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Preface
Two years ago I wrote an open access textbook on Game Theory (http://faculty.

econ.ucdavis.edu/faculty/bonanno/GT_Book.html). Encouraged by the many ex-
pressions of appreciation from students and scholars around the world, I decided to write a
second textbook: this time on Decision Making. I have been teaching an upper-division
undergraduate class in Decision Making at the University of California, Davis for many
years and was not able to find a suitable textbook. Hopefully this book will fill this gap.

I tried to write the book in such a way that it would be accessible to anybody with
minimum knowledge of mathematics (high-school level algebra and some elementary
notions of set theory and probability, which are reviewed in the book). The book is
appropriate for an upper-division undergraduate class, although some parts of it might be
useful also to graduate students.

I have followed the same format as the Game Theory book, by concluding each
chapter with a collection of exercises that are grouped according to that chapter’s sections.
Complete and detailed answers for each exercise are given in the last section of each
chapter. The book contains a total of 121 fully solved exercises.

I expect that there will be some typos and (hopefully, minor) mistakes. If you come
across any typos or mistakes, I would be grateful if you could inform me: I can be reached
at gfbonanno@ucdavis.edu. I will maintain an updated version of the book on my web
page at

http://www.econ.ucdavis.edu/faculty/bonanno/

A printed copy of this book is available from Amazon.com for $20: see my web page for a
link.

I intend to add, some time in the future, a further collection of exercises with detailed
solutions. Details will appear on my web page.

I am very grateful to Elise Tidrick for designing the cover of the book, for meticulously
going through each chapter of the book and for suggesting numerous improvements. Her
insightful and constructive comments have considerably enhanced this book.
I would like to thank Mathias Legrand for making the latex template used for this book
available for free (the template was downloaded from http://www.latextemplates.

com/template/the-legrand-orange-book).
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1. Introduction

Life is made up of a never-ending sequence of decisions. Many decisions – such as what to
watch on television or what to eat for breakfast – are rather unimportant. Other decisions –
such as what career to pursue, whether or not to invest all of one’s savings in the purchase
of a house – can have a major impact on one’s life. This book is concerned with Decision
Making, which the Oxford Dictionary defines as “the process of deciding about something
important”. We will not attempt to address the issue of what decisions are to be considered
“important”. After all, what one person might consider an unimportant decision may be
viewed by another individual as very important. What we are interested in is the process of
making decisions and what it means to be a “rational” decision maker.

In the next chapter we define an action a to be rational if the outcome that the decision
maker (from now on referred to as ‘the DM’) believes to be associated with a is considered
by the DM to be at least as good as the outcome that the DM believes to be associated
with any alternative available action. This definition makes it clear that we are focusing
on decisions concerning actions. Actions produce consequences or outcomes and when
deciding what action to take, the DM must first try to predict what outcome(s) will be
associated with every available action. Chapter 2 deals with decisions under certainty,
that is, with situations where the DM has no uncertainty about what the consequences of
each action will be. In such situations, choosing among actions is equivalent to choosing
among outcomes and the only issue is how to rank outcomes. Chapter 2 discusses the
notion of a “rational ranking” of outcomes.

It is rare, however, that one finds himself/herself facing decisions under certainty.
Most of the time the outcome of an action is also influenced by external factors that are
outside the decision maker’s control, such as the side effects of a new drug, or the future
price of real estate, or the occurrence of a natural phenomenon (such as a flood or fire or
earthquake). We call these external factor states. Chapter 3 and Chapter 4 deal with
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the issue of how to represent decision problems under uncertainty. In the state-outcome
representation (Chapter 3) one associates with every available action a set of outcomes, one
for every state. The uncertainty concerns what state will actually materialize. Chapter 3
deals with decision criteria that do not require assigning probabilities to the states. Chapter
4 introduces an alternative representation of decision problems under uncertainty that
makes use of decision trees.

Chapter 5 and Chapter 6 deal with situations where the DM is able to quantify his/her
uncertainty by assigning probabilities to the states. Chapter 5 introduces the theory of
expected utility, which tries to capture the notion of how to “rationally” rank uncertain
prospects and Chapter 6 applies the theory to the state-outcome representation and the
decision-tree representation of decision problems under uncertainty.

Chapter 7 and Chapter 8 are concerned with the issue of information and how to
adjust one’s beliefs after the receipt of new information. For example, the information
could be the result of a blood test or the opinion of an expert or the outcome of an
experiment. Chapter 7 deals with conditional reasoning and introduces two equivalent
methods: the natural frequencies approach and Bayes’ rule. Chapter 8 defines information
more precisely and distinguishes between “belief updating” and “belief revision”. The
former takes place when the information received is not surprising, in the sense that the
corresponding event was assigned positive probability in the initial beliefs. The latter is
more general and also includes situations where one is faced with information represented
by zero-probability events.

Chapter 9 addresses the issue of when information is useful and whether one can
assign a value to potential information. For example, how much should one be willing to
pay for the opinion of an expert?

The analysis in the first nine chapters deals with decision problems where the outcomes
are assumed to take place at a point in time and the DM’s current decision has no effect
on what options will be available to her in the future. Chapter 10 addresses the issue of
intertemporal choice where decisions involve costs and benefits realized at different points
in time and thus require comparing one’s own welfare at some time (in the present or in
the future) with one’s own welfare at a later time.

Up to Chapter 10, the focus is on individual decision making. Chapter 11 and Chapter
12 turn to collective decision making. Groups of individuals, or societies, are also involved
in decision making. The group could be the board of directors of a company, or the
members of a club, or the residents of a city, or indeed the entire nation (as in the case of
general elections). There are two issues that arise in this context. The first is the issue of
preference aggregation: can the (often conflicting) opinions of the different members of
a group be aggregated into a single ranking of the alternatives (to be thought of as “the
group’s ranking”) in a way that does not violate some “natural” requirements? This is the
object of Chapter 11. The second issue is whether the decision procedure (or voting rule)
employed to arrive at a final choice for society is subject to manipulation, in the sense that
the members of the group have an incentive to misrepresent their preferences. This is the
issue of strategic voting and is the object of Chapter 12.
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Chapter 13 closes with a brief overview of biases in decision making and judgment
formation. The analysis of the first twelve chapters is based on the notion of rationality:
how should a rational decision maker make her decisions or form her judgments? As a
matter of fact, individuals often fail to conform to principles of rationality. Psychologists
and behavioral economists have uncovered systematic errors that people make in their
decision making. Chapter 13 discusses some of these errors and provides a list of references
for the reader who is interested in pursuing this topic further.

At the end of each section of each of Chapters 2-12 the reader is invited to test his/her
understanding of the concepts introduced in that section by attempting some exercises. In
order not to break the flow of the exposition, the exercises are collected in a section at the
end of the chapter. Complete and detailed answers for each exercise are given in the last
section of each chapter. In total, the book contains 121 fully solved exercises. Attempting
to solve the exercises is an integral part of learning the material covered in this book.

The book was written in a way that should be accessible to anyone with minimum
knowledge of mathematics: high-school level algebra and some elementary notions of set
theory and probability, which are reviewed at the beginning of Chapter 7.

The spacing in this book does not necessarily follow conventional formatting standards.
Rather, it is the editor’s intention that each step is made plain in order for the student
to easily follow along and quickly discover where he/she may grapple with a complete
understanding of the material.





2. Outcomes and Preferences

2.1 Preference relations

When we are faced with a decision among alternative courses of action, we need to consider
the possible consequences of each action, that is, we need to take into account what the
outcome of each action will be. Our objective will then be to choose that action that will
bring about an outcome that we consider to be best. Thus, in order to make a “rational
choice” of a course of action, we first need to come up with a ranking of the possible
outcomes.

Recall the following notation from set theory: x ∈ S means that x is an element of
the set S (usually sets are denoted by capital letters and elements by lower-case letters);
S ⊆ T means that S is a subset of T , that is, every element of S is also an element of T (for
example, if S = {a,b,c} and T = {a,b,c,d,e}, then S is a subset of T ).

We will denote by O the set of possible outcomes and assume throughout that it is a
finite set: O = {o1,o2, . . . ,om} (m ≥ 1). O×O denotes the Cartesian product of the set O
with itself, that is, the set of ordered pairs (o,o′) with o,o′ ∈ O. Note the importance of
the word ‘ordered’: (o,o′) and (o′,o) are two different pairs.
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Definition 2.1.1 A binary relation R on a set O is a set of ordered pairs of elements
of O, that is, R ⊆ O×O. R is said to be complete if, for all o,o′ ∈ O either (o,o′) ∈ R
or (o′,o) ∈ R or both. R is transitive if for any three elements o1,o2,o3 ∈ O, if it is the
case that (o1,o2) ∈ R and (o2,o3) ∈ R then it is also the case that (o1,o3) ∈ R.

For example, let O = {a,b,c,d,e} and let R = {(a,c),(a,d),(c,d),(e,a),(e,c),(e,d)}.
Then R is not complete because neither (a,b) nor (b,a) are in R. On the other hand, R is
transitive because:

(1) both (a,c) and (c,d) are in R and so is (a,d),
(2) both (e,a) and (a,c) are in R and so is (e,c),
(3) both (e,a) and (a,d) are in R and so is (e,d),
(4) both (e,c) and (c,d) are in R and so is (e,d).

Note that in propositional logic the statement “if p then q” is true if either both p and
q are true or p is false (p is called the antecedent and q the consequent). Thus, in our
example, the statement “if (a,c) ∈ R and (c,e) ∈ R then (a,e) ∈ R” is true because the
antecedent “(a,c) ∈ R and (c,e) ∈ R” is false (since, while it is true that (a,c) ∈ R, it is
false that (c,e) ∈ R and thus the conjunction of the two statements is false).

R If R is a binary relation on the set O then it is common to express the fact that o is
related to o′ (according to R) either by writing (o,o′) ∈ R or by writing oRo′.

We use binary relations very often in our daily lives, for example when we rank people
according to age (“Ann is older than Bob”), when we compare courses in terms of difficulty
(“organic chemistry is more difficult than introductory economics”), when we compare
commodities in terms of prices (“a Telsa electric car is more expensive than a Toyota
Prius”), etc. Note that, in general, the relation “is older than” is not complete, because
it may be that two individuals were born on the same day and at the same time and thus
neither of them is older than the other. On the other hand, the relation “is older than or just
as old as” is complete (on any set of individuals). Indeed, if one starts with the relation
“is older than or just as old as” then one can derive from it the relation “is older than” by
defining it as follows: “x is older than y” if (1) “x is older than or just as old as y” and (2) it
is not the case that “y is older than or just as old as x”. Similarly, from the “is older than or
just as old as” relation one can obtain the “is just as old as” relation by defining “x is just
as old as y” if (1) “x is older than or just as old as y” and also (2) “y is older than or just as
old as x”.

R The relations we are interested in are preference relations on sets of outcomes.
Instead of using the symbol R for such relations we shall use the symbol ≿ and the
interpretation of o ≿ o′ is that the individual under consideration deems outcome o
to be at least as good as outcome o′, that is, either she thinks that o is better than
o′ – i.e., she prefers o to o′ – or she thinks that o is just as good as o′ – i.e., she is
indifferent between o and o′.
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Definition 2.1.2 A preference relation ≿ on a set of outcomes O is called rational if it
is complete and transitive.

Why do we impose completeness and transitivity as requirements for rationality? We
postpone a discussion of this issue to Section 2.3.

We shall use the symbol ≿ for “at least as good as”, the symbol ≻ for “better than” and
the symbol ∼ for “just as good as”. Table 2.1 summarizes the notation.

Notation Interpretation

o ≿ o′
The individual considers outcome o to be at least as good as o′

(that is, either better than or just as good as)

o ≻ o′
The individual considers outcome o to be better than o′(

that is, she prefers o to o′
)

o ∼ o′
The individual considers outcome o to be just as good as o′(

that is, she is indifferent between o and o′
)

Table 2.1: Notation for preference relations

Definition 2.1.3 We take ≿ to be the basic relation and extract from it the other two
relations ≻ and ∼ as follows:

• o ≻ o′ if and only if o ≿ o′ and o′ ̸≿ o
(that is, o is preferred to o′ if o is considered to be at least as good as o′ but it is
not the case that o′ is considered to be at least as good as o),

• o ∼ o′ if and only if o ≿ o′ and o′ ≿ o
(that is, the individual is indifferent between o and o′ if she considers o to be at
least as good as o′ and she also considers o′ to be at least as good as o).

R Let ≿ be a complete and transitive “weak preference” relation on a set O. Then
the two derived relations ≻ (for strict preference) and ∼ (for indifference) are also
transitive (that is, for any three outcomes o1,o2 and o3, if o1 ≻ o2 and o2 ≻ o3 then
o1 ≻ o3 and if o1 ∼ o2 and o2 ∼ o3 then o1 ∼ o3: see Exercises 2.3 and 2.4 in Section
2.4.1).

There are (at least) four ways of representing, or expressing, a complete and transitive
preference relation over (or ranking of) a set of outcomes. For example, suppose that
O = {o1,o2,o3,o4,o5} and that we want to represent the following ranking (expressing
the preferences of a given individual): o3 is better than o5, which is just as good as o1, o1
is better than o4, which, in turn, is better than o2 (thus, o3 is the best outcome and o2 is the
worst outcome). We can represent this ranking in one of the following ways.
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• As a subset of O×O:{
(o1,o1),(o1,o2),(o1,o4),(o1,o5)

(o2,o2),
(o3,o1),(o3,o2),(o3,o3),(o3,o4),(o3,o5),
(o4,o2),(o4,o4),
(o5,o1),(o5,o2),(o5,o4),(o5,o5)

}
• By using the notation of Table 2.1: o3 ≻ o5 ∼ o1 ≻ o4 ≻ o2.
• By listing the outcomes in a column, starting with the best at the top and proceeding

down to the worst, thus using the convention that if outcome o is listed above
outcome o′ then o is preferred to o′, while if o and o′ are written next to each other
(on the same row), then they are considered to be just as good:

best o3
o1,o5
o4

worst o2

• By assigning a number to each outcome, with the convention that if the number
assigned to o is greater than the number assigned to o′ then o is preferred to o′, and
if two outcomes are assigned the same number then they are considered to be just as
good. For example, we could choose the following numbers:

o1 o2 o3 o4 o5
6 1 8 2 6 .

Such an assignment of numbers is called a utility function. A useful way of thinking
of utility is as an “index of satisfaction”: the higher the index the better the outcome;
however, this suggestion is just to aid memory and should be taken with a grain
of salt because a utility function does not measure anything and, furthermore, as
explained below, the actual numbers used as utility indices are completely arbitrary.1

Definition 2.1.4 Given a complete and transitive ranking ≿ of a finite set of outcomes
O, a function U : O → R (where R denotes the set of real numbers)a is said to be an
ordinal utility function that represents the ranking ≿ if, for every two outcomes o and o′,
U(o)>U(o′) if and only if o ≻ o′ and U(o) =U(o′) if and only if o ∼ o′. The number
U(o) is called the utility of outcome o.b

aThe notation f : X → Y is used to denote a function which associates with every x ∈ X an element
y = f (x) with y ∈ Y .

bThus, o ≿ o′ if and only if U(o)≥U(o′).

1Note that assigning a utility of 1 to an outcome o does not mean that o is the “first choice”. Indeed, in
this example a utility of 1 is assigned to the worst outcome: o2 is the worst outcome because it has the lowest
utility (which happens to be 1, in this example).
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R Note that the statement “for Alice the utility of Mexican food is 10” is in itself a
meaningless statement; on the other hand, what would be a meaningful statement is
“for Alice the utility of Mexican food is 10 and the utility of Japanese food is 5” ,
because such a statement conveys the information that she prefers Mexican food to
Japanese food. However, the two numbers 10 and 5 have no other meaning besides
the fact that 10 is greater than 5: for example, we cannot (and should not) infer from
these numbers that she considers Mexican food twice as good as Japanese food. The
reason for this is that we could have expressed the same fact, namely that she prefers
Mexican food to Japanese food, by assigning utility 100 to Mexican food and −25
to Japanese food, or with any other two numbers (as long as the number assigned to
Mexican food is larger than the number assigned to Japanese food).

It follows from the above remark that there is an infinite number of utility functions that
represent the same ranking. For instance, the following are equivalent ways of representing
the ranking o3 ≻ o1 ≻ o2 ∼ o4 ( f , g and h are three out of the many possible utility
functions):

outcome →
utility f unction ↓

o1 o2 o3 o4

f 5 2 10 2
g 0.8 0.7 1 0.7
h 27 1 100 1

Utility functions are a particularly convenient way of representing preferences and we
shall often make use of them.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 2.4.1 at the end of this chapter.

2.2 Rational choice under certainty
By “choice under certainty” we mean a situation where the decision maker – from now
on referred to as “the DM”– has no doubt as to what outcome will occur after each of the
actions that are available to her. In other words, she is certain that if she takes action a1
then the outcome will be o1, if she takes action a2 then the outcome will be o2, etc. For
example, if the DM is driving on the freeway and sees a sign that says “Exit 7 to 34th Street
in 1 mile, Exit 8 to 59th Street in 2 miles” then the DM can be confident that if she takes
Exit 7 then she will bring about the outcome where she finds herself on 34th Street and
if she takes Exit 8 then she will bring about the outcome where she finds herself on 59th

Street.
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In our daily lives it is possible – but rare – that we find ourselves operating under
conditions of certainty. Most of the time we make decisions under conditions of uncertainty,
where – as far as we know – an available action can lead to several possible outcomes. For
example, if we are faced with the decision whether or not to have surgery to remedy an
injury, we don’t know if the surgery will be successful or not and we don’t know if the
alternative course of action of not having surgery will lead to spontaneous healing or to a
worsening of the pain. The topic of choice under uncertainty is thus more relevant2 and
will be the main focus of the book. In this section we briefly discuss what it means to act
rationally under conditions of certainty.

When the DM is able to associate a unique outcome to each of the actions available to
her, choosing an action is equivalent to choosing an outcome. Assuming that the DM has a
rational (that is, a complete and transitive) ranking of the outcomes then the following is a
natural definition of “rational choice”.

Definition 2.2.1 Let A be the set of actions available to the DM and let O be the
corresponding set of outcomes.a We say that action a is a rational choice for the DM
if, letting o be the outcome that the DM believes to be associated with a, there is no
action a′ ∈ A such that, letting o′ be the outcome that the DM believes to be associated
with a′, o′ ≻ o.

aThat is, o ∈ O if and only if there is an action a ∈ A such that o is the outcome that – according to
the DM’s beliefs – is associated with a.

Thus, an available action a is a rational choice if the outcome that the DM believes to
be associated with a is considered by the DM to be at least as good as the outcome that the
DM believes to be associated with any alternative available action.

R Note that we have used the expression “the outcome that the DM believes to be
associated with a” rather than “the outcome associated with a” because the DM
might have erroneous beliefs, that is, she might believe that action a will lead to
outcome o, when in fact it will lead to a different outcome o′. In order to assess the
rationality of a choice, what matters is what the DM believes, not what is actually
true.

2As the French Philosopher Francois-Marie Arouet (1694 - 1778) – more commonly known by his pen
name Voltaire – put it, “Doubt is not a pleasant condition, but certainty is an absurd one”. The quote appeared
in a letter to Frederick II of Prussia in 1767 (see: https://www.causeweb.org/cause/resources/library/r1779/)
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For example, suppose that Ann is about to take a shower and there are two faucets,
one labeled ‘hot water’ and the other ‘cold water’, and she prefers taking a hot shower to
taking a cold shower. Suppose also that the faucets are mislabeled and Ann is unaware of
this. Then it would be objectively (or causally) true that “if Ann turns on the faucet labeled
‘hot water’ she will get cold water”; however, she cannot be judged to be irrational if she
holds the belief “if I turn on the faucet labeled ‘hot water’ I will get hot water” and acts on
this belief by turning on the faucet labeled ‘hot water’. What matters when judging the
rationality of a choice is not what would in fact be the case but what the agent believes
would be the case.3

R If we represent the DM’s preferences by means of a utility function (see Definition
2.1.4) then the expression “choosing a best outcome (that is, an outcome which is
at least as good as any other outcome)” can be equivalently stated as “choosing an
outcome that has the largest utility”. Thus, it is common, in textbooks and scholarly
articles, to find the expression “a rational agent makes a choice that maximizes his
utility”. It should be noted, however, that – while this statement may sound deep
to an outsider – it is merely a restatement, using the notion of utility function, of
Definition 2.2.1: “maximizing utility” means nothing more (or less) than “choosing a
best outcome”.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 2.4.2 at the end of this chapter.

2.3 Why completeness and transitivity?
In Definition 2.1.2 we imposed completeness and transitivity as requirements of rationality
for preferences. Why such requirements?

Let us start with transitivity. Suppose that Don’s preferences are not transitive; in
particular he prefers coffee (C) to tea (T), tea to orange juice (O) and orange juice to coffee:
C ≻ T, T ≻ O and O ≻C. Vlad gives Don a cup of tea and tells him “if you wish, you
can upgrade to coffee in exchange for a small sum of money”; since Don prefers coffee to
tea, he will be willing to pay a small sum, say 10 cents, to exchange tea for coffee. Vlad
takes away the tea and brings him coffee and says “if you wish, you can upgrade to orange
juice in exchange for a small sum of money”; since Don prefers orange juice to coffee,
he will be willing to pay a small sum, say 10 cents, to exchange coffee for orange juice.
Vlad takes away the coffee and brings him orange juice and says “if you wish, you can

3Should we then accept any beliefs as “reasonable” or “rational”? For example, consider the following
case. In 2011 Harold Camping, president of Family Radio (a California-based Christian radio station),
predicted that Rapture (the taking up into heaven of God’s elect people) would take place on May 21, 2011. In
light of this prediction some of his followers gave up their jobs, sold their homes and spent large sums promot-
ing Camping’s claims (http://en.wikipedia.org/wiki/Harold_Camping_Rapture_prediction).
Did these people act rationally? According to our Definition 2.2.1 the answer is Yes (presumably, they
viewed their proselytizing as “qualifying them for Rapture”, undoubtedly an outcome that they preferred to
the alternative of enduring the wrath of Judgment Day). Anybody who argues that the above decision was
not rational must be appealing to a stronger definition of rationality than Definition 2.2.1: one that denies the
rationality of holding those beliefs. For our purposes, Definition 2.2.1, although very weak, is sufficient. The
issue of rationality of beliefs will be taken up in Chapter 8 when dealing with how to revise one’s beliefs
when faced with new information.

http://en.wikipedia.org/wiki/Harold_Camping_Rapture_prediction
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upgrade to tea in exchange for a small sum of money”; since Don prefers tea to orange
juice, he will be willing to pay a small sum, say 10 cents, to exchange orange juice for
tea. Now Don is in the situation he started at, namely he has a cup of tea in front of him,
but his wealth has been reduced by 30 cents! This cycle can then be repeated indefinitely,
leading Don to give up a substantial amount of money. This phenomenon is called a money
pump and if an individual’s preferences are not transitive, he can be subjected to a money
pump. Ruling out money pumps is an argument for imposing transitivity of preferences as
a requirement of rationality.

In the above example, Don’s preferences are complete: given any pair of items from the
set {C,O,T}, Don is able to compare the two items and rank them (however, his ranking
fails to be transitive). The lack of completeness of preferences means that there are at
least two outcomes o and o′ such that the DM is unable to rank them: he neither prefers
one to the other nor is he indifferent between the two. This means that, if given a choice
between o and o′, the DM is unable to make up his mind. This situation is illustrated in the
story of Buridan’s ass, where a hungry donkey is placed precisely midway between two
stacks of hay; since the ass will always go to (“prefers”) whichever is closer, it is unable to
choose between the two and dies of hunger.4 The ability to make a choice between any
two outcomes is thus considered to be a minimum requirement of rationality.

While there are good reasons to impose completeness and transitivity as requirements
of rationality, it is also easy to understand how these two requirements may come to be
violated in practice. Typically, outcomes can be viewed as “bundles of characteristics”
and, although it may be straightforward to rank the outcomes in terms of each individual
characteristic, it may be difficult to evaluate the overall desirability of one outcome
versus another. For example, suppose that Sandra, a successful 30-year old woman, has
received marriage proposals from three men: Alex, Brian and Charlie. There are three
characteristics that are most important to Sandra in assessing the desirability of a future
spouse: intelligence (the more intelligent, the better), physical attractiveness (the more
attractive, the better) and annual income (the higher the income, the better). Letting ‘H’
stand for ‘high’ (or above average), ‘M’ for ‘medium’ (or average) and ‘L’ for ‘low’ (or
below average), Sandra evaluates the three suitors as follows:

Intelligence Attractiveness Income
Alex H L M
Brian M H L

Charlie L M H

Each suitor is better than the other two in one dimension, but worse than one of the other
two in another dimension. If Sandra is unable or unwilling to consider one characteristic
as the most important one, she might decide to rank any two suitors as follows: x is better
than y if x dominates y in at least two characteristics. According to this criterion, Alex is
better than Brian (because he ranks higher in terms of intelligence and income), Brian is
better than Charlie (because he ranks higher in terms of intelligence and attractiveness) and
Charlie is better than Alex (because he ranks higher in terms of attractiveness and income):
Alex ≻ Brian, Brian ≻ Charlie and Charlie ≻ Alex. While this ranking is complete, it
fails to satisfy transitivity.

4The paradox is named after the 14th century French philosopher Jean Buridan; see:
https://en.wikipedia.org/wiki/Buridan’s_ass.
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A similar example can shed light on the reason why sometimes preferences may fail to
be complete. Suppose that Ann is considering buying a house and the two most important
features are low commuting time (the lower the better) and price (the lower the better).
She has seen two houses, H1 and H2, which are almost identical in terms of design and
square footage. H1 is at a walking distance from her office, but costs $500,000, while H2
costs only $300,000 but requires a 45-minute commute by car. Unless Ann is willing to
either focus on only one characteristic or to attach weights to the two characteristics, she
will be unable to rank H1 versus H2 (which is not the same as saying that she is indifferent
between H1 and H2).

2.4 Exercises

The solutions to the following exercises are given in Section 2.5 at the end of this chapter.

2.4.1 Exercises for Section 2.1: Preference relations

Exercise 2.1 Let the set of outcomes be O = {o1,o2,o3}. Alice says that she is
indifferent between o1 and o2 and also between o2 and o3. Furthermore, she says
that she prefers o1 to o3. Explain why her preferences are not rational in the sense of
Definition 2.1.2. Give a detailed argument, showing each step in the reasoning. ■

Exercise 2.2 Let the set of outcomes be O = {o1,o2,o3}. Bob says that he prefers o1
to o2 and he prefers o2 to o3 . He also says that he is indifferent between o1 and o3.
Explain why Bob’s preferences are not rational in the sense of Definition 2.1.2. Give a
detailed argument, showing each step in the reasoning. ■

Exercise 2.3 Prove that if ≿ is a complete and transitive relation on the set O then the
derived relation ≻ (see Definition 2.1.3) is also transitive. ■

Exercise 2.4 Prove that if ≿ is a complete and transitive relation on the set O then the
derived relation ∼ (see Definition 2.1.3) is also transitive. ■
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Exercise 2.5 Let the set of outcomes be O = {o1,o2, . . . ,o7}. Ann’s preference relation
over these outcomes is complete and transitive and is as follows:

best o4,o5
o2

o1,o6
o7

worst o3

For each of the following functions U1,U2,U3 and U4, determine whether the function
is a utility function that represents Ann’s preferences.

o1 o2 o3 o4 o5 o6 o7
U1 : 5 7 0 10 10 4 2
U2 : 0 3 −10 12 12 0 −5
U3 : 15 18 8 20 20 15 10
U4 : −7 −4 −12 −1 −1 −7 −9

■

2.4.2 Exercises for Section 2.2: Rational choice under certainty

Exercise 2.6 Let O= {o1,o2, ...,o7} be a set of outcomes. Bill has a preference relation
on O which is complete and transitive. His preferences have not changed over time and
he always chooses rationally. He also told you that there are only two outcomes that he
considers to be just as good as each other (that is, he is indifferent between them).

- One time he had to choose from the set {o1,o2,o4} and he chose o2.
- Another time he had to choose from the set {o4,o5,o6} and he chose o4.
- A third time he had to choose from the set {o1,o2,o3,o7} and he chose o1.
- A fourth time he had to choose from the set {o3,o4,o7} and he chose o4.
- A fifth time he had to choose from the set {o3,o5,o6,o7} and he chose o6.
- A sixth time he had to choose from the set {o5,o7} and he chose o7.

(a) Find all the possible preference relations that could represent Bill’s preferences
(in the sense that his preference relation must be one of the ones in your list).

(b) If Bill had to choose between o3 and o5, what would he choose?
■
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2.5 Solutions to Exercises
Solution to Exercise 2.1. According to her statements, o1 ∼ o2, o2 ∼ o3 and o1 ≻ o3.
These preferences are clearly complete. Thus, they are not rational if and only if they are
not transitive. Indeed, transitivity fails. Since o2 ∼ o3, by definition of ∼ we have that
o3 ≿ o2. Similarly, it follows from o1 ∼ o2 that o2 ≿ o1. From o3 ≿ o2 and o2 ≿ o1 it
would follow from transitivity that o3 ≿ o1, but this contradicts Alice’s claim that o1 ≻ o3
(since, by definition of ≻, o1 ≻ o3 implies that it is not the case that o3 ≿ o1). □

Solution to Exercise 2.2. According to Bob’s statements, o1 ≻ o2, o2 ≻ o3 and o1 ∼ o3.
These preferences are clearly complete. Thus, they are not rational if and only if they are
not transitive. Indeed, transitivity fails. Since o1 ∼ o3, by definition of ∼ we have that
o3 ≿ o1. Furthermore, it follows from o1 ≻ o2 that o1 ≿ o2. From o3 ≿ o1 and o1 ≿ o2 it
would follow from transitivity that o3 ≿ o2 but this contradicts Bob’s claim that o2 ≻ o3
(since, by definition of ≻, o2 ≻ o3 implies that it is not the case that o3 ≿ o2). □

Solution to Exercise 2.3. Let o1,o2,o3 ∈ O be such that o1 ≻ o2 and o2 ≻ o3. We need to
show that o1 ≻ o3. Since o1 ≻ o2, o1 ≿ o2 and since o2 ≻ o3, o2 ≿ o3. Thus, by transitivity
of ≿, o1 ≿ o3. It remains to prove that o3 ̸≿o1. Suppose that o3 ≿ o1; then, since o1 ≿ o2
it would follow from transitivity of ≿ that o3 ≿ o2, contradicting the hypothesis that
o2 ≻ o3. □

Solution to Exercise 2.4. Let o1,o2,o3 ∈ O be such that o1 ∼ o2 and o2 ∼ o3. We need to
show that o1 ∼ o3. Since o1 ∼ o2, o1 ≿ o2 and since o2 ∼ o3, o2 ≿ o3; thus, by transitivity
of ≿, o1 ≿ o3. Similarly, since o1 ∼ o2, o2 ≿ o1 and since o2 ∼ o3, o3 ≿ o2; thus, by
transitivity of ≿, o3 ≿ o1. It follows from o1 ≿ o3 and o3 ≿ o1 that o1 ∼ o3. □

Solution to Exercise 2.5. Recall that Ann’s ranking of the outcomes is as follows:

best o4,o5
o2

o1,o6
o7

worst o3

The candidate utility functions are:

o1 o2 o3 o4 o5 o6 o7
U1 : 5 7 0 10 10 4 2
U2 : 0 3 −10 12 12 0 −5
U3 : 15 18 8 20 20 15 10
U4 : −7 −4 −12 −1 −1 −7 −9

U1 does not represent Ann’s preferences because o1 ∼ o6 (Ann is indifferent between o1
and o6) and yet U1(o1) = 5 > U1(o6) = 4. The other three are indeed utility functions
that represent Ann’s preferences because they all satisfy the property that, for every two
outcomes o and o′, U(o) > U(o′) if and only if o ≻ o′ and U(o) = U(o′) if and only if
o ∼ o′. □
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Solution to Exercise 2.6. The information is as follows:
(1) from the set {o1,o2,o4} Bill chose o2; we shall express this more succinctly as follows:
{o1,o2,o4} 7→ o2,
(2) {o4,o5,o6} 7→ o4,
(3) {o1,o2,o3,o7} 7→ o1,
(4) {o3,o4,o7} 7→ o4,
(5) {o3,o5,o6,o7} 7→ o6,
(6) {o5,o7} 7→ o7.

(a) From (1) we deduce that o2 ≿ o1 and from (3) that o1 ≿ o2. Thus, it must be that
o1 ∼ o2. Since Bill is indifferent only between two outcomes, every other ranking
must be strict. From (1) we get o1 ≻ o4, from (2) o4 ≻ o5 and o4 ≻ o6, from (3)
o1 ≻ o3 and o1 ≻ o7, from (4) o4 ≻ o3 and o4 ≻ o7, from (5) o6 ≻ o3, o6 ≻ o5 and
o6 ≻ o7 and from (6) o7 ≻ o5. Thus, by making use of transitivity, we conclude that
there are only three possibilities:

best o1,o2
o4
o6
o3
o7

worst o5

 ,


best o1,o2

o4
o6
o7
o3

worst o5

 ,


best o1,o2

o4
o6
o7
o5

worst o3

 .

(b) We do not have enough information. If his preference relation is one of the first two,
then he will choose o3, but if it is the third one then he will choose o5. □



3. States and Acts

3.1 Uncertainty, states, outcomes and acts

In the previous chapter we considered the rather unrealistic case where the Decision Maker
(DM) is certain of what outcome will follow from any of his available actions. In real life
we do not enjoy such certainty because the final outcome of any decision that we make is
also influenced by external factors over which we have no control. For example, suppose
that Ann and Bob are planning their wedding reception. They have a large number of guests
and face the choice between two venues: a spacious outdoor area where the guests will
be able to roam around or a small indoor area where the guests will feel rather crammed.
Ann and Bob want their reception to be a success and their guests to feel comfortable.
It seems that the large outdoor area is a better choice; however, there is also an external
factor that needs to be taken into account, namely the weather. If it does not rain, then
the outdoor area will yield the best outcome but if it does rain then the outdoor area will
be a disaster. For Ann and Bob the weather is an external factor over which they have
no control (they can try to predict it, but they cannot control it). We shall refer to such
external factors as “states of the world” or simply states (that is, a state specifies all the
external facts that are relevant in determining the outcome associated with any action that
is taken).

Definition 3.1.1 A state is a complete specification of all the external facts that are
relevant to the DM. By “external” fact we mean a fact that cannot be controlled by the
DM (such as the weather).

The presence of alternative states introduces uncertainty. An action, or decision, will
typically yield different outcomes, depending on what state actually occurs. At the time of
making the decision one can only list, for every action, the set of possible outcomes, one
for every state. Instead of using the terms ‘action’ or ‘decision’ or ‘choice’ it is common
in the literature to use the term act. Thus, a decision problem under uncertainty can be
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described using a table, where rows correspond to acts (that is, possible decisions) and
columns correspond to states (that is, external circumstances over which the DM has no
control).

Our example for the wedding party can thus be represented as follows (‘rec.’ stands for
‘reception’):

STATES
No rain Rain

ACTS
choose outdoor venue successful rec. disastrous rec.
choose indoor venue unremarkable rec. unremarkable rec.

Note that it is crucial that the states be specified correctly; in particular there should
not be a causal link between acts and states. For example, consider a student who reasons
as follows:

There are two states, one where I pass the exam and one where I do not pass
the exam. I have two choices: (1) study and forgo going to a party or (2) not
study and go to the party. Thus, my decision problem looks as follows:

STATES
Pass exam Not pass exam

ACTS
study pass and miss party fail and miss party

not study pass and enjoy party fail and enjoy party

Hence, the student concludes that he is better off not studying, because – no matter what
the actual state turns out to be – he gets a better outcome by not studying as compared
to studying. The student’s reasoning is fallacious because there is a causal relationship
between studying and passing the exam (studying affects the probability of passing the
exam). Thus, the student has not reached his decision (not to study) in a rational way.

How should we represent the student’s decision problem? We want to acknowledge
the causal relationship between studying and passing the exam, while – at the same time –
allowing for uncertainty (studying does not guarantee a good grade). We must distinguish
between what the student can control (whether or not he studies) and what he cannot
control (e.g. the level of difficulty of the exam, which is decided by another person, namely
the professor). One possible representation is as follows:

STATES
Difficult exam Easy exam

ACTS
study C grade and miss party A grade and miss party

not study F grade but enjoy party C grade but enjoy party

What is rational for the student to do depends, among other things, on how he ranks the
four outcomes.

Definition 3.1.2 Let S be a finite set of states and O a finite set of outcomes. An act is
a function a : S → O that associates with every state an outcome.

An act is thus a list of outcomes, one for every state. Hence, a decision problem under
uncertainty can be represented as a table, where the columns are labeled with states, the
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rows are labeled with acts and in each cell of the table is listed one outcome. For example
if the set of states is S = {s1,s2,s3}, the set of acts is A = {a1,a2,a3,a4} and the set of
outcomes is O = {o1,o2, . . . ,o12} then the decision problem can be represented by the
following table:

state →
act ↓

s1 s2 s3

a1 o1 o2 o3
a2 o4 o5 o6
a3 o7 o8 o9
a4 o10 o11 o12

If a : S → O is an act, we denote by a(s) the outcome that is associated with act a when the
state is s. For instance, in the example above we have that a3(s2) = o8, that is, the outcome
associated with act a3, when the state is s2, is o8.

