], and Tsukada et al. [26]
showed that these properties can be formulated concisely in
terms of epistemic logic (or the modal logic of knowledge) for
multiagent systems.

For example, sender anonymity can be formulated in terms
of our epistemic logic as

θ(i, send(m)) ⇒ V
i′∈IA

Pj [θ(i
′, send(m))].

Here, IA, called an anonymity set, denotes a set of possible
senders. We read this formula as “if an agent i sends a
message m, then the observer j thinks that it is possible
that every agent i′ in IA performs the sending action.” In
other words, this formula means that the observer j does
not know who sends the message m. On the other hand,
message privacy can be formulated as

θ(i, send(m)) ⇒ V
a′∈AI

Pj [θ(i, a
′)].

Here, AI , called a privacy set, denotes a set of possible send-
ing actions, that is, {send(m′) | m′ is a possible message}.
This formula should be read as “if an agent i sends a mes-
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(to hide who performed) (to hide what was performed)
anonymity←“dual”→ privacy

↑ ↑
“contrary” “contrary”

↓ ↓
onymity←“dual”→ identity

(to disclose who performed) (to disclose what was performed)

Figure 1: Privacy-related information-hiding/disclosure properties.

sage m, then the observer j thinks that it is possible that
the agent i performs every sending action a′ in AI .” In
other words, this formula means that the observer j does not
know what message is sent from the agent i. We may say
that these two properties—sender anonymity and message
privacy—are “dual” because each of the above two formulas
can be obtained from the other by interchanging “who”with
“what,” or more specifically, IA with AI . We can also de-
fine onymity and identity as the“contrary”of anonymity and
privacy, respectively, in terms of epistemic logic. Thus, epis-
temic logic enables us to succinctly describe formal specifica-
tions of various privacy-related information-hiding/disclosure
properties of information systems.

In this paper, the epistemic logic approach developed in
[12, 19, 26] is further exploited to discuss the composition-
ality of multiple properties comprising anonymity, privacy,
onymity, and identity. More specifically, the contributions
of this paper can be summarized as follows. First, we in-
dicate that anonymity and privacy are not necessarily se-
quentially compositional. (This may be contrary to our in-
tuition, because we might think that anonymity/privacy can
be reinforced by sequentially connecting anonymous/private
communication channels.) To show this indication, we in-
troduce, as a motivating example, an abstract model of
an anonymous members-only bulletin board system, which
comprises two sequential phases, namely, the registration
and posting phases. We show that the composition of ano-
nymity in the registration phase and privacy in the posting
phase does not necessarily induce anonymity or privacy in
the entire system. If we regard anonymity and privacy as
special cases of unlinkability, this indication can be para-
phrased by saying that even though a system comprising sev-
eral sequential phases satisfies a certain unlinkability prop-
erty in each phase, the system as a whole does not always
enjoy a desired unlinkability property. For example, our
epistemic logic approach shows that a chain M1 ∗M2 of two
mix-servers [5] does not necessarily guarantee unlinkability
between incoming and outgoing messages even though both
M1 and M2 do. This non-compositionality of unlinkabil-
ity can be viewed as being analogous to the non-transitivity
of inequality: a �= b and b �= c do not necessarily imply
a �= c. Second, we show that the sequential composition-
ality of anonymity and privacy can be guaranteed provided
that the phases of the system satisfy what we call the in-
dependence assumptions. We develop a series of case stud-
ies of what assumptions are sufficient to guarantee the se-
quential compositionality of various degrees of anonymity,
privacy, onymity, and/or identity properties. These com-
positionality results are summarized in Table 1. Third, we
show that similar compositionality results can be obtained
for parallel composition. We demonstrate that some varia-
tions of independence assumptions also play important roles
in guaranteeing the parallel compositionality of anonymity
and privacy.

Related Work
A considerable amount of substantial research on the mea-
surement, characterization, and taxonomy of privacy and re-
lated information-hiding/disclosure properties has been un-
dertaken from various standpoints [7, 23, 8, 25, 14, 17, 21,
30]. The present paper focuses on formal approaches to
privacy-related properties, since our primary motivation is
to contribute to the development of a new methodology for
the formal verification of these properties.

Formal approaches to privacy-related information-hiding
properties go back to the seminal work of Schneider and
Sidiropoulos [22], who formulated the concept of strong ano-
nymity in terms of a process calculus called CSP. Since then,
this concept has been further developed and elaborated in
various computational or logical frameworks such as ACP
[20], applied π calculus [6], I/O-automata [16], category the-
ory [13], and epistemic logic [24, 27, 10, 15, 29, 1, 28, 18, 4,
3].

Although the approach presented in this paper shares a
common style of anonymity definitions with these epistemic
logic approaches, it directly builds on the approach described
by Halpern and O’Neill [12]. Within Halpern and O’Neill’s
framework, Mano et al. [19] formulated privacy as the dual
of anonymity and showed that these two properties can
be related by a newly proposed information-hiding prop-
erty called role interchangeability. They proved the role-
interchangeability property of a practical electronic voting
protocol, thereby demonstrating the voter anonymity and
vote privacy properties of the protocol. Further, Tsukada et
al. [26] considered the logical contraries of anonymity and
privacy, thereby giving formal definitions of onymity and
identity. In particular, they showed that some weak forms
of anonymity and privacy are compatible with some weak
forms of onymity and identity, respectively. They also dis-
cussed the relationships between their proposed definitions
and existing standard terminology, in particular Pfitzmann
and Hansen’s consolidated proposal [21]. The epistemic logic
approach developed in [12, 19, 26] has recently been ex-
tended by Goriac [11], where a wider spectrum of privacy-
related properties including undetectability, unobservability,
and pseudonymity are formulated and discussed.

