Multiple Choice Questions [20 pts]

Please provide your answers to this section below:

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

1) When the estimated slope coefficient in the simple regression model, $\hat{\beta}$, is zero, then
 a. $R^2 = \bar{Y}$.
 b. $0 < R^2 < 1$.
 c. $R^2 = 0$.
 d. $R^2 > (SSR/TSS)$.

2) Heteroskedasticity means that
 a. homogeneity cannot be assumed automatically for the model.
 b. the variance of the error term is not constant.
 c. the observed units have different preferences.
 d. agents are not all rational.

3) The reason why estimators have a sampling distribution is that
 a. economics is not a precise science.
 b. individuals respond differently to incentives.
 c. in real life you typically get to sample many times.
 d. the values of the explanatory variable and the error term differ across samples.

4) In the simple linear regression model, the regression slope
 a. indicates by how many percent Y increases, given a one percent increase in X.
 b. when multiplied with the explanatory variable will give you the predicted Y.
 c. indicates by how many units Y increases, given a one unit increase in X.
 d. represents the elasticity of Y on X.
5) The variance of Y_i is given by
 a. $\beta_0^2 + \beta_1^2 \text{var}(X_i) + \text{var}(u_i)$.
 b. the variance of u_i.
 c. $\beta_1^2 \text{var}(X_i) + \text{var}(u_i)$.
 d. the variance of the residuals.

6) The slope estimator, β_1, has a smaller standard error, other things equal, if
 a. there is more variation in the explanatory variable, X.
 b. there is a large variance of the error term, u.
 c. the sample size is smaller.
 d. the intercept, β_0, is small.

7) To decide whether or not the slope coefficient is large or small,
 a. you should analyze the economic importance of a given increase in X.
 b. the slope coefficient must be larger than one.
 c. the slope coefficient must be statistically significant.
 d. you should change the scale of the X variable if the coefficient appears to be
too small.

8) $E(u_i | X_i) = 0$ says that
 a. dividing the error by the explanatory variable results in a zero (on average).
 b. the sample regression function residuals are unrelated to the explanatory
 variable.
 c. the sample mean of the Xs is much larger than the sample mean of the errors.
 d. the conditional distribution of the error given the explanatory variable has a
 zero mean.

9) Under the least squares assumptions (zero conditional mean for the error term, X_i and
 Y_i being i.i.d., and X_i and u_i having finite fourth moments), the OLS estimator for
 the slope and intercept
 a. has an exact normal distribution for $n > 15$.
 b. is BLUE.
 c. has a normal distribution even in small samples.
 d. is unbiased.

10) If the absolute value of your calculated t-statistic exceeds the critical value from the
 standard normal distribution, you can
 a. reject the null hypothesis.
 b. safely assume that your regression results are significant.
 c. reject the assumption that the error terms are homoskedastic.
 d. conclude that most of the actual values are very close to the regression line.
Problems [40 pts]

Instructions: The goal of the problem set is to understand what you are doing rather than just getting the correct result. Please show your work clearly and neatly. Please write your answers in the space provided.

1) Sir Francis Galton, a cousin of James Darwin, examined the relationship between the height of children and their parents towards the end of the 19th century. It is from this study that the name “regression” originated. You decide to update his findings by collecting data from 110 college students, and estimate the following relationship:

\[
\text{Studenth} = 19.6 + 0.73 \times \text{Midparh}, \ R^2 = 0.45, \ SER = 2.0
\]

\[
(7.2) \quad (.10)
\]

where \text{Studenth} is the height of students in inches, and \text{Midparh} is the average of the parental heights. Values in parentheses are heteroskedasticity robust standard errors. (Following Galton’s methodology, both variables were adjusted so that the average female height was equal to the average male height.)

(a) Interpret the estimated coefficients.

(b) If children, on average, were expected to be of the same height as their parents, then this would imply two hypotheses, one for the slope and one for the intercept.

(i) What should the null hypothesis be for the intercept? Calculate the relevant \(t\)-statistic and carry out the hypothesis test at the 1% level.

(ii) What should the null hypothesis be for the slope? Calculate the relevant \(t\)-statistic and carry out the hypothesis test at the 5% level.
(c) What is the prediction for the height of a child whose parents have an average height of 70.06 inches?