In the rest of this chapter we turn to the issue of how to make a rational choice in a
situation of uncertainty.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 3.5.1 at the end of this chapter.

3.2 Dominance
We shall assume throughout that the DM has a complete and transitive ranking of the set
of outcomes O.

Definition 3.2.1 We say that act a strictly dominates act b if, for every state s, a(s)≻
b(s), that is, if – for every state s – the outcome associated with act a (in state s) is
preferred by the DM to the outcome associated with state b (in state s). Equivalently, if
we represent the DM’s preferences by means of an ordinal utility function U : O → R,
we say that a strictly dominates b if, for every state s, U (a(s))>U (b(s)).

For example, consider the following decision problem:

state →
act ↓

s1 s2 s3

a1 o1 o2 o3
a2 o4 o5 o6
a3 o7 o8 o9

and suppose that the DM’s preferences are as follows:

best o3
o1,o8

o5
o7,o9

o6
o4

worst o2
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Then act a3 strictly dominates act a2, since o7 ≻ o4 (state s1), o8 ≻ o5 (state s2) and o9 ≻ o6
(state s3). If we choose the following utility function to represent the DM’s preferences

Utility
best o3 6

o1,o8 5
o5 4

o7,o9 3
o6 2
o4 1

worst o2 0

then the decision problem can be re-written in terms of utilities as follows:

state →
act ↓

s1 s2 s3

a1 5 0 6
a2 1 4 2
a3 3 5 3

making it easier to see that act a3 strictly dominates act a2 (3 > 1, 5 > 4, 3 > 2). Note
that, while a3 strictly dominates a2, for any other pair of acts it is not the case that one act
strictly dominates the other.

From now on we shall mostly represent decision problems in terms of utilities.

Definition 3.2.2 We say that an act is strictly dominant if it strictly dominates every
other act.

In the above example there is no strictly dominant act; for instance, a3 is not strictly
dominant because, although it strictly dominates a2, it does not dominate a1 (indeed, if the
true state is s1 then a1 yields a better outcome than the other two acts).

R If there is a strictly dominant act, then (1) it is unique (that is, there is no other strictly
dominant act) and (2) it is the obvious rational choice, since it guarantees a better
outcome than any other act, no matter what the true state is.

Definition 3.2.3 We say that act a weakly dominates act b if, for every state s, a(s)≿
b(s) and, furthermore, there is at least one state ŝ such that a(ŝ)≻ b(ŝ); that is, a weakly
dominates b if it yields at least as good an outcome as b in every state and there is at
least one state where a yields a better outcome than b. Equivalently, if we represent the
DM’s preferences by means of an ordinal utility function U : O → R, then a weakly
dominates b if, for every state s, U (a(s))≥U (b(s)) and, furthermore, there is at least
one state ŝ such that U (a(ŝ))>U (b(ŝ)).
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■ Example 3.1 In the following decision problem,

state →
act ↓

s1 s2 s3

a1 1 3 1
a2 0 2 1
a3 1 3 3
a4 1 3 3

a1 weakly dominates a2, a3 weakly dominates a1, a3 strictly dominates a2, a4 weakly
dominates a1 and a4 strictly dominates a2. ■

R Note that, according to Definition 3.2.3, in Example 3.1 it is also true that a3 weakly
dominates a2 (and a4 weakly dominates a2), because strict dominance implies weak
dominance. In order to be as informative as possible, we will always interpret the
expression ‘weakly dominates’ as ‘dominates weakly but not strictly’, that is, if we
say that act a weakly dominates act b then we imply that there is at least one state s
such that U (a(s)) =U (b(s)).

Definition 3.2.4 Two acts, a and b are equivalent, if, for every state s, a(s) ∼ b(s).
Equivalently, if we represent the DM’s preferences by means of an ordinal utility
function U : O →R, acts a and b are equivalent if, for every state s, U (a(s)) =U (b(s)).

For instance, in Example 3.1, acts a3 and a4 are equivalent.

Definition 3.2.5 An act a is weakly dominant if, for every other act b, either a dominates
(weakly or strictly) b or a and b are equivalent.

In Example 3.1, act a3 is weakly dominant (it weakly dominates a1, strictly dominates a2
and is equivalent to a4) and so is a4.

R As noted in the previous remark, since strict dominance implies weak dominance,
an act that is strictly dominant also satisfies the definition of weak dominance. Thus,
in order to be as informative as possible, we will always interpret the expression
‘weakly dominant’ as ‘weakly, but not strictly, dominant’, that is, if we say that act a
is weakly dominant then we imply that there is at least one other act b and at least
one state s such that U (a(s)) =U (b(s)).
Note also that – while there can be only one strictly dominant act – it is possible that
there are several weakly dominant acts (as is the case with a3 and a4 in Example 3.1);
however, any two weakly dominant acts must be equivalent.
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We now illustrate the various notions of dominance (Definitions 3.2.1, 3.2.2, 3.2.3 and
3.2.5) in two examples.

Bill is participating in an auction against one other bidder.
The allowed bids are $10, $20, $30, $40 and $50.
Bill has no control over the opponent’s bid and thus we can treat it as a state.
From Bill’s point of view, the possible outcomes are of the following type: (1) he does not
win the auction and thus pays nothing or (2) he wins the auction and pays $x.
The item is worth $30 to Bill; his ranking of the outcomes is as follows:

• (win, pay $x)≻ (win, pay $y) if and only if x < y (that is, conditional on winning,
he prefers to pay less),

• (win, pay $x)≻ (not win) if and only if x < $30 (that is, he prefers winning to not
winning as long as he pays less than the value of the object to him),

• (win, pay $30) ∼ (not win) (that is, he is indifferent between not winning and
winning and having to pay what the object is worth to him),

• (not win)≻ (win, pay $x) if and only if x > $30 (that is, if he has to pay more than
the item is worth to him, then he prefers not to win).

The reader should convince himself/herself that the following utility function represents
Bill’s preferences:

U(not win) = 0 and U(win, pay $x) = 30− x.

We now consider two different auctions.

■ Example 3.2 (This is an instance of what is known as a “first-price auction”). Bill
wins the auction if and only if his bid is greater than, or equal to, the opponent’s bid.
Furthermore, if Bill wins then he has to pay his own bid. We can represent Bill’s decision
problem as follows (where the numbers are utilities):

opponent’s bid (state) →
Bill’s bid (act) ↓

$10 $20 $30 $40 $50

$10 20 0 0 0 0
$20 10 10 0 0 0
$30 0 0 0 0 0
$40 −10 −10 −10 −10 0
$50 −20 −20 −20 −20 −20

It is easy to check that the following are true (instead of writing ‘bidding $x’ we shall just
write ‘$x’):

• $10 weakly dominates $30 and $40, and strictly dominates $50,
• $20 weakly dominates $30 and $40, and strictly dominates $50,
• $30 weakly dominates $40 and strictly dominates $50,
• $40 strictly dominates $50,
• there is no (weakly or strictly) dominant act.

■
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The next example considers a different type of auction.

■ Example 3.3 (This is an instance of what is known as a “second-price auction”). As in
Example 3.2, Bill wins the auction if and only if his bid is greater than, or equal to, the
opponent’s bid; however, in this auction, if Bill wins then he has to pay not his own bid but
the opponent’s bid. We can represent Bill’s new decision problem as follows (again, the
numbers are utilities):1

opponent’s bid (state →
Bill’s bid (act) ↓

$10 $20 $30 $40 $50

$10 20 0 0 0 0
$20 20 10 0 0 0
$30 20 10 0 0 0
$40 20 10 0 −10 0
$50 20 10 0 −10 −20

It is easy to check that the following are true (again, instead of writing ‘bidding $x’ we
shall just write ‘$x’):

• $20 weakly dominates $10, $40 and $50 and is equivalent to $30,
• $30 weakly dominates $10, $40 and $50 and is equivalent to $20,
• $40 weakly dominates $50,
• both $20 and $30 are weakly dominant acts.

Note that for Bill bidding the true value of the object to him, namely $30, is a weakly
dominant act. Indeed, it can be proved that in a second-price auction (with any number of
bidders), if a bidder’s preferences are of the type given above, then it is always a dominant
choice to bid one’s true value.2 ■

How do the different notions of dominance relate to rationality? If an act, say a,
is strictly dominated by another act, say b, then choosing a is clearly irrational, since
switching to b guarantees a better outcome, no matter what the true state is.3 Thus, a
rational DM will not choose a strictly dominated act.4 According to this criterion, in
Example 3.2 all we can say is that, if Bill is rational, he will not bid $50 (this is the only
strictly dominated act), whereas in Example 2 no bids can be ruled out, since there are no
strictly dominated acts.

1For example, if the opponent’s bid is $10 and Bill’s bid is $40, then Bill wins the auction and pays not
$40 but $10, so that his utility is 30−10 = 20.

2For a precise statement of this result and a proof see:
Giacomo Bonanno, Game Theory: An open access textbook with 165 solved exercises, http://faculty.
econ.ucdavis.edu/faculty/bonanno/GT_Book.html

3This does not imply, however, that choosing b is necessarily rational; indeed it may be the case that b
itself is strictly dominated by some other act.

4It follows that, as remarked above, if there is a strictly dominant act, then it is the obvious and unique
rational choice.

http://faculty.econ.ucdavis.edu/faculty/bonanno/GT_Book.html
http://faculty.econ.ucdavis.edu/faculty/bonanno/GT_Book.html
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What about weak dominance? Can it be rational to choose a weakly dominated act? In
the previous chapter we introduced the following definition of rationality (in the context of
choice under certainty): an act is rational if, according to the DM’s beliefs, it is at least
as good as any other act. Consider Example 3.2 and the act of bidding $40. To justify
such choice the DM could explain that he is convinced that the opponent’s bid is $50
and thus bidding $40 is just as good as bidding a lower amount and better than bidding
$50. Thus, in order to argue that a bid of $40 is irrational, one would have to question the
wisdom of holding the certain belief that the opponent’s bid is $50. The choice of a weakly
dominated act is irrational only if the DM is cautious in his beliefs, in the sense that he
does not completely rule out the possibility of any state. It follows that, under cautious
beliefs, if there is a weakly dominant act then a rational DM should choose it (or any of
them, in case there are several); for instance, in Example 3.3 – under cautious beliefs – the
only rational bids are $20 and $30.

In later chapters we will consider the case where the DM is able to assign (objective or
subjective) probabilities to the states (that is, holds probabilistic beliefs) and what notion of
rationality is appropriate in that context. In the rest of this chapter we will consider possible
decision criteria that apply to situations where the DM is not able to assign probabilities to
the states.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 3.5.2 at the end of this chapter.

3.3 MaxiMin and LexiMin
3.3.1 MaxiMin

The MaxiMin criterion reflects extreme pessimism: for each act, the DM looks at the
worst-case scenario – that is, the worst possible outcome – and then chooses an act which
is best in terms of the worst outcome.5 For example, in the following decision problem
(expressed in terms of utilities), for each act we have highlighted (by enclosing it in a box)
a worst outcome and the MaxiMin criterion would then select act b.

state →
act ↓

s1 s2 s3 s4 s5

a 0 1 3 8 5
b 4 3 3 3 5
c 7 6 2 4 5
d 1 2 4 2 5

The MaxiMin criterion can select a unique act, as in the previous example, or a set of acts.
For instance, both in Example 3.2 and Example 3.3, the MaxiMin solution is the following
set of bids: {$10,$20,$30}.

Note that, if an act is strictly dominated, then it cannot be selected by the MaxiMin
criterion.

5In other words, the DM acts as if he was dealing with a demon who chooses the state after observing the
DM’s choice and whose aim is to make the DM as badly off as possible.
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The MaxiMin criterion can be viewed as too extreme in the underlying pessimism. For
example, in the following case (where outcomes are sums of money and the assumption
is that DM prefers more money to less), it recommends act a, while most people would
probably choose act b:

state →
act ↓

s1 s2 s3

a $1 $1 $1
b $100 $100 $0

3.3.2 LexiMin
The LexiMin criterion is a refinement of the MaxiMin criterion that applies when the
MaxiMin solution consists of two or more acts. Consider the following decision problem:

state →
act ↓

s1 s2 s3 s4 s5

a 0 1 3 1 5
b 4 1 3 2 5
c 3 4 4 2 5
d 6 3 2 3 5

In this case the MaxiMin criterion yields two possible choices: c and d. The LexiMin
criterion allows one to narrow down the choice as follows: if the worst outcome is the
same, then look at the second-worst outcome and, if necessary, at the third worst outcome,
and so on. In the above example, the worst outcome has the same utility, namely 2, for
both c and d. Thus, we look at the next worst outcome: utility of 3 in both cases. Hence,
we look at the third worst outcome: it has a utility of 4 for c and a utility of 3 for d (there
are two outcomes with a utility of 3 under act d; pick one as the second worst and the
other as the third worst). Thus, the LexiMin criterion would recommend c. Another way
to visualize this is as follows. We need to break the tie between c and d. Write the possible
payoffs under c in increasing order and do the same for d:

c 2 3 4 4 5
d 2 3 3 5 6

worst: 2nd worst: 3rd worst:
same same c is better

hence choose c.

In Example 3.2, the MaxiMin solution is {$10,$20,$30} and the LexiMin solution is to bid
$20; in Example 3.3, the MaxiMin solution is {$10,$20,$30} and the LexiMin solution is
{$20,$30}.

Clearly, the LexiMin criterion – being a refinement of MaxiMin – suffers from the
same drawbacks as the latter.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 3.5.3 at the end of this chapter.
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3.4 Regret: a first attempt
Another criterion that has been suggested has to do with minimizing the maximum regret.
For example, consider the following decision problem (where outcomes are sums of money
and the assumption is that the DM prefers more money to less):

state →
act ↓

s1 s2

a $20 $40
b $100 $10

If the DM chooses act a then she will be happy if the state turns out to be s2, but she will
regret not having chosen b if the state turns out to be s1; one could measure the regret
experienced by the DM in the latter case as the difference between the sum of money she
could have obtained ($100) and the sum actually obtained ($20): a regret of $80. On the
other hand, if the DM chooses b then she will experience regret in the amount of $30 if
the state turns out to be s2 (but she will be happy if the state turns out to be s1). Thus, it
seems that the potential regret is stronger if the DM chooses act a ($80) than if she chooses
b ($30). The criterion we are considering suggests choosing an act that minimizes the
maximum potential regret. According to this criterion, in the above decision problem one
should choose b.

The trouble with the MinMaxRegret criterion is that, in general, it is not clear how one
should measure regret. In the above example outcomes were expressed as sums of money,
but what if they are more general outcomes? For example, consider the following decision
problem:

state →
act ↓

s1 s2

a o1 o2
b o3 o4

with preferences

best o1
o3
o4

worst o2

One could represent these preferences with the following utility function:

Utility
best o1 4

o3 3
o4 2

worst o2 0

and rewrite the decision problem in terms of utilities as

state →
act ↓

s1 s2

a 4 0
b 3 2

Then the maximum regret from choosing act a is 2 units of utility, while the maximum
regret from choosing act b is 1 unit of utility; thus, it looks like the MinMaxRegret criterion
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would recommend choosing b. However, the following is an alternative utility function
that represents the same ordinal preferences:

Utility
best o1 8

o3 3
o4 2

worst o2 0

with corresponding decision problem

state →
act ↓

s1 s2

a 8 0
b 3 2

Under this representation, the maximum regret from choosing a is still 2, while the
maximum regret from choosing b is now 5, so that the MinMaxRegret criterion would now
recommend choosing a. Since the DM’s ordinal preferences are the same under the two
utility representations, the recommendation should be the same. Hence, we conclude that
the MinMaxRegret criterion is meaningless in a context where the utility function is merely
ordinal.

In order to make sense of the MinMaxRegret criterion one would need to be in a context
where the utility function is not ordinal, but cardinal, that is, it incorporates information
about the intensity of preferences and not only about the ordinal ranking. Such contexts
will be discussed in Chapter 6.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 3.5.4 at the end of this chapter.



40 Chapter 3. States and Acts

3.5 Exercises

The solutions to the following exercises are given in Section 3.6 at the end of this chapter.

3.5.1 Exercises for Section 3.1: Uncertainty, states and acts

Exercise 3.1 Consider the following decision problem and preferences:

state →
act ↓

s1 s2 s3

a1 o1 o2 o3
a2 o4 o5 o6
a3 o7 o8 o9

best o1
o3,o8,o9

o5
o7
o6
o4

worst o2

Use a utility function with values from the set {0,1, . . . ,6} to represent these preferences
and re-write the decision problem in terms of utilities. ■

3.5.2 Exercises for Section 3.2: Dominance

Exercise 3.2 In Exercise 3.1, for every pair of acts, state whether one act dominates
the other (and, if so, whether it is weak or strict dominance). ■

Exercise 3.3 Consider the following decision problem where the numbers are utilities:

state →
act ↓

s1 s2 s3 s4 s5

a 0 1 3 1 5
b 0 1 3 2 5
c 1 2 4 2 5
d 1 2 4 2 5

(a) For each pair of acts, state whether one dominates the other and, if so, whether it
is weak or strict dominance.

(b) Is there a strictly dominant act?
(c) Is there a weakly dominant act?

■



3.5 Exercises 41

Exercise 3.4 You have agreed to participate in a second-price auction against another
bidder. The rules are as follows: The possible bids are $10, $20, $30, $40, $50 and $60.
The value of the object to you is $30. In case of ties, that is, if your bid is equal to the
bid of the other bidder, then the other bidder wins. If your bid is higher than the bid of
the other bidder, you win the object and pay, not your own bid, but the bid submitted by
the other bidder (hence the name of “second-price” auction). Your preferences are the
same as Bill’s preferences in Example 3.3 of Section 3.2.

(a) Represent your decision problem in terms of states, outcomes and acts.
(b) Do you have any acts that are dominant? Are they weakly or strictly dominant?

■

3.5.3 Exercises for Section 3.3: MaxiMin and LexiMin

Exercise 3.5 Consider the following decision problem where the numbers are utilities:

state →
act ↓

s1 s2 s3 s4 s5 s6 s7

a 0 2 3 1 5 4 1
b 0 1 3 2 5 3 6
c 1 2 5 4 5 6 4
d 2 1 3 4 6 4 3
e 3 1 4 6 0 7 0

(a) Find the MaxiMin solution.
(b) Find the LexiMin solution.

■

3.5.4 Exercises for Section 3.4: Regret: a first attempt

Exercise 3.6 Consider the following decision problem:

state →
act ↓

s1 s2

a o1 o2
b o3 o4

with preferences

best o3
o2
o1

worst o4

(a) Construct a utility representation with values from the set {0,2,3,4} and for each
act find the maximum regret (defined as the difference between the maximum
utility one could have got and the actual utility one experienced). What act would
the MinMaxRegret criterion suggest?

(b) Show that by changing the utility function (while representing the same prefer-
ences) you can make the MinMaxRegret criterion select a different act from the
one selected in Part (a)

■
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3.6 Solutions to Exercises

Solution to Exercise 3.1. The utility function is as follows

Utility
best o1 6

o3,o8,o9 5
o5 4
o7 3
o6 2
o4 1

worst o2 0

with corresponding decision problem

state →
act ↓

s1 s2 s3

a1 6 0 5
a2 1 4 2
a3 3 5 5

□

Solution to Exercise 3.2. In the decision problem given above (for Exercise 3.1) we have
that:

• It is neither the case that a1 dominates a2, nor the case that a2 dominates a1.
• It is neither the case that a1 dominates a3, nor the case that a3 dominates a1.
• a3 strictly dominates a2. □

Solution to Exercise 3.3. The decision problem is as follows:

state →
act ↓

s1 s2 s3 s4 s5

a 0 1 3 1 5
b 0 1 3 2 5
c 1 2 4 2 5
d 1 2 4 2 5

(a) b weakly dominates a; c weakly dominates a; d weakly dominates a.
c weakly dominates b; d weakly dominates b.
c and d are equivalent.

(b) There is no strictly dominant act.
(c) c is a weakly dominant act and so is d. □
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Solution to Exercise 3.4.
(a) We can take the other player’s possible bids as the states. Then the decision problem

is as follows (in terms of utilities):

States (bids submitted by the other bidder)

$10 $20 $30 $40 $50 $60

$10 0 0 0 0 0 0

$20 20 0 0 0 0 0

Acts $30 20 10 0 0 0 0

$40 20 10 0 0 0 0

$50 20 10 0 −10 0 0

$60 20 10 0 −10 −20 0

(b) Bidding $30 is equivalent to bidding $40 and both are weakly dominant acts. □

Solution to Exercise 3.5.
(a) Below we highlight, for every act, a worst outcome:

state →
act ↓

s1 s2 s3 s4 s5 s6 s7

a 0 2 3 1 5 4 1

b 0 1 3 2 5 3 6

c 1 2 5 4 5 6 4

d 2 1 3 4 6 4 3

e 3 1 4 6 0 7 0

The MaxiMin solution is {c,d}.

(b) The LexiMin solution is c (the second worst outcome is the same for both c and
d, namely a utility of 2, while the third worst outcome is a utility of 3 for d but 4
for c). □
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Solution to Exercise 3.6.
(a) Using the following utility function:

Utility
best o3 4

o2 3
o1 2

worst o4 0

we can rewrite the decision problem as

state →
act ↓

s1 s2

a 2 3
b 4 0

Then the maximum regret from choosing a is 2, while the maximum regret from
choosing b is 3. Thus, the MinMaxRegret criterion would recommend choosing a.

(b) The following is an alternative utility function representing the same preferences:

Utility
best o3 7

o2 3
o1 2

worst o4 0

with corresponding decision problem

state →
act ↓

s1 s2

a 2 3
b 7 0

Under this representation, the maximum regret from choosing a is 5, while the
maximum regret from choosing b is 3, so that the MinMaxRegret criterion would
now recommend choosing b. □



4. Decision Trees

4.1 Decision trees
The representation of decision problems in terms of states and acts is just one possible way
of visualizing a decision problem. An alternative representation is in terms of decision
trees. In a decision tree we use squares to represent decision points and circles – also called
chance nodes – to represent external events, that is, events that the DM cannot control.
Arrows connect the nodes of the tree (whether they are squares or circles). When an arrow
out of a node (square or circle) does not end at another square or circle, then no more
decisions need to be made, and no more events take place, and we record the final outcome.

As an illustration, consider the wedding party example of Chapter 3 (Section 3.1),
where Ann and Bob are planning their wedding reception and face the choice between two
venues: a spacious outdoor area where the guests will be able to roam around or a small
indoor area where the guests will feel rather crammed. The weather is also a factor in their
decision: if it does not rain, then the outdoor area will yield the best outcome, but if it does
rain then the outdoor area will be a disaster. The state-act representation of this decision
problem was given in Chapter 3. An alternative representation is given in Figure 4.1 as a
decision tree.

outdoor
venue

indoor
venue

no rain

rain

no rain

rain

successful

disastrous

unremarkable

unremarkable

Figure 4.1: The decision tree for the wedding party example
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As a further illustration of the notion of decision tree, consider the following example.

■ Example 4.1 You are a lawyer. The plaintiff, your client, was in an automobile accident,
and you are engaged in settlement negotiations with the lawyer for the other party (the
defendant). If you go to trial, there will be three possible outcomes:

(1) the judge determines that the defendant was at fault and compensates your client both
for the damage to her car, in the amount of $20,000, and for her lost wages, in the amount
of $80,000;

(2) the judge determines that the defendant was at fault but compensates your client only
for the damage to her car;

(3) the judge determines that your client shared in the fault and awards no compensation.

Going to trial will cost your client $10,000. The defendant has offered $40,000 to settle
the case out of court.

Your client’s current wealth is $W (with W > 10,000) and we take the outcome to be the
final wealth of your client.

Your client’s decision problem is shown as a tree in Figure 4.2. ■

settle
$(W+40,000)

go to trial

(cost: $10,000)

no award

$(W+90,000)

$(W+10,000)

$(W10,000)

damages only
($20,000)

d
am

ag
es an

d
 lo

st w
ag

es

($
1

0
0

,0
0

0
)

Figure 4.2: The decision tree for Example 4.1
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Of course, the decision problem of Example 4.1 can also be represented in the state-act
format, as shown in Figure 4.3 (treating the judge’s decision as a state).

damages +
lost wages

damages
only

no award

settle $(W+40000) $(W+40000) $(W+40000)
go to 
trial

$(W+90,000) $(W+10,000) $(W-10,000)

State

A
c
t

1s 2s 3s

Figure 4.3: The state-act representation of Example 4.1

Decision trees provide a simpler and clearer representation than the state-act format
in situations where there is a sequential structure to the decision problem. Example 4.2
provides an illustration.
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■ Example 4.2 Let us make the decision problem of Example 4.1 more complicated, by
adding probabilistic estimates and further options. Your client has asked you (her lawyer)
to provide her with probabilities for the possible decisions by the judge. You feel unable
to do so, but – based on your past experience – you know that cases similar to hers can
be classified into two categories. In the first category – call it category A – are those
lawsuits where in the past the judge’s decision was to award damages and lost wages in
55% of the cases, damages only in 35% of the cases and nothing in 10% of the cases. In
the second category – call it category B – are those lawsuits where the judge’s decision
was for damages and lost wages in 40% of the cases, for damages only in 45% of the
cases and for no award in 15% of the cases. You do not have the expertise to determine
to which category your client’s case belongs but she can hire an expert to determine that
with certainty. Hiring the expert will cost your client $C. Of all the past cases similar to
the one under consideration, the fraction p were determined to belong to category B and
the fraction (1− p) were determined to belong to category A. After hearing the expert’s
opinion, your client can then decide whether to settle or go to trial. Of course, she can
also decide to accept the offered settlement right away or to go to trial without consulting
the expert (in which case she saves $C). This more complicated decision problem is
represented in the decision tree shown in Figure 4.4, where the arrows emanating from
circles are now labeled also with probabilities. ■

How would one go about making a decision in complicated situations like the one
described in Example 4.2? It turns out that decision trees offer a simple answer to this
question, which will be explained in detail in Section 4.3: it is called the “method of
backward induction”. In order to explain this method, we will first focus on a particularly
simple class of decision trees and preferences, namely decision trees where all of the
following are true:

1. outcomes are expressed as sums of money,
2. the arrows out of circles are assigned probabilities (the decision tree of Figure 4.4

satisfies these two conditions), and
3. the DM’s preferences are characterized by risk neutrality, as explained in the follow-

ing section.

How to solve more general decision trees will be discussed in Chapter 6, after intro-
ducing the theory of Expected Utility in Chapter 5.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 4.5.1 at the end of this chapter.
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es,   4
0

%

$(W+90,000)

go to trial, cost: $10,000

hire expert
(cost: $C)

category A

1  p

settle

go to trial

damages only,  35%

$(WC10,000)

no award,  1
0%

$(WC+10,000)damages and lost wages,  55%

category Bp

$(WC+40,000)

settle

go to trial

damages only,  45%

no award,  1
5%

$(WC+40,000)

$(WC+90,000)

$(W+90,000)

$(WC10,000)

$(WC+10,000)

$(WC+90,000)

damages and lost wages,  40%

Figure 4.4: The decision tree for Example 4.2
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4.2 Money lotteries and risk neutrality
Definition 4.2.1 A money lottery is a probability distribution over a list of outcomes,
where each outcome consists of a sum of money. Thus, it is an object of the form(

$x1 $x2 ... $xn
p1 p2 ... pn

)
with 0 ≤ pi ≤ 1 for all i = 1,2, ...,n, and p1+ p2+ ...+ pn = 1.

We assume that the DM is able to rank any two money lotteries and that her ranking is
transitive. For example, if asked to choose between getting $400 for sure – which can

be viewed as the degenerate lottery
(

$400
1

)
– and the lottery1

(
$900 $0

1
2

1
2

)
, the DM

will be able to tell us if she prefers one lottery to the other or she is indifferent between the
two. In general, there is no “right answer” to this question, as there is no right answer to
the question “do you prefer coffee or tea?”: it is a matter of individual taste. In this chapter
we will focus on one particular type of preference over money lotteries, known as “risk
neutrality”. First we need to define the expected value of a money lottery.

Definition 4.2.2 Given a money lottery
(

$x1 $x2 ... $xn
p1 p2 ... pn

)
, its expected value is

the number (x1 p1 + x2 p2 + ...+ xn pn).

For example, the expected value of the money lottery
(

$600 $180 $120 $30
1
12

1
3

5
12

1
6

)
is

1
12600+ 1

3180+ 5
12120+ 1

630 = 165.

Definition 4.2.3 An individual is risk neutral if she ranks any two money lotteries on
the basis of their expected values, that is, she prefers lottery A to lottery B if and only if
the expected value of A is greater than the expected value of B and she is indifferent
between A and B if their expected values are the same.

For example, if asked to choose between $160 for sure – that is, the lottery A =

(
$160

1

)
– and the lottery B =

(
$600 $180 $120 $30

1
12

1
3

5
12

1
6

)
, she will choose the latter, since the

expected value of B is 165, while the expected value of A is 160.

Another example: let C =

(
$500 $100 $75

1
5

2
5

2
5

)
and D =

(
$400 $180 $80

1
8

1
2

3
8

)
;

then a risk neutral individual is indifferent between C and D, since they have the same
expected value: 1

5500+ 2
5100+ 2

575 = 170 = 1
8400+ 1

2180+ 3
880.

It is important to stress that our focussing on the case of risk neutrality should not be
taken to imply that a rational individual ought to be risk neutral nor that risk neutrality is
empirically particularly relevant. At this stage we assume risk neutrality only because it
yields a very simple type of preference over money lotteries and allows us to introduce the
notion of backward induction without the heavy machinery of expected utility theory.

1We can think of this lottery as tossing a fair coin and then giving the DM $900 if it comes up Heads and
nothing if it comes up Tails.
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In Chapters 5 and 6 we will develop a more general analysis.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 4.5.2 at the end of this chapter.

4.3 Backward induction
Let us go back to the decision tree of Example 4.1 (Figure 4.2) with one addition: you,
the lawyer, are able to assign probabilities to the possible decisions of the judge: a 20%
chance that there will be no award, a 30% chance that the judge will award damages only
and a 50% chance that the judge will award damages and lost wages. Thus, to the tree of
Figure 4.2 we add these probabilities. The enriched tree is shown in Figure 4.5.

settle
$(W+40,000)

go to trial
no award,   

20% $(W10,000)

damages only,   30%

$(W+10,000)

$(W+90,000)

dam
ages and 

lost w
ages,  50%

Figure 4.5: The decision tree of Figure 4.2 with the addition of probabilities

We can view the part of the tree that starts at the circle as the money lottery(
$(W +90,000) $(W +10,000) $(W −10,000)

5
10

3
10

2
10

)
.

The expected value of this lottery is (W +90,000) 5
10 +(W +10,000) 3

10 +(W −10,000) 2
10 =

W + 46,000. Thus, if we assume that the client is risk neutral, then she will consider
the lottery to be just as good as getting $(W +46,000) for sure. Hence, we can simplify
the tree by replacing the part that starts at the circle with the outcome $(W +46,000), as
shown in Figure 4.6. It is now clear that the optimal decision is to go to trial: we have
indicated this in Figure 4.6 by doubling the corresponding edge.
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$(W+40,000)
settle

go to 
trial

$(W+46,000)

Figure 4.6: The decision tree of Figure 4.5 simplified

This example is a simple illustration of the backward-induction method for solving
decision trees, which is defined below.

Definition 4.3.1 The backward-induction procedure is as follows.a

1. Start at a node – square or circle – that is followed only by outcomes and
• if the node is a square, choose an optimal action there and reduce the tree by

replacing that node, and the arrows that follow that node, with the outcome
associated with the chosen action,

• if the node is a circle calculate the expected value of the associated money
lottery and replace that node, and the arrows that follow that node, with the
calculated expected value.

2. Repeat Step 1 in the reduced game and iterate the procedure until the decision
tree has been reduced to a square followed only by outcomes and then choose an
optimal action in that reduced tree.

3. Patch together the actions chosen during the procedure to determine an optimal
strategy.

aNote that, for the moment, the procedure is defined assuming that outcomes are always expressed as
sums of money and that the DM is risk neutral. The backward-induction procedure for the general case
will be defined in Chapter 6.

We now illustrate the backward-induction procedure in two more examples.

Consider first the decision tree of Figure 4.7.
The following steps are illustrated in Figure 4.8.

Step 1: Start at the square numbered 1; there e is the optimal action; delete the square
numbered 1, together with the arrows after it, and replace it with the outcome $56.

Step 2: In the reduced tree after Step 1, consider the circle numbered 2; it corresponds to

the money lottery
(

$90 $39
1
3

2
3

)
whose expected value is 1

390+ 2
339 = 56; replace the

circle, together with the arrows that follow it, with the calculated expected value: $56.

Step 3: In the reduced tree after Step 2, consider the square numbered 3; there the optimal
action is b; replace the square, together with the arrows that follow it, with the outcome 58.

Final step: in the reduced tree after Step 3, a is the optimal choice. Hence, the optimal
strategy is as follows: first choose a and then choose b.
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2

$58

c

b

a

$901/3

2/3 $39

d
$56

$48

1

3

e

f

Figure 4.7: A decision tree to illustrate the backward-induction procedure

2

$58

b

a

d

3

$56

c

1/3 $90

2/3 $39

STEP 1

$58

b

a

d

3

$56

c
$56

a

d

$58

STEP 3

STEP 2

$56

Figure 4.8: The backward-induction steps for the decision tree of Figure 4.7
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Now consider the decision tree of Figure 4.4, which is reproduced in Figure 4.9.

Consider the circles (random events) that are followed by outcomes only (the right-most
circles). Proceeding from top to bottom we have that:

1. The top circle corresponds to the money lottery(
$(W −10,000) $(W +10,000) $(W +90,000)

10
100

35
100

55
100

)
whose expected value is (W +52,000).

2. The second circle from the top corresponds to the money lottery(
$(W −10,000) $(W +10,000) $(W +90,000)

15
100

45
100

40
100

)
whose expected value is (W +39,000).

3. The third circle from the top corresponds to the money lottery(
$(W −C−10,000) $(W −C+10,000) $(W −C+90,000)

10
100

35
100

55
100

)
whose expected value is (W −C+52,000).

4. The bottom circle corresponds to the money lottery(
$(W −C−10,000) $(W −C+10,000) $(W −C+90,000)

15
100

45
100

40
100

)
whose expected value is (W −C+39,000).
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damages only,  45%
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$(W+10,000)damages and lost wages,  55%
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no award,  15%

$(W10,000)
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$(W+90,000)
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1  p

settle

go to trial

damages only,  35%

$(WC10,000)

no award,  1
0%

$(WC+10,000)damages and lost wages,  55%

category Bp

$(WC+40,000)

settle

go to trial

damages only,  45%

no award,  1
5%

$(WC+40,000)

$(WC+90,000)

$(W+90,000)

$(WC10,000)

$(WC+10,000)

$(WC+90,000)

damages and lost wages,  40%

Figure 4.9: Figure 4.4 reproduced
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Replacing those circles with the corresponding expected values we get the reduced tree
shown in Figure 4.10.

category B

settle
$(W+40,000)

category A

1  p

p

go to trial, cost: $10,000

hire expert
(cost: $C)

category A

1  p

settle

category Bp

$(WC+40,000)

settle

go to trial

$(WC+40,000)

$(W+52,000)

$(W+39,000)

go to trial

$(WC+52,000)

$(WC+39,000)

Figure 4.10: The reduced tree of Figure 4.9
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In the reduced tree of Figure 4.10, proceeding from top to bottom we have that:
1. The circle at the top corresponds to the money lottery(

$(W +52,000) $(W +39,000)
1− p p

)
whose expected value is (W +52,000−13,000p).

2. At the square below, the optimal choice is to go to trial.
3. At the bottom square, the optimal choice is to settle.

Replacing those nodes with the corresponding outcomes we obtain the further reduced tree
shown in Figure 4.11.

settle
$(W+40,000)

go to trial

category A

p

$(WC+52,000)

$(W+52,00013,000p)

hire expert

$(WC+40,000)

1p

category B

Figure 4.11: The reduced tree of Figure 4.10

In the reduced tree of Figure 4.11, the circle corresponds to the money lottery(
$(W −C+52,000) $(W −C+40,000)

1− p p

)
whose expected value is (W −C+52,000−12,000p).
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Replacing the circle with this outcome we get the reduced tree shown in Figure
4.12. The optimal strategy depends on the values of the parameters C and p. First,

settle
$(W+40,000)

go to trial
$(W+52,00013,000p)

hire expert

$(WC+52,00012,000p)

Figure 4.12: The reduced tree of Figure 4.11

let us try a specific pair of values, say C = 500 and p = 4
5 . Then going to trial right

away yields $
(
W +52,000− 4

513,000
)
= $(W +41,600), better than settling right away,

which yields $(W +40,000). On the other hand, hiring the expert leads to the outcome
$
(
W +52,000−500− 4

512,000
)
= $(W + 41,900); hence, hiring the expert is the best

option. Thus, when C = 500 and p = 4
5 , the optimal strategy is as follows: hire the expert

and then (1) if the expert says that the case belongs to category A then go to trial and (2) if
the expert says that the case belongs to category B then settle.

Now let us find the backward induction solution for all possible values of the parameters
C and p. Assuming that 0 < p < 1, if C ≥ 12,000 then the option of hiring the expert is
strictly worse than the option of settling right away. Thus, we will assume that

0 ≤C < 12,000. (4.1)
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First let us compare the option of settling right away (from now on denoted by S) with
the option of going to trial right away (from now on denoted by T ):

if p < 12
13

52,000−13,000p > 40,000,
that is, going to trial is strictly better than settling: T ≻ S.

if p = 12
13

52,000−13,000p = 40,000,
that is, going to trial is just as good as settling: T ∼ S.

if p > 12
13

52,000−13,000p < 40,000,
that is, settling is strictly better than going to trial: S ≻ T.

