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Abstract
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1 Introduction

In standard Bayesian games, every player is able to conceive of all players, actions, states,
types, and payoff functions. Players may be uncertain only about which of the conceived
types of players they actually face, i.e., which state obtains. Yet, in real life people are
not just uncertain about which states obtain but some contingencies may be completely
out of their mind when taking decisions. Consequently, when forming beliefs and beliefs
about beliefs of other players etc., those unforeseen contingencies are left out entirely
and people may not even realize that those contingencies are left out. Moreover, since
several players may be involved, players may also form beliefs about the unawareness of
other players, beliefs about beliefs of other players about the unawareness of yet other
players etc. Standard type spaces are not adequate for capturing unawareness (Modica
and Rustichini, 1994, Dekel, Lipman, and Rustichini, 1998). In this paper, we apply type
spaces with unawareness, so called unawareness belief structures introduced in Heifetz,
Meier, and Schipper (2013a), to develop Bayesian games with unawareness.

Heifetz, Meier, and Schipper (2013a) showed how an unawareness belief structure
consisting of a lattice of spaces is adequate for modeling mutual unawareness. Every space
in the lattice captures one particular collection of contingencies. Higher spaces capture
richer collections of contingencies, in which states correspond to situations described by
a larger set of contingencies. The join of several spaces – the lowest space at least as high
as every one of them – corresponds to the union of contingencies expressible in these
spaces. For every player, a type mapping associates with each state ω a probabilistic
belief over states in some space that might not contain ω. Conditions are imposed to
relate beliefs across different spaces of the lattice. Thus, at each state, a player has a
belief over all underlying uncertainties describable in the space on which this belief is
concentrated. But she may be unaware regarding other uncertainties not expressible in
that space. Moreover, at each state each player has beliefs about the other players’ beliefs
and awareness, their beliefs about other players’ beliefs and awareness etc.

Unawareness belief structures capture unawareness and beliefs, beliefs about beliefs
(including beliefs about unawareness), beliefs about that etc. in a parsimonious way
familiar from standard type spaces. That is, hierarchies of beliefs are captured implicitly
by states and type mappings. A construction of unawareness belief structures from
explicit hierarchies of beliefs is complicated by the multiple awareness levels involved. In
Heifetz, Meier, and Schipper (2012) we present a hierarchical construction and show the
existence of a universal unawareness type space that contains all belief hierarchies.1

In this paper, we complement the unawareness belief structure with a set of actions
and a utility function for each player. This defines a Bayesian game in which players
may not just be uncertain about events but also unaware of some events. We also allow
for uncertainty and unawareness of actions, outcomes, and players.

1Heinsalu (2013) independently proves the existence of a universal unawareness type space. However,
he does not present an explicit construction of hierarchies of beliefs.
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The definition of a strategy in Bayesian games with unawareness is not obvious.
Consider a type τ who is aware of few contingencies only, and two other types τ ′, τ ′′ with
a richer awareness that agree with the quantitative beliefs of τ regarding the aspects of
reality of which τ is aware; the beliefs of τ ′ and τ ′′ differ only concerning dimensions of
the reality that τ does not conceive. Should the action taken by τ necessarily be some
average of the actions taken by τ ′ and τ ′′? We believe that conceptually, the answer to
this question is negative. When the player conceives of more parameters (e.g. motives for
saving) as relevant to her decision, her optimal action (e.g. “invest in bonds” or “invest
in stocks”) need not be related to her optimal decision (e.g. “go shopping”) when these
parameters are not part of the vocabulary with which she conceives the world.2

The next step is to define Bayesian equilibrium. Analogous to standard Bayesian
games, an equilibrium in a Bayesian game with unawareness is a Nash equilibrium among
types. Unawareness, however, introduces a new aspect to the construction of equilibrium:
A type who conceives of only few dimensions of reality does not have in mind types of
other players with a wider horizon, so the optimal action of this type does not depend
on the actions of these wider-horizon types. Those types, however, who assign a pos-
itive probability to this narrow-minded type, must take its action into account when
optimizing. With finitely many states, existence follows from Nash (1950).

We apply Bayesian games with unawareness and Bayesian Nash equilibrium to analyze
the robustness of equilibrium to small uncertainty about players’ awareness of actions in
strategic games. We introduce a Nash equilibrium refinement, called Unawareness Perfect
Equilibrium, and prove existence in finite strategic games. For any finite strategic game
we consider a sequence of Bayesian games with unawareness over actions that converge
to the finite strategic game. This represents the players’ uncertainty over the opponents’
awareness of actions. An Unawareness Perfect Equilibrium is the limit of equilibria of
this sequence as uncertainty over opponents’ awareness of actions goes to zero. It turns
out that our refinement characterizes undominated Nash equilibrium. At a first glance,
such a characterization may look somewhat surprising because the underlying assumption
of undominated Nash equilibrium is that every player’s equilibrium strategy should be
robust to slight mistaken choices by opponents. Every player should be cautious or
prudent with respect to the rationality of opponents, which leads him to believe that no
opponents’ actions can be excluded from being played. This is different from our idea
that there is a slight chance that due to opponents’ unawareness of some actions any
opponents’ action may be excluded from being played. If a player is unaware of some
actions, then she perceives a partial game in which these actions are missing. We assume
that players are cautious or prudent in the sense of not excluding such partial games when
considering the possible unawareness of opponents. An Unawareness Perfect Equilibrium
strategy is robust to misperceptions or more aptly “partial perceptions” of the game by
opponents.

The most prominent equilibrium concept ruling out dominated Nash equilibrium is

2This is a crucial point in which our definition of a strategy differs from the one in the parallel work
of Sadzik (2006).
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Trembling Hand Perfect Equilibrium by Selten (1975). Every Trembling Hand Perfect
Equilibrium is undominated but the converse applies to two-player games only. Selten
(1975, p. 35) remarks that there is an inconsistency in the interpretation of Trembling
Hand Perfect Equilibrium: “There cannot be any mistakes if the players are absolutely
rational. Nevertheless, a satisfactory interpretation of equilibrium points in extensive
games seems to require that the possibility of mistakes is not completely excluded.”
That is, Selten assumes that players are irrational with a small probability. A player is
irrational if she chooses a strategy that does not maximize her payoff given her beliefs.
Note that in an Unawareness Perfect Equilibrium, a player still chooses a strategy that
maximizes her payoff given her beliefs but her beliefs may be constrained by her limited
awareness. So, in this sense our characterization allows us to provide a justification for
undominated Nash equilibrium without resorting to irrationality of players. Replacing
irrational actions of opponents by uncertainty about opponents’ unawareness is of con-
ceptional significance. Behavior should be endogenous to the model but is in part (i.e.,
due to ad hoc trembles) exogenous in trembling hand perfect equilibrium. In contrast,
unawareness and beliefs are explicitly specified as part of our game model rather than
as an ad hoc assumption on behavior. The reinterpretation of undominated Nash equi-
librium as equilibrium robust to “partial perceptions” of the game may be of interest to
applied game theorists when contemplating which equilibrium refinement to apply in a
context involving possible inattention by players.

Bayesian games with unawareness allow both for unawareness and probability zero
beliefs. This raises the question about the differences between probability zero events
and events that an agent is unaware of. In Appendix B, we show how to “flatten” a
Bayesian game with unawareness by taking the union of all spaces and assigning zero
probability to all states of which the individual is unaware. The “flattened” game is a
standard Bayesian game with a standard type space; thus the Dekel-Lipman-Rustichini
(1998) critique applies and unawareness becomes trivial. “Flattening” does not “change”
the set of Bayesian Nash equilibria though but equilibria in the “flattened” game cannot
be interpreted anymore with unawareness. The “behavioral correspondence” between
Bayesian games with unawareness and the “flattened game” does not imply that un-
awareness has no behavioral implications (see for instance, Schipper 2013). We view
our contribution precisely as defining the primitives of models in which behavior under
unawareness can be studied. This may be best explained with an analogy to ambiguity.
It is known that the Ellsberg paradox can be rationalized by subjective expected utility
with additive probabilities on a larger state-space (see Gilboa and Schmeidler, 1994, Gra-
biszewski, 2013). That is, whether particular behavior is classified as ambiguity averse or
consistent with subjective expected utility depends on the primitive state-space assumed
by the modeler. We face a similar situation with unawareness. Interpreting behavior
as behavior under unawareness and revealing unawareness requires primitives that are
rich enough to model unawareness. Standard states-spaces lack the structure to identify
behavior under unawareness or even talk about unawareness.

The paper is organized as follows: In the remaining subsections of the introduction, we
provide a simple example illustrating the concept of unawareness perfection. In Section
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2 we outline interactive unawareness belief structures. Bayesian games with unaware-
ness are developed in Section 3. In Section 4 we introduce the concept of unawareness
perfection for strategic games, prove existence, and characterize it by undominated Nash
equilibrium. We finish with a brief discussion of the related literature in Section 5. In the
appendix, we extend our approach to allow for unawareness of players and discuss the
relationship between standard Bayesian games and Bayesian games with unawareness.
Further proofs are relegated to an appendix as well.

1.1 A Simplified Illustration of Unawareness Perfection

In this section we briefly discuss a simplified illustration of unawareness perfection. Al-
though the precise construction in Section 4 is more involved, we believe that the sketched
exposition put forward in this section conveys the main idea.

Consider for instance the strategic game γ0 given by

γ0 L R
U 1, 1 2, 0
D 0, 2 2, 2

There are two pure equilibria, (U,L) and (D,R), and no other equilibria. Which equi-
librium of game γ0 is robust to player’s uncertainty that the opponent may be unaware
of some action?

Given the game γ0, derive a partially ordered set of restricted games by considering
the set of all subsets of actions for all players partially ordered by set inclusion:

γ1 L
U 1, 1
D 0, 2

γ2 R
U 2, 0
D 2, 2

γ3 L R
U 1, 1 2, 0

γ4 L R
D 0, 2 2, 2

γ5 L
U 1, 1

γ6 L
D 0, 2

γ7 R
U 2, 0

γ8 R
D 2, 2

For instance, a player in game γ1 is unaware of column player’s action R. Hence, she is
unaware of games γ0, γ2, γ3, γ4, γ7, and γ8. However, she can envision that her opponent
may be unaware of some action in γ1 and may view the game to be γ5 or γ6. A player
being unaware of action R only is said to have awareness level γ1.