2. EPISTEMIC DEFINITIONS OF ANONYM-
ITY AND PRIVACY

We briefly review epistemic logic for multiagent systems.
Notions and terminologies are borrowed from [9, 12].

A multiagent system consists of n agents with their local
states and develops over time. We assume that an agent’s lo-
cal state encapsulates all the information to which the agent
has access. Let I = {i1, . . . , in} be the set of n agents. A
global state is defined as the tuple (si1 , . . . , sin) with all local
states from i1 to in. A run is a function from time, ranging
over the natural numbers, to global states. A point is a pair
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(r,m) comprising a run r and a time m, and the global state
at a point (r,m) is denoted by r(m). The function rx of m is
the projection of r(m) to x’s component, so that rx(m) = sx

if r(m) = (si1 , . . . , sin) for x = i1, . . . , in. A system is a set
of runs. The set of all points in a system R is denoted by
P(R).

In a multiagent system, we can define the knowledge of an
agent on the basis of the indistinguishability of the state for
the agent. Given a system R and an agent i, let Ki(r,m) be
the set of points in P(R) that i thinks are possible at (r,m);
that is, Ki(r,m) = {(r′,m′) ∈ P(R) | (r′,m′) ∼i (r,m)},
where (r′,m′) ∼i (r,m) means that r′i(m

′) = ri(m). We can
say that an agent i “knows” φ at a point (r,m) if φ is true
at all points in Ki(r,m).

The formulas of epistemic logic are inductively con-
structed from a set Φ of primitive propositions (such as
“the key is k” or “an agent i sent a message m to an agent
j”), the usual logical connectives, and an epistemic operator
Ki that represents the knowledge of agent i. The mean-
ing of each formula can be determined when each primi-
tive proposition is given an interpretation. An interpreted
system I consists of a pair (R, π) comprising a system R
and an interpretation π that maps each point to the truth-
value assignment function for Φ for the point. In other
words, (π(r,m))(p) ∈ {true, false} for each p ∈ Φ and
(r,m) ∈ P(R). Given an interpreted system I = (R, π)
and a point (r,m) in R, we define what it means for a for-
mula φ to be true at (r,m) in I by induction on the struc-
ture of formulas. Typical cases are as follows: (I, r,m) |=
p if (π(r,m))(p) = true; (I, r,m) |= ¬φ if (I, r,m) �|= φ;
(I, r,m) |= φ ∧ ψ if (I, r,m) |= φ and (I, r,m) |= ψ;
(I, r,m) |= Kiφ if (I, r′,m′) |= φ for all (r′,m′) ∈ Ki(r,m).
In addition to Kiφ, which means that i knows φ, we also use
Piφ as an abbreviation of ¬Ki¬φ, which means that i thinks
that φ is possible. We also write I |= φ if (I, r,m) |= φ holds
for every point (r,m) in I.

In the rest of the paper, we consider that the set A of
actions is also associated with each system. We assume that
i, i′, j, j′, . . . range over agents while a, a′, b, b′, . . . range over
actions. Following [12], we use a primitive proposition of the
form θ(i, a), which denotes that “an agent i has performed
an action a, or will perform a in the future.” Note that the
truth value of θ(i, a) depends on the run, but not on the
time; that is, if (I, r,m) |= θ(i, a) holds for some m, then
(I, r,m′) |= θ(i, a) also holds for every m′.

Below we review the formal definitions of anonymity, pri-
vacy, onymity, and identity in terms of epistemic logic for
multiagent systems. For full details, see [12, 19, 26].

Anonymity
We say that an action a performed by an agent i is anony-
mous up to an anonymity set IA ⊆ I with respect to an
agent j in the interpreted system I if I |= θ(i, a) ⇒V

i′∈IA
Pj [θ(i

′, a)] holds. Intuitively, anonymity up to IA

means that, from j’s viewpoint, a could have been performed
by anybody in IA. A typical example of anonymity of this
form is sender anonymity, which is explained in Sect. 1.

We also say that an action a performed by an agent i
is minimally anonymous with respect to an agent j in the
interpreted system I if I |= θ(i, a) ⇒ Pj [¬θ(i, a)] holds.
Intuitively, minimal anonymity means that, from j’s view-
point, a could not have been performed by i. Consider that
our built-in proposition θ(i, a) expresses a specific form of

“link” between an agent i and an action a. Then, we can ob-
serve that minimal anonymity is very close to a specific form
of the “unlinkability” property that was stipulated by Pfitz-
mann and Hansen [21]. This observation was elaborated in
[26].

Privacy
Privacy properties can be obtained from anonymity prop-
erties by applying the operation of taking the agent/action
reversal dual, that is, the operation that replaces a set of
agents with a set of actions. For example, we say that an
agent i performing an action a is private up to a privacy set
AI ⊆ A with respect to an agent j in the interpreted system
I if I |= θ(i, a) ⇒ V

a′∈AI
Pj [θ(i, a

′)] holds. Intuitively, pri-
vacy up to AI means that, from j’s viewpoint, i could have
performed any action in AI . A typical example is message
privacy, which is explained in Sect. 1.

We also say that an agent i performing an action a is min-
imally private with respect to an agent j in the interpreted
system I if I |= θ(i, a) ⇒ Pj [¬θ(i, a)] holds. Note that
minimal privacy is equivalent to its dual, that is, minimal
anonymity.

Role Interchangeability
Role interchangeability means that, as far as an agent j is
concerned, two agents i and i′ could interchange their roles,
that is, the actions they performed. Specifically, a pair (i, a)
comprising an agent i and an action a is role interchangeable
with respect to an agent j in the interpreted system I if I |=
θ(i, a) ⇒ V

i′∈I/{j}
V

a′∈A(θ(i′, a′) ⇒ Pj [θ(i
′, a) ∧ θ(i, a′)])

holds. Despite the similarity between role interchangeability
and anonymity/privacy, they are not equiexpressive. We can
prove that role interchangeability implies both anonymity
and privacy under some appropriate conditions [19].

