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1 Introduction

Unawareness is probably the most common and most important kind of ignorance. Busi-

ness people invest most of their time not in updating prior beliefs and crossing out states

of the world that they previously assumed to be possible. Rather, their efforts are mostly

aimed at exploring unmapped terrain, trying to figure out business opportunities that

they could not even have spelled out before. More broadly, every book we read, every

new acquaintance we make, expands our horizon and our language, by fusing it with the

horizons of those we encounter, turning the world more intelligible and more meaningful

to us than it was before (Gadamer, 1960).

With this in mind, we should not be surprised that the standard state-spaces aimed

at modeling knowledge or certainty are not adequate for capturing unawareness (Dekel,

Lipman, and Rustichini, 1998). Indeed, more elaborate models are needed (Fagin and

Halpern, 1988, Modica and Rustichini, 1994, 1999, Halpern, 2001). In all of these models,

the horizon of propositions the individual has in her disposition to talk about the world

is always a genuine part of the description of the state of affairs.

Things become even more intricate when several players are involved. Each player

may not only have different languages, but may also form a belief on the extent to which

other players are aware of the issues that she herself has in mind. Even more complex,

the player may be uncertain as to the sub-language that each other player attributes to

her or to others; and so on.

Heifetz, Meier, and Schipper (2006) showed how an unawareness structure consisting

of a lattice of spaces is adequate for modeling mutual unawareness. Every space in

the lattice captures one particular horizon of meanings or propositions. Higher spaces

capture wider horizons, in which states correspond to situations described by a richer

vocabulary. The join of several spaces – the lowest space at least as high as every one of

them – corresponds to the fusion of the horizons of meanings expressible in these spaces.

In a companion work (Heifetz, Meier, and Schipper, 2008), we showed the precise

sense in which such unawareness structures are adequate and general enough for modeling

mutual unawareness. We put forward an axiom system, which extends to the multi-player

case a variant of the axiom system of Modica and Rustichini (1999). We then showed

how the collections of all maximally-consistent sets of formulas in our system form a

canonical unawareness structure.1 In a parallel work, Halpern and Rêgo (2008) devised

1Each space in the lattice of this canonical unawareness structure consists of the maximally consistent

sets of formulas in a sub-language generated by a subset of the atomic propositions.
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another sound and complete axiomatization for our class of unawareness structures.2

In this paper we extend unawareness structures so as to encompass probabilistic be-

liefs (Section 2) rather than knowledge or ignorance. The definition of types (Definition

1), and the way beliefs relate across different spaces of the lattice, is a non-trivial modifi-

cation of the coherence conditions for knowledge operators in unawareness structures, as

formulated in Heifetz, Meier, and Schipper (2006). We show that we obtain all properties

of unawareness suggested in the literature.

Having structures with both unawareness and probabilistic beliefs raises the ques-

tion about the differences between probability zero events and events that an agent is

unaware of. In Appendix B, we show how to “flatten” an unawareness belief structure

by taking the union of all spaces and assigning zero probability to all states of which

the individual is unaware. Since the “flattened” type space is a standard type space, the

Dekel-Lipman-Rustichini (1998) critique applies and the epistemic notion of unawareness

becomes trivial. At an epistemic level, unawareness has very different properties than

probability zero belief. For instance, one property that is satisfied by unawareness is sym-

metry (see Proposition 5). An agent is unaware of an event if and only if she is unaware

of its negation. Clearly, such a property cannot be satisfied by probability zero belief

because if an agent assigns probability zero to an event, then she must assign probability

one to its complement. Schipper (2012) shows that this feature captures also behavioral

differences between unawareness and probability zero belief. Let’s say a decision maker

chooses among different contracts for buying a firm. The seconds contract may differ

from a first contract only in a consequence for an event E that is disadvantageous to the

buyer. If the decision maker is indifferent between both contracts, then this is consistent

with E being Savage null. Yet, if the decision maker is also indifferent between the first

and a third contract that differs from the first only in assigning this disadvantageous con-

sequence to the negation of the event E instead the event E itself, then this behavior is

inconsistent with the negation of the event E or the event E itself being Savage null. The

decision maker behaves as if both the event E and its negation are Savage null, which is

impossible but consistent with unawareness of the E and of its negation. Thus, when the

primitives of a decision model are fixed, unawareness has behavioral implications distinct

2The precise connection between Fagin and Halpern (1988), Modica and Rustichini (1999), Halpern

(2001), and Heifetz, Meier, and Schipper (2006) is understood from Halpern and Rêgo (2008) and

Heifetz, Meier, and Schipper (2008). The connection between Heifetz, Meier, and Schipper (2006, 2008)

and Galanis (2011a) is explored in Galanis (2011b). The connection between Li (2009) and Fagin and

Halpern (1988) is explored in Heinsalu (2011a). The connections with the models of Ewerhart (2001)

and Feinberg (2009) are yet to be explored.
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from zero probability.

In Section 3, we present as an economic application of unawareness belief structures

an analysis of speculative trade under unawareness. We start by defining the notion of

a common prior in unawareness belief structures. Conceptually, a prior of a player is a

convex combination of (the beliefs of) her types (see e.g. Samet, 1998). If the priors of

the different players coincide, we have a common prior. A prior of a player induces a

prior on each particular space in the lattice, and if the prior is common to the players,

the induced prior on each particular space is common as well.

What are the implications of the existence of a common prior? First, we extend an

example from Heifetz, Meier, and Schipper (2006) and show that speculative trade is

compatible with the existence of a common prior (Section 1.1). This need not be surpris-

ing if one views unawareness as a particular kind of “delusion”, since we know that with

deluded beliefs, speculative trade is possible even with a common prior (Geanakoplos,

1989). Nevertheless, we show that a positive common prior is not compatible with com-

mon certainty of strict preference to carry out speculative trade. That is, even though

types with limited awareness are, in a particular sense, deluded, a common prior pre-

cludes the possibility of common certainty of the event that based on private information

players are willing to engage in a zero-sum bet with strictly positive subjective gains to

everybody. This is so because unaware types are “deluded” only concerning aspects of

the world outside their vocabulary, while a common prior captures a prior agreement on

the likelihood of whatever the players do have a common vocabulary. An implication of

this generalized “No-speculative-trade” theorem is that arbitrary small transaction fees

(like a Tobin tax) rule out speculative trade under unawareness. We complement this

result by generalizing Aumann’s (1976) “No-Agreeing-to-disagree” result to unawareness

belief structures.

In Section 4 we return to the foundations of unawareness belief structures. Unaware-

ness belief structures capture unawareness and beliefs, beliefs about beliefs (including

beliefs about unawareness), beliefs about that etc. in a parsimonious way familiar from

standard type spaces. That is, hierarchies of beliefs are captured implicitly by states and

type mappings. A construction of unawareness belief structures from explicit hierarchies

of beliefs is complicated by the multiple awareness levels involved. A player with a certain

awareness level may believe that another player has a lower awareness level and believes

that the first player has yet a lower awareness level etc. In Section 4, we present such a

hierarchical construction and show the existence of a universal unawareness type space

that contains all belief hierarchies. Heinsalu (2011b) independently proves the existence
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of a universal unawareness type space for the measurable case. Our approach differs from

his in that we present an explicit construction of hierarchies of beliefs and thus a proof

that is constructive.

In Section 2 we present our interactive unawareness belief structure. In Section 3

we apply unawareness belief structures to study speculative trade under unawareness,

prove a “No-speculative-trade” theorem, and discuss the common prior assumption. In

Section 4, we present an explicit construction of hierarchies of beliefs and show the

existence of a universal unawareness type space. Finally, in Section 5 we conclude with

a discussion of the related literature. Some further properties of our unawareness belief

structures are relegated to an appendix. Proofs are relegated to an appendix as well.

1.1 Introductory Example - Speculation under Unawareness

The purpose of the following example is threefold: First, it shall motivate the study

of unawareness and speculation under unawareness. Second, it should illustrate infor-

mally some features of our model. Third, it is a counter example to the standard “No-

speculative-trade” theorems in the context of unawareness.

Consider a probabilistic version of the speculative trade example of Heifetz, Meier,

and Schipper (2006). There is an owner, o, of a firm and a potential buyer, b, whose

awareness differ. The owner is aware that there may be a costly lawsuit [l] involving the

firm, but she is unaware of a potential novelty [n] enhancing the value of the firm. In

contrast, the buyer is aware that there might be an innovation, but he is unaware of the

lawsuit. Both are aware that the firm may face high sales [s] or not in future.

Both agents can only reason and form beliefs about contingencies of which they are

aware of respectively. The information structure is given in Figure 1. There are four

state-spaces of different expressive power. The description of each state is printed above

the state. While the upmost space, S{nls}, contains all contingencies, the space S{ls}

misses the novelty, S{ns} misses the law suit, and S{s} is capable of expressing only events

pertaining to the sales. At any state in the upmost space S{nls}, the buyer’s belief has full

support on the lower space S{ns} (as given by the solid ellipse and lines) and the seller’s

belief has full support on S{ls} (dashed ellipse and lines). Thus the buyer forms beliefs

about sales and the novelty but is unaware of the law suit, and the seller forms beliefs

about sales and the law suit but is unaware of the novelty. At any state in S{ns} the

seller’s belief has full support on the lower space S{s}. That is, the buyer is certain that

the seller is unaware of the novelty. Analogously, the seller is certain that the buyer is
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Figure 1: Information Structure in the Speculative Trade Example

nls n¬ls nl¬s n¬l¬s ¬nls ¬n¬ls ¬nl¬s ¬n¬l¬s

● ● ● ● ● ● ● ●

⅛ ⅛ ⅛ ⅛ ⅛ ⅛ ⅛ ⅛

ns n¬s ¬ns ¬n¬s

● ● ● ●

¼ ¼ ¼ ¼

ls l¬s ¬ls ¬l¬s

● ● ● ●

¼ ¼ ¼ ¼

s ¬s

● ●

½ ½

S{nls}

S{ns} S{ls}

S{s}

unaware of the law suit since at any state in S{ls} the belief of the buyer has full support

on the space S{s}. Figure 1 provides an example of an unawareness structure developed

in this paper. The probability distribution given in each space illustrates an example

of a common prior in unawareness structures, that is, a projective system of probability

measures whose posteriors are the players’ beliefs. I.e., the prior on a lower space is the

marginal of the prior in the upmost space. The beliefs of both agents are consistent with

the common prior.

Suppose that the status quo value of the firm with high sales (s) is 100 dollars, but

only 80 dollars with low sales (¬s). If the potential innovation (n) obtains, this would

add 20 dollars to the value of the firm, whereas the potential lawsuit (l) would cost the

firm 20 dollars. According to the beliefs at state (nls) (and any other state in the upmost

state-space), the buyer’s expected value of the firm is 100, whereas the seller’s expected

value of the firm is 80 dollars. However, the buyer (resp. seller) is certain that the seller’s

(resp. buyer’s) expected value is 90 dollars.

We assume that both players are rational in the sense of maximizing their respective

payoff given their belief and awareness. The buyer (resp. seller) prefers to buy (resp.

sell) at price x if his (resp. her) expected value of the firm is at least (resp. at most) x.

The buyer (resp. seller) strictly prefers to buy (resp. sell) at price x if his (resp. her)
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expected value of the firm is strictly above (resp. strictly below) x.

Note that despite the fact that both agents’ beliefs are consistent with the common

prior, at state (nls) and at the price 90 dollars, there is common certainty of willingness

to trade, but each player strictly prefers to trade. This is impossible in standard state-

space structures with a common prior. In standard “No-speculative-trade” theorems, if

there is common certainty of willingness to trade, then agents are necessarily indifferent

to trade (Milgrom and Stokey, 1982).

Despite this counterexample to the “No-speculative-trade” theorems, we can prove in

Section 3 a generalized “No-speculative-trade” theorem according to which, if there is a

common prior, then there cannot be common certainty of strict preference to trade. In

the above example we have common certainty of willingness to trade and strict preference

to trade but there is no common certainty of strict preference to trade.

2 Model

2.1 State-Spaces

Let S = {Sα}α∈A be a complete lattice of disjoint state-spaces, with the partial order

� on S. A complete lattice is a lattice such that each subset has a least upper bound

(i.e., supremum) and a greatest lower bound (i.e., infimum). If Sα and Sβ are such that

Sα � Sβ we say that “Sα is more expressive than Sβ – states of Sα describe situations

with a richer vocabulary than states of Sβ”.3 Denote by Ω =
⋃
α∈A Sα the union of these

spaces. Each S ∈ S is a measurable space, with a σ-field FS.

Spaces in the lattice can be more or less “rich” in terms of facts that may or may not

obtain in them. The partial order relates to the “richness” of spaces. The upmost space

of the lattice may be interpreted as the “objective” state-space. Its states encompass full

descriptions.

2.2 Projections

For every S and S ′ such that S ′ � S, there is a measurable surjective projection rS
′

S :

S ′ −→ S, where rSS is the identity. (“rS
′

S (ω) is the restriction of the description ω to the

3Here and in what follows, phrases within quotation marks hint at intended interpretations, but we

emphasize that these interpretations are not part of the definition of the set-theoretic structure.
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more limited vocabulary of S.”) Note that the cardinality of S is smaller than or equal

to the cardinality of S ′. We require the projections to commute: If S ′′ � S ′ � S then

rS
′′

S = rS
′

S ◦ rS
′′

S′ . If ω ∈ S ′, denote ωS = rS
′

S (ω). If D ⊆ S ′, denote DS = {ωS : ω ∈ D}.

Projections “translate” states from “more expressive” spaces to states in “less expres-

sive” spaces by “erasing” facts that can not be expressed in a lower space.

2.3 Events

Denote g(S) = {S ′ : S ′ � S}. For D ⊆ S, denote D↑ =
⋃
S′∈g(S)

(
rS
′

S

)−1
(D). (“All the

extensions of descriptions in D to at least as expressive vocabularies.”)