Consider now the system of completely mixed beliefs over all restricted games includ-
ing γ0 in Table 1. Each row describes a completely mixed belief over games given the
awareness level associated with that row. E.g., t0 denotes the completely mixed belief
over games for a player with awareness level γ0. Such a player may believe with proba-
bility t0(γ1) that the opponent’s awareness level is γ1. Such an opponent’s belief about
the player’s awareness level is then given in turn by t1. A player with awareness level
γ0 who believes with probability t0(γ1) that his opponent has awareness level γ1 also
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Table 1: System of Completely Mixed Beliefs

Games γ0 γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

Belief
t0 1− ε ε

8
ε
8

ε
8

ε
8

ε
8

ε
8

ε
8

ε
8

t1 1− ε ε
2

ε
2

t2 1− ε ε
2

ε
2

t3 1− ε ε
2

ε
2

t4 1− ε ε
2

ε
2

t5 1
t6 1
t7 1
t8 1

believes that such an opponent is unaware of γ0 and believes with probability t1(γ5) that
the player himself has awareness level γ5. Etc. Essentially this corresponds to a Bayesian
game with unawareness of actions with completely mixed beliefs (that will be captured
in Property (iv) in Section 4).

We are interested in finding out which equilibrium of the game γ0 is robust to such
beliefs about opponent’s unawareness in the limit as ε goes to zero, assuming that at
each awareness level and for each ε considered, players play Bayesian Nash equilibrium.
Such equilibria we call Unawareness Perfect Equilibria. To construct such an equilibrium,
consider the games at the lowest levels γ5, γ6, γ7, and γ8. Since the set of outcomes is
a singleton, for any ε the Bayesian equilibria are trivial in those games. Now at any
higher awareness level, players must take the equilibrium behavior of unaware players in
the lower games into account. Thus we can define inductively Bayesian equilibria with
unawareness. When we consider games γ8 to γ1 in our example, this yields a unique
outcome for all games except γ2 and γ4. In latter two games any mixtures of the row
and column players, respectively, are allowed. Since t0 is completely mixed over all lower
games, every action of the opponent is assigned some strict positive weight in equilibrium
at awareness level γ0 as long as ε > 0. Consequently the best reply of the type t0 is always
to play U as row player and L as column player. Taking ε to zero selects uniquely the
equilibrium (U,L) as the Unawareness Perfect Equilibrium of γ0. This corresponds to
the undominated Nash equilibrium. In the paper, we show that this equivalence holds
more generally. Every Unawareness Perfect Equilibrium of a finite strategic game is an
undominated equilibrium and vice versa. Section 4 develops this in a general framework.

2 Model

Let S = {Sα}α∈A be a finite lattice of disjoint finite state-spaces, with the partial order
� on S. Any finite lattice is complete, i.e, each subset has a least upper bound (i.e.,
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supremum) and a greatest lower bound (i.e., infimum). If Sα and Sβ are such that
Sα � Sβ we say that “Sα is more expressive than Sβ – states of Sα describe situations
with a richer vocabulary than states of Sβ”.3 Spaces in the lattice can be more or less
“rich” in terms of facts that may or may not obtain in them. The partial order relates
to the “richness” of spaces. Denote by Ω =

⋃
α∈A Sα the disjoint union of these spaces.

Each S ∈ S is assumed to be finite.

For every S and S ′ such that S ′ � S, there is a surjective projection rS
′

S : S ′ −→ S,
where rSS is the identity. We interpret rS

′
S (ω) as “the restriction of the description ω to

the more limited vocabulary of S.” Projections “translate” states from “more expressive”
spaces to states in “less expressive” spaces by “erasing” facts that can not be expressed
in a lower space. Note that the cardinality of S is smaller than or equal to the cardinality
of S ′. We require the projections to commute: If S ′′ � S ′ � S then rS

′′
S = rS

′
S ◦ rS

′′

S′ . If
ω ∈ S ′, denote ωS = rS

′
S (ω). If D ⊆ S ′, denote DS = {ωS : ω ∈ D}.

For D ⊆ S, denote D↑ =
⋃
S′∈{S′:S′�S}

(
rS
′

S

)−1
(D). (“All the extensions of descrip-

tions in D to at least as expressive vocabularies.”) Clearly, D↑ is a subset of Ω.

An event is a pair (E, S), where E = D↑ with D ⊆ S, where S ∈ S. D is called
the base and S the base-space of (E, S), denoted by S(E). If E 6= ∅, then S is uniquely
determined by E and, abusing notation, we write E for (E, S). Otherwise, we write ∅S
for (∅, S). Note that not every subset of Ω represents an event. Some fact may obtain
in a subset of a space. Then this fact should be also “expressible” in “more expressive”
spaces. Therefore the event contains not only the particular subset but also its inverse
images in “more expressive” spaces.

Let Σ be the set of events of Ω, i.e., D↑ such that D ∈ 2S, for some state-space
S ∈ S. See Heifetz, Meier, and Schipper (2006, 2008, 2013a) for further details on the
event structure.

Let ∆(S) be the set of probability measures on S. We consider this set itself as a mea-
surable space endowed with the σ-field F∆(S) generated by the sets {µ ∈ ∆(S) : µ(D) ≥ p},
where D ∈ 2S and p ∈ [0, 1].

For a probability measure µ ∈ ∆(S ′), the marginal µ|S of µ on S � S ′ is defined by

µ|S (D) := µ

((
rS
′

S

)−1

(D)

)
, D ∈ 2S.

Let Sµ be the space on which µ is a probability measure. Whenever for some event
E we have Sµ � S(E) then we abuse notation slightly and write

µ (E) = µ (E ∩ Sµ) .

If S(E) � Sµ, then we say that µ(E) is undefined.

3Here and in what follows, phrases within quotation marks hint at intended interpretations, but we
emphasize that these interpretations are not part of the definition of the set-theoretic structure.
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I is the nonempty finite set of players. For every player, each state gives rise to a
probabilistic belief over states in some space.

Definition 1 For each player i ∈ I there is a type mapping ti : Ω −→
⋃
α∈A∆ (Sα). We

require the type mapping ti to satisfy the following properties:4

(i) Confinement: If ω ∈ S ′ then ti(ω) ∈ 4 (S) for some S � S ′.

(ii) If S ′′ � S ′ � S, ω ∈ S ′′, and ti(ω) ∈ 4(S ′) then ti(ωS) = ti(ω)|S.

(iii) If S ′′ � S ′ � S, ω ∈ S ′′, and ti(ωS′) ∈ 4(S) then Sti(ω) � S.

(iv) Introspection: ti(ω)
({
ω′ ∈ Ω : ti(ω

′)|Sti(ω) = ti(ω)
})

= 1.

ti(ω) represents player i’s belief at state ω. Properties (i) to (iii) guarantee the
consistent fit of beliefs and awareness at different state-spaces. Confinement means
that at any given state ω ∈ Ω an player’s belief is concentrated on states that are
all described with the same “vocabulary” - the “vocabulary” available to the player at
ω. This “vocabulary” may be less expressive than the “vocabulary” used to describe
statements in the state ω.”

Properties (ii) to (iii) compare the types of an player in a state ω ∈ S ′ and its
projection to ωS, for some S � S ′. Consider property (ii). Suppose a player’s awareness
level at ω is S ′. What should the player’s beliefs be at a poorer description of ω at an
awareness level S below S ′? Property (ii) says that the player should hold the same belief
over an event E as he does at ω provided that he is still aware of the event E. In this
sense, the types at ω and ωS just differ in their awareness. Property (iii) means that at
ω a player cannot be unaware of an event that she is aware of at the projected state ωS′ .

Property (iv) means that at every state, player i is certain about her own beliefs.
More precisely, for every state ω, the type of player i at ω is certain of the set of states at
which player i’s type or the marginal thereof coincides with her type at ω. This property
implies introspection (i.e., Property (va) in Proposition 4 in Heifetz, Meier, and Schipper,
2013a).

When ti(ω) ∈ ∆(S), then we often refer to S as the awareness level of type ti(ω).

Definition 2 We denote by S :=

〈
S,
(
rSαSβ

)
Sβ�Sα

, (ti)i∈I

〉
a finite interactive unaware-

ness belief structure.

Apart from restricting ourselves to a finite lattice of finite spaces, the model outlined
in this section corresponds to unawareness belief structures introduced in Heifetz, Meier,
and Schipper (2013a). Heifetz, Meier, and Schipper (2012) provide an explicit hierarchical
construction and show the existence of a universal unawareness type space.

4Recall that Sµ is the space on which µ is a probability measure. Thus, Sti(ω) is the space on which
ti(ω) is a probability measure.
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3 Bayesian Games with Unawareness

In this section, we generalize strategic games with incomplete information à la Harsanyi
(1967/68) and Mertens and Zamir (1985, Section 5) to include also unawareness. For
convenience, we restrict ourselves to finite games. Moreover, we focus in this section on
unawareness of payoff-relevant events and unawareness of actions; unawareness of players
is relegated to Appendix A.

Unawareness of payoff-relevant events is rather straight-forward to model. We simply
replace the type-space of a standard Bayesian game with an unawareness structure. To
model properly also unawareness of actions, we need to work a little harder. In standard
Bayesian game theory, ignorance of actions is modeled by the assumption that players
will never use such actions, because extremely low payoffs (i.e., highly negative) are
assigned to those actions (see the discussion in Harsanyi, 1967, p. 168). We do not follow
this convention here. Even in standard Bayesian games this convention is questionable,
because it applies to rational players only. If there is lack of common belief of rationality
then a player’s type being ignorant of an action is indeed different from her obtaining a
very low payoff from playing this action (see Hu and Stuart, 2001, for a discussion).

Denote [ti(ω)] := {ω′ ∈ Ω : ti(ω
′) = ti(ω)}. This is the set of states at which player i

has the same type as in state ω.