Onymity
By the “contrary” of a formula of the form θ(i, a) ⇒ Γ, we
mean the formula θ(i, a) ⇒ ¬Γ. By taking the contrary of
the formulas defining anonymity, we can obtain definitions
of onymity. We only show below the contrary of minimal
anonymity. We say that an action a performed by an agent
i is maximally onymous with respect to an agent j in the
interpreted system I if I |= θ(i, a) ⇒ Kj [θ(i, a)] holds. In-
tuitively, maximal onymity means that j knows that i has
performed a. This definition corresponds to our observation
that onymity generally means that the agent who performs
the action is disclosed. We can see that onymity is closely
related to personal authentication.

Identity
Identity properties, which are closely related to attribute
authentication, can be obtained as the contrary of privacy
properties or as the dual of onymity properties. Below we
only show the contrary of minimal privacy. We say that
an agent i performing an action a is maximally identified
with respect to an agent j in the interpreted system I if
I |= θ(i, a) ⇒ Kj [θ(i, a)] holds. Note that maximal identity
is equivalent to its dual, that is, maximal onymity.

The definitions of the properties presented above and their
known relationships are summarized in Fig. 2. For example,
role interchangeability implies anonymity up to IA, which
also implies minimal anonymity. Note that every implication
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role interchangeability
θ(i, a)⇒ V

i′∈I/{j}
V

a′∈A

(θ(i′, a′)⇒ Pj [θ(i
′, a) ∧ θ(i, a′)])

↙ ↘
anonymity up to IA

θ(i, a)⇒ V
i′∈IA

Pj [θ(i
′, a)]←−−−−−−−−−−“dual”−−−−−−−−−−→ privacy up to AI

θ(i, a)⇒ V
a′∈AI

Pj [θ(i, a
′)]

↘ ↙
θ(i, a)⇒ Pj [¬θ(i, a)]

minimal anonymity / minimal privacy
↑ ↑

“contrary” “contrary”
↓ ↓

maximal onymity / maximal identity
θ(i, a)⇒ Kj [θ(i, a)]

Figure 2: Formal definitions of some privacy-related information-hiding/disclosure properties.

described here is conditional. A more detailed version of this
figure can be found in [26].

3. SEQUENTIAL COMPOSITIONALITY OF
ANONYMITY AND PRIVACY

As a motivating example for discussion of sequential com-
positionality, consider an abstract model of an anonymous
members-only bulletin board system (Fig. 3). Suppose that
the set of agents includes two disjoint subsets IR and IP

of real names and pseudonyms, respectively. Each real-
name agent can register several pseudonyms to use; the
correspondence between real names and pseudonyms is ex-
pressed by using θ(i, use(k)), which means that a real i
can use a pseudonym k. Besides IR and IP , we also in-
troduce the domain C of possible articles. Each real-name
agent uses some of its pseudonyms and posts some arti-
cles to a bulletin board. We express this as θ(k, post(c)),
which means that a pseudonym k posts an article c. When
a real-name agent i uses a pseudonym k and k posts an
article c, we say that i submits c. This is formulated as
I |= θ(i, submit(c)) ⇔ W

k∈IP
(θ(i, use(k)) ∧ θ(k, post(c))).

Two sets {post(c) | c ∈ C} and {submit(c) | c ∈ C} of
actions are denoted by AP and AS , respectively.

Although this is initially given as a model of an anony-
mous bulletin board system, it is quite abstract and can
serve as a model for a more general class of systems, provided
that it is appropriately modified. For example, if θ(i, use(k))
is interpreted as meaning that a voter i is authorized to use
a pseudonym k for voting and θ(k, post(c)) is interpreted as
meaning that k casts a ballot c for some candidate, then
this will be regarded as a model of a voting system. (Of
course, some appropriate assumptions will be required. For
example, to guarantee eligibility, we must assume that each
voter uses at most one pseudonym and each pseudonym also

real names pseudonyms articles
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Figure 3: An anonymous members-only bulletin
board system.

casts at most one ballot.) Furthermore, if θ(i, use(k)) is in-
terpreted as meaning that the first mix-server takes an in-
coming message i and produces an outgoing message k and
if θ(k, post(c)) is interpreted as meaning that the second
mix-server takes an incoming message k and produces an
outgoing message c, then this will be regarded as a model of
a chain of two mix-servers.

We shall consider several typical cases where different
combinations of privacy-related properties are owned by each
registration and posting phase (Table 1). Below we concen-
trate on some main specific cases (Cases 1 to 5). The other
cases are discussed in Appendix A. Intuitively, when reg-
istration is anonymous and posting is private (Case 1), the
entire system appears to have good anonymity/privacy prop-
erties. However, this conjecture is refuted. Indeed, assume
that an observer has some presupposed background knowl-
edge that a real-name agent i will never submit an improper
article c. Then, even though the observer thinks that any
real-name agents including i could have used a pseudonym
k and that k could have posted any articles including c, the
observer never thinks that i could have submitted c. More
formally, the following holds.

Claim 3.1. There is an interpreted system that satisfies
the following: (1) every action use(k) performed by i is
anonymous up to IR with respect to an observer j; (2) every
agent k performing post(c) is private up to AP with respect
to j; (3) some action submit(c) performed by i is not anony-
mous up to IR; (4) some agent i performing submit(c) is not
private up to AS.

