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Abstract
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1 Introduction

Unawareness is probably the most common and most important kind of ignorance. Busi-
ness people invest most of their time not in updating prior beliefs and crossing out states
of the world that they previously assumed to be possible. Rather, their efforts are mostly
aimed at exploring unmapped terrain, trying to figure out business opportunities that
they could not even have spelled out before. More broadly, every book we read, every
new acquaintance we make, expands our horizon and our language, by fusing it with the
horizons of those we encounter, turning the world more intelligible and more meaningful
to us than it was before (Gadamer, 1960).

With this in mind, we should not be surprised that the standard state-spaces aimed
at modeling knowledge or certainty are not adequate for capturing unawareness (Dekel,
Lipman, and Rustichini, 1998). Indeed, more elaborate models are needed (Fagin and
Halpern, 1988, Modica and Rustichini, 1994, 1999, Halpern, 2001). In all of these models,
the horizon of propositions the individual has in her disposition to talk about the world

is always a genuine part of the description of the state of affairs.

Things become even more intricate when several players are involved. Each player
may not only have different languages, but may also form a belief on the extent to which
other players are aware of the issues that she herself has in mind. Even more complex,
the player may be uncertain as to the sub-language that each other player attributes to

her or to others; and so on.

Heifetz, Meier, and Schipper (2006) showed how an unawareness structure consisting
of a lattice of spaces is adequate for modeling mutual unawareness. Every space in
the lattice captures one particular horizon of meanings or propositions. Higher spaces
capture wider horizons, in which states correspond to situations described by a richer
vocabulary. The join of several spaces — the lowest space at least as high as every one of

them — corresponds to the fusion of the horizons of meanings expressible in these spaces.

In a companion work (Heifetz, Meier, and Schipper, 2008), we showed the precise
sense in which such unawareness structures are adequate and general enough for modeling
mutual unawareness. We put forward an axiom system, which extends to the multi-player
case a variant of the axiom system of Modica and Rustichini (1999). We then showed
how the collections of all maximally-consistent sets of formulas in our system form a

canonical unawareness structure.! In a parallel work, Halpern and Régo (2008) devised

!Bach space in the lattice of this canonical unawareness structure consists of the maximally consistent

sets of formulas in a sub-language generated by a subset of the atomic propositions.



another sound and complete axiomatization for our class of unawareness structures.?

In this paper we extend unawareness structures so as to encompass probabilistic be-
liefs (Section 2) rather than knowledge or ignorance. The definition of types (Definition
1), and the way beliefs relate across different spaces of the lattice, is a non-trivial modifi-
cation of the coherence conditions for knowledge operators in unawareness structures, as
formulated in Heifetz, Meier, and Schipper (2006). We show that we obtain all properties

of unawareness suggested in the literature.

Having structures with both unawareness and probabilistic beliefs raises the question
about the differences between probability zero events and events that an agent is unaware
of. At an epistemic level, unawareness has very different properties than probability zero
belief. For instance, one property that is satisfied by unawareness is symmetry (see
Proposition 5). An agent is unaware of an event if and only if she is unaware of its
negation. Clearly, such a property cannot be satisfied by probability zero belief because
if an agent assigns probability zero to an event, then she must assign probability one to its
complement. Schipper (2012) shows that this feature captures also behavioral differences
between unawareness and probability zero belief. Let’s say a decision maker chooses
among different contracts for buying a firm. The seconds contract may differ from a first
contract only in a consequence for an event F that is disadvantageous to the buyer. If the
decision maker is indifferent between both contracts, then this is consistent with E being
Savage null. Yet, if the decision maker is also indifferent between the first and a third
contract that differs from the first only in assigning this disadvantageous consequence to
the negation of the event E instead the event F itself, then this behavior is inconsistent
with the negation of the event F or the event FE itself being Savage null. The decision
maker behaves as if both the event E and its negation are Savage null, which is impossible
but consistent with unawareness of the E and of its negation. Thus, when the primitives
of a decision model are fixed, unawareness has behavioral implications distinct from zero

probability.?

2The precise connection between Fagin and Halpern (1988), Modica and Rustichini (1999), Halpern
(2001), and Heifetz, Meier, and Schipper (2006) is understood from Halpern and Régo (2008) and
Heifetz, Meier, and Schipper (2008). The connection between Heifetz, Meier, and Schipper (2006, 2008)
and Galanis (2011a) is explored in Galanis (2011b). The connection between Li (2009) and Fagin and
Halpern (1988) is explored in Heinsalu (2012a). The connections with the models of Ewerhart (2001)
and Feinberg (2009) are yet to be explored.

3Li (2008) studies further the distinction between unawareness of an event and assigning zero prob-
ability to it from a decision-theoretic perspective. She distinguishes between pure unawareness and

partial unawareness, under which the subjective point of view of the decision maker corresponds to some



In Section 3, we present as an economic application of unawareness belief structures
an analysis of speculative trade under unawareness. We start by defining the notion of
a common prior in unawareness belief structures. Conceptually, a prior of a player is a
convex combination of (the beliefs of) her types (see e.g. Samet, 1998). If the priors of
the different players coincide, we have a common prior. A prior of a player induces a
prior on each particular space in the lattice, and if the prior is common to the players,

the induced prior on each particular space is common as well.

What are the implications of the existence of a common prior? First, we extend an
example from Heifetz, Meier, and Schipper (2006) and show that speculative trade is
compatible with the existence of a common prior (Section 1.1). This need not be surpris-
ing if one views unawareness as a particular kind of “delusion”, since we know that with
deluded beliefs, speculative trade is possible even with a common prior (Geanakoplos,
1989). Nevertheless, we show that a positive common prior is not compatible with com-
mon certainty of strict preference to carry out speculative trade. That is, even though
types with limited awareness are, in a particular sense, deluded, a common prior pre-
cludes the possibility of common certainty of the event that based on private information
players are willing to engage in a zero-sum bet with strictly positive subjective gains to
everybody. This is so because unaware types are “deluded” only concerning aspects of
the world outside their vocabulary, while a common prior captures a prior agreement on
the likelihood of whatever the players do have a common vocabulary. An implication of
this generalized “No-speculative-trade” theorem is that arbitrary small transaction fees
(like a Tobin tax) rule out speculative trade under unawareness. We complement this
result by generalizing Aumann’s (1976) “No-Agreeing-to-disagree” result to unawareness

belief structures.

In Section 2 we present our interactive unawareness belief structure. In Section 3 we
apply unawareness belief structures to study speculative trade under unawareness, prove
a “No-speculative-trade” theorem, and discuss the common prior assumption. Finally, in
Section 4 we conclude with a discussion of the related literature. Some further properties
of our unawareness belief structures are relegated to an appendix. Proofs are relegated

to an appendix as well.

‘default’ actual state. She shows that both kinds of unawareness may lead to different behavior than

under standard probabilistic beliefs.



1.1 Introductory Example - Speculation under Unawareness

The purpose of the following example is threefold: First, it shall motivate the study
of unawareness and speculation under unawareness. Second, it should illustrate infor-
mally some features of our model. Third, it is a counter example to the standard “No-

speculative-trade” theorems in the context of unawareness.

Consider a probabilistic version of the speculative trade example of Heifetz, Meier,
and Schipper (2006). There is an owner, o, of a firm and a potential buyer, b, whose
awareness differ. The owner is aware that there may be a costly lawsuit [{] involving the
firm, but she is unaware of a potential novelty [n] enhancing the value of the firm. In
contrast, the buyer is aware that there might be an innovation, but he is unaware of the

lawsuit. Both are aware that the firm may face high sales [s] or not in future.

Both agents can only reason and form beliefs about contingencies of which they are
aware of respectively. The information structure is given in Figure 1. There are four
state-spaces of different expressive power. The description of each state is printed above
the state. While the upmost space, S}, contains all contingencies, the space Sy
misses the novelty, Sy, misses the law suit, and Sy,y is capable of expressing only events
pertaining to the sales. At any state in the upmost space Sy, the buyer’s belief has full
support on the lower space Sy, (as given by the solid ellipse and lines) and the seller’s
belief has full support on Sy} (dashed ellipse and lines). Thus the buyer forms beliefs
about sales and the novelty but is unaware of the law suit, and the seller forms beliefs
about sales and the law suit but is unaware of the novelty. At any state in Sy,s the
seller’s belief has full support on the lower space Sg,3. That is, the buyer is certain that
the seller is unaware of the novelty. Analogously, the seller is certain that the buyer is
unaware of the law suit since at any state in Sy, the belief of the buyer has full support
on the space Sy ;. Figure 1 provides an example of an unawareness structure developed
in this paper. The probability distribution given in each space illustrates an example
of a common prior in unawareness structures, that is, a projective system of probability
measures whose posteriors are the players’ beliefs. L.e., the prior on a lower space is the
marginal of the prior in the upmost space. The beliefs of both agents are consistent with

the common prior.

Suppose that the status quo value of the firm with high sales (s) is 100 dollars, but
only 80 dollars with low sales (—s). If the potential innovation (n) obtains, this would
add 20 dollars to the value of the firm, whereas the potential lawsuit (/) would cost the
firm 20 dollars. According to the beliefs at state (nls) (and any other state in the upmost

state-space), the buyer’s expected value of the firm is 100, whereas the seller’s expected



Figure 1: Information Structure in the Speculative Trade Example

nls n-ls nl-s n-l-s =nls =n-ls =nl=s =N=l=s

value of the firm is 80 dollars. However, each agent is certain that the expected value of

the other agent is 90 dollars.

We assume that both players are rational in the sense of maximizing their respective
payoff given their belief and awareness. The buyer prefers to buy at price x if his expected
value of the firm is at least x, while the seller prefers to sell at price x if her expected
value is at most . The buyer strictly prefers to buy at price x if his expected value of the
firm is strictly above z, while the seller strictly prefers to sell at price z if her expected
value is strictly below x.