Definition 3 A Bayesian game with unawareness

Γ(S) =

〈
S,
(
rSαSβ

)
Sβ�Sα

, (ti)i∈I , (Mi)i∈I , (Mi)i∈I , (ui)i∈I

〉

consists of a unawareness belief structure S =

〈
S,
(
rSαSβ

)
Sβ�Sα

, (ti)i∈I

〉
and

(i) a nonempty finite set of actions Mi, for i ∈ I, and a correspondence Mi : Ω −→
2Mi \ {∅}, for i ∈ I, such that for any nonempty subset of actions M ′

i ⊆ Mi,
[M ′

i ] := {ω ∈ Ω : M ′
i ⊆ Mi(ω)} is an event (in the unawareness belief structure),

and ω′, ω′′ ∈ [ti(ω)] ∩ Sti(ω) implies Mi(ω
′) =Mi(ω

′′), for all ω ∈ Ω,

(ii) for every i ∈ I, a utility function ui :
⋃
ω∈Ω

((∏
j∈IMj(ω)

)
× {ω}

)
−→ R.

The interpretation is as follows: At the beginning of a game, a state ω ∈ Ω is realized.
Player i does not observe the state but receives a signal ti(ω) that provides her with some
information about the state or projections thereof to lower spaces. I.e., if ω obtains, player
i is of type ti(ω). This signal is a belief about the likelihood of events on a certain space
including payoff-relevant events. A player’s utility depends on her action, the actions
chosen by other players as well as the state. Since players may be uncertain about the
state ω, we assume that the player’s preference is represented by the expected value of
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the utility that depends on action-profiles of players and states, where the expectation is
taken with respect to the player i’s type ti(ω) and the types’ mixed strategies.

Which actions a player i has available at what state is described explicitly by the
correspondence Mi. Any set of available actions is associated with an event in our
unawareness belief structure. We require that each type of each player has a well-defined
set of actions. That is, we exclude that at a state, a player considers it possible that she
has an action available, which, in fact, is not available to her in this state. This is to
avoid the conceptional problem of defining what should happen if a player is to take an
action that is not available to her. At the same time, we allow in addition to unawareness
of other players’ actions also for unawareness of a player’s own actions, because it is a
realistic feature. This means formally that the sets of available actions should be constant
on a player’s type [ti(ω)] restricted to the set of states that this type is aware of, that
is, the set of states Sti(ω). Without the restriction to Sti(ω), a player’s type could not be
unaware of own actions. If ω /∈ Sti(ω), then it is possible that Mi(ω

′) is a proper subset
ofMi(ω), for ω′ ∈ [ti(ω)]∩Sti(ω). Finally, observe that since outcomes consist of profiles
of actions, players in a Bayesian game with unawareness of actions may also be unaware
of outcomes in the game.

Note that we allow unawareness to affect payoffs in an arbitrary way. One may
consider letting ui(·, ω) be a convex combination of all ui(·, ω′), ω′ ∈ (rS

′
S )−1(ω), for

ω ∈ S and S ′ � S. While this may be natural in some applications such as the speculation
example in Heifetz, Meier, and Schipper (2013a, Section 1.1), it would preclude situations
in which the mere awareness of an event may reduce expected payoffs.

Let ∆(Mi) be the set of mixed actions for player i ∈ I, that is, the set of probability
distributions on the finite set Mi.

Definition 4 A strategy of player i in a Bayesian game with unawareness is a function
σi : Ω −→ ∆(Mi) such that for all ω ∈ Ω,

(i) σi(ω) ∈ ∆
(
Mi(ωSti(ω))

)
, and

(ii) ti(ω
′) = ti(ω) implies σi(ω

′) = σi(ω).

A strategy specifies for each player and state a probability distribution over her per-
ceived set of actions. In standard Bayesian games without unawareness, one interpreta-
tion of a strategy assumes an ex-ante point of view of the player before she knows her
type. This interpretation is misleading in a game with unawareness, since if a player is
aware of all her types ex-ante she should be also aware of all types interim, i.e., after
learning her type (and her awareness). Hence, in the case of unawareness, the ex-ante
notion of strategy is a construct of the game theorist rather than an object of choice for
a player.

In Bayesian games with unawareness we subscribe to a second interpretation of
Bayesian strategy from an interim point of view: Given a player i and type ti(ω), she has
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an “awareness level” Sti(ω) ∈ S. That is, she can consider strategies of her opponents in
l(Sti(ω)), where l(S) := {S ′ ∈ S : S ′ � S} is the complete sublattice of S with S being
the upmost space. This interpretation is sound precisely because of Proposition 2 and
Remark 1 below: To best-respond to the strategies of the other player-types, a type of
a player needs only to reason about the strategies of player-types that she is aware of.
Only strategies of these player-types enter in her utility maximization problem.

At this point, it may be useful to illustrate the definitions with an example due to
Feinberg (2005). It allows us also compare our approach with his work.

Example 1 (Feinberg, 2005) Consider the strategic 3× 3 game

Colin

Rowena

b1 b2 b3

a1 0, 2 3, 3 0, 2
a2 2, 2 2, 1 2, 1
a3 1, 0 4, 0 0, 1

This game has a unique dominance solvable Nash equilibrium, (a2, b1). Consider now a
game with unawareness: The set of players remains unchanged, Rowena, R, and Colin,
C. There are two state-spaces, S and S ′ with S � S ′. In particular, S = {ω1, ω2} and
S ′ = {ω3}. The information structure is given by the type mappings

tR(ω1)({w2}) = tR(ω2)({w2}) = tR(ω3)({ω3}) = 1,

tC(ω1)({ω1}) = tC(ω2)({ω3}) = tC(ω3)({ω3}) = 1.

Actions are specified by

MR(ω1) =MR(ω2) = {a1, a2, a3},MR(ω3) = {a1, a2},

MC(ω1) =MC(ω2) =MC(ω3) = {b1, b2, b3}.
The information structure is depicted in Figure 1. The solid arrows and ellipses represent
Rowena’s information structure, while Colin’s information structure is depicted with
intermitted arrows and ellipses. At states ω1 and ω2, payoffs are given by the above
payoff matrix. At state ω3, payoffs are given by the sub-matrix spanned by rows a1 and
a2 and columns b1, b2, and b3 in the above matrix, i.e.,

Colin

Rowena
b1 b2 b3

a1 0, 2 3, 3 0, 2
a2 2, 2 2, 1 2, 1

We claim that

(σR(ω), σC(ω)) =


(a3, b3) if ω = ω1

(a3, b2) if ω = ω2

(a1, b2) if ω = ω3

11



Figure 1: Information Structure in Example 1
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 is an equilibrium. To see this, note that the game at ω3 has two pure equilibria, (a2, b1)

and (a1, b2) in the S ′-partial game, where the latter is payoff dominant. At ω3, both
players are unaware of action a3 in ω3. The unique dominance solvable Nash equilibrium
(a2, b1) of the original game (without unawareness of actions) remains an equilibrium
because none of the players is unaware of an equilibrium action and equilibrium actions
remain best responses if some other actions are deleted. Moreover, after deleting action
a3 (the action both players are unaware of at state ω3 in S ′), the game has another Nash
equilibrium (a1, b2). At ω1, both players are aware of all actions but Rowena believes
that Colin is unaware of action a3. Hence Rowena believes that Colin thinks that (a1, b2)
is a Nash equilibrium. Rowena’s best response to Colin playing b2 is a3. Moreover, since
at ω1 Colin is aware of all actions and he believes that Rowena believes that Colin is
unaware of action a3, his best response to Rowena playing a3 is b3. Note that in this
equilibrium at ω1, both receive a low payoff (compared to the Nash equilibria discussed
previously).

Feinberg (2005) obtains (a3, b3) as an equilibrium if both players are aware of all ac-
tions, Rowena is ‘unaware’ that Colin is aware of all of her actions, and Colin is ‘aware’
that Rowena is ‘aware’ of Colin being unaware of a3.5 That is, in Feinberg (2005) a
player can be aware of an event but unaware that somebody else is aware of it. This
is in contrast to our unawareness belief structure, where according to Proposition 8, 1.,
in Heifetz, Meier, and Schipper (2008) a player is aware of an event if and only if she
is aware that somebody else could be aware of it. That is, if a player can reason about
some issue then she can also reason that somebody else can reason about that issue. We
obtain (a3, b3) as an equilibrium if both players are aware of all actions, Rowena does not
believe that Colin is aware of a3, and Colin believes that Rowena believes that Colin is
unaware of a3. The example suggests, that higher order ‘awareness’ in Feinberg (2005)
operates like belief in our unawareness belief structure. Note however, that Feinberg
(2005) does not define a notion of belief in his framework. �

5When writing ‘...’, we indicate that those notions differ from our notions used in this paper.
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Like in standard Bayesian games, an equilibrium of a Bayesian game with unawareness
is a Nash equilibrium of a strategic game in which types of players are the “players”.
The actions available to the type of player i at state ω are the actions of player i. The
utility function of the type of player i at ω is the expected utility function, given player
i’s awareness and belief over states at ω. In an equilibrium of a Bayesian game with
unawareness, the type of every player chooses an optimal mixture of actions she is aware
of, given her awareness, belief and the choices of the types of the other players.

Denote σSti(ω) :=
(

(σj(ω
′))j∈I

)
ω′∈Sti(ω)

. The expected utility of player-type (i, ti(ω))

from the strategy profile σSti(ω) is given by

U(i,ti(ω))(σSti(ω)) := (1)∑
ω′∈Sti(ω)

∑
m∈
∏
j∈IMj

(
ω′Stj(ω′)

)
(∏
j∈I

σj(ω
′) ({mj})

)
· ui ((mj)j∈I , ω

′) ti(ω)({ω′}).

Definition 5 (Equilibrium) Given a Bayesian game with unawareness Γ(S), define
the associated strategic game by

(i) {(i, ti(ω)) : ω ∈ Ω and i ∈ I} is the set of players,

and for each player (i, ti(ω)),

(ii) the set of mixed strategies is ∆(Mi(ωSti (ω)), and

(iii) the utility function is given by Equation (1).

A profile (σi)i∈I is an equilibrium of the Bayesian game with unawareness if and only if
the following is an equilibrium of the associated strategic game: (i, ti(ω)) plays σi(ω), for
all i ∈ I and ω ∈ Ω.

Existence of equilibrium follows now directly from Nash’s (1950) theorem.

Proposition 1 (Existence) Every finite Bayesian game with unawareness has an equi-
librium.

Recall l(S) := {S ′ ∈ S : S ′ � S}. l(S) is a sublattice with S as the least upper
bound.