An event is a pair (E, S), where E = D↑ with D ⊆ S, where S ∈ S. D is called

the base and S the base-space of (E, S), denoted by S(E). If E 6= ∅, then S is uniquely

determined by E and, abusing notation, we write E for (E, S). Otherwise, we write ∅S

for (∅, S). Note that not every subset of Ω is an event.

Some fact may obtain in a subset of a space. Then this fact should be also “express-

ible” in “more expressive” spaces. Therefore the event contains not only the particular

subset but also its inverse images in “more expressive” spaces.

To illustrate the definition of event, consider Figure 1. The event “high sales”, {s}↑,
contains the state s in space S{s}, states ns and ¬ns in space S{ns}, states ls and ¬ls in

space S{ls} as well as states nls, n¬ls, ¬nls, and ¬n¬ls in space S{nls}.

Let Σ be the set of measurable events of Ω, i.e., D↑ such that D ∈ FS, for some state-

space S ∈ S. Note that unless S is a singleton, Σ is not an algebra because it contains

distinct ∅S for all S ∈ S. The event ∅S should be interpreted as a “logical contradiction

phrased with the expressive power available in S”. It is quite natural to have distinct

vacuous events since contradictions can be phrased with differing expressive powers.

2.4 Negation

If (D↑, S) is an event where D ⊆ S, the negation ¬(D↑, S) of (D↑, S) is defined by

¬(D↑, S) := ((S \D)↑, S). Note, that by this definition, the negation of a (measurable)

event is a (measurable) event. Abusing notation, we write ¬D↑ := ¬(D↑, S). Note that

by our notational convention, we have ¬S↑ = ∅S and ¬∅S = S↑, for each space S ∈ S.

¬D↑ is typically a proper subset of the complement Ω \D↑ . That is, (S \D)↑ $ Ω \D↑ .

Intuitively, there may be states in which the description of an event D↑ is both
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expressible and valid – these are the states in D↑; there may be states in which its

description is expressible but invalid – these are the states in ¬D↑; and there may be

states in which neither its description nor its negation are expressible – these are the

states in

Ω \
(
D↑ ∪ ¬D↑

)
= Ω \ S

(
D↑
)↑
.

Thus our structure is not a standard state-space model in the sense of Dekel, Lipman,

and Rustichini (1998).

2.5 Conjunction and Disjunction

If
{(
D↑λ, Sλ

)}
λ∈L

is a collection of events (with Dλ ⊆ Sλ, for λ ∈ L), their conjunc-

tion
∧
λ∈L

(
D↑λ, Sλ

)
is defined by

∧
λ∈L

(
D↑λ, Sλ

)
:=
((⋂

λ∈LD
↑
λ

)
, supλ∈L Sλ

)
. Note,

that since S is a complete lattice, supλ∈L Sλ exists. If S = supλ∈L Sλ, then we have(⋂
λ∈LD

↑
λ

)
=
(⋂

λ∈L

((
rSSλ
)−1

(Dλ)
))↑

. Again, abusing notation, we write
∧
λ∈LD

↑
λ :=⋂

λ∈LD
↑
λ (we will therefore use the conjunction symbol ∧ and the intersection symbol ∩

interchangeably).

Intuitively, to take the intersection of events (D↑λ, Sλ)λ∈L, we express them “most eco-

nomically in the smallest language” in which they are all expressible S = supλ∈L Sλ, take

the intersection, and then the union of inverse images obtaining the event
(⋂

λ∈L((rSSλ)−1(Dλ))
)↑

that is based in S.

We define the relation ⊆ between events (E, S) and (F, S ′) , by (E, S) ⊆ (F, S ′) if

and only if E ⊆ F as sets and S ′ � S. If E 6= ∅, we have that (E, S) ⊆ (F, S ′) if and

only if E ⊆ F as sets. Note however that for E = ∅S we have (E, S) ⊆ (F, S ′) if and

only if S ′ � S. Hence we can write E ⊆ F instead of (E, S) ⊆ (F, S ′) as long as we keep

in mind that in the case of E = ∅S we have ∅S ⊆ F if and only if S � S(F ). It follows

from these definitions that for events E and F , E ⊆ F is equivalent to ¬F ⊆ ¬E only

when E and F have the same base, i.e., S(E) = S(F ).

Intuitively, to say “E implies F” we must be able to express F in the “language”

used to express E. Hence, it must be that S(F ) � S(E). The inclusion is then just

E ∩ S(E) ⊆ F ∩ S(E).

The disjunction of
{
D↑λ

}
λ∈L

is defined by the de Morgan law
∨
λ∈LD

↑
λ = ¬

(∧
λ∈L ¬

(
D↑λ

))
.

Typically
∨
λ∈LD

↑
λ $

⋃
λ∈LD

↑
λ, and if all Dλ are nonempty we have that

∨
λ∈LD

↑
λ =⋃

λ∈LD
↑
λ holds if and only if all the D↑λ have the same base-space. Note, that by these

definitions, the conjunction and disjunction of (at most countably many measurable)
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Figure 2: Event Structure

 

• pq  • p¬q  •¬pq  •¬p¬q 

• p  • ¬p • q  • ¬q 

•∅ 

S{q}S{p} 

S{∅}

S{pq}

events is a (measurable) event.

Apart from the measurability conditions, the event-structure outlined so far is analo-

gous to Heifetz, Meier, and Schipper (2006, 2008). An example is shown in Figure 2. It

depicts a lattice with four spaces and projections. The event that p obtains is indicated

by the dotted areas, whereas the grey areas illustrate the event that not p obtains. Sp∪Sq
is for instance not an event in our structure.

2.6 Probability Measures

Here and in what follows, the term ‘events’ always refers to measurable events in Σ unless

otherwise stated.

Let ∆ (S) be the set of probability measures on (S,FS). We consider this set itself as a

measurable space endowed with the σ-field F∆(S) generated by the sets {µ ∈ ∆ (S) : µ (D) ≥ p},
where D ∈ FS and p ∈ [0, 1].
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2.7 Marginals

For a probability measure µ ∈ ∆ (S ′), the marginal µ|S of µ on S � S ′ is defined by

µ|S (D) := µ

((
rS
′

S

)−1

(D)

)
, D ∈ FS.

Let Sµ be the space on which µ is a probability measure. Whenever Sµ � S(E) then

we abuse notation slightly and write

µ (E) = µ (E ∩ Sµ) .

If S(E) � Sµ, then we say that µ(E) is undefined.

2.8 Types

I is the nonempty set of individuals. For every individual, each state gives rise to a

probabilistic belief over states in some space.

Definition 1 For each individual i ∈ I there is a type mapping ti : Ω −→
⋃
α∈A∆ (Sα),

which is measurable in the sense that for every S ∈ S and Q ∈ F∆(S) we have t−1
i (Q)∩S ∈

FS. We require the type mapping ti to satisfy the following properties:4

(0) Confinement: If ω ∈ S ′ then ti(ω) ∈ 4 (S) for some S � S ′.

(1) If S ′′ � S ′ � S, ω ∈ S ′′, and ti(ω) ∈ 4(S) then ti(ωS′) = ti(ω).

(2) If S ′′ � S ′ � S, ω ∈ S ′′, and ti(ω) ∈ 4(S ′) then ti(ωS) = ti(ω)|S.

(3) If S ′′ � S ′ � S, ω ∈ S ′′, and ti(ωS′) ∈ 4(S) then Sti(ω) � S.

ti(ω) represents individual i’s belief at state ω. Properties (0) to (3) guarantee the

consistent fit of beliefs and awareness at different state-spaces. Confinement means that

at any given state ω ∈ Ω an individual’s belief is concentrated on states that are all

described with the same “vocabulary” - the “vocabulary” available to the individual at

ω. This “vocabulary” may be less expressive than the “vocabulary” used to describe

statements in the state ω.”

4Recall that Sµ is the space on which µ is a probability measure. Thus, Sti(ω) is the space on which

ti(ω) is a probability measure.
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Properties (1) to (3) compare the types of an individual in a state ω ∈ S ′ and its

projection to ωS, for some S � S ′. Property (1) and (2) mean that at the projected state

ωS the individual believes everything she believes at ω given that she is aware of it at

ωS. Property (3) means that at ω an individual cannot be unaware of an event that she

is aware of at the projected state ωS′ .

Remark 1 Property (1) of the type mappings in Definition 1 is implied by the Properties

(0),(2), and (3).

Define5

Beni (ω) :=
{
ω′ ∈ Ω : ti(ω

′)|Sti(ω) = ti(ω)
}
.

This is the set of states at which individual i’s type or the marginal thereof coincides

with her type at ω. Such sets are events in our structure:

Remark 2 For any ω ∈ Ω, Beni(ω) is an Sti(ω)-based event, which is not necessarily

measurable.6 We have Beni(ω) = {ω′ ∈ Sti(ω) : ti(ω
′) = ti(ω)}↑ = {Beni(ω) ∩ Sti(ω)}↑.

Recall that by definition ti(ω)(E) = ti(ω)(E∩Sti(ω)). Moreover, recall that with event

we mean measurable event in our event structure unless otherwise stated; both facts will

be used throughout the paper.

Assumption 1 If Beni(ω) ⊆ E, for an event E, then ti(ω)(E) = 1.

This assumption implies introspection (Property (va)) in Proposition 4 in the ap-

pendix. Note, that ifBeni(ω) is measurable, then Assumption 1 is equivalent to ti(ω)(Beni(ω)) =

1.

Definition 2 We denote by S :=

〈
S,
(
rSαSβ

)
Sβ�Sα

, (ti)i∈I

〉
an interactive unawareness

belief structure.

For some of our results, we will consider the finite case. A finite unawareness belief

structure is an unawareness belief structure, where S is finite, each S ∈ S is finite, and

for all S ∈ S, FS is the set of all subsets of S.

5The name “Ben” is chosen analogously to the “ken” in knowledge structures, see Samet (1990, p.

193).

6Even in a standard type-space, if the σ-algebra is not countably generated, then the set of states

where a player is of a certain type might not be measurable.
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2.9 Awareness and Unawareness

The definition of awareness is analogous to the definition in unawareness knowledge

structures (see Remark 6 in Heifetz, Meier, and Schipper, 2008).

Definition 3 For i ∈ I and an event E, define the awareness operator

Ai (E) := {ω ∈ Ω : ti (ω) ∈ ∆ (S) , S � S (E)}

if there is a state ω such that ti(ω) ∈ ∆(S) with S � S(E), and by

Ai(E) := ∅S(E)

otherwise.

An individual is aware of an event if and only if his type is concentrated on a space

in which the event is “expressible.” That is, individual i being aware of E means that

he “understands what E is”.

Proposition 1 If E is an event then Ai(E) is an S (E)-based event.

This proposition shows that the set of states in which an individual is aware of an

event is indeed an event in our structure. Moreover, in the nonempty case note that

Ai(E) = {ω ∈ S(E) : Sti(ω) = S(E)}↑ = {Ai(E) ∩ S(E)}↑. The awareness operator is

convenient to work with since the event Ai(E) has the same base-space as the event E.

Unawareness is naturally defined as the negation of awareness:

Definition 4 For i ∈ I and an event E, the unawareness operator is defined by

Ui(E) = ¬Ai(E).

Note that the definition of our negation and Proposition 1 imply that if E is an event,

then Ui(E) is an S (E)-based event.

Note further that Definition 3 and 4 apply also to events that are not necessarily

measurable.
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2.10 Belief

The p-belief-operator is defined as usual (see for instance Monderer and Samet, 1989):

Definition 5 For i ∈ I, p ∈ [0, 1] and an event E, the p-belief operator is defined by

Bp
i (E) := {ω ∈ Ω : ti(ω)(E) ≥ p},

if there is a state ω such that ti(ω)(E) ≥ p, and by

Bp
i (E) := ∅S(E)

otherwise.

Proposition 2 If E is an event then Bp
i (E) is an S (E)-based event.

This proposition shows that the set of states in which an individual believes an event

with probability at least p is an event in our structure that has the same base-space as

the event E.

Note that Bp
i (E) = {ω ∈ S(E) : ti(ω)(E) ≥ p}↑. That is, for every operator on

events, everything can be expressed in the base space and then the union of inverse

images can be taken.

We make note of the particular case p = 1 that we call certainty.

The p-belief operator has the standard properties stated in Proposition 4 in Ap-

pendix A.

2.11 Properties of Awareness and Belief

Dekel, Lipman, and Rustichini (1998) showed that in a standard state-space unawareness

must be trivial, even if the belief operator satisfies only very weak properties. In contrast,

we show in Proposition 5 in the appendix that we obtain all properties of unawareness

suggested in the literature. One noteworthy property is symmetry, Ai(E) = Ai(¬E).

It means that an individual i is aware of an event E if and only if he is aware of the

negation of E. This property makes clear that awareness is qualitatively very different

from the notion of probabilistic belief.

Although we model awareness of events, symmetry suggests that we model a notion

of awareness of issues or questions. Let an issue or question (E.g., “is the stock market
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crashing?”) be such that it can be answered in the affirmative (“The stock market is

crashing.”) or the negative (“The stock market is not crashing.”). By symmetry, an

individual is aware of an event if and only if she is aware of its negation. Thus we

model the awareness of questions and issues rather than just single events. In fact,

another noteworthy property called weak necessitation, Ai(E) = B1
i (S(E)↑), means that

an individual is aware of an event E if and only if she is aware of any event that can be

“expressed” in the base-space of E.

Interactive beliefs are defined as usual (e.g. Monderer and Samet, 1989). From now

on, we assume that the set of individuals I is at most countable.

Definition 6 The mutual p-belief operator on events is defined by

Bp(E) =
⋂
i∈I

Bp
i (E).

The common certainty operator on events is defined by

CB1 (E) =
∞⋂
n=1

(
B1
)n

(E).

We say that an event E is common certainty at ω ∈ Ω if ω ∈ CB1 (E).