Note that despite the fact that both agents’ beliefs are consistent with the common
prior, at state (nls) and at the price 90 dollars, there is common certainty of willingness to
trade (i.e., common certainty of weak preference to trade), but each player strictly prefers
to trade. This is impossible in standard state-space structures with a common prior. In
standard “No-speculative-trade” theorems, if there is common certainty of willingness to

trade, then agents are necessarily indifferent to trade (Milgrom and Stokey, 1982).

Despite this counterexample to the “No-speculative-trade” theorems, we can prove in
Section 3 a generalized “No-speculative-trade” theorem according to which, if there is a
common prior, then there cannot be common certainty of strict preference to trade. In

the above example we have common certainty of willingness to trade and strict preference



to trade but there is no common certainty of strict preference to trade.

2 Model

2.1 State-Spaces

Let S = {Sa},c4 be a complete lattice of disjoint state-spaces, with the partial order
= on S. A complete lattice is a lattice such that each subset has a least upper bound
(i.e., supremum) and a greatest lower bound (i.e., infimum). If S, and S are such that
So = Sp we say that “S, is more expressive than Sg — states of S, describe situations
with a richer vocabulary than states of Sg”.* Denote by Q = (J,, 4 Sa the union of these

spaces. Each S € § is a measurable space, with a o-field Fgs.

Spaces in the lattice can be more or less “rich” in terms of facts that may or may not
obtain in them. The partial order relates to the “richness” of spaces. The upmost space
of the lattice may be interpreted as the “objective” state-space. Its states encompasses

full descriptions of the resolution of all uncertainties in the model.

2.2 Projections

For every S and S’ such that S” = S, there is a measurable surjective projection rgl :
S' — S, where 7§ is the identity. (“rg (w) is the restriction of the description w to the
more limited vocabulary of S.”) Note that the cardinality of S is smaller than or equal
to the cardinality of S’. We require the projections to commute: If S” = S’ = S then
rg =71y org . Ifwe S, denote wg =g (w). If D C S, denote Dg = {wg : w € D}.
Projections “translate” states from “more expressive” spaces to states in “less expres-

sive” spaces by “erasing” facts that can not be expressed in a lower space.

2.3 Events

Denote g(S) = {S": 5" = S}. For D C S, denote D' = Usreqs) (r?)fl

extensions of descriptions in D to at least as expressive vocabularies.”)

An event is a pair (E,S), where E = D' with D C S, where S € S. D is called

(D). (“All the

4Here and in what follows, phrases within quotation marks hint at intended interpretations, but we

emphasize that these interpretations are not part of the definition of the set-theoretic structure.



the base and S the base-space of (E,S), denoted by S(F). If E # (), then S is uniquely
determined by E and, abusing notation, we write E for (F,S). Otherwise, we write ()

for (0, S). Note that not every subset of  is an event.

Some fact may obtain in a subset of a space. Then this fact should be also “express-
ible” in “more expressive” spaces. Therefore the event contains not only the particular

subset but also its inverse images in “more expressive” spaces.

To illustrate the definition of event, consider Figure 1. The event “high sales”, {s}',
contains the state s in space S}, states ns and —ns in space Sy, states Is and —ls in

space Sy as well as states nls, n=ls, —-nls, and —-n—ls in space Sgps)-

Let ¥ be the set of measurable events of Q, i.e., D' such that D € Fg, for some state-
space S € §. Note that unless S is a singleton, ¥ is not an algebra because it contains
distinct 0° for all S € S. The event (}° should be interpreted as a “logical contradiction
phrased with the expressive power available in S”. It is quite natural to have distinct

vacuous events since contradictions can be phrased with differing expressive powers.

2.4 Negation

If (D',S) is an event where D C S, the negation —(D",S) of (D', S) is defined by
=(D',8) := ((S\ D)',S). Note, that by this definition, the negation of a (measurable)
event is a (measurable) event. Abusing notation, we write =D' := —(D", S). Note that

by our notational convention, we have =ST = (° and —(° = ST, for each space S € S.
D" is typically a proper subset of the complement 2\ D". That is, (S'\ D)T ;Cé a\ D"

Intuitively, there may be states in which the description of an event D' is both
expressible and valid — these are the states in D'; there may be states in which its
description is expressible but invalid — these are the states in =D'; and there may be
states in which neither its description nor its negation are expressible — these are the

states in
Q\ (D'u-D") =\ s (DN

Thus our structure is not a standard state-space model in the sense of Dekel, Lipman,
and Rustichini (1998).



2.5 Conjunction and Disjunction

If {(DI\,SA)} is a collection of events (with D) C Sy, for A € L), their conjunc-
AEL

tion A,y (DI,S/\> is defined by A, <DI,SA> = ((ﬂ/\eL DI\) ,SUP e, SA). Note,
that since S is a complete lattice, supyc; Sy exists. If S = sup,c; S\, then we have

- )
(ﬂAGL DI) = (ﬂ/\eL ((ng/\) ! (DA)>> . Again, abusing notation, we write A,_; D} :=
Mrer DT\ (we will therefore use the conjunction symbol A and the intersection symbol N

interchangeably).

Intuitively, to take the intersection of events (DT\,SA) AcL, We express them “most
economically in the smallest language” in which they are all expressible S = supyc, Si.
We take the intersection obtaining the event (ﬁ/\eL((T%)_l(DA)))T that is based in S.

We define the relation C between events (E,S) and (F,5"), by (E,S) C (F,5) if
and only if £ C F as sets and S < S. If E # (), we have that (E,S) C (F,S5’) if and
only if £ C F as sets. Note however that for E = (¥ we have (E,S) C (F,S") if and
only if S" < S. Hence we can write £ C F instead of (E,S) C (F,S’) as long as we keep
in mind that in the case of E = ()° we have () C F if and only if S = S(F). It follows
from these definitions that for events E and F, EF C F'is equivalent to =F C —=F only
when E and F' have the same base, i.e., S(E) = S(F).

Intuitively, to say “F implies F” we must be able to express F' in the “language”
used to express E. Hence, it must be that S(F) < S(F). The inclusion is then just
ENS(E)C FNS(E).

The disjunction of {D;} is defined by the de Morgan law \/, ., DI = (AAeL - (DI) ) .

AeL
Typically V,c,. D/T\ S User DI\, and if all D) are nonempty we have that \/,_, D/T\ =

User DT\ holds if and only if all the DI\ have the same base-space. Note, that by these
definitions, the conjunction and disjunction of (at most countably many measurable)

events is a (measurable) event.

Apart from the measurability conditions, the event-structure outlined so far is analo-
gous to Heifetz, Meier, and Schipper (2006, 2008). An example is shown in Figure 2. It
depicts a lattice with four spaces and projections. The event that p obtains is indicated
by the dotted areas, whereas the grey areas illustrate the event that not p obtains. S,US,

is for instance not an event in our structure.



Figure 2: Event Structure
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2.6 Probability Measures

Here and in what follows, the term ‘events’ always refers to measurable events in ¥ unless

otherwise stated.

Let A () be the set of probability measures on (.S, Fs). We consider this set itself as a
measurable space endowed with the o-field Fa(s) generated by the sets {u € A(S) : (D) > p},
where D € Fg and p € [0, 1].

2.7 Marginals

For a probability measure 1 € A ('), the marginal jig of p on S < S is defined by
N -1
s (D) = p ((rg) (D)> ., DeFs

Let S, be the space on which y is a probability measure. Whenever S, > S(E) then

we abuse notation slightly and write
p(E)=p(ENS,).
If S(E) £ S, then we say that p(E) is undefined.

10



2.8 Types

I is the nonempty set of individuals. For every individual, each state gives rise to a

probabilistic belief over states in some space.

Definition 1 For each individual i € I there is a type mapping t; : Q@ — J e A (Sa),
which is measurable in the sense that for every S € S and QQ € Fa(s) we have tHQ)NS €
Fs. We require the type mapping t; to satisfy the following properties:?

(0) Confinement: If w € S" then t;(w) € A(S) for some S < 5.
(1) If " = 5" =S, we S", and t;(w) € A(S) then t;(wg) = t;(w).
(2) If " = 8" =S, we S, and t;(w) € A(S') then ti(wsg) = t;(w))s-

(3) [f S = 5" - S} wE S”; and ti(wS/) € A(S) then Sti(w) >~ S.

ti(w) represents individual i’s belief at state w. Properties (0) to (3) guarantee the
consistent fit of beliefs and awareness at different state-spaces. Confinement means that
at any given state w € ) an individual’s belief is concentrated on states that are all
described with the same “vocabulary” - the “vocabulary” available to the individual at
w. This “vocabulary” may be less expressive than the “vocabulary” used to describe

statements in the state w.”

Properties (1) to (3) compare the types of an individual in a state w € S and its
projection to wg, for some S < S’. Property (1) and (2) mean that at the projected state
wg the individual believes everything she believes at w given that she is aware of it at
wg. Property (3) means that at w an individual cannot be unaware of an event that she

is aware of at the projected state wgr.

Remark 1 Property (1) of the type mappings in Definition 1 is implied by the Properties

(0),(2), and (3).

Define®
Ben; (w) = {w' € Qi ti(W)s,, o = ti(w)} :

®Recall that S, is the space on which x is a probability measure. Thus, St,(w) is the space on which

t;(w) is a probability measure.

5The name “Ben” is chosen analogously to the “ken” in knowledge structures, see Samet (1990, p.
193).