This is illustrated in Figure 4.13.

p

C

12,000

1

S T

S TT S

12

13
0

Figure 4.13: Comparison of options S and T

Next let us compare option T and the option of hiring the expert (from now on denoted
by H):

if C < 1,000p, then 52,000−C−12,000p > 52,000−13,000p, that is, H ≻ T
if C = 1,000p, then 52,000−C−12,000p = 52,000−13,000p, that is, H ∼ T
if C > 1,000p, then 52,000−C−12,000p < 52,000−13,000p, that is, T ≻ H

This is illustrated in Figure 4.14.
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p

C

12,000

1

H T
T H

H T

0

1,000C p

1,000

Figure 4.14: Comparison of options H and T

Putting together Figures 4.13 and 4.14 we can identify four regions in the (C, p)
parameter space, as shown in Figure 4.15.

1. In the region to the left of the line p = 12
13 and above the line C = 1,000p, T ≻ S and

T ≻ H and thus the optimal decision is T , that is, to go to trial right away.
2. In the region to the left of the line p = 12

13 and below the line C = 1,000p, H ≻ T
and T ≻ S and thus the optimal strategy is H, that is, hire the expert and then (1)
if the expert says that the case belongs to category A then go to trial and (2) if the
expert says that the case belongs to category B then settle.

3. In the region to the right of the line p = 12
13 and above the line C = 1,000p, S ≻ T

and T ≻ H and thus the optimal decision is S, that is, to settle right away.
4. In the shaded area in Figure 4.15 (the region to the right of the line p = 12

13 and below
the line C = 1,000p) we have that S ≻ T and H ≻ T and thus, in order to determine
the optimal decision, we need to compare S and H:

if C < 12,000(1− p), then 52,000−C−12,000p > 40,000, that is, H ≻ S
if C = 12,000(1− p), then 52,000−C−12,000p = 40,000, that is, H ∼ S
if C > 12,000(1− p), then 52,000−C−12,000p < 40,000, that is, S ≻ H

Thus, the shaded area in Figure 4.15 is divided into two subregions:
– in the region to the right of the line p = 12

13 , below the line C = 1,000p and below
the line C = 12,000(1− p), the optimal decision is H (that is, the strategy of hiring
the expert and then (1) if the expert says that the case belongs to category A then go
to trial and (2) if the expert says that the case belongs to category B then settle),
– in the region to the right of the line p = 12

13 , below the line C = 1,000p and above
the line C = 12,000(1− p), the optimal decision is S, that is, to settle right away.
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,  so  is H T T S H best 

p

C

12,000

10

 and 

so   is 

T S T H

T best

 

 

and 

 is 

S T

T H

S best





12

13

C = 1,000 p

Figure 4.15: Putting together Figures 4.13 and 4.14

Figure 4.16 provides the complete picture.

p

C

12,000

10 12

13
1,000C p

12,000(1 )C p 

 is T best  

i s  

S

b e s t

 is H best

Figure 4.16: The backward-induction solution of the reduced tree of Figure 4.11

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 4.5.3 at the end of this chapter.
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4.4 Beyond money lotteries and risk neutrality
So far we have looked at situations where the outcomes consisted of sums of money and the
DM was assumed to be risk neutral. Typically, however, outcomes may involve something
more besides sums of money or they may even be something quite different from sums of
money. Consider the following example.

Dave has developed lower back pain and is consulting his doctor on what to do. She
tells him that one possibility is to do nothing: just rest and limit his activities and hope that
it will heal itself. In her experience, in 40% of the cases the pain subsides spontaneously.
Another possibility is to take strong doses of an anti-inflammatory drug for a prolonged
period of time. This is an effective and fast way to get rid of the pain. In her experience, it
works 80% of the time, without side effects. However, there is a 20% chance that the drug
will cause intestinal bleeding, in which case it must be stopped immediately and avoided
in the future. Usually this happens within the first week, too soon to have any benefits
from the drug in terms of pain reduction. Finally, there is the option of surgery. This type
of surgery has been performed many times in the past and it worked in 90% of the patients.
For the remaining 10%, however, there was damage to the spine during the procedure
which led to permanent numbness in one or both legs, but the pain in the back did go away.
We can represent Dave’s decision problem using the decision tree shown in Figure 4.17.

drug treatment
no back pain

20%

80%
reaction

to drug
back pain and
intestinal bleeding

surgery

no back pain
40%

remission

no improvement

successful

wait and
rest

60%

back pain

su
cc

es
sf

ul

no back pain

fail

no back pain but permanent leg numbness

90% 10%

 

Figure 4.17: A decision tree where the outcomes are not sums of money
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The method of backward induction can be used to solve the decision tree of Figure 4.17,

but it requires comparing lotteries such as
(

no back pain back pain
40
100

60
100

)
and(

no back pain back pain and intestinal bleeding
80

100
20

100

)
, which are not money lotteries. The

tools we have developed so far do not enable us to do so. We need a more general theory,
which is developed in the next chapter.

4.5 Exercises
The solutions to the following exercises are given in Section 4.6 at the end of this chapter.

4.5.1 Exercises for Section 4.1: Decision Trees

Exercise 4.1 You have been offered theft insurance for your new bike, for which you
paid $400. The insurance policy will cover you for one year. The premium is $20.
You have a deductible of $80, so that – if the bike is stolen – you get a refund of
$(400−80) = $320. According to actuarial figures for your area, the probability that a
bicycle is stolen in any given year is 10%.

Represent your decision problem by means of a decision tree. Express outcomes in
terms of your final wealth; your current wealth consists of the value of your bike plus
the balance of your checking account which is $B. (Clearly, insuring your bike is not a
guarantee that it will not be stolen: it is only a guarantee of a refund in case it is stolen.)
■

Exercise 4.2 You have sued your employer for wrongful termination. They are offering
a settlement of $70,000. The alternative is to go to trial, at a cost of $20,000. Your
lawyer tells you that there are two possibilities: (1) you win, in which case you can
expect an award of $100,000, or (2) you lose, in which case you get nothing. She thinks
that there is a 60% chance that you will win. Represent your decision problem by means
of a decision tree. Express outcomes in terms of your final wealth; your current wealth
consists of $20,000 in your checking account. ■

Exercise 4.3 You have filed a lawsuit against your employer for sexual harassment.
They have offered to settle for $40,000. The alternative is to go to trial, at a cost of
$10,000. Your lawyer tells you that there are three possibilities: (1) you win a large
amount: $100,000, (2) you win a small amount: $20,000 and (3) you lose and get
nothing. She thinks that there is a 50% chance that you will win a large amount, a 30%
chance that you will win a small amount and a 20% chance that you will lose. Represent
your decision problem by means of a decision tree. Express outcomes in terms of your
final wealth (assuming that your current wealth consists of $B, with B > 10,000). ■



64 Chapter 4. Decision Trees

Exercise 4.4 Your client, who wishes to build a hotel, is trying to decide which of two
parcels of land to buy. Parcel A has been offered at a price of $300,000 and Parcel B at
a price of $250,000. They seem equally attractive, so your client initially thinks that
purchasing the cheaper one, Parcel B, is the better choice. However, in questioning the
sellers about the parcels, you learn that Parcel B might have an environmental problem
because chemical waste has been dumped on it, whereas no problems are associated
with Parcel A. You find that if the waste on Parcel B is hazardous, the law would
require your client to clean up the site and that the cost of cleanup would be $200,000.
You figure that the odds of Parcel B having this problem are 50%. If she wishes, your
client – before making a purchasing decision – can hire an environmental testing firm
to determine with certainty whether she would have to clean up Parcel B. Having the
environmental firm do the testing would cost her $20,000. Represent this decision
problem by means of a decision tree. Express outcomes in terms of the total amount of
money that your client would end up paying. ■

4.5.2 Exercises for Section 4.2: Money lotteries and risk neutrality

Exercise 4.5 Consider the following money lottery:

$10 $15 $18 $20 $25 $30 $36
3

12
1
12 0 3

12
2
12 0 3

12

.
(a) What is its expected value?
(b) If a risk-neutral individual is given a choice between the above lottery and $23

for sure, what will she choose?
■

Exercise 4.6 Consider the following lottery:
(

o1 o2 o3
3

10
5

10
2

10

)
where o1 is the outcome

where you get $100 and an A in the class on Decision Making, o2 is the outcome where
you get a free trip to Disneyland (which would normally cost $500) and a C in the class
and o3 is the outcome where you get a $150 gift certificate at Amazon.com and a B in
the class. If you are risk neutral, what sum of money would you consider to be just as
good as the lottery? ■

Exercise 4.7 Given the choice between getting $18 for sure or playing the lottery(
$10 $20 $30

3
10

5
10

2
10

)
, James – who likes money (that is, prefers more money to less) –

chooses to get $18 for sure. Is he risk neutral? ■
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4.5.3 Exercises for Section 4.3: Backward induction

Exercise 4.8 Assuming that all you care about is your wealth (and prefer more wealth
to less) and that you are risk neutral, apply the method of backward induction to the
decision tree of Exercise 4.1 to find the optimal decision. ■

Exercise 4.9 Assuming that all you care about is your wealth (and prefer more wealth
to less) and that you are risk neutral, apply the method of backward induction to the
decision tree of Exercise 4.2 to find the optimal decision. ■

Exercise 4.10 Assuming that all you care about is your wealth (and prefer more wealth
to less) and that you are risk neutral, apply the method of backward induction to the
decision tree of Exercise 4.3 to find the optimal decision. ■

Exercise 4.11 Assuming that all your client cares about is the total amount he ends
up paying (and prefers paying less to paying more) apply the method of backward
induction to the decision tree of Exercise 4.4 to find the optimal decision. ■

4.6 Solutions to Exercises

Solution to Exercise 4.1. The decision tree is shown in Figure 4.18. □

insure
(premium $20)

90% 10%

bike is stolen
get $320 refundbike is

stolen

10%

not
insure

bike is
not stolen

90%

$(400+B) $B $(400+B20) $(300+B)

bike is
not stolen

 

Figure 4.18: The decision tree for Exercise 4.1
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Solution to Exercise 4.2. The decision tree is shown in Figure 4.19. □

40%60%

$0

settle

$(20,000+70,000)
= $90,000go to trial

(cost: $20,000)

$(20,00020,000+100,000)
= $100,000

lose
win 

$100,000)

Figure 4.19: The decision tree for Exercise 4.2

Solution to Exercise 4.3. The decision tree is shown in Figure 4.20. □

30%50%

settle

$(40,000+B)

go to trial
(cost: $10,000)

win 
$100,000

$(B10,000)

win $20,000

lose

20%

$(90,000+B) $(10,000+B)

Figure 4.20: The decision tree for Exercise 4.3
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Solution to Exercise 4.4. The decision tree is shown in Figure 4.21. □

hire testing
firm (cost
$20,000)

buy parcel B

cleanup required

(cost: $200,000)buy  p
arcel A

$300,000

$450,000

$250,000

cleanup not required

50%

50%

cleanup required
(cost: $200,000)

50%

buy parcel A

$320,000

buy parcel B
and cleanup

$470,000

buy parcel A

$320,000

buy parcel B
no cleanup $270,000

cleanup not 
required

Figure 4.21: The decision tree for Exercise 4.4

Solution to Exercise 4.5.
(a) The expected value is

3
12

10+
1

12
15+0 (18)+

3
12

20+
2

12
25+(0) 30+

3
12

36 =
263
12

= $21.92.

(b) A risk-neutral person is indifferent between the lottery and $21.92 for sure. Assum-
ing that she prefers more money to less, she will prefer $23 to $21.92. Thus, since
she is indifferent between $21.92 and the lottery, if her preferences are transitive,
she will prefer $23 to the lottery. □

Solution to Exercise 4.6. One might be tempted to compute the “expected value” 3
10100+

5
10500+ 2

10150 = 310 and answer: $310. However, this answer would be wrong, because
the given lottery is not a money lottery: the outcomes are not just sums of money (they do
involve sums of money but also what grade you get in the class). The definition of risk
neutrality can only be applied to money lotteries. □

Solution to Exercise 4.7. The expected value of the lottery is 3
1010+ 5

1020+ 2
1030 = 19. If

James were risk-neutral he would consider the lottery to be just as good as getting $19 for
sure and would therefore choose the lottery (since getting $19 is better than getting $18).
Hence, he is not risk neutral. □
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Solution to Exercise 4.8. The decision tree of Exercise 4.1 is reproduced in Figure 4.22.

insure
(premium $20)

90% 10%

bike is stolen
get $320 refundbike is

stolen

10%

not
insure

bike is
not stolen

90%

$(400+B) $B $(400+B20) $(300+B)

bike is
not stolen

 

Figure 4.22: Copy of the decision tree of Figure 4.18

The Chance node on the left corresponds to the money lottery
(

$(400+B) $B
9
10

1
10

)
which

has an expected value of $(360+B). The Chance node on the right corresponds to the

money lottery
(

$(380+B) $(300+B)
9
10

1
10

)
which has an expected value of $(372+B).

Thus, insuring the bicycle is the better choice. □

Solution to Exercise 4.9. The decision tree of Exercise 4.2 is reproduced in Figure 4.23.

40%60%

$0

settle

$(20,000+70,000)
= $90,000go to trial

(cost: $20,000)

$(20,00020,000+100,000)
= $100,000

lose
win 

$100,000)

Figure 4.23: Copy of the decision tree of Figure 4.19

The Chance node corresponds to the money lottery
(

$100,000 $0
6

10
4
10

)
which has an

expected value of $60,000. Thus, you will settle. □
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Solution to Exercise 4.10. The decision tree of Exercise 4.3 is reproduced in Figure 4.24.

30%50%

settle

$(40,000+B)

go to trial
(cost: $10,000)

win 
$100,000

$(B10,000)

win $20,000

lose

20%

$(90,000+B) $(10,000+B)

Figure 4.24: Copy of the decision tree of Figure 4.20

The Chance node corresponds to the money lottery(
$(B+90,000) $(B+10,000) $(B−10,000)

5
10

3
10

2
10

)
which has an expected value of $(B+46,000). Thus, you should go to trial. □
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Solution to Exercise 4.11.The decision tree of Exercise 4.4 is reproduced in Figure 4.25.

hire testing
firm (cost
$20,000)

buy parcel B

cleanup required

(cost: $200,000)buy  p
arcel A

$300,000

$450,000

$250,000

cleanup not required

50%

50%

cleanup required
(cost: $200,000)

50%

buy parcel A

$320,000

buy parcel B
and cleanup

$470,000

buy parcel A

$320,000

buy parcel B
no cleanup $270,000

cleanup not 
required

Figure 4.25: Copy of the decision tree of Figure 4.21

At the bottom decision node (square), where cleanup is not required, “Buy B” is the optimal
choice and at the right-most one, where cleanup is required, “Buy A” is the optimal choice.

Thus, the bottom Chance node corresponds to the lottery
(

$270,000 $320,000
5
10

5
10

)
whose expected value is $295,000. The top Chance node corresponds to the lottery(

$450,000 $250,000
5

10
5

10

)
whose expected value is $350,000. Thus, the optimal strategy

is “Hire testing firm and then (1) Buy A if cleanup is required and (2) Buy B if cleanup is
not required”. □
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5. Expected Utility Theory

5.1 Money lotteries and attitudes to risk

The introduction of chance moves gives rise to probabilistic outcomes, which we called
lotteries. In Chapter 4 we restricted attention to lotteries whose outcomes are sums of
money (money lotteries) and to one possible way of ranking such lotteries, based on the
notion of risk neutrality. In this section we will continue to focus on money lotteries and
define other possible attitudes to risk.1

As before, we restrict attention to finite lotteries. Recall that a money lottery is a
probability distribution of the form(

$x1 $x2 ... $xn
p1 p2 ... pn

)
(0 ≤ pi ≤ 1, for all i = 1,2, ...,n, and p1 + p2 + ...+ pn = 1) and that (Definition 4.2.2,
Chapter 4) its expected value is the number (x1 p1 + x2 p2 + ...+ xn pn). If L is a money
lottery, we denote by E[L] the expected value of L. Thus, for example, if

L =

(
$30 $45 $90

1
3

5
9

1
9

)
then E[L] = 1

3(30)+ 5
9(45)+ 1

9(90) = 45.

Recall also (Definition 4.2.3, Chapter 4) that a person is said to be risk neutral if she
considers a money lottery to be just as good as its expected value for certain. For example,
a risk-neutral person would consider getting $45 with certainty to be just as good as playing

lottery L =

(
$30 $45 $90

1
3

5
9

1
9

)
. We can now consider different attitudes to risk, besides

risk neutrality.
1In the next section we will consider more general lotteries, where the outcomes need not be sums of

money, and introduce the theory of expected utility.
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Definition 5.1.1 Let L be a money lottery and consider the choice between L and the

degenerate lottery
(

$E[L]
1

)
(that is, the choice between facing the lottery L or getting

the expected value of L with certainty). Then
• An individual who prefers $E[L] for certain to L is said to be risk averse.
• An individual who is indifferent between $E[L] for certain and L is said to be risk

neutral.
• An individual who prefers L to $E[L] for certain is said to be risk loving.

Note that if an individual is risk neutral, has transitive preferences over money lotteries
and prefers more money to less, then we can tell how that individual ranks any two
money lotteries. For example, how would a risk neutral individual rank the two lotteries

L1 =

(
$30 $45 $90

1
3

5
9

1
9

)
and L2 =

(
$5 $100
3
5

2
5

)
? Since E[L1] = 45 and the individual

is risk neutral, L1 ∼ $45; since E[L2] = 43 and the individual is risk neutral, $43 ∼ L2;
since the individual prefers more money to less, $45 ≻ $43; thus, by transitivity, L1 ≻ L2.
On the other hand, knowing that an individual is risk averse, has transitive preferences
over money lotteries and prefers more money to less is not sufficient to predict how she
will choose between two arbitrary money lotteries. For example, as we will see later (see

Exercise 5.11), it is possible that one risk-averse individual will prefer L3 =

(
$28
1

)
(whose expected value is 28) to L4 =

(
$10 $50

1
2

1
2

)
(whose expected value is 30), while

another risk-averse individual will prefer L4 to L3. Similarly, knowing that an individual is
risk loving, has transitive preferences over money lotteries and prefers more money to less
is not sufficient to predict how she will choose between two arbitrary money lotteries.

R Note that “rationality” does not, and should not, dictate whether an individual should
be risk neutral, risk averse or risk loving: an individual’s attitude to risk is merely
a reflection of that individual’s preferences. It is a generally accepted principle
that de gustibus non est disputandum (in matters of taste, there can be no disputes).
According to this principle, there is no such thing as an irrational preference and thus
there is no such thing as an irrational attitude to risk. From an empirical point of view,
however, most people reveal through their choices (e.g. the decision to buy insurance)
that they are risk averse, at least when the stakes are high.

As noted above, with the exception of risk-neutral individuals, even if we restrict attention
to money lotteries we are not able to say much – in general – about how an individual
would choose among lotteries. What we need is a theory of “rational” preferences over
lotteries that (1) is general enough to cover lotteries whose outcomes are not necessarily
sums of money and (2) is capable of accounting for different attitudes to risk in the case of
money lotteries. One such theory is the theory of expected utility, to which we now turn.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 5.4.1 at the end of this chapter.
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5.2 Expected utility: theorems

The theory of expected utility was developed by the founders of game theory, namely
John von Neumann and Oskar Morgenstern, in their 1944 book Theory of Games and
Economic Behavior. In a rather unconventional way, we shall first (in this section) state
the main result of the theory (which we split into two theorems) and then (in the following
section) explain the assumptions (or axioms) behind that result. The reader who is not
interested in understanding the conceptual foundations of expected utility theory, but wants
to understand what the theory says and how it can be used, can study this section and skip
the next.

Let O be a set of basic outcomes. Note that a basic outcome need not be a sum of

money: it could be the state of an individual’s health, or whether the individual under

consideration receives an award, or whether it will rain on the day of her planned outdoor

party, etc. Let L (O) be the set of simple lotteries (or probability distributions) over O.

We will assume throughout that O is a finite set: O = {o1,o2, ...,om} (m ≥ 1). Thus,

an element of L (O) is of the form

(
o1 o2 ... om

p1 p2 ... pm

)
with 0 ≤ pi ≤ 1, for all i =

1,2, ...,m, and p1+ p2+ ...+ pm = 1. We will use the symbol L (with or without subscript)

to denote an element of L (O), that is, a simple lottery. Lotteries are used to represent

situations of uncertainty. For example, if m = 4 and the individual faces the lottery

L =

(
o1 o2 o3 o4
2
5 0 1

5
2
5

)
then she knows that, eventually, the outcome will be one and

only one of o1,o2,o3,o4, but does not know which one; furthermore, she is able to

quantify her uncertainty by assigning probabilities to these outcomes. We interpret these

probabilities either as objectively obtained from relevant (past) data or as subjective

estimates by the individual. For example, an individual who is considering whether or

not to insure her bicycle against theft for the following 12 months knows that there are

two relevant basic outcomes: either the bicycle will be stolen or it will not be stolen.

Furthermore, she can look up data on past bicycle thefts in her area and use the proportion

of bicycles that were stolen as an “objective” estimate of the probability that her bicycle

will be stolen. Alternatively, she can use a more subjective estimate: for example she might

use a lower probability of theft than suggested by the data because she knows herself to

be very conscientious and – unlike other people – to always lock her bicycle when left

unattended.
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The assignment of zero probability to a particular basic outcome is taken to be an
expression of belief, not impossibility: the individual is confident that the outcome will not
arise, but she cannot rule out that outcome on logical grounds or by appealing to the laws
of nature.

Among the elements of L (O) there are the degenerate lotteries that assign probability 1

to one basic outcome: for example, if m= 4 one degenerate lottery is

(
o1 o2 o3 o4

0 0 1 0

)
.

To simplify the notation we will often denote degenerate lotteries as basic outcomes, that

is, instead of writing

(
o1 o2 o3 o4

0 0 1 0

)
we will simply write o3. Thus, in general,

the degenerate lottery

(
o1 ... oi−1 oi oi+1 ... om

0 0 0 1 0 0 0

)
will be denoted by oi. As

another simplification, we will often omit those outcomes that are assigned zero probability.

For example, if m = 4, the lottery

(
o1 o2 o3 o4
1
3 0 2

3 0

)
will be written more simply as(

o1 o3
1
3

2
3

)
.

As in previous chapters, we shall call the individual under consideration the Decision-
Maker, or DM for short. The theory of expected utility assumes that the DM has a complete
and transitive ranking ≿ of the elements of L (O) (indeed, this is one of the axioms listed
in the next section). As in Chapter 2, the interpretation of L ≿ L′ is that the DM considers
L to be at least as good as L′. By completeness, given any two lotteries L and L′, either
L ≻ L′ (the DM prefers L to L′) or L′ ≻ L (the DM prefers L′ to L) or L ∼ L′ (the DM is
indifferent between L and L′). Furthermore, by transitivity, for any three lotteries L1,L2

and L3, if L1 ≿ L2 and L2 ≿ L3, then L1 ≿ L3. Besides completeness and transitivity, a
number of other “rationality” constraints are postulated on the ranking ≿ of the elements
of L (O); these constraints are the so-called Expected Utility Axioms and are discussed in
the next section.

Definition 5.2.1 A ranking ≿ of the elements of L (O) that satisfies the Expected Utility
Axioms (listed in the next section) is called a von Neumann-Morgenstern ranking.

The following two theorems are the key results in the theory of expected utility.
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Theorem 5.2.1 [von Neumann-Morgenstern, 1944].
Let O = {o1,o2, ...,om} be a set of basic outcomes and L (O) the set of simple lotteries
over O. If ≿ is a von Neumann-Morgenstern ranking of the elements of L (O) then
there exists a function U : O → R, called a von Neumann-Morgenstern utility function,
that assigns a number (called utility) to every basic outcome and is such that, for any

two lotteries L =

(
o1 o2 ... om

p1 p2 ... pm

)
and L′ =

 o1 o2 ... om

q1 q2 ... qm

,

L ≻ L′ if and only if E[U(L)]> E[U(L′)], and

L ∼ L′ if and only if E[U(L)] = E[U(L′)]

where

U(L) =

(
U(o1) U(o2) ... U(om)

p1 p2 ... pm

)
, U(L′) =

(
U(o1) U(o2) ... U(om)

q1 q2 ... qm

)
,

E[U(L)] is the expected value of the lottery U(L) and E[U(L′)] is the expected value of
the lottery U(L′), that is,

E[U(L)] = p1U(o1)+ p2U(o2)+ ...+ pmU(om), and

E[U(L′)] = q1U(o1)+q2U(o2)+ ...+qmU(om).

E[U(L)] is called the expected utility of lottery L (and E[U(L′)] the expected utility of
lottery L′).

We say that any function U : O → R that satisfies the property that, for any two lotteries
L and L′, L ≿ L′ if and only if E[U(L)] ≥ E[U(L′)] represents the preferences (or
ranking) ≿.

Before we comment on Theorem 5.2.1 we give an example of how one can use it.
Theorem 5.2.1 sometimes allows us to predict an individual’s choice between two lotteries
C and D if we know how that individual ranks two different lotteries A and B.
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For example, suppose we observe that Susan is faced with the choice between lotteries A
and B below and she says that she prefers A to B:

A =

(
o1 o2 o3

0 0.25 0.75

)
B =

(
o1 o2 o3

0.2 0 0.8

)
With this information we can predict which of the following two lotteries C and D she will
choose, if she has von Neumann-Morgenstern preferences:

C =

(
o1 o2 o3

0.8 0 0.2

)
D =

(
o1 o2 o3

0 1 0

)
= o2.

Let U be a von Neumann-Morgenstern utility function whose existence is guaranteed
by Theorem 5.2.1. Let U(o1) = a, U(o2) = b and U(o3) = c (where a, b and c are
numbers). Then, since Susan prefers A to B, the expected utility of A must be greater than
the expected utility of B: 0.25b+ 0.75c > 0.2a+ 0.8c. This inequality is equivalent to
0.25b > 0.2a+0.05c or, dividing both sides by 0.25, b > 0.8a+0.2c. It follows from this
and Theorem 5.2.1 that Susan prefers D to C, because the expected utility of D is b and the
expected utility of C is 0.8a+0.2c. Note that, in this example, we merely used the fact
that a von Neumann-Morgenstern utility function exists, even though we do not know what
the values of this function are.

Theorem 5.2.1 is an example of a “representation theorem” and is a generalization
of a similar result for the case of the ranking of a finite set of basic outcomes O. It is
not difficult to prove that if ≿ is a complete and transitive ranking of O then there exists
a function U : O → R, called a utility function, such that, for any two basic outcomes
o,o′ ∈ O, U(o)≥U(o′) if and only if o ≿ o′. Now, it is quite possible that an individual
has a complete and transitive ranking of O, is fully aware of her ranking and yet she is not
able to answer the question “what is your utility function?”, perhaps because she has never
heard about utility functions. A utility function is a tool that we can use to represent her
ranking, nothing more than that. The same applies to von Neumann-Morgenstern rankings:
Theorem 5.2.1 tells us that if an individual has a von Neumann-Morgenstern ranking of
the set of lotteries L (O) then there exists a von Neumann-Morgenstern utility function
that we can use to represent her preferences, but it would not make sense for us to ask the
individual “what is your von Neumann-Morgenstern utility function?” (indeed this was a
question that could not even be conceived before von Neumann and Morgenstern stated
and proved Theorem 5.2.1 in 1944!).

Theorem 5.2.1 tells us that a von Neumann-Morgenstern utility function exists; the
next theorem can be used to actually construct such a function, by asking the individual to
answer a few questions, formulated in a way that is fully comprehensible to her (that is,
without using the word ‘utility’). The theorem says that, although there are many utility
functions that represent a given von Neumann-Morgenstern ranking, once you know one
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function you “know them all”, in the sense that there is a simple operation that transforms
one function into the other.

Theorem 5.2.2 [von Neumann-Morgenstern, 1944].
Let ≿ be a von Neumann-Morgenstern ranking of the set of basic lotteries L (O), where
O = {o1,o2, ...,om}. Then the following are true.

(A) If U : O → R is a von Neumann-Morgenstern utility function that represents ≿,
then, for any two real numbers a and b, with a > 0, the function V : O →R defined
by V (oi) = aU(oi)+b (for every i= 1, . . . ,m) is also a von Neumann-Morgenstern
utility function that represents ≿.

(B) If U : O → R and V : O → R are two von Neumann-Morgenstern utility functions
that represent ≿, then there exist two real numbers a and b, with a > 0, such that
V (oi) = aU(oi)+b (for every i = 1, . . . ,m).

Proof. The proof of Part A of Theorem 5.2.2 is very simple. Let a and b be two numbers,
with a > 0. The hypothesis is that U : O → R is a von Neumann-Morgenstern utility

function that represents ≿, that is, that, for any two lotteries L =

(
o1 ... om

p1 ... pm

)
and

L′ =

(
o1 ... om

q1 ... qm

)
,

L ≿ L′ if and only if p1U(o1)+ ...+ pmU(om) ≥ q1U(o1)+ ...+qmU(om) (5.1)

Multiplying both sides of the inequality (5.1) by a > 0 and adding (p1 + · · ·+ pm)b to the
left-hand side and (q1 + · · ·+qm)b to the right-hand side2 we obtain

p1 [aU(o1)+b]+ ...+ pm [aU(om)+b] ≥ q1 [aU(o1)+b]+ ...+qm [aU(om)+b] (5.2)

Defining V (oi) = aU(oi)+b, it follows from (5.1) and (5.2) that

L ≿ L′ if and only if p1V (o1)+ ...+ pmV (om) ≥ q1V (o1)+ ...+qmV (om),

that is, the function V is a von Neumann-Morgenstern utility function that represents the
ranking ≿. The proof of Part B will be given later, after introducing more notation and
some observations. ■

2Note that (p1 + · · ·+ pm) = (q1 + · · ·+qm) = 1.



80 Chapter 5. Expected Utility Theory

Suppose that the DM has a von Neumann-Morgenstern ranking of the set of lotteries
L (O). Since among the lotteries there are the degenerate ones that assign probability 1 to
a single basic outcome, it follows that the DM has a complete and transitive ranking of
the basic outcomes. We shall write obest for a best basic outcome, that is, a basic outcome
which is at least as good as any other basic outcome (obest ≿ o, for every o ∈ O) and oworst

for a worst basic outcome, that is, a basic outcome such that every other outcome is at least
as good as it (o ≿ oworst , for every o ∈ O). Note that there may be several best outcomes
(then the DM would be indifferent among them) and several worst outcomes; then obest

will denote an arbitrary best outcome and oworst an arbitrary worst outcome. We shall
assume throughout that the DM is not indifferent among all the outcomes, that is, we shall
assume that obest ≻ oworst .

We now show that, in virtue of Theorem 5.2.2, among the von Neumann-Morgenstern
utility functions that represent a given von Neumann-Morgenstern ranking ≿ of L (O),
there is one that assigns the value 1 to the best basic outcome(s) and the value 0 to the worst
basic outcome(s). To see this, consider an arbitrary von Neumann-Morgenstern utility
function F : O → R that represents ≿ and define G : O → R as follows: for every o ∈ O,
G(o) = F(o)−F(oworst). Then, by Theorem 5.2.2 (with a = 1 and b = −F(oworst)), G
is also a utility function that represents ≿ and, by construction, G(oworst) = F(oworst)−
F(oworst) = 0; note also that, since obest ≻ oworst , it follows that G(obest) > 0. Finally,
define U : O → R as follows: for every o ∈ O, U(o) = G(o)

G(obest)
. Then, by Theorem

5.2.2 (with a = 1
G(obest)

and b = 0), U is a utility function that represents ≿ and, by
construction, U(oworst) = 0 and U(obest) = 1. For example, if there are six basic outcomes
and the ranking of the basic outcomes is o3 ∼ o6 ≻ o1 ≻ o4 ≻ o2 ∼ o5, then one can
take as obest either o3 or o6 and as oworst either o2 or o5; furthermore, if F is given by
o1 o2 o3 o4 o5 o6

2 −2 8 0 −2 8
then G is the function

o1 o2 o3 o4 o5 o6

4 0 10 2 0 10
and U is

the function
o1 o2 o3 o4 o5 o6

0.4 0 1 0.2 0 1
.

Definition 5.2.2 Let U : O → R be a utility function that represents a given von
Neumann-Morgenstern ranking ≿ of the set of lotteries L (O). We say that U is
normalized if U(oworst) = 0 and U(obest) = 1.

The transformations described above show how to normalize any given utility function.
Armed with the notion of a normalized utility function we can now complete the proof of
Theorem 5.2.2.
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Proof of Part B of Theorem 5.2.2. Let F : O→R and G : O→R be two von Neumann-
Morgenstern utility functions that represent a given von Neumann-Morgenstern ranking of
L (O). Let U : O →R be the normalization of F and V : O →R be the normalization of G.
First we show that it must be that U =V , that is, U(o) =V (o) for every o ∈ O. Suppose,
by contradiction, that there is an ô ∈ O such that U(ô) ̸=V (ô). Without loss of generality

we can assume that U(ô)>V (ô). Construct the following lottery: L =

(
obest oworst

p̂ 1− p̂

)
with p̂ =U(ô) (recall that U is normalized and thus takes on values in the interval from 0
to 1). Then E[U(L)] = E[V (L)] =U(ô). Hence, according to U it must be that ô ∼ L (this
follows from Theorem 5.2.1), while according to V it must be (again, by Theorem 5.2.1)
that L ≻ ô (since E[V (L)] =U(ô)>V (ô)). Then U and V cannot be two representations
of the same ranking. Now let a1 =

1
F(obest)−F(oworst)

and b1 =− F(oworst)
F(obest)−F(oworst)

. Note that

a1 > 0. Then it is easy to verify that, for every o ∈ O, U(o) = a1F(o)+ b1. Similarly
let a2 =

1
G(obest)−G(oworst)

and b2 = − G(oworst)
G(obest)−G(oworst)

; again, a2 > 0 and, for every o ∈ O,

V (o) = a2G(o)+ b2. We can invert the latter transformation and obtain that, for every

o ∈ O, G(o) = V (o)
a2

− b2
a2

. Thus, we can transform F into U , which – as proved above – is

the same as V , and then transform V into G thus obtaining the following transformation of

F into G:

G(o) = aF(o)+b where a =
a1

a2
> 0 and b =

b1 −b2

a2
. □

R Theorem 5.2.2 is often stated as follows: a utility function that represents a von
Neumann-Morgenstern ranking ≿ of L (O) is unique up to a positive affine transfor-
mation. An affine transformation is a function f : R→ R of the form f (x) = ax+b
with a,b ∈ R. The affine transformation is positive if a > 0.
Because of Theorem 5.2.2, a von Neumann-Morgenstern utility function is usually
referred to as a cardinal utility function.

Theorem 5.2.1 guarantees the existence of a utility function that represents a given
von Neumann-Morgenstern ranking ≿ of L (O) and Theorem 5.2.2 characterizes the set
of such functions. Can one actually construct a utility function that represents a given
ranking? The answer is affirmative: if there are m basic outcomes one can construct an
individual’s von Neumann-Morgenstern utility function by asking her at most (m− 1)
questions. The first question is “what is your ranking of the basic outcomes?”. Then
we can construct the normalized utility function by first assigning the value 1 to the best
outcome(s) and the value 0 to the worst outcome(s). This leaves us with at most (m−2)
values to determine. For this we appeal to one of the axioms discussed in the next section,
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namely the Continuity Axiom, which says that, for every basic outcome oi there is a
probability pi ∈ [0,1] such that the DM is indifferent between oi for certain and the lottery
that gives a best outcome with probability pi and a worst outcome with probability (1− pi):

oi ∼

(
obest oworst

pi 1− pi

)
.

Thus, for each basic outcome oi for which a utility has not been determined yet, we

should ask the individual to tell us the value of pi such that oi ∼

(
obest oworst

pi 1− pi

)
;

then we can set Ui(oi) = pi, because the expected utility of the lottery

(
obest oworst

pi 1− pi

)
is piUi(obest)+(1− pi)Ui(oworst) = pi(1)+(1− pi)0 = pi.

■ Example 5.1 Suppose that there are five basic outcomes, that is, O = {o1,o2,o3,o4,o5}
and the DM, who has von Neumann-Morgenstern preferences, tells us that her ranking of
the basic outcomes is as follows: o2 ≻ o1 ∼ o5 ≻ o3 ∼ o4. Then we can begin by assigning
utility 1 to the best outcome o2 and utility 0 to the worst outcomes o3 and o4:(

outcome: o1 o2 o3 o4 o5

utility: ? 1 0 0 ?

)
.

There is only one value left to be determined, namely the utility of o1 (which is also the
utility of o5, since o1 ∼ o5). To find this value, we ask the DM to tell us what value of

p makes her indifferent between the lottery L =

(
o2 o3

p 1− p

)
and outcome o1 with

certainty.
Suppose that her answer is: 0.4. Then her normalized von Neumann-Morgenstern utility

function is

(
outcome: o1 o2 o3 o4 o5

utility: 0.4 1 0 0 0.4

)
. Knowing this, we can predict her

choice among any set of lotteries over these five basic outcomes. ■

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 5.4.2 at the end of this chapter.
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5.3 Expected utility: the axioms

We can now turn to the list of rationality axioms proposed by von Neumann and Morgen-
stern. This section makes heavy use of mathematical notation and, as mentioned in the
previous section, if the reader is not interested in understanding in what sense the theory
of expected utility captures the notion of rationality, he/she can skip it without affecting
his/her ability to understand the rest of this book.