That is, the mutual p-belief of an event E is the event in which everybody p-believes

the event E. Common certainty of E is the event that everybody is certain of the event

E, and everybody is certain that everybody is certain of the event E, everybody is certain

of that, ... ad infinitum. Common certainty is the generalization of common knowledge

to the probabilistic notion of certainty. Note that Proposition 2 and the definition of

the conjunction of events imply that Bp(E) and CB1 (E) are S(E)-based events, for any

measurable event E.

To illustrate beliefs about beliefs we return to the introductory example. What does

it mean for instance that the buyer is certain that the seller’s expected value for the firm

is 90 dollars? Note that at any state ω ∈ S{s} the seller’s type mapping is ts(ω)({s}) =

ts(ω)({¬s}) = 1
2
. Since the value of the firm is 100 dollars in state s while it is just 80

dollars in state ¬s, the seller’s expected value of the firm is 90 dollars at any state in

S{s}. This holds also for all states in S{ns} since at any of those states the seller’s type

coincides with his type at states in S{s}. Since at any state ω ∈ S{nls} the buyer’s type

tb(ω) is a probability measure on S{ns}, the buyer is certain at ω that the seller’s expected

value of the firm is 90 dollars.

Analogously to mutual belief and common belief, we define mutual awareness and

common awareness:

15



Definition 7 The mutual awareness operator on events is defined by

A(E) =
⋂
i∈I

Ai(E),

and the common awareness operator on events is defined by

CA(E) =
∞⋂
n=1

(A)n (E).

Mutual awareness of an event E is the event that everybody is aware of E. Common

awareness of an event E is the event that everybody is aware of E, everybody is aware

that everybody is aware of E, everybody is aware of that ... ad infinitum.

In Propositions 6 and 7 in the appendix, we state several properties of belief and

awareness in the multiperson context. One noteworthy property is Ai(E) = AiAj(E). If

individual i is aware of an event E, then she can also conceive that some other individual

j is aware of the event E. Another property is that mutual awareness coincides with

common awareness, A(E) = CA(E). That is, if everybody is aware of an event, then

everybody can conceive that everybody is aware of the event, everybody is aware of

that, etc. Finally, it is noteworthy that common certainty implies common awareness,

CB1(E) ⊆ CA(E). This property will be used repeatedly in the next section.

3 Common Prior, Agreement, and Speculation

In this section, we define a common prior and explore the implications. In Section 1.1, we

showed by example that the common prior assumption is too weak to rule out speculative

trade under unawareness. With unawareness, it is possible to have common certainty of

willingness to trade but everybody has a strict preference to trade. Yet, we are able

to prove a “No-speculative-trade” theorem according to which there cannot be common

certainty of strict preference to trade under unawareness. In the same vein, we prove a

“No-Agreeing-to-Disagree” theorem.

3.1 Priors and Common Priors

In a standard type-space S, a prior P S
i of player i is a convex combination of the beliefs

of i’s types in S (Samet, 1998). That is, for every event E ∈ FS,

P S
i (E) =

∫
S

ti (·) (E) dP S
i (·) . (1)
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In particular, if S is finite or countable, and if FS is the powerset of S, this equality holds

if and only if

P S
i (E) =

∑
s∈S

ti (s) (E)P S
i ({s}) . (2)

In words, to find the probability P S
i (E) that the prior P S

i assigns to an event E, one

should check the beliefs ti (s) (E) ascribed by player i to the event E in each state s ∈ S,

and then average these beliefs according to the weights P S
i ({s}) assigned by the prior

P S
i to the different states s ∈ S.

P S is a common prior on S if P S is a prior for every player i ∈ I.

Here we generalize these definitions to unawareness structures, as follows.

Definition 8 (Prior) A prior for player i is a system of probability measures Pi =(
P S
i

)
S∈S ∈

∏
S∈S ∆(S) such that

1. The system is projective: If S ′ � S then the marginal of P S
i on S ′ is P S′

i . (That

is, if E ∈ Σ is an event whose base-space S (E) is lower or equal to S ′, then

P S
i (E) = P S′

i (E).)

2. Each probability measure P S
i is a convex combination of i’s beliefs in S: For every

event E ∈ Σ such that S(E) � S,

P S
i (E ∩ S ∩ Ai (E)) =

∫
S∩Ai(E)

ti (·) (E) dP S
i (·) . (1u)

P =
(
P S
)
S∈S ∈

∏
S∈S ∆(S) is a common prior if P is a prior for every player i ∈ I.

In particular, if S is finite or countable, and if FS is the powerset of S, equality (1u)

holds if and only if

P S
i (E ∩ S ∩ Ai (E)) =

∑
s∈S∩Ai(E)

ti (s) (E)P S
i ({s}) . (2u)

What is the reason for the difference between (1) and (1u) (or similarly between (2)

and (2u))? With unawareness, ti (s) (E) is well defined only for states s ∈ S in which

player i is aware of E, i.e., the states s ∈ S ∩Ai (E). This is the cause for the difference

in the definition of the domain of integration (or summation) on the right-hand side.

Consequently, E (or equivalently E ∩ S) on the left-hand side of (1) and (2) is replaced

by E ∩ S ∩ Ai (E) in (1u) and (2u).
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The introductory example of speculative trade under unawareness has a common prior

as indicated by the fractions below each state in Figure 1). To see Property 1., observe

that the distribution on lower spaces coincides with the marginal of the distribution on

the higher space. For Property 2., consider for instance the event of “high sales”, [s], and

space S{s}. On one hand, P (S{s})([s] ∩ S{s} ∩ Ai([s])) = 1
2
. On the other hand, we have

ti(s)([s]) · P (S{s})({s}) + ti(¬s)([s])P (S{s})({¬s}) = 1
2
· 1

2
+ 1

2
· 1

2
= 1

2
.

Figure 3: Illustration of a Common Prior

 

S’ 

• ω11 • ω10 
1/18 1/18 

S 

• ω13 • ω14 
1/18 2/18 

• ω3 • ω2 
1/18 3/18 

• ω5 • ω6
1/18 2/18

• ω7 • ω8 
1/3  2/3 

• ω9    • ω12 
1/18    3/18 

• ω1    • ω4 
1/18    1/18 

Another example of an unawareness structure with a common prior is given in Fig-

ure 3. Odd (resp. even) states in the upper space project to the odd (resp. even) state in

the lower space. There are two individuals, one indicated by the solid lines and ellipses

and another by dashed lines and ellipses. Note that the ratio of probabilities over odd

and even states in each “information cell” coincides with the ratio in the “information

cell” in the lower space.

A discussion of the interpretation of a common prior in unawareness structures is

deferred to Section 3.4.
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Figure 4: Speculative Trade with Delusion

  ω1 ω2
 

 ½  ½  
 
 

3.2 Speculative Trade

In this section, we investigate whether the common prior assumption implies the absence

of speculative trade (e.g. Milgrom and Stokey, 1982). The example in Section 1.1 shows

that speculation is possible under unawareness even if we assume that there is a positive

common prior. Despite this counter example to the “No-speculative-trade” theorems, we

prove below a generalized “No-speculative-trade” theorem according to which, if there is

a positive common prior, then there cannot be common certainty of strict preference to

trade. That is, even with unawareness it is not the case that “everything goes”. We find

this surprising, because unawareness can be interpreted as a special form of “delusion”:

At a given state of a space, a player’s belief may be concentrated in a very different lower

state-space. It is known that speculative trade is possible in delusional standard state-

space structures with a common prior. For instance, consider the information structure

in Figure 4. The common prior and the information structure allows the dashed player

to have a posterior of tdashed(ω1)({ω1}) = tdashed(ω2)({ω1}) = 1 and the solid player

tsolid(ω1)({ω2}) = tsolid(ω2)({ω2}) = 1. So they may happily disagree on the expected

value of a random variable defined on this standard state-space.

Denote by [ti(ω)] := {ω′ ∈ Ω : ti(ω
′) = ti(ω)}.

Definition 9 A common prior P =
(
P S
)
S∈S ∈

∏
S∈S ∆(S) is positive if and only if for

all i ∈ I and ω ∈ Ω: If ti (ω) ∈ 4 (S ′), then [ti(ω)]∩S ′ ∈ FS′ and P S
(

([ti (ω)] ∩ S ′)↑ ∩ S
)
>

0 for all S � S ′.

For every type, a positive common prior puts a positive weight on the set of “station-

ary” states where the player has this type. It can be viewed as a technical condition that

serves the same purpose as the assumption in Aumann (1976) that the prior puts strict

positive weight on each partition cell in his finite partitional structure. This assumption
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is for instance satisfied in the introductory example in which we show the possibility of

speculative trade under unawareness. The positivity condition ensures that the common

prior indeed imposes consistency on the types. To see this, consider once again Figure 3.

Replace the common prior by a prior that assigns 1
6

to each state ω9, ω10, ω11 and 3
6

to ω12, and zero to all other states in S ′. The prior probabilities for states in S remain

unchanged. This prior is a common prior but it does not satisfy the positivity assump-

tion of Definition 9. In particular, this common prior does not constrain any player’s

types with beliefs on S ′. So, for unawareness belief structures the positivity assumption

on the common prior ensures that the common prior constrains the beliefs of types not

just locally on some space but across the lattice. Essentially, it is in the spirit of the

common prior assumption according to which different beliefs are only due to differences

in information. The positivity condition also implies that for each player there can be

at most countably many types in each space. Moreover, in terms of awareness it implies

that for every pair of players, i and j, and every event E, if i is certain that j is aware

of the event E, then j is indeed aware of the event E with probability 1.

Next we define the set of states in which a player believes the expectation of a random

variable to be above (resp. below) some real number x.

Definition 10 Let x1 and x2 be real numbers and v a random variable on Ω. Define the

sets E≤x11 :=
{
ω ∈ Ω :

∫
St1(ω)

v (·) d (t1 (ω)) (·) ≤ x1

}
and

E≥x22 :=
{
ω ∈ Ω :

∫
St2(ω)

v (·) d (t2 (ω)) (·) ≥ x2

}
. We say that at ω, conditional on his

information, player 1 (resp. player 2) believes that the expectation of v is weakly below

x1 (resp. weakly above x2) if and only if ω ∈ E≤x11 (resp. ω ∈ E≥x22 ).

Note that the sets E≤x11 or E≥x22 may not be events in our unawareness belief structure,

because v (ω) 6= v (ωS) is allowed, for ω ∈ S ′ � S. Yet, we can define p-belief, mutual

p-belief, and common certainty for measurable subsets of Ω, and show that the properties

stated in Propositions 4 and 6 obtain as well.7 The proofs are analogous and thus omitted.

We are now ready to state our “No-speculative-trade” result:

Theorem 1 Let S be a finite unawareness belief structure and P =
(
P S
)
S∈S ∈

∏
S∈S ∆(S)

be a positive common prior. Then there is no state ω̃ ∈ Ω such that there are a random

7A measurable subset of Ω is an E ⊆ Ω such that E ∩ S ∈ FS , for all S ∈ S. ¬E is then understood

to be the relative complement of E with respect to the union of state-spaces rather than our definition

of the negation of an event. This plays a role in point (ii) of Proposition 4 applied to measurable subsets

of Ω.
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variable v : Ω −→ R and x1, x2 ∈ R, x1 < x2, with the following property: at ω̃ it is

common certainty that conditional on her information, player 1 believes that the expec-

tation of v is weakly below x1 and, conditional on his information, player 2 believes that

the expectation of v is weakly above x2.

The theorem says that if there is a positive common prior, then there can not be

common certainty of strict preference to trade.8 Together with our example of speculative

trade under unawareness we conclude that a common prior does not rule out speculation

under unawareness but it can never be common certainty that both players expect to

strictly gain from speculation. The theorem implies as a corollary that given a positive

common prior, arbitrary small transaction fees (e.g., a Tobin tax) rule out speculative

trade under unawareness.

We should note that the simple model leaves open what happens if in the introductory

example the buyer offers more than 90 dollars to the seller. In this case the seller may

suspect that he is unaware of some event that the buyer is aware of. It is not clear

whether the seller would accept such an offer or not, and what the buyer would learn

from it. Such kind of reasoning is outside the model. Grant and Quiggin (2011) discuss

a heuristic for this case in our example.

One may ask whether the absence of speculative trade implies a common prior un-

der unawareness. The previous result suggests that heterogeneous unawareness with a

common prior is “intermediate” between common awareness with heterogeneous priors

on the one hand, and common awareness with a common prior on the other hand. With

heterogeneous priors even in standard state-spaces, common certainty of strict preference

to trade is possible. In standard state-spaces, the absence of speculative trade implies

a common prior (see for instance Feinberg, 2000). This is the converse to the “No-

speculative-trade” theorem. The following example shows that under unawareness the

converse of our “No-speculative-trade” theorem does not hold.

Example 1 Consider the information structure with two spaces in Figure 5. There

are two players: The information structure of the first (resp. second) player is given

by the solid (resp. intermitted) objects. The belief of the first (resp. second) player is

given above (resp. below) the states. Since the relative weights differ, there can not be

a positive common prior. In fact, there is not even a common prior since equation (2u)

8In Meier and Schipper (2010), we extend the above “No-speculative-trade” theorem to infinite un-

awareness belief structures.
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of Definition 8 imposed on the priors of both individuals would imply that the common

prior assigns probability zero to all states in S ′. Note that the only measurable sets that

are common certainty among both players are Ω = S ′ ∪ S and S. Yet, it is not true that

in all states in Ω or S player 1’s expectation of a random variable differs from player 2’s

expectation. E.g., at ω6 both player’s expectations of the random variable must agree.

Thus, the absence of common certainty of strict preference to trade does not imply the

existence of a (positive) common prior.

Figure 5: Information Structure of the Counter-Example

3.3 Agreement

For an event E and p ∈ [0, 1] define the set [ti(E) = p] := {ω ∈ Ω : ti(ω)(E) = p}, if

{ω ∈ Ω : ti(ω)(E) = p} is nonempty, and otherwise set [ti(E) = p] := ∅S(E).