11



This is the set of states at which individual i’s type or the marginal thereof coincides

with her type at w. Such sets are events in our structure:

Remark 2 For any w € Q, Ben;(w) is an Sy, )-based event, which is not necessarily
measurable.” We have Ben,;(w) = {w' € Sy,(w) : ti(w') = ti(w)}T = {Ben;(w) N Sy }-

Recall that by definition t;(w)(E) = t;(w)(£ NS, w)). Moreover, recall that with event
we mean measurable event in our event structure unless otherwise stated; both facts will

be used throughout the paper.
Assumption 1 If Ben;(w) C E, for an event E, then t;(w)(F) = 1.

This assumption implies introspection (Property (va)) in Proposition 4 in the ap-
pendix. Note, that if Ben;(w) is measurable, then Assumption 1 is equivalent to ¢;(w)(Ben;(w)) =
1.

Definition 2 We denote by S := <8, (r§g> ,(ti)i€]> an interactive unawareness
S5=5a

belief structure.

For some of our results, we will consider the finite case. A finite unawareness belief
structure is an unawareness belief structure, where § is finite, each S € § is finite, and
for all S € S, Fs is the set of all subsets of S.

2.9 Awareness and Unawareness

The definition of awareness is analogous to the definition in unawareness knowledge

structures (see Remark 6 in Heifetz, Meier, and Schipper, 2008).

Definition 3 For i € I and an event E, define the awareness operator
Ai(B) = {w e Q:ti(w) € A(S),S = S(B))
if there is a state w such that t;(w) € A(S) with S = S(E), and by
A(E) = 05®)

otherwise.

"Even in a standard type-space, if the o-algebra is not countably generated, then the set of states

where a player is of a certain type might not be measurable.

12



An individual is aware of an event if and only if his type is concentrated on a space

7

in which the event is “expressible.

he “understands what E is”.

That is, individual ¢ being aware of E means that

Proposition 1 [f E is an event then A;(F) is an S (E)-based event.

This proposition shows that the set of states in which an individual is aware of an
event is indeed an event in our structure. Moreover, in the nonempty case note that
Aj(E) ={w € S(E) : Siw) = S(E)}T = {A4(E) N S(E)}!. The awareness operator is

convenient to work with since the event A;(E) has the same base-space as the event F.

Unawareness is naturally defined as the negation of awareness:
Definition 4 Fori € I and an event E, the unawareness operator is defined by
Ui(E) = - A)(E).

Note that the definition of our negation and Proposition 1 imply that if £ is an event,
then U;(F) is an S (E)-based event.

Note further that Definition 3 and 4 apply also to events that are not necessarily

measurable.

2.10 Belief

The p-belief-operator is defined as usual (see for instance Monderer and Samet, 1989):

Definition 5 Fori e I, p € [0,1] and an event E, the p-belief operator is defined by
Bi(E) :=A{w e Q: ti(w)(E) = p},
if there is a state w such that t;(w)(E) > p, and by
BY(E) := p°®)

otherwise.

Proposition 2 If E is an event then BY(E) is an S (E)-based event.

13



This proposition shows that the set of states in which an individual believes an event
with probability at least p is an event in our structure that has the same base-space as
the event F.

Note that BY(E) = {w € S(F) : t;(w)(E) > p}'. That is, for every operator on
events, everything can be expressed in the base space and then the union of inverse

images can be taken.
We make note of the particular case p = 1 that we call certainty.

The p-belief operator has the standard properties stated in Proposition 4 in Ap-
pendix A.

2.11 Properties of Awareness and Belief

Dekel, Lipman, and Rustichini (1998) showed that in a standard state-space unawareness
must be trivial, even if the belief operator satisfies only very weak properties. In contrast,
we show in Proposition 5 in the appendix that we obtain all properties of unawareness
suggested in the literature. One noteworthy property is symmetry, A;(E) = A;(—E).
It means that an individual ¢ is aware of an event E if and only if he is aware of the
negation of . This property makes clear that awareness is qualitatively very different

from the notion of probabilistic belief.

Although we model awareness of events, symmetry suggests that we model a notion
of awareness of issues or questions. Let an issue or question (E.g., “is the stock market
crashing?”) be such that it can be answered in the affirmative (“The stock market is
crashing.”) or the negative (“The stock market is not crashing.”). By symmetry, an
individual is aware of an event if and only if she is aware of its negation. Thus we
model the awareness of questions and issues rather than just single events. In fact,
another noteworthy property called weak necessitation, 4;(E) = B}(S(E)"), means that
an individual is aware of an event FE if and only if she is aware of any event that can be

“expressed” in the base-space of E.

Interactive beliefs are defined as usual (e.g. Monderer and Samet, 1989). From now

on, we assume that the set of individuals I is at most countable.

Definition 6 The mutual p-belief operator on events is defined by

B'(E) =) Bl(E).

iel

14



The common certainty operator on events is defined by
CB'(E) = ﬂ (BY)" (B).
n=1
We say that an event E is common certainty at w €  if w € CB! (F).

That is, the mutual p-belief of an event F is the event in which everybody p-believes
the event . Common certainty of F is the event that everybody is certain of the event
E, and everybody is certain that everybody is certain of the event E, everybody is certain
of that, ... ad infinitum. Common certainty is the generalization of common knowledge
to the probabilistic notion of certainty. Note that Proposition 2 and the definition of
the conjunction of events imply that BP(E) and CB' (E) are S(FE)-based events, for any

measurable event F.

To illustrate beliefs about beliefs we return to the introductory example. What does
it mean for instance that the buyer is certain that the seller’s expected value for the firm
is 90 dollars? Note that at any state w € S5 the seller’s type mapping is t(w)({s}) =
ts(w)({—s}) = 3. Since the value of the firm is 100 dollars in state s while it is just 80
dollars in state —s, the seller’s expected value of the firm is 90 dollars at any state in
Stsy. This holds also for all states in Sy, since at any of those states the seller’s type
coincides with his type at states in Sp,. Since at any state w € Sy,5) the buyer’s type
ty(w) is a probability measure on Sy, the buyer is certain at w that the seller’s expected

value of the firm is 90 dollars.

Analogously to mutual belief and common belief, we define mutual awareness and

CcOominon awareness:

Definition 7 The mutual awareness operator on events is defined by

A(B) = Ai(E),

i€l

and the common awareness operator on events is defined by

n=1

Mutual awareness of an event £ is the event that everybody is aware of £. Common
awareness of an event F is the event that everybody is aware of E, everybody is aware

that everybody is aware of E, everybody is aware of that ... ad infinitum.
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In Propositions 6 and 7 in the appendix, we state several properties of belief and
awareness in the multiperson context. One noteworthy property is A;(E) = A;A;(E). If
individual 7 is aware of an event F, then she can also conceive that some other individual
j is aware of the event E. Another property is that mutual awareness coincides with
common awareness, A(F) = CA(FE). That is, if everybody is aware of an event, then
everybody can conceive that everybody is aware of the event, everybody is aware of
that, etc. Finally, it is noteworthy that common certainty implies common awareness,
CB'(F) C CA(F). This property will be used repeatedly in the next section.

3 Common Prior, Agreement, and Speculation

In this section, we define a common prior and explore the implications. In Section 1.1, we
showed by example that the common prior assumption is too weak to rule out speculative
trade under unawareness. With unawareness, it is possible that everybody has a strict
preference to trade and there is common certainty of weak preference to trade. Yet, we
are able to prove a “No-speculative-trade” theorem according to which there cannot be
common certainty of strict preference to trade under unawareness. In the same vein, we

prove a “No-Agreeing-to-Disagree” theorem.

3.1 Priors and Common Priors

In a standard type-space S, a prior PJ of player i is a convex combination of the beliefs
of i’s types in S (Samet, 1998). That is, for every event E € Fg,

PS(B) = / () (E)dPS (). 1)

In particular, if S is finite or countable, and if Fg is the powerset of S, this equality holds
if and only if
PS(B) =Y t:(s) (B) PS ({s}). (2
ses
In words, to find the probability P° (E) that the prior P° assigns to an event E, one
should check the beliefs ¢; (s) (F) ascribed by player i to the event E in each state s € S,
and then average these beliefs according to the weights P ({s}) assigned by the prior

P? to the different states s € S.
P?% is a common prior on S if P¥ is a prior for every player i € I.

Here we generalize these definitions to unawareness structures, as follows.
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Definition 8 (Prior) A prior for player i is a system of probability measures P; =
(Pis)ses € [Lges A(S) such that

1. The system is projective: If S' = S then the marginal of P on S’ is P°'. (That
is, if E € X is an event whose base-space S (E) is lower or equal to S', then
P’ (E) = PP (E).)

2. Each probability measure P° is a convexr combination of i’s beliefs in S: For every

event £/ € 3 such that S(E) < S,

PS(ENSN A, (E)) = / () (E)dPS (). (1u)

SNA; (E)

P = (PS)SeS € [Iges A(S) is a common prior if P is a prior for every playeri € I.

In particular, if S is finite or countable, and if Fg is the powerset of S, equality (1u)
holds if and only if

PP(ENSNA(E) = ) ti(s)(B)P°({s}). (2u)

sESNA;(E)

What is the reason for the difference between (1) and (1u) (or similarly between (2)
and (2u))? With unawareness, t; (s) (£) is well defined only for states s € S in which
player i is aware of F, i.e., the states s € SN A; (E). This is the cause for the difference
in the definition of the domain of integration (or summation) on the right-hand side.
Consequently, £ (or equivalently £ N S) on the left-hand side of (1) and (2) is replaced
by ENSNA;(F)in (1u) and (2u).