Let O = {o1,o2, ...,om} be the set of basic outcomes and L (O) the set of simple
lotteries, that is, the set of probability distributions over O. Let ≿ be a binary relation on
L (O). We say that ≿ is a von Neumann-Morgenstern ranking of L (O) if it satisfies the
following four axioms or properties.

Axiom 1 [Completeness and transitivity]. ≿ is complete (for every two lotteries L and
L′ either L ≿ L′ or L′ ≿ L or both) and transitive (for any three lotteries L1,L2 and L3, if
L1 ≿ L2 and L2 ≿ L3 then L1 ≿ L3).

As noted in the previous section, Axiom 1 implies that there is a complete and transitive
ranking of the basic outcomes. Recall that obest denotes a best basic outcome and oworst

denotes a worst basic outcome and that we are assuming that obest ≻ oworst , that is, that the
DM is not indifferent among all the basic outcomes.

Axiom 2 [Monotonicity].

(
obest oworst

p 1− p

)
≿

(
obest oworst

q 1−q

)
if and only if p ≥ q.

Axiom 3 [Continuity]. For every basic outcome oi there is a pi ∈ [0,1] such that

oi ∼

(
obest oworst

pi 1− pi

)
.

Before we introduce the last axiom we need to define a compound lottery.

Definition 5.3.1 A compound lottery is a lottery of the form

(
x1 x2 ... xr

p1 p2 ... pr

)
where each xi is either an element of O or an element of L (O).
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For example, let m = 4. Then L =

(
o1 o2 o3 o4
2
5 0 1

5
2
5

)
is a simple lottery (an element

of L (O)), while

C =


(

o1 o2 o3 o4
1
3

1
6

1
3

1
6

)
o1

(
o1 o2 o3 o4
1
5 0 1

5
3
5

)
1
2

1
4

1
4


is a compound lottery.3

The compound lottery C can be viewed graphically as a tree, as shown in Figure 5.1.

1
2

o1

1
4

1
4

o1

1
3

o2

1
6

o3

1
3

o4

1
6

o1

1
5

o3

1
5

o4

3
5

Figure 5.1: A compound lottery

Next we define the simple lottery L(C) corresponding to a compound lottery C. Before
introducing the formal definition, we shall explain in an example how to construct such
a simple lottery. Continuing with the example of the compound lottery C given above
and illustrated in Figure 5.1, first we replace a sequence of edges with a single edge and
associate with it the product of the probabilities along the sequence of edges, as shown in
Figure 5.2.

3With r = 3, x1 =

(
o1 o2 o3 o4
1
3

1
6

1
3

1
6

)
, x2 = o1, x3 =

(
o1 o2 o3 o4
1
5 0 1

5
3
5

)
, p1 =

1
2 , p2 = p3 =

1
4 .
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o1 o2 o3 o4 o1 o1 o3 o4

1
6

1
12

1
6

1
12

1
4

1
20

1
20

3
20

Figure 5.2: Simplification of Figure 5.1 obtained by condensing paths into simple edges
and associating with the simple edges the products of the probabilities along the path.

Then we add up the probabilities of each outcome, as shown in Figure 5.3. Thus, the

simple lottery L(C) that corresponds to C is L(C) =

(
o1 o2 o3 o4
28
60

5
60

13
60

14
60

)
, namely the

lottery shown in Figure 5.3.

o1 o2 o3 o4

28
60

5
60

13
60

14
60

Figure 5.3: Simplification of Figure 5.2 obtained by adding, for each outcome, the proba-
bilities of that outcome.

Definition 5.3.2 Given a compound lottery C =

(
x1 x2 ... xr
p1 p2 ... pr

)
the correspond-

ing simple lottery L(C) =

(
o1 o2 ... om
q1 q2 ... qm

)
is defined as follows. First of all,for

i = 1, . . . ,m and j = 1, . . . ,r, define

oi(x j) =


1 if x j = oi
0 if x j = ok with k ̸= i

si if x j =

(
o1 ... oi−1 oi oi+1 ... om
s1 ... si−1 si si+1 ... sm

)

Then qi =
r
∑
j=1

p j oi(x j).
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Continuing the example where

C =


(

o1 o2 o3 o4
1
3

1
6

1
3

1
6

)
o1

(
o1 o2 o3 o4
1
5 0 1

5
3
5

)
1
2

1
4

1
4


we have that

r = 3, x1 =

(
o1 o2 o3 o4
1
3

1
6

1
3

1
6

)
, x2 = o1 and x3 =

(
o1 o2 o3 o4
1
5 0 1

5
3
5

)
,

so that
o1(x1) =

1
3 , o1(x2) = 1, and o1(x3) =

1
5

and thus q1 =
1
2

(1
3

)
+ 1

4 (1) + 1
4

(1
5

)
= 28

60 . Similarly, q2 =
1
2

(1
6

)
+ 1

4 (0) + 1
4 (0) =

1
12 = 5

60 ,

q3 =
1
2

(1
3

)
+ 1

4 (0) + 1
4

(1
5

)
= 13

60 and q4 =
1
2

(1
6

)
+ 1

4 (0) + 1
4

(3
5

)
= 14

60 .

Axiom 4 [Independence or substitutability]. Consider an arbitrary basic outcome oi and

an arbitrary simple lottery L =

(
o1 ... oi−1 oi oi+1 ... om

p1 ... pi−1 pi pi+1 ... pm

)
. If L̂ is a simple

lottery such that oi ∼ L̂, then L ∼ M where M is the simple lottery corresponding to the

compound lottery C =

(
o1 ... oi−1 L̂ oi+1 ... om

p1 ... pi−1 pi pi+1 ... pm

)
obtained by replacing oi

with L̂ in L.

We can now prove the first theorem of the previous section.

Proof of Theorem 5.2.1. To simplify the notation, throughout this proof we will assume
that we have renumbered the basic outcomes in such a way that obest = o1 and oworst = om.

First of all, for every basic outcome oi, let ui ∈ [0,1] be such that oi ∼

(
o1 om

ui 1−ui

)
.

The existence of such a value ui is guaranteed by the Continuity Axiom (Axiom 3); clearly
u1 = 1 and um = 0. Now consider an arbitrary lottery

L1 =

(
o1 ... om

p1 ... pm

)
.

First we show that

L1 ∼

 o1 om
m
∑

i=1
piui 1−

m
∑

i=1
piui

 (5.3)
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This is done through a repeated application of the Independence Axiom (Axiom 4), as
follows. Consider the compound lottery

C2 =

 o1

(
o1 om

u2 1−u2

)
o3 ... om

p1 p2 p3 ... pm



obtained by replacing o2 in lottery L1 with the lottery

(
o1 om

u2 1−u2

)
that the DM

considers to be just as good as o2. The simple lottery corresponding to C2 is

L2 =

(
o1 o3 ... om−1 om

p1 + p2u2 p3 ... pm−1 pm + p2(1−u2)

)
.

Note that o2 is assigned probability 0 in L2 and thus we have omitted it. By Axiom 4,
L1 ∼ L2. Now apply the same argument to L2: let

C3 =

 o1

(
o1 om

u3 1−u3

)
... om−1 om

p1 + p2u2 p3 ... pm−1 pm + p2(1−u2)


whose corresponding simple lottery is

L3 =

(
o1 ... om

p1 + p2u2 + p3u3 ... pm + p2(1−u2)+ p3(1−u3)

)
.

Note, again, that o3 is assigned probability zero in L3. By Axiom 4, L2 ∼ L3; thus, by
transitivity (since L1 ∼ L2 and L2 ∼ L3) we have that L1 ∼ L3. Repeating this argument
we get that L1 ∼ Lm−1, where

Lm−1 =

(
o1 om

p1 + p2u2 + ...+ pm−1um−1 pm + p2(1−u2)+ ...+ pm−1(1−um−1)

)
.

Since u1 = 1 (so that p1u1 = p1) and um = 0 (so that pmum = 0),

p1 + p2u2 + ...+ pm−1um−1 =
m

∑
i=1

piui and

p2(1−u2)+ ...+ pm−1(1−um−1)+ pm =
m

∑
i=2

pi−
m−1

∑
i=2

piui = p1+
m

∑
i=2

pi−
m−1

∑
i=2

piui− p1

= (since u1=1 and um=0)

m

∑
i=1

pi−
m−1

∑
i=2

piui− p1u1− pmum = (
since

m
∑

i=1
pi=1

) 1−
m

∑
i=1

piui.
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Thus, Lm−1 =


o1 om

m
∑

i=1
piui 1−

m
∑

i=1
piui

, which proves (5.3).Now define the following

utility function U : {o1, ...,om}→ [0,1]: U(oi) = ui, where, as before, for everybasic out-

come oi, ui ∈ [0,1] is such that oi ∼


o1 om

ui 1−ui

. Consider two arbitrary lotteries L =


o1 ... om

p1 ... pm

 and L′ =


o1 ... om

q1 ... qm

. We want to show that L ≿ L′ if and only if

E [U(L)]≥ E [U(L′)], that is, if and only if
m
∑

i=1
piui ≥

m
∑

i=1
qiui. By (5.3), L ∼ M, where M =

o1 om

m
∑

i=1
piui 1−

m
∑

i=1
piui

 and also L′ ∼ M′, where M′ =


o1 om

m
∑

i=1
qiui 1−

m
∑

i=1
qiui

.

Thus, by transitivity of ≿, L ≿ L′ if and only if M ≿ M′; by the Monotonicity Axiom

(Axiom 2), M ≿ M′ if and only if
m
∑

i=1
piui ≥

m
∑

i=1
qiui. □

The following example, known as the Allais paradox, suggests that one should view
expected utility theory as a “prescriptive” or “normative” theory (that is, as a theory
about how rational people should choose) rather than as a descriptive theory (that is,
as a theory about the actual behavior of individuals). In 1953 the French economist
Maurice Allais published a paper regarding a survey he had conducted in 1952 concerning
a hypothetical decision problem. Subjects “with good training in and knowledge of the
theory of probability, so that they could be considered to behave rationally” were asked to
rank the following pairs of lotteries:

A =

(
$5 Million $0

89
100

11
100

)
versus B =

(
$1 Million $0

90
100

10
100

)
and

C =

(
$5 Million $1 Million $0

89
100

10
100

1
100

)
versus D =

(
$1 Million

1

)
.
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Most subjects reported the following ranking: A ≻ B and D ≻C. Such ranking violates
the axioms of expected utility. To see this, let O = {o1,o2,o3} with o1 = $5 Million,
o2 = $1 Million and o3 = $0. Let us assume that the individual in question prefers more
money to less, so that o1 ≻ o2 ≻ o3 and has a von Neumann-Morgenstern ranking of

the lotteries over L (O) . Let u2 ∈ (0,1) be such that D ∼

(
$5 Million $0

u2 1−u2

)
(the

existence of such u2 is guaranteed by the Continuity Axiom). Then, since D ≻ C, by
transitivity(

$5 Million $0
u2 1−u2

)
≻ C. (5.4)

Let C′ be the simple lottery corresponding to the compound lottery $5 Million

(
$5 Million $0

u2 1−u2

)
$0

89
100

10
100

1
100

.

Then C′ =

(
$5 Million $0
89
100 +

10
100u2 1−

( 89
100 +

10
100u2

) ).

By the Independence Axiom, C ∼C′ and thus, by (5.4) and transitivity,(
$5 Million $0

u2 1−u2

)
≻

(
$5 Million $0
89

100 +
10
100u2 1−

( 89
100 +

10
100u2

) ) .

Hence, by the Monotonicity Axiom, u2 >
89

100 +
10

100u2, that is,

u2 >
89
90 . (5.5)

Let B′ be the simple lottery corresponding to the following compound lottery, constructed

from B by replacing the basic outcome ‘$1 Million’ with

(
$5 Million $0

u2 1−u2

)
:


(

$5 Million $0
u2 1−u2

)
$0

90
100

10
100

 .

Then

B′ =

(
$5 Million $0

90
100u2 1− 90

100u2

)
.

By the Independence Axiom, B∼B′; thus, since A≻B, by transitivity, A≻B′ and therefore,
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by the Monotonicity Axiom, 89
100 > 90

100u2, that is, u2 <
89
90 , contradicting (5.5).

Thus, if one finds the expected utility axioms compelling as axioms of rationality, then one
cannot consistently express a preference for A over B and also a preference for D over C.

Another well-known paradox is the Ellsberg paradox. Suppose that you are told that an
urn contains 30 red balls and 60 more balls that are either blue or yellow. You don’t know
how many blue or how many yellow balls there are, but the number of blue balls plus the
number of yellow ball equals 60 (they could be all blue or all yellow or any combination
of the two). The balls are well mixed so that each individual ball is as likely to be drawn as
any other. You are given a choice between the bets A and B, where

A = you get $100 if you pick a red ball and nothing otherwise,

B = you get $100 if you pick a blue ball and nothing otherwise.

Many subjects in experiments state a strict preference for A over B: A ≻ B. Consider now
the following bets:

C = you get $100 if you pick a red or yellow ball and nothing otherwise,

D = you get $100 if you pick a blue or yellow ball and nothing otherwise.

Do the axioms of expected utility constrain your ranking of C and D? Many subjects in
experiments state the following ranking: A ≻ B and D ≿C. All such people violate the
axioms of expected utility. The fraction of red balls in the urn is 30

90 = 1
3 . Let p2 be the

fraction of blue balls and p3 the fraction of yellow balls (either of these can be zero: all
we know is that p2 + p3 =

60
90 = 2

3 ). Then A,B,C and D can be viewed as the following
lotteries:

A =

(
$100 $0

1
3 p2 + p3

)
, B =

(
$100 $0

p2
1
3 + p3

)

C =

(
$100 $0

1
3 + p3 p2

)
, D =

(
$100 $0

p2 + p3 =
2
3

1
3

)
Let U be the normalized von Neumann-Morgenstern utility function that represents the
individual’s ranking; then U($100) = 1 and U(0) = 0. Thus,

E [U(A)] = 1
3 , E [U(B)] = p2, E [U(C)] = 1

3 + p3, and E [U(D)] = p2 + p3 =
2
3 .

Hence, A ≻ B if and only if 1
3 > p2, which implies that p3 >

1
3 , so that E [U(C)] = 1

3 + p3 >

E [U(D)] = 2
3 and thus C ≻ D (similarly, B ≻ A if and only if 1

3 < p2, which implies that

E [U(C)]< E [U(D)] and thus D ≻C).

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 5.4.2 at the end of this chapter.
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5.4 Exercises

The solutions to the following exercises are given in Section 5.5 at the end of this chapter.

5.4.1 Exercises for Section 5.1: Money lotteries and attitudes to risk

Exercise 5.1 Find the expected value of the lottery

(
24 12 48 6
1
6

2
6

1
6

2
6

)
. ■

Exercise 5.2 Consider the following lottery:(
o1 o2 o3
1
4

1
2

1
4

)

where
• o1 = you get an invitation to have dinner at the White House,
• o2 = you get (for free) a puppy of your choice
• o3 = you get $600.

What is the expected value of this lottery? ■

Exercise 5.3 Consider the following money lottery

L =

(
$10 $15 $18 $20 $25 $30 $36

3
12

1
12 0 3

12
2

12 0 3
12

)

(a) What is the expected value of the lottery?
(b) Ann prefers more money to less and has transitive preferences. She says that,

between getting $20 for certain and playing the above lottery, she would prefer
$20 for certain. What is her attitude to risk?

(c) Bob prefers more money to less and has transitive preferences. He says that,
given the same choice as Ann, he would prefer playing the lottery. What is his
attitude to risk?

■

Exercise 5.4 Sam has a debilitating illness and has been offered two mutually exclusive
courses of action: (1) take some well-known drugs which have been tested for a long
time and (2) take a new experimental drug. If he chooses (1) then for certain his pain
will be reduced to a bearable level. If he chooses (2) then he has a 50% chance of being
completely cured and a 50% chance of no benefits from the drug and possibly some
harmful side effects. He chose (1). What is his attitude to risk? ■
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5.4.2 Exercises for Section 5.2: Expected utility theory

Exercise 5.5 Ben is offered a choice between the following two money lotteries:

A =

(
$4,000 $0

0.8 0.2

)
and B =

(
$3,000

1

)
.

He says he strictly prefers B to A. Which of the following two lotteries, C and D, will
Ben choose if he satisfies the axioms of expected utility and prefers more money to
less?

C =

(
$4,000 $0

0.2 0.8

)
, D =

(
$3,000 $0

0.25 0.75

)
.

■

Exercise 5.6 There are three basic outcomes, o1,o2 and o3. Ann satisfies the axioms of
expected utility and her preferences over lotteries involving these three outcomes can
be represented by the following von Neumann-Morgenstern utility function:

V (o2) = a >V (o1) = b >V (o3) = c.

Normalize the utility function. ■

Exercise 5.7 Consider the following lotteries:

L1 =

(
$3000 $500

5
6

1
6

)
, L2 =

(
$3000 $500

2
3

1
3

)
,

L3 =

(
$3000 $2000 $1000 $500

1
4

1
4

1
4

1
4

)
, L4 =

(
$2000 $1000

1
2

1
2

)
.

Jennifer says that she is indifferent between lottery L1 and getting $2,000 for certain.
She is also indifferent between lottery L2 and getting $1,000 for certain. Finally, she
says that between L3 and L4 she would chose L3. Is she rational according to the theory
of expected utility? [Assume that she prefers more money to less.] ■
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Exercise 5.8 Consider the following basic outcomes:

• o1 = a Summer internship at the White House,

• o2 = a free one-week vacation in Europe,

• o3 = $800,

• o4 = a free ticket to a concert.

Rachel says that her ranking of these outcomes is o1 ≻ o2 ≻ o3 ≻ o4. She also says that

(1) she is indifferent between

(
o2

1

)
and

(
o1 o4
4
5

1
5

)
and

(2) she is indifferent between

(
o3

1

)
and

(
o1 o4
1
2

1
2

)
.

If she satisfies the axioms of expected utility theory, which of the two lotteries

L1 =

(
o1 o2 o3 o4
1
8

2
8

3
8

2
8

)
and L2 =

(
o1 o2 o3
1
5

3
5

1
5

)
will she choose? ■

Exercise 5.9 Consider the following lotteries:

L1 =

(
$30 $28 $24 $18 $8

2
10

1
10

1
10

2
10

4
10

)
and L2 =

(
$30 $28 $8

1
10

4
10

5
10

)
.

(a) Which lottery would a risk neutral person choose?
(b) Paul’s von Neumann-Morgenstern utility-of-money function is U(m) = ln(m),

where ln denotes the natural logarithm. Which lottery would Paul choose?
■

Exercise 5.10 There are five basic outcomes. Jane has a von Neumann-Morgenstern
ranking of the set of lotteries over the set of basic outcomes that can be represented by

either of the following utility functions U and V :

 o1 o2 o3 o4 o5

U : 44 170 −10 26 98
V : 32 95 5 23 59

.

(a) Show how to normalize each of U and V and verify that you get the same
normalized utility function.

(b) Show how to transform U into V with a positive affine transformation of the form
x 7→ ax+b with a,b ∈ R and a > 0.

■
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Exercise 5.11 Consider the following lotteries: L3 =

(
$28
1

)
, L4 =

(
$10 $50

1
2

1
2

)
.

(a) Ann has the following von Neumann-Morgenstern utility function:
UAnn($m) =

√
m. How does she rank the two lotteries?

(b) Bob has the following von Neumann-Morgenstern utility function:
UBob($m) = 2m− m4

1003 . How does he rank the two lotteries?

(c) Verify that both Ann and Bob are risk averse, by determining what they would
choose between lottery L4 and its expected value for certain.

■

5.4.3 Exercises for Section 5.3: Expected utility axioms

Exercise 5.12 Let O = {o1,o2,o3,o4}. Find the simple lottery corresponding to the
following compound lottery

(
o1 o2 o3 o4
2
5

1
10

3
10

1
5

)
o2

(
o1 o3 o4
1
5

1
5

3
5

) (
o2 o3
1
3

2
3

)
1
8

1
4

1
8

1
2


■

Exercise 5.13 Let O = {o1,o2,o3,o4}. Suppose that the DM has a von Neumann-
Morgenstern ranking of L (O) and states the following indifference:

o1 ∼

(
o2 o4
1
4

3
4

)
and o2 ∼

(
o3 o4
3
5

2
5

)
.

Find a lottery that the DM considers just as good as

L =

(
o1 o2 o3 o4
1
3

2
9

1
9

1
3

)
.

Do not add any information to what is given above (in particular, do not make any
assumptions about which outcome is best and which is worst). ■
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Exercise 5.14 — More difficult. Would you be willing to pay more in order to reduce
the probability of dying within the next hour from one sixth to zero or from four sixths
to three sixths? Unfortunately, this is not a hypothetical question: you accidentally
entered the office of a mad scientist and have been overpowered and tied to a chair. The
mad scientist has put six glasses in front of you, numbered 1 to 6, and tells you that
one of them contains a deadly poison and the other five contain a harmless liquid. He
says that he is going to roll a die and make you drink from the glass whose number
matches the number that shows up from the rolling of the die. You beg to be exempted
and he asks you “what is the largest amount of money that you would be willing to pay
to replace the glass containing the poison with one containing a harmless liquid?”.

Interpret this question as “what sum of money x makes you indifferent between

(1) leaving the poison in whichever glass contains it and rolling the die, and

(2) reducing your wealth by $x and rolling the die after the poison has been replaced by
a harmless liquid”. Your answer is: $X .

Then he asks you “suppose that instead of one glass with poison there had been four
glasses with poison (and two with a harmless liquid); what is the largest amount of
money that you would be willing to pay to replace one glass with poison with a glass
containing a harmless liquid (and thus roll the die with 3 glasses with poison and 3 with
a harmless liquid)?”. Your answer is: $Y .

Show that if X >Y then you do not satisfy the axioms of Expected Utility Theory. [Hint:
think about what the basic outcomes are; assume that you do not care about how much
money is left in your estate if you die and that, when alive, you prefer more money to
less.] ■

5.5 Solutions to Exercises

Solution to Exercise 5.1 The expected value of the lottery

(
24 12 48 6
1
6

2
6

1
6

2
6

)
is

1
6(24)+ 2

6(12)+ 1
6(48)+ 2

6(6) = 18. □

Solution to Exercise 5.2 This was a trick question! There is no expected value because
the basic outcomes are not numbers. □
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Solution to Exercise 5.3

(a) The expected value of the lottery

L =

(
$10 $15 $18 $20 $25 $30 $36

3
12

1
12 0 3

12
2
12 0 3

12

)

is E[L] = 3
12(10)+ 1

12(15)+(0)(18) + 3
12(20)+ 2

12(25)+(0)(30) + 3
12(36) = 263

12 =

$21.92.

(b) Since Ann prefers more money to less, she prefers $21.92 to $20 ($21.92 ≻ $20).
She said that she prefers $20 to lottery L ($20 ≻ L). Thus, since her preferences are
transitive, she prefers $21.92 to lottery L ($21.92 ≻ L). Hence, she is risk averse.

(c) The answer is: we cannot tell. First of all, since Bob prefers more money to less,
he prefers $21.92 to $20 ($21.92 ≻ $20). Bob could be risk neutral, because a risk
neutral person would be indifferent between L and $21.92 (L ∼ $21.92); since Bob
prefers $21.92 to $20 and has transitive preferences, if risk neutral he would prefer
L to $20. However, Bob could also be risk loving: a risk-loving person prefers L to
$21.92 (L ≻ $21.92) and we know that he prefers $21.92 to $20; thus, by transitivity,
if risk loving, he would prefer L to $20. But Bob could also be risk averse: he could
consistently prefer $21.92 to L and L to $20 (for example, he could consider L to be
just as good as $20.50). □

Solution to Exercise 5.4 Just like Exercise 5.2, this was a trick question! Here the basic
outcomes are not sums of money but states of health. Since the described choice is
not one between money lotteries, the definitions of risk aversion/neutrality/love are not
applicable. □

Solution to Exercise 5.5 Since Ben prefers B to A, he must prefer D to C.
Proof. Let U be a von Neumann-Morgenstern utility function that represents Ben’s
preferences. Let U($4,000) = a,U($3,000) = b and U($0) = c.
Since Ben prefers more money to less, a > b > c. Then E[U(A)] = 0.8U($4,000) +
0.2U($0) = 0.8a+0.2c and E[U(B)] =U($3,000) = b.
Since Ben prefers B to A, it must be that b > 0.8a+0.2c.
Let us now compare C and D: E[U(C)] = 0.2a+ 0.8c and E[U(D)] = 0.25b+ 0.75c.
Since b > 0.8a+0.2c, 0.25b > 0.25(0.8a+0.2c) = 0.2a+0.05c and thus, adding 0.75c
to both sides, we get that 0.25b+ 0.75c > 0.2a+ 0.8c, that is, E[U(D)] > E[U(C)], so
that D ≻ C. Note that the proof would have been somewhat easier if we had taken the
normalized utility function, so that a = 1 and c = 0. □
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Solution to Exercise 5.6 Define the function U as follows:

U(x) = 1
a−cV (x)− c

a−c =
V (x)−c

a−c (note that, by hypothesis, a > c and thus 1
a−c > 0).

Then U represents the same preferences as V .

Then U(o2) =
V (o2)−c

a−c = a−c
a−c = 1, U(o1) =

V (o1)−c
a−c = b−c

a−c , and U(o3) =
V (o3)−c

a−c = c−c
a−c = 0.

Note that, since a > b > c, 0 < b−c
a−c < 1. □

Solution to Exercise 5.7 We can take the set of basic outcomes to be {$3000,$2000,$1000,
$500}. Suppose that there is a von Neumann-Morgenstern utility function U that represents
Jennifer’s preferences. We can normalize it so that U($3000) = 1 and U($500) = 0.

Since Jennifer is indifferent between L1 and $2000, U($2000) = 5
6 (since the expected

utility of L1 is 5
6(1)+

1
6(0) =

5
6 ).

Since she is indifferent between L2 and $1000, U($1000) = 2
3 (since the expected utility

of L2 is 2
3(1)+

1
3(0) =

2
3 ).

Thus, E[U(L3)] =
1
4 (1)+

1
4

(5
6

)
+ 1

4

(2
3

)
+ 1

4 (0) =
5
8 and E[U(L4)] =

1
2

(5
6

)
+ 1

2

(2
3

)
= 3

4 .
Since 3

4 > 5
8 , Jennifer should prefer L4 to L3. Hence, she is not rational according to the

theory of expected utility. □

Solution to Exercise 5.8 Normalize her utility function so that U(o1) = 1 and U(o4) = 0.

Since Rachel is indifferent between

(
o2

1

)
and

(
o1 o4
4
5

1
5

)
, we have that U(o2) =

4
5 .

Similarly, since she is indifferent between

(
o3

1

)
and

(
o1 o4
1
2

1
2

)
, U(o3) =

1
2 . Then

the expected utility of L1 =

(
o1 o2 o3 o4
1
8

2
8

3
8

2
8

)
is 1

8(1)+
2
8(

4
5)+

3
8(

1
2)+

2
8(0) =

41
80 =

0.5125, while the expected utility of L2 =

(
o1 o2 o3
1
5

3
5

1
5

)
is 1

5(1) +
3
5(

4
5) +

1
5(

1
2) =.

39
50 = 0.78. Hence, she prefers L2 to L1. □

Solution to Exercise 5.9
(a) The expected value of L1 is 2

10(30)+ 1
10(28)+ 1

10(24)+ 2
10(18)+ 4

10(8) = 18 and

the expected value of L2 is 1
10(30)+ 4

10(28)+ 5
108 = 18.2. Hence, a risk-neutral

person would prefer L2 to L1.

(b) The expected utility of L1 is
1
5 ln(30)+ 1

10 ln(28)+ 1
10 ln(24)+ 1

5 ln(18)+ 2
5 ln(8) = 2.741

while the expected utility of L2 is 1
10 ln(30)+ 2

5 ln(28)+ 1
2 ln(8) = 2.713.

Thus, Paul would choose L1 (since he prefers L1 to L2). □
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Solution to Exercise 5.10

(a) To normalize U first add 10 to each value and then divide by 180.
Denote the normalization of U by Ū . Then

o1 o2 o3 o4 o5

Ū : 54
180 = 0.3 180

180 = 1 0
180 = 0 36

180 = 0.2 108
180 = 0.6

To normalize V first subtract 5 from each value and then divide by 90.
Denote the normalization of V by V̄ . Then

o1 o2 o3 o4 o5

V̄ : 27
90 = 0.3 90

90 = 1 0
90 = 0 18

90 = 0.2 54
90 = 0.6

(b) The transformation is of the form V (o) = aU(o)+b. To find the values of a and b

plug in two sets of values and solve the system of equations

{
44a+b = 32

170a+b = 95
.

The solution is a = 1
2 , b = 10. Thus, V (o) = 1

2U(o)+10. □

Solution to Exercise 5.11

(a) Ann prefers L3 to L4 (L3 ≻Ann L4). In fact, E [UAnn(L3)] =
√

28 = 5.2915

while E [UAnn(L4)] =
1
2

√
10+ 1

2

√
50 = 5.1167.

(b) Bob prefers L4 to L3 (L4 ≻Bob L3). In fact, E [UBob(L3)] = 2(28)− 284

1003 = 55.3853

while E [UBob(L4)] =
1
2

[
2(10)− 104

1003

]
+ 1

2

[
2(50)− 504

1003

]
= 56.87.

(c) The expected value of lottery L4 is 1
210+ 1

250 = 30; thus, a risk-averse person would
strictly prefer $30 with certainty to the lottery L4. We saw in part (a) that for Ann
the expected utility of lottery L4 is 5.1167; the utility of $30 is

√
30 = 5.4772. Thus,

Ann would indeed choose $30 for certain over the lottery L4.
We saw in part (b) that for Bob the expected utility of lottery L4 is 56.87; the utility
of $30 is 2(30)− 304

1003 = 59.19 . Thus, Bob would indeed choose $30 for certain
over the lottery L4. □

Solution to Exercise 5.12 The simple lottery is

(
o1 o2 o3 o4
18
240

103
240

95
240

24
240

)
. For example,

the probability of o2 is computed as follows: 1
8

( 1
10

)
+ 1

4(1)+
1
8(0)+

1
2

(1
3

)
= 103

240 . □
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Solution to Exercise 5.13 Using the stated indifference, use lottery L to construct the

compound lottery 
(

o2 o4
1
4

3
4

) (
o3 o4
3
5

2
5

)
o3 o4

1
3

2
9

1
9

1
3

 ,

whose corresponding simple lottery is L′ =

(
o1 o2 o3 o4

0 1
12

11
45

121
180

)
.

Then, by the Independence Axiom, L ∼ L′. □

Solution to Exercise 5.14 Let W be your initial wealth. The basic outcomes are:

1. you do not pay any money, do not die and live to enjoy your wealth W (denote this
outcome by A0),

2. you pay $Y , do not die and live to enjoy your remaining wealth W −Y (call this
outcome AY ),

3. you pay $X , do not die and live to enjoy your remaining wealth W −X (call this
outcome AX ),

4. you die (call this outcome D); this could happen because (a) you do not pay any
money, roll the die and drink the poison or (b) you pay $Y , roll the die and drink the
poison; we assume that you are indifferent between these two outcomes.

Since, by hypothesis, X > Y , your ranking of these outcomes must be A0 ≻ AY ≻ AX ≻
D. If you satisfy the von Neumann-Morgenstern axioms, then your preferences can be
represented by a von Neumann-Morgenstern utility function U defined on the set of basic
outcomes. We can normalize your utility function by setting U(A0) = 1 and U(D) = 0.
Furthermore, it must be that

U(AY )>U(AX). (5.6)

The maximum amount $P that you are willing to pay is that amount that makes you
indifferent between (1) rolling the die with the initial number of poisoned glasses and (2)
giving up $P and rolling the die with one less poisoned glass.
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Thus – based on your answers – you are indifferent between the two lotteries(
D A0
1
6

5
6

)
and

(
AX

1

)

and you are indifferent between the two lotteries:(
D A0
4
6

2
6

)
and

(
D AY
3
6

3
6

)
.

Thus,

1
6U(D)+ 5

6U(A0)︸ ︷︷ ︸
=

1
6 0+5

6 1=5
6

=U(AX)and 4
6U(D)+ 2

6U(A0)︸ ︷︷ ︸
=

4
6 0+2

6 1=2
6

= 3
6U(D)+ 3

6U(AY )︸ ︷︷ ︸
=

3
6 0+3

6U(AY )

.

Hence, U(AX) =
5
6 and U(AY ) =

2
3 = 4

6 , so that U(AX)>U(AY ), contradicting (5.6). □



6. Applications of Expected Utility

6.1 States and acts revisited

In Chapter 3 we introduced the state-act representation of decision problems and discussed
decision criteria that did not depend on the Decision Maker’s (DM) ability to assign
probabilities to the states. If objective probabilities are available for the states, or if the
DM is willing to assign subjective probabilities to them (by quantifying her beliefs), and
the DM’s preferences satisfy the von Neumann-Morgenstern axioms, then each act can be
viewed as a lottery and can be evaluated in terms of the expected utility of that lottery. We
shall illustrate this with an example.

Alice wants to start a business selling decorative rugs. She has to decide whether to
build a small production facility, a medium facility or a large facility. With a small facility
she will be committed to producing 1,200 rugs, with a medium facility 1,400 rugs and
with a large facility 2,000 rugs. She is uncertain, however, about the demand for rugs. If
the economy is stagnant (state s1) she will only be able to sell 1,200 rugs, if the economy
is improving (state s2) she will be able to sell up to 1,400 rugs and if the economy is
experiencing a boom she will be able to sell up to 2,000 rugs. The number of rugs sold will
be equal to the number of rugs produced, if demand is at least as large as production, and
equal to the number of rugs demanded otherwise. All of this is illustrated in Table (6.1).
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state → s1 s2 s3
act ↓

small

production: 1,200

demand: 1,200

sale: 1,200

production: 1,200

demand: 1,400

sale: 1,200

production: 1,200

demand: 2,000

sale: 1,200

medium

production: 1,400

demand: 1,200

sale: 1,200

production: 1,400

demand: 1,400

sale: 1,400

production: 1,400

demand: 2,000

sale: 1,400

large

production: 2,000

demand: 1,200

sale: 1,200

production: 2,000

demand: 1,400

sale: 1,400

production: 2,000

demand: 2,000

sale: 2,000

(6.1)

Alice is interested in the profit that she will make. She expects to sell each rug for
$102 and the cost of producing each rug is $2. Besides the production cost, there is
also the cost of setting up the production facility, which is $50,000 for a small one,
$55,000 for a medium one and $60,000 for a large one. Thus, for example, if she
chooses a medium facility (cost: $55,000) and thus produces 1,400 rugs (cost: $2,800)
and the state turns out to be s1 (so that she sells only 1,200 rugs) then her profit is:
$(1,200(102)−2,800−55,000) = $64,600. Table (6.2) shows Alice’s decision problem
with the outcomes expressed as profits. Suppose that, after consulting an economist who
claims to be an expert, Alice assigns the following probabilities to the states:

state s1 s2 s3
probability 1

4
2
4

1
4

.

Suppose also that Alice has von Neumann-Morgenstern preferences that are represented
by the utility function U($x) =

√
x.1

state → s1 s2 s3
act ↓
small $70,000 $70,000 $70,000

medium $64,600 $85,000 $85,000
large $58,400 $78,800 $140,000

(6.2)

Choosing a small production facility corresponds to the lottery
(

$70,000
1

)
whose

expected utility is
√

70,000 = 264.575. Choosing a medium facility corresponds to the
lottery(

$64,600 $85,000 $85,000
1
4

2
4

1
4

)
1Thus, Alice is risk averse. This can be seen, for example, by comparing the lottery A =

(
$400

1

)
with

the lottery B =

(
$16 $784

1
2

1
2

)
. Since the expected value of B is 1

2 16+ 1
2 784 = 400, lottery A offers the

expected value of B for sure (hence, a risk neutral person would be indifferent between A and B). Alice
prefers lottery A to lottery B: in fact, the expected utility of A is

√
400 = 20, larger than the expected utility

of B, which is 1
2

√
784+ 1

2

√
16 = 1

2 28+ 1
2 4 = 16.
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whose expected utility is

1
4

√
64,600+

2
4

√
85,000+

1
4

√
85,000 = 282.202

and choosing a large facility corresponds to the lottery(
$58,400 $78,800 $140,000

1
4

2
4

1
4

)
whose expected utility is 1

4
√

58,400+ 2
4
√

78,800+ 1
4
√

140,000 = 294.313. Thus, Alice
will choose a large production facility, since it yields the highest expected utility.2

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 6.5.1 at the end of this chapter.

6.2 Decision trees revisited
In Chapter 4 we introduced the method of backward induction to solve decision trees
for the special case where the outcomes are sums of money and the DM is risk neutral.
Now, armed with the theory of expected utility developed in Chapter 5, we can extend
the backward-induction method to the case of general outcomes and/or to attitudes to risk
different from risk neutrality.