Lemma 1 [ti(E) = p] is a S(E)-based event.

Proof. [ti(E) = p] = Bp
i (E)∩B1−p

i (¬E). Hence the claim follows from Proposition 2.�
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The following proposition is a generalization of the standard “No-Agreeing-to-Disagree”

theorem (Aumann, 1976):

Proposition 3 Let S be an unawareness belief structure for which there exists a positive

common prior, G be an event, and pi ∈ [0, 1], for i ∈ I. If CB1(
⋂
i∈I [ti(G) = pi])) is

nonempty, then pi = pj, for all i, j ∈ I.

The proposition asserts that, even under unawareness, if individuals have a positive

common prior and common certainty of posteriors for an event (and thus common aware-

ness of that event), then the posteriors must agree among all individuals. So individuals

with a positive common prior cannot agree-to-disagree on the posteriors of events which

they are all aware of.

As mentioned previously, the assumption of a positive common prior is a technical

assumption akin to the assumption of a prior that puts strict positive probability on each

partition cell in Aumann (1976). It can be weakened further considerably by requiring

only a common prior on a space S � S(G) satisfying P S(CB1(
⋂
i∈I [ti(G) = pi])) > 0.

In the appendix, we actually prove this more general version of the “No-agreement-to-

disagree” theorem and show that this condition is implied by a positive common prior.

3.4 Discussion of the Common Prior Assumption

How could a prior under unawareness be interpreted? Following the discussion of the

notion of a prior in standard Bayesian analysis by Savage (1954), Morris (1995), and

Samet (1999), we like to distinguish three interpretations: First, a prior is interpreted

verbally as a player’s subjective belief at a prior stage. Second, the prior is a coherence

condition on the player’s types. Third, the prior is the long run relative frequency of

repeated events observed by the player in the past.

Consider the first interpretation. A prior is a subjective belief at a prior stage before

the player received further information which led her to the interim belief ti(ω). With

unawareness, this interpretation is nonsensical. One would have to imagine that the

player had been aware of all relevant aspects of reality at the prior stage, but then

became unaware of some of them (while nevertheless having received more information

regarding other aspects).

In standard Bayesian analysis, Samet (1999) put forward a second interpretation of

a prior as a coherence condition on types: For every event E ∈ Σ and every p ∈ [0, 1],

every type of the player answers affirmatively to the question “Given that tomorrow you
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will assign to the event E probability at least p, do you assign to E probability at least

p now?” This interpretation is conceptually valid also for unawareness belief structures

with an important qualification: Every type of the player is asked these questions only

for events of which she is aware because otherwise a question by itself may make the

type aware of an event of which she was previously unaware. While this qualification

is vacuous in standard Bayesian analysis - because of the implicit assumption of full

awareness - it implies for unawareness belief structures that each type is “aware” only

of the prior restricted to the events that she is aware of. Moreover, every type can only

perceive the beliefs of her alternative types of which she is aware. This emphasizes that

the prior is derived from types rather than being a primitive of the model.

The third interpretation views the prior as the relative frequency of events observed

previously by the individual as history goes to infinity and before receiving information

which led to her interim belief ti(ω). Again, with unawareness such a interpretation is

nonsensical. One would have to imagine that the player had been measuring all events

in history, but then became unaware of some of them (while nevertheless having received

more information regarding other events). To recapture the validity of the frequentist

interpretation, we must assume that every player can observe only events that she is

aware of interim. This assumption is quite reasonable since a player can only measure

what she is aware of. For instance, meteorologists were unable to measure ozone before

they became aware of it. Yet, the applicability of the frequentist interpretation may

be limited since we allow also for conditioning on unobservable events (such as types

of other players), a caveat that applies not only to unawareness belief structures but to

belief structures in general.

What are the implications of the absence of speculation on the priors? For standard

type-spaces, the converse to the “No-speculative-trade” theorem characterizes the com-

mon prior assumption through the absence of speculative trade (Morris, 1994, Bonanno

and Nehring, 1999, Feinberg, 2000, Halpern, 2002, Heifetz, 2006). Example 1 shows that

we cannot characterize positive common priors or even just common priors on unaware-

ness belief structures by the absence of common certainty of strict preference to trade.

Note that our notion of “No-speculative-trade” is slightly different from the literature:

For instance, Feinberg (2000) characterizes the common prior by the absence of com-

mon certainty of speculation for some states. We show that a positive common prior

implies the absence of common certainty of speculation for all states. Hence, our notion

of “No-speculative-trade” implies Feinberg’s notion of “No-speculative-trade”.9 Note,

9We opted for our notion of “local” speculation because intuitively one is interested to know whether
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however, that the impossibility of the converse to a “No-speculative-trade” theorem for

unawareness belief structures is not due to the different notion of “No-speculative-trade”

employed. To see this, consider once again Example 1. At state ω6 it is not common cer-

tainty that players want to speculate. Yet, we noticed already that there is no common

prior in this model. Hence, also “No-speculative-trade” in the sense of Feinberg does not

imply a common prior in unawareness belief structures. To sum up, we show that it is still

possible to define the common prior assumption under unawareness. Moreover, our “No-

speculative-trade” theorem demonstrates that the common prior assumption enhanced

by positivity imposes discipline. Yet, contrary to standard type-spaces the common prior

assumption is not “provable” by the absence of speculation under unawareness, it just

remains (in principle) “falsifiable”. The possibility of characterizing a common prior by

absence of speculation in the standard type-space versus the impossibility of such char-

acterization in unawareness belief structures illustrates an important difference between

unawareness belief structures and standard type-spaces.

4 Universal Unawareness Belief Type Space

In this section, we investigate the foundations of unawareness belief structures. Our aim

is to construct unawareness belief structures explicitly from hierarchies of beliefs, and

show the existence of a universal unawareness type space that contains all hierarchies of

beliefs analogous to Mertens and Zamir (1985) for type spaces without unawareness.

4.1 Hierarchical Construction

The lattice of spaces of states of nature is{
ZL =

∏
d∈L

Zd

}
L⊆D

where each Zd is a Hausdorff topological space, and represents one dimension of reality.

The set of dimensions D is finite or countable.10 (For L = ∅ we maintain the convention

that Z∅ = {∅}.)

there are some states (as opposed to all states) where players speculate. Our notion of “No-speculative-

trade” coincides with Feinberg’s notion on belief closed subsets.

10We could start with a different complete lattice of Hausdorff topological (state) spaces 〈{Zα}α∈A,�〉
and surjective continuous projections between them in accordance with the lattice order, as long as the

properties of Sections 2.1 and 2.2 are satisfied.
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For each subset of dimensions L ⊆ D we will construct the space of player i’s hierar-

chies of beliefs when i is aware only of the dimensions in L (but may believe that other

players are aware of less dimensions, and so forth recursively).

The basic domain of belief for such a player is

Y i,L
0 =

∏
d∈L

Zd = ZL.

The first-order beliefs of the player,

M i,L
1 = ∆

(
Y i,L

0

)
is the space of regular Borel probability measures on Y i,L

0 , endowed with the topology of

weak convergence.

The domain of second-order beliefs of the player is

Y i,L
1 =

∏
d∈L

Zd ×
∏
j 6=i

( ⋃
L′⊆L

M j,L′

1

)
.

For yi,L1 =
(

(zd)d∈L, (m
j,Lj
1 )j 6=i

)
define pi,L,10

(
yi,L1

)
:= (zd)d∈L.

If pi,L,nn−1 : Y i,L
n −→ Y i,L

n−1 has already been defined, define for µi,Ln+1 ∈ ∆(Y i,L
n ):(

margY i,Ln−1

(
µi,Ln+1

))
(·) := µi,Ln+1

((
pi,L,nn−1

)−1

(·)
)
.

Inductively, suppose that for k = 1, . . . , n, for every subset of dimensions L ⊆ D,

and for every player i ∈ I, when she is aware only of the subset of dimensions in L,

we have already defined the spaces M i,L
k of k-level hierarchies, as well as her domain of

(k + 1)-order beliefs Y i,L
k . Define

M i,L
n+1 =

{((
µi,L1 , . . . , µi,Ln

)
, µi,Ln+1

)
∈M i,L

n ×∆
(
Y i,L
n

)
: margY i,Ln−1

µi,Ln+1 = µi,Ln

}
.

qi,L,n+1
n : M i,L

n+1 −→M i,L
n

is now naturally defined as

qi,L,n+1
n

(
µi,L1 , . . . , µi,Ln , µi,Ln+1

)
:=
(
µi,L1 , . . . , µi,Ln

)
.

Now, define

Y i,L
n+1 :=

∏
d∈L

Zd ×
∏
j 6=i

( ⋃
L′⊆L

M j,L′

n+1

)
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and

pi,L,n+1
n : Y i,L

n+1 −→ Y i,L
n

is defined as follows:

pi,L,n+1
n

(
(zd)d∈L,

(
m
j,Lj
n+1

)
j 6=i

)
:=

(
(zd)d∈L,

(
qj,Lj ,n+1
n (m

j,Lj
n+1)

)
j 6=i

)
.

In the limit, define

M i,L
∞ =

{(
µi,L1 , . . . , µi,Ln , . . .

)
:
(
µi,L1 , . . . , µi,Ln

)
∈M i,L

n for all n ∈ N
}

and

Y i,L
∞ =

∏
d∈L

Zd ×
∏
j 6=i

( ⋃
L′⊆L

M j,L′

∞

)
.

Each mi,L
∞ =

(
µi,L1 , . . . , µi,Ln , . . .

)
∈ M i,L

∞ is a projective system of probability mea-

sures, and by the Kolmogorov extension theorem it has an inverse limit, that is, a unique

probability measure

ti,L∞
(
mi,L
∞
)
∈ ∆

(
Y i,L
∞
)

whose marginal on Y i,L
n is µi,Ln+1 for every n ≥ 0. Conversely, any probability measure

µ on Y i,L
∞ induces a unique projective system in M i,L

∞ whose projective limit is µ. The

measure ti,L∞
(
mi,L
∞
)

induces mi,L
∞ .

Hence, the map

ti,L∞ : M i,L
∞ −→ ∆

(
Y i,L
∞
)

is a bijection. But also, by standard arguments (see, for example, the proof of Theorem

9 in Heifetz, 1993), this map is a homeomorphism (i.e., continuous with a continuous

inverse).

Next, we define projections from higher to lower levels of awareness. For any subsets

of dimensions L̂ ⊆ L ⊆ D define the (Borel measurable) projection

ρi,L,L̂0 : Y i,L
0 −→ Y i,L̂

0

between i’s domain of belief Y i,L
0 and the poorer domain Y i,L̂

0 by

ρi,L,L̂0

(
(zd)d∈L

)
= (zd)d∈L̂ .

Define also the marginal

ηi,L,L̂1 : M i,L
1 −→M i,L̂

1
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by (
ηi,L,L̂1

(
µi,L1

))
(·) := µi,L1

((
ρi,L,L̂0

)−1

(·)
)

=
(

marg(
∏
d∈L̂ Zd)

µi,L1

)
(·).

Inductively, define the (Borel measurable) projection between i’s domains of belief

across her different awareness levels

ρi,L,L̂n+1 : Y i,L
n+1 −→ Y i,L̂

n+1

by

ρi,L,L̂n+1

(
(zd)d∈L ,

(
m
j,L′j
n+1

)
j 6=i

)
=

(
(zd)d∈L̂ ,

(
η
j,L′j ,(L′j∩L̂)
n+1

(
m
j,L′j
n+1

))
j 6=i

)
and the marginal

ηi,L,L̂n+1 : M i,L
n+1 −→M i,L̂

n+1

by

ηi,L,L̂n+1

((
µi,L1 , . . . , µi,Ln

)
, µi,Ln+1

)
=

(
µi,L1

(
ρi,L,L̂0

)−1

, . . . , µi,Ln

(
ρi,L,L̂n−1

)−1

, µi,Ln+1

(
ρi,L,L̂n

)−1
)
.

One can check that(
marg

Y i,L̂n−1

(
µi,Ln+1

))((
ρi,L,L̂n

)−1

(·)
)

= µi,Ln

((
ρi,L,L̂n−1

)−1

(·)
)
,

that is, the above definition makes sense.

In the limit, define the marginal

ηi,L,L̂∞ : M i,L
∞ −→M i,L̂

∞

by

ηi,L,L̂∞

(
µi,L1 , . . . , µi,Ln , . . .

)
=

(
µi,L1

(
ρi,L,L̂0

)−1

, . . . , µi,Ln

(
ρi,L,L̂n−1

)−1

, . . .

)
and the projections between i’s domains of belief across her different awareness levels

ρi,L,L̂∞ : Y i,L
∞ −→ Y i,L̂

∞

by

ρi,L,L̂∞

(
(zd)d∈L ,

(
m
j,L′j
∞

)
j 6=i

)
:=

(
(zd)d∈L̂ ,

(
η
j,L′j ,(L′j∩L̂)
∞

(
m
j,L′j
∞

))
j 6=i

)
.

One can verify that the beliefs of i’s types commute with these projections and

marginals: (
ti,L̂∞ ◦ ηi,L,L̂∞

(
mi,L
∞
))

(·) =
(
ti,L∞
(
mi,L
∞
))((

ρi,L,L̂∞

)−1

(·)
)
. (3)
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Finally, define the lattice of spaces

Y L =
∏
d∈L

Zd ×
∏
i∈I

( ⋃
L′⊆L

M i,L′

∞

)

partially ordered by the partial inclusion order of subsets of dimensions L ⊆ D. Redefine

the beliefs of each type mi,L′
∞ to be on Y L′ (rather than on the above “personalized”

domain Y i,L′
∞ ) so as to express the idea that each type is introspective, as follows: For

every

yL =

(
(zd)d∈L ,

(
m
j,L′j
∞

)
j 6=i

,mi,L′

∞

)
∈ Y L, L ⊇ L′

define

ti
(
yL
)
∈ ∆

(
Y L′
)

by

ti
(
yL
)

(E) := ti,L
′

∞

(
mi,L′

∞

)({(
(z′d)d∈L′ ,

(
m
j,L′j
∞

)
j 6=i

)
∈ Y i,L′

∞ :

(
(z′d)d∈L′ ,

(
m
j,L′j
∞

)
j 6=i

,mi,L′

∞

)
∈ E

})
for every Borel subset E ⊆ Y L′ .