Definition 6 Given a Bayesian game with unawareness

Γ(S) =

〈
S,
(
rSαSβ

)
Sβ�Sα

, (ti)i∈I , (Mi)i∈I , (Mi)i∈I , (ui)i∈I

〉
,

13



we can define for any S ′ ∈ S an S ′-partial Bayesian game with unawareness

Γ(l(S ′)) =

〈
l(S ′),

(
rSαSβ

)
Sβ�Sα�S′

, (ti)i∈I , (Mi)i∈I , (M
′
i)i∈I , (ui)i∈I

〉
,

where for any i ∈ I, M′
i is Mi restricted to Ω′ =

⋃
S′′∈l(S′) S

′′.

Note that contrary to an ordinary Bayesian game, the game is not “common knowl-

edge” among the players. Let Γ(S) =

〈
S,
(
rSαSβ

)
Sβ�Sα

, (ti)i∈I , (Mi)i∈I , (Mi)i∈I , (ui)i∈I

〉
be a Bayesian game with unawareness. At ω ∈ Ω, the game conceived by player j is

Γ(l(Stj(ω))) =

〈
l(Stj(ω)),

(
rSαSβ

)
Sβ�Sα�Stj(ω)

, (ti)i∈I , (Mi)i∈I , (M′
i)i∈I , (ui)i∈I

〉
, where the

lattice of spaces is replaced by the sublattice l(Stj(ω)) with Stj(ω) as the upmost space,
and the domains of ti and ui are restricted to Ω′ =

⋃
S∈l(Stj(ω))

S. Type tj(ω) of player j

can conceive of all events expressible in spaces of the sublattice l(Stj(ω)).

The following proposition shows that we can naturally extend equilibria from “lower
to higher awareness levels” by taking the equilibrium strategies at the “lower awareness
levels” to be fixed and looking for a fixed point at “higher awareness levels”. For a proof,
see the proof of the more general Proposition 4 in Appendix A.

Proposition 2 (“Upwards Induction”) Given a Bayesian game with unawareness〈
S,
(
rSαSβ

)
Sβ�Sα

, (ti)i∈I , (Mi)i∈I , (Mi)i∈I , (ui)i∈I

〉
, consider for S ′, S ′′ ∈ S with S ′ �

S ′′ the S ′-partial (resp. S ′′ -partial) Bayesian game with unawareness. If I, Ω, and
(Mi)i∈I are finite, then for every equilibrium of the S ′-partial Bayesian game, there is
an equilibrium of the S ′′-partial Bayesian game in which equilibrium strategies of player-
types in {(i, ti(ω)) : ω ∈ Ω′ =

⋃
S∈l(S′) S and i ∈ I} are identical with the equilibrium

strategies in the S ′-partial Bayesian game.

This proposition suggests a procedure for constructing equilibria in Bayesian games
with unawareness. We start with an equilibrium in each Ŝ-partial Bayesian game with
unawareness, for the lowest space Ŝ of the lattice, and extend it step-by-step to higher
spaces by finding a fixed-point taking the strategies of player-types in the lower spaces
as given.

For some strategic situations, Proposition 2 suggests that players who are unaware
may have commitment power (although they do not understand that they are committed)
compared to players with a “higher awareness level”. This is so because types with
“lower awareness levels” do not react to types of which they are unaware. Types with
“higher awareness” must take strategies of types with “lower awareness” as given. It is
easy to construct examples of Bayesian games with unawareness in which the “value of
awareness” may be negative.
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We can also restrict an equilibrium from higher awareness levels to lower awareness.
This is so, because if player-types play an equilibrium in a game that allows for “higher
awareness levels”, then those player-types still play optimally at “lower awareness levels”.
This is stated more formally in Remark 1, which follows from the consistency of Nash
equilibrium (see Peleg and Tijs, 1996, and Peleg, Potters, and Tijs, 1996)6:

Remark 1 Let

〈
S,
(
rSαSβ

)
Sβ�Sα

, (ti)i∈I , (Mi)i∈I , (Mi)i∈I , (ui)i∈I

〉
be a Bayesian game

with unawareness. Consider for S ′, S ′′ ∈ S with S ′ � S ′′ the S ′-partial (resp. S ′′-
partial) Bayesian game with unawareness. Then for every equilibrium of the S ′′-partial
Bayesian game there is a unique equilibrium of the S ′-partial Bayesian game in which
the equilibrium strategies of player-types in {(i, ti(ω)) : ω ∈ Ω′ =

⋃
S∈l(S′) S and i ∈ I}

are identical to the equilibrium strategies of the S ′′-partial Bayesian game.

4 Unawareness Perfection

In this section, we apply our framework to analyze Nash equilibria of strategic games that
are robust to small uncertainty about awareness of actions. The main idea is to associate
with a strategic game a sequence of Bayesian games with unawareness of actions and then
consider the limit of equilibria of these games as uncertainty over awareness of opponents’
actions vanishes and players become certain that everybody is aware of all actions.

We start by defining a sequence of specific Bayesian games with unawareness of ac-
tions. Let γ̃ = 〈I, (M̃i)i∈I , (ṽi)i∈I〉 be a finite strategic game with a finite set of players
I = {1, ..., n}, for each player i ∈ I a finite nonempty set of actions M̃i and a payoff
function ṽi : M̃ −→ R, where M̃ :=

∏
i∈I M̃i.

Given such a strategic game, we append for each player i ∈ I a “default” action di and
extend the payoff functions such that any player’s default action is strictly dominated
by every of her other actions. Moreover, whenever some player i ∈ I takes her default
action, then all other players’ payoffs can be arbitrary. We interpret this default action
as “do nothing”. Intuitively, a player should always have some action available even if
this action just amounts to “do nothing”. The default action is a technical device that
allows us to obtain a unique “lowest” game in the set of games defined below.

More formally, for all i ∈ I, let Mi = M̃i ∪ {di}. For all i ∈ I, define vi : M −→ R
with vi(m) = ṽi(m) for all m ∈ M̃ and vi(di,m−i) < vi(mi,m−i) for all mi ∈ M̃i and
all m−i ∈ M−i =

∏
j∈I\{i}Mj. For all m−i = (m1, ...,mi−1,mi+1, ...,mn) ∈ M−i with

mj = dj for some j ∈ I \ {i}, vi(mi,m−i) can be arbitrary for any mi ∈ M̃i. We write
γ = 〈I, (Mi)i∈I , (vi)i∈I〉 for the strategic game with default actions.

We call a subset L′ of a lattice L a meet-sublattice if it is a lattice with respect to
the order induced by L and the meet of any two elements of L′ is the meet of the two

6We thank an anonymous reviewer for drawing our attention to these references.
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elements in the lattice L. (Note that we do not require the join of any two elements of
L′ to be the join in L.)

Given the strategic game γ, we define a set of restricted games as follows: For any
nonempty M ′

i with M ′
i ⊆ Mi and di ∈ M ′

i , M
′ :=

∏
i∈IM

′
i , define a restricted strategic

game 〈I, (M ′
i)i∈I , (vi|M ′)i∈I〉 where vi|M ′ is player i’s payoff function in γ restricted to

outcomes in M ′. Note that for each player the action set of a restricted game contains
her default action. Let ⊥ denote the trivial game in which each player just has her
default action. A set of restricted games derived from γ is rich, if for all (mi)i∈I ∈ M̃
the restricted games 〈I, ({mi, di})i∈I , (vi|∏j∈I{mj ,dj})i∈I〉, γ, and ⊥ belong to this set of
restricted games. A partial order on the set of all restricted games is defined by set
inclusion of

∏
i∈IMi. Note that the set of all restricted games is a finite lattice. The

meet is defined by the intersection of action sets. Let G(γ) denote a rich meet-sublattice
of restricted games derived from γ, and let � denote the partial order on G(γ).7 If
α ∈ G(γ), we denote by G(α) the sublattice of strategic games β ∈ G(γ) for which
β � α.

For notational convenience, define I0 := I ∪ {0}. For each α ∈ G(γ), we define a
space of states

Sα = {ω : ω = (αi)i∈I0 with α0 = α and αi ∈ G(α) for every i ∈ I}.

Intuitively, a state in Sα shall describe which game each player perceives together with
the index α0 = α for the state space Sα. In a state in Sα no player can perceive a game
β ∈ G(γ) that is “more expressive than or incomparable to” α. Let Sγ = {Sα}α∈G(γ). By
definition (by the first component of the states), these spaces are disjoint. The set Sγ is
a lattice of disjoint state-spaces, where the partial order is defined by extending � to Sγ
by Sα � Sβ, Sα, Sβ ∈ Sγ if and only if α � β, α, β ∈ G(γ). As before, the union of all
spaces is denoted by Ω.

For all α, β ∈ G(γ) with α � β, the projections rαβ : Sα −→ Sβ are defined by the
following rule: If ω = (αi)i∈I0 ∈ Sα, then rαβ (ω) = (βi)i∈I0 with βi = inf{αi, β} for all
i ∈ I0. The inf does always exist since G(γ) is a lattice. The proof of the following
remark is contained in Appendix C.

Remark 2 For all α ∈ G(γ), rαα = idSα. Projections commute, i.e., for any α, β, δ ∈
G(γ) with α � β � δ, rαδ = rβδ ◦ rαβ .

Next, we define for each player i ∈ I a sequence of type mappings tki : Ω −→⋃
α∈G(γ) ∆(Sα) satisfying the following properties: For each k = 0, 1, ...,

7Although G(γ) is a subset of the lattice of all restricted games given γ, and although the partial
order on G(γ) is the partial order of the lattice of all restricted games, G(γ) is not necessarily a sublattice
of the lattice of all restricted games. This is because for example α, β ∈ G(γ), α ∨ β, might not be in
G(γ), but only a game larger than α ∨ β. That is, the join of α and β in G(γ) may not coincide with
the join of α and β in the lattice of all restricted games given γ.
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(i’) If ω = (αj)j∈I0 ∈ Sα then tki (ω) ∈ ∆(Sαi). (Note that αi � α.)

(ii’) If ω = (βj)j∈I0 ∈ Sα, tki (ω) ∈ ∆(Sβi), α � βi � δ, then tki (ωδ) = tki (ω)|Sδ .