Let us begin with the example of Section 4.4 (Chapter 4). This example concerns
Dave, who has developed lower-back pain and is consulting his doctor on what to do. The
doctor tells him that one possibility is to do nothing: just rest and limit his activities and
hope that the back will heal itself; in her experience, in 40% of the cases the pain subsides
spontaneously. Another possibility is to take strong doses of an anti-inflammatory drug for
a prolonged period of time. This is an effective way to get rid of the pain; in her experience,
it works 80% of the time, without side effects. However, there is a 20% chance that the
drug will cause intestinal bleeding, in which case it must be stopped immediately and
avoided in the future. Usually this happens within the first week, too soon to have any
benefits from the drug in terms of pain reduction. Finally, there is the option of surgery.
This type of surgery has been performed many times in the past and it worked in 90%
of the patients. For the remaining 10%, however, there was damage to the spine during
the procedure, which led to permanent numbness in one or both legs, but the pain in the
back did go away. We represented Dave’s decision problem using a decision tree, which is
reproduced below in Figure 6.1.

2On the other hand, the MaxiMin criterion (see Chapter 3, Section 3.3) would prescribe choosing a small
production facility.
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drug treatment
no back pain

20%

80%
reaction

to drug
back pain and
intestinal bleeding

surgery

no back pain
40%

remission

no improvement

successful

wait and
rest

60%

back pain

su
cc

es
sf

ul

no back pain

fail

no back pain but permanent leg numbness

90% 10%

 

Figure 6.1: Dave’s decision tree
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Dave is uncertain as to what to do and, having heard that you are knowledgeable in
Decision Making, is asking you to help him. First of all, you explain to him the axioms of
expected utility theory. He tells you that he is convinced that they are reasonable axioms
and he wants to adhere to them. Then you stipulate that you are going to name the basic
outcomes as follows:

outcome description
o1 no back pain
o2 back pain
o3 back pain and intestinal bleeding
o4 no back pain but permanent leg numbness

and you ask him to rank them. He informs you that is ranking is:

best o1
o2
o4

worst o3

Armed with this information, you decide to construct his normalized von Neumann-
Morgenstern utility function. As a first step you assign utility 1 to the best outcome,
namely o1, and utility 0 to the worst outcome, namely o3. To determine the utility of
outcome o2 you ask him to tell you what value of p would make him indifferent between

the lottery
(

o1 o3
p 1− p

)
and the lottery

(
o2
1

)
. After giving some consideration to

your question, he answers: p = 3
4 . This enables you to assign utility 3

4 to outcome o2. You
then ask him to tell you what value of p would make him indifferent between the lottery(

o1 o3
p 1− p

)
and the lottery

(
o4
1

)
. His answer is: p = 1

8 . Hence, you assign utility 1
8

to outcome o4. Thus, Dave’s normalized utility function is

outcome utility
o1 1

o2
3
4

o4
1
8

o3 0

Replacing outcomes with utilities, Dave’s decision problem can be re-written as shown in
Figure 6.2.
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drug treatment

20%

80%
reaction

to drug

surgery

40%

remission

no improvement

successful

wait and
rest

60%

su
cc

es
sf

ul fail

90% 10%

3

4

1

1

0

1

81
 

Figure 6.2: Dave’s decision tree with outcomes replaced by utilities

Now you apply the method of backward induction to solve the decision tree.
The top circle corresponds to a lottery with expected utility 4

10(1) +
6

10

(3
4

)
= 0.85,

the middle circle corresponds to a lottery with expected utility 8
10(1) +

2
10(0) = 0.8 and

the bottom circle corresponds to a lottery with expected utility 9
10(1) +

1
10

(1
8

)
= 0.9125.

Thus, the decision tree can be simplified to the one shown in Figure 6.3, showing that
Dave’s optimal decision is to have surgery.

surgery

wait and
rest

drug treatment

0.7

0.8

0.9125
 

Figure 6.3: The reduced version of the tree of Figure 6.2

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 6.5.2 at the end of this chapter.
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6.3 Regret
In Chapter 3 (Section 3.4) we discussed the notion of regret in the context of ordinal
rankings of outcomes (using ordinal utility functions) and concluded that the concept of
MinMaxRegret was not meaningful in that context. We now re-examine the notion of
regret within the context of von Neumann-Morgenstern utility functions.

Suppose that your friend Sue faces the following decision problem represented in terms
of states, outcomes and acts:

state →
act ↓

s1 s2

a o1 o2
b o3 o4

with preferences

best o1
o4
o3

worst o2

Suppose also that Sue satisfies the axioms of expected utility, but is unable to come up with
a probability distribution over the set of states {s1,s2}. Yet, she can still contemplate her
preferences over all possible hypothetical lotteries on the set of outcomes {o1,o2,o3,o4}.
She asks you to help her find a von Neumann-Morgenstern utility function that represents
her preferences. As explained in Chapter 5, you can – as a first step – assign an arbitrary
utility to the best outcome and an arbitrary utility (of course, lower) to the worst outcome.
Suppose that you choose the values 100 and 0, respectively.3 As a second step, you would

ask her to tell you what value of p makes her indifferent between the lottery
(

o1 o2
p 1− p

)
and getting outcome o4 for sure. If she satisfies the axioms of expected utility, she must
be able to answer this question (indeed, the Continuity Axiom postulates so). Suppose

that her answer is: 75%. Then, since the expected utility of the lottery
(

o1 o2
0.75 0.25

)
is 0.75(100)+ 0.25(0) = 75, you can assign utility 75 to outcome o4. As a last step,
you would then ask her to tell you what value of p makes her indifferent between the

lottery
(

o1 o2
p 1− p

)
and getting outcome o3 for sure. Suppose that her answer is: 50%.

Then, since the expected utility of the lottery
(

o1 o2
0.5 0.5

)
is 0.5(100)+ 0.5(0) = 50,

you can assign utility 50 to outcome o3. Thus, you have constructed the following von
Neumann-Morgenstern utility function:4(

outcome: o1 o2 o3 o4
utility: 100 0 50 75

)
.

Using this utility function we can re-write Sue’s decision problem as follows:

state →
act ↓

s1 s2

a 100 0
b 50 75

(6.3)

3If you wanted to construct the normalized utility function you would choose the values 1 and 0,
respectively.

4The normalized utility function would be
(

outcome: o1 o2 o3 o4
utility: 1 0 0.5 0.75

)
.
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After hearing from you the notion of minimizing the maximum regret, Sue decides that
she wants to apply that principle in order to decide what to do. You explain to her that, for
each state, the potential regret of an act x is the difference between the maximum utility
that she could get in that state by choosing the best act for that state and the utility that
she gets by choosing act x. Thus, the regret associated with act a in state s1 is 0 while
the regret associated with act a in state s2 is 75. Hence, the regret table associated with
decision problem (6.3) is as follows:

the regret table:

state →
act ↓

s1 s2

a 0 75
b 50 0

(6.4)

Since the maximum regret associated with act a is 75 and the maximum regret associ-
ated with act b is 50, the principle of minimizing the maximum regret, MinMaxRegret,
prescribes choosing act b.

Of course, we need to worry whether the MinMaxRegret principle is meaningful in the
context of von Neumann-Morgenster preferences (we know from Chapter 3 that it is not
meaningful in the context of merely ordinal preferences). Before addressing this issue, we
shall give one more example of how to apply the MinMaxRegret principle.

Consider the following decision problem, expressed in terms of von Neumann-Morgenstern
utilities:5

state → s1 s2 s3 s4
act ↓

a 5 80 35 10
b 25 70 30 75
c 60 40 50 45

(6.5)

The corresponding regret table is as follows (with the maximum regret for each act
highlighted in a box):

the regret table:

state → s1 s2 s3 s4
act ↓

a 55 0 15 65
b 35 10 20 0
c 0 40 0 30

(6.6)

Thus, the MinMaxRegret principle prescribes act b.

5With the normalized utility function this decision problem would be written as follows (obtained by first
subtracting 5 from every utility and then dividing by 75):

state → s1 s2 s3 s4
act ↓

a 0 1 30
75

5
75

b 20
75

65
75

25
75

70
75

c 55
75

35
75

45
75

40
75
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Let us now show that, within the context of von Neumann-Morgenstern preferences, the
MinMaxRegret principle is indeed meaningful. We need to show that if, with a given von
Neumann-Morgenstern utility function, the MinMaxRegret principle prescribes act x then
any other von Neumann-Morgenstern utility function that represents the same preferences
also prescribes act x. Rather than showing this in general, we will show it for the decision
problem considered above in (6.5).

Recall (Theorem 5.2.2, Chapter 5) that if U and V are two alternative von Neumann-
Morgenstern utility functions that represent the same preferences, then there are real
numbers α > 0 and β such that, for every outcome o, V (o) = αU(o)+β ; conversely, if
the utility function U is a representation of given von Neumann-Morgenstern preferences
then, given arbitrary real numbers α > 0 and β , the utility function V defined by V (o) =
αU(o)+β is also a representation of the same preferences.

Let U be the utility function that appears in decision problem (6.5), which – as shown
in the regret table (6.6) – prescribes act b when the MinMaxRegret principle is applied.
Choose arbitrary real numbers α > 0 and β and define a new utility function V by letting
V (o) = αU(o)+β . Then, using utility function V – which is an alternative representation
of the same preferences – the decision problem (6.5) becomes

state → s1 s2 s3 s4
act ↓

a 5α +β 80α +β 35α +β 10α +β

b 25α +β 70α +β 30α +β 75α +β

c 60α +β 40α +β 50α +β 45α +β

(6.7)

Thus, the regret associated with act a in state s1 is 60α+β −(5α+β ) = 55α and similarly
for the other states and acts, yielding the following regret table (with the maximum regret
for each act highlighted in a box: recall that, by hypothesis, α > 0):

the regret table:

state → s1 s2 s3 s4
act ↓

a 55α 0 15α 65α

b 35α 10α 20α 0
c 0 40α 0 30α

(6.8)

It is clear from table (6.8) that the MinMaxRegret principle still prescribes act b (again,
recall that α > 0), thus confirming the conclusion of table (6.6).

In general, if U is a von Neumann-Morgenstern utility function that represents the
DM’s preferences and V is an alternative von Neumann-Morgenstern utility function that
represents the same preferences, then there exist real numbers α > 0 and β such that
V (o) = αU(o)+β , for every basic outcome o. Hence, for every two basic outcomes o
and o′,

V (o′)−V (o) = αU(o′)+β − [αU(o)+β ] = αU(o′)−αU(o) = α
[
U(o′)−U(o)

]
so that, by changing the utility function (while representing the same preferences), we
merely multiply the regret values by a positive number and thus the act that minimizes the
maximum regret remains the same.



110 Chapter 6. Applications of Expected Utility

We conclude this section by considering what the MinMaxRegret criterion would
suggest for the back-pain problem considered in the previous section. Recall that this
problem, represented in the decision tree of Figure 6.1, concerns Dave who faces the
decision whether to undergo surgery or follow a drug treatment or just wait and rest.
The MinMaxRegret principle does not rely on expected utility calculations and thus the
probabilities shown in the decision tree are not relevant. Furthermore, before we can apply
the notion of regret, we need to recast the decision problem in terms of states and acts.

To start with, we need to clarify what a state is in this case. A state needs to specify all
the external facts that are relevant in determining the outcome associated with any action
that is taken. There are three such facts.
First of all, there is the issue as to whether the pain would go away with rest. Let us call
this fact R; thus, R means that rest would eliminate the pain and notR means that rest would
not be effective.
Then there is the issue as to whether Dave’s body would tolerate the drug or not. Let us
call this fact D; thus, D means drug-tolerance and notD means that the drug would give
him intestinal bleeding.
Finally, there is the issue as to whether surgery would be effective in Dave’s case. Let us
denote this fact by S; thus, S means that surgery would be beneficial and notS that surgery
would not be successful.
Each state has to be a full description of the world and thus has to specify which of the
above three facts is true. Hence, there are eight states, as shown in Figure 6.4.

Using the normalized utility function calculated in Section 6.2, namely

outcome utility
o1 1

o2
3
4

o4
1
8

o3 0

we obtain the state-act representation shown in Figure 6.4.

R,D,S R,D,notS R,notD,S R,notD,notS notR,D,S notR,D,notS notR,notD,S notR,notD,notS

Rest 1 1 1 1 3/4 3/4 3/4 3/4
Drug 1 1 0 0 1 1 0 0
Surgery 1 1/8 1 1/8 1 1/8 1 1/8

A
c
t

State

Figure 6.4: The state-act representation of the decision tree of Figure 6.2
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The corresponding regret table is shown in Figure 6.5, where the maximum regret for each
act is highlighted. Thus, the MinMaxRegret principle prescribes the choice of resting.

R,D,S R,D,notS R,notD,S R,notD,notS notR,D,S notR,D,notS notR,notD,S notR,notD,notS

Rest 0 0 0 0 1/4 1/4 1/4 0
Drug 0 0 1 1 0 0 1 3/4

Surgery 0 7/8 0 7/8 0 7/8 0 5/8

Regret

A

c

t

Figure 6.5: The regret table corresponding to Figure 6.4

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 6.5.3 at the end of this chapter.

6.4 The Hurwicz index of pessimism
In Section 3.3 of Chapter 3 we discussed the MaxiMin principle, within the context of
ordinal preferences, and noted that it reflects a notion of extreme pessimism: for each act
the DM looks at the worst-case scenario – that is, the worst possible outcome – and then
chooses an act which is best in terms of the worst outcome. The late economist Leonid
Hurwicz, who in 2007 shared the Nobel Memorial Prize in Economic Sciences6 (with Eric
Maskin and Roger Myerson) for work on mechanism design, proposed a more general
criterion of choice that incorporates the MaxiMin as a special case. It is a principle that,
like the notion of regret, would not be meaningful within the context of merely ordinal
utility functions.

Let α ∈ [0,1]. For each act, the DM attaches weight α to the worst outcome associated
with that act and weight (1−α) to the best outcome associated with that act, thus obtaining
an index for each act. The DM then chooses that act that has the highest index (or one of
them, if there are several acts with the highest index). For example, consider the following
decision problem, where utilities are von Neumann-Morgenstern utilities:

state → s1 s2 s3
act ↓

a1 10 2 0
a2 8 4 2
a3 4 4 4

(6.9)

Then the Hurwicz index associated with each act is calculated as follows:

H(a1;α) = 0α +10(1−α) = 10−10α

H(a2;α) = 2α +8(1−α) = 8−6α

H(a3;α) = 4α +4(1−α) = 4

6This is usually referred to as the ‘Nobel Prize in Economics’; however, it is in fact the ‘Sveriges Riksbank
Prize in Economic Sciences in Memory of Alfred Nobel’, only given out since 1969.
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If α = 3
5 then we get

H(a1; 3
5) = 0

3
5
+10(1− 3

5
) = 4

H(a2; 3
5) = 2

3
5
+8(1− 3

5
) = 4.4

H(a3; 3
5) = 4

3
5
+4(1− 3

5
) = 4

and thus the DM would choose act a2.

The parameter α is called the index of pessimism. If α = 1 (extreme pessimism) then
the DM focuses on the worst outcome and the Hurwicz principle reduces to the MaxiMin
principle. If α = 0 (complete lack of pessimism, or extreme optimism) then the DM simply
chooses an act that gives the best outcome in some state. If 0 < α < 1 then the DM’s
degree of pessimism is somewhere between these two extremes.

Continuing the example given above in (6.9), we can plot the values H(a1;α),H(a2;α)
and H(a3;α) in a diagram where we measure α on the horizontal axis, as shown in Figure
6.6.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

a1 ( )

a2 ( )

a3

1

2

2

3



 

Figure 6.6: The Hurwicz indices for the three acts of decision problem (6.9)

We can see from Figure 6.6 that:
• If 0 ≤ α < 1

2 then the Hurwicz criterion prescribes act a1,
• if α = 1

2 then the Hurwicz criterion prescribes either a1 or a2,
• if 1

2 < α < 2
3 then the Hurwicz criterion prescribes act a2,

• if α = 2
3 then the Hurwicz criterion prescribes either a2 or a3,

• if 2
3 < α ≤ 1 then the Hurwicz criterion prescribes act a3.
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R,D,S R,D,notS R,notD,S R,notD,notS notR,D,S notR,D,notS notR,notD,S notR,notD,notS

Rest 1 1 1 1 3/4 3/4 3/4 3/4
Drug 1 1 0 0 1 1 0 0
Surgery 1 1/8 1 1/8 1 1/8 1 1/8

A
c
t

State

As a final example, let us re-examine, from the point of view of Hurwicz’s criterion,
Dave’s decision problem shown in Figure 6.4, which is reproduced above.

The Hurwicz indices for the three acts are as follows:

H(Rest;α) = 3
4α +1(1−α) = 1− 1

4α .
H(Drug;α) = (0)α +1(1−α) = 1−α .
H(Surgery;α) = 1

8α +1(1−α) = 1− 7
8α .

For every α > 0, H(Rest;α) > H(Surgery;α) > H(Drug;α) and thus, as long as the
index of pessimism α is not 0, Rest is the unique act prescribed by the Hurwicz criterion
(if α = 0 then the three acts are equivalent).

As for the case of MinMaxRegret, one needs to show that the Hurwicz criterion is
meaningful, in the sense that, if one were to use two different utility functions representing
the same von Neumann-Morgenstern preferences, then one would obtain the same answer
(using the Hurwicz criterion) for every possible value of the parameter α (which expresses
the DM’s degree of pessimism). Let us prove this.

Let U be a utility function that represents the DM’s von Neumann-Morgenstern prefer-
ences. Fix an arbitrary act a and let s(a) be a state that yields the lowest utility under act a
and s(a) be a state that yields the highest utility under act a,7 that is, letting o(a,s) denote
the basic outcome associated with act a and state s,

U (o(a,s(a)))≤U (o(a,s)) , for every state s,
U (o(a,s(a)))≥U (o(a,s)) , for every state s. (6.10)

Let V be a different utility function that represents the same preferences. Then, by Theorem
5.2.2 of Chapter 5, there exist two real numbers c > 0 and d such that

V (o) = cU(o)+d, for every basic outcome o. (6.11)

Now, if we multiply both sides of the two inequalities in (6.10) by c and add d to both
sides and use (6.11) we obtain

V (o(a,s(a)))≤V (o(a,s)) , for every state s,
V (o(a,s(a)))≥V (o(a,s)) , for every state s. (6.12)

It follows from (6.12) that it is still true for utility function V that s(a) is a state that yields
the lowest utility under act a and s(a) is a state that yields the highest utility under act a.

7For instance, in decision problem (6.9), s(a1) = s3 and s(a1) = s1. The two states s(a) and s(a) may be
different for different acts, that is, they are a function of the act [hence the notation s(a) and s(a)]. If there
are several states that yield the lowest utility, then s(a) denotes any one of them (and similarly for s(a)).
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Fix a value α̂ for the DM’s degree of pessimism (with 0 ≤ α̂ ≤ 1). Under utility
function U , the Hurwicz index of act a is

HU(a; α̂) = α̂U (o(a,s(a)))+(1− α̂)U (o(a,s(a))) . (6.13)

Hence, by (6.12), the Hurwicz index of act a under utility function V is

HV (a, α̂) = α̂V (o(a,s(a)))+(1− α̂)V (o(a,s(a))) . (6.14)

Let b be an act prescribed by the Hurwicz criterion under utility function U , that is,

HU(b; α̂)≥ HU(a; α̂), for every act a. (6.15)

Then it follows from (6.13)-(6.15) that

HV (b; α̂)≥ HV (a; α̂), for every act a. (6.16)

Thus, act b is prescribed by the Hurwicz criterion also under utility function V .

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 6.5.4 at the end of this chapter.

6.5 Exercises
The solutions to the following exercises are given in Section 6.6 at the end of this chapter.

6.5.1 Exercises for Section 6.1: States and acts revisited
Exercise 6.1 Consider the following decision problem and preferences:

state →
act ↓

s1 s2 s3

a1 o1 o2 o3
a2 o4 o5 o6
a3 o7 o8 o9

best o1
o3,o8,o9

o7
o5,o6

worst o2,o4

Assume that the DM has von Neumann-Morgenstern preferences over the set of lotteries
over the set of outcomes {o1,o2, . . . ,o9}. The DM says that she is indifferent between
o8 for sure and a lottery where she gets o1 with probability 0.7 and o2 with probability
0.3; she is also indifferent between o7 for sure and a lottery where she gets o1 with
probability 0.5 and o4 with probability 0.5; finally, she is indifferent between the

following two lotteries:
(

o6 o7 o9
1
3

1
3

1
3

)
and

(
o3 o4
2
3

1
3

)
.

(a) Find the DM’s normalized von Neumann-Morgenstern utility function.
(b) Change the utility function so that the lowest value is 0 and the highest value is

100. Use this utility function to re-write the decision problem in terms of utilities.
(c) If the DM assigns equal probabilities to all states, what act will she choose?

■
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Exercise 6.2 Consider Alice’s decision problem shown below:

state → s1 s2 s3
act ↓
small $70,000 $70,000 $70,000

medium $64,600 $85,000 $85,000
large $58,400 $78,800 $140,000

Suppose now that Alice assigns the following probabilities to the states:

state s1 s2 s3
probability 7

16
1
2

1
16

As before, Alice’s von Neumann-Morgenstern utility function is given by U($x) =
√

x.
What production facility will she choose? ■

Exercise 6.3 Consider the following decision problem where the numbers are von
Neumann-Morgenstern utilities:

state →
act ↓

s1 s2 s3 s4 s5 s6 s7

a 0 2 3 1 5 4 1
b 0 1 3 2 5 3 6
c 1 2 5 4 5 6 4
d 2 1 3 4 6 4 3
e 3 1 4 6 0 7 0

The DM assigns the following probabilities to the states:(
s1 s2 s3 s4 s5 s6 s7
1
7

3
14

2
7

1
14

1
7

1
14

1
14

)
.

What act will he choose? ■

Exercise 6.4 Consider the following decision problem:

state →
act ↓

s1 s2

a o1 o2
b o3 o4

with preferences

best o3
o2
o1

worst o4

Let U be a von Neumann-Morgenstern utility function that represents the agent’s
preferences and suppose that U(o3)−U(o2) =U(o2)−U(o1) =U(o1)−U(o4).

(a) Find the normalized von Neumann-Morgenstern utility function.
(b) Suppose that the DM learns that state s1 has a probability 0.2 of occurring. What

act will the DM choose?
■
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6.5.2 Exercises for Section 6.2: Decision trees revisited

1o
40%

2o

3o

4o

5o

a
50%

b
c

d
p

1  p

Figure 6.7: A decision tree

Exercise 6.5 Consider the decision tree shown in Figure 6.7. The DM’s ranking of the
basic outcomes is o4 ≻ o1 ≻ o3 ≻ o2 ∼ o5. The DM has von Neumann-Morgenstern
preferences over the set of lotteries involving these outcomes. She is indifferent between

o1 for sure and the lottery
(

o2 o4
1
5

4
5

)
and she is also indifferent between o3 for sure

and the lottery
(

o5 o4
4
5

1
5

)
.

(a) Construct the normalized von Neumann-Morgenstern utility function.
(b) Use the method of backward induction to find the optimal solution for every value

of p ∈ [0,1].
■

Exercise 6.6 Jonathan is facing a dilemma. Tomorrow is the last day of the Quarter
and his last final exam is in the morning. He has been invited to a party, where Kate is
going to be. Jonathan has a crush on Kate. This would be his last chance to see Kate
before the next academic year. Jonathan does not know if Kate is interested in him. He
has two choices.

• The first choice is to skip the party and study for the final. If he does so, then he
expects to get an A if the exam is easy but only a C if the exam is difficult.
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• His second choice is to go to the party and approach Kate. Of course, this implies
that he will not study for the final, with the consequence that he will get a C if the
exam is easy and an F if the exam is difficult. Furthermore, he doesn’t know if
Kate is interested in him. If he approaches her and she is welcoming then he will
have a great time, while if she rejects him then he will feel awful. He is not really
interested in the party itself: all he cares about is Kate.

The basic outcomes are thus:

o1 Stays home, gets A
o2 Stays home, gets C
o3 At party, good time with Kate, gets C
o4 At party, good time with Kate, gets F
o5 At party, rejected, gets C
o6 At party, rejected, gets F

Having looked at past exams, Jonathan attaches probability 3
4 to the exam being easy

and probability 1
4 to the exam being difficult. He has consulted his friend James (who

has always had great success with women and professes himself to be an expert on the
matter) about the chances that Kate would be welcoming if Jonathan approached her.
James’s verdict is: probability 1

3 .
(a) Draw a decision tree to represent Jonathan’s decision problem.
(b) Jonathan’s von Neumann-Morgenstern utility function is as follows:

outcome o1 o2 o3 o4 o5 o6
utility 4 3 6 5 2 1

Apply the method of backward-induction to solve the decision tree.
■

6.5.3 Exercises for Section 6.3: Regret
Exercise 6.7 Find the MinMaxRegret solution of the decision problem of Exercise 6.1,
reproduced below:

state →
act ↓

s1 s2 s3

a1 100 0 70
a2 0 20 20
a3 50 70 70

■
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Exercise 6.8 Consider again the decision problem of Exercise 6.3, reproduced below:

state →
act ↓

s1 s2 s3 s4 s5 s6 s7

a 0 2 3 1 5 4 1
b 0 1 3 2 5 3 6
c 1 2 5 4 5 6 4
d 2 1 3 4 6 4 3
e 3 1 4 6 0 7 0

(a) Find the MinMaxRegret solution.
(b) Now normalize the utility function (so that the highest value is 1 and the lowest 0)

and re-write the decision problem using the new utility function.
What is the MinMaxRegret decision solution under the new representation?

■

Exercise 6.9 Find the MinMaxRegret solution of the decision problem of Exercise 6.4,
reproduced below:

state →
act ↓

s1 s2

a 1
3

2
3

b 1 0

■

Exercise 6.10 Find the MinMaxRegret solution of the following decision problem
(where the numbers are von Neumann-Morgenstern utilities):

state → s1 s2 s3
act ↓

a1 10 2 0
a2 8 4 2
a3 4 4 4

■

6.5.4 Exercises for Section 6.4: The Hurwicz index of pessimism
Exercise 6.11 Consider the following decision problem, where the numbers are von
Neumann-Morgenstern utilities:

act/state s1 s2 s3 s4
a1 12 3 6 6
a2 10 0 10 10
a3 5 4 5 5
a4 18 0 4 3
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(a) Find the MaxiMin solution.
(b) Find the MinMaxRegret solution.
(c) Suppose that the agent follows the Hurwicz criterion with a pessimism index α .

What will the DM choose if α = 1?
What will the DM choose if α = 0?
What will the DM choose if α = 1

2?
For what value of the pessimism index α would the DM be indifferent between
a1 and a2?

■

Exercise 6.12 Consider the following decision problem, where the numbers are von
Neumann-Morgenstern utilities:

state → s1 s2 s3
act ↓

a1 12 3 2
a2 8 16 0
a3 6 4 8

Let α be the DM’s index of pessimism.
(a) What act is prescribed by the Hurwicz criterion if α = 1

2?
(b) For every α ∈ [0,1] find the act that is prescribed by the Hurwicz criterion, by

plotting the Hurwicz index of each act as a function of α .
■

Exercise 6.13 Consider again the decision problem of Exercise 6.12, reproduced below:

state → s1 s2 s3
act ↓

a1 12 3 2
a2 8 16 0
a3 6 4 8

Normalize the utility function and show that the act recommended by the Hurwicz
criterion under the normalized utility function when α = 1

2 is the same as the one found
in Part (a) of Exercise 6.12. ■
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6.6 Solutions to Exercises
Solution to Exercise 6.1.

(a) First of all, U(o1)= 1 and U(o2)=U(o4)= 0. Since the agent is indifferent between
o8 for sure and a lottery where she gets o1 with probability 0.7 and o2 with probability
0.3, we have that U(o3) =U(o8) =U(o9) = 0.7.
Since she is indifferent between o7 for sure and a lottery where she gets o1 with
probability 0.5 and o4 with probability 0.5, U(o7) = 0.5. Finally, the expected utility

of
(

o6 o7 o9
1
3

1
3

1
3

)
is

1
3 U(o6)+

1
3 U(o7)+

1
3 U(o9) =

1
3 U(o6)+

1
3(0.5)+

1
3(0.7) =

1
3 U(o6)+0.4

and the expected utility of
(

o3 o4
2
3

1
3

)
is 2

3U(o3)+
1
3U(o4) =

2
3(0.7)+

1
3(0) =

7
15 ;

since she is indifferent between those two lotteries, 1
3U(o6)+0.4 = 7

15 .
Thus, U(o6) =

1
5 = 0.2. Hence, the normalized utility function is:

Utility
best o1 1

o3,o8,o9 0.7
o7 0.5

o5,o6 0.2
worst o2,o4 0

(b) All we need to do is multiply the normalized utility function by 100:

Utility
best o1 100

o3,o8,o9 70
o7 50

o5,o6 20
worst o2,o4 0

Then the decision problem can be written as follows:

state →
act ↓

s1 s2 s3

a1 100 0 70
a2 0 20 20
a3 50 70 70

(c) We can view act a1 as a lottery with expected utility 1
3100+ 1

30+ 1
370 = 170

3 ,

a2 as a lottery with expected utility 1
30+ 1

320+ 1
320 = 40

3 and

a3 as a lottery with expected utility 1
350+ 1

370+ 1
370 = 190

3 .

Thus, the DM would choose a3. □
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Solution to Exercise 6.2. Alice’s decision problem is reproduced below:

state → s1 s2 s3
act ↓
small $70,000 $70,000 $70,000

medium $64,600 $85,000 $85,000
large $58,400 $78,800 $140,000

Choosing a small production facility corresponds to the lottery
(

$70,000
1

)
whose

expected utility is
√

70,000 = 264.575.

Choosing a medium facility corresponds to the lottery
(

$64,600 $85,000 $85,000
7

16
1
2

1
16

)
whose expected utility is 7

16
√

64,600+ 1
2
√

85,000+ 1
16
√

85,000 = 275.193 and

choosing a large facility corresponds to the lottery
(

$58,400 $78,800 $140,000
7
16

1
2

1
16

)
whose expected utility is 7

16
√

58,400+ 1
2
√

78,800+ 1
16
√

140,000 = 269.469.

Thus, Alice will choose a medium production facility since it yields the highest expected
utility. □

Solution to Exercise 6.3. Act a corresponds to a lottery with expected utility

0
(1

7

)
+2
( 3

14

)
+3
(2

7

)
+1
( 1

14

)
+5
(1

7

)
+4
( 1

14

)
+1
( 1

14

)
= 17

7 .

Act b corresponds to a lottery with expected utility

0
(1

7

)
+1
( 3

14

)
+3
(2

7

)
+2
( 1

14

)
+5
(1

7

)
+3
( 1

14

)
+6
( 1

14

)
= 18

7 .

Act c corresponds to a lottery with expected utility

1
(1

7

)
+2
( 3

14

)
+5
(2

7

)
+4
( 1

14

)
+5
(1

7

)
+6
( 1

14

)
+4
( 1

14

)
= 26

7 .

Act d corresponds to a lottery with expected utility

2
(1

7

)
+1
( 3

14

)
+3
(2

7

)
+4
( 1

14

)
+6
(1

7

)
+4
( 1

14

)
+3
( 1

14

)
= 21

7 .

Act e corresponds to a lottery with expected utility

3
(1

7

)
+1
( 3

14

)
+4
(2

7

)
+6
( 1

14

)
+0
(1

7

)
+7
( 1

14

)
+0
( 1

14

)
= 19

7 .

Thus, the DM will choose act c. □
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Solution to Exercise 6.4.
(a) First of all, we assign utility 1 to o3 and utility 0 to o4.

Let α be the utility of o2 and β the utility of o1. Clearly, α > β . The information
we have is that 1−α = α −β and α −β = β −0. From the second equality we get
that α = 2β and replacing in the first we get that 1−2β = 2β −β , that is, β = 1

3 .

Hence, α = 2
3 . Thus, the normalized von Neumann-Morgenstern utility function is:

outcome o1 o2 o3 o4
utility 1

3
2
3 1 0

(b) Using the normalized utility function we can rewrite the decision problem as follows:

state →
act ↓

s1 s2

a 1
3

2
3

b 1 0

If the probability of state s1 is 1
5 , act a corresponds to a lottery with expected utility

1
5

(1
3

)
+ 4

5

(2
3

)
= 3

5 = 0.6, while b corresponds to a lottery with expected utility

1
5(1)+

4
5(0) =

1
5 = 0.2. Hence, the DM will choose act a. □

Solution to Exercise 6.5.
(a) We can assign utility 1 to the best outcome, namely o4, and utility 0 to the worst

outcomes, namely o2 and o5. Hence, from the first indifference we get that the utility
of o1 is 4

5 and from the second indifference we get that the utility of o3 is 1
5 .

Thus, the normalized utility function is
outcome o1 o2 o3 o4 o5

utility 4
5 0 1

5 1 0
.

(b) The top Chance node corresponds to a lottery with expected utility 4
10

(4
5

)
+ 6

10 (0) =
8
25 and the bottom Chance node corresponds to a lottery with expected utility
p(1)+(1− p)(0) = p. Thus,
if p > 1

5 then at the bottom decision node the optimal decision is d, with a corre-
sponding expected utility of p,
if p < 1

5 then at the bottom decision node the optimal decision is c, with a corre-
sponding utility of 1

5 and
if p = 1

5 then both c and d are optimal and yield a utility of 1
5 . Thus, the maximum

utility that can be obtained by choosing b is max{p, 1
5} (note that 1

5 = 5
25 < 8

25 ).
Hence, the optimal strategy, as a function of p, is as follows:
(1) if p < 8

25 then choose a,
(2) if p > 8

25 then choose first b and then d,
(3) if p = 8

25 then either choose a or choose first b and then d. □
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Solution to Exercise 6.6.
(a) The decision tree is shown in Figure 6.8.

1/4
3/4

exam difficult

1o
exam easy

2o

go to party
Kate welcoming

exam difficult

3o

exam easy

4o

exam difficult

5o
exam easy

6o

Kate rejecting

stay home

1/3

2/3

1/4

3/4

3/4

1/4

Figure 6.8: The decision tree for Part (a) of Exercise 6.6

(b) The top Chance node corresponds to a lottery with expected utility 3
4(4)+

1
4(3) =

15
4 ,

the right-most Chance node below it corresponds to a lottery with expected utility
3
4(6)+

1
4(5) =

23
4 and the Chance node below this corresponds to a lottery with

expected utility 3
42+ 1

41 = 7
4 .

Thus, the tree can be reduced to the tree shown in Figure 6.9. The Chance node in
this reduced tree corresponds to a lottery with expected utility 1

3

(23
4

)
+ 2

3

(7
4

)
= 37

12 .
Thus, since 15

4 = 45
12 > 37

12 , the optimal decision is to stay at home and study. □

go to party
Kate welcoming

Kate rejecting

stay home

1/3

2/3

15

4

23

4

7

4

Figure 6.9: The decision tree for Part (b) of Exercise 6.6
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Solution to Exercise 6.7. The decision problem is as follows:

state →
act ↓

s1 s2 s3

a1 100 0 70
a2 0 20 20
a3 50 70 70

The regret table is:

state →
act ↓

s1 s2 s3

a1 0 70 0
a2 100 50 50
a3 50 0 0

The maximum regrets are thus:

Maximum regret
a1 70
a2 100
a3 50

Hence, the MinMaxRegret solution is a3. □

Solution to Exercise 6.8.
(a) The decision problem is:

state →
act ↓

s1 s2 s3 s4 s5 s6 s7

a 0 2 3 1 5 4 1
b 0 1 3 2 5 3 6
c 1 2 5 4 5 6 4
d 2 1 3 4 6 4 3
e 3 1 4 6 0 7 0

The corresponding regret table is:

state →
act ↓

s1 s2 s3 s4 s5 s6 s7

a 3 0 2 5 1 3 5
b 3 1 2 4 1 4 0
c 2 0 0 2 1 1 2
d 1 1 2 2 0 3 3
e 0 1 1 0 6 0 6

Thus, the MinMaxRegret solution is c.
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(b) The MinMaxRegret cannot change if we change the utility function in an admissible
way (by multiplying by a positive constant and adding a constant). Let us confirm
this for the transformation required by the question (normalization). We need to
multiply every utility value by 1

7 , obtaining the following alternative representation
of the decision problem:

state →
act ↓

s1 s2 s3 s4 s5 s6 s7

a 0 2
7

3
7

1
7

5
7

4
7

1
7

b 0 1
7

3
7

2
7

5
7

3
7

6
7

c 1
7

2
7

5
7

4
7

5
7

6
7

4
7

d 2
7

1
7

3
7

4
7

6
7

4
7

3
7

e 3
7

1
7

4
7

6
7 0 1 0

The regret matrix then becomes:

state →
act ↓

s1 s2 s3 s4 s5 s6 s7

a 3
7 0 2

7
5
7

1
7

3
7

5
7

b 3
7

1
7

2
7

4
7

1
7

4
7 0

c 2
7 0 0 2

7
1
7

1
7

2
7

d 1
7

1
7

2
7

2
7 0 3

7
3
7

e 0 1
7

1
7 0 6

7 0 6
7

As before the transformation, the MinMaxRegret solution is c. □

Solution to Exercise 6.9. The decision problem is as follows:

state →
act ↓

s1 s2

a 1
3

2
3

b 1 0

The regret table is:

state →
act ↓

s1 s2

a 2
3 0

b 0 2
3

The maximum regret from act a is 2
3 and the maximum regret from act b is also 2

3 .
Thus, the MinMaxRegret solution is {a,b}. □
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Solution to Exercise 6.10. The decision problem is reproduced below, together with the
corresponding regret table (with the highest regret highlighted for each act):

decision problem:

state → s1 s2 s3
act ↓

a1 10 2 0
a2 8 4 2
a3 4 4 4

regret table:

s1 s2 s3

a1 0 2 4
a2 2 0 2
a3 6 0 0

The MinMaxRegret principle prescribes act a2. □

Solution to Exercise 6.11. The decision problem is as follows:

act/state s1 s2 s3 s3
a1 12 3 6 6
a2 10 0 10 10
a3 5 4 5 5
a4 18 0 4 3

(a) The lowest utility from a1 is 3, the lowest utility from a2 is 0, the lowest utility from
a3 is 4, the lowest utility from a4 is 0. The largest of these values is 4 and thus the
MaxiMin solution is a3.