For L ⊇ L̂, let

rL
L̂

: Y L −→ Y L̂

be the natural projection defined by

rL
L̂

(
(zd)d∈L ,

(
m
i,L′i∞

)
i∈I

)
:=

(
(zd)d∈L̂ ,

(
η
i,L′i,(L′i∩L̂)
∞

(
m
i,L′i∞

))
i∈I

)
For yL ∈ Y L we will denote

yL
L̂

= rL
L̂

(
yL
)
.

Notice that these projections and the beliefs ti satisfy the following properties:

(0) Confinement: ti
(
yL
)
∈ ∆

(
Y L′
)

for some Y L′ , with L′ ⊆ L.

(1) If L̈ ⊇ L̇ ⊇ L, yL̈ ∈ Y L̈ and ti

(
yL̈
)
∈ ∆

(
Y L
)

then

ti

(
yL̈
L̇

)
= ti

(
yL̈
)
.

(2) If L̈ ⊇ L̇ ⊇ L, yL̈ ∈ Y L̈ and ti

(
yL̈
)
∈ ∆

(
Y L̇
)

then

ti

(
yL̈L

)
= ti

(
yL̈
)(

rL̇L

)−1

.
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(3) If L̈ ⊇ L̇ ⊇ L, yL̈ ∈ Y L̈ and ti

(
yL̈
L̇

)
∈ ∆

(
Y L
)

then ti

(
yL̈
)
∈ ∆

(
Y L̂
)

for some

L̂ ⊇ L.

Property (2) follows from Equation (3). The Properties (0) – (3) are the properties

of the type mappings in the definition of unawareness belief structures (Definition 1 of

this paper).

For each L ⊆ D and L̇ ⊇ L, Y L̇ has obviously-defined projections onto Y L. They

are such, that the properties in Sections 2.1 and 2.2 are satisfied. Also, the introspection

property is satisfied in the resulting structure.

We say that

Y :=
〈{
Y L
}
L⊆D , (r

L
L̂

)L̂⊆L, (ti)i∈I

〉
is the universal space with unawareness (for the lattice of spaces of states of nature{
ZL
}
L⊆D and the set of players I), in a sense that we will make precise in the next

section.

From what we have remarked above, it follows that this structure is an unawareness

belief space.

4.2 Category of Unawareness Type Spaces and Universality

In this section we sketch the existence of a universal unawareness type space.

Having fixed Hausdorff spaces {Zd}d∈D, let L ⊆ 2D be a collection of subsets of D,

that forms a complete lattice with set theoretic union as join and set theoretic intersection

as meet. We call such a collection L eligible.

An unawareness type space S =
〈
{SL}L∈L, (rLL̂)L̂⊆L, (ti)i∈I , (θ

L)L∈L

〉
is a lattice of

Hausdorff topological spaces
{
SL
}
L∈L, with Borel measurable maps

θL : SL −→
∏
d∈L

Zd,

for L ∈ L, specifying the state of nature (in the corresponding set of dimensions L)

and Borel measurable introspective belief maps ti, i ∈ I, such that for every ωL ∈ SL,
ti
(
ωL
)
∈ ∆

(
SL
′)

for some L′ ⊆ L; and with commuting projections

rL
L̂

: SL −→ SL̂, L̂ ⊆ L, L̂, L ∈ L

which commute also with θL, and satisfy properties (0)–(3) above (with ω-s instead of

y-s).
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In particular, the hierarchical construction Y from the previous section is an unaware-

ness type space.

Let L ⊆ L̇ be eligible collections, and let S =
〈
{SL}L∈L, (rLL̂)L̂⊆L, (ti)i∈I , (θ

L)L∈L

〉
and Ṡ =

〈
{ṠL}L∈L̇, (ṙLL̂)L̂⊆L, (ṫi)i∈I , (θ̇

L)L∈L̇

〉
be two unawareness type spaces (with cor-

responding mappings and projections, denoted with and without a dot, respectively).

We say that the collection of mappings

ϕL : SL → ṠL, L ∈ L

is a type morphism if these mappings preserve the state of nature

θ̇LϕL = θL

and the beliefs of the players: If ti
(
ωL
)
∈ ∆

(
SL
′)

then ṫi
(
ϕL
(
ωL
))
∈ ∆

(
ṠL
′
)

and

(
ṫi
(
ϕL
(
ωL
)))

(·) = ti
(
ωL
)((

ϕL
′
)−1

(·)
)

Any unawareness type space S admits the following inductively defined mappings into

the spaces M i,L
n , which unfold the players’ beliefs in states ωL̇ in which ti

(
ωL̇
)
∈ ∆

(
SL
)
,

as follows: (
hi,L1

(
ωL̇
))

(·) := ti

(
ωL̇
)((

θL
)−1

(·)
)
∈ ∆

(
Y i,L

0

)
and inductively

hi,Ln+1

(
ωL̇
)

:=

(
hi,Ln

(
ωL̇
)
, ti

(
ωL̇
)(

θL,
(
∪L′⊆Lhj,L

′

n

)
j 6=i

)−1
)
.

In the limit, define the entire unfolding of player i’s belief at ωL̇ to be

hi,L∞

(
ωL̇
)

:=
(
µi,L1 , . . . , µi,Ln , . . .

)
such that (

µi,L1 , . . . , µi,Ln

)
= hi,Ln

(
ωL̇
)
,

for all n ≥ 1.

Combining this map for all the players and for the state of nature at ωL̇, for all the

states ωL̇ in the unawareness type space S, constitutes the unique type morphism into

Y (since type morphisms preserve this explicit-description unfolding). As there can be

at most one universal space, this establishes that Y is universal.
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5 Related Literature

There is a growing literature on unawareness both in economics and computer science.

The independent parallel work of Sadzik (2006) is closest to ours. Building to a certain

extent on our earlier work, Heifetz, Meier, and Schipper (2006), he presents a framework

of unawareness with probabilistic beliefs in which the common prior on the upmost space

is a primitive. In contrast, we take types as primitives and define a prior on the entire

unawareness belief structure as a convex combination of the type’s beliefs.

In a companion paper, Meier and Schipper (2012a) apply unawareness belief struc-

tures to develop Bayesian games with unawareness, define Bayesian Nash equilibrium,

and prove existence. Moreover, they investigate the robustness of equilibria in strategic

games to uncertainty about opponents’ unawareness of actions.

Feinberg (2009) discusses games with unawareness by modeling games and many

views thereof, each (mutual) view being a finite sequence of player names i1, ..., in with

the interpretation that this is how i1 views how .... how in views the game. This differs

from our unawareness belief structures in which each state “encapsulates” the views of

the players, their views about other players’ views etc. in a standard and parsimonious

way.

Halpern and Rêgo (2006), Rêgo and Halpern (2012), Li (2006), Heifetz, Meier, and

Schipper (2011a,b), Meier and Schipper (2012b), and Feinberg (2009) present models of

extensive-form games with unawareness and analyze solution concepts for them. Li (2006)

is based on Li (2009), in which she presents a set theoretic model with knowledge and

non-trivial unawareness. A state-space is a product set where each dimension corresponds

to an issue. A decision maker may be unaware of some issues by “living in” a space with

less dimensions. Modica (2008) studies the updating of probabilities and argues that new

information may change posteriors more if it implies also a higher level of awareness. A

dynamic framework for a single decision maker with unawareness is introduced by Grant

and Quiggin (2011) who also discuss heuristic approaches in the face of awareness of

unawareness. Ewerhart (2001) studies the possibility of agreement under a notion of

unawareness different from the aforementioned literature.

More recently we learned that Board and Chung (2011) presented a different model

of unawareness in which they also study speculative trade under what they term living

in “denial” and “paranoia”. The precise connection to our results is yet to be explored.

The literature on unawareness is related to the recent work in behavioral economics,

finance, and macroeconomics that discusses the economic relevance of peoples inatten-
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tion for various economic outcomes such as retirement savings, portfolio choice, choice of

health care plans, etc. This literature focuses on questions such as how to design opti-

mally economic policies to “nudge” people’s attention (Thaler and Sunstein, 2008) or how

to optimally allocate (voluntary) inattention (e.g. Sims, 2010, Van Nieuwerburgh and

Veldkamp, 2010). While the notions of inattention discussed in behavioral economics,

finance, and macroeconomics may not correspond exactly to the well-defined epistemic

notion of unawareness and may additionally involve biases and features of bounded ratio-

nality, we believe that unawareness may be one component of those notions of inattention.

Our “No-speculative-trade” result can be viewed as showing the absence of speculative

trade with rational but involuntarily inattentive agents.

Appendices

A Properties of Belief and Awareness

Proposition 4 Let E and F be events, {El}l=1,2,... be an at most countable collection of

events, and p, q ∈ [0, 1]. The following properties of belief obtain:

(o) Bp
i (E) ⊆ Bq

i (E), for q ≤ p,

(i) Necessitation: B1
i (Ω) = Ω,

(ii) Additivity: Bp
i (E) ⊆ ¬Bq

i (¬E), for p+ q > 1,

(iiia) Bp
i (
⋂∞
l=1El) ⊆

⋂∞
l=1B

p
i (El),

(iiib) for any decreasing sequence of events {El}∞l=1, Bp
i (
⋂∞
l=1El) =

⋂∞
l=1 B

p
i (El),

(iiic) B1
i (
⋂∞
l=1El) =

⋂∞
l=1 B

1
i (El),

(iv) Monotonicity: E ⊆ F implies Bp
i (E) ⊆ Bp

i (F ),

(va) Introspection: Bp
i (E) ⊆ B1

iB
p
i (E),

(vb) Introspection II: Bp
iB

q
i (E) ⊆ Bq

i (E), for p > 0.

In our unawareness belief structure, Necessitation means that an individual always

is certain of the universal event Ω, i.e., she is certain of “tautologies with the lowest

expressive power.” (ii) means that if an individual believes an event E with at least

33



probability p, then she can not believe the negation of E with any probability strictly

greater than 1− p. Property (iii a - c) are variations of conjunction, i.e., if an individual

believes a conjunction of events with probability at least p, then she p-believes each of

the events. The interpretation of monotonicity is: If an event E implies an event F , then

p-believing the event E implies that the individual also p-believes the event F . Property

(v) concerns the introspection of belief: If an individual believes the event E with at least

probability p then she is certain that she believes the event E with at least probability

p. Also, if she believes with positive probability that she p-believes an event, the she

actually p-believes this event.

The following properties of awareness and belief obtain.

Proposition 5 Let E be an event and p, q ∈ [0, 1]. The following properties of awareness

and belief obtain: 1. Plausibility: Ui(E) ⊆ ¬Bp
i (E)∩¬Bp

i ¬B
p
i (E), 2. Strong Plausibility:

Ui(E) ⊆
⋂∞
n=1 (¬Bp

i )
n (E), 3. BpU Introspection: Bp

i Ui(E) = ∅S(E) for p ∈ (0, 1] and

B0
i Ui(E) = Ai(E), 4. AU Introspection: Ui(E) = UiUi(E), 5. Weak Necessitation:

Ai(E) = B1
i

(
S(E)↑

)
, 6. Bp

i (E) ⊆ Ai(E) and B0
i (E) = Ai(E), 7. Bp

i (E) ⊆ AiB
q
i (E),

8. Symmetry: Ai(E) = Ai(¬E), 9. A Conjunction:
⋂
λ∈LAi (Eλ) = Ai

(⋂
λ∈LEλ

)
, 10.

ABp Self Reflection: AiB
p
i (E) = Ai(E), 11. AA Self Reflection: AiAi(E) = Ai(E), and

12. Bp
iAi(E) = Ai(E).

These properties are analogous to the properties in unawareness knowledge structures

(Heifetz, Meier, and Schipper, 2006, 2008). Properties 1 to 5 have been suggested by

Dekel, Lipman, and Rustichini (1998), and 8 to 11 by Fagin and Halpern (1988), Modica

and Rustichini (1999) and Halpern (2001).

Note that properties 3, 4, 5, 8, 9, 11, and 12 hold also for non-measurable events,

because even if E is not measurable, by 5. Ai(E) is measurable.

Definition 11 An event E is evident if for each i ∈ I, E ⊆ B1
i (E).

Proposition 6 For every event F ∈ Σ:

(i) CB1(F ) is evident, that is CB1(F ) ⊆ B1
i (CB

1(F )) for all i ∈ I.

(ii) There exists an evident event E such that ω ∈ E and E ⊆ B1
i (F ) for all i ∈ I, if

and only if ω ∈ CB1(F ).

The proof is analogous to Proposition 3 in Monderer and Samet (1989) for a standard

state-space and thus omitted.

34



Proposition 7 Let E be an event and p, q ∈ [0, 1]. The following multi-person properties

obtain:

1. Ai(E) = AiAj(E), 7.
Bp(E) ⊆ CA(E),

B0(E) = CA(E),

2. Ai(E) = AiB
p
j (E), 8.

Bp(E) ⊆ A(E),

B0(E) = A(E),

3. Bp
i (E) ⊆ AiB

q
j (E), 9. A(E) = B1(S(E)↑),

4. Bp
i (E) ⊆ AiAj(E), 10. CA(E) = B1(S(E)↑),

5. CA(E) = A(E), 11. CB1(S(E)↑) ⊆ A(E),

6. CB1(E) ⊆ CA(E), 12. CB1(S(E)↑) ⊆ CA(E),

Note that properties 1, 5, 9, 10, 11, and 12 also hold for non-measurable events.