(d) Construct a 95% confidence interval for a one inch increase in the average of parental height.

(e) Given the positive intercept and the fact that the slope lies between zero and one, what can you say about the height of students who have quite tall parents? Who have quite short parents?

(f) Galton was concerned about the height of the English aristocracy and referred to the above result as “regression towards mediocrity.” Can you figure out what his concern was? Why do you think that we refer to this result today as “Galton’s Fallacy?”
2) The neoclassical growth model predicts that for identical savings rates and population growth rates, countries should converge to the per capita income level. This is referred to as the convergence hypothesis. One way to test for the presence of convergence is to compare the growth rates over time to the initial starting level.

(a) If you regressed the average growth rate over a time period (1960-1990) on the initial level of per capita income, what would the sign of the slope have to be to indicate this type of convergence? Explain. Would this result confirm or reject the prediction of the neoclassical growth model?

(b) The results of the regression for 104 countries were as follows:

\[
g_{6090} = 0.019 - 0.0006 \times \text{RelProd}_{60}, \quad R^2 = 0.00007, \quad SER = 0.016
\]

(0.004) (0.0073)

where \(g_{6090}\) is the average annual growth rate of GDP per worker for the 1960-1990 sample period, and \(\text{RelProd}_{60}\) is GDP per worker relative to the United States in 1960.

Interpret the results. Is there any evidence of unconditional convergence between the countries of the world? Is this result surprising? What other concept could you think about to test for convergence between countries?
(c) Using the OLS estimator with homoskedasticity-only standard errors, the results changed as follows:

\[g6090 = 0.019 - 0.0006 \times \text{Rel Prod}_{60}, \quad R^2 = 0.00007, \quad SER = 0.016 \]

\[(0.002) \quad (0.0068) \]

Why didn’t the estimated coefficients change? Given that the standard error of the slope is now smaller, can you reject the null hypothesis of no beta convergence? Are the results in (c) more reliable than the results in (b)? Explain.

(d) You decide to restrict yourself to the 24 OECD countries in the sample. This changes your regression output as follows:

\[g6090 = 0.048 - 0.0404 \times \text{Rel Prod}_{60}, \quad R^2 = 0.82, \quad SER = 0.0042 \]

\[(0.004) \quad (0.0063) \]

How does this result affect your conclusions from above? When you test for convergence, should you worry about the relatively small sample size?
3) Consider the following model:

\[Y_i = \beta_1 X_i + u_i. \]

Derive the OLS estimator for \(\beta_1 \).
EViews Exercise [40 pts]

The data for this exercise is already in EViews form and can be found in the file “cal_scores.wf1.” A brief explanation of the contents of this file can be found in the document “cal_scores.doc.” Make sure to become familiar with the description of the data, how it was collected and any possible issues that may help you interpret your regression output. These data are used throughout chapters 4-7. Here, we will replicate some of the examples in the book. This will help you check that you are doing things correctly. I am more interested in your interpretation of the results than in your ability to copy output in EViews onto a Word document.

1. Display the scatter plot of the average test score variable against the student-teacher ratio. Be sure to display the graph that includes the regression line.

2. Estimate the OLS regression of average test score on student-teacher ratio. Make sure that you are able to replicate the estimate results reported in page 99-101 in your book.

3. Estimate the OLS regression of average reading score on student-teacher ratio and then another regression where the dependent variable is the math score instead. Compare these results with those obtained in part 2 above and comment on their differences and similarities. In particular, given that the U.S. ranks low in math but high in reading, what do the regression results tell you about the relative merits of reducing class size in each field?

4. Going back to the original regression in part 2, do a hypothesis test on the slope coefficient to determine whether class size has any impact on test scores. Repeat on the regressions in part 3. Should this be a one-sided or a two-sided type of test? Be sure to do the hypothesis test that makes the most common sense. For all three regressions, calculate a 95% confidence level and comment on how much do the confidence intervals overlap with each other. What does this tell you, if anything? Note: be sure to do all these calculations using heteroskedasticity robust standard errors.

5. Subsample your data according to whether or not there are English learners in the school and repeat the regression in part 2 for each of these two groups (i.e., 0% English learners versus > 0% English learners in school). Comment on the results of this exercise – what do the results tell you from a policy point of view?