(b) The regret table is as follows, where the largest value in each row has been high-
lighted.

act/state s1 s2 s3 s3

a1 6 1 4 4
a2 8 4 0 0
a3 13 0 5 5
a4 0 4 6 7

The lowest of the highlighted numbers is 6, thus the MinMaxRegret solution is a1.
(c) The Hurwicz criterion assigns weight α to the worst outcome and weight (1−α) to

the best outcome. Thus:
α = 1 corresponds to the MaxiMin solution and thus the answer is: a3.
α = 0 corresponds to the act that yields the highest utility (in some state) and thus
the answer is: a4.
When α = 1

2 , the Hurwicz indices associated with the acts are:

a1 : (3)1
2 +(12)1

2 = 7.5

a2 : (0)1
2 +(10)1

2 = 5

a3 : (4)1
2 +(5)1

2 = 4.5

a4 : (0)1
2 +(18)1

2 = 9

The largest value is 9 and thus the Hurwicz criterion prescribes act a4.
(d) The value of α that would make the DM indifferent between a1 and a2 would be

given by the solution to 3α +12(1−α) = 0α +10(1−α) subject to 0 ≤ α ≤ 1, but
there is no such solution (the solution to the equation is α = −2). Thus, the DM
would never be indifferent between a1 and a2. □
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Solution to Exercise 6.12. The decision problem is as follows:

state → s1 s2 s3
act ↓

a1 12 3 2
a2 8 16 0
a3 6 4 8

(a) When α = 1
2 the Hurwicz indices of the three acts are:

H(a1) =
1
2(2)+

1
2(12) = 7,

H(a2) =
1
2(0)+

1
2(16) = 8,

H(a3) =
1
2(4)+

1
2(8) = 6.

Thus, when α = 1
2 the Hurwicz criterion prescribes act a2.

(b) The Hurwicz indices of the three acts are:
H(a1;α) = 2α +12(1−α) = 12−10α

H(a2;α) = 0α +16(1−α) = 16−16α

H(a3;α) = 4α +8(1−α) = 8−4α .
The plot is shown in Figure 6.10. As is clear from the diagram,

• If 0 ≤ α < 2
3 then H(a2;α) > H(a1;α) > H(a3;α) and thus the Hurwicz

criterion prescribes act a2.
• If α = 2

3 then H(a1;α) = H(a2;α) = H(a3;α) and thus any of the three acts
is compatible with the Hurwicz criterion.

• If 2
3 < α ≤ 1 then H(a3;α) > H(a1;α) > H(a2;α) and thus the Hurwicz

criterion prescribes act a3. □

0 0.2 0.4 0.6 0.8 1
0

4

8

12

16

a1 α( )

a2 α( )

a3 α( )

2

3

α

Figure 6.10: The Hurwicz indices for the three acts of Exercise 6.12
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Solution to Exercise 6.13. The decision problem is as follows:

state → s1 s2 s3
act ↓

a1 12 3 2
a2 8 16 0
a3 6 4 8

Since the lowest utility is already 0, in order to normalize the utility function we just need
to divide every value by the maximum utility, namely 16:

state → s1 s2 s3
act ↓

a1
12
16

3
16

2
16

a2
8
16 1 0

a3
6
16

4
16

8
16

When α = 1
2 the Hurwicz indices of the three acts are:

H(a1) =
1
2

( 2
16

)
+ 1

2

(12
16

)
= 7

16 ,

H(a2) =
1
2(0)+

1
2(1) =

8
16 ,

H(a3) =
1
2

( 4
16

)
+ 1

2

( 8
16

)
= 6

16 .

Thus, when α = 1
2 the Hurwicz criterion prescribes act a2, confirming what was determined

in Part(a) of Exercise 6.12. □



7. Conditional Reasoning

7.1 Sets and probability: brief review

This section is devoted to a very brief review of definitions and concepts from set theory
and probability theory.

7.1.1 Sets

We will focus on finite sets, that is, sets that have a finite number of elements. Let U be a
finite set. The set of subsets of U is denoted by 2U . The reason for this notation is that if U
contains n elements then there are 2n subsets of U . For example, if U = {a,b,c} then the
set of subsets of U is the following collection of 23 = 8 sets:

2U = { /0,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}} ,

where /0 denotes the empty set, that is, a set with no elements. The following notation is
used to denote membership in a set and to denote that one set is contained in another:

- x ∈ A means that x is an element of the set A (capital letters are used to denote sets
and lower-case letters to denote elements)

- A ⊆ B means that A is a subset of B, that is, every element of A is also an element of
B. Note that A ⊆ B allows for the possibility that A = B.

- A ⊂ B denotes the fact that A is a proper subset of B (that is, A is a subset of B but
there is at least one element of B which is not in A).
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Next we review operations that can be performed on sets. These operations are
illustrated in Figure 7.1.

• Let A ∈ 2U . The complement of A in U , denoted by ¬A, is the set of elements of U
that are not in A. When the “universe of discourse” U is clear from the context, one
simply refers to ¬A as the complement of A. For example, if U = {a,b,c,d,e, f}
and A = {b,d, f} then ¬A = {a,c,e}. Note that ¬U = /0 and ¬ /0 =U .

• Let A,B ∈ 2U . The intersection of A and B, denoted by A∩B, is the set of elements
that belong to both A and B. For example, if U = {a,b,c,d,e, f}, A = {b,d, f} and
B = {a,b,d,e} then A∩B = {b,d}. If A∩B = /0 we say that A and B are disjoint.

• Let A,B ∈ 2U . The union of A and B, denoted by A∪B, is the set of elements that
belong to either A or B (or both). For example, if U = {a,b,c,d,e, f}, A = {b,d, f}
and B = {a,b,d,e} then A∪B = {a,b,d,e, f}.

A

U

A
 

Complement 

 

U

A

U

B
 

U

A B
A B

U

A B

 

                                          Intersection                                     Union 

Figure 7.1: Operations on sets

We denote by A\B the set of elements of A that are not in B. Thus, A\B = A∩¬B.
For example, if A = {b,d, f} and B = {a,b,d,e} then A\B = { f} and B\A = {a,e}.

The following are known as De Morgan’s Laws:
• ¬(A∪B) = ¬A∩¬B
• ¬(A∩B) = ¬A∪¬B

Let us verify De Morgan’s Laws in the following example:

U = {a,b,c,d,e, f ,g,h, i, j,k}, A = {b,d, f ,g,h, i} and B = {a,b, f , i,k}.
¬A = {a,c,e, j,k}, ¬B = {c,d,e,g,h, j}, A∪B = {a,b,d, f ,g,h, i,k}
¬(A∪B) = {c,e, j}= ¬A∩¬B;
A∩B = {b, f , i}

thus ¬(A∩B) = {a,c,d,e,g,h, j,k}= ¬A∪¬B.
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7.1.2 Probability

In probability theory the “universal set” U is called the sample space and the subsets of
U are called events. A probability measure on U is a function P : 2U → [0,1] that assigns
to every event E ∈ 2U a number greater than or equal to 0 and less than or equal to 1, as
shown in Figure 7.2, with the following restrictions:

1. P(U) = 1.
2. For every two events E,F ∈ 2U , if E ∩F = /0 then P(E ∪F) = P(E)+P(F).

 

Figure 7.2: A probability measure

From the above two properties one can obtain the following properties (the reader
might want to try to prove them using Properties 1 and 2 above):

• P(¬E) = 1−P(E), for every event E (this follows from the fact that E and ¬E are
disjoint and their union is equal to U).

• P( /0) = 0 (this follows from the previous line and the fact that /0 = ¬U).
• For every two events E,F ∈ 2U , P(E ∪F) = P(E)+P(F)−P(E ∩F) (see Exercise

7.5).
• For every two events E,F ∈ 2U , if E ⊆ F then P(E)≤ P(F).
• If E1,E2, ...,Em ∈ 2U (m ≥ 2) is a collection of mutually disjoint sets (that is, for

every i, j = 1, . . . ,m with i ̸= j, Ei ∩E j = /0) then P(E1 ∪E2 ∪ ...∪Em) = P(E1)+
P(E2)+ ...+P(Em).

When the set U is finite, a probability distribution p on U is a function that assigns
to each element z ∈ U a number p(z), with 0 ≤ p(z) ≤ 1, and such that ∑

z∈U
p(z) = 1.

Given a probability distribution p : U → [0,1] on U one can obtain a probability measure
P : 2U → [0,1] by defining, for every event A, P(A) = ∑

z∈A
p(z).

Conversely, given a probability measure P : 2U → [0,1], one can obtain from it a probability
distribution p : U → [0,1] by defining, for every z ∈ U , p(z) = P({z}). Thus, the two
notions are equivalent.
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Joint and marginal probabilities
Let P be a probability measure on the set U and let A and B be subsets of U . Let the
probabilities P(A∩B), P(A∩¬B), P(¬A∩B) and P(¬A∩¬B) be given in the form of a
table, such as the following table:

B ¬B
A 0.4 0.2
¬A 0.1 0.3

Thus, P(A∩B) = 0.4, P(A∩¬B) = 0.2, P(¬A∩B) = 0.1 and P(¬A∩¬B) = 0.3. Notice
that these numbers must add up to 1. We call these probabilities joint probabilities. From
these we can calculate the marginal probabilities, namely P(A), P(¬A), P(B) and P(¬B).

Since A = (A∩B)∪ (A∩¬B) and the two sets (A∩B) and(A∩¬B) are disjoint, P(A) =
P(A∩B)+P(A∩¬B) = 0.4+0.2 = 0.6 and, similarly, P(¬A) = 0.1+0.3 = 0.4, P(B) =
0.4+0.1 = 0.5 and P(¬B) = 0.2+0.3 = 0.5.

B ¬B Marginal
A 0.4 0.2 0.6 P(A)
¬A 0.1 0.3 0.4 P(¬A)

Marginal 0.5 0.5
P(B) P(¬B)

Let us generalize this. Let A1,A2, ...,An be a collection of mutually exclusive subsets
of U . Note that we don’t assume that A1 ∪A2 ∪ ...∪An =U . Let B1,B2, ...,Bm be another
collection of mutually exclusive subsets of U , but this time we do assume that B1∪B2∪ ...∪
Bm =U (that is, {B1, ...,Bm} is a partition of U). Then, given the joint probabilities pi j =

P(Ai∩B j) we can compute the marginal probabilities pi =P(Ai)=
m
∑
j=1

pi j =
m
∑
j=1

P(Ai ∩B j).

Example with n = 3 and m = 4:

B1 B2 B3 B4 Marginal
A1 0.1 0.2 0 0 0.3 = P(A1)
A2 0.05 0 0.05 0 0.1 = P(A2)
A3 0.15 0.1 0 0.2 0.45 = P(A3)

Notice that in this example the marginal probabilities do not add up to 1: P(A1)+P(A2)+
P(A3) = 0.85 < 1. Hence, we deduce that A1 ∪A2 ∪ ...∪An is a proper subset of U .

Independence
Two events A and B are said to be independent if P(A∩B) = P(A)×P(B). For example,
let U = {a,b,c,d,e, f ,g,h, i} and consider the following probability distribution p:(

a b c d e f g h i
2

27
4

27
7

27
3

27 0 5
27 0 2

27
4
27

)
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Let P be the corresponding probability measure. Let A= {b,d, f ,g,h, i} and B= {a,b,e, i}.
Then P(A) = p(b)+ p(d)+ p( f )+ p(g)+ p(h)+ p(i) = 4

27 +
3
27 +

5
27 +0+ 2

27 +
4

27 = 18
27

and P(B) = p(a)+ p(b)+ p(e)+ p(i) = 2
27 +

4
27 +0+ 4

27 = 10
27 .

Furthermore, A∩B = {b, i} and thus P(A∩B) = p(b)+ p(i) = 4
27 +

4
27 = 8

27 .

Since 8
27 ̸= 18

27 ×
10
27 ( 8

27 = 0.296 and 18
27 ×

10
27 = 0.247), A and B are not independent.

On the other hand, if the probability distribution is as follows:(
a b c d e f g h i
1
9

1
9

1
9

2
9 0 2

9 0 1
9

1
9

)
then E = {a,b,c,e} and F = {c,d,e,g} are independent. In fact,P(E) = 1

9 +
1
9 +

1
9 +0 = 1

3 ,

P(F) = 1
9 +

2
9 +0+0 = 1

3 , E ∩F = {c,e} and P(E ∩F) = 1
9 +0 = 1

9 , so that P(E ∩F) =

P(E)×P(F).

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 7.4.1 at the end of this chapter.

7.2 Conditional thinking
Jane, who is 42 years old, has just read an article where it is claimed that it is very important
for women in their 40s to be tested for breast cancer by undergoing a mammography. She
emails her doctor and asks: what are the chances that I have breast cancer? The doctor
replies: there is a 1% probability that you have breast cancer. What does ‘probability 1%’
mean? One interpretation of probability is in terms of frequencies: ‘1% probability’ means
that the frequency of breast cancer in a large population of women in their 40s is 1 out of
a 100. Thus, the doctor’s answer can be interpreted as meaning ‘based on past records
of women in your age group, the chances that you belong to the group of women who
have breast cancer is 1 in a 100’. This answer motivates Jane to schedule a mammography.
A “positive” mammogram suggests the presence of breast cancer, while a “negative”
mammogram suggests the absence of cancer. The test, however, is not conclusive. The
doctor informs Jane of the following facts:

1. 1% of women whose age is in the range 40-49 have breast cancer.
2. If a woman has breast cancer, the probability that she has a positive mammogram is

90%.
3. If a woman does not have breast cancer, the probability that she has a negative

mammogram is 90%.
A week later the doctor gives Jane the bad news that her mammogram was positive. She
asks the doctor: in light of the positive mammogram, what are the chances that I have breast
cancer? The 1% figure that she was quoted before she decided to have the mammogram
was a prior, or unconditional, probability. What Jane is now seeking is a revised probability
conditional on the information that the test was positive. What should the doctor’s answer
be? We shall look at two different, but equivalent, ways of thinking about the problem: the
“natural frequencies” approach and the conditional probability approach.
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7.2.1 The natural frequencies approach
The “natural frequencies” approach is forcefully promoted by Gerd Gigerenzer in his
book Calculated Risks: How to Know when Numbers Deceive You (Simon and Schuster,
2002).1 In the natural frequencies approach one postulates a population size and interprets
probabilities as frequencies. The facts listed in Section 7.2 are interpreted as frequencies,
as follows:

1. 1 out of 100 women of age 40-49 has breast cancer.
2. Out of 100 women who have breast cancer, 90 give a positive mammography result.
3. Out of 100 women who do not have breast cancer, 90 give a negative mammography

result.
To evaluate the chances that a woman with a positive mammogram has breast cancer,
choose a reference group size – say 10,000 women in the age range 40-49 – and construct
a tree using the above three facts, as shown in Figure 7.3.

10,000 women

100

1% have
cancer

9,900

99% do not
have cancer

90 10 990 8,910

90% test
positive

10% test
negative

10% test
positive

90% test
negative

Total positive: 90+990 = 1,080
90

1,080 = 0.0833 = 8.33%

Figure 7.3: A tree constructed using the given facts and a population size of 10,000

1The example given in Figure 7.3 is based on an example given in Gigerenzer’s book. Chapter 5 of the
book contains an in-depth analysis of the effectiveness of mammography screening in reducing breast-cancer
mortality in women of different age groups.
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Using Fact 1, 1% of 10,000 is 100, so that 100 women have breast cancer and 9,900 do not.
Using Fact 2, of the 100 women who have breast cancer, 90 give a positive mammogram
(a “true” positive) and 10 a negative one (a “false” negative). Using Fact 3, of the 9,900
women who do not have breast cancer 990 (10%) give a positive mammogram (a “false”
positive) and the remaining 8,910 (90%) give a negative mammogram (a “true” negative).
Thus, the total number of positive test results is 90+990 = 1,080 and of these only 90
have breast cancer; hence, for a woman in her 40s, the chance of having breast cancer when
she learns that her mammography result was positive is 90

1,080 = 8.33%. Similarly, one can
compute the probability of not having breast cancer upon learning that the mammogram
was negative as follows (number of true negatives divided by total number of negatives):

8,910
10+8,910 = 8,910

8,920 = 99.89%.
In the medical literature, the true positive rate is called the sensitivity of the test and the

true negative rate is called the specificity of the test.
Is the 8.33% figure obtained in the above example dependent on the population size

that we chose, arbitrarily, to be 10,000? If we had chosen a size of 25,000 would the
conclusion have been different? The answer is no. Figure 7.4 repeats the calculations, and
confirms the conclusion, for any population size n.

n women

1
100n

1% have
cancer

99
100n

99% do not
have cancer

90
100

( 1
100n

) 10
100

( 1
100n

) 10
100

( 99
100n

) 90
100

( 99
100n

)
90% test
positive

10% test
negative

10% test
positive

90% test
negative

Total positive: 90
100

( 1
100n

)
+ 10

100

( 99
100n

)
= 1,080 n

10,000

90
1,080

n
10,000

n
10,000

= 0.0833 = 8.33%

Figure 7.4: A tree similar to Figure 7.3 with a population size of n women
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The above example makes it clear that the chances of having a disease, when one tests
positive for that disease, depends crucially on how common the disease is in the population:
this is called the base rate of the disease. If the disease is very uncommon then very few
people have it and thus – even if the sensitivity of the test (the true positive rate) is very
high (close to 100%) – the number at the numerator of the relevant fraction is small and
thus the fraction itself is small (as long as the false positive rate is non-negligible), because
most of the positive results will be false positive. We shall illustrate this fact in detail
below, with reference to HIV.

The HIV test is said to have a true positive rate (or sensitivity) of 99.97% (if you are
infected, the blood test will be positive in 99.97% of the cases, while it will be negative –
false negative – in 0.03% of the cases, that is, in 3 out of 10,000 cases); furthermore, the
false positive rate is 1.5% (15 out of every 1,000 people who are not infected will give a
positive result to the blood test).2

If this is all you know and you take a blood test and it turns out to be positive, what are
the chances that you do have an HIV infection? We want to show that the answer can be
any number between 0% and 100%. Let p ∈ [0,1] be the fraction of the population that is
infected with HIV (e.g. if p = 0.12 then 12% of the population is infected); p is called the
base rate.
Let us construct a tree as we did in Figure 7.4: this is shown in Figure 7.5. If n is the size of
the relevant population and p is the fraction of the population that is infected with HIV (the
base rate), then the total number of infected people is pn and the total number of people
who are not infected is (1− p)n. Of the pn infected people, 99.97% give a positive blood
test result, for a total of 99.97

100 pn true positive results. Of the (1− p)n who are not infected,

1.5% give a positive blood test result, for a total of 1.5
100(1− p)n false positive results.

Thus, the total number of positive blood test results is 99.97
100 pn+ 1.5

100(1− p)n= (98.47p+1.5)n
100 ,

so that the chances of having the HIV virus, given a positive blood test, is

99.97
100 pn

(98.47p+1.5)n
100

=
99.97p

98.47p+1.5
. Let f (p) =

99.97p
98.47p+1.5

.

The function f (p) is equal to 0 when p = 0 and is equal to 1 when p = 1 ( f (0) = 0 and
f (1) = 1). Figure 7.6 shows the graph of the function for p ∈ [0,1]. Thus, the chances
of having the HIV virus, given a positive blood test, can be any number between 0 and
1, depending on the value of the base rate p. In 2015, in the US, 1.2 million people were
infected with HIV and the total population was 318.9 million; thus, the fraction of the
population infected with HIV was p = 1.2

318.9 = 0.003763.3 Replacing p with 0.003763 in

f (p) = 99.97p
98.47p+1.5 gives 0.2011 = 20.11%.

2Thus, the true negative rate (or specificity) is (100−1.5)% = 98.5%.
3This figure is not very useful, because it is based on putting all the individuals in the same pool. Different

groups of individuals have different probabilities of having HIV. For example, high risk individuals, such as
intravenous drug users, have a much higher probability of being infected with HIV than low-risk individuals.
Thus, one should use the base rate for the group to which a particular individual belongs.
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Figure 7.5: The HIV case with a base rate equal to p
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Figure 7.6: The probability of having HIV, given a positive blood test, as a function of the
base rate p
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7.2.2 Conditional probability
Let A,B ⊆ U be two events (where U is the universal set or sample space) and P a
probability measure on U . If P(B)> 0, the conditional probability of A given B, denoted
by P(A|B), is defined as follows:

P(A|B) = P(A∩B)
P(B)

. (7.1)

For example, if P(A∩B) = 0.2 and P(B) = 0.6 then P(A|B) = 0.2
0.6 = 1

3 .
One way to visualize conditional probability is to think of U as a geometric shape of

area 1 (e.g. a square with each side equal to 1 unit of measurement). For a subset A of the
unit square, P(A) is the area of A. If B is a non-empty subset of the square then A∩B is
that part of A that lies in B and P(A|B) is the area of A∩B relative to the area of B, that is,
as a fraction of the area of B. This is illustrated in Figure 7.7.

A

1/4
 

B

 

A

1/4

B

 

The shaded area, representing A B ,  is 
1
2  of a small square with sides of length 

1
4  so that   1 1 1 1

2 4 4 32( )P A B       

1
2( )P B   and thus  

1
32

1
2

( ) 1
( | )

( ) 16

P A B
P A B

P B


     

 

Figure 7.7: Geometric interpretation of the conditional probability P(A|B)

Recall that two events A and B are said to be independent if P(A∩B) = P(A) P(B).
It follows from this and the definition of conditional probability (7.1) that if A and B are
independent then

P(A|B) = P(A∩B)
P(B)

=
P(A) P(B)

P(B)
= P(A)

and, conversely, if P(A|B) = P(A) then P(A∩B)
P(B) = P(A) so that P(A∩B) = P(A) P(B).

Hence, we can take the following to be an alternative, and equivalent, definition of
independence.
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Definition 7.2.1 Events A and B are independent if P(A|B) = P(A). Note that it follows
from this that P(B|A) = P(B).a

aIn fact, by (7.1), P(B|A) = P(A∩B)
P(A) (since B∩A = A∩B) which becomes equal to P(B) when we

replace P(A∩B) with P(A) P(B).

For instance, in the example of Figure 7.7 events A and B are not independent, since
P(A|B) = 1

16 ̸= P(A) = 1
4 . Hence, it must be that P(B|A) ̸= P(B) and, indeed, P(B|A) =

P(A∩B)
P(A) =

1
32
1
4
= 1

8 , while P(B) = 1
2 .

On the other hand, the two events depicted in Figure 7.8 are independent. In fact, P(A) =
1
4 , P(B) = 1

2 and P(A∩B) = 1
4

(1
2

)
= 1

8 , so that P(A|B) = P(A∩B)
P(B) =

1
8
1
2
= 1

4 = P(A).4

 

A

1/4
 

1/2

B
 

 

Figure 7.8: Events A and B are independent

Next we derive from the conditional probability formula (7.1) three versions of what is
known as Bayes’ rule.
Let E and F be two events such that P(E)> 0 and P(F)> 0. Then, using the conditional
probability formula (7.1) we get

P(E|F) =
P(E ∩F)

P(F)
(7.2)

and

P(F |E) = P(E ∩F)

P(E)
. (7.3)

From (7.3) we get that

P(E ∩F) = P(F |E)P(E) (7.4)

and replacing (7.4) in (7.2) we get

Bayes’ formula version 1 : P(E|F) =
P(F |E)P(E)

P(F)
(7.5)

4Similarly, P(B|A) = P(A∩B)
P(A) =

1
8
1
4
= 1

2 = P(B).
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As an illustration of how one can use (7.5), consider the following example. You are a
doctor examining a middle-aged man who complains of lower back pain. You know that
25% of men in the age group of your patient suffer from lower back pain. There are various
causes of lower back pain; one of them is chronic inflammation of the kidneys. This is not
a very common disease: it affects only 4% of men in the age group that you are considering.
Among those who suffer from chronic inflammation of the kidneys, 85% complain of
lower back pain. What is the probability that your patient has chronic inflammation of the
kidneys?
Let I denote inflammation of the kidneys and L denote lower back pain. The information
you have is that P(I) = 4

100 , P(L) = 25
100 and P(L|I) = 85

100 . Thus, using (7.5), we get that

P(I|L) = P(L|I)P(I)
P(L)

=
85

100

( 4
100

)
25

100

= 0.136 = 13.6%.

This can also be seen by using natural frequencies. This time we use a table rather than a
tree. Let us imagine that there are 2,500 men in the relevant population (men in the age
group of your patient). Of these 2,500, 4% (= 100) have inflammation of the kidneys and
the remaining 96% (= 2,400) do not (this information is recorded in the column to the
right of the table in Figure 7.9). Furthermore, 25% (= 625) have lower-back pain and the
remaining 75% (= 1,875) do not (this information is recorded in the row below the table in
Figure 7.9). We want to fill in the table shown in Figure 7.9.

Lower-back
pain

No lower-
back pain

Total

Inflammation 100

No inflammation 2,400

625
= 25% of 2,500

1875
remaining 75%

2,500 Total

 

Figure 7.9: Natural frequencies for the lower-back pain example

One last piece of information is that, of the 100 people with inflammation of the kidneys,
85% (= 85) suffer from lower-back pain and thus the remaining 15 do not. This enables us
to fill in the top row of the table and to find the probability we were looking for: among
the people who suffer from lower-back pain (a total of 625) the fraction of those who have
inflammation of the kidneys is 85

625 = 0.136 = 13.6%, confirming the figure obtained above
using Bayes’ rule. We can also fill the bottom row by (1) subtracting 85 from 625 and (2)
by subtracting 15 from 1,875. The complete table is shown in Figure 7.10.
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Lower-back
pain

No lower-
back pain

Total

Inflammation 85 15 100

No inflammation 540 1,860 2,400

625 1,875 2,500 Total  

Figure 7.10: Natural frequencies for the lower-back pain example

We now derive a second version of Bayes’ formula. According to Bayes’ rule (7.5),

P(E|F) = P(F |E)P(E)
P(F) . Now, from set theory we have that, given any two sets A and B,

A = (A∩B)∪ (A∩¬B) and the two sets A∩B and A∩¬B are disjoint.

Thus, P(A) = P(A∩B)+P(A∩¬B).

Hence, in the denominator of Bayes’ formula (7.5) we can replace P(F) with P(F ∩E)+
P(F ∩¬E).

Then, using the formula for conditional probability we get that P(F ∩E) = P(F |E)P(E)
and P(F ∩¬E) = P(F |¬E)P(¬E).
Thus,

P(F) = P(F |E)P(E)+P(F |¬E)P(¬E).

Replacing this in Bayes’ formula (7.5) we get

Bayes’ formula version 2 : P(E|F) =
P(F |E)P(E)

P(F |E)P(E)+P(F |¬E)P(¬E)
(7.6)

As an illustration of how one can use (7.6), consider the following example. Enrollment
in a Decision Making class is as follows: 60% economics majors (E), 40% other majors
(¬E). In the past, 80% of the economics majors passed and 65% of the other majors
passed. A student tells you that she passed the class. What is the probability that she is an
economics major? Let A stand for “pass the class”. Then, using (7.6),

P(E|A) = P(A|E)P(E)
P(A|E)P(E)+P(A|¬E)P(¬E)

=
80

100

( 60
100

)
80
100

( 60
100

)
+ 65

100

( 40
100

) = 24
37 = 64.86%.



142 Chapter 7. Conditional Reasoning

One more example: 0.3763% of the population (that is, approximately 4 in 100,000
individuals) is infected with the HIV virus. Let H be the event “a randomly selected
individual has the HIV virus”. Then P(H) = 0.003763 and P(¬H) = 0.996237. A blood
test can be used to detect the virus. The blood test, which combines two tests (ELIZA
and Western Blot), has a true positive rate (sensitivity) of 99.97% and a true negative rate
(specificity) of 98.5%. Thus, (letting ‘+’ denote a positive blood test and ‘−’ a negative
blood test) P(+|H) = 0.9997, P(−|H) = 0.0003, P(+|¬H) = 0.015 and P(−|¬H) =
0.985. Now suppose that you pick an individual at random, administer the blood test and it
turns out to be positive. What is the probability that the individual has the HIV virus? That
is, what is P(H|+)? Using (7.6),

P(H|+) =
P(+|H) P(H)

P(+|H) P(H)+P(+|¬H) P(¬H)

=
0.9997(0.003763)

0.9997(0.003763)+0.015(0.996237)
= 0.201 = 20.1%

which confirms the calculation performed at the end of Section 7.2.1 using the natural
frequencies approach.

A generalization of (7.6) is as follows. If {E1, . . . ,En} is a partition of the space U ,5

P(F) = P(F |E1) P(E1)+ · · ·+P(F |En) P(En).

Thus, using (7.5) we obtain that, for every i = 1, . . . ,n,

Bayes’ formula version 3 : P(Ei|F) =
P(F |Ei)P(Ei)

P(F |E1)P(E1)+ ...+P(F |En)P(En)
(7.7)

Example: enrollment in a class is restricted to the following majors: economics (E),
statistics (S) and math (M). Current enrollment is: 40% E, 35% S and 25% M. Let A be
the event “pass the class”. According to past data, P(A|E) = 60%, P(A|S) = 50% and
P(A|M) = 75%. A student from this class tells you that she received a passing grade. What
is the probability that she is an economics major? Using (7.7),

P(E|A) = P(A|E)P(E)
P(A|E)P(E)+P(A|S)P(S)+P(A|M)P(M)

=
60
100

( 40
100

)
60
100

( 40
100

)
+ 50

100

( 35
100

)
+ 75

100

( 25
100

) = 96
241 = 39.83%.

We conclude with a well-known example, known as the Monty Hall problem.
You are a contestant in a show. You are shown three doors, numbered 1, 2 and 3. Behind
one of them is a new car, which will be yours if you choose to open that door. The door
behind which the car was placed was chosen randomly with equal probability (a die was
thrown, if it came up 1 or 2 then the car was placed behind Door 1, if it came up 3 or 4
then the car was placed behind Door 2 and if it came up 5 or 6 then the car was placed

5 That is, the sets E1, . . . ,En (1) cover the set U (in the sense that E1 ∪·· ·∪En =U) and (2) are pairwise
disjoint (in the sense that, for all i, j = 1, . . . ,n with i ̸= j, Ei ∩E j = /0).
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behind Door 3). You have to choose one door.
Suppose that you have chosen door number 1. Before the door is opened the host tells you
that he knows where the car is and, to help you, he will open one of the other two doors,
making sure that he opens a door behind which there is no car; if there are two such doors,
then he will choose randomly with equal probability. Afterwards he will give you a chance
to change your mind and switch to the other closed door, but you will have to pay $20 if
you decide to switch. Suppose that initially you chose Door 1 and the host opens Door 3 to
show you that the car is not there. Should you switch from Door 1 to Door 2? Assume that,
if switching increases the probability of getting the car (relative to not switching), then
you find it worthwhile to pay $20 to switch.

We solve this problem using Bayes’ formula. For every n ∈ {1,2,3}, let Dn denote the
event that the car is behind door n and let On denote the event that the host opens Door n.
The initial probabilities are P(D1) = P(D2) = P(D3) =

1
3 .

We want to compute P(D1|O3); if P(D1|O3)≥ 1
2 then you should not switch, since there

is a cost in switching (recall that Door 1 is your initial choice).
By Bayes’ rule, P(D1|O3) =

P(O3|D1) P(D1)
P(O3)

.

We know that P(D1) =
1
3 and P(O3|D1) =

1
2 (when the car is behind Door 1 then the host

has a choice between opening Door 2 and opening Door 3 and he chooses with equal
probability). Thus,

P(D1|O3) =
1
2 ×

1
3

P(O3)
=

1
6

P(O3)
. (7.8)

We need to compute P(O3). Now,

P(O3) = P(O3|D1)P(D1)+P(O3|D2)P(D2)+P(O3|D3)P(D3)

= P(O3|D1)
1
3 +P(O3|D2)

1
3 +P(O3|D3)

1
3 == 1

2

(1
3

)
+1
(1

3

)
+0
(1

3

)
= 1

6 +
1
3 = 1

2 .

because P(O3|D1) =
1
2 , P(O3|D2) = 1 (if the car is behind Door 2 then the host has to open

Door 3, since he cannot open the door that you chose, namely Door 1) and P(O3|D3) = 0
(if the car is behind Door 3 then the host cannot open that door). Substituting 1

2 for P(O3)

in (7.8) we get that P(D1|O3) =
1
3 . Hence, the updated probability that the car is behind

the other door (Door 2) is 2
3 and therefore you should switch.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 7.4.2 at the end of this chapter.
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7.3 Simpson’s paradox
In this section we highlight possible pitfalls of drawing inferences from conditional
probabilities. Suppose that there are three events, F, R and T and that we have the
following information about some conditional probabilities:

1. P(R|T ∩F)> P(R|¬T ∩F), and

2. P(R|T ∩¬F)> P(R|¬T ∩¬F).

Since (T ∩F)∪ (T ∩¬F) = T and (¬T ∩F)∪ (¬T ∩¬F) = ¬T , can we infer from the
above two pieces of information that P(R|T )> P(R|¬T )?

This seems rather abstract, but consider the following example. A pharmaceutical
company has developed a new drug to treat arthritis and is applying to the US Food
and Drug Administration (FDA) for permission to market it. The FDA requires the
pharmaceutical company to first run some clinical trials. The company gathers 1,200
patients diagnosed with arthritis: 600 women and 600 men. Half of the subjects (600: the
treatment group) are given a treatment (in the form of the newly developed drug) and the
other half (600: the control group) are given a placebo; none of the subjects knows to
which group they belong. At the end of the trial each patient is classified as ‘Recovered’ or
‘Did not recover’. The results are recorded in two tables: one for women and one for men.

The table for women is shown in Figure 7.11. R stands for ‘Recovered’, ¬R for ‘Did
not recover’, T for ‘was Treated’ (that is, belonged to the group that was administered the
drug), ¬T for ‘was Not Treated’ (that is, belonged to the group that was given a placebo)
and ‘F’ for ‘Female’.

recovered did not recover

R Total

treated T 135 315 450 30% =

not treated =

placebo
30 120 150 20% =

Total 165 435

FEMALES (F)

T

R

( | )P R T F

( | )P R T F 

 

Figure 7.11: Data on reaction of women to the new drug

The pharmaceutical company points out to the FDA that the data on women shows that
the new drug is effective: it increases the recovery rate by 10% (from 30

150 = 20%, if not
treated, to 135

450 = 30%, if treated).
The table for men is shown in Figure 7.12, where ¬F stands for ‘Males’ (that is, ‘not

Females’). Once again, the pharmaceutical company points out to the FDA that the new
drug is effective also for men: it increases the recovery rate by 10% (from 270

450 = 60%, if
not treated, to 105

150 = 70%, if treated).
Hence – concludes the pharmaceutical company – since the drug is effective for women
and is also effective for men, it must be effective for everybody and the FDA should
approve the drug.
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recovered did not recover

R Total

treated T 105 45 150 70% =

not treated =
placebo

270 180 450 60% =

Total 375 225

MALES

T

R

( )F

( | )P R T F

( | )P R T F 

 

Figure 7.12: Data on reaction of men to the new drug

Is the reasoning of the pharmaceutical company valid? To double-check, the FDA
reformats the data provided by the pharmaceutical company, by constructing a new table
showing the overall data, that is, without separating the subjects into the two categories
‘Women’ and ‘Men’. For example, the entry in the cell (T,R) in the new table is equal
to the entry in the cell (T,R) from table table for Women (135) plus the entry in the cell
(T,R) from table table for Men (105): 135+105 = 240. The new table, which no longer
separates the subjects into the two groups ‘Women’ and ‘Men’, is shown in Figure 7.13.

recovered did not recover

R Total

treated T 240 360 600 40% =

not treated =

placebo
300 300 600 50% =

Total 540 660

ALL PATIENTS
(Men and Women)

T

R

( | )P R T

( | )P R T

 

Figure 7.13: Overall data (not separated into Women and Men)

The table in Figure 7.13 shows that, for the entire population of subjects, the drug is not
effective: on the contrary, it decreases the recovery rate by 10% (from 300

600 = 50%, if
not treated, to 240

600 = 40%, if treated)! Hence, a treatment that seems to be effective for
women (the first table) and also effective for men (the second table), appears to actually be
ineffective for the entire population (the last table). This is known as Simpson’s paradox
(named after a UK civil servant who first pointed it out). The paradox says that the overall
behavior may be contrary to the behavior in each of a number of subgroups (in the example
above female and male). How can we explain the paradox?
Notice the following facts:

• The disease is more serious for women than for men: focusing on the “¬T ” subjects
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who were administered the placebo (and thus, for these people the disease went
untreated), 20% of women recovered (30 out of 150) while 60% of men recovered
(270 out of 450).