Proof. Suppose that IR = {i1, i2}, IP = {k1, k2}, AP =
{post(c1), post(c2)}, and AS = {submit(c1), submit(c2)}.
Consider an interpreted system consisting of two runs r1
and r2. In r1, the following are true: θ(i1, use(k1)),
θ(k1, post(c1)), θ(i2, use(k2)), and θ(k2, post(c2)). In
r2, the following are true: θ(i1, use(k2)), θ(k2, post(c1)),
θ(i2, use(k1)), and θ(k1, post(c2)). We also assume that
the two runs are indistinguishable from the observer j’s
viewpoint, that is, more precisely, (r1,m) ∼j (r2,m) holds
for each m. Then, it is immediately seen that (1) and
(2) hold. Furthermore, (3) and (4) also hold because
θ(i1, submit(c2)) is neither true in r1 nor true in r2 and be-
cause θ(i2, submit(c1)) is neither true in r1 nor true in r2.
In other words, the observer can have “presupposed back-
ground knowledge” that i1 never submits c2, and i2 never
submits c1.

Remark 1. The observations above, in particular, the con-
struction of {r1, r2} shown in the proof of Claim 3.1, can

242



Table 1: Sequential Compositionality: Twelve Cases
Assumption Registration Posting Total

Case 1 (Claim 3.1) — Anonymous up to IR Private up to AP —

Case 2 (Claim 3.2) Independent — Private up to AP Private up to AS

Case 3 (Claim 3.3) Independent Anonymous up to IR — Anonymous up to IR

Case 4 (Claim 3.4) — Maximally onymous Private up to AP Private up to AS

Case 5 (Claim 3.5) — Anonymous up to IR Maximally identified Anonymous up to IR

Case 6 (Claim A.1) Pairwise independent — Role interchangeable Role interchangeable
Case 7 (Claim A.2) Pairwise independent Role interchangeable — Role interchangeable

Case 8 (Claim A.3) Independent — Minimally private Minimally private
& Exhaustive posting
& Exclusive i and post(c)

Case 9 (Claim A.4) Independent Minimally anonymous — Minimally anonymous
& Exhaustive registration
& Exclusive i and post(c)

Case 10 (Claim A.5) Exhaustive posting Maximally onymous Minimally private Minimally private
& Exclusive i and post(c)

Case 11 (Claim A.6) Exhaustive registration Minimally anonymous Maximally identified Minimally anonymous
& Exclusive i and post(c)

Case 12 (Claim A.7) — Maximally onymous Maximally identified Maximally onymous/identified

be extended to consider other examples where anonym-
ity/privacy properties are not sequentially compositional.
For example, we can say that a chain M1 ∗M2 of two mix-
servers does not necessarily guarantee unlinkability between
incoming and outgoing messages even though M1 and M2

do individually. Indeed, if M2 is the “inverse”M1
−1 of M1,

then M1 ∗M1
−1 becomes an identity and thus provides ob-

vious linkability, even though both M1 and M1
−1 guarantee

unlinkability.

On the basis of the above discussion, we introduce “in-
dependence” assumptions so that anonymity/privacy in the
entire system can be obtained quite directly from anonym-
ity/privacy in the registration/posting phases. The regis-
tration and posting phases in an anonymous bulletin board
system I are independent with respect to an observer j if

I |= Pj [θ(i, use(k))] ∧ Pj [θ(k
′, post(c))]

⇒ Pj [θ(i, use(k)) ∧ θ(k′, post(c))]
holds for every i, k, k′, and c. This is analogous to the in-
dependence of two events in probability theory: two events
A and B are independent if Pr(A)Pr(B) = Pr(A ∩B). The
independence assumption can be regarded as meaning that
the observer has no specific“presupposed background knowl-
edge.”

Example 1. In the system {r1, r2} shown in the proof
of Claim 3.1, the registration and posting phases are
not independent. To guarantee independence, we can
extend the system so that it has four indistinguishable
runs {r1, r2, r3, r4} (Fig. 4). In r3, the following are
true: θ(i1, use(k1)), θ(k1, post(c2)), θ(i2, use(k2)), and
θ(k2, post(c1)). In r4, the following are true: θ(i1, use(k2)),
θ(k2, post(c2)), θ(i2, use(k1)), and θ(k1, post(c1)). Alterna-
tively, we can also obtain a system {r1, r2, r5, r6, r7, r8} of
indistinguishable runs that has the independence property.
Similarly, a system {r1, r2, r9, r10, r11, r12} of indistinguish-
able runs also has the independence property.

We also discuss, in Appendix C, that independence could be
viewed by itself as a “meta-level” abstraction of anonymity
or privacy.

The following two lemmas are “dual” and show some ob-
vious sufficient conditions for independence. Hereafter, the
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Figure 4: Systems {r1, r2, r3, r4}, {r1, r2, r5, r6, r7, r8},
and {r1, r2, r9, r10, r11, r12} of runs satisfy the indepen-
dence property.

proofs of the “dual” of proved lemmas or claims are omit-
ted, since they can be straightforwardly obtained from the
original proofs via duality.

Lemma 3.1. If every action use(k) performed by i is max-
imally onymous with respect to an observer j, the registra-
tion and posting phases are independent with respect to j.

Proof. Suppose that (I, r,m) |= Pj [θ(i, use(k))] ∧
Pj [θ(k

′, post(c))]. Then, θ(i, use(k)) holds at some point
(r′,m′) such that (r′,m′) ∼j (r,m), and θ(k′, post(c))
also holds at some point (r′′,m′′) such that (r′′,m′′) ∼j

(r,m). Since use(k) performed by i is maximally onymous
and θ(i, use(k)) holds at (r′,m′), θ(i, use(k)) also holds
at (r′′,m′′). In other words, (I, r′′,m′′) |= θ(i, use(k)) ∧
θ(k′, post(c)) holds. Thus, we have proved that (I, r,m) |=
Pj [θ(i, use(k)) ∧ θ(k′, post(c))].

Lemma 3.2. If every agent k performing post(c) is maxi-
mally identified with respect to an observer j, the registration
and posting phases are independent with respect to j.