The introductory example of speculative trade under unawareness has a common prior
as indicated by the fractions below each state in Figure 1). To see Property 1., observe
that the distribution on lower spaces coincides with the marginal of the distribution on
the higher space. For Property 2., consider for instance the event of “high sales”, [s], and
space Sgg3. On one hand, PH([s] N Sg N A4;([s])) = L. On the other hand, we have
ti(s)([s]) - PP ({s}) + ti(=s)([s) PV ({-s}) =55 +5 53 =35

Another example of an unawareness structure with a common prior is given in Fig-
ure 3. Odd (resp. even) states in the upper space project to the odd (resp. even) state in
the lower space. There are two individuals, one indicated by the solid lines and ellipses
and another by dashed lines and ellipses. Note that the ratio of probabilities over odd
and even states in each “information cell” coincides with the ratio in the “information

cell” in the lower space.
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Figure 3: Illustration of a Common Prior
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A discussion of the interpretation of a common prior in unawareness structures is
deferred to Section 3.4.

3.2 Speculative Trade

In this section, we investigate whether the common prior assumption implies the absence
of speculative trade (e.g. Milgrom and Stokey, 1982). The example in Section 1.1 shows
that speculation is possible under unawareness even if we assume that there is a positive
common prior. Despite this counter example to the “No-speculative-trade” theorems, we
prove below a generalized “No-speculative-trade” theorem according to which, if there is
a positive common prior, then there cannot be common certainty of strict preference to
trade. That is, even with unawareness it is not the case that “everything goes”. We find
this surprising, because unawareness can be interpreted as a special form of “delusion”:
At a given state of a space, a player’s belief may be concentrated in a very different lower
state-space. It is known that speculative trade is possible in delusional standard state-
space structures with a common prior. For instance, consider the information structure
in Figure 4. The common prior and the information structure allows the dashed player

to have a posterior of tgushea(w1)({wi1}) = taashea(w2)({w1}) = 1 and the solid player
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Figure 4: Speculative Trade with Delusion

tsoria(w1)({w2}) = tsonia(w2)({w2}) = 1. So they may happily disagree on the expected

value of a random variable defined on this standard state-space.

Denote by [t;(w)] := {w' € Q: t;(W) = t;(w)}.

Definition 9 A common prior P = (P%) ses € ses A(S) is positive if and only if for
alli € I andw € Q: Ift; (w) € A(S), then [t;(w)]NS' € Fsr and P (([tz (W)]Nns)'n S) >
0 for all S = 5.

For every type, a positive common prior puts a positive weight on the set of “station-
ary” states where the player has this type. It can be viewed as a technical condition that
serves the same purpose as the assumption in Aumann (1976) that the prior puts strict
positive weight on each partition cell in his finite partitional structure. This assumption
is for instance satisfied in the introductory example in which we show the possibility of
speculative trade under unawareness. The positivity condition ensures that the common
prior indeed imposes consistency on the types. To see this, consider once again Figure 3.
Replace the common prior by a prior that assigns % to each state wg, wig, w11 and %
to wia, and zero to all other states in S’. The prior probabilities for states in S remain
unchanged. This prior is a common prior but it does not satisfy the positivity assump-
tion of Definition 9. In particular, this common prior does not constrain any player’s
types with beliefs on S’. So, for unawareness belief structures the positivity assumption
on the common prior ensures that the common prior constrains the beliefs of types not
just locally on some space but across the lattice. Essentially, it is in the spirit of the
common prior assumption according to which different beliefs are only due to differences
in information. The positivity condition also implies that for each player there can be
at most countably many types in each space. Moreover, in terms of awareness it implies
that for every pair of players, ¢ and j, and every event FE., if i is certain that j is aware

of the event E, then j is indeed aware of the event E with probability 1.
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Next we define the set of states in which a player believes the expectation of a random

variable to be above (resp. below) some real number x.

Definition 10 Let x1 and x5 be real numbers and v a random variable on ). Define the

sets E=" = {w €Q: fSt1<w) v()d(t (w))(+) < 931} and

EF"™ = {w €eQ: [, Y ()d(ta (w))(-) > mg}. We say that at w, conditional on his
to(w
information, player 1 (resp. player 2) believes that the expectation of v is weakly below

xy (resp. weakly above x3) if and only if w € EX™ (resp. w € E5™).

Note that the sets E="" or E5™** may not be events in our unawareness belief structure,
because v (w) # v (wg) is allowed, for w € S = S. Yet, we can define p-belief, mutual
p-belief, and common certainty for measurable subsets of (2, and show that the properties

stated in Propositions 4 and 6 obtain as well.® The proofs are analogous and thus omitted.

We are now ready to state our “No-speculative-trade” result:

Theorem 1 Let S be a finite unawareness belief structure and P = (PS) ses € [Lses A(S)
be a positive common prior. Then there is no state @ € €2 such that there are a random
variable v : Q@ — R and x1,25 € R, 21 < x9, with the following property: at & it is
common certainty that conditional on her information, player 1 believes that the expec-
tation of v is weakly below x1 and, conditional on his information, player 2 believes that

the expectation of v is weakly above xs.

The theorem says that if there is a positive common prior, then there can not be
common certainty of strict preference to trade.? Together with our example of speculative
trade under unawareness we conclude that a common prior does not rule out speculation
under unawareness but it can never be common certainty that both players expect to
strictly gain from speculation. The theorem implies as a corollary that given a positive
common prior, arbitrary small transaction fees (e.g., a Tobin tax) rule out speculative

trade under unawareness.

8 A measurable subset of Q is an E C Q such that ENS € Fg, for all S € S. =F is then understood
to be the relative complement of E with respect to the union of state-spaces rather than our definition

of the negation of an event. This plays a role in point (ii) of Proposition 4 applied to measurable subsets
of Q.

9In Meier and Schipper (2010), we extend the above “No-speculative-trade” theorem to infinite un-

awareness belief structures.
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The idea of the proof is follows: First, if the set of states in which there is common
certainty that the first player’s expectation is strictly above o and the second player’s
expectations is weakly below « is nonempty, there is a minimal state-space such that
the common certainty event restricted to this space is nonempty. Second, this restricted
common certainty event is a belief closed subset in which beliefs are stationary. Third,
this set, together with the restriction of types to this set constitutes a standard state-

space to which a standard no-speculative-trade argument can be applied.

One may ask whether the absence of speculative trade implies a common prior un-
der unawareness. The previous result suggests that heterogeneous unawareness with a
common prior is “intermediate” between common awareness with heterogeneous priors
on the one hand, and common awareness with a common prior on the other hand. With
heterogeneous priors even in standard state-spaces, common certainty of strict preference
to trade is possible. In standard state-spaces, the absence of speculative trade implies
a common prior (see for instance Feinberg, 2000). This is the converse to the “No-
speculative-trade” theorem. The following example shows that under unawareness the

converse of our “No-speculative-trade” theorem does not hold.

Example 1 Consider the information structure with two spaces in Figure 5. There
are two players: The information structure of the first (resp. second) player is given
by the solid (resp. intermitted) objects. The belief of the first (resp. second) player is
given above (resp. below) the states. Since the relative weights differ, there can not be
a positive common prior. In fact, there is not even a common prior since equation (2u)
of Definition 8 imposed on the priors of both individuals would imply that the common
prior assigns probability zero to all states in S’. Note that the only measurable sets that
are common certainty among both players are 2 = S’ U S and S. At wg both player’s
expectations of the random variable in this state must agree. If there would exist a state
w in which the players would have common certainty of strict preference to trade, then
there would have to exist a subset W of {2 containing this state w such that both players
are commonly certain of W at w and such that at all states in W players would have a
strict preference to trade (given payoffs and their beliefs). However, the only candidates
for such a W are S and (), which also contains S. At S, though, players are indifferent
to trade, and this is common certainty at S = {ws}, no matter how a payoffs are chosen.
Hence we found an example of a structure where there is no common prior (and hence
no positive common prior) and yet there is no state at which there is common certainty

of strict preference to trade.
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Figure 5: Information Structure of the Counter-Example
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We should note that our simple model leaves open what happens if in the introductory
example the buyer offers more than 90 dollars to the seller. In this case the seller may
suspect that he is unaware of some event that the buyer is aware of. It is not clear
whether the seller would accept such an offer or not, and what the buyer would learn
from it. Such kind of reasoning is outside the model. Grant and Quiggin (2012) discuss

a heuristic for this case in our example.

3.3 Agreement

For an event E and p € [0, 1] define the set [t;(E) = p|] := {w € Q : t;(w)(E) = p}, if
{w e Q:t;(w)(E) = p} is nonempty, and otherwise set [t;(E) = p] := 05,

Lemma 1 [t;(E) = p| is a S(E)-based event.

PROOF. [t;(E)=p| = B’(E)NB; ?(~E). Hence the claim follows from Proposition 2.0J

The following proposition is a generalization of the standard “No-Agreeing-to-Disagree”
theorem (Aumann, 1976):
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Proposition 3 Let S be an unawareness belief structure for which there exists a positive
common prior, G be an event, and p; € [0,1], fori € I. If CB'((;o,[t:(G) = pi])) is
nonempty, then p; = p;, for alli,j € I.

The proposition asserts that, even under unawareness, if individuals have a positive
common prior and common certainty of posteriors for an event (and thus common aware-
ness of that event), then the posteriors must agree among all individuals. So individuals
with a positive common prior cannot agree-to-disagree on the posteriors of events which

they are all aware of.

As mentioned previously, the assumption of a positive common prior is a technical
assumption akin to the assumption of a prior that puts strict positive probability on each
partition cell in Aumann (1976). It can be weakened further considerably by requiring
only a common prior on a space S = S(G) satistying P*(CB*((",,[t:(G) = pi])) > 0.
In the appendix, we actually prove this more general version of the “No-agreement-to-

disagree” theorem and show that this condition is implied by a positive common prior.