B The Connection to Standard Type Spaces

In this section, we show how to derive a standard type-space from our unawareness

structure by “flattening” our lattice of spaces. “Flattening” the belief structure is a purely

mathematical procedure that essentially “erases” the “language” required to identify

events that agents could be unaware of. Since a flattened structure is a standard type-

space, the Dekel-Lipman-Modica-Rustichini critique applies. Hence unawareness is trivial

in the flattened structure. We also mention a simple example that demonstrates that not

every standard type-space can be derived from a non-trivial unawareness belief structure.

Definition 12 G ⊆ Ω is a measurable set if and only if for all S ∈ S, G ∩ S ∈ FS.

Notice that a measurable set is not necessarily an event in our special event structure.

Remark 3 The collection of measurable sets forms a sigma-algebra on Ω.

Remark 4 Let S be at most countable and G be a measurable set, p ∈ [0, 1] and i ∈ I.

Then {ω ∈ Ω : ti(ω)(G) ≥ p} is a measurable set.

Let S be an unawareness belief structure. We define the flattened type-space associ-

ated with the unawareness belief structure S by

F (S) := 〈Ω,F , (tFi )i∈I〉,
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where Ω =
⋃
S∈S S is the union of all state-spaces in the unawareness belief structure S,

F is the collection of all measurable sets in S, and tFi : Ω −→ ∆(Ω,F) is defined by

tFi (ω)(E) :=

{
ti(ω)(E ∩ Sti(ω)) if E ∩ Sti(ω) 6= ∅
0 otherwise.

A standard type-space on X for the player set I is a tuple

X :=
〈
X,FX , (ti)i∈I

〉
,

where X is a nonempty set, FX is a sigma-field on X, and for i ∈ I, ti is a FX − F∆(X)

measurable function from X to ∆ (X,FX), the space of countable additive probability

measures on (X,FX), such that for all ω ∈ X and E ∈ FX : [ti (ω)] ⊆ E implies

ti (ω) (E) = 1, where [ti (ω)] := {ω′ ∈ X : ti (ω
′) = ti (ω)}.

Proposition 8 If S is an unawareness belief structure, then F (S) is a standard type-

space. Moreover, it has the following property: For every p > 0, measurable set E ∈ F ,

and i ∈ I: {ω ∈ Ω : ti(ω)(E) ≥ p} = {ω ∈ Ω : tFi (ω)(E) ≥ p}.

A flattened unawareness structure is just a standard type-space. To derive such a

type-space, one extends a player’s type mapping by assigning probability zero to mea-

surable sets for which the player’s belief was previously undefined. Of course, once an

unawareness structure is flattened, there is no way to analyze reasoning about unaware-

ness anymore since by Dekel, Lipman, and Rustichini (1998) unawareness is trivial.

Note that the converse to Proposition 8 is not true. I.e., given a standard type-space, it

is not always possible to find some unawareness structure with non-trivial unawareness.

For instance, let X = {ω1, ω2, ω3} with ti(ω1) = ti(ω2) = ti(ω3) = τi and τi({ω1}) =

τi({ω2}) = 1
2

and τi({ω3}) = 0. If Ω = S = X, then by Dekel, Lipman, and Rustichini

(1998) the unawareness structure has trivial unawareness only. Any non-trivial partition

of X into separate spaces yields either no projections or violates properties (0) to (3).

We conclude that not every standard types-space with zero probability can be used to

model unawareness. We understand the contribution of our work as making restrictions

required for modeling unawareness precise in unawareness belief structures.

If an unawareness belief structure has a common prior, then the associated flattened

model has a common prior. To see this, note that the common prior always induces a

common prior on the smallest space, which implies that there is a common prior in the

flattened model. If an unawareness belief structure has a positive common prior, then
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it does not follow that there is a positive common prior in the flattened model. To see

this consider once again Figure 3. A common prior in the associated flattened model

must ascribe probability zero to all states in S ′. Such common prior clearly violates

the positivity assumption of Definition 9. Again, this example demonstrates a difference

between unawareness belief structures and standard type-spaces.

We showed in Example 1 that our notion of “No-speculative-trade” does not imply

the existence of common prior in unawareness belief structures. Does our notion of “No-

speculative-trade” imply at least the existence of a common prior in the flattened model?

Recall from the discussion section that our notion of “No-speculative-trade” is slightly

different from Feinberg (2000) who characterizes the common prior by the absence of

common certainty of speculation for some states. We show that a positive common

prior implies the absence of common certainty of speculation for all states. Hence,

our notion of “No-speculative-trade” implies Feinberg’s notion of “No-speculative-trade”.

Since Feinberg showed that his notion of “No-speculative-trade” implies a common prior

for standard type-spaces, the existence of a common prior for the flattened model of an

unawareness belief structure follows then from his result. Again, this demonstrates a

difference between unawareness belief structures and standard type-spaces.

C Proofs

C.1 Proof of Remark 1

Let S ′′ � S ′ � S, ω ∈ S ′′, and ti(ω) ∈ 4(S). We have to show that ti(ωS′) = ti(ω):

Because of (0) and (3), we have that Sti(ωS′ ) � S = Sti(ω). Because of (2), we

have ti(ωS) = ti(ω)|S = ti(ω), and therefore ti(ωS) ∈ ∆(S). But (ωS′)S = ωS. Thus

(3) implies that S � Sti(ωS′ ). So we must have Sti(ωS′ ) = S. Now, (2) implies that

ti(ω) = ti(ωS) = ti((ωS′)S) = ti(ωS′)|S = ti(ωS′). �

C.2 Proof of Remark 2

Define D := {ω′ ∈ Sti(ω) : ti(ω
′) = ti(ω)}. I.e., D = Beni(ω) ∩ Sti(ω). We need to show

that D↑ = Beni(ω).

Consider first “⊆”: If ω′ ∈ D↑ then ω′Sti(ω)
∈ Beni(ω). This is equivalent to

ti(ω
′
Sti(ω)

) = ti(ω) ∈ 4(Sti(ω)). By (3) we have Sti(ω′) � Sti(ω). By (2), ti(ω
′
Sti(ω)

) =

ti(ω
′)|Sti(ω) . It follows that ti(ω

′)|Sti(ω) = ti(ω). Thus ω′ ∈ Beni(ω).
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“⊇”: ω′ ∈ Beni(ω) if and only if ti(ω
′)|Sti(ω) = ti(ω). Hence for ω′ ∈ Beni(ω), we

have Sti(ω′) � Sti(ω). By (2) ti(ω
′
Sti(ω)

) = ti(ω
′)|Sti(ω) = ti(ω). Hence ω′Sti(ω)

∈ D. Thus

ω′ ∈ D↑. �

C.3 Proof of Proposition 1

Ai(E) is an S(E)-based event if there exists a subset D ⊆ S(E) s.t. D↑ = Ai(E).

Assume that Ai(E) is non-empty. Define D := {ω ∈ S(E) : ti(ω) ∈ ∆(S(E))}. By

definition of the awareness operator, D = Ai(E) ∩ S(E). We show that D↑ = Ai(E).

Let ω ∈ D↑, that is ω ∈ S ′ for some S ′ � S(E) and ωS(E) ∈ D. This is equivalent

to ti(ωS(E)) ∈ ∆(S(E)). By (0) follows S ′ � Sti(ω). By (3) we have Sti(ω) � S(E). Thus

ω ∈ Ai(E). (Note that Ai(E) = {ω ∈ Ω : Sti(ω) � S(E)}.)

In the reverse direction, let ω ∈ Ai(E), i.e., ti(ω) ∈ ∆(S) with S � S(E). By (0),

ω ∈ S ′ with S ′ � S. Consider ωS(E). By (2), ti(ωS(E)) = ti(ω)|S(E). Hence ωS(E) ∈ D.

Thus ω ∈ D↑.

Finally, if Ai(E) is empty, then by definition of the awareness operator, we have

Ai(E) = ∅S(E). �

C.4 Proof of Proposition 2

Bp
i (E) is an S(E)-based event if there exists a subset D ⊆ S(E) s.t. D↑ = Bp

i (E).

Assume that Bp
i (E) is non-empty. Define D := {ω ∈ S(E) : ti(ω)(E) ≥ p}. By definition

of the p-belief operator, D = Bp
i (E) ∩ S(E). We show that D↑ = Bp

i (E).

Let ω ∈ D↑, that is ω ∈ S ′ for some S ′ � S(E) and ωS(E) ∈ D. This is equivalent to

ti(ωS(E))(E) ≥ p. By (0), Sti(ωS(E)) = S(E). By (3), we have Sti(ω) � S(E). By (2), it

follows that p ≤ ti(ωS(E))(E) = ti(ω)|S(E)(E). Hence ti(ω)(E) ≥ p. Thus ω ∈ Bp
i (E).

In the reverse direction, let ω ∈ Bp
i (E), i.e., ti(ω)(E) ≥ p. Since ti(ω)(E) ≥ p it

follows that Sti(ω) � S(E). Let ω ∈ S ′. By (0), S ′ � Sti(ω). Consider ωS(E). By (2),

ti(ωS(E))(E) = ti(ω)(E)|S(E) ≥ p. Hence ωS(E) ∈ D. Thus ω ∈ D↑.

Finally, if Bp
i (E) is empty, then by definition of the p-belief operator, we have Bp

i (E) =

∅S(E). �
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C.5 Proof of Theorem 1

Before we prove the theorem, we state the following definition and observations. Some

of it will be also used for the proof of Proposition 3.

Definition 13 We define:

(i) A probability measure P S
i ∈ ∆ (S) a prior for player i on S if for every event E ∈ Σ

with S(E) � S equation (1u) is satisfied, i.e.,

P S
i (E ∩ S ∩ Ai(E)) =

∫
S∩Ai(E)

ti(·)(E)dP S
i (·). (4)

(ii) A common prior P S on S is a prior for player i on S, for all i ∈ I.

(iii) A positive common prior P S on S is a common prior on S such that for all i ∈ I
and ω ∈ Ω: if ti(ω) ∈ ∆(S ′) for some S ′ � S, then [ti(ω)] ∩ S ′ ∈ FS′ and

P S
(
([ti(ω)] ∩ S ′)↑ ∩ S

)
> 0.

Note that a projective system of priors for player i on S ∈ S, common priors on

S ∈ S, and positive common priors on S ∈ S is a prior for player i, common prior, and

positive common prior, respectively.

Remark 5 If P =
(
P S
)
S∈S ∈

∏
S∈S ∆(S) is a positive (common) prior, then also P S ∈

∆(S) is positive (common) prior on S for every S ∈ S.

Remark 6 If µi ∈ ∆(S) is a positive prior for player i on S and S ′ � S, then the

marginal of µi on S ′,
(
µSi
)
|S′ is a positive prior for player i on S ′.

Lemma 2 Let P S be a positive common prior on the state space S and let i ∈ I and

ω ∈ Ω be such that ti (ω) ∈ ∆ (S). Moreover, let E be a measurable event such that

S (E) � S. Then [ti (ω)] ∩ S ∩ E and [ti (ω)] ∩ S are measurable, P S ([ti (ω)] ∩ S) > 0,

and we have ti (ω) (S ∩ E) = PS([ti(ω)]∩S∩E)
PS([ti(ω)]∩S)

.

Proof. That [ti (ω)]∩S ∩E and [ti (ω)]∩S are measurable, and P S ([ti (ω)] ∩ S) > 0,

follows from the definition of a positive common prior on S. Recall that Ai (E) = S (E)↑.

This implies, since S (E) � S and S
(
([ti (ω)] ∩ S)↑

)
= S, that S∩Ai

(
([ti (ω)] ∩ S)↑ ∩ E

)
=

S. We also have [ti (ω)] ∩ S = ([ti (ω)] ∩ S)↑ ∩ S.
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Since [ti (ω)]∩S∩E is measurable, introspection implies that ti (ω
′) ([ti (ω)] ∩ S ∩ E) =

0, for ω′ /∈ [ti (ω)] ∩ S: Recall that Beni (ω) = ([ti (ω)] ∩ S)↑ and that [ti (ω)] ∩ S ∩ E is

measurable and disjoint from Beni (ω
′), for ω′ ∈ S with ω′ /∈ [ti (ω)] ∩ S.

Also, for ω′ ∈ [ti (ω)] ∩ S, we have ti (ω
′) ([ti (ω)] ∩ S ∩ E) = ti (ω) ([ti (ω)] ∩ S ∩ E).

By definition of a prior on S, and all the above mentioned facts, it follows that:

P S ([ti (ω)] ∩ S ∩ E) = P S
(
([ti (ω)] ∩ S)↑ ∩ E ∩ S ∩ Ai

(
([ti (ω)] ∩ S)↑ ∩ E

))
=

∫
S∩Ai(([ti(ω)]∩S)↑∩E)

ti (ω
′)
(
([ti (ω)] ∩ S)↑ ∩ E

)
dP S (ω′)

=

∫
S

ti (ω
′) ([ti (ω)] ∩ S ∩ E) dP S (ω′)

=

∫
[ti(ω)]∩S

ti (ω) ([ti (ω)] ∩ S ∩ E) dP S (ω′)

= ti (ω) (S ∩ E)

∫
[ti(ω)]∩S

dP S (ω′)

= ti (ω) (S ∩ E)P S ([ti (ω)] ∩ S) .

The fact that P S ([ti (ω)] ∩ S) > 0, implies now the desired equation. �

The next lemma follows directly from Lemma 2 above.

Lemma 3 Let P S be a positive common prior on some finite state-space S and let i ∈
I and ω ∈ Ω such that ti (ω) ∈ 4 (S). Then we have for all ω′ ∈ [ti (ω)] ∩ S that

ti (ω) ({ω′}) = PS({ω′})
PS([ti(ω)]∩S)

.

Proof of the Theorem. The idea of the proof is follows: First, if the set of states

in which there is common certainty that the first player’s expectation is strictly above α

and the second player’s expectations is weakly below α is nonempty, there is a minimal

state-space such that the common certainty event restricted to this space is nonempty.

