
OPDSGE (formerly lq solution): A
DYNARE-based Matlab-code for Optimal

Policy in DSGE models

Giovanni Lombardo
Bank for International Settlements

First Version 2007 – Update 2017

Abstract

This note explains how to use the OPDSGE toolbox (formerly
lq solution but essentially unchanged). This toolbox derives optimal
policies for DSGE models in closed and open economies. For the lat-
ter it allows to derive cooperative and non-cooperative policies. It
also generate the quadratic welfare function following the algorithm
suggested by Benigno and Woodford (2011). Starting from a DSGE
model written in DYNARE-compatible syntax, this toolbox computes
the non-linear optimal (cooperative or non-cooperative) policy and re-
writes the result in a new DYNARE-compatible (.mod) file. Optimal
and sub-optimal policies can then be compared using the LQ solu-
tion technique. This toolbox is meant to be used in conjunction with
DYNARE.

1 The toolbox

The toolbox consists of two parts: The OPDSGE folder and the
utilities sub-folder. The latter contains auxiliary functions mainly
needed to manipulate strings. Furthermore in the example folder you
find a simple (Rotemberg-type of) model used to test this toolbox (The
test is not very thorough!). The example folder also contains a two-
country model used to compute the non-cooperative and cooperative
equilibria.

1



1.1 Core of the toolbox

OPDSGE.m TheOPDSGE.m is the main code. This code rewrites
(rather inefficiently) the original model, as read out of the .mod file,
into a new model that conforms with the notation used in Benigno
and Woodford (2011) (BW henceforth).1 The new model is written
in a new .mod file. The name of this file is <name of the original
file><suffix>.mod, where <suffix> is “ lq” if not otherwise specified.

For example, the “suffix” coul be “optimal”, when the optimal
policy is computed, and “suboptimal” when the model is only parsed
but no optimal policy is computed. The two models can then be used
for welfare comparison as discussed below.

If requested, the new .mod file will also include the FOC of the
Lagrange problem obtained by combining the objective function with
all the structural equations excluding exogenous shocks.

In order to activate the derivation of FOCs, must append a tag
to the policy rules (e.g. append + poly to the policy rule, where poly
is a declared parameter with value=0.)

This new file can used directly to run DYNARE.
Example: add the policy tag to the policy equation and run

OPDSGE[options] . This will produce an optimal policy model.
Then remove the tag and run OPDSGE[options] giving a different
extension (see below how to run OPDSGE ).

Now have a reference model and a sub-optimal-policy model. Both
can be solved using DYNARE.

1.2 lq eval welfare

The OPDSGE program can also be used to compute the LQ solution
of Benigno and Woodford (2011)

This file must be run after DYNARE is run on your preferred .mod
file that you have previously generated with OPDSGE.m.

In the first few lines of lq eval welfare have some input you have
to give. In particular the “namemod” variable must be assigned to
your reference model (e.g. the optimal Ramsey model); The rest
should be general.

Proceed as follows

1. Run DYNARE on your reference model

2. Run lq eval welfare

3. Agree to save the requested information

4. Run DYNARE on the alternative model (e.g. suboptimal policy)

1Notice that the solution technique has also been discussed by Levine et al. (2006)

2



5. Run lq eval welfare

6. Don’t save

7. Read on screen the welfare comparison.

Note: if there are lagged variables for which the parser creates
dummies, you have to extend the sub-optimal model to include the
dummies generated in the optimal model. That is, generate the op-
timal model starting from a model without the dummies. Add the
dummies to the original model.

lq symbol welf If you run lq symbol welf you will get a partially
symbolic expression for the welfare function: i.e. the variables will
appear in symbolic form. This allows you to see which variables appear
in the quadratic welfare function.

lq soc This code (called from lq eval welfare), computes the second
order conditions of the optimal problem as described by BW.

1.3 Non-cooperative policy games

The OPDSGE toolbox can handel non-cooperative policy games.2

For this to work you have to specify the objective function as the
weighted sum of the “home” and “foreign” welfare. I suggest to define
it as Util = uu h ∗ Ut h + uu f ∗ Ut f , where Ut h is the welfare
measure for the “home” country and Ut f is the one for the “foreign”
country. uu h and uu f are 0− 1 parameters.

In this case a further parameter, called “nash param“ will appear
in the policy problem.

After having generated the new .mod file with OPDSGE.m, you
can evaluate the cooperative equilibrium setting the auxiliary vari-
able nash param = 1; nash param = 0 will produce the “non-
cooperative” equilibrium.

The cooperative equilibrium can be taken as the reference policy
when running lq eval welfare

1.4 The .mod file

The OPDSGE toolbox runs on models written in DYNARE notation
in a .mod file.

There are only few syntax rules that must be followed in order to
make the .mod file readable by this toolbox.

2Currently only one instrument per player.

3



1.4.1 Syntax rules

1. The list of variables must be separated by commas (e.g. var
C,Y,L;)

2. For the sake of comparison I’ve tried to make the new .mod
file compatible with the syntax required by get ramsey notation
(see Levin and López-Salido (2004)). As it is difficult to foresee
everything, have a second look at the mod file (or wait for it to
crash on get ramsey and check why)

3. The equations of the exogenous shocks should enter last in the
model block of the .mod file and preceded by the comment \\.
Exogenous Shocks;

4. At present no lags larger than 1 or leads larger than 1 are
allowed.3

5. If want to have have FOCs of the optimal rule you must add
a tag (e.g. R+poly), where the tag must be a listed parameter
(just assign a zero to it). This tag will identify the policy rule.