Case 2 in Table 1 indicates that if the posting phase guar-
antees privacy, then so does the entire system, provided that
the posting and registration phases are independent.

Claim 3.2. Assume that the registration and posting
phases are independent with respect to an observer j. Also
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suppose that every agent k performing post(c) is private up
to AP with respect to j. Then, every agent i performing
submit(c) is private up to AS.

Proof. Suppose that (I, r,m) |= θ(i, submit(c)). Then,
there exists some k in IP such that (I, r,m) |= θ(i, use(k))∧
θ(k, post(c)). From (I, r,m) |= θ(i, use(k)), it is imme-
diate to see that (I, r,m) |= Pj [θ(i, use(k))]. Because
every k performing post(c) is private up to AP and be-
cause (I, r,m) |= θ(k, post(c)), we can say that for ev-
ery possible article c′, (I, r,m) |= Pj [θ(k, post(c

′))] holds.
So, by virtue of the independence assumption, (I, r,m) |=
Pj [θ(i, use(k)) ∧ θ(k, post(c′))] holds. That is, (I, r,m) |=
Pj [θ(i, submit(c′))] holds. Since c′ is arbitrary, we have
proved that (I, r,m) |= V

a′∈AS
Pj [θ(i, a

′)].

Case 3 in Table 1 is a “dual” of Case 2. It means that if
the registration phase guarantees anonymity, then so does
the entire system, provided that the posting and registration
phases are independent.

Claim 3.3. Assume that the registration and posting
phases are independent with respect to an observer j. Also
suppose that every action use(k) performed by i is anony-
mous up to IR with respect to j. Then, every action
submit(c) performed by i is anonymous up to IR.

In the view of Lemma 3.1, Case 4 can be regarded as a
special case of Case 2. More specifically, the following claim
directly follows from Lemma 3.1 and Claim 3.2. It indicates
that if the posting phase guarantees privacy, then so does
the entire system, even though each registered pseudonym
is linked to the corresponding real name.

Claim 3.4. Suppose that every action use(k) performed
by i is maximally onymous with respect to an observer j.
Also suppose that every agent k performing post(c) is private
up to AP with respect to j. Then, every agent i performing
submit(c) is private up to AS.

Case 5 is a “dual” of Case 4. It can also be regarded, in
the view of Lemma 3.2, as a special case of Case 3. It means
that if the registration phase guarantees anonymity, then so
does the entire system, even though each article is linked to
the pseudonym who posted it.

Claim 3.5. Suppose that every action use(k) performed
by i is anonymous up to IR with respect to an observer
j. Also suppose that every agent k performing post(c) is
maximally identified with respect to j. Then, every action
submit(c) performed by i is anonymous up to IR.

4. PARALLEL COMPOSITIONALITY OF
ANONYMITY AND PRIVACY

By the parallel composition of acta(c) performed by i
and actb(c) performed by i, we generally mean the action
actp(c) performed by i that is introduced by θ(i, actp(c)) ⇔
θ(i, acta(c)) ∧ θ(i, actb(c)). We denote three sets {acta(c) |
c}, {actb(c) | c}, and {actp(c) | c} of actions by Aa, Ab, and
Ap, respectively.

Example 2. Consider the following situation. A special
prosecution team has pursued their probe into the hideout of
a radical and has found out a time bomb c that seems to have

been provided by a sympathizer i. The urgent mission of the
team is to determine i performing an action give(c). The es-
sential parts of the bomb c are a timer and gunpowder. The
sympathizer seems to have bought the timer and have syn-
thesized the gunpowder, thereby producing the time bomb.
Thus, the following definition is obtained: θ(i, give(c)) ⇔
θ(i, buy timer(c))∧θ(i, synthesize gunpowder(c)). A concern
here is how some (an)onymity property of give(c) can be de-
duced from the (an)onymity properties of buy timer(c) and
synthesize gunpowder(c).

Table 2 shows some cases where different combinations of
privacy-related properties are owned by acta and actb. As
for the case of sequential composition, the parallel compo-
sitionality of anonymity or privacy does not generally hold
without some appropriate forms of independence assump-
tions. We say that acta and actb are independent with re-
spect to an observer j in a system I if I |= Pj [θ(i, acta(c))]∧
Pj [θ(i, actb(c))] ⇒ Pj [θ(i, acta(c)) ∧ θ(i, actb(c))] holds for
every i and c. Roughly speaking, the independence means
that acta and actb are not exclusive. Below we show that
the independence assumption plays an essential role in Case
I and its dual, Case II. The other cases are discussed in
Appendix B.

Claim 4.1. Assume that acta and actb are independent
with respect to an observer j. Also suppose that i performing
acta(c) is private up to Aa with respect to j and i perform-
ing actb(c) is private up to Ab with respect to j. Then, i
performing actp(c) is private up to Ap with respect to j.

Proof. Suppose that (I, r,m) |= θ(i, actp(c)). Then,
(I, r,m) |= θ(i, acta(c)) ∧ θ(i, actb(c)) holds. By the as-
sumption of privacy, we have (I, r,m) |= Pj [θ(i, acta(c′))] ∧
Pj [θ(i, actb(c

′))] for every c′. By the independence assump-
tion, (I, r,m) |= Pj [θ(i, acta(c′)) ∧ θ(i, actb(c

′))], that is,
(I, r,m) |= Pj [θ(i, actp(c′))] holds. Since c′ is arbitrary, we
have proved the claim.

Claim 4.2. Assume that acta and actb are independent
with respect to an observer j. Also suppose that acta(c) per-
formed by i and actb(c) performed by i are anonymous up
to Ia and Ib, respectively. Then, actp(c) performed by i is
anonymous up to Ia ∩ Ib with respect to j.