These properties imply properties (i) to (iii) of type mappings in Definition 1 (see
Appendix C for a proof):

Lemma 1 For each k = 0, 1, ..., the type mapping satisfies the properties (i) to (iii) of
Definition 1. More specific, (i’) implies (i), (ii’) implies (ii), and (i’) implies (iii).

Let ᾱ := (αi)i∈I0 with αi = α ∈ G(γ) for all i ∈ I0. That is, a bar over α signifies a
“monomorphic” state in which all components are identical to α. Note that by Property
(i’), for all α ∈ G(γ), tki (ᾱ) ∈ ∆(Sα) for all i ∈ I and k = 0, 1, ....

In the current context we impose additional properties. For each i ∈ I and each
k = 0, 1, ...,

(iv’) If ω = (αi)i∈I0 and ω′ = (βi)i∈I0 with αi = βi, then tki (ω) = tki (ω
′).

Property (iv’) states that if at two states player i has the same awareness, then she
has the same beliefs at those two states. That is, for each awareness level, each agent has
only one type. Although this is not necessary, it simplifies our analysis. Together with
(ii’), it implies that Introspection (Property (iv)) is satisfied.

Let G∗(γ) = {α ∈ G(γ) : |Mα
i | ≥ 2 for all i ∈ I}. This is the subset of restricted

games in which every player has besides the option of “doing nothing” also an action of
the original game. The next two assumptions are conceptually more important. For each
i ∈ I and each k = 0, 1, ...,

(v) Uncertainty about opponents’ awareness: tki (γ̄)({ω}) > 0 if and only if ω =
(αj)j∈I0 ∈ Sγ is such that αi = γ and βj ∈ G∗(γ) for all j ∈ I \ {i}.

Uncertainty about opponents’ awareness, Property (v), implies that at the objective
true state γ̄ player i is uncertain about which nonempty subset of actions in the original
game opponents are aware of. It also implies that at the objective true state γ̄ player
i is certain that each opponent is aware of at least some action in the original game.
Ultimately we are interested in the robustness of equilibria in which players play actions
of the original game instead being forced to play their default action. Property (iv’)
implies that property (v) holds also for all states in the upmost space in which player i
is fully aware.

Finally, Property (vi) below, certainty in the limit, just means that in the limit at the
objective true state γ̄ there is common certainty that all players are aware of all actions.
That is, in the limit the players at state γ̄ are commonly certain that they are playing
the strategic game γ.
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(vi) Certainty in the limit: For every i ∈ I, limk→∞ t
k
i (γ̄)({ω}) exists for all ω ∈ Sγ,

and tki (γ̄)({γ̄})→ 1 as k →∞.

For each i ∈ I, define a correspondence Mi : Ω −→ 2Mi by Mi(ω) = Mα
i if ω ∈ Sα,

where Mα
i is player i’s set of actions in the game α ∈ G(γ).

Finally, for each player i ∈ I, define a utility function ui :
⋃
ω∈Ω

(∏
j∈IMj(ω)

)
×

{ω} −→ R in the following manner: For all α ∈ G(γ), if ω ∈ Sα then ui(·, ω) = vi|Mα

where Mα is the action space in game α.

With these definitions we have (see Appendix C for a proof):

Remark 3 For each finite strategic game γ and each k = 0, 1, ... we have that

Γ(Skγ) :=
〈
Sγ, (rαβ )α�β;α,β∈G(γ), (t

k
i )i∈I , (Mi)i∈I , (Mi)i∈I , (ui)i∈I

〉
is a finite Bayesian game with unawareness.

Proposition 1 and Remark 3 imply:

Corollary 1 For each finite strategic game γ and each k = 0, 1, ... there exists a Bayesian
Nash equilibrium of Γ(Skγ).

Denote by σk =
(
(σki (ω))i∈I

)
ω∈Ω

a strategy combination in the game Γ(Skγ). Moreover,

we denote by E(Γ(Skγ)) the set of Bayesian Nash equilibria of the game Γ(Skγ).
The next remark follows from the fact that for each player i ∈ I, the action di is

strictly dominated by strategies M̃i in the original game γ̃.

Remark 4 If σk ∈ E(Γ(Skγ)) then for every player i ∈ I, the equilibrium strategy σki (γ̄)
assigns probability zero to the default action di. Hence, we consider σki (γ̄) as a probability
measure on player i’s set of actions M̃i in the original game γ̃.

The next lemma says that the limit at state γ̄ of a convergent sequence of Bayesian
Nash equilibria of games Γ(Skγ) as k →∞ is an equilibrium of the original game γ̃. (See
Appendix C for a proof.)

Lemma 2 If σk ∈ E(Γ(Skγ)) and σk(γ̄)→ ν as k →∞, then ν is an equilibrium of γ̃.

Definition 7 (Unawareness Perfect Equilibrium) An Unawareness Perfect Equi-
librium ν of the strategic game γ̃ is a Nash equilibrium of γ̃ for which there exists a
sequence of Bayesian games with unawareness

(
Γ(Skγ)

)∞
k=0

(as defined above, with cer-
tainty about the players’ awareness of actions in the limit) with Bayesian Nash equilibria
σk ∈ E(Γ(Skγ)), k = 0, 1, ..., for which σk(γ̄)→ ν as k →∞.
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That is, an Unawareness Perfect Equilibrium of a strategic game is a Nash equilibrium
that is robust to uncertainty over unawareness of actions as this uncertainty vanishes.

Using Lemma 2 and the existence result for Bayesian Nash equilibrium (Proposi-
tion 1), we prove in the appendix the following:

Theorem 1 For every finite strategic game, an Unawareness Perfect Equilibrium exists.

It turns out that unawareness perfection is closely related to undominated actions. An
action mi ∈ M̃i is weakly dominated in the original game γ̃ if there exists a mixed action
µi ∈ ∆(M̃i) such that ṽi(µi,m−i) ≥ ṽi(mi,m−i) for all m−i ∈ M̃−i and ṽi(µi,m−i) >
ṽi(mi,m−i) for some m−i ∈ M̃−i. This is the standard definition. An action that is not
weakly dominated is undominated. A Nash equilibrium is undominated if every player’s
(mixed) equilibrium action assigns strict positive probability to undominated actions
only. Note that we focus on undominated Nash equilibrium of the original game γ̃. Since
we allow a player’s payoffs to be arbitrary if an opponent takes the default action, it is
not generally the case that if an action is undominated in the original game γ̃, then it
is also undominated in the augmented game γ. We prove in the appendix the following
characterization:

Theorem 2 A Nash equilibrium of a finite strategic game is an Unawareness Perfect
Equilibrium if and only if it is undominated (i.e., not weakly dominated).

That every Unawareness Perfect Equilibrium is undominated follows essentially from
continuity of von Neumann-Morgenstern utilities and the fact that it is a limit of Bayesian
Nash equilibria in which opponents’ types may be forced to play any non-default action
due to unawareness of alternative actions. Any action played with strict positive prob-
ability in an unawareness perfect equilibrium of a strategic game must also get strict
positive probability in a Bayesian Nash equilibrium of Γ(Skγ ) at some point during the
sequence for sufficiently large k. This implies that the action is a best reply against a full
support belief over all action profiles that do not contain the default actions. Hence, by
Pearce (1984, Lemma 4) the action is undominated in the original game. The proof of
the converse is more involved as we construct a sequence of Bayesian games in which we
mimic the full support belief that rationalizes a player’s undominated equilibrium strat-
egy by beliefs about opponents’ restricted awareness and their play restricted to actions
that they are aware of. Any undominated Nash equilibrium is a best reply against the op-
ponents’ equilibrium actions and again by Pearce (1984, Lemma 4), a full support belief
over opponents’ actions. We show that for any undominated Nash equilibrium of a finite
strategic game we can construct a sequence of Bayesian games with unawareness with a
corresponding sequence of Bayesian Nash equilibria. Any fully aware player’s Bayesian
equilibrium action is a best reply to possibly unaware opponent’s Bayesian equilibrium
strategies and, in the limit, to the mixed strategies of the others in an equilibrium of the
true strategic game.
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For games with more than two players, unawareness perfection is weaker than trem-
bling hand perfection by Selten (1975). Since trembling hand perfect equilibria and
undominated equilibria coincide in two-player games (see van Damme, 1991), Theorem 2
implies that unawareness perfect equilibria and trembling hand perfect equilibria coin-
cide in two-player games. There are assumptions embodied in trembling hand perfect
equilibrium that have bite in games with more than two players. First, in a trembling
hand perfect equilibrium any two players have common knowledge about the nature of
trembles of a third player. Second, trembles are made independently. Both assumptions
could be cast analogously in our framework. Any two players could have common belief
about a third player’s awareness of actions. Moreover, types may be independent. We do
not know what would justify such assumptions. Thus, we content ourselves with study-
ing just robustness of equilibria to small uncertainty about awareness of actions without
additional assumptions. As it turns out, this justifies ruling out dominated equilibria but
no more than that.

5 Related Literature

There is a growing literature on unawareness both in economics and computer science.8

The independent parallel work of Sadzik (2006) is closest to ours. Building to a certain
extent on our earlier work, Heifetz, Meier, and Schipper (2006), he presents a framework
of unawareness with probabilistic beliefs in which the common prior on the upmost space
is a primitive. In contrast, we take types as primitives and a prior may be defined on
the entire unawareness belief structure as a convex combination of the type’s beliefs
(see Heifetz, Meier, and Schipper, 2013a). Sadzik (2006) also considers Bayesian games
with unawareness, but his definition of Bayesian strategy and consequently the notion
of equilibrium differs from ours. As argued above, we do not confine actions of a type
with a narrow horizon to be some average of actions of the corresponding types with a
wider horizon, a restriction made in Sadzik (2006). As a result, in our notion of Bayesian
equilibrium every type maximizes and is certain that every other type that she is aware
of maximizes as well, while in the equilibrium of actions proposed in Sadzik (2006) a type
may believe that another player is irrational. Sadzik (2006) does not allow for players to
be unaware of other players, while we do.