1.5 The steadystate.m file

DYNARE allows the user to provide a MATLAB function that returns
the steady state of the model. The name of this function must be
<name of the mod file> steadystate.

The OPDSGE toolbox assumes that this function exists. Further-
more it assumes that this function takes the following form

function [ys ,flag]=<name of the mod file> steadystate(x)
...
[solution of the steady state and assignment of values to variables (user specific)]
...
% assign to lgy the name of the variables in the order used by DYNARE
lgy =evalin(’base’,’lgy ’);
...
[some way to assign the steady-state variables to the ys output of this function]
e.g. for kkk=1:size(lgy ,1); ys (kkk)=eval(lgy (kkk,:)); end;

There is a reason why this function must be written in this form.
The toolbox will make a copy of this function for the new mod file and
it will write the new auxiliary steady-state definition right above the
“lgy =evalin(’base’,’lgy ’);” command. This auxiliary definitions are

3Obviously, if the model need to have this extra leads and lags, the user must replace
them with auxiliary variables that go back or forward in time period by period.

4



generated only in conjunction with new variables when this is neces-
sary in order to conform with BW notation (i.e. when forward looking
equations display backward-looking variables or leads of shocks appear
in the equations).

Notice that you don’t really have to use this steady-state function
if you want to use DYNARE built-in solver. In this case you just need
to rename the new steadystate file (or delete it) while making sure
that the steady-state of auxiliary variables (if exist) is somehow made
known to DYNARE (e.g. add it to the “initval” block);

1.6 Running OPDSGE.m

The toolbox contains one code that must be run only once on a new
model (i.e. every time you change the equations but not every time
you change the parameter values)

To run this part of the toolbox simply type in the command win-
dow of MATLAB

>> OPDSGE <list of 9 entries> separated by space

1. name of original mod file (obvious)

2. Util (name of variable describing utility)

3. Welf (name of variable describing Welfare... not really used)

4. policy id (tag to the policy equation: if the tag is not found...
all equations are used as constraints)

5. lagr name (Name assigned to the Lagrange multipliers (they are
going to be numbered)

6. ext ss (Possible extension used in the model to denote steady-
state variables4

7. extension (suffix used to save the new mod file)

8. 0/1 value: 1= symbolic evaluation of matrices will be computed;
0= numeric evaluation of matrices.

9. 0/1 value: 1=non-cooperative solution will be generated; 0=
Standard solution will be generated. Notice that for the optimal
(cooperative or non-cooperative) solution to be computed you
must add a tag to the policy rules (see above).

If one of the inputs is not given, you will be prompted to supply
the missing one on the command line.

4You must be careful when using steady-state variables in the model as they might
affect the optimal policy. In particular, if policy is not neutral in the steady-state, steady-
state variables should not appear in the model.

5



2 Initial Condition and Timeless Per-

spective

The current version of OPDSGE does compute the penalty term in
the BW LQ solution that takes into account the violation of the initial
conditions.

This is done by saving information on the solution of the opti-
mal model. This information is then retrieved when evaluating an-
other model in order to compute the unconditional covariance be-
tween the optimal Lagrange multipliers (on the forward-looking block)
with the endogenous variables under the sub-optimal model. (see
penalty term.m)

3 The NK-Rotemberg model

This code has been tested only on a very simple model for which
an analytical solution of the quadratic welfare function can be easily
derived.

The model is a forward looking model with sticky prices à la
Rotemberg (The mod file is nk model rot.mod, parameters are in
param nk model.m) and productivity shocks.

The household utility function is

U = shock pref

(
C1−γ

1− γ
− L1+ς

1 + ς

)
(1)

Assuming that γ = 2, ς = 1, prices are flexible (xip = 0) and that
there are subsidies to offset the mark-up distortion, I obtain after
running lq symbol welf

W̃ = −C̃2 − 1/2 L̃2 +
(
C̃ − L̃

)
shock pref + C̃shock prod (2)

The presence of subsidies imply that the welfare function is purely
quadratic. Under flexible prices L = C/shock prod. One can see that
the result is indeed the second order expansion of (1).

Please cite as Coenen et al. (2009)

References

Benigno, P. and Woodford, M. (2011). Linear-Quadratic Approxima-
tion of Optimal Policy Problems. Journal of Economic Theory.

6



Coenen, G., Lombardo, G., Smets, F., and Straub, R. (2009). Inter-
national Transmission and Monetary Policy Coordination. In Gáli,
J. and Gertler, M., editors, International Dimensions of Monetary
Policy. University Of Chicago Press, Chicago.

Levin, A. T. and López-Salido, J. D. (2004). Optimal Monetary Policy
with Endogenous Capital Accumulation.

Levine, P., Pearlman, J., and Pierce, R. (2006). Linear-Quadratic
Approximation, External Habit and Targeting Rules.

7


