1. The Variance of $\hat{\alpha}$ and $\hat{\beta}$ in the Linear Regression Model

1.1. Two useful results

- **The Law of Iterated Expectations:**

\[
E_x(X) = E_y(E(X|Y))
\]
(1.1)

- **The Decomposition of the Variance:**

\[
V(Y) = V_x(E(Y|X)) + E_x(V(Y|X))
\]
(1.2)

1.2. The variance of $\hat{\beta}$

Recall:

\[
\hat{\beta} = \beta_0 + \frac{\sum_{t=1}^{T} (x_t - \bar{x})(\varepsilon_t - \bar{\varepsilon})}{\sum_{t=1}^{T} (x_t - \bar{x})^2}
\]

Note:

\[
V(\hat{\beta}|X) = V\left(\beta_0 + \frac{\sum_{t=1}^{T} (x_t - \bar{x})(\varepsilon_t - \bar{\varepsilon})}{\sum_{t=1}^{T} (x_t - \bar{x})^2} \middle| X\right) = \frac{1}{\left(\sum_{t=1}^{T} (x_t - \bar{x})^2\right)^2} V\left(\sum_{i=1}^{T} (x_t - \bar{x})(\varepsilon_t - \bar{\varepsilon}) \middle| X\right)
\]
This step is possible due to two properties. The first is that β_0 is a constant and therefore its variance is zero. The second is that by conditioning on X, we can pull outside the variance term the denominator of this expression. Expanding the variance term explicitly we obtain,

$$
\frac{1}{\left(\sum_{t=1}^{T}(x_t - \bar{x})^2\right)^2} \left\{ (x_1 - \bar{x})^2 V(\varepsilon_1 - \bar{\varepsilon}|X) + \ldots + (x_T - \bar{x})^2 V(\varepsilon_T - \bar{\varepsilon}|X) \right\} =
$$

$$
\frac{1}{\left(\sum_{t=1}^{T}(x_t - \bar{x})^2\right)^2} \left\{ \sigma^2 \left(\sum_{t=1}^{T}(x_t - \bar{x})^2\right) \right\} =
$$

$$
\frac{\sigma^2}{\left(\sum_{t=1}^{T}(x_t - \bar{x})^2\right)^2}
$$

Next, we use this result and the decomposition of the variance to obtain,

$$
V(\bar{x}) = V_x(E(\bar{x}|X)) + E_x(V(\bar{x}|X)) =
$$

$$
V_x(\beta_0) + \sigma^2 E_x \left(\frac{1}{\left(\sum_{t=1}^{T}(x_t - \bar{x})^2\right)^2} \right) = \sigma^2 E_x \left(\frac{1}{\left(\sum_{t=1}^{T}(x_t - \bar{x})^2\right)^2} \right) \quad \text{(Q.E.D.)}
$$
1.3. The variance of $\hat{\alpha}$

Using similar techniques, one can show that:

$$V(\hat{\alpha}) = \sigma^2 E_x \left(\frac{\sum_{t=1}^{T} x_t^2}{T \left(\sum_{t=1}^{T} (x_t - \bar{x})^2 \right)^2} \right)$$

However, proper derivation of this result is more involved.

1.4. The covariance between $\hat{\alpha}$ and $\hat{\beta}$

This result is a bit easier to derive. By definition of the covariance

$$COV(\hat{\alpha}, \hat{\beta}) = E(\hat{\alpha} - E(\hat{\alpha}))(\hat{\beta} - E(\hat{\beta}))$$

Note:

$$E(\hat{\alpha}) = \alpha_0$$

$$E(\hat{\beta}) = \beta_0$$

$$\hat{\alpha} = \bar{Y} - \hat{\beta}\bar{X}$$

Substituting these results into the formula for the covariance,

$$E(\hat{\alpha} - E(\hat{\alpha}))(\hat{\beta} - E(\hat{\beta})) = E \left\{ (\bar{Y} - \hat{\beta}\bar{X} - \alpha_0)(\hat{\beta} - \beta_0) \right\} =$$
\[E \left\{ (\alpha_0 + \beta_0 X + \varepsilon - \hat{\beta} X - \alpha_0)(\hat{\beta} - \beta_0) \right\} = E \left\{ (X(\hat{\beta} - \beta_0)^2 \right\} \]

where we have used the fact that \(E(\varepsilon) = 0 \). By the Law of Iterated Expectations:

\[E \left\{ (-X(\hat{\beta} - \beta_0)^2 \right\} = E_x \left\{ E \left\{ (-X(\hat{\beta} - \beta_0)^2 | X \right\} \right\} \]

\[E \left\{ (-X(\hat{\beta} - \beta_0)^2 | X \right\} = -X E \left\{ (\hat{\beta} - \beta_0)^2 | X \right\} = -XV(\hat{\beta} | X) \]

Therefore,

\[E_x \left(\frac{-X \sigma^2}{\sum_{t=1}^{T}(x_t - \bar{X})^2} \right) = -\sigma^2 E_x \left(\frac{-X}{\sum_{t=1}^{T}(x_t - \bar{X})^2} \right) \] \(\text{(Q.E.D.)} \)