A purely syntactic framework with unawareness is presented by Feinberg (2005) which
he applies to games with unawareness of actions but complete information. In Section 3,
we discuss an interesting example due to Feinberg (2005) and demonstrate that higher
order awareness of unawareness in Feinberg (2005) corresponds to higher order belief
of unawareness in our model. In a more recent paper, Feinberg (2012) discusses games
with unawareness and incomplete information. He explicitly models many views of a
game, each (mutual) view being a finite sequence of player names i1, ..., in with the
interpretation that this is how i1 views how .... how in views the game. This differs from

8See http://www.econ.ucdavis.edu/faculty/schipper/unaw.htm for a bibliography.
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our unawareness belief structures in which each state “encapsulates” the views of the
players, their views about other players’ views etc. in a parsimonious way familiar from
standard structures. Feinberg (2012) also extends Bayesian Nash equilibrium to games
with unawareness and incomplete information.

In a framework similar to Feinberg (2005, 2012), Čopič and Galeotti (2006) study
two-player games with either unawareness of actions or unawareness of types (with a
prior as a primitive). Yet, their notion of equilibrium differs from Bayesian equilibrium
because the authors require that in equilibrium beliefs over actions and payoffs must
correspond to the true joint distribution over own payoffs and the opponent’s actions.

We strictly prefer to interpret our Bayesian games with unawareness as static games
because dynamic strategic interaction under unawareness poses further complications
such as changes of awareness. Halpern and Rêgo (2013), Heifetz, Meier, and Schipper
(2011, 2013b), Rêgo and Halpern (2012), Li (2006), Ozbay (2007), Meier and Schipper
(2012), Grant and Quiggin (2013), and Feinberg (2012) present models of extensive-form
games with unawareness and discuss solution concepts.

A Bayesian Games with Unawareness: Allowing for

Unawareness of Players

So far, we did not allow for unawareness of players. In standard Bayesian game theory,
ignorance of players is modeled by dummy players. This is distinct from being unable
to conceive of a player at all. In this subsection we allow for unawareness of players.
This requires that we generalize our interactive unawareness belief structure such that
a player may exist only at some states but not at others. Such a generalization may be
useful to extensions to psychological games with unawareness (see Nielsen and Sebald,
2011). For instance, being aware of an observer may affect behavior even if the observer
has no active role in the game. This is known in psychology as the observer effect.

Definition 8 A Bayesian game with unawareness (that also allows for unawareness of
players) is a tuple

Γ(S) :=

〈
S,
(
rSαSβ

)
Sβ�Sα

, E , (ti)i∈I , (Mi)i∈I , (Mi)i∈I , (ui)i∈I

〉
defined as follows:

(0) S = {Sα}α∈A is as before a complete lattice of spaces with surjective and commuting
projections (rSαSβ ), for Sβ � Sα (see Section 2).

(i) E : I −→ Σ is the “existence” correspondence that assigns to each player i ∈ I an
event in which she exists. Moreover, Si := {S ∈ S : E(i) ∩ S 6= ∅} is the complete
sublattice of spaces with states in which player i exists.
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(ii) For every player i ∈ I, ti : E(i) −→
⋃
S∈Si ∆ (S) is a type mapping that satisfies

Properties (i) to (iii) (see Section 2) such that for every ω ∈ E(i), ti(ω)(E(i)) = 1.

(iii) For every i ∈ I, Mi is a nonempty finite set of actions. Mi : E(i) −→ 2Mi \ {∅} is
a correspondence, for i ∈ I, with the following properties:

a.) For every M ′
i with ∅ 6= M ′

i ⊆Mi: If there is a state ω with ω ∈ E(i), then the
set {ω′ ∈ Ω : M ′

i ⊆Mi(ω
′)} is an event.

b.) If ω ∈ E(i) and ω′, ω′′ ∈ Sti(ω) ∩ [ti(ω)], then Mi(ω
′) =Mi(ω

′′).

(iv) Further, we impose introspection as follows: For ω ∈ E(i),

ti(ω)
(
{ω′ ∈ E(i) : ti(ω

′)|Sti(ω) = ti(ω)}
)

= 1.

(v) For i ∈ I, ui :
⋃
ω∈E(i)

((∏
j∈I(ω)Mj(ω)

)
× {ω}

)
−→ R is the utility function of i,

where I(ω) := {i ∈ I : ω ∈ E(i)}.

This game allows for unawareness of events, actions, outcomes, and players. For every
player i ∈ I, the “existence” correspondence E assigns to i the event in which she exists.
Consequently we restrict player i’s type mapping to states at which she exists. Moreover,
player i’s type is concentrated only on states in which she exists. A player can not assign
strict positive probability to states at which she does not exist. The correspondenceMi

assigns a non-empty set of actions for player i only to the set of states in which player i
exists. The dimension of the domain of a utility function may vary from state to state,
since players may exist in some states but not in others, and each players utility at a
state depends on the actions of all the players that exist in that state.

Note that if E(i) = Ω for all i ∈ I, then we obtain an unawareness belief structure
and a Bayesian game with unawareness as defined before.

Note further that if ω ∈ E(i), then [ti(ω)] := {ω′ ∈ Ω : ti(ω
′) = ti(ω)} ⊆ E(i).

A strategy of player i is now adapted to the event in which she exists.

Definition 9 A strategy of player i in a Bayesian game with unawareness is a function
σi : E(i) −→ ∆(Mi) such that for all ω ∈ E(i),

(i) σi(ω) ∈ ∆
(
Mi(ωSti (ω))

)
.

(ii) ti(ω
′) = ti(ω) implies σi(ω

′) = σi(ω).

Denote σSti(ω) :=
(

(σj(ω
′))j∈I(ω′)

)
ω′∈Sti(ω)

. The expected utility of player-type (i, ti(ω))

from the strategy profile σSti(ω) is given by

U(i,ti(ω))(σSti(ω)) := (2)
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∑
ω′∈Sti(ω)

∑
m∈
∏
j∈I(ω′)Mj

(
ω′Stj(ω′)

)
 ∏
j∈I(ω′)

σj(ω
′) ({mj})

 · ui ((mj)j∈I(ω′), ω
′) ti(ω)({ω′}).

This expression is analogous to equation (1) except that the set of players I is now
replaced by I(ω′).

Definition 5 and Proposition 1 are now generalized to:

Definition 10 (Equilibrium) Given a Bayesian game with unawareness Γ(S), define
the associated strategic game by

(i) {(i, ti(ω)) : ω ∈ Ω and i ∈ I(ω)} is the set of players,

and for each player (i, ti(ω)),

(ii) the set of mixed strategies is ∆(Mi(ωSti (ω)), and

(iii) the utility function is given by Equation (2).

A profile (σi)i∈I is an equilibrium of the Bayesian game with unawareness if and only if
the following is an equilibrium of the associated strategic game: (i, ti(ω)) plays σi(ω), for
all i ∈ I(ω) and ω ∈ Ω.

Proposition 3 (Existence) Let Γ(S) =

〈
S,
(
rSαSβ

)
Sβ�Sα

, E , (ti)i∈I , (Mi)i∈I , (Mi)i∈I , (ui)i∈I

〉
be a Bayesian game with unawareness. If I, Ω, and (Mi)i∈I are finite, then there exists
an equilibrium.

Proof. By Nash’s (1950) theorem. �

Recall l(S) := {S ′ ∈ S : S ′ � S}. Definition 6, Proposition 2, and Remark 1 are now
generalized, respectively, as follows:

Definition 11 Given a Bayesian game with unawareness

Γ(S) =

〈
S,
(
rSαSβ

)
Sβ�Sα

, E , (ti)i∈I , (Mi)i∈I , (Mi)i∈I , (ui)i∈I

〉
,

we can define for any S ′ ∈ S an S ′-partial Bayesian game with unawareness

Γ(l(S ′)) =

〈
l(S ′),

(
rSαSβ

)
Sβ�Sα�S′

, E ′, (ti)i∈I(Ω′) , (Mi)i∈I(Ω′) , (M
′
i)i∈I(Ω′), (ui)i∈I(Ω′)

〉
,

in which E ′(i) = E(i)∩Ω′, where Ω′ =
⋃
S′′∈l(S′) S

′′
, and for any i ∈ I(Ω′) :=

⋃
ω∈Ω′ I(ω),

M′
i is Mi restricted to E ′(i).
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Proposition 4 (“Upwards Induction”) Given a Bayesian game with unawareness〈
S,
(
rSαSβ

)
Sβ�Sα

, E , (ti)i∈I , (Mi)i∈I , (Mi)i∈I , (ui)i∈I

〉
, consider for S ′, S ′′ ∈ S with S ′ �

S ′′ the S ′-partial (resp. S ′′ -partial) Bayesian game with unawareness. If I, Ω, and
(Mi)i∈I are finite, then for every equilibrium of the S ′-partial Bayesian game, there is
an equilibrium of the S ′′-partial Bayesian game in which equilibrium strategies of player-
types in {(i, ti(ω)) : ω ∈ Ω′ =

⋃
S∈l(S′) S and i ∈ I(Ω′)} are identical with the equilibrium

strategies in the S ′-partial Bayesian game.

Proof. Let σ∗|Ω′ be an equilibrium in the S ′-partial Bayesian game with unawareness

Γ(S ′). For S ′′ � S ′ we define a strategic form game with

• I(Ω′′ \ Ω′) := {(i, ti(ω)) : ω ∈ Ω′′, i ∈ I(ω)} \ {(i, ti(ω)) : ω ∈ Ω′, i ∈ I(ω)} being
the set of players,

• the set of strategies of player (i, ti(ω)) ∈ I(Ω′′ \ Ω′) is ∆
(
Mi(ωSti(ω))

)
,9

• the payoff function of player (i, ti(ω)) is given by equation (1) but fixing the strat-
egy of each (dummy) player in {(i, ti(ω′)) : ω′ ∈ Ω′, i ∈ I(ω′)} to her respective
equilibrium strategy σ∗i (ω) of the S ′-partial Bayesian game with unawareness Γ(S ′).

Since I, Ω, and (Mi)i∈I are finite, this strategic game has an equilibrium by Nash’s
(1950) theorem. Fix one equilibrium of this game.

Consider now the strategy profile σ∗|Ω′′ in which players in {(i, ti(ω)) : ω ∈ Ω′, i ∈ I(ω)}
play their component of the profile σ∗|Ω′ and players in I(Ω′′ \ Ω′) play the equilibrium
strategies of the equilibrium in the above defined strategic game.