• In the case of women, 75% (450 out of 600) were administered the drug, while a
smaller fraction of men were given the drug: 25% (150 out of 600).

The drug looks ineffective for the entire population (Figure 7.13) because men and women
are represented disproportionately in the treatment and no-treatment groups: the no-
treatment group is dominated by men whose recovery rate is high, even without the help
from the drug (so that the no-treatment group’s recovery rate appears misleadingly high),
while the treatment group is dominated by women, whose recovery rate is low despite the
help from the drug (so that the treatment group’s recovery rate appears misleadingly low).
In this example, Simpson’s paradox arises because the allocation of treatments depended
on another variable – gender – that itself had an effect on the recovery rate. This type of
dependence is called confounding and the two quantities, treatment and gender, are said to
be confounded. To avoid invalid inferences, what is required is an allocation of treatments
to the subjects that is not confounded with any other variable that might have an effect.

7.4 Exercises

The solutions to the following exercises are given in Section 7.5 at the end of this chapter.

7.4.1 Exercises for Section 7.1: Sets and probability

Exercise 7.1 Let U be the universal set (or sample space) and E and F two events. Let
the complement of E be denoted by ¬E and the complement of F by ¬F . Suppose that
P(E) = 3

10 , P(F) = 3
5 and P(¬E ∪¬F) = 4

5 . What is the probability of E ∪F?
■

Exercise 7.2 Consider the following probability distribution:(
z1 z2 z3 z4 z5 z6 z7
3
12

1
12 0 3

12
2

12 0 3
12

)
.

What is the probability of the event {z2,z3,z5,z6,z7}? ■
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Exercise 7.3 Let the universal set be U = {z1,z2,z3,z4,z5,z6,z7,z8}.

Let A = {z2,z4,z5,z7} , B = {z3,z6,z8} , C = {z2,z6} , D = {z3,z4} and E = {z7,z8}.

You are given the following data: P(A∪ B) = 21
24 , P(A∩C) = 5

24 , P(B∩C) = 3
24 ,

P(A∩D) = 2
24 , P(B∩D) = 3

24 , P(B) = 7
24 and P(E) = 2

24 .

(a) Find the probability P(zi) for each i = 1, ...,8.

(b) Calculate P((A∪B)∩ (C∪D)).

■

Exercise 7.4 Let U = {a,b,c,d,e, f ,g,h, i} and consider the following probability

distribution:

 a b c d e f g h i
11
60 0 7

60
9
60

16
60

5
60

4
60

8
60 0

.

(a) Let E = {a, f ,g,h, i}. What is the probability of E?

(b) List all the events that have probability 1.

■

Exercise 7.5 Let P be a probability measure on a finite set U and let A and B be two
events (that is, subsets of U). Explain why P(A∪B) = P(A)+P(B)−P(A∩B).

■

Exercise 7.6 You plan to toss a fair coin three times and record the sequence of
Heads/Tails.

(a) What is the set of possibilities (or universal set or sample space)?
(b) Let E be the event that you will get at least one Heads. What is E?
(c) What is the probability of event E?
(d) Let F be the event that you will get Tails either in the first toss or in the third toss?

[Note: this is not an exclusive ‘or’.] What is event F?
(e) What is the probability of event F?

■

7.4.2 Exercises for Section 7.2: Conditional thinking

Exercise 7.7 Recall that, in medical diagnosis, test sensitivity is the ability of a test to
correctly identify those with the disease (true positive rate), whereas test specificity is
the ability of the test to correctly identify those without the disease (true negative rate).
Consider a test with a sensitivity of 95% and a specificity of 88%. Suppose that there
are 6,000 individuals in the relevant population and that 15% of them have a disease
called boriosis. Phil takes the test and it turns out to be positive. Draw a tree and use it
to calculate the probability that Phil has boriosis. ■
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Exercise 7.8 Use the data given in Exercise 7.7 but replace the base rate of 15% with a
variable p

(a) Calculate the probability of having boriosis after learning that the blood test was
positive. Clearly, it will be an expression involving the variable p.

(b) For what value of p is the probability of having boriosis, after learning that the
blood test was positive, 7.4%?

■

Exercise 7.9 Consider again the data given in Exercise 7.7. Pamela also took a
blood test but, unlike Phil, got a negative result. What is the probability that she has
boriosis? ■

Exercise 7.10 Let A and B be two events such that P(A) > 0 and P(B) > 0.
Prove that P(A|B) = P(B|A) if and only if P(A) = P(B). ■

Exercise 7.11 Construct an example to show that P(A|B) = P(B|A) does not imply
that A and B are independent. ■

Exercise 7.12 There is an urn with 40 balls: 4 red, 16 white, 10 blue and 10 black. You
close your eyes and pick a ball at random. Let E be the event “the selected ball is either
red or white”.

(a) What is the probability of E?
(b) Now somebody tells you: “the ball in your hand is not black”. How likely is it

now that you picked either a red or a white ball?
■

Exercise 7.13 Suppose there are 3 individuals. It is known that one of them has a virus.
A blood test can be performed to test for the virus. If an individual does have the virus,
then the result of the test will be positive. However, the test will be positive also for an
individual who does not have the virus but has a particular defective gene.
It is known that exactly one of the three individuals has this defective gene: it could be
the same person who has the virus or somebody who does not have the virus. A positive
test result will come up if and only if either the patient has the virus or the defective
gene (or both).
Suppose that Individual 1 takes the blood test and the result is positive. Assuming that
all the states are equally likely, what is the probability that he has the virus? [Hint: think
of the universal set (or sample space) U as a list of states and each state tells you which
individual has the virus and which individual has the defective gene.] ■

Exercise 7.14 Let A and B be two events such that P(A) = 0.2,P(B) = 0.5 and
P(B|A) = 0.1. Calculate P(A|B). ■
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Exercise 7.15 In a remote rural clinic with limited resources, a patient arrives com-
plaining of low-abdomen pain. Based on all the information available, the doctor thinks
that there are only four possible causes: a bacterial infection (b), a viral infection (v),
cancer (c), internal bleeding (i). Of the four, only the bacterial infection and internal
bleeding are treatable at the clinic. In the past the doctor has seen 600 similar cases and
they eventually turned out to be as follows:

b : bacterial infection v : viral infection c : cancer i : internal bleeding
140 110 90 260

The doctor’s probabilistic estimates are based on those past cases.
(a) What is the probability that the patient has a treatable disease?

There are two possible ways of gathering more information: a blood test and an
ultrasound. A positive blood test will reveal that there is an infection, however it could
be either bacterial or viral; a negative blood test rules out an infection and thus leaves
cancer and internal bleeding as the only possibilities. The ultrasound, on the other hand,
will reveal if there is internal bleeding.

(b) Suppose that the patient gets an ultrasound and it turns out that there is no internal
bleeding. What is the probability that he does not have a treatable disease? What
is the probability that he has cancer?

(c) If instead of getting the ultrasound he had taken the blood test and it had been
positive, what would the probability that he had a treatable disease have been?

(d) Now let us go back to the hypothesis that the patient only gets the ultrasound and
it turns out that there is no internal bleeding. He then asks the doctor: “if I were
to take the blood test too (that is, in addition to the ultrasound), how likely is it
that it would be positive?”. What should the doctor’s answer be?

(e) Finally, suppose that the patient gets both the ultrasound and the blood test and
the ultrasound reveals that there is no internal bleeding, while the blood test is
positive. How likely is it that he has a treatable disease?

■

 

LABEL number 

AE  
AF  
AG  

BE  
BF  
BG  

CE  
CF  
CG  

 
Figure 7.14: The specimen example
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Exercise 7.16 A lab technician was asked to mark some specimens with two letters,
the first from the set {A,B,C} and the second from the set {E,F,G}. For example, a
specimen could be labeled as AE or BG, etc. He had a total of 220 specimens. He has
to file a report to his boss by filling in the table shown in Figure 7.14.

Unfortunately, he does not remember all the figures. He had written some notes to
himself, which are reproduced below. Help him fill in the above table with the help of
his notes and conditional probabilities. Here are the technician’s notes:

(a) Of all the ones that he marked with an E, 1
5 were also marked with an A and 1

5
were marked with a B.

(b) He marked 36 specimens with the label CE.
(c) Of all the specimens that he marked with a C, the fraction 12

23 were marked with a
G.

(d) Of all the specimens, the fraction 23
55 were marked with a C.

(e) The number of specimens marked BG was twice the number of specimens marked
BE.

(f) Of all the specimens marked with an A, the fraction 3
20 were marked with an E.

(g) Of all the specimens marked with an A, 1
10 were marked with a G.

■

7.5 Solutions to Exercises

Solution to Exercise 7.1. The general formula is P(E ∪F) = P(E)+P(F)−P(E ∩F).

By The Morgan’s Law, ¬E ∪¬F = ¬(E ∩F).

Thus, since P(¬(E ∩F)) = 4
5 , we have that P(E ∩F) = 1− 4

5 = 1
5 .

Hence, P(E ∪F) = 3
10 +

3
5 −

1
5 = 7

10 . □

Solution to Exercise 7.2.

P({z2,z3,z5,z6,z7}) = ∑
i∈{2,3,5,6,7}

P({zi}) =
1

12
+0+

2
12

+0+
3

12
=

1
2
.

□

Solution to Exercise 7.3.

(a) Since {z1} is the complement of A∪B, P(z1) = 1− 21
24 = 3

24 .

Since {z2}= A∩C, P(z2) =
5
24 .

Similarly, P(z6)=P(B∩C)= 3
24 , P(z3)=P(B∩D)= 3

24 and P(z4)=P(A∩D)= 2
24 .

Thus, P(z8) = P(B)−P(z3)−P(z6) =
7

24 −
3
24 −

3
24 = 1

24 .

Hence, P(z7) = P(E)−P(z8) =
2
24 −

1
24 = 1

24 .
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Finally, P(z5) = 1− ∑
i ̸=5

P(zi) =
6
24 . Thus, the probability distribution is:

 z1 z2 z3 z4 z5 z6 z7 z8

3
24

5
24

3
24

2
24

6
24

3
24

1
24

1
24


(b) A∪B = {z2,z3,z4,z5,z6,z7,z8} , C∪D = {z2,z3,z4,z6}.

Hence, (A∪B)∩ (C∪D) =C∪D = {z2,z3,z4,z6}

so P((A∪B)∩ (C∪D)) = P(z2)+P(z3)+P(z4)+P(z6) =
5
24 +

3
24 +

2
24 +

3
24 = 13

24 .

□

Solution to Exercise 7.4. The probability distribution is: a b c d e f g h i
11
60 0 7

60
9

60
16
60

5
60

4
60

8
60 0

 .

(a) Let E = {a, f ,g,h, i}.

Then P(E) = P(a)+P( f )+P(g)+P(h)+P(i) = 11
60 +

5
60 +

4
60 +

8
60 +0 = 28

60 = 7
15 .

(b) The probability-1 events are: {a,c,d,e, f ,g,h}=U \{b, i}, {a,b,c,d,e, f ,g,h}=

U \{i}, {a,c,d,e, f ,g,h, i}=U \{b} and {a,b,c,d,e, f ,g,h, i}=U . □

Solution to Exercise 7.5. Since P(A) = ∑
w∈A

P(w) and P(B) = ∑
w∈B

P(w), when adding

P(A) to P(B) the elements that belong to both A and B (that is, the elements of A∩B) are

added twice and thus we need to subtract ∑
w∈A∩B

P(w) from P(A)+P(B) in order to get

∑
w∈A∪B

P(w) = P(A∪B). □

Solution to Exercise 7.6.

(a) There are 8 possibilities: HHH HHT HTH HTT THH THT TTH TTT.

Since the coin is fair, each possibility has the same probability, namely 1
8 .

(b) E =U \{T T T}, where U is the universal set (the set of 8 possibilities listed above).

(c) P(E) = P(U)−P(T T T ) = 1− 1
8 = 7

8 .

(d) F =U \{HHH,HT H}

(e) P(F) = P(U)−P({HHH,HT H}) = 1− 1
8 −

1
8 = 6

8 = 3
4 . □
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Solution to Exercise 7.7. The tree is given in Figure 7.15. □

6,000

900

15% have
disease

5,100

85% do not
have disease

855 45 612 4,488

95% test
positive

5% test
negative

12% test
positive

88% test
negative

Total positive: 855+612 = 1,467
855

1,467 = 0.5828 = 58.28%

Figure 7.15: The tree for Exercise 7.7

Solution to Exercise 7.8.
(a) The tree is shown in Figure 7.16. The probability of having the disease conditional

on a positive blood test is

f (p) =
95(6,000)p

95(6,000)p+12(6,000)(1− p)
=

95p
83p+12

.

(b) We must solve the equation 95p
83p+12 = 0.074. The solution is p = 0.01 = 1%. □

6,000

6000p

fraction p
disease

6000(1− p)

fraction (1− p)
no disease

95
1006000p 5

1006000p 12
1006000(1− p) 88

1006000(1− p)

95% test
positive

5% test
negative

12% test
positive

88% test
negative

Total positive: 855+612 = 1467
855
1467 = 0.5828 = 58.28%

Figure 7.16: The tree for Exercise 7.8
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Solution to Exercise 7.9. For Pamela the probability of having the disease, given that she
had a negative blood test, is (see Figure 7.15): 45

45+4,488 = 0.0099 = 0.99% (about 1 in a
1,000). □

Solution to Exercise 7.10. Suppose that P(A|B) = P(B|A).
Since P(A|B) = P(A∩B)

P(B) and P(B|A) = P(A∩B)
P(A) it follows that P(A) = P(B).

Conversely, if P(A) = P(B) then P(A|B) = P(A∩B)
P(B) = P(A∩B)

P(A) = P(B|A). □

Solution to Exercise 7.11. Example 1. Let P(A) = 1
2 and let B = ¬A.

Then P(B) = 1−P(A) = 1
2 and A∩B = /0 so that P(A∩B) = 0

and thus P(A|B) = P(A∩B)
P(B) = 0

1
2
= 0 ̸= P(A) = 1

2 .

Example 2. U = {a,b,c},P(a) = P(c) = 2
5 and P(b) = 1

5 . Let A = {a,b} and B = {b,c}.

Then P(A) = P(B) = 3
5 but P(A|B) = P(A∩B)

P(B) = P(b)
P(b)+P(c) =

1
5
3
5
= 1

3 ̸= P(A) = 3
5 . □

Solution to Exercise 7.12.
(a) P(E) = 4+16

40 = 1
2 .

(b) Let F be the event “the selected ball is not black”. Then, initially, P(F) = 30
40 = 3

4 .

Furthermore, E ∩F = E. Thus, P(E|F) = P(E∩F)
P(F) = P(E)

P(F) =
1
2
3
4
= 2

3 . □

Solution to Exercise 7.13. First we list the possible states. A state is a complete description
of the external facts that are relevant: it tells you who has the virus and who has the gene.
Let us represent a state as a pair (x,y) interpreted as follows: individual x has the virus and
individual y has the defective gene.
Then U = {a = (1,1), b = (1,2), c = (1,3), d = (2,1), e = (2,2),

f = (2,3), g = (3,1), h = (3,2), i = (3,3)}.
Let V1 be the event “Individual 1 has the virus”. Then V1 = {a,b,c}.
Let G1 be the event “Individual 1 has the defective gene”. Then G1 = {a,d,g}.
Since every state is assumed to have probability 1

9 , P(V1) = P(G1) =
1
9 +

1
9 +

1
9 = 1

3 . Let
1+ be the event that a blood test administered to Individual 1 comes up positive. Then
1+ = {a,b,c,d,g} and P(1+) = 5

9 .
Now we can compute the requested conditional probability as follows (note that V1 ∩1+ =

V1):

P(V1|1+) =
P(V1 ∩1+)

P(1+)
=

P(V1)

P(1+)
=

1
3
5
9

= 3
5 = 60%.

□

Solution to Exercise 7.14. Using Bayes’ rule,

P(A|B) = P(B|A)P(A)
P(B)

=
(0.1)(0.2)

0.5
= 0.04 = 4%.

□
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Solution to Exercise 7.15. The probabilities are as follows:

b v c i
140
600 = 14

60
110
600 = 11

60
90

600 = 9
60

260
600 = 26

60

(a) The event that the patient has a treatable disease is {b, i}.
P({b, i}) = P(b)+P(i) = 14

60 +
26
60 = 2

3 .

(b) A negative result of the ultrasound is represented by the event {b,v,c}.
A non-treatable disease is the event {v,c}. Thus,

P({v,c}|{b,v,c})= P({v,c}∩{b,v,c})
P({b,v,c})

=
P({v,c})

P({b,v,c})
=

11
60 +

9
60

14
60 +

11
60 +

9
60

= 10
17 = 58.82%.

P(c|{b,v,c}) = P(c)
P({b,v,c})

=
9
60

14
60 +

11
60 +

9
60

= 9
34 = 26.47%.

(c) A positive blood test is represented by the event {b,v}. A treatable disease is the
event {b, i}. Thus,

P({b, i}|{b,v}) = P({b, i}∩{b,v})
P({b,v})

=
P(b)

P({b,v})
=

14
60

14
60 +

11
60

= 14
25 = 56%.

(d) Here we want

P({b,v}|{b,v,c}) = P({b,v})
P({b,v,c})

=
14
60 +

11
60

14
60 +

11
60 +

9
60

= 25
34 = 73.53%.

(e) We are conditioning on {b,v}∩ {b,v,c} = {b,v}; thus, we want P({b, i}|{b,v})
which was calculated in Part (c) as 14

25 = 56%. □

Solution to Exercise 7.16. Let #xy be the number of specimens that were marked xy (thus,

x ∈ {A,B,C} and y ∈ {D,E,F}) and P(xy) = #xy
220 be the fraction of specimens that were

marked xy; let #z be the number of specimens whose label contains a z ∈ {A,B,C,D,E,F}
and let P(z) = #z

220 ; finally, let P(xy|z) = #xy
#z ; this is a conditional probability, since

#xy
#z

=
#xy
220
#z

220

=
P(xy)
P(z)

.

With this notation we can re-write the information contained in the technician’s notes as

follows.

(a) P(AE|E) = P(BE|E) = 1
5 . It follows that the remaining three fifths were marked

with a C, that is, P(CE|E) = 3
5 .
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(b) #CE = 36; thus, P(CE) = 36
220 . Since P(CE|E) = P(CE)

P(E) ,

using (a) we get 3
5 =

36
220

P(E) , that is, P(E) = 36
220

(5
3

)
= 3

11 .

Hence, the number of specimens marked with an E is 3
11 220 = 60.

Furthermore, since P(AE|E) = P(AE)
P(E) , using (a) we get 1

5 = P(AE)
3

11
, that is,

P(AE) = 3
55 . Thus, the number of specimens marked AE is 3

55 220 = 12.

The calculation for P(BE|E) is identical; thus, the number of specimens marked BE

is also 12. So far, we have:

LABEL number
AE 12
AF
AG
BE 12
BF
BG
CE 36
CF
CG

(c) P(CG|C) = 12
23 . Since P(CG|C) = P(CG)

P(C) , it follows that 12
23 = P(CG)

P(C) .

(d) P(C) = 23
55 . Thus, using (c) we get 12

23 = P(CG)
23
55

, that is, P(CG) = 12
55 .

Hence, the number of specimens marked CG is 12
55 220 = 48.

Since P(C) = 23
55 , the total number of specimens marked with a C is 23

55 220 = 92.

Since 36 were marked CE (see the above table) and 48 were marked CG, it follows

that the number of specimens marked CF is 92−48−36 = 8. Up to this point we

have:
LABEL number

AE 12
AF
AG
BE 12
BF
BG
CE 36
CF 8
CG 48

(e) The number of BGs is twice the number of BEs. Since the latter is 12 (see the above

table), the number of BGs is 24.
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(f) P(AE|A) = 3
20 . Since P(AE|A) = P(AE)

P(A) and, from (b), P(AE) = 3
55 , we have that

3
20 =

3
55

P(A) . Hence, P(A) = 3
55

(20
3

)
= 4

11 .

Thus, the number of specimens marked with an A is 4
11220 = 80.

Since P(A) = 4
11 and, from (d), P(C) = 23

55 , it follows that P(B) = 1− 4
11 −

23
55 = 12

55 .

Thus, the number of specimens marked with a B is 12
55 220 = 48.

Of these, 12 were marked BE and 24 were marked BG.

Thus, the number of specimens marked BF is 48−12−24 = 12.

So far, we have:
LABEL number

AE 12
AF
AG
BE 12
BF 12
BG 24
CE 36
CF 8
CG 48

(g) P(AG|A) = 1
10 . Since P(AG|A) = P(AG)

P(A) , and from (f) we have that P(A) = 4
11 it

follows that 1
10 = P(AG)

4
11

, that is, P(AG) = 1
10

( 4
11

)
= 4

110 .

Thus, the number of specimens marked AG is 4
110220 = 8.

Since the number marked with an A is 4
11220 = 80 and the number of those marked

AE is 12 and the number of those marked AG is 8, we get that the number of

specimens marked AF is 80−12−8 = 60.

Thus, we have completed the table:

LABEL number
AE 12
AF 60
AG 8
BE 12
BF 12
BG 24
CE 36
CF 8
CG 48

□



8. Information and Beliefs

8.1 Uncertainty and information

An individual’s state of uncertainty can be represented by a set, listing all the “states of
the world” that the individual considers possible. Indeed, this is what we did in Chapter 3
when we represented decision problems in terms of states and acts.

Consider, for example, the state of uncertainty of a doctor who, after listening to her
patient’s symptoms, reaches the conclusion that there are only five possible causes: (1) a
bacterial infection (call this state a), (2) a viral infection (state b), (3) an allergic reaction
to a drug (state c), (4) an allergic reaction to food (state d) and (5) environmental factors
(state e). Then we can represent the doctor’s state of uncertainty by the set {a,b,c,d,e},
as shown in Figure 8.1.

a b c d e

bacterial
infection

viral
infection

drug
allergy

food
allergy

environmental
factors

Figure 8.1: The doctor’s initial state of uncertainty

Information can be thought of as “reduction of uncertainty”. Continuing the above
example, suppose that the doctor can order a blood test. A positive blood test will reveal
that there is an infection and rule out causes (3)-(5) (that is, states c,d and e); on the other
hand, a negative blood test will reveal that there is no infection, thus ruling out causes (1)
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and (2) (that is, states a and b). We can represent the information potentially obtained
by performing a blood test as a partition of the set of states into two sets: the set {a,b},
representing the new state of uncertainty after learning that the blood test was positive, and
the set {c,d,e}, representing the new state of uncertainty after learning that the blood test
was negative. That is, we can think of the blood test as the partition {{a,b}, {c,d,e}}, as
shown in Figure 8.2.

a b c d e

bacterial
infection

viral
infection

drug
allergy

food
allergy

environmental
factors

positive blood test negative blood test

Figure 8.2: The possible states of uncertainty of the doctor after receiving the report on the
blood test

Definition 8.1.1 A partition of a set U is a collection {E1, . . . ,En} (n ≥ 1) of subsets of
U such that:
(1) the sets cover the entire set U , in the sense that E1 ∪·· ·∪En =U and
(2) any two different sets are disjoint, that is, if i ̸= j then Ei ∩E j = /0.a

When a partition represents information, we call it an information partition and we call
the elements of the partition information sets. We use the expression perfect information
to refer to the case where the information partition is the finest one, that is, when each
information set consists of a single state. For example, if U = {a,b,c,d,e}, then the
perfect information partition is the partition {{a},{b},{c},{d},{e}}.

aNote that the case n = 1 is allowed, so that {U} is considered to be a partition of U ; we call it the
trivial partition.

An information set contains all the states that an individual considers possible, that is, the
states that the individual cannot rule out, given her information. However, of all the states
that are possible, the individual might consider some to be more likely than others and
might even dismiss some states as “extremely unlikely” or “implausible”. To represent the
individual’s probabilistic beliefs we use a probability distribution on the information set.
To continue the doctor’s example described above, the doctor’s initial state of uncertainty
is represented by the set {a,b,c,d,e}; however, based perhaps on her past experience with
similar cases, she might (1) consider a bacterial infection (state a) to be twice as likely as a
viral infection (state b), (2) dismiss a drug allergy (state c) as a plausible explanation and
(3) consider a food allergy (state d) to be three times as likely as environmental factors
(state e). For example, she might have the following beliefs:

state a b c d e

probability 4
10

2
10 0 3

10
1
10
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Suppose that the doctor orders a blood test and it comes back positive. How should she
revise her beliefs in light of this piece of information? This issue is addressed in the next
section.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 8.5.1 at the end of this chapter.

8.2 Updating beliefs
The issue of how to “rationally” modify one’s initial beliefs – expressed as a probability
measure P on a set U – after receiving an item of information (represented by a subset F
of U) has been studied extensively by philosophers and logicians. Two different situations
may arise:

• In one case, the item of information F was not ruled out by the initial beliefs, in
the sense that event F was assigned positive probability (P(F) > 0). Information
might still be somewhat surprising, in case P(F) is small (close to zero), but it is not
completely unexpected. We call this case belief updating.

• The other case is where the item of information was initially dismissed, in the sense
that it was assigned zero probability (P(F) = 0). In this case the information received
is completely surprising or completely unexpected. We call this case belief revision.

In this section we address the issue of belief updating, while the next section deals with
belief revision.

It is generally agreed that the rational way to update one’s beliefs is by conditioning
the initial probability measure on the information received, that is, by using the conditional
probability formula (see Chapter 7, Section 7.2).

Definition 8.2.1 We use the expression belief updating or Bayesian updating to refer
to the modification of initial beliefs (expressed by an initial probability distribution
P) obtained by applying the conditional probability rule; this assumes that the belief
change is prompted by the arrival of new information, represented by an event F such
that P(F)> 0.

Thus, when receiving a piece of information F ⊆U such that P(F) > 0, one would
change one’s initial probability measure P into a new probability measure Pnew by

• reducing the probability of every state in ¬F (the complement of F) to zero (this
captures the notion that the information represented by F is trusted to be correct),
and

• setting Pnew(s) = P(s|F) for every state s ∈ F .

Thus, for every state s ∈U ,

Pnew(s) = P(s|F) =

{
0 if s /∈ F
P(s)
P(F) if s ∈ F

(8.1)

(recall the assumption that P(F)> 0).
Thus, for every event E ⊆U , Pnew(E) = ∑

s∈E
Pnew(s) = ∑

s∈E
P(s|F) = P(E|F).
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For instance, in the doctor’s example, belief updating requires the following. Recall
that the doctor’s initial beliefs are:

state a b c d e

probability 4
10

2
10 0 3

10
1

10

Let + be the event that the blood test is positive (that is, += {a,b} and thus P(+) = 6
10 ).

Let – be the event that the blood test is negative (that is, −= {c,d,e} and thus P(−) = 4
10 ).

Then

state a b c d e

initial beliefs 4
10

2
10 0 3

10
1
10

beliefs updated on information +
4
10
6
10

= 2
3

2
10
6
10

= 1
3 0 0 0

beliefs updated on information – 0 0 0
4
10

= 0
3

10
4

10
= 3

4

1
10
4
10

= 1
4

As a further example, suppose that there are only three students in a class: Ann, Bob
and Carla. The professor tells them that in the last exam one of them got 95 points (out of
100), another 78 and the third 54.
We can think of a state as a triple (a,b,c), where a is Ann’s score, b is Bob’s score and c is
Carla’s score. Then, based on the information given by the professor, Ann must consider
all of the following states as possible:

(95,78,54), (95,54,78), (78,95,54), (78,54,95), (54,95,78) and (54,78,95).

Suppose, however, that in all the previous exams Ann and Bob always obtained a higher
score than Carla and often Ann outperformed Bob. Then Ann might consider states
(95,78,54) and (78,95,54) much more likely than (78,54,95) and (54,78,95).
For example, suppose that Ann’s beliefs are as follows:

(95,78,54) (95,54,78) (78,95,54) (54,95,78) (78,54,95) (54,78,95)
16
32

8
32

4
32

2
32

1
32

1
32

Suppose that, before distributing the exams, the professor says “I was surprised to see that,
this time, Ann did not get the highest score”. Based on this information, how should Ann
revise her beliefs? The information is that Ann did not receive the highest score, which is
represented by the event

F = {(78,95,54),(54,95,78),(78,54,95),(54,78,95)}.

Conditioning on this event yields the following updated beliefs:

(95,78,54) (95,54,78) (78,95,54) (54,95,78) (78,54,95) (54,78,95)
0 0 4

8
2
8

1
8

1
8

(8.2)
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These updated beliefs can be represented more succinctly as follows, by not listing the
states that are ruled out by information F (that is, the states in the complement of F , which
are zero-probability states in the updated beliefs):

(78,95,54) (54,95,78) (78,54,95) (54,78,95)
4
8

2
8

1
8

1
8

(8.3)

The belief updating rule can also be applied sequentially if one first receives information
F (with P(F) > 0) and later receives a further piece of information E (with E ⊆ F and
P(E|F)> 0). For instance, in the above example, suppose that the professor first informs
the students that Ann did not get the highest score and later tells them that Carla received
a higher score than Bob. Call F the first piece of information and E the second piece of
information. Then, as we saw above, F is the set of states where it is in fact true that Ann
did not get the highest score:

F = {(78,95,54),(54,95,78),(78,54,95),(54,78,95)}.

On the other hand, E is the set of states where it is in fact true that Carla received a higher
score than Bob:

E = {(95,54,78),(78,54,95),(54,78,95)}.

Ann’s updated beliefs after learning information F are given above in (8.2). Updating
those beliefs by conditioning on E yields

(95,78,54) (95,54,78) (78,95,54) (54,95,78) (78,54,95) (54,78,95)
0 0 0 0 1

2
1
2

Clearly, this is the same as conditioning the initial beliefs on

E ∩F = {(78,54,95),(54,78,95)}.

Expressing all of this more succinctly, we have that the updated beliefs after learning F
are as given in (8.3) above, namely

(78,95,54) (54,95,78) (78,54,95) (54,78,95)
4
8

2
8

1
8

1
8

and the final beliefs are obtained by conditioning these beliefs on E or, equivalently, by
conditioning the initial beliefs on E ∩F :

(78,54,95) (54,78,95)
1
2

1
2

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 8.5.2 at the end of this chapter.
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8.3 Belief revision

How should a rational individual revise her beliefs when receiving information that is
completely surprising, that is, when informed of an event E to which her initial beliefs
assigned zero probability (P(E) = 0)? The best known theory of rational belief revision is
the so-called AGM theory, which takes its name from its originators: Alchourrón (a legal
scholar), Gärdenfors (a philosopher) and Makinson (a computer scientist); their pioneering
contribution was published in 1985.1 Just like the theory of expected utility (Chapter 5),
the AGM theory is an axiomatic theory: it provides a list of “rationality” axioms for belief
revision and provides a representation theorem.2 Although the AGM theory was developed
within the language of propositional logic, it can be restated in terms of a set of states and
a collection of possible items of information represented as events. We first introduce the
non-probabilistic version of the theory and then add graded beliefs, that is, probabilities.

Let U be a finite set of states and E ⊆ 2U a collection of events (subsets of U) rep-
resenting possible items of information; we assume that U ∈ E and /0 /∈ E . To represent
initial beliefs and revised beliefs we introduce a function f : E → 2U , which we call a
belief revision function.

Definition 8.3.1 Let U be a finite set of states and E a collection of events such that
U ∈ E and /0 /∈ E . A belief revision function is a function f : E → 2U that satisfies the
following properties: for every E ∈ E , (1) f (E)⊆ E and (2) f (E) ̸= /0.

The interpretation of a belief revision function is as follows.

- First of all, f (U) represents the initial beliefs, namely the set of states that the
individual initially considers possible.3

- Secondly, for every E ∈ E , f (E) is the set of states that the individual would
consider possible if informed that the true state belongs to E; thus f (E) represents
the individual’s revised beliefs after receiving information E.4

1Carlos Alchourrón, Peter Gärdenfors and David Makinson, On the logic of theory change: partial meet
contraction and revision functions, Journal of Symbolic Logic, 1985, Vol. 50, pages 510-530.

2We will not list and discuss the axioms here. The interested reader can consult http://plato.
stanford.edu/entries/formal-belief/ or, for a discussion which is closer to the approach followed
in this section, Giacomo Bonanno, Rational choice and AGM belief revision, Artificial Intelligence, 2009,
Vol. 88, pages 221-241.

3The universal set U can be thought of as representing minimum information: all states are possible.
If the initial beliefs were to be expressed probabilistically, by means of a probability distribution P over
U , then f (U) would be the support of P, that is, the set of states to which P assigns positive probability.
Thus, f (U) would be the smallest event of which the individual would initially be certain (that is, to which
she assigns probability 1): she would initially be certain of (assign probability 1 to) any event F such that
f (U)⊆ F .

4If the revised beliefs after receiving information E were to be expressed probabilistically, by means of a
probability distribution PE over U , then f (E) would be the support of PE , that is, the set of states to which
PE assigns positive probability. Thus, f (E) would be the smallest event of which the individual would be
certain after having been informed that E: according to her revised beliefs she would be certain of any event
F such that f (E)⊆ F . [Note that, since – by assumption – f (E)⊆ E, the individual is assumed to be certain
of the information received (e.g. because she trusts the source of the information).]

http://plato.stanford.edu/entries/formal-belief/
http://plato.stanford.edu/entries/formal-belief/
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One of the implications of the AGM axioms for belief revision is the following condi-
tion, which is known as Arrow’s Axiom (proposed by the Nobel laureate Ken Arrow in the
context of rational choice, rather than rational belief revision):

i f E,F ∈ E , E ⊆ F and E ∩ f (F) ̸= /0 then f (E) = E ∩ f (F).

Arrow’s Axiom says that if information E implies information F (E ⊆ F ) and there are
states in E that would be considered possible upon receiving information F (E∩ f (F) ̸= /0),
then the states that the individual would consider possible if informed that E are precisely
those that belong to both E and f (F) ( f (E) = E ∩ f (F) ).

Although necessary for a belief revision policy that satisfies the AGM axioms, Arrow’s
Axiom is not sufficient. Before stating the necessary and sufficient conditions for rational
belief revision, we remind the reader of the notion of a complete and transitive relation on
a set U (Chapter 2, Section 2.1).
In Chapter 2 the relation was denoted by ≿ and was interpreted in terms of preference:
o1 ≿ o2 was interpreted as “the individual considers outcome o1 to be at least as good as
outcome o2”.
In the present context the interpretation is in terms of “plausibility”:
s ≿ s′ means that the individual considers state s to be at least as plausible as state s′;
s ≻ s′ means that s is considered to be more plausible than s′ and
s ∼ s′ means that s is considered to be just as plausible as s′.

Definition 8.3.2 A plausibility order on a set of states U is a binary relation ≿ on U
that satisfies:
completeness (for every two states s1 and s2, either s1 ≿ s2 or s2 ≿ s1, or both) and
transitivity (if s1 ≿ s2 and s2 ≿ s3 then s1 ≿ s3).
We define s1 ≻ s2 as “s1 ≿ s2 and s2 ̸≿ s1” and we define s1 ∼ s2 as “s1 ≿ s2 and
s2 ≿ s1”.

The following theorem is based on a result by Adam Grove.5

Theorem 8.3.1 Let U be a finite set of states, E a collection of events (representing
possible items of information), with U ∈ E and /0 /∈ E , and f : E → 2U a belief revision
function (Definition 8.3.1).
Then the belief revision policy represented by the function f is compatible with the
AGM axioms of belief revision if and only if there exists a plausibility order ≿ on U
that rationalizes f in the sense that, for every E ∈ E , f (E) is the set of most plausible
states in E: f (E) = {s ∈ E : s ≿ s′ for every s′ ∈ E}.

5Adam Grove, Two modelings for theory change, Journal of Philosophical Logic, 1988, Vol. 17, pages
157-170. That result was proved within the context of propositional logic. The version given here is proved
in Giacomo Bonanno, Rational choice and AGM belief revision, Artificial Intelligence, 2009, Vol. 88, pages
221-241.
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Definition 8.3.3 A belief revision function f : E → 2U which is rationalized by a
plausibility order is called an AGM belief revision function.

R An AGM belief revision function satisfies Arrow’s Axiom (the reader is asked to
prove this in Exercise 8.7). The converse is not true: it is possible for a belief revision
function f : E → 2U to satisfy Arrow’s Axiom and yet fail to be rationalized by a
plausibility order.

Within the context of probabilistic beliefs, let P be the probability distribution on a
finite set of states U that represents the initial beliefs and PE be the probability distribution
representing the updated beliefs after receiving information E such that P(E)> 0 (thus the
information is not surprising).
The support of a probability distribution P, denoted by Supp(P), is the set of states to
which P assigns positive probability: Supp(P) = {s ∈U : P(s)> 0}.
The rule for updating beliefs upon receiving information E (Definition 8.2.1) implies the
following:

i f E ∩Supp(P) ̸= /0 (that is, P(E)> 0) then Supp(PE) = E ∩Supp(P). (8.4)

We call this the qualitative belief updating rule or qualitative Bayes’ rule. It is easy to
check that the qualitative belief updating rule is implied by Arrow’s Axiom (see Exercise
8.8). Thus, by the above remark, an AGM belief revision function has incorporated in
it the qualitative belief updating rule. In other words, belief updating is included in the
notion of AGM belief revision. A belief revision function, however, goes beyond belief
updating because it also encodes new beliefs after receipt of surprising information (that is,
after being informed of an event E such that P(E) = 0).