3.4 Discussion of the Common Prior Assumption

How could a prior under unawareness be interpreted? Following the discussion of the
notion of a prior in standard Bayesian analysis by Savage (1954), Morris (1995), and
Samet (1999), we like to distinguish three interpretations: First, a prior is interpreted
verbally as a player’s subjective belief at a prior stage. Second, the prior is a coherence
condition on the player’s types. Third, the prior is the long run relative frequency of

repeated events observed by the player in the past.

Consider the first interpretation. A prior is a subjective belief at a prior stage before
the player received further information which led her to the interim belief ¢;(w). With
unawareness, this interpretation is nonsensical. One would have to imagine that the
player had been aware of all relevant aspects of reality at the prior stage, but then
became unaware of some of them (while nevertheless having received more information

regarding other aspects).

In standard Bayesian analysis, Samet (1999) put forward a second interpretation of
a prior as a coherence condition on types: For every event E € 3 and every p € [0, 1],
every type of the player answers affirmatively to the question “Given that tomorrow you
will assign to the event E probability at least p, do you assign to E probability at least
p now?” This interpretation is conceptually valid also for unawareness belief structures

with an important qualification: Every type of the player is asked these questions only
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for events of which she is aware because otherwise a question by itself may make the
type aware of an event of which she was previously unaware. While this qualification
is vacuous in standard Bayesian analysis - because of the implicit assumption of full
awareness - it implies for unawareness belief structures that each type is “aware” only
of the prior restricted to the events that she is aware of. Moreover, every type can only
perceive the beliefs of her alternative types of which she is aware. This emphasizes that

the prior is derived from types rather than being a primitive of the model.

The third interpretation views the prior as the relative frequency of events observed
previously by the individual as history goes to infinity and before receiving information
which led to her interim belief ¢;(w). Again, with unawareness such a interpretation is
nonsensical. One would have to imagine that the player had been measuring all events
in history, but then became unaware of some of them (while nevertheless having received
more information regarding other events). To recapture the validity of the frequentist
interpretation, we must assume that every player can observe only events that she is
aware of interim. This assumption is quite reasonable since a player can only measure
what she is aware of. For instance, meteorologists were unable to measure ozone before
they became aware of it. Yet, the applicability of the frequentist interpretation may
be limited since we allow also for conditioning on unobservable events (such as types
of other players), a caveat that applies not only to unawareness belief structures but to

belief structures in general.

What are the implications of the absence of speculation on the priors? For standard
type-spaces, the converse to the “No-speculative-trade” theorem characterizes the com-
mon prior assumption through the absence of speculative trade (Morris, 1994, Bonanno
and Nehring, 1999, Feinberg, 2000, Halpern, 2002, Heifetz, 2006). Example 1 shows that
we cannot characterize positive common priors or even just common priors on unaware-
ness belief structures by the absence of common certainty of strict preference to trade.
Note that our notion of “No-speculative-trade” is slightly different from the literature:
For instance, Feinberg (2000) characterizes the common prior by the absence of com-
mon certainty of speculation for some states. We show that a positive common prior
implies the absence of common certainty of speculation for all states. Hence, our notion
of “No-speculative-trade” implies Feinberg’s notion of “No-speculative-trade”.!® Note,

however, that the impossibility of the converse to a “No-speculative-trade” theorem for

10We opted for our notion of “local” speculation because intuitively one is interested to know whether
there are some states (as opposed to all states) where players speculate. Our notion of “No-speculative-

trade” coincides with Feinberg’s notion on belief closed subsets.
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unawareness belief structures is not due to the different notion of “No-speculative-trade”
employed. To see this, consider once again Example 1. At state wg it is not common cer-
tainty that players want to speculate. Yet, we noticed already that there is no common
prior in this model. Hence, also “No-speculative-trade” in the sense of Feinberg does not
imply a common prior in unawareness belief structures. To sum up, we show that it is still
possible to define the common prior assumption under unawareness. Moreover, our “No-
speculative-trade” theorem demonstrates that the common prior assumption enhanced
by positivity imposes discipline. Yet, contrary to standard type-spaces the common prior
assumption is not “provable” by the absence of speculation under unawareness, it just
remains (in principle) “falsifiable”. The possibility of characterizing a common prior by
absence of speculation in the standard type-space versus the impossibility of such char-
acterization in unawareness belief structures illustrates an important difference between

unawareness belief structures and standard type-spaces.

4 Related Literature

There is a growing literature on unawareness both in economics and computer science.
The independent parallel work of Sadzik (2006) is closest to ours. Building to a certain
extent on our earlier work, Heifetz, Meier, and Schipper (2006), he presents a framework
of unawareness with probabilistic beliefs in which the common prior on the upmost space
is a primitive. In contrast, we take types as primitives and define a prior on the entire

unawareness belief structure as a convex combination of the type’s beliefs.

In a companion paper, Meier and Schipper (2012a) apply unawareness belief struc-
tures to develop Bayesian games with unawareness, define Bayesian Nash equilibrium,
and prove existence. Moreover, they investigate the robustness of equilibria in strategic

games to uncertainty about opponents’ unawareness of actions.

Feinberg (2009) discusses games with unawareness by modeling games and many
views thereof, each (mutual) view being a finite sequence of player names iy, ..., 4, with
the interpretation that this is how i; views how .... how ¢, views the game. This differs
from our unawareness belief structures in which each state “encapsulates” the views of
the players, their views about other players’ views etc. in a standard and parsimonious

way.

Halpern and Régo (2006), Régo and Halpern (2012), Li (2006), Heifetz, Meier, and
Schipper (2012, 2011a), Meier and Schipper (2012b), and Feinberg (2009) present models

of extensive-form games with unawareness and analyze solution concepts for them. Li
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(2006) is based on Li (2009), in which she presents a set theoretic model with knowledge
and non-trivial unawareness. A state-space is a product set where each dimension cor-
responds to an issue. A decision maker may be unaware of some issues by “living in”
a space with less dimensions. Modica (2008) studies the updating of probabilities and
argues that new information may change posteriors more if it implies also a higher level

of awareness.

Ewerhart (2001) studies the possibility of agreement under a notion of unawareness
different from the aforementioned literature. A dynamic framework for a single decision
maker with unawareness is introduced by Grant and Quiggin (2012). They also discuss
our example of speculate trade in the face of awareness of unawareness. In particular,
they argue that agents should induce from previous experiences of becoming aware and
from differences in awareness across agents that they themselves could be unaware of
something. This awareness of unawareness may be coupled with a version of a precau-
tionary principle which may make them reluctant to engage in speculative trade. More
recently we learned that Board and Chung (2011) presented a different model of unaware-
ness in which they also study speculative trade under what they term living in “denial”
and “paranoia”. Finally, Galanis (2011c) presents some results on “No-agreement-to-
disagree” using a variant of the unawareness structure of Heifetz, Meier, and Schipper
(2006). The precise connection of Board and Chung (2011) and Galanis (2011c) to our

results is yet to be explored.

Unawareness belief structures capture unawareness and beliefs, beliefs about beliefs
(including beliefs about unawareness), beliefs about that etc. in a parsimonious way
familiar from standard type spaces. That is, hierarchies of beliefs are captured implicitly
by states and type mappings. A construction of unawareness belief structures from
explicit hierarchies of beliefs is complicated by the multiple awareness levels involved.
A player with a certain awareness level may believe that another player has a lower
awareness level and believes that the first player has yet a lower awareness level etc. In
a working paper version of the present paper, Heifetz, Meier, and Schipper (2011b), we
present such a hierarchical construction and show the existence of a universal unawareness
type space that contains all belief hierarchies. Heinsalu (2012b) independently proves the

existence of a universal unawareness type space for the measurable case.

The literature on unawareness is related to the recent work in behavioral economics,
finance, and macroeconomics that discusses the economic relevance of peoples inatten-
tion for various economic outcomes such as retirement savings, portfolio choice, choice of

health care plans, etc. This literature focuses on questions such as how to design opti-
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mally economic policies to “nudge” people’s attention (Thaler and Sunstein, 2008) or how
to optimally allocate (voluntary) inattention (e.g. Sims, 2010, Van Nieuwerburgh and
Veldkamp, 2010). While the notions of inattention discussed in behavioral economics,
finance, and macroeconomics may not correspond exactly to the well-defined epistemic
notion of unawareness and may additionally involve biases and features of bounded ratio-
nality, we believe that unawareness may be one component of those notions of inattention.
Our “No-speculative-trade” result can be viewed as showing the absence of speculative

trade with rational but involuntarily inattentive agents.

Appendices

A Properties of Belief and Awareness

Proposition 4 Let E and F' be events, {E;} =12, be an at most countable collection of

events, and p,q € [0,1]. The following properties of belief obtain:

(o) Bi(E) € B{(E), for q <p,
(i) Necessitation: B}(Q) = Q,
(ii) Additivity: BY(E) C =B}(=E), forp+q > 1,
(iiia) BY ("2, ) € N2, BY (E),
(iiib) for any decreasing sequence of events {Ei}°,, BY (N2, E1) = N2 B (E),
fiic) B (N5 Fi) = (5 BA(E,
(iv) Monotonicity: E C F implies BY(E) C BY(F),
(va) Introspection: BY (E) C B} BY (F),

v ntrospection 11: B; B C B , Jor p > 0.
b) I on 11 Bfo E qu E 0

In our unawareness belief structure, Necessitation means that an individual always
is certain of the universal event (2, i.e., she is certain of “tautologies with the lowest
expressive power.” (ii) means that if an individual believes an event E with at least
probability p, then she can not believe the negation of E with any probability strictly

greater than 1 — p. Property (iii a - ¢) are variations of conjunction, i.e., if an individual
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believes a conjunction of events with probability at least p, then she p-believes each of
the events. The interpretation of monotonicity is: If an event E implies an event F', then
p-believing the event E implies that the individual also p-believes the event F'. Property
(v) concerns the introspection of belief: If an individual believes the event £ with at least
probability p then she is certain that she believes the event E with at least probability
p. Also, if she believes with positive probability that she p-believes an event, the she

actually p-believes this event.