Example 3. Consider the situation described in Exam-
ple 2. Claim 4.2 indicates that give(c) can be onymous even
though both buy timer(c) and synthesize gunpowder(c)
are anonymous. This can happen when buy timer and
synthesize gunpowder are not independent, that is, when
some suspect is considered to be unable to perform both
actions for some reason.

5. CONCLUSION
Building on an epistemic-logic formalism, we have

discussed the compositionality of several privacy-related
information-hiding/disclosure properties. We have pointed
out that anonymity and privacy are not necessarily sequen-
tially compositional and have indicated that the indepen-
dence assumptions can guarantee the compositionality. We
have also developed a series of theoretical case studies on
the conditions that are sufficient to guarantee the sequential
compositionality of various degrees of anonymity, privacy,
onymity, and/or identity. Similar compositionality results
have also been shown for parallel composition.

244



Table 2: Parallel Compositionality: Five Cases
Assumption acta actb actp (Total)

Case I (Claim 4.1) Independent Private up to Aa Private up to Ab Private up to Ap

Case II (Claim 4.2) Independent Anonymous up to Ia Anonymous up to Ib Anonymous up to Ia ∩ Ib

Case III (Claim B.1) — — Minimally anonymous/private Minimally anonymous/private
Case IV (Claim B.1) — Minimally anonymous/private — Minimally anonymous/private

Case V (Claim B.2) — Maximally onymous/identified Maximally onymous/identified Maximally onymous/identified

Future work will include a discussion of compositional-
ity in terms of the probabilistic extension [12] of epistemic
logic. To substantiate the practical value of our approach,
a detailed analysis of real world examples should be carried
out.
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APPENDIX

A. SEQUENTIAL COMPOSITIONALITY:
MORE CASES

In this appendix, we discuss Cases 6 to 12 shown in Ta-
ble 1.

We first introduce some additional conditions regarding
our motivating example of an anonymous members-only bul-
letin board system. We say that an action post(c) is exclusive
if post(c) is performed by at most one pseudonym in each
run, that is, I |= V

k �=k′ ¬[θ(k, post(c))∧θ(k′, post(c))] holds.
For example, if we consider that each article c is labeled and
identified with an article ID number, we will accordingly as-
sume that each post(c) is exclusive. We also say that an
action use(k) is exclusive if use(k) is performed by at most
one real-name agent in each run. For example, if we want
to avoid the use of bogus pseudonyms, we will assume that
each use(k) is exclusive. Similarly, we say that a real-name
agent i is exclusive if i performs at most one use(k) action
in each run, that is, I |= V

k �=k′ ¬[θ(i, use(k))∧ θ(i, use(k′))]
holds. We also say that a pseudonym k is exclusive if k
performs at most one post(c) action in each run.

We also say that the posting phase is exhaustive
provided that every article c ∈ C has been posted
by some pseudonyms. This is formulated as I |=V

c∈C

W
k∈IP

θ(k, post(c)). Similarly, we say that the regis-
tration phase is exhaustive provided that every real-name
agent i ∈ IR uses some pseudonyms. This is formulated as
I |= V

i∈IR

W
k∈IP

θ(i, use(k)).
We also extend the independence assumption so as to deal

with Cases 6 to 11. First, the independence assumption can
immediately be extended to a disjunctive form.

Lemma A.1. If the registration and posting phases in I
are independent with respect to an observer j, then the fol-
lowing holds for arbitrary ip, kp, k

′
q, and cq:

I |= Pj [
W

p θ(ip, use(kp))] ∧ Pj [
W

q θ(k
′
q, post(cq))]

⇒ Pj [(
W

p θ(ip, use(kp))) ∧ (
W

q θ(k
′
q, post(cq)))].

Proof. Suppose that (I, r,m) |= Pj [∨pθ(ip, use(kp))]
and (I, r,m) |= Pj [∨qθ(k

′
q, post(cq))]. This means that there

exist some point (r′,m′) and p such that θ(ip, use(kp)) holds
at (r′,m′) and (r′,m′) ∼j (r,m). Further, there exist
some point (r′′,m′′) and q such that θ(k′q, post(cq)) holds
at (r′′,m′′) and (r′′,m′′) ∼j (r,m). Then, by the indepen-
dence assumption, there exists some point (r′′′,m′′′) such
that θ(ip, use(kp)) ∧ θ(k′q, post(cq)) holds at (r′′′,m′′′) and
(r′′′,m′′′) ∼j (r,m). This concludes the proof.

Further, the independence assumption can be extended to
“positive-negative” and “negative-positive” forms.

Lemma A.2. Assume that the registration and posting
phases in I are independent with respect to an observer
j. Also assume that the posting phase is exhaustive and
that every posting action post(c) is exclusive. Then, I |=
Pj [θ(i, use(k))] ∧ Pj [¬θ(k′, post(c))] ⇒ Pj [θ(i, use(k)) ∧
¬θ(k′, post(c))] holds for every i, k, k′, and c.

Proof. Since the posting phase is exhaustive, every c
must have been posted by some pseudonyms in each run.
Further, since post(c) is exclusive, a uniquely determined
pseudonym must have posted it in each run. In other words,
¬θ(k′, post(c)) can be equivalently expressed as a formula of

the form ∨k′
q �=k′θ(k′q, post(c)). Hence, the lemma immedi-

ately follows from Lemma A.1.

Lemma A.3. Assume that the registration and posting
phases in I are independent with respect to an observer
j. Also assume that the registration phase is exhaustive
and that every real-name agent i is exclusive. Then, I |=
Pj [¬θ(i, use(k))] ∧ Pj [θ(k

′, post(c))] ⇒ Pj [¬θ(i, use(k)) ∧
θ(k′, post(c))] holds for every i, k, k′, and c.