Second, this restricted common certainty event is a belief closed subset in which beliefs are

stationary. Third, this set, together with the restriction of types to this set constitutes a

standard state-space to which a standard no-speculative-trade argument can be applied.

Note that E>α
1 and E≤α2 may not be events in our unawareness belief structure.

The definition of the belief operator as well as Proposition 4 and 6 can be extended to

measurable subsets of Ω. The proofs are analogous and thus omitted.

Suppose that CB1
(
E>α

1 ∩ E≤α2

)
is non-empty. Then fix a �-minimal state-space S

such that W := CB1
(
E>α

1 ∩ E≤α2

)
∩S 6= ∅. Such a space S exists by the finiteness of Σ.
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By Remark 5, since P is a positive common prior, P S is a positive common prior on

S.

Since W = CB1
(
E>α

1 ∩ E≤α2

)
∩S ⊆ S∩B1

i

(
CB1

(
E>α

1 ∩ E≤α2

))
, the minimality of S

implies that for each ω ∈ CB1
(
E>α

1 ∩ E≤α2

)
∩S we do have Sti(ω) = S and ti (ω) (W ) = 1.

By the definition, ti (ω) ([ti (ω)] ∩ S) = 1, for each ω ∈ CB1
(
E>α

1 ∩ E≤α2

)
∩ S. Since

ti(ω)(W ) = 1, we have ti (ω) (([ti (ω)] ∩ S) \W ) = 0.

By Lemma 3, this implies that P S ({ω′}) = 0, for ω′ ∈ ([ti (ω)] ∩ S) \W such that

ω ∈ CB1
(
E>α

1 ∩ E≤α2

)
∩ S. It follows that P S (([ti (ω)] ∩ S) \W ) = 0 and hence,

P S (([ti (ω)] ∩ S) ∩W ) = P S ([ti (ω)] ∩ S)− P S (([ti (ω)] ∩ S) \W ) = P S ([ti (ω)] ∩ S) >

0. So, we do have P S (W ) > 0.

The fact that P S ({ω′}) = 0, for ω′ ∈ ([ti (ω)] ∩ S)\W such that ω ∈ CB1
(
E>α

1 ∩ E≤α2

)
∩

S = W implies the following: For any random variable x, we have
∑

ω′∈[ti(ω)]∩S x (ω′)P S ({ω′}) =∑
ω′∈W∩[ti(ω)]∩S x (ω′)P S ({ω′}), if [ti (ω)] ∩W 6= ∅. And also

∑
ω∈W x(ω)P S ({ω}) =∑

[ti(ω)]∩W 6=∅
∑

ω∈[ti(ω)]∩S x(ω)P S ({ω}). This is so, because there is a ω ∈ [ti (ω)]∩W and

for this ω, we do have ω ∈ CB1
(
E>α

1 ∩ E≤α2

)
∩ S and [ti (ω)] = [ti (ω)] and this implies

P S (([ti (ω)] ∩ S) \W ) = 0.

For i = 1, 2 we have∑
ω∈W

P S ({ω})
∑

ω′∈[ti(ω)]∩S

v (ω′) ti (ω) ({ω′})

=
∑
ω∈W

P S ({ω})
∑

ω′∈[ti(ω)]∩S

v (ω′)
P S ({ω′})

P S ([ti (ω)] ∩ S)

=
∑

[ti(ω)]∩W 6=∅

∑
ω∈[ti(ω)]∩S

P S ({ω})
∑

ω′∈[ti(ω)]∩S

v (ω′)
P S ({ω′})

P S ([ti (ω)] ∩ S)

=
∑

[ti(ω)]∩W 6=∅

∑
ω∈[ti(ω)]∩S

P S ({ω})
∑

ω′∈[ti(ω)]∩S

v (ω′)
P S ({ω′})

P S ([ti (ω)] ∩ S)

=
∑

[ti(ω)]∩W 6=∅

P S ([ti (ω)] ∩ S)
∑

ω′∈[ti(ω)]∩S

v (ω′)
P S ({ω′})

P S ([ti (ω)] ∩ S)

=
∑

[ti(ω)]∩W 6=∅

∑
ω′∈[ti(ω)]∩S

v (ω′)P S ({ω′})

=
∑
ω′∈W

v (ω′)P S ({ω′}) .

But by the assumptions, we have
∑

ω∈W P S ({ω})
∑

ω′∈[t1(ω)]∩S v (ω′) t1 (ω) ({ω′}) >
αP S (W ) and

∑
ω∈W P S ({ω})

∑
ω′∈[t2(ω)]∩S v (ω′) t2 (ω) ({ω′}) ≤ αP S (W ), a contradic-
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tion, since P S (W ) > 0. �

C.6 Proof of Proposition 3

Proposition 9 Let S be an unawareness belief structure, G be an event, and pi ∈ [0, 1],

for i ∈ I. Suppose that there exists a common prior P S on a space S � S(G) such that

P S(CB1(
⋂
i∈I [ti(G) = pi])) > 0. Then pi = pj, for all i, j ∈ I.

Before we prove the result, we show:

Remark 7 The conditions of Proposition 3 imply the conditions of Proposition 9. Hence,

Proposition 9 implies Proposition 3 (since they have the same conclusions).

Proof of the Remark. Let
(
P S′
)
S′∈S be a positive common prior. Let E :=

CB1
(⋂

i∈I [ti(G) = pi]
)

be nonempty. Choose a state ω ∈ E and a player i ∈ I. By

Proposition 6 (i), ω ∈ B1
i (E), that is, ti(ω)(E) = 1. In particular, ti(ω) ∈ ∆(S) for

some S � S(E) = S(G). (That S(E) = S(G) follows from Lemma 1, the definition of

intersection of events, and what was remarked after the definition of common belief in

Section 2.11.) Since P S is a positive common prior on S, we have by Lemma 2 that

P S ([ti(ω)] ∩ S) > 0 and that 1 = ti(ω)(S ∩ E) = PS([ti(ω)]∩S∩E)
PS([ti(ω)]∩S)

. Hence P S(E) > 0. �

Remark 8 For any ω ∈ Ω, ti(ω)(E ∩ Ai(E)) = ti(ω)(E) for any event E s.t. S(E) �
Sti(ω).

Proof of the Remark: Let E be an event and ti(ω) be such that S(E) � Sti(ω).

Since E = (E ∩ Ai(E)) ∪ (E ∩ Ui(E)) and Ai(E) ∩ Ui(E) = ∅S(E), we have (E ∩
Ai(E))∩ (E ∩Ui(E)) = ∅S(E). Since ti(ω) is an additive probability measure, ti(ω)(E) =

ti(ω)(E ∩ Ai(E)) + ti(ω)(E ∩ Ui(E)). Since Bp
i Ui(E) = ∅S(E) for p ∈ (0, 1] (BpU -

Introspection in Proposition 5), we must have ti(ω)(E ∩ Ui(E)) = 0. �

The following lemma says that if there is a prior on a state-space then the marginal

on a lower space is a prior as well.

Lemma 4 If µ ∈ ∆ (S ′) is a prior for player i on S ′ and S � S ′, then (µ)|S (the marginal

of µ on S) is a prior for player i on S.
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Proof of the Lemma. Let E be an event with S(E) � S and let µ be in-

dividual i’s prior probability measure on S ′ with S ′ � S. We have to show that

µ
(
(rS′S )−1(E ∩ S ∩ Ai(E))

)
=
∫
S∩Ai(E)

ti(·)(E)dµ(·). Since S(E) � S, and by Proposi-

tion 1, S(Ai(E)) = S(E), it follows that (rS′S )−1(E ∩ S ∩ Ai(E)) = E ∩ S ′ ∩ Ai(E),

and therefore µ|S(E ∩ S ∩ Ai(E)) = µ(E ∩ S ′ ∩ Ai(E)). So it remains to show that∫
S∩Ai(E)

ti(·)(E ∩ Ai(E))d(µ|S)(·) =
∫
S′∩Ai(E)

ti(·) (E ∩ Ai(E)) dµ(·).

We first show the following Claim: Let ω ∈ S(E) � S � S ′ such that ω ∈ Ai(E).

Then ti(ω)(E ∩ Ai(E)) = ti(ωS)(E ∩ Ai(E)).

Proposition 1, ω ∈ Ai(E) and S(E) � S imply that ωS ∈ Ai(E). We have that

ω ∈ Ai(E) implies ti(ω)(E ∩ Ai(E)) = ti(ω)(E ∩ Ai(E) ∩ Sti(ω)). By (3) of Definition 1,

we have Sti(ωS) � Sti(ω). And by (1) of Definition 1 ti(ωS)(E∩Ai(E)) = ti(ωS)(E∩Ai(E)∩
Sti(ωS)) = ti(ωSti(ωS)

)(E ∩Ai(E)∩Sti(ωS)). By (2) of Definition 1, we have ti(ωSti(ωS)
)(E ∩

Ai(E) ∩ Sti(ωS)) = ti(ω)((r
Sti(ω)
Sti(ωS)

)−1(E ∩ Ai(E) ∩ Sti(ωS))) = ti(ω)(E ∩ Ai(E) ∩ Sti(ω)) =

ti(ω)(E ∩ Ai(E)). Hence the claim is proved.

We have∫
Ai(E)∩S

ti(·)(Ai(E) ∩ E)d(µ|S)(·) =

∫
Ai(E)∩S′

ti(r
S′
S (·))(Ai(E) ∩ E)dµ(·)

=

∫
Ai(E)∩S′

ti(·)(Ai(E) ∩ E)dµ(·),

where the first equation follows from the definition of marginal and the second from the

above claim. �

Remark 9 Let Ŝ be the upmost state-space in the lattice S, and let (P S
i )S∈S ∈

∏
S∈S ∆(S)

be a tuple of probability measures. Then (P S
i )S∈S is a prior for player i if and only if P Ŝ

i

is a prior for player i on Ŝ and P S
i is the marginal of P Ŝ

i for every S ∈ S.

This remark together with Lemma 4 implies the following:

Remark 10 A common prior (Definition 8) induces a common prior on S, for any

S ∈ S. The converse is not necessarily true unless S is the upmost state-space of the

lattice. Note that it is possible that players have different priors, but at some space S

(below the upmost space) the priors on S coincide. Hence, in such a case they have

different priors, but a common prior on S (and by Lemma 4 also a common prior on

spaces less expressive than S).
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Proof of Proposition 9. By Proposition 6, ω ∈ CB1(F ) if and only if there exists

an event E that is evident such that ω ∈ E ⊆ B1(F ).

Since for an evident E we have E ⊆ B1
i (E) ⊆ Ai(E) for all i ∈ I. It follows that

P S(E ∩ Ai(E)) = P S(E) for S � S(E). Set F =
⋂
i∈I [ti(G) = pi] and let E = CB1(F ).

By Proposition 1, S(E) = S(G). By Lemma 4 and the properties imposed on ti, we

consider w.l.o.g. a common prior P S(G) on S(G).

P S(G)(E) =

∫
S(G)∩Ai(E)

ti(·)(E)dP S(G)(·)

=

∫
E∩S(G)∩Ai(E)

ti(·)(E)dP S(G)(·) +

∫
(S(G)∩Ai(E))\E

ti(·)(E)dP S(G)(·).

We have ∫
E∩S(G)∩Ai(E)

ti(·)(E)dP S(G)(·) =

∫
E∩S(G)∩Ai(E)

1dP S(G)(·) = P S(G)(E).

The second last equation above follows from the fact that E is evident. So, we have

E ⊆ B1
i (E), that is ti(·)(E) = 1, for ω ∈ E. It follows that∫

(S(G)∩Ai(E))\E
ti(·)(E)dP S(G)(·) = 0. (5)

∫
E∩Ai(E)∩S(G)

ti(·)(G)dP S(G)(·) =

∫
E∩Ai(E)∩S(G)

pidP
S(G)(·) = piP

S(G)(E)

If ω ∈ E = CB1(F ), then ω ∈ E ⊆ B1
i (F ) ⊆ B1

i ([ti(G) = pi]). Note that [ti(G) =

pi] = Bpi
i (G) ∩ B1−pi

i (¬G). Therefore, by monotonicity B1
i ([ti(G) = pi]) ⊆ B1

i (B
pi
i (G)) ∩

B1
i (B

1−pi
i (¬G)). Introspection II implies now that ω ∈ Bpi

i (G)∩B1−pi
i (¬G) = [ti(G) = pi].

So we have ti (ω) (G) = pi, for ω ∈ E.

∫
E∩Ai(E)∩S(G)

ti(·)(G)dP S(G)(·) =

∫
E∩Ai(E)∩S(G)

ti(·)(G ∩ E)dP S(G)(·)

=

∫
S(G)∩Ai(E)

ti(·)(G ∩ E)dP S(G)(·)

−
∫

(S(G)∩Ai(E))\E
ti(·)(G ∩ E)dP S(G)(·).

Since by the monotonicity of probability measures∫
(S(G)∩Ai(E))\E

ti(·)(G ∩ E)dP S(G)(·) ≤
∫

(S(G)∩Ai(E))\E
ti(·)(E)dP S(G)(·),
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we must have by equation (5) and non-negativity of probability measures∫
(S(G)∩Ai(E))\E

ti(·)(G ∩ E)dP S(G)(·) = 0.

Note that P S(G)(G ∩ E) =
∫
S(G)∩Ai(E)

ti(·)(G ∩ E)dP S(G)(·).

Note further that P S(G)(E) = P S(G)(E ∩ Ai(E)) for all i ∈ N since E = CB1(F ) ⊆
Ai(E) for all i ∈ N . Similarly, P S(G)(G ∩ E) = P S(G)(G ∩ E ∩ Ai(E)) for all i ∈ N .

Thus

piP
S(G)(E) = P S(G)(G ∩ E). (6)

Note that by assumption P S(G)(E) > 0.

Since equation (6) holds for all i ∈ I, we must have pi = pj, for all i, j ∈ I. �

C.7 Proof of Proposition 4

(0) Bp
i (E) ⊆ Bq

i (E) for p, q ∈ [0, 1] with q ≤ p is trivial.