The following properties of awareness and belief obtain.

Proposition 5 Let E be an event and p,q € [0,1]. The following properties of awareness
and belief obtain: 1. Plausibility: U;(E) C -BY(E)N-BY=BY(E), 2. Strong Plausibility:
Ui(E) C N2, (=BY)" (E), 5. BPU Introspection: B'U;(E) = 05F) for p € (0,1] and
BYU,(E) = A{(E), 4. AU Introspection: U;(E) = U,U;(E), 5. Weak Necessitation:
Ay(E) = B} (S(E)), 6. BP(F) C A(E) and BY(E) = A(E), 7. BY(E) C A;B{(E),
8. Symmetry: A;(E) = Ai(—E), 9. A Conjunction: Nyep, Ai (Ex) = Ai (Nyer, Er), 10.
ABP Self Reflection: A;BY(E) = A;(E), 11. AA Self Reflection: A;A;(E) = Ai(E), and
12. BPAj(E) = Ai(E).

These properties are analogous to the properties in unawareness knowledge structures
(Heifetz, Meier, and Schipper, 2006, 2008). Properties 1 to 5 have been suggested by
Dekel, Lipman, and Rustichini (1998), and 8 to 11 by Fagin and Halpern (1988), Modica
and Rustichini (1999) and Halpern (2001).

Note that properties 3, 4, 5, 8, 9, 11, and 12 hold also for non-measurable events,

because even if F is not measurable, by 5. A;(E) is measurable.
Definition 11 An event E is evident if for each i € I, E C B} (E).
Proposition 6 For every event F € X:

(i) CBY(F) is evident, that is CB'(F) C B} (CB'(F)) for alli € I.

(ii) There exists an evident event E such that w € E and E C B}(F) for alli € I, if
and only if w € CB'(F).

The proof is analogous to Proposition 3 in Monderer and Samet (1989) for a standard

state-space and thus omitted.
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Proposition 7 Let E be an event and p,q € [0,1]. The following multi-person properties

obtain:

BP(E) C CA(E),

1. Ai(E)=AA/(E), 7. BO(E) = CA(E),
BP(E) C A(E),

2. Ay(E)=AB ( ), 8. BO(E) = A(E),

3. BP(E)C A;B (E) 9. A(E)= BYS(E)"),

4. BP(E) C A;A(E), 10. CA(E)= BYS(E)"),

5. CA(FE) = ( ), 11. CBYS(E)") C A(E),

6. CBYE)C CA(FE), 12. CBYS(E)") C CA(E),

Note that properties 1, 5, 9, 10, 11, and 12 also hold for non-measurable events.

B Proofs

B.1 Proof of Remark 1

Let " = 5" = S, we S and t;(w) € A(S). We have to show that ;(wg) = t;(w):
Because of (0) and (3), we have that Sy, ,) = S = Siw). DBecause of (2), we
have ¢;(wg) = ti(w);s = ti(w), and therefore t;(wg) € A(S). But (ws')s = ws. Thus
(3) implies that S = Sy (w,). So we must have Sy,,) = S. Now, (2) implies that
ti(w) = ti(ws) = ti((ws')s) = ti(ws)s = ti(ws)- O

B.2 Proof of Remark 2

Define D := {w' € Sy, : ti(w') = tj(w)}. Le., D = Ben;(w) N S, w). We need to show
that DT = Ben,;(w).

Consider first “C”: If ' € D' then ws, ., € Beni(w). This is equivalent to
ti(wfgti(w)) = ti(w) € A(Syw)). By (3) we have Sy, = Siw)- By (2), ti(w‘lsti(w)> =
ti(w')s,. ., It follows that t;(w')s, ., = ti(w). Thus o’ € Ben;(w).

“O" W' € Beny(w) if and only if t;(w')s, ., = ti(w). Hence for " € Ben,(w), we
have Sy, () = Stw)- By (2) ti(w’sti(w)) = t;(w')}s,,,, = ti(w). Hence wgti(w) € D. Thus
w' € DT, O
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B.3 Proof of Proposition 1

A;(E) is an S(E)-based event if there exists a subset D C S(F) s.t. DT = A;(E).

Assume that A;(F) is non-empty. Define D := {w € S(F) : t;(w) € A(S(F))}. By
definition of the awareness operator, D = A;(E) N S(E). We show that DT = A;(F).

Let w € D', that is w € S’ for some S’ = S(FE) and wgz) € D. This is equivalent
to ti(ws(k)) € A(S(E)). By (0) follows S = Sy, (). By (3) we have Sy, = S(E). Thus
w € A;(E). (Note that A;(E) = {w € Q: Sy = S(E)}.)

In the reverse direction, let w € A;(F), i.e., t;(w) € A(S) with S = S(F). By (0),
w € S with " = S. Consider wgg). By (2), ti(wsm)) = ti(w)sm)- Hence wgm € D.
Thus w € DT.

Finally, if A;(E) is empty, then by definition of the awareness operator, we have
Ai(E) = (5F), a

B.4 Proof of Proposition 2

BP(E) is an S(E)-based event if there exists a subset D C S(E) s.t. D' = BP(FE).
Assume that BY(E) is non-empty. Define D := {w € S(F) : t;(w)(E) > p}. By definition
of the p-belief operator, D = BY(E) N S(E). We show that D" = BY(E).

Let w € DT, that is w € S for some S" = S(E) and wgg) € D. This is equivalent to
ti(wsm))(E£) > p. By (0), Stiwsm) = S(E). By (3), we have S,y = S(E). By (2), it
follows that p < t;(ws(m))(E) = ti(w)s(p)(£). Hence t;(w)(E) > p. Thus w € B} (E).

In the reverse direction, let w € BY(E), i.e., t;(w)(E) > p. Since t;(w)(E) > p it
follows that Sy, = S(E ) Let w € §'. By (0), S’ = Si,(). Consider wgg). By (2),
ti(wsm))(E) = ti(w)(E)sp) > p. Hence wg(py € D. Thus w € DT.

Finally, if BY(E) is empty, then by definition of the p-belief operator, we have BY (E) =

B.5 Proof of Theorem 1

Before we prove the theorem, we state the following definition and observations. Some

of it will be also used for the proof of Proposition 3.

Definition 12 We define:
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(i) A probability measure P° € A (S) a prior for player i on S if for every event E € &
with S(E) < S equation (1u) is satisfied, i.e.,

PS(EN SN A(E)) = / L()(E)PS (). (3)
SNA;(E)

(ii) A common prior P% on S is a prior for playeri on S, for alli € I.

(iii) A positive common prior P° on S is a common prior on S such that for alli € I
and w € Q: if ti(w) € A(S) for some S" <X S, then [t;(w)] NS € Fg and
pPS (([tl(w)] NnsH N S) >0

If all types of player ¢ in a state space S are stationary, then restricting a prior for
player ¢ to S results in a “conventional” prior on S. Similarly, restricting a (positive)
common prior to a single space yields a “conventional” (positive) common prior on that

space, if all the types of ¢ are stationary in this space.

Remark 3 If P = (PS)SGS € [Lges A(S) is a positive (common) prior, then also P¥ €
A(S) is positive (common) prior on S for every S € S.

Remark 4 If u; € A(S) is a positive prior for player i on S and S" < S, then the

marginal of pu; on S, (,uf)w, is a positive prior for player i on S'.

Lemma 2 Let P° be a positive common prior on the state space S and let i € I and
w € Q be such that t; (w) € A(S). Moreover, let E be a measurable event such that
S(E) = S. Then [t; W) NSNE and [t; (w)] NS are measurable, P° ([t; (w)]NS) > 0

and we have t; (W) (SN E) = W

PROOF. That [t; (w)]NSNE and [t; (w)] NS are measurable, and P° ([t; (w)] N S) >
follows from the definition of a positive common prior on S. Recall that A; (E) = S (E )
This implies, since S (E) < Sand S (([t; (w)] N S)") = S, that SNA; (([t; ()] NS)TNE) =
S. We also have [t; (w)] NS = ([t; (w)]NS)TNS.

Since [t; (w)]NSNE is measurable, introspection implies that ¢; (') ([t; (w)] NS N E) =
0, for ' ¢ [t; (w)] NS: Recall that Ben; (w) = ([t; (w)] N S)" and that [t; (w)]NS N E is
measurable and disjoint from Ben; (w'), for ' € S with o' ¢ [t; (w)] N S.

Also, for w’ € [t; (w)] NS, we have t; () ([t; (W)]NSNE) =t; (w) ([t; (w)]NSNE).

By definition of a prior on S, and all the above mentioned facts, it follows that:
P (tiw)]NSNE) = P (([tiw))nST'NENSNA; (([t;(w)]NS)'NE))
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- / " )]mwfi (@) (15 @) N 8)! 1 B) dP* ()
) NSNE)dP® (W)

t: (W) NSNE)dP® (W)

\m\

]ﬂS

_— (w) (SN E) / 4P ()

[ti(w)InS
= ti(w) (SNE)P([t: )] NS).

The fact that P ([t; (w)]NS) > 0, implies now the desired equation. O

The next lemma follows directly from Lemma 2 above.

Lemma 3 Let P° be a positive common prior on some finite state-space S and let i €

I and w € Q such that t; (w) € A(S). Then we have for all W' € [t;(w)] NS that
S’ W'
(@) (W) = wopiis

PROOF OF THE THEOREM. Note that E7® and E5® may not be events in our un-
awareness belief structure. The definition of the belief operator as well as Proposition 4
and 6 can be extended to measurable subsets of (2. The proofs are analogous and thus

omitted.