In some cases, we require a stronger form of the indepen-
dence assumption to prove compositionality results. Indeed,
we need the binarily conjunctive form of the assumption.
More specifically, the registration and posting phases in an
anonymous bulletin board system I are pairwise indepen-
dent with respect to an observer j if

I |= Pj [
^

m∈{0,1}
θ(im, use(km))] ∧ Pj [

^

n∈{0,1}
θ(k′n, post(cn))]

⇒ Pj [(
^

m∈{0,1}
θ(im, use(km))) ∧ (

^

n∈{0,1}
θ(k′n, post(cn)))]

holds for every pair (i0, i1), (k0, k1), (k′0, k
′
1), and (c0, c1).

Example 4. In the system {r1, r2, r3, r4} (Fig. 4), the
registration and posting phases are pairwise independent.
On the other hand, in the system {r1, r2, r5, r6, r7, r8} or
{r1, r2, r9, r10, r11, r12}, the registration and posting phases
are not pairwise independent.

Cases 2 and 3 can be extended to show the sequential
compositionality of role interchangeability. To obtain these
results, we require the pairwise independence assumption.

Claim A.1. Assume that the registration and posting
phases are pairwise independent with respect to an observer
j. Also suppose that every pair comprising an agent k
and an action post(c) is role interchangeable with respect
to j. Then, every pair comprising an agent i and an action
submit(c) is role interchangeable as well.

Proof. Suppose that (I, r,m) |= θ(i, submit(c)) and
(I, r,m) |= θ(i′, submit(c′)). Then, there exist k and k′ such
that (I, r,m) |= θ(i, use(k)) ∧ θ(k, post(c)) and (I, r,m) |=
θ(i′, use(k′)) ∧ θ(k′, post(c′)). Because every pair compris-
ing an agent k and an action post(c) is role interchangeable
and because (I, r,m) |= θ(k, post(c))∧θ(k′, post(c′)), we can
say that (I, r,m) |= Pj [θ(k

′, post(c)) ∧ θ(k, post(c′))] holds.
On the other hand, we have (I, r,m) |= θ(i′, use(k′)) ∧
θ(i, use(k)). That is, (I, r,m) |= Pj [θ(i

′, use(k′)) ∧
θ(i, use(k))] holds. So, by virtue of the pairwise in-
dependence assumption, (I, r,m) |= Pj [θ(i

′, use(k′)) ∧
θ(k′, post(c)) ∧ θ(i, use(k)) ∧ θ(k, post(c′))] holds. That is,
(I, r,m) |= Pj [θ(i

′, submit(c)) ∧ θ(i, submit(c′))]. This con-
cludes the proof.

Claim A.2. Assume that the registration and posting
phases are pairwise independent with respect to an observer
j. Also suppose that every pair comprising an agent i and an
action use(k) is role interchangeable with respect to j. Then,
every pair comprising an agent i and an action submit(c) is
role interchangeable as well.

Example 5. In the system {r1, r2, r5, r6, r7, r8} or
{r1, r2, r9, r10, r11, r12} (Fig. 4), every pair comprising an
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agent k and an action post(c) is role interchangeable as
well as every pair comprising an agent i and an action
use(k). However, the registration and posting phases are
not pairwise independent. Consequently, in these systems,
there exist some pairs comprising an agent i and an action
submit(c) such that they are not role interchangeable.

Cases 8, 9, 10, and 11 in Table 1 are respectively de-
rived from Cases 2, 3, 4, and 5 by replacing “up-to” ano-
nymity/privacy properties with minimal anonymity/privacy
properties. There are two problems in obtaining these deriva-
tions. First, consider Case 8 and its dual, Case 9, which are
derived from Cases 2 and 3, respectively. Since the defi-
nition of minimal privacy/anonymity involves negative for-
mulas, independence assumptions in positive-negative and
negative-positive forms are helpful in these cases. Thus, we
will use Lemmas A.2 and A.3 in Cases 8 and 9, respectively.

Second, consider Case 10 (which is derived from Case 4)
and an intended example system consisting of the two indis-
tinguishable runs r5 and r6 (Fig. 4). In r5, i1 uses k1 and k2

to post c1 and c2, respectively. In r6, i1 uses k1 and k2 to
post c2 and c1, respectively. Thus, in the system {r5, r6}, ev-
ery use(k) performed by i is maximally onymous and every
k performing post(c) is minimally private, but i performing
submit(c) is never minimally private. This is because al-
though the posting actions performed by the pseudonyms k1

and k2 of i1 are totally different, the submission actions per-
formed by i1 are defined using existential quantification over
k and thus both θ(i1, submit(c1)) and θ(i1, submit(c2)) hold
in both r5 and r6. To avoid this, we assume that every real-
name agent can be allowed to use at most one pseudonym in
each run, that is, each i is exclusive. This assumption will
also be used in a generalization of Case 10, that is, Case 8.
Note that to deal with Cases 9 and 11, we need a similar
assumption that every possible article c can be posted by at
most one pseudonym k in each run, that is, every post(c) is
exclusive, which is the “dual” of the assumption above.

Claim A.3. Assume that the registration and posting
phases are independent with respect to j. Suppose that the
posting phase is exhaustive and that each post(c) is exclusive
as well as each i. Also suppose that every agent k performing
post(c) is minimally private with respect to j. Then, every
agent i performing submit(c) is minimally private.

Proof. Suppose that (I, r,m) |= θ(i, submit(c)). Then,
there exists some k in IP such that (I, r,m) |= θ(i, use(k))∧
θ(k, post(c)). From (I, r,m) |= θ(i, use(k)), it is imme-
diately seen that (I, r,m) |= Pj [θ(i, use(k))]. Because
every k performing post(c) is minimally private and be-
cause (I, r,m) |= θ(k, post(c)), we can say that (I, r,m) |=
Pj [¬θ(k, post(c))] holds. So, by virtue of Lemma A.2,
(I, r,m) |= Pj [θ(i, use(k)) ∧ ¬θ(k, post(c))] holds. Since
every real-name agent can be allowed to use at most
one pseudonym in each run, this means that (I, r,m) |=
Pj [¬θ(i, submit(c))] holds.