(i) B1
i (Ω) ⊆ Ω holds trivially. In the reverse direction, note that ti(ω)(Ω) = ti(ω)(Ω∩

Sti(ω)) = ti(ω)(Sti(ω)) = 1 for all ω ∈ Ω. Thus Ω ⊆ B1
i (Ω).

(ii) ω ∈ Bp
i (E) if and only if ti(ω)(E) ≥ p. Since ti(ω) is an additive probability

measure, ti(ω)(¬E) ≤ 1− p. Hence ω ∈ ¬Bq
i (¬E) for q > 1− p.

(iiia) ω ∈ Bp
i (
⋂∞
l=1El) if and only if ti(ω) (

⋂∞
l=1El) ≥ p. Monotonicity of the prob-

ability measure ti(ω) implies ti(ω)(El) ≥ p for all l = 1, 2, ..., which is equivalent to

ω ∈
⋂∞
l=1B

p
i (El).

(iiib) It is enough to show that any sequence of events {El}∞l=1 with El ⊇ El+1

for l = 1, 2, ... we have Bp
i (
⋂∞
l=1El) ⊇

⋂∞
l=1B

p
i (El). ω ∈

⋂∞
l=1 B

p
i (El) if and only if

ti(ω)(El) ≥ p for l = 1, 2, .... Since ti(ω) is a countable additive probability measure, it is

continuous from above. That is, if El ⊇ El+1 for l = 1, 2, ..., we have liml→∞ ti(ω)(El) =

ti(ω) (
⋂∞
l=1 El). Since for every l = 1, 2, ..., ti(ω)(El) ≥ p, we have p ≤ liml→∞ ti(ω)(El) =

ti(ω) (
⋂∞
l=1 El). Hence ω ∈ Bp

i (
⋂∞
l=1El).

(iiic) It is enough to show that B1
i (
⋂∞
l=1 El) ⊇

⋂∞
l=1B

1
i (El). ω ∈

⋂∞
l=1B

1
i (El) if

and only if ti(ω)(El) = 1 for l = 1, 2, .... Since ti(ω) is a countable additive probability

measure, it satisfies Bonferroni’s Inequality. I.e., ti(ω) (
⋂∞
l=1El) ≥ 1−

∑∞
l=1 1− ti(ω)(El).

Since ti(ω)(El) = 1 for all l = 1, 2, ..., we have 1 − ti(ω)(El) = 0 for all l = 1, 2, ..., and

hence
∑∞

l=1 1 − ti(ω)(El) = 0. It follows that ti(ω) (
⋂∞
l=1El) = 1. We conclude that

ω ∈ B1
i (
⋂∞
l=1 El).
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(iv) Since ti(ω) is a probability measure (satisfying monotonicity) for any ω ∈ Ω,

E ⊆ F implies that if ti(ω)(E) ≥ p then ti(ω)(F ) ≥ p.

(va) Let ω ∈ Bp
i (E). Then ti(ω)(E) ≥ p. It follows that for all ω′ ∈ Beni(ω) we have

ti(ω
′)(E) ≥ p. Hence Beni(ω) ⊆ Bp

i (E). Thus ti(ω)(Bp
i (E)) = 1, which implies that

ω ∈ B1
iB

p
i (E).

(vb) Let ω ∈ Bp
i (B

q
i (E)), for some p ∈ (0, 1] and assume by contradiction that

ω /∈ Bq
i (E). Then, since by Propositions 1 and 2 ω ∈ Ai(E), we must have q > 0 and

ω ∈ B1−r
i (¬E) for some r with q > r ≥ 0. By (va), we have ω ∈ B1

i

(
B1−r
i (¬E)

)
. Note

that B1−r
i (¬E) and Bq

i (E) are disjoint because of (ii), and hence B1−r
i (¬E) ⊆ ¬Bq

i (E).

Monotonicity implies now that ω ∈ B1
i (¬Bq

i (E)) , hence, by (ii) ω ∈ ¬Bp
i (B

q
i (E)) a

contradiction to ω ∈ Bp
i (B

q
i (E)). �

C.8 Proof of Proposition 5

1. This property is equivalent to Bp
i (E) ∪ Bp

i ¬B
p
i (E) ⊆ Ai(E). By Property 5. we have

Bp
i (E) ⊆ Ai(E). To see that Bp

i ¬B
p
i (E) ⊆ Ai(E), note that ω ∈ Bp

i ¬B
p
i (E) if and only

if ti(ω)(¬Bp
i (E)) ≥ p. This implies that Sti(ω) � S(¬Bp

i (E)) = S(E). The last equality

follows by Property 8 and Proposition 2. Hence ω ∈ Ai(E).

2. The proof is analogous to 1. The is property is equivalent to
⋂∞
n=1B

p
i (¬Bp

i )
n−1 (E) ⊆

Ai(E). ω ∈ Bp
i (¬Bp

i )
n−1 (E) for any n = 1, 2, ... if and only it ti(ω)

(
(¬Bp

i )
n−1 (E)

)
≥ p

for any n = 1, 2, .... It follows that Sti(ω) � S
(

(¬Bp
i )
n−1 (E)

)
for any n = 1, 2, .... By

Proposition 2, S
(

(¬Bp
i )
n−1 (E)

)
= S(E) for any n = 1, 2, .... Hence ω ∈ Ai(E).

3. First, we show Bp
i Ui(E) ⊆ Ai(E). ω ∈ Bp

i Ui(E) if and only if ti(ω)(Ui(E)) ≥ p.

It implies Sti(ω) � S(Ui(E)). By Proposition 1, S(Ui(E)) = S(E). Hence Sti(ω) � S(E)

which is equivalent to ω ∈ Ai(E).

Second, we show that Bp
i Ui(E) = ∅S(E) for p ∈ (0, 1]. Since Bp

i Ui(E) ⊆ Ai(E) we have

by monotonicity B1
iB

p
i Ui(E) ⊆ B1

iAi(E). By introspection, Bp
i Ui(E) ⊆ B1

iB
p
i Ui(E) ⊆

B1
iAi(E). By additivity, we have Bp

i Ui(E) ⊆ ¬B1
iAi(E). Hence Bp

i Ui(E) = ∅S(E) =

¬B1
iAi(E) ∩B1

iAi(E).

Third, we show that B0
i Ui(E) = Ai(E). ω ∈ Ai(E) if and only if ω ∈ AiUi(E) since

by AA-self-reflection Ai(E) = AiAi(E) and by symmetry AiAi(E) = AiUi(E). Hence,

if ω ∈ Ai(E) then ti(ω)(Ui(E)) is defined. Therefore ω ∈ B0
i Ui(E), and hence Ai(E) ⊆

B0
i Ui(E). Together with the first part of the proof, we conclude B0

i Ui(E) = Ai(E).

4. This property is equivalent to AiUi(E) = Ai(E). ω ∈ AiUi(E) if and only if
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Sti(ω) � S(Ui(E)) = S(Ai(E)) = S(E) by Proposition 1. Hence ω ∈ AiUi(E) if and only

if ω ∈ Ai(E).

5. ω ∈ Ai(E) if and only if Sti(ω) � S(E). For any ti(ω), we have Sti(ω) � S(E) if

and only if 1 = ti(ω)(S(E)↑). This is equivalent to ω ∈ B1
i (S(E)↑).

6. First, we show Bp
i (E) ⊆ Ai(E). ω ∈ Bp

i (E) if and only if ti(ω)(E) ≥ p. This

implies that Sti(ω) � S(E), which is equivalent to ω ∈ Ai(E).

Second, we show for p = 0, Ai(E) ⊆ B0
i (E). ω ∈ Ai(E) if and only if ti(ω) ∈ ∆(S)

with S � S(E). Hence ti(ω)(E) ≥ 0, which implies that ω ∈ B0
i (E).

7. ω ∈ Bp
i (E) if and only if ti(ω)(E) ≥ p. This implies that Sti(ω) � S(E). By

Proposition 2, it is equivalent to Sti(ω) � S(Bq
i (E)), which is equivalent to ω ∈ AiBq

i (E).

8. By the definition of negation, S(E) = S(¬E). Hence for ti(ω) ∈ 4(S), S � S(E)

if and only if S � S(¬E).

9. ω ∈
⋂
λ∈LAi(Eλ) if and only if Sti(ω) � S(Eλ) for all λ ∈ L. This is equivalent to

Sti(ω) � supλ∈L S(Eλ) = S
(⋂

λ∈LEλ
)
, which is equivalent to ω ∈ Ai

(⋂
λ∈LEλ

)
.

10. By Proposition 2, S(E) = S(Bp
i (E)). Hence, ω ∈ Ai(E) if and only if ω ∈

AiB
p
i (E).

11. By Proposition 1, S(E) = S(Ai(E)). Hence ω ∈ Ai(E) if and only if ω ∈ AiAi(E).

12. ω ∈ Bp
iAi(E) if and only if ti(ω)(Ai(E)) ≥ p. This implies Sti(ω) � S(Ai(E)).

By Proposition 1, S(Ai(E)) = S(E). Thus ω ∈ Ai(E). To see the converse, by weak

necessitation and introspection, Ai(E) = B1
i (S(E)↑) ⊆ B1

iB
1
i (S(E)↑) = B1

iAi(E). By

Proposition 4 (o), B1
iAi(E) ⊆ Bp

iAi(E). �

C.9 Proof of Proposition 7

1. By Proposition 1, S(E) = S(Aj(E)). Hence ω ∈ Ai(E) if and only if ω ∈ AiAj(E).

2. By Proposition 2, S(E) = S(Bp
j (E)). Hence, ω ∈ Ai(E) if and only if ω ∈ AiBp

j (E).

3. ω ∈ Bp
i (E) if and only if ti(ω)(E) ≥ p. This implies that Sti(ω) � S(E). By Propo-

sition 2, this is equivalent to Sti(ω) � S(Bq
j (E)), which is equivalent to ω ∈ AiBq

j (E).

4. The proof is analogous to 3.

5. We show by induction that An(E) = A(E), for all n ≥ 1. We have ω ∈ A(An(E))

if and only if Sti(ω) � S(An(E)), for all i ∈ I, which, by the induction hypothesis, is the

case if and only if Sti(ω) � S(A(E)), for all i ∈ I. By the definition of “∩”, it is the

case that S(A(E)) = supi∈IS(Ai(E)). By Proposition 1, we have S(Ai(E)) = S(E) and
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hence S(A(E)) = S(E). It follows that Sti(ω) � S(A(E)) if and only if Sti(ω) � S(E).

But Sti(ω) � S(E) if and only if ω ∈ Ai(E). Hence we have An(E) = A(E), for all n ≥ 1,

and therefore CA(E) = A(E).

6. ω ∈ CB1(E) implies ω ∈ B1
i (E) for all i ∈ I. This is equivalent to ti(ω)(E) = 1

for all i ∈ I, which implies Sti(ω) � S(E) for all i ∈ I. Hence, by 5. we have ω ∈ A(E) =

CA(E).

7. First, we show that Bp(E) ⊆ A(E). ω ∈ Bp(E) if and only if ti(ω)(E) ≥ p for all

i ∈ I. Hence ti(ω) ∈ ∆(S) with S � S(E), for all i ∈ I. This implies that ω ∈ Ai(E),

for all i ∈ I. It follows that ω ∈ A(E).

Second, we show that A(E) = B0(E). ω ∈ A(E) if and only if ω ∈ Ai(E) for all i ∈ I
if and only if (by 6. of Proposition 5) ω ∈ B0

i (E) for all i ∈ I if and only if ω ∈ B0(E).

8. The proof follows from 7. and 5.

9. By weak necessitation, A(E) :=
⋂
i∈I Ai(E) =

⋂
i∈I B

1
i (S(E)↑) := B1(S(E)↑).

10. The proof follows from 9. and 5.

11. By definition of common certainty, CB1(S(E)↑) ⊆ B1(S(E)↑). By 9., B1(S(E)↑) =

A(E).

12. The proof follows from 11. and 5. �

C.10 Proof of Proposition 8

We only have to show:

1. tFi : Ω −→ ∆(Ω,F) is measurable, where ∆(Ω,F) is endowed with the sigma-

algebra generated by sets {µ ∈ ∆(Ω,F) : µ(E) ≥ p} for p ∈ [0, 1] and E ∈ F .

2. For all ω ∈ Ω, i ∈ I, and E ∈ F : If [tFi (ω)] = {ω′ ∈ Ω : tFi (ω′) = tFi (ω)} ⊆ E, then

tFi (ω)(E) = 1.

But both properties follow directly from the respective properties in the unawareness

belief structure S. �
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[40] Rêgo, L. and J. Halpern (2011). Generalized solution concepts in games with possibly

unaware players, International Journal of Game Theory, forthcoming.

[41] Sadzik, T. (2006). Knowledge, awareness and probabilistic beliefs, mimeo.

[42] Samet, D. (1999). Bayesianism without learning, Research in Economics 53, 227–242.

[43] Samet, D. (1998). Common priors and separation of convex sets, Games and Economic

Behavior 24, 172–174.

[44] Samet, D. (1990). Ignoring ignorance and agreeing to disagree, Journal of Economic Theory

52, 190–207.

[45] Savage, L. (1954). The foundations of statistics, John Wiley.

[46] Schipper, B.C. (2012). Awareness-dependent subjective expected utility, International

Journal of Game Theory, forthcoming.

[47] Sims, C. (2010). Rational inattention and monetary policy, in: Friedman, B.H. and F. H.

Hahn (Eds.), Handbook of Monetary Policy, Elsevier, 155—181.

[48] Thaler, R.H. and C. R. Sunstein (2008). Nudge: Improving decisions about health, wealth,

and happiness, Yale University Press.

[49] Van Nieuwerburgh, S. and L. Veldkamp (2010). Information acquisition and under-

diversification, Review of Economic Studies 77, 779–805.

51