Suppose that C B! (E1> “N EQSQ) is non-empty. Then fix a <-minimal state-space S
such that W := CB' (E7* N EQSQ) NS # ). Such a space S exists by the finiteness of X.

By Remark 3, since P is a positive common prior, P° is a positive common prior on

S.

Since W = CB! (Ef* N E3*)NS C SNB} (CB' (E7* N E5®)) , the minimality of S
implies that for each w € CB' (E7* N EQSQ) NS we do have Sy,,y = S and t; (w) (W) = 1.

By the definition, ¢; (w) ([t; (w)] N .S) =1, for each w € CB* (E7*N E;a) N S. Since
ti(w)(W) =1, we have t; (w) (([t; (w)]NS)\ W) =0.

By Lemma 3, this implies that P¥ ({w'}) = 0, for w’ € ([t; (w)]NS) \ W such that
w € CB'(E;*NE;*) N S. It follows that P¥(([t; (w)]NS)\ W) = 0 and hence,
P (([t: ) nS)nW) = P¥([t: w)] N S) = PF(([t: w)] N S) \ W) = P* ([t: (w)] N S) >
0. So, we do have P (W) > 0.

The fact that P* ({w'}) = 0, for ' € ([t; (w)] N S)\W such thatw € CB* (E7*N EQSO‘)H
S = W implies the following: For any random variable z, we have 3 (. yns © (W) P5({w'}) =
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Sewnieoms & ) PS (D), i [ @] 0 W £ 0. And also 33, oy 2() P ({w}) =
D@V D 2wt (@)]NS 2(w)P® ({w}). This is so, because there is a w € [t; (@)]NW and
for this w, we do have w € OB (E7*N E5*) N S and [t; (w)] = [t; (@)] and this implies
PS ([t @) N S)\ W) =0.

For i = 1,2 we have

S P ({w)) v (W)t (w) ({w'})

wew w'€fti(w))NS
_ S (1 Il ((5))
_ WGZWP ({ }>w’€[§w ) B @A E)
s P ({w})
- PS ({w}) 0 (@) =
[ti(w)]ZﬂW?ﬁ@we[z;w)]ﬂS w’e[%)]ms P ([tl (w]ﬂS)
8 N PP ({w'})
- PS ({w}) 0 (@) =
[ti(wﬂzﬂw#wwe[ti(w)]ms w/e[%)]ms PS ([t; (w)]N'S)
= 3 P@INS Y vl psp o)
[ @INW#0 W elt:@INS Z

= v (W) P ({w'})

[t (@)|NW#£D w’ €[t; (w)]NS

(
= Z v (W) P ({W')).

wew

But by the assumptions, we have Y. _,,, P¥ ({w}) > owelt@ns ¥ (W)t (w) {w'}) >
aPS (1) and 32, ey P ({60}) Yoscpupms ¢ (@) 12 () ((&}) < aP¥ (W), a contradic-
tion, since P° (W) > 0. O

B.6 Proof of Proposition 3

Proposition 8 Let S be an unawareness belief structure, G be an event, and p; € [0, 1],
fori € I. Suppose that there exists a common prior P% on a space S = S(G) such that
PS(CBY(,;[t:(G) = pi])) > 0. Then p; = p;, for alli,j € I.

Before we prove the result, we show:

Remark 5 The conditions of Proposition 3 imply the conditions of Proposition 8. Hence,

Proposition 8 implies Proposition 3 (since they have the same conclusions).
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PROOF OF THE REMARK.  Let (P¥),_o
CB* (Mic;[t:i(G) = pi]) be nonempty. Choose a state w € E and a player i € I. By
Proposition 6 (i), w € B}(E), that is, t;(w)(F) = 1. In particular, t;(w) € A(S) for
some S = S(F) = S(G). (That S(E) = S(G) follows from Lemma 1, the definition of

intersection of events, and what was remarked after the definition of common belief in

be a positive common prior. Let F :=

Section 2.11.) Since P° is a positive common prior on S, we have by Lemma 2 that
P ([ty(w)]NS) > 0 and that 1 = t;(w)(SNE) = W. Hence PS(E) >0. O
Remark 6 For any w € Q, t;(w)(F N A;(E)) = t;(w)(E) for any event E s.t. S(E) =
Sti(w)'

PROOF OF THE REMARK: Let E be an event and ¢;(w) be such that S(E) = S, w)
Since E = (EN A;(E)) U (ENU(E)) and A(E) NU(E) = 0% we have (E N
A(E)N(ENU(E)) = 0°¥). Since t;(w) is an additive probability measure, ¢;(w)(E) =
ti(w)(E N Ay(E)) + t;(w)(E N U(E)). Since B'U;(E) = 05 for p € (0,1] (B*U-
Introspection in Proposition 5), we must have ¢;(w)(E N U;(E)) = 0. O

The following lemma says that if there is a prior on a state-space then the marginal

on a lower space is a prior as well.

Lemma 4 If € A(S') is a prior for playeri on S" and S =< ', then ()5 (the marginal
of w on S) is a prior for playeri on S.

PROOF OF THE LEMMA. Let E be an event with S(E) =< S and let u be in-
dividual ¢’s prior probability measure on S’ with S” = S. We have to show that
p((rg)MENSNA(E))) = Jora ) tiC)(E)du(-). Since S(E) = S, and by Proposi-
tion 1, S(A;(F)) = S(E), it follows that (rg) " M(ENSNA(E) = EnS N A((E),
and therefore ws(ENSNA(E) = pu(ENS NA(E)). So it remains to show that

meA JE N A(E))d(s)(-) fS’mA (E) " ti(-) (BN A(E)) du(-).

We first show the following Claim: Let w € S(E) = S < 5’ such that w € A;(E).
Then t;(w)(ENA;(E)) = ti(ws)(ENA(E)).

Proposition 1, w € A;(E) and S(E) = S imply that wg € A;(E£). We have that
w € A;(F) implies t;(w)(E N A;(E)) = ti(w)(ENA;(E) N Sw)). By (3) of Definition 1,
we have Sy, (ug) = St(w)- And by (1) of Definition 1 ¢;(wg) (ENA;(E)) = ti(ws)(ENA;(E)N
Stiws)) = ti(ws, ) ) (ENA;(E) N Syws)). By (2) of Definition 1, we have ¢;(ws, , ) )(EN
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St;w) y—
Ai(E) N Sywe) = tiw)((rg;' ) )THE NA(E) N Syw)) = ti(w)(E N A(E) N Spw) =
ti(w)(E N A;(E)). Hence the claim is proved.

We have
[, O 0 E)ilas))

[, M ONAE) 0 B

_ / t:(Y(A(E) N E)dp(-),
Ai(B)NS’

where the first equation follows from the definition of marginal and the second from the

above claim. O

Remark 7 Let S be the upmost state-space in the lattice S, and let (PP)ses € [1ges A(S)
be a tuple of probability measures. Then (P®)ses is a prior for player i if and only if P®

)

s a prior for player i on S and P? is the marginal of PlS for every S € S.

)

This remark together with Lemma 4 implies the following:

Remark 8 A common prior (Definition 8) induces a common prior on S, for any S € S.
The converse is not necessarily true unless S is the upmost state-space of the lattice. Note
that it is possible that players have different priors, but at some space S (below the upmost
space) the priors on S coincide. Hence, in such a case they have different priors, but

a common prior on S (and by Lemma 4 also a common prior on spaces less expressive
than S).

PROOF OF PROPOSITION 8. By Proposition 6, w € CB!(F) if and only if there exists
an event E that is evident such that w € E C B(F).

Since for an evident E we have £ C B}(F) C A;(E) for all i € I. Tt follows that
PS(ENA;(E)) = PS(E) for S = S(E). Set F =(,.,[t:(G) = p;] and let E = CB'(F).
By Proposition 1, S(E) = S(G). By Lemma 4 and the properties imposed on t¢;, we

consider w.l.o.g. a common prior P& on S(G).

PS©(E) = /S(G)M(E)ti(.)(E)dpsm)(.)

_ / L()(E)PSO () + / L()(E)APSO ().
ENS(G)NA;(E) (S(G)NA;(E)\E
We have
/ t:()(B)dPY () = / 1dP% 9 () = PSE(R).
ENS(G)NA; (E) ENS(G)NA;(E)

35



The second last equation above follows from the fact that E is evident. So, we have
E C B}(F), that is t;(-)(F) = 1, for w € E. It follows that

/ H()(E)PSO() = 0. (4)
(S(G)NA;(E)\E

/ E()(G)AP () = / pdP* () = pi PO (E)
ENA;(E)NS(G) ENA;(E)NS(G)

Ifwe E=CBYF), then w € E C B}(F) C B}([t;(G) = pi]). Note that [t;(G) =
pi] = BY(G) N B; 7"(=G). Therefore, by monotonicity B}([t:(G) = p;]) € BB (G)) N
B!(B; 7 (=@)). Introspection IT implies now that w € B (G)NB, 7 (=G) = [t:(G) = pi].
So we have t; (w) (G) = p;, for w € E.

/ H()(G)APSO() = / £()(G N E)PS@ ()
ENA;(E)NS(G) ENA;(E)NS(G)
_ / L()(G N E)APS©O()
S(G)NA;(E)

—/ t:(:)(G N E)YdPS@ ().
(S(GNA(B)\E

Since by the monotonicity of probability measures

6O)(GNEYPO) < [ () (B)APS(),

/(S(G)HAZ-(E))\E (S(G)NA(E)\E

we must have by equation (4) and non-negativity of probability measures

/ L()(G N E)aPSE () = .
(S(G)NA;(E)\E

Note that PS(G N E) = [g . m ti(-)(G N E)APSE(),

Note further that P(©)(E) = P& (E N A;(E)) for all i € N since E = CBY(F) C
Ay(E) for all i € N. Similarly, P (G N E) = PYE(GNENA(E)) forall i € N.