We need to show that σ∗|Ω′′ is an equilibrium of the S ′′-partial Bayesian game with

unawareness Γ(S ′′). Suppose not, then for some player (i, ti(ω)) ∈ I(Ω′′) = {(i, ti(ω′)) :

ω′ ∈ Ω′′, i ∈ I(ω′)} there exists σi(ω) ∈ ∆
(
Mi(ωSti(ω))

)
with σi(ω) 6= σ∗i (ω) such that

for σSti(ω) :=
(
σi(ω), (σ∗j (ω

′))ω′∈Sti(ω),j∈I(ω)\{i}

)
we have

U(i,ti(ω))(σSti(ω)) > U(i,ti(ω))(σ
∗
Sti(ω)

),

i.e., there exists a profitable deviation from σ∗|Ω′′ for some player-type (i, ti(ω)) with

ω ∈ Ω′′ and i ∈ I(ω) given that all other player-types in I(Ω′′) play their equilibrium
strategy.

If (i, ti(ω)) ∈ I(Ω′′ \Ω′) then her strategy is not an equilibrium strategy in the above
defined strategic game, a contradiction. If (i, ti(ω)) ∈ {(i, ti(ω)) : ω′ ∈ Ω′, i ∈ I(ω′)},
then since her payoffs are identical in both games, her strategy is not an equilibrium

9Note that for (i, ti(ω)) ∈ I(Ω′′ \ Ω′) we have either Sti(ω) � S′ or Sti(ω) and S′ are incomparable.
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strategy in the S ′-partial Bayesian game with unawareness Γ(S ′), a contradiction. Hence
σ∗|Ω′′ must be an equilibrium of the S ′′-partial Bayesian game with unawareness Γ(S ′′). �

It is easy to construct examples of Bayesian games with unawareness in which unaware
players may have commitment power and the “value of awareness” may be negative. For
instance, in a simultaneous-move linear Cournot duopoly, a player who is unaware of his
opponent can obtain the Stackelberg leader profit if the opponent knows that the first
player is unaware of him.

The converse to Proposition 4 follows from the consistency of Nash equilibrium (see
Peleg and Tijs, 1996, and Peleg, Potters, and Tijs, 1996):

Remark 5 Let

〈
S,
(
rSαSβ

)
Sβ�Sα

, E , (ti)i∈I , (Mi)i∈I , (Mi)i∈I , (ui)i∈I

〉
be a Bayesian game

with unawareness. Consider for S ′, S ′′ ∈ S with S ′ � S ′′ the S ′-partial (resp. S ′′-partial)
Bayesian game with unawareness. Then for every equilibrium of the S ′′-partial Bayesian
game there is a unique equilibrium of the S ′-partial Bayesian game in which the equi-
librium strategies of player-types in {(i, ti(ω)) : ω ∈ Ω′ =

⋃
S∈l(S′) S and i ∈ I(Ω′)} are

identical to the equilibrium strategies of the S ′′-partial Bayesian game.

B Connection to Standard Bayesian Games

In this section we compare Bayesian games with unawareness to standard Bayesian games.
In particular, we show how to derive a standard type space with zero probability from
our unawareness structure by “flattening” our lattice of spaces. “Flattening” the game
is a purely technical procedure. While we can show a correspondence between equilibria
in a Bayesian game with unawareness and equilibria in a standard Bayesian game, the
equilibrium in the standard Bayesian game cannot be interpreted anymore under un-
awareness because the “language” required to identify events of which a player could be
unaware is essentially “erased”. Since a flattened structure is a standard type-space, the
“Dekel-Lipman-Modica-Rustichini critique” applies (Modica and Rustichini, 1994, Dekel,
Lipman, and Rustichini, 1998). Hence unawareness is trivial in the flattened game.

Let S be an unawareness belief structure. We define the flattened type-space associ-
ated with the unawareness belief structure S by

F (S) := 〈Ω, (tFi )i∈I〉,

where Ω is the union of all state-spaces in the unawareness belief structure S and tFi :
Ω −→ ∆(Ω) is defined by,

tFi (ω)(E) :=

{
ti(ω)(E ∩ Sti(ω)) if E ∩ Sti(ω) 6= ∅
0 otherwise.

Note that when flattening an unawareness belief structure, we lose the lattice structure
of spaces and thus the event structure. For instance, recall that in an unawareness
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belief structure the negation of the event (D↑, S) with D ⊆ S is defined by ¬(D↑, S) =
((S \ D)↑, S). This is typically a proper subset of the complement Ω \ D↑ . That is,
(S \D)↑ $ Ω \D↑ . But it is precisely our lattice structure that allows us to circumvent
the impossibility result by Dekel, Lipman, and Rustichini (1998).

A standard type-space on Y for the player set I is a tuple

Y :=
〈
Y, (ti)i∈I

〉
,

where Y is a nonempty set and for i ∈ I, ti is a function from Y to ∆ (Y ), the space of
countably additive probability measures on Y , such that for all ω ∈ Y , ti (ω) ([ti (ω)]) = 1
with [ti (ω)] := {ω′ ∈ Y : ti (ω

′) = ti (ω)} (i.e., introspection).

The properties of the type mapping in the unawareness belief structure S implies
immediately the following:

Proposition 5 If S is an unawareness belief structure, then F (S) is a standard type-
space. Moreover, it has the following property: For every p > 0, E ⊆ Ω, and i ∈ I:
{ω ∈ Ω : ti(ω)(E ∩ Sti(ω)) ≥ p} = {ω ∈ Ω : tFi (ω)(E) ≥ p}.

Proof. We only have to show introspection. I.e., for all ω ∈ Ω, i ∈ I, and E ∈ F ,
tFi (ω)([tFi (ω)]) = 1 with [tFi (ω)] = {ω′ ∈ Ω : tFi (ω′) = tFi (ω)}. But this follow directly
from property (iv) of the type mapping in the unawareness belief structure S. �

A flattened unawareness structure is just a standard type-space. To derive such a
type-space, one extends a player’s type mapping by assigning probability zero to sets
for which the player’s belief was previously undefined. Of course, once an unawareness
structure is flattened, there is no way to analyze reasoning about unawareness anymore
since by Dekel, Lipman, and Rustichini (1998) unawareness is trivial.

Note that the converse to Proposition 5 is not true. I.e., given a standard type-space, it
is not always possible to find some unawareness structure with non-trivial unawareness.
For instance, let X = {ω1, ω2, ω3} with ti(ω1) = ti(ω2) = ti(ω3) = τi and τi({ω1}) =
τi({ω2}) = 1

2
and τi({ω3}) = 0. If Ω = S = X, then by Dekel, Lipman, and Rustichini

(1998) the unawareness structure has trivial unawareness only. Any non-trivial partition
of X into separate spaces yields either no projections or violates properties (i) to (iii).
We conclude that not every standard types-space with zero probability can be used to
model unawareness. We understand the contribution of our work as making restrictions
required for modeling unawareness precise in unawareness belief structures.

Definition 12 (Flattened Game) Given a Bayesian game with unawareness of events
and (possibly) actions Γ(S), we can associate a standard Bayesian game F (Γ(S)) played
on a standard type-space (with possibly allowing for varying action sets of the players
across different types) in the following manner:

If Γ(S) = 〈S, (Mi)i∈I , (Mi)i∈I , (ui)i∈I〉, where S = 〈S, (rSαSβ )Sβ�Sα , (ti)i∈I〉 is a un-

awareness belief structure, then set F (Γ(S)) := 〈F (S), (Mi)i∈I , (Mi)i∈I , (ui)i∈I〉, where
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F (S) is the flattened structure associated with S, and (Mi)i∈I , (Mi)i∈I , and (ui)i∈I re-
main unchanged.

The flattened game is a standard Bayesian game (apart from explicitly modeling
uncertainty about opponents’ action sets).

Proposition 6 Since the strategy sets and the utility functions remain unchanged, we
have that any strategy profile is a Bayesian equilibrium in Γ(S) if and only if it is a
Bayesian equilibrium in F (Γ(S)).

The interpretation of a flattened game may be flawed in several ways. For instance,
we can have types of players who are certain of their set of actions, but consider it
possible that they have a larger set of actions even though they don’t have a larger set
of actions. This leads to serious conceptual problems, if a player were to choose such
an action. A player could then “test” his own beliefs by trying to choose such actions.
Consider as a simple example an unawareness belief structure with two disjoint spaces,
S1 = {ω1} � S2 = {ω2} and one player only. Let the set of the player’s available actions
at ω1 be {a, b}, while it is just {a} at ω2. The type mapping is defined by t(ω)({ω2}) = 1
for all ω. That is, although at ω1 the player has actions a and b available, he is unaware
of b. In the flattened game, he is aware of b but is certain at ω2 that he has just action a
available. But because he is aware of b at ω2, he could try to test his belief by trying to
choose b. The flattened game is not well-defined because it is not specified what happens
if a player tries to take an action that is not available to him.

The fact that an unawareness beliefs structure can be “flattened” into a standard
type spaces does not mean that unawareness has no behavior implications. Unawareness
has very different properties from probability zero belief. For instance, one property
that is satisfied by unawareness is symmetry (see Heifetz, Meier, and Schipper, 2013a,
Proposition 5). An agent is unaware of an event if and only if she is unaware of its
negation. Clearly, such a property cannot be satisfied by probability zero belief because
if an agent assigns probability zero to an event, then she must assign probability one
to its complement. Schipper (2013) shows that this feature captures also behavioral
differences between unawareness and probability zero belief. Let’s say a decision maker
chooses among different contracts for buying a firm. A second contract may differ from
a first contract only in a consequence for an event E that is disadvantageous to the
buyer. If the decision maker is indifferent between both contracts, then this is consistent
with E being Savage null. Yet, if the decision maker is also indifferent between the first
and a third contract that differs from the first only in assigning this disadvantageous
consequence to the negation of the event E instead the event E itself, then this behavior
is inconsistent with the negation of the event E or the event E itself being Savage null.
The decision maker behaves as if both the event E and its negation are Savage null,
which is impossible with probability zero belief but consistent with unawareness of the
E and of its negation. Thus, in models with primitives that are sufficiently rich to study
decisions under unawareness, unawareness can have behavioral implications distinct from
zero probability.
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C Further Proofs

C.1 Proof of Remark 2

Let ω = (α0, (αi)i∈I) with α0 = α, and let α � β � δ. We have to show for every
i ∈ I0 that inf{αi, δ} = inf{δ, inf{αi, β}}. Since δ � β, we have inf{αi, δ} � inf{αi, β}
and hence inf{αi, δ} � inf{δ, inf{αi, β}}. We have inf{δ, inf{αi, β}} � δ, by defini-
tion, but since inf{αi, β} � αi, we also have inf{δ, inf{αi, β}} � αi. This implies
inf{δ, inf{αi, β}} � inf{αi, δ}. �

C.2 Proof of Lemma 1

We prove only the last claim, since the rest is obvious.