Claim A.4. Assume that the registration and posting
phases are independent with respect to j. Suppose that the
registration phase is exhaustive and that each i is exclusive as
well as each post(c). Also suppose that every action use(k)
performed by i is minimally anonymous with respect to j.
Then, every action submit(c) performed by i is minimally
anonymous.

Claim A.5. Suppose that the posting phase is exhaustive
and that each i is exclusive as well as each post(c). Also
suppose that every action use(k) performed by i is max-
imally onymous with respect to j. Moreover assume that
every agent k performing post(c) is minimally private with
respect to j. Then, every agent i performing submit(c) is
minimally private.

Proof. This directly follows from Lemma 3.1 and
Claim A.3.

Claim A.6. Suppose that the registration phase is exhaus-
tive and that each post(c) is exclusive as well as each i. Also
suppose that every action use(k) performed by i is minimally
anonymous with respect to j. In addition assume that every
agent k performing post(c) is maximally identified with re-
spect to j. Then, every action submit(c) performed by i is
minimally anonymous.

The final case shown in Table 1 indicates that if both the
registration and posting phases guarantee linkability, then
so does the entire system.

Claim A.7. Suppose that every action use(k) performed
by i is maximally onymous with respect to j and that every
agent k performing post(c) is maximally identified with re-
spect to j. Then, every action submit(c) performed by i is
maximally onymous.

Proof. Suppose that (I, r,m) |= θ(i, submit(c)). Then,
there exists some k in IP such that (I, r,m) |= θ(i, use(k))∧
θ(k, post(c)). Because every action use(k) performed
by i is maximally onymous and because every agent k
performing post(c) is maximally identified, (I, r′,m′) |=
θ(i, use(k)) ∧ θ(k, post(c)) holds for every point (r′,m′)
such that (r′,m′) ∼j (r,m). This means that (I, r,m) |=
Kj [θ(i, submit(c))].

B. PARALLEL COMPOSITIONALITY:
MORE CASES

In this appendix, we discuss Cases III to V shown in Ta-
ble 1.

Cases III and IV are perfectly symmetric and deal with
the parallel compositionality of minimal anonymity/privacy.
Note that the independence assumption is unnecessary here.

Claim B.1. Suppose that either i performing acta(c) or
i performing actb(c) is minimally private with respect to j.
Then, i performing actp(c) is also minimally private.

Proof. Suppose that (I, r,m) |= θ(i, actp(c)). Then,
(I, r,m) |= θ(i, acta(c)) ∧ θ(i, actb(c)) holds. Also assume
that, say, i performing acta(c) is minimally private. Then,
based on the assumption of minimal privacy, (I, r,m) |=
Pj [¬θ(i, acta(c))] holds. This immediately implies that
(I, r,m) |= Pj [¬θ(i, acta(c)) ∨ ¬θ(i, actb(c))] holds. That
is, (I, r,m) |= Pj [¬θ(i, actp(c))] holds.

Case V in Table 2 indicates a trivial result on the parallel
compositionality of linkability.

Claim B.2. Suppose that both i performing acta(c) and i
performing actb(c) are maximally identified with respect to
j. Then, i performing actp(c) is also maximally identified.
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C. INDEPENDENCE-AS-ANONYMITY/PRI-
VACY INTERPRETATION

In this appendix, we discuss that the independence as-
sumption shown in Sect. 3 could be viewed by itself as a
“meta-level” abstraction of the anonymity or privacy prop-
erty.

We first introduce two additional conditions regarding our
anonymous members-only bulletin board system. We say
that the bulletin board system satisfies backward causality
provided that if k posts c, then there exists some i such
that i uses k. This is formulated as I |= θ(k, post(c)) ⇒W

i∈IR
θ(i, use(k)). Backward causality can be regarded as

a natural assumption in that every posted article should
be related by some real-name agent; however, it is not a
mandatory assumption because in some cases, certain auxil-
iary pseudonyms may post some dummy articles to enhance
the privacy of real-name agents. We may also assume for-
ward causality, which means that if i uses k, then there exists
some c such that k posts c.

It is immediately seen that the definition of indepen-
dence is equivalent to stating that I |= θ(k′, post(c)) ⇒V

i,k(Pj [θ(i, use(k))] ⇒ Pj [θ(i, use(k))∧θ(k′, post(c))]) holds

for every k′ and c. If we assume backward causality, then

this is also equivalent to that for every i′, k′, and c,

I |= θ(i′, use(k′))∧θ(k′, post(c)) ⇒
V

i,k(Pj [θ(i, use(k))]⇒Pj [θ(i, use(k))∧θ(k′, post(c))])
holds. If we abuse the notation and write
Θ(θ(i, use(k)), coexist(θ(k′, post(c)))) for θ(i, use(k)) ∧
θ(k′, post(c)), which means a “meta-level” link between
“first-class” links θ(i, use(k)) and θ(k′, post(c)), then the
above equivalent transformation indicates that the indepen-
dence assumption can be viewed as a certain, abstract form
of “anonymity.” More specifically, the obtained, equivalent
formula means that an “action” coexist(θ(k′, post(c)))
performed by an “agent” θ(i′, use(k′)) is anonymous up to a
certain “anonymity set” with respect to j. Alternatively, if
we assume forward causality, the independence assumption
can be viewed as an abstract form of “privacy.” When we
apply our framework to the compositional verification of
the anonymity or privacy property of a specific example,
it will often be a key task to show that the independence
assumption holds. The above remark suggests a possibility
that we can use conventional proof methods for anonym-
ity/privacy when showing the independence assumption,
although we do not go into detail here.
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