Thus
piPYDE) = PS9GNE). (5)

Note that by assumption PS((E) > 0.

Since equation (5) holds for all ¢ € I, we must have p; = p;, for all i, j € I. O
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B.7 Proof of Proposition 4

(0) BY(E) C B](E) for p,q € [0,1] with ¢ < p is trivial.
(i) B}(©Q) C Q holds trivially. In the reverse direction, note that ¢;(w)() = ¢;(w)(2N

Stiw)) = ti(w)(St;w)) =1 for all w € Q. Thus Q@ C B} ().

(i) w € BY(FE) if and only if #;(w)(E) > p. Since t;(w) is an additive probability
measure, t;(w)(—E) <1—p. Hence w € =BJ(—F) for ¢ > 1 — p.

(iia) w € BY (N2, Ey) if and only if ¢;(w) (N,2, E1) > p. Monotonicity of the prob-
ability measure ¢;(w) implies t;(w)(E;) > p for all [ = 1,2,..., which is equivalent to
w € N2, B (E1).

(iiib) It is enough to show that any sequence of events {E;}°, with E; O FE;
for | = 1,2,... we have BY (N2, E1) 2 N5y BY(E). w € 2, B (E) if and only if
ti(w)(E) > pforl=1,2,.... Since t;(w) is a countable additive probability measure, it is
continuous from above. That is, if £} O Ejyq for I = 1,2, ..., we have lim;_,, t;(w)(E;) =
ti(w) (N2, Er). Since for every I = 1,2, ..., t;(w)(E;) > p, we have p < limy_,oo t;(w)(E)) =
ti(w) (N2 E1). Hence w € BY (N2, Ei).

(iiic) It is enough to show that B} (N2, E1) 2 N, Bi(E). w € N2, BH(E) if
and only if ¢;(w)(E;) = 1 for [ = 1,2,.... Since t;(w) is a countable additive probability
measure, it satisfies Bonferroni’s Inequality. Le., t;(w) (N0 B1) > 1=>2, 1—ti(w)(E)).
Since t;(w)(E;) = 1 for all [ = 1,2,..., we have 1 — t;(w)(E;) = 0 for all l = 1,2, ..., and
hence > %, 1 — t;(w)(E;) = 0. It follows that ¢;(w) (2, E1) = 1. We conclude that
we BLNZ, ).

(iv) Since t;(w) is a probability measure (satisfying monotonicity) for any w € €,
E C F implies that if ¢;(w)(E) > p then t;(w)(F) > p.

(va) Let w € BY(E). Then t;(w)(E) > p. It follows that for all w’ € Ben;(w) we have
ti(w)(E) > p. Hence Ben;(w) C BY(FE). Thus t;(w)(BY(F)) = 1, which implies that
w € B!BY(E).

(vb) Let w € BY(B}(E)), for some p € (0,1] and assume by contradiction that
w ¢ B!(E). Then, since by Propositions 1 and 2 w € A;(F), we must have ¢ > 0 and
w € B}7"(=E) for some r with ¢ > r > 0. By (va), we have w € B} (B;{""(=E)). Note
that B} ~"(—E) and BY(E) are disjoint because of (ii), and hence B} "(=E) C -B!(E).
Monotonicity implies now that w € B} (=BI(E)), hence, by (ii) w € —BY(BX(F)) a
contradiction to w € BY(BI(E)). O
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B.8 Proof of Proposition 5

1. This property is equivalent to BY(E) U BY-B(E) C A;(E). By Property 5. we have
BY(E) C A;(E). To see that BY-BY(E) C A;(F), note that w € B/—=B?(F) if and only
if t;(w)(~BY'(E)) > p. This implies that Sy, ) = S(=B(E)) = S(E). The last equality
follows by Property 8 and Proposition 2. Hence w € A;(E).

2. The proof is analogous to 1. The is property is equivalent to (>, B? (=BF)" " (E) C
A(E). we B?(~BY)" " (E) for any n = 1,2, ... if and only it ¢;(w) ((ﬂBf)n_l (E)) >p
for any n = 1,2,.... It follows that Sy, = S <(—|Bf)”_1 (E)) for any n = 1,2,.... By
Proposition 2, S ((—le’)nf1 (E)) = S(E) for any n = 1,2, .... Hence w € A;(E).

3. First, we show BYU;(E) C A;(E). w € BYU;(E) if and only if ¢;(w)(U;(E)) > p.
It implies Sy, ) = S(Us(E)). By Proposition 1, S(U;(E)) = S(£). Hence Sy, = S(F)
which is equivalent to w € A;(E).

Second, we show that BYU;(E) = 0°®) for p € (0,1]. Since BYU;(E) C A;(E) we have
by monotonicity B} B'U;(E) C B} A;(E). By introspection, B'U;(E) C B} B'U;(E) C
B} A;(E). By additivity, we have BPU;(E) C —~B!A;(E). Hence BPU;(E) = ()°®F) =
-B}!'A;(F) N Bl A;(E).

Third, we show that BYU;(E) = A;(E). w € A;(E) if and only if w € A;U;(FE) since
by AA-self-reflection A;(F) = A;A;(E) and by symmetry A;A;(F) = A;U;(E). Hence,
if w € A;(E) then t;(w)(U;(E)) is defined. Therefore w € BYU;(E), and hence A;(F) C
BYU;(E). Together with the first part of the proof, we conclude BYU;(E) = A;(E).

4. This property is equivalent to A;U;(F) = A;(E). w € AU;(FE) if and only if
Stiw) = S(Ui(E)) = S(A;(E)) = S(E) by Proposition 1. Hence w € A;U;(E) if and only

5. w € A;(F) if and only if Sy, = S(£). For any t;(w), we have Sy, = S(F) if
and only if 1 = ;(w)(S(E)"). This is equivalent to w € B} (S(E)").

6. First, we show BY(E) C A;(E). w € BY(E) if and only if ¢;(w)(E) > p. This
implies that Sy, = S(E), which is equivalent to w € A;(E).

Second, we show for p = 0, A;(E) C BY(E). w € A;(F) if and only if ¢;(w) € A(S)
with S = S(F). Hence t;(w)(E) > 0, which implies that w € BY(E).

7. w € BI(F) if and only if ¢;(w)(E) > p. This implies that Sy,.) = S(E). By
Proposition 2, it is equivalent to Sy, = S(B{(£)), which is equivalent to w € A; B} (E).

8. By the definition of negation, S(F) = S(—FE). Hence for t;(w) € A(S), S = S(E)
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if and only if S = S(—E).

9. w € MNyey Ai(Ey) if and only if Sy,) = S(E)) for all A € L. This is equivalent to
Stiw) = supyer S(Ex) = S (Nyer, E), which is equivalent to w € A; (Nyep En)-

10. By Proposition 2, S(E) = S(BY(E)). Hence, w € A;(F) if and only if w €
A;BY(E).

11. By Proposition 1, S(E) = S(A;(E)). Hencew € A;(E) if and only if w € A;A;(E).

12. w € BYA;(E) if and only if ¢;(w)(A;(E)) > p. This implies Sy, ) = S(A;(EF)).
By Proposition 1, S(A;(F)) = S(E). Thus w € A;(E). To see the converse, by weak
necessitation and introspection, 4;(F) = B}(S(E)") C B}!B}(S(E)") = B}A;(E). By
Proposition 4 (o), B} A;(E) C BV A;(E). O

B.9 Proof of Proposition 7

1. By Proposition 1, S(E) = S(A,(E)). Hence w € A;(E) if and only if w € A;A;(E).
2. By Proposition 2, S(E) = S(B(E)). Hence, w € A;(E) ifand only ifw € A; B} (E).

3. w € BY(E) if and only if ¢;(w)(E) > p. This implies that S, = S(£). By Propo-
sition 2, this is equivalent to Sy, () = S(B](F)), which is equivalent to w € A;B}(E).

4. The proof is analogous to 3.

5. We show by induction that A"(F) = A(FE), for all n > 1. We have w € A(A™(F))
if and only if Sy, ) = S(A™(E)), for all i € I, which, by the induction hypothesis, is the
case if and only if Sy, = S(A(E)), for all © € I. By the definition of “N”, it is the
case that S(A(E)) = sup;c;S(A;(E)). By Proposition 1, we have S(A;(E)) = S(E) and
hence S(A(E)) = S(E). It follows that Sy, ) = S(A(E)) if and only if S,y = S(E).
But Sy, ) = S(F) if and only if w € A;(E). Hence we have A"(E) = A(E), for all n > 1,
and therefore CA(F) = A(E).

6. w € CBY(FE) implies w € B}(FE) for all i € I. This is equivalent to t;(w)(E) = 1
for all ¢ € I, which implies S,y = S(£) for all i € I. Hence, by 5. we have w € A(E) =
CA(E).

7. First, we show that BP(E) C A(F). w € BP(E) if and only if ¢;(w)(E) > p for all
i € I. Hence t;(w) € A(S) with S = S(E), for all ¢ € I. This implies that w € A;(E),
for all i € I. It follows that w € A(F).

Second, we show that A(E) = BY(E). w € A(E) if and only if w € A;(F) for alli € I
if and only if (by 6. of Proposition 5) w € BY(FE) for all i € I if and only if w € B(E).
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8. The proof follows from 7. and 5.

9. By weak necessitation, A(E) :=(\,c; Ai(E) = \;e; B (S(E)T) := BY(S(E)").

10. The proof follows from 9. and 5.

11. By definition of common certainty, CB*(S(E)") C BY(S(E)"). By 9., BL(S(E)") =

A(E).

12. The proof follows from 11. and 5. U
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