Let α � β � δ, ω = (αj)j∈I0 ∈ Sα and tki (ωβ) ∈ ∆(Sδ). By definition tki (ω) ∈ ∆(Sαi).
We have to show that αi � δ. Since tki (ωβ) ∈ ∆(Sδ), we have by (i’) that ωβ = (βj)j∈I0
is such that βi = δ. By the definition of rαβ , we have βi = inf{αi, β}. Hence δ � αi. �

C.3 Proof of Remark 3

We define α ∩ β to be the restricted game such that Mα∩β
i := Mα

i ∩M
β
i , for all i ∈ I.

Note that if α, β ∈ G(γ), then α∩β = α∧β since G(γ) is a meet-sublattice of the lattice
of all restricted games.

Let ∅ 6= M ′
i ⊆ Mi, where Mi is the action set of player i in γ. We have to show that

{ω ∈ Ω :Mi(ω) ⊇M ′
i} is an event.

By definition, G(γ) is a finite meet-sublattice of the lattice of all restricted games given
γ ordered by set inclusion of

∏
i∈IMi. Fix a player i ∈ I. Recall that Mi(ω) = Mα

i , for
all ω ∈ Sα, where Mα

i is the action set of player i in the restricted game α.

Let A = {α ∈ G(γ) : Mα
i ⊇ M ′

i}. Since G(γ) is a finite meet-sublattice,
⋂
α∈A α =:

α(M ′
i) ∈ G(γ). We have M ′

i ⊆ M
α(M ′i)
i and M

α(M ′i)
i ⊆ Mi(ω), for all ω such that

Mi(ω) ⊇ M ′
i . Since for ω ∈ Sα, Mi(ω) = Mα

i , we have that [M ′
i ] = {ω ∈ Ω :Mi(ω) ⊇

M ′
i} =

(
Sα(M ′i)

)↑
, which is an event. �

C.4 Proof of Lemma 2

Suppose for some i ∈ I, νi would not be a best reply to ν−i. Then there exists mi ∈ Mi

such that
ε ≤ vi(mi, ν−i)− vi(νi, ν−i),

28



for some ε > 0. By continuity of the utility functions in mixed strategies and in beliefs
on types there exists a k1 such that∣∣∣vi(νi, ν−i)− U(i,tki (γ̄))(σ

k
i , σ

k
−i)
∣∣∣ < ε

3
,

for all k ≥ k1. And likewise there exits k2 such that∣∣∣U(i,tki (γ̄))(mi, σ
k
−i)− vi(mi, ν−i)

∣∣∣ < ε

3
,

for all k ≥ k2.

Let k ≥ max{k1, k2}, then

U(i,tki (γ̄))(mi, σ
k
−i)− U(i,tki (γ̄))(σ

k
i , σ

k
−i)

= U(i,tki (γ̄))(mi, σ
k
−i)− vi(mi, ν−i)︸ ︷︷ ︸ + vi(mi, ν−i)− vi(νi, ν−i)︸ ︷︷ ︸
≥ − ε

3
≥ ε

+ vi(νi, ν−i)− U(i,tki (γ̄))(σ
k
i , σ

k
−i)︸ ︷︷ ︸

≥ − ε
3

≥ ε
3
,

that is, σki is not a best reply to σk−i, for sufficiently large k. This implies that σk is not
an equilibrium of the game Γ(Skγ), for sufficiently large k, a contradiction. �

C.5 Proof of Theorem 1

For every k = 0, 1, ...., the Bayesian game with unawareness Γ(Skγ) has an equilibrium by
Corollary 1. Since the set of mixed strategy combinations at γ̄ is a closed and bounded
subset of an Euclidean space, the sequence of equilibria (σk(γ̄))∞k=0 has a subsequence
that converges to some ν. By Lemma 2, ν is an unawareness perfect equilibrium of γ̃.�

C.6 Proof of Theorem 2

“⇒”: Let ν be an unawareness perfect equilibrium of γ̃. Then there exists a sequence of
Bayesian games with unawareness

(
Γ(Skγ)

)∞
k=0

with corresponding Bayesian Nash equi-

libria σk ∈ E(Γ(Skγ)), k = 0, 1, ..., for which σk(γ̄)→ ν as k →∞.

From Pearce (1984, Lemma 4) follows that a Nash equilibrium profile ν of the original
game γ̃ is undominated if and only if for every i ∈ N , νi is a best response to a completely
mixed strategy profile of opponents in the original game γ̃. Note that by Property (v),∑

ω∈Sγ t
k
i (γ̄)({ω})σk−i(ω) is equivalent to a completely mixed strategy profile of opponents

for any k = 0, 1, ..., in the original game γ̃. Since σki (γ̄) → νi, for any mi ∈ Mi with
νi(mi) > 0, there exists a sufficiently large k(mi) such that for all k ≥ k(mi), σ

k
i (γ̄)(mi) >
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0. Since Mi is finite, there is a kmax such for all k ≥ kmax, σki (γ̄)(mi) > 0 for all mi ∈Mi

with νi(mi) > 0. Thus, any such mi ∈ Mi is a best reply to
∑

ω∈Sγ t
k
i (γ̄)({ω})σk−i(ω),

for all k ≥ kmax. Hence, νi is a best reply to the completely mixed belief equivalent to∑
ω∈Sγ t

kmax
i (γ̄)({ω})σkmax

−i (ω).

“⇐”: Recall that from Pearce (1984, Lemma 4) it follows that a Nash equilibrium
profile ν is undominated in the original game γ̃ if and only if for every i ∈ N , νi is a best
response to a completely mixed strategy profile of opponents ν̃−i in γ̃. We will use these
completely mixed strategy profiles ν̃−i, i ∈ I, to construct a sequence of Bayesian games
with unawareness

(
Γ(Skγ)

)∞
k=0

with Bayesian Nash equilibria σk ∈ E(Γ(Skγ)), k = 0, 1, ...,

for which σk(γ̄)→ ν as k →∞.

Given the augmented strategic game γ, consider any restricted strategic game α with
di ∈Mα

i for all i ∈ I and 1 ≤ |Mα
i | ≤ 2. Note that by construction in any such restricted

game, each player has at most one non-default action and if there is a non-default action
for player i, then this non-default action is the strict dominant Nash equilibrium action
of α. Let G(γ) be the set comprising of all such games, ⊥, and γ itself. Note that G(γ)
is rich (see page 16) and a lattice.

We now construct a sequence of Bayesian games with unawareness of actions by
defining for each player i ∈ I the type mapping as follows: For m−i ∈ M̃−i, define `(m−i)
to be the number of profiles (αj)j∈I\{i} with αj ∈ G(γ) \ {⊥, γ}, j ∈ I \ {i}, for which
{m−i} =

∏
j∈I\{i}

(
M

αj
j \ {dj}

)
. (Note that in such a profile we have |Mαj

j | = 2, for all

j ∈ I \ {i}).
Fix ε ∈ (0, 1). If ω = (αj)j∈I0 with αj ∈ G(γ) \ {⊥, γ} such that |Mαj

j | = 2, for

j ∈ I \ {i} and αj = γ for j ∈ {0, i}, let tki (γ̄)({ω}) = εk

`(m−i)
ν̃−i(m−i) with {m−i} =∏

j∈I\{i}(M
αj
j \ {dj}).

All the remaining probability mass of player i’s type at state γ̄ at k, 1−εk, is assigned
to tki (γ̄)({γ̄}). We impose properties (i’), (ii’), and (iv’). Property (iii’) is implied by
Lemma 1. Properties (v) and (vi) are satisfied by construction. Beliefs of player i in
states different from γ̄ are then either completely determined by beliefs in γ̄ via properties
(ii’) and (iv’) or can be assigned so as to satisfy properties (i’) to (vi).

Next, we construct a sequence of Bayesian Nash equilibria whose limit in state γ̄ is the
undominated Nash equilibrium ν of the original game γ̃. For any player i and any k, let
σki (ω) = νi for all ω ∈ Sγ with ω = (βj)j∈I0 such that βi = γ. Moreover, set σki (ω)(di) = 1
in any other state ω = (βj)j∈I0 with Mβi = {di}. Finally, set σki (ω)(mi) = 1 with mi 6= di
in any state ω = (βj)j∈I0 with Mβi = {mi, di}. (Recall that such a non-default action
is strictly dominant.) Since in the latter states, σki (ω) ∈ ∆(Mα

i ), for α ≺ γ, we extend
σki (ω) to σ̃ki (ω) ∈ ∆(Mi) by setting σ̃ki (ω)(mi) := σki (ω)(mi) for all ω ∈ Ωγ and mi ∈Mα

i .

Note that
∑

ω∈Sγ t
k
i (γ̄)({ω})σ̃k−i(ω)→ ν−i for k →∞. Moreover, for any k,∑

ω∈Sγ t
k
i (γ̄)({ω})σ̃k−i(ω) is a convex combination of ν̃−i and ν−i.

To see that σk is a Bayesian Nash equilibrium for any k = 0, 1, ..., note that σki (ω) = νi
with ω = (βj)j∈I0 such that βi = γ is a best reply to ν−i since ν is Nash equilibrium of γ̃.
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Since ν is an undominated Nash equilibrium of γ̃, we also noted above that νi is a best
reply against ν̃−i. Hence νi is also a best reply to any convex combination of ν−i and ν̃−i.
It follows that for any k = 0, 1, ..., σki is a Bayesian Nash equilibrium mixture of player i
in the Bayesian game with unawareness Γ(Skγ). Since σki (γ̄) = νi for all k and i ∈ I, ν is
an Unawareness perfect equilibrium of γ̃. �
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