What is the probabilistic version of AGM belief revision? It turns out that in order
to obtain probabilistic beliefs we only need to make a simple addition to an AGM belief
revision function f : E → 2U .
Let P0 be any full-support probability distribution on U (that is, P0 is such that P0(s)> 0,
for every s ∈U).
Then, for every E ∈ E , let PE be the probability distribution obtained by conditioning P0
on f (E) (note: on f (E), not on E):

PE(s) = P0 (s| f (E)) =


P0(s)

∑

s′∈ f (E)
P0(s′)

i f s ∈ f (E)

0 i f s /∈ f (E)

Then PU gives the initial probabilistic beliefs and, for every other E ∈ E , PE gives the
revised probabilistic beliefs after receiving information E.
The collection {PE}E∈E of probability distributions on U so obtained gives the individual’s
probabilistic belief revision policy (while the function f : E → 2U gives the individual’s
qualitative belief revision policy).
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Definition 8.3.4 Let U be a finite set of states and E a collection of events such that
U ∈ E and /0 /∈ E .
A probabilistic belief revision policy is a collection {PE}E∈E of probability distributions
on U such that, for every E ∈ E , Supp(PE)⊆ E. PU represents the initial beliefs and,
for every other E ∈ E , PE represents the revised beliefs after receiving information E.
The collection {PE}E∈E is called an AGM probabilistic belief revision policy if it
satisfies the following properties:

1. there exists a plausibility order ≿ on U such that, for every E ∈ E , Supp(PE) is the
set of most plausible states in E, that is, Supp(PE)= {s ∈ E : s ≿ s′ for every s′ ∈ E},a

2. there exists a full-support probability distribution P0 on U such that, for every
E ∈ E , PE is the probability distribution obtained by conditioning P0 on Supp(PE).

aThis condition says that if one defines the function f : E → 2U by f (E) = Supp(PE) then this
function is an AGM belief revision function (see Definition 8.3.3).

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 8.5.3 at the end of this chapter.

8.4 Information and truth

The notion of belief updating and the more general notion of belief revision considered in
the previous two sections reflect the assumption that information is trusted to be correct or
truthful. That is, if informed that event E has occurred, the DM trusts that the true state of
the world is in fact an element of E. This presupposes that the source of information is a
reputable one.

What constitutes reliable information? Years ago, perhaps, a photograph could be taken
as “indisputable evidence”. Nowadays, with the advent of sophisticated image-editing
software, photographs can be manipulated to misrepresent facts or to create the appearance
of an event that did not happen. For example, in March 2004 a political advertisement for
George W. Bush, as he was running for president, showed a sea of soldiers at a public event;
later the Bush campaign acknowledged that the photo had been doctored, by copying and
pasting several soldiers.6 Videos and voice recordings are, nowadays, also manipulable.
What can one trust as a source of reliable information? The testimony of a witness? A
newspaper article? A book? A television news report? A claim by the president of the
USA? Many of us rely on the internet for information. Can material found on the internet
be trusted as accurate? Footnote 6 gives a link to a web page reporting photo tampering
throughout history: can one be sure that the information given there is correct? Perhaps if
a piece of information is reported by several sources then it can be trusted? Unfortunately,
it may simply be the case that an initial piece of incorrect information gets reproduced (in
good faith) by different sources and thus becomes “confirmed” information. One is left
wondering if, nowadays, there is any source of information that is completely reliable.

6 For an interesting account of photo tampering throughout history, see http://www.cs.dartmouth.
edu/farid/research/digitaltampering/

http://www.cs.dartmouth.edu/farid/research/digitaltampering/
http://www.cs.dartmouth.edu/farid/research/digitaltampering/
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Even if one is able to come up with a “safe” list of reliable sources, it can happen that a
trustworthy source gives – albeit in good faith – erroneous information. It can also happen
that an impostor transmits information in the guise of a trusted source, as illustrated in the
following newspaper report:7

Mark J. made a big bet in mid-August [2000] that Emulex shares would decline
[. . . ] Instead they soared, leaving him with a paper loss of almost $100,000
in just a week. So J. took matters into his own hands. [...] On the evening
of August 24, he sent a fake press release by e-mail to Internet Wire, a Los
Angeles service where he had previously worked, warning that Emulex’s chief
executive had resigned and its earnings were overstated. The next morning, just
as financial markets opened, Internet Wire distributed the damaging release to
news organizations and Web sites. An hour later, shareholders in Emulex were
$2.5 billion poorer. And J. would soon be $240,000 richer. [...] The hoax
[...] was revealed within an hour of the first news report and Emulex stock
recovered the same day. Still, investors who [believing the fake news release]
panicked and sold their shares, or had sell orders automatically executed at
present prices, are unlikely to recover their losses.

We will not address the difficult issue of how one should revise one’s beliefs in light of
new “information” when there is a possibility that the information is erroneous (or even
consciously manipulated).

We conclude this section by asking the following question:

Assuming that information is in fact truthful or correct (in the sense that if it is
represented by an event E then the true state of the world is in fact an element
of E), does belief updating lead one to get “closer to the truth” than she was
before she received the information?

Unfortunately, the answer is: Not necessarily. For example, suppose that the set of states is
U = {a,b,c,d,e, f ,g} and the DM has the following initial beliefs:

state a b c d e f g

probability 4
32

2
32

8
32

5
32

7
32

2
32

4
32

For instance, the states could represent diseases that are possible causes of a patient’s
symptoms and the DM is a doctor who is interested in the event that the appropriate
treatment for her patient is to administer a drug called Meliorite, which is a common cure
for diseases a,c,d and e but would be harmful in the other cases. Thus, the doctor is
interested in the event E = {a,c,d,e} that the appropriate course of action is to prescribe
Meliorite. Initially the doctor attaches the following probability to E being true:

P(E) = P(a)+P(c)+P(d)+P(e) = 4
32 +

8
32 +

5
32 +

7
32 = 24

32 = 3
4 = 75% .

7The Sacramento Bee, September 1, 2000.
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Let us imagine that the true disease is b (of course, the doctor does not know this), so
that event E is not true (that is, Meliorite would actually be harmful to the patient rather
than cure him).
Suppose that a test can be performed that can give one of three results: positive (this
happens in states a,b and c), negative (this happens in states d,e and f ) or neutral (this
happens in state g). Thus, we can think of the test as the following partition:

a b c︸ ︷︷ ︸
positive result

d e f︸ ︷︷ ︸
negative result

g︸︷︷︸
neutral result

The doctor decides to perform the test and – since we assumed that the true state is b – she is
informed that the result is positive. Thus she updates her initial estimate of the probability
of E by applying the conditional probability rule (with the information being represented
by the event F = {a,b,c} that the test result is positive; recall that E = {a,c,d,e}):

P(E|F) =
P(E ∩F)

P(F)
=

P({a,c})
P({a,b,c})

=
4

32 +
8
32

4
32 +

2
32 +

8
32

=
6
7
= 86% .

Thus the truthful information acquired by performing the test induces the doctor to become
more confident of something which is not true, namely that the drug Meliorite would cure
the patient (she increases her probabilistic estimate of the false event E from 75% to 86%).

8.5 Exercises

The solutions to the following exercises are given in Section 8.6 at the end of this chapter.

8.5.1 Exercises for Section 8.1: Uncertainty and information

Exercise 8.1 Suppose that you are doing some research on the effect of the weather on
a particular crop in a certain area. You need information on what the weather was like
on a certain date in the past. The states that you are interested in are the following and,
as far as you know, all of them are possibilities:

s1 s2 s3 s4 s5 s6
sunny rain partly cloudy, no rain snow cloudy, no rain hail

(a) What is your initial state of uncertainty?
(b) Somebody offers to give you information on whether or not there was precipitation

on that day. Represent the information that is being offered to you as a partition
of the set of states.

■
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8.5.2 Exercises for Section 8.2: Updating beliefs

Exercise 8.2 Consider again the example where there are only three students in a class:
Ann, Bob and Carla and the professor tells them that in the last exam one of them got
95 points (out of 100), another 78 and the third 54.
Ann’s initial beliefs are as follows (where the triple (a,b,c) is interpreted as follows: a
is Ann’s score, b is Bob’s score and c is Carla’s score):

(95,78,54) (95,54,78) (78,95,54) (54,95,78) (78,54,95) (54,78,95)
16
32

8
32

4
32

2
32

1
32

1
32

(a) Suppose that (before distributing the exams) the professor tells the students that
Carla received a lower score than Bob. Let E be the event that represents this
information. What is E?

(b) How should Ann update her beliefs in response to information E?
■

Exercise 8.3 Let the set of states be U = {a,b,c,d,e, f ,g}. Bill’s initial beliefs are as
follows:

a b c d e f g
3

20
2

20
5

20
1

20
1

20
3

20
5

20

(a) Suppose that Bill receives information E = {a,c,e, f ,g}. What are his updated
beliefs?

(b) Suppose that, after receiving information E, he later learns a new piece of in-
formation, namely F = {b,d,e, f ,g}. What are his final beliefs (that is, after
updating first on E and then on F)?

■

Exercise 8.4 Inspector Gethem has been put in charge of a museum robbery that took
place yesterday. Two precious items were stolen: a statuette and a gold tiara, which
were displayed in the same room. Surveillance cameras show that only three people
visited the room at the time the items disappeared: call them suspect A, suspect B and
suspect C. Let a state be a complete specification of who stole what (including the
possibility that the same person stole both items).

(a) List all the states.
(b) Inspector Gethem recognizes the suspects and, based on what he knows about

them, initially believes that the probability that suspect A stole both items is
1

20 , the probability that suspect B stole both items is 3
20 and the probability that

suspect C stole both items is 4
20 . Furthermore, he assigns the same probability to

every other state. What are his initial beliefs?
(c) Suppose now that the inspector receives reliable information that suspect B did

not steal the statuette and suspect C did not steal the tiara. What are his beliefs
after he updates on this information?

■
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Exercise 8.5 Let the set of states be U = {a,b,c,d,e, f ,g} and let the individual’s
initial beliefs be given by the following probability distribution, call it P:

a b c d e f g
3
20 0 7

20
1

20 0 4
20

5
20

Let E = {a,d,e,g}.
(a) Calculate P(E),P(b|E) and P(d|E).
(b) Calculate the updated beliefs in response to information E.

■

Exercise 8.6 The instructor of a class has the following data on enrollment, on average,
in the past 10 years:

major Economics Mathematics Philosophy Psychology Statistics
enrollment 35% 22% 18% 16% 9%

She believes that the percentages for the current enrollment are the same as in the past.

(a) A student in her class, Jim, tells her that his major is neither Math nor Statistics.
What are the instructor’s beliefs about Jim’s major upon learning this?

(b) After awhile Jim further informs the instructor that he is not an Economics major.
What are the instructor’s beliefs about Jim’s major upon learning this second fact?

(c) Finally, Jim tells the instructor that he is not a Philosophy major. What are the
instructor’s beliefs about Jim’s major upon learning this third fact?

■

8.5.3 Exercises for Section 8.3: Belief revision
Exercise 8.7 Prove that an AGM belief revision function (Definition 8.3.3) satisfies
Arrow’s Axiom: if E,F ∈ E , E ⊆ F and E ∩ f (F) ̸= /0 then f (E) = E ∩ f (F). ■

Exercise 8.8 Prove that the qualitative belief updating rule (8.4) is implied by Arrow’s
Axiom. ■

Exercise 8.9 Let U = {a,b,c,d,e,g,h,k,m} and let ≿ be the following plausibility
order on U (as usual, we use the convention that if the row to which state s belongs is
above the row to which state s′ belongs then s ≻ s′, and if s and s′ belong to the same
row then s ∼ s′).

most plausible b,g
c,k,m
d,h
e

least plausible a

Let E = {{a,e},{d,e,k,m},{b,d,e,k},U} . Find the belief revision function f : E →
2U that is rationalized by ≿. ■
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Exercise 8.10 As in Exercise 8.9, let U = {a,b,c,d,e,g,h,k,m} and

E =

{a,e}︸ ︷︷ ︸
E

,{d,e,k,m}︸ ︷︷ ︸
F

,{b,d,e,k}︸ ︷︷ ︸
G

, U


Using the plausibility order of Exercise 8.9, namely

most plausible b,g
c,k,m
d,h
e

least plausible a

find a collection of probability distributions {PE ,PF ,PG,PW} that provides an AGM
probabilistic belief revision policy (Definition 8.3.4). [There are many; find one.] ■

8.6 Solutions to Exercises

Solution to Exercise 8.1.
(a) Your initial state of uncertainty is represented by the set {s1,s2,s3,s4,s5,s6}.
(b) The information partition is as follows:

 {s2,s4,s6}︸ ︷︷ ︸
there was precipitation

, {s1,s3,s5}︸ ︷︷ ︸
there was no precipitation


□

Solution to Exercise 8.2.
(a) E = {(95,78,54),(78,95,54),(54,95,78)}. Thus P(E) = 16

32 +
4

32 +
2
32 = 22

32 .

(b) Conditioning on E yields the following beliefs:

(95,78,54) (95,54,78) (78,95,54) (54,95,78) (78,54,95) (54,78,95)

16
32
22
32

= 8
11 0

4
32
22
32

= 2
11

2
32
22
32

= 1
11 0 0

□
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Solution to Exercise 8.3.
(a) Updating on information E = {a,c,e, f ,g} yields the following beliefs:

a b c d e f g
3

17 0 5
17 0 1

17
3

17
5

17

(b) Updating the beliefs of Part (a) on information F = {b,d,e, f ,g} yields the following
beliefs:

a b c d e f g
0 0 0 0 1

9
3
9

5
9 .

□

Solution to Exercise 8.4. Represent a state as a pair (x,y) where x is the suspect who stole
the statuette and y is the suspect who stole the tiara.

(a) The set of states is

U = {(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C)}.

(b) The inspector’s initial beliefs are:

(A,A) (A,B) (A,C) (B,A) (B,B) (B,C) (C,A) (C,B) (C,C)
1

20
2
20

2
20

2
20

3
20

2
20

2
20

2
20

4
20

(c) The information is

F = {(A,A),(A,B),(C,A),(C,B)}.

Updating on this information yields the following beliefs:

(A,A) (A,B) (A,C) (B,A) (B,B) (B,C) (C,A) (C,B) (C,C)
1
7

2
7 0 0 0 0 2

7
2
7 0

□

Solution to Exercise 8.5.
(a) P(E) = P(a)+P(d)+P(e)+P(g) = 3

20 +
1
20 +0+ 5

20 = 9
20 , P(b|E) = 0

and P(d|E) =
1

20
9

20
= 1

9 .

(b) The updated beliefs are as follows:

a b c d e f g
3
9 0 0 1

9 0 0 5
9

□
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Solution to Exercise 8.6. The initial beliefs are:

Economics Mathematics Philosophy Psychology Statistics
35

100
22
100

18
100

16
100

9
100

(a) Updating on {Economics, Philosophy, Psychology} yields the following beliefs:

Economics Mathematics Philosophy Psychology Statistics
35
69 0 18

69
16
69 0

(b) Updating the beliefs of Part (a) on {Philosophy, Psychology}8 yields the following
beliefs:

Economics Mathematics Philosophy Psychology Statistics
0 0 18

34
16
34 0

(c) Updating the beliefs of Part (b) on {Psychology} yields the following beliefs:

Economics Mathematics Philosophy Psychology Statistics
0 0 0 1 0

that is, the instructor now knows that the student is a Psychology major. □

8This is the intersection of the initial piece of information, namely {Economics, Philosophy, Psychology},
and the new piece of information, namely {Mathematics, Philosophy, Psychology, Statistics}. Updating the
updated beliefs on {Mathematics, Philosophy, Psychology, Statistics} yields the same result as updating
on {Philosophy, Psychology}. Indeed, one would obtain the same result by updating the initial beliefs on
{Philosophy, Psychology}.
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Solution to Exercise 8.7. Let f : E → 2U be an AGM belief revision function.
Let E,F ∈ E be such that E ⊆ F and E ∩ f (F) ̸= /0.
We need to show that f (E) = E ∩ f (F).
By definition of AGM belief revision function (Definition 8.3.3), there is a plausibility
order ≿ on U such that

f (F) =
{

s ∈ F : s ≿ s′ for every s′ ∈ F
}

(8.5)

and

f (E) =
{

s ∈ E : s ≿ s′ for every s′ ∈ E
}
. (8.6)

Choose an arbitrary s ∈ E ∩ f (F).

Then, by (8.5) and the fact that E ⊆ F , s ≿ s′ for every s′ ∈ E and thus, by (8.6), s ∈ f (E).

Hence, E ∩ f (F)⊆ f (E). Conversely, choose an arbitrary s1 ∈ f (E).

Then, since (by definition of belief revision function: Definition 8.3.1) f (E)⊆ E, s1 ∈ E.

We want to show that s1 ∈ f (F) [so that s1 ∈ E ∩ f (F) and, therefore, f (E)⊆ E ∩ f (F)].

Suppose it is not true. Then, by (8.5), there exists an s2 ∈ F such that s2 ≻ s1.

Select an s3 ∈ E ∩ f (F) (recall that, by hypothesis, E ∩ f (F) ̸= /0).

Then, by (8.5) (since s2,s3 ∈ f (F)), s3 ≿ s2, from which it follows (by transitivity of ≿

and the fact that s2 ≻ s1) that s3 ≻ s1.

But then, since s3 ∈ E, it is not true that s1 ≿ s′ for every s′ ∈ E, contradicting - by (8.6) -

the hypothesis that s1 ∈ f (E). □

Solution to Exercise 8.8. For every event E (representing a possible item of information),
let PE be the probability distribution on E that represents the revised beliefs of the individual
after receiving information E.
Let P be the probability distribution on U representing the individual’s initial beliefs.
Define the following belief revision function f : f (U) = Supp(P) and f (E) = Supp(PE).
Suppose that f satisfies Arrow’s Axiom.
Then, for every event E, if E ∩ f (U) ̸= /0 [that is, if E ∩Supp(P) ̸= /0 or P(E)> 0]
then f (E) = E ∩ f (U) [that is, Supp(PE) = E ∩Supp(P)]. □
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Solution to Exercise 8.9. We have that E = {{a,e},{d,e,k,m},{b,d,e,k},U} and ≿ is
given by

most plausible b,g
c,k,m
d,h
e

least plausible a

Then the belief revision function rationalized by this plausibility order is given by:
f ({a,e}) = {e}, f ({d,e,k,m}) = {k,m}, f ({b,d,e,k}) = {b} and f (U) = {b,g}. □

Solution to Exercise 8.10. From Exercise 8.9 we get that {PE ,PF ,PG,PU} must be such
that Supp(PE) = {e}, Supp(PF) = {k,m}, Supp(PG) = {b} and Supp(PU) = {b,g}. For
every full-support probability distribution P0 on U , there is a corresponding collection
{PE ,PF ,PG,PU}. For example, if P0 is the uniform distribution on U (that assigns probabil-
ity 1

9 to every state) then the corresponding {PE ,PF ,PG,PU} is given by:

state a b c d e g h k m
PE 0 0 0 0 1 0 0 0 0
PF 0 0 0 0 0 0 0 1

2
1
2

PG 0 1 0 0 0 0 0 0 0
PU 0 1

2 0 0 0 1
2 0 0 0

As another example, if P0 is the following probability distribution

state a b c d e g h k m
P0

1
50

3
50

11
50

4
50

8
50

9
50

5
50

2
50

7
50

then the corresponding {PE ,PF ,PG,PU} is given by: PE and PG the same as above, and PF
and PU as follows:

state a b c d e g h k m
PF 0 0 0 0 0 0 0 2

9
7
9

PU 0 1
4 0 0 0 3

4 0 0 0

□



9. The Value of Information

9.1 When is information potentially valuable?
Since information reduces uncertainty, it should always be valuable, at least in the context
of decision making: intuitively, making a decision in a situation of less uncertainty is
preferable to making a decision in a situation of greater uncertainty. However, typically
the acquisition of information is a costly process and thus one needs to weigh the cost of
becoming more informed against the benefit of a more informed decision. In this chapter
we discuss how one can quantify the value of potential information.

Are there situations where, no matter how small the cost, one should not seek infor-
mation? The answer is Yes: whenever one can anticipate that any additional information
would not lead to a decision that is different from the decision that would be made in
the absence of information. For example, suppose that a doctor adheres to the following
decision rule:

If a patient’s symptoms are consistent with several treatable diseases and one
of the possible diseases is more likely than the others to be the cause, then I
will prescribe a treatment that targets this most likely cause.



176 Chapter 9. The Value of Information

In the late 1980s a study was carried out with a group of doctors to see under what
circumstances they would prescribe a costly diagnostic test before making a treatment
decision.1 The doctors were presented with the following decision problem involving
fictional diseases:

A patient’s presenting symptoms and history suggest a diagnosis of globoma,
with a probability of 0.8. The only other possibilities are popitis and flapemia,
each with a probability of 0.1 Each disease has its own treatment which is
ineffective against the other two diseases. A test, called ET scan, is available
and has the following properties:
(1) the test will be positive with probability 1 if the patient has popitis,
(2) the test will be negative with probability 1 if the patient has flapemia and
(3) the test will be positive with probability 0.5 if the patient has globoma.
If ET scan were the only test that could be performed and it was somewhat
costly, would you prescribe it?

In their answers many doctors said that it would be worthwhile to perform the ET scan,
even if it was somewhat costly. The doctors also said that they were inclined to follow the
decision rule described above, namely to treat the most likely disease.

First of all, note that, given this decision rule,

• If the ET scan were not performed the doctor would treat the most likely disease,
namely globoma.

To see what the doctor should do after learning the result of the ET scan, we need to
compute the doctor’s updated beliefs after reading the report on the scan. Her original
beliefs are:

disease Globoma(G) Popitis(P) Flapemia(F)
probability 0.8 0.1 0.1

Let ‘+’ denote the event that the ET scan is positive and ‘–’ denote the event that the ET
scan is negative. The information about the test given above concerns the probability of a
positive or negative result conditional on each disease:

P(+|G) = 0.5 P(−|G) = 0.5
P(+|P) = 1 P(−|P) = 0
P(+|F) = 0 P(−|F) = 1

1Baron, J., Beattie, J. and Hershey, J.C., Heuristics and biases in diagnostic reasoning: II. Congruence,
information and certainty, Organizational Behavior and Human Decision Processes, 1988, Vol. 42, pages
88-110. See also Jonathan Baron, Thinking and deciding, Third Edition, 2000, Cambridge University Press
(in particular pages 166-170).
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Using Bayes’ rule we can compute the doctor’s updated beliefs if she finds out that the
ET scan is positive:

P(G|+) =
P(+|G)P(G)

P(+|G)P(G)+P(+|P)P(P)+P(+|F)P(F)

=
(0.5)(0.8)

(0.5)(0.8)+(1)(0.1)+(0)(0.1)
= 0.8,

P(P|+) =
P(+|P)P(P)

P(+|G)P(G)+P(+|P)P(P)+P(+|F)P(F)

=
(1)(0.1)

(0.5)(0.8)+(1)(0.1)+(0)(0.1)
= 0.2

and

P(F |+) =
P(+|F)P(F)

P(+|G)P(G)+P(+|P)P(P)+P(+|F)P(F)

=
(0)(0.1)

(0.5)(0.8)+(1)(0.1)+(0)(0.1)
= 0.

Thus, the doctor’s revised beliefs after learning the the ET scan was positive are:

disease Globoma(G) Popitis(P) Flapemia(F)
probability 0.8 0.2 0

Hence, given her stated decision rule,

• If the ET scan is performed and the result is positive, the doctor will treat globoma
(the most likely disease).

Similarly, using Bayes’ rule we can compute the doctor’s updated beliefs if she finds out
that the ET scan is negative:

P(G|−) =
P(−|G)P(G)

P(−|G)P(G)+P(−|P)P(P)+P(−|F)P(F)

=
(0.5)(0.8)

(0.5)(0.8)+(0)(0.1)+(1)(0.1)
= 0.8,

P(P|−) =
P(−|P)P(P)

P(−|G)P(G)+P(−|P)P(P)+P(−|F)P(F)

=
(0)(0.1)

(0.5)(0.8)+(0)(0.1)+(1)(0.1)
= 0,
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P(F |−) =
P(−|F)P(F)

P(−|G)P(G)+P(−|P)P(P)+P(−|F)P(F)

=
(1)(0.1)

(0.5)(0.8)+(0)(0.1)+(1)(0.1)
= 0.2.

Thus, the doctor’s revised beliefs after learning the the ET scan was negative are:

disease Globoma(G) Popitis(P) Flapemia(F)
probability 0.8 0 0.2

Hence, given her stated decision rule,

• If the ET scan is performed and the result is negative, the doctor will treat globoma
(the most likely disease).

In conclusion, the doctor’s decision about what disease to treat is the same in all three
cases: no ET scan, ET scan with positive result and ET scan with negative result. Hence,
the information provided by the scan is of no use and, since it is costly, it is a waste of
resources to perform the scan. As Jonathan Baron notes,2

Sometimes we want information because we are simply curious. [...] Subjects
who feel that the tests are worth doing may be pursuing an inappropriate goal
(satisfying their curiosity or seeking information for its own sake), which, on
reflection, they would decide not to pursue. In fact, when we interviewed
and presented this argument to them, all of them admitted that the tests were
worthless.

Continuing the example, under what circumstances would the ET scan possibly be of
value to a doctor whose decision rule is to treat the most likely disease? Let us modify
the data by changing the probability of a positive test, given that the patient has globoma.
Above we assumed that P(+|G) = 0.5 but let us now replace the value 0.5 with a general
p ∈ (0,1). The remaining data is the same as above. Thus:

P(+|G) = p P(−|G) = 1− p
P(+|P) = 1 P(−|P) = 0
P(+|F) = 0 P(−|F) = 1

Then we can reframe the question as follows:

What values of p are such that it is possible that the ET scan might induce the
doctor to make a different treatment decision (after learning the result of the
scan), relative to the decision that she would make without performing the
scan (which is to treat globoma)?

Let us first focus on the case where the result of the scan is positive. We saw above that,
in this case, the doctor must assign zero probability to the patient having flapemia (since
P(+|F) = 0 implies that P(F |+) = 0). Thus, what we are asking is:

2Jonathan Baron, Thinking and deciding, Third Edition, 2000, Cambridge University Press, page 167.
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What values of p are such that, after learning that the result of the scan was
positive, the doctor will consider globoma to be less likely than popitis? That
is, what values of p are such that P(G|+)< P(P|+)? 3

Recomputing P(G|+) and P(P|+) by replacing 0.5 with p we get:

P(G|+) =
P(+|G)P(G)

P(+|G)P(G)+P(+|P)P(P)+P(+|F)P(F)

=
p(0.8)

p(0.8)+(1)(0.1)+(0)(0.1)
=

0.8 p
0.8 p+0.1

and

P(P|+) =
P(+|P)P(P)

P(+|G)P(G)+P(+|P)P(P)+P(+|F)P(F)

=
(1)(0.1)

p(0.8)+(1)(0.1)+(0)(0.1)
=

0.1
0.8 p+0.1

.

Thus, what we want is: 0.8 p
0.8 p+0.1 < 0.1

0.8 p+0.1 which is equivalent to p < 1
8 = 12.5%.

On the other hand, in the case where the result of the scan is negative, the doctor
must assign zero probability to the patient having popitis (since P(−|P) = 0 implies that
P(P|−) = 0). Thus, in this case what we are asking is:

What values of p are such that, after learning that the result of the scan was
negative, the doctor will consider globoma to be less likely than flapemia?
That is, what values of p are such that P(G|−)< P(F |−)? 4

Recomputing P(G|−) and P(F |−) by replacing 0.5 with p we get:

P(G|−) =
P(−|G)P(G)

P(−|G)P(G)+P(−|P)P(P)+P(−|F)P(F)

=
(1− p)(0.8)

(1− p)(0.8)+(0)(0.1)+(1)(0.1)
=

0.8(1− p)
0.8(1− p)+0.1

and

P(F |−) =
P(−|F)P(F)

P(−|G)P(G)+P(−|P)P(P)+P(−|F)P(F)

=
(1)(0.1)

(1− p)(0.8)+(0)(0.1)+(1)(0.1)
=

0.1
0.8(1− p)+0.1

3Since – when the result of the scan is positive – there are only two possibilities, namely globoma and
popitis, it would be equivalent to ask “what values of p are such that P(G|+)< 1

2 ”?
4Again, since – when the result of the scan is negative – there are only two possibilities, namely globoma

and flapemia, it would be equivalent to ask “what values of p are such that P(G|−)< 1
2 ”?
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Thus, what we want is: 0.8(1−p)
0.8(1−p)+0.1 < 0.1

0.8(1−p)+0.1 which is equivalent to p > 7
8 = 87.5%.

In conclusion, the answer to the question

What values of p = P(+|G) are such that it is possible that the ET scan
might induce the doctor to make a different treatment decision (after learning
the result of the scan), relative to the decision that she would make without
performing the scan (which is to treat globoma)?

is

either P(+|G)< 1
8 or P(+|G)> 7

8 . (9.1)

If P(+|G)< 1
8 then there is the possibility that the ET scan will induce the doctor not to

treat globoma: this happens if the result of the test is positive, in which case the doctor will
prescribe a treatment for popitis (on the other hand, if the result is negative then the doctor
will treat globoma, as she would in the absence of a scan: see Exercise 9.1a); similarly, if
P(+|G)> 7

8 , then the doctor will react to a negative scan result by prescribing a treatment
for flapemia (while, if the result is positive, she will treat globoma: see Exercise 9.1b).

If P(+|G) satisfies one of the conditions in (9.1) then the ET scan is potentially valuable,
in the sense that there is at least one possible item of information that would induce the
doctor to take a different action than the one she would take without information. Should
the doctor then prescribe the test in such cases? The answer to this question depends on
how the cost of the test compares to the potential benefit of choosing what is judged to be
the best treatment.

Typically, the cost of a test is easy to measure: it can be quantified as a sum of money.
How can one quantify the potential benefit of the test? In other words, how can one
measure the value of information? The rest of this chapter will examine this issue.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 9.5.1 at the end of this chapter.
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9.2 The value of information when outcomes are sums of money
When the possible outcomes are sums of money, it is relative easy to compute the value of
information. We shall look at several situations.

9.2.1 Perfect information and risk neutrality
There is one situation where computing the value of information is particularly easy: when
the decision maker (DM) is risk neutral and information is perfect. Thus, we shall start
with this case.

Suppose that you are risk neutral and that you have two investment opportunities: A
and B which will yield the following changes in your wealth (gains/losses):

probability 2
10

5
10

3
10

state →
act ↓

s1 s2 s3

A $(−20) $100 $10
B $200 $10 $20

Your initial wealth is $100. First of all, in the absence of further information, you will
choose B. This can be seen by either framing the problem in terms of total wealth or in
terms of changes in wealth (note that we are computing expected values, since your are
risk neutral):

• In terms of total wealth. E[A] = 2
10(100−20)+ 5

10(100+100)+ 3
10(100+10) =

$149 and E(B) = 2
10(100+200)+ 5

10(100+10)+ 3
10(100+20) = $151 .

• In terms of changes in wealth. E[A] = 2
10(−20)+ 5

10(100)+ 3
10(10) = $49 and

E[B] = 2
10(200)+ 5

10(10)+ 3
10(20) = $51 .

When the DM is risk neutral the two methods (total wealth and changes in wealth)
are equivalent; in other words, the initial wealth is irrelevant. We will thus perform
calculations in terms of changes in wealth.

Suppose now that, before making your investment decision, you have the opportunity
to consult an expert. In exchange for an up-front fee of $x the expert will correctly tell
you what the true state is. Thus, the information offered by the expert can be viewed as
the finest partition of the set of states {s1,s2,s3}, namely {{s1},{s2},{s3}}. That is, we
are in the case of perfect information (see Definition 8.1 in Chapter 8). If you choose to
hire the expert, then you can wait for the expert to tell you what the state is and make your
investment decision accordingly. The fee of $x has to be paid before the expert provides
you with information about the state. What is the largest amount $x that you would be
willing to pay for consulting the expert?

You can think ahead and see what investment decision you would make, conditional
on the information provided by the expert.

• If the expert tells you that the true state is s1 then you will choose investment B and
make a profit of $200.

• If the expert tells you that the true state is s2 then you will choose investment A and
make a profit of $100.
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• If the expert tells you that the true state is s3 then you will choose investment B and
make a profit of $20.

Of course, you don’t know now what the expert will tell you later! However, according to
your initial beliefs, the probability that the true state is s1 – and thus that the expert will tell
you so – is 2

10 ; similarly, you assign probability 5
10 to the expert telling you that the state

is s2 and probability 3
10 to the expert telling you that the true state is s3. Hence, you can

compute your expected net profit from consulting the expert for a fee of $x as follows:5

2
10(200− x)+ 5

10(100− x)+ 3
10(20− x) = 96− x .

Since the profit you expect if you act without consulting the expert (and thus making your
optimal decision, which – as shown above – is to select investment B) is $51,

• if 96− x > 51, that is, if x < 45, then it pays to consult the expert,
• if 96− x < 51, that is, if x > 45, then you are better off not consulting the expert,
• if 96− x = 51, that is, if x = 45, then you are indifferent between consulting and not

consulting the expert.

Thus, we can conclude that the maximum amount that you are willing to pay for the
information provided by the expert is $45.6 In other words, the value of the information
provided by the expert is $45.

The reasoning above can be seen as an instance of backward induction (see Chapter 4).
To make this more transparent, we will now analyse a second example by constructing a
decision tree.

Ann, who is risk neutral, faces the following decision problem (as before, the sums of
money are changes in wealth):

probability 2
8

4
8

2
8

state →
act ↓

s1 s2 s3

A $4 $36 $49
B $64 $81 $9
C $25 $100 $16

Ann can either make her decision now or consult an expert, who will provide her with
perfect information about the state. If she decides to consult the expert, then she will be
able to condition her choice of action on what she learned from the expert. The expert
charges an up-front fee of $x. For what values of x is it in her interest to consult the expert?

5 This calculation is carried out in terms of changes in wealth. The calculation in terms of total wealth is:
2
10 (100+200− x)+ 5

10 (100+100− x)+ 3
10 (100+20− x) = 196− x.

6In terms of total wealth one would compare $(196− x) (see Footnote 5) with $151 and obtain the same
conclusion.
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We can represent Ann’s decision problem as a decision tree as shown in Figure 9.1,
where the double edges represent the optimal decisions conditional on the information
received.

consult
expert

$4
$36

$49

2

8

2

8

4

8

A

2

8

2

8

2

8

2

8

4

8

4

8

$64

$81

$9

$25

$100

$16

2

8

2

8

4

8

1s

2s

3s

A

A

B

B

C

C

A

B
C

C

$(64x)

$(4x) $(25x)

$(36x)

$(81x)

B

$(100x)

$(49x) $(9x)
$(16x)

Figure 9.1: Ann’s decision problem

Using backward induction, we can

• replace the lottery corresponding to taking action A (without consulting the expert),

namely

(
$4 $36 $49
2
8

4
8

2
8

)
with its expected value (recall that Ann is risk neutral):

2
8(4)+

4
8(36)+ 2

8(49) = 31.25,

• replace the lottery corresponding to taking action B (without consulting the expert),

namely

(
$64 $81 $9

2
8

4
8

2
8

)
with its expected value: 2

8(64)+ 4
8(81)+ 2

8(9) = 58.75,
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• replace the lottery corresponding to taking action C (without consulting the expert),

namely

(
$25 $100 $16

2
8

4
8

2
8

)
with its expected value: 2

8(25)+ 4
8(100)+ 2

8(16) =

60.25,

• replace the decision nodes following each piece of information provided by the
expert with the corresponding optimal decision (B if s1, C if s2 and A if s3) and thus
reduce the decision to consult the expert to the lottery(

$(64− x) $(100− x) $(49− x)
2
8

4
8

2
8

)

and then replace the lottery with its expected value, namely 78.25− x.

Thus, the initial decision tree can be reduced to the tree shown in Figure 9.2 on the
following page.

consult
expert

B

C

A
$58.75

$60.25

$(78.25x)

$31.25

Figure 9.2: The simplified tree of Figure 9.1

It is clear from Figure 9.2 that
• if 78.25− x < 60.25, that is, if x > 18, then it is best for Ann not to consult the

expert (and take action C),
• if 78.25− x > 60.25, that is, if x < 18, then it is in Ann’s interest to consult the

expert (and then take the action appropriate for the information provided by the
expert: B if s1, C if s2 and A if s3),

• if 78.25− x = 60.25, that is, if x = 18, then Ann is indifferent between consulting
and not consulting the expert.

Thus, the maximum amount that Ann would be willing to pay for the expert’s services is
$18.
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9.2.2 Perfect information and risk aversion
In this section we continue to assume that outcomes are sums of money and there is perfect
information but we drop the assumption of risk neutrality. We shall re-examine the two
examples of Section 9.2.1 under the hypothesis that the DM is risk averse; more precisely,
we assume that the DM satisfies the axioms of Expected Utility Theory and that her von
Neuman-Morgenstern utility-of-money function is U($x) =

√
x.

In the first example, the DM is facing two investment opportunities: A and B which
will yield the following changes in her wealth (gains/losses):

probability 2
10

5
10

3
10

state →
act ↓

s1 s2 s3

A $(−20) $100 $10
B $200 $10 $20

When the DM is not risk neutral it is no longer valid to perform calculations in terms of
changes in wealth.7 Thus, we will consider total wealth, assuming that the DM’s initial
wealth is $100. First we determine the optimal decision in the absence of information (that
is, if the DM does not consult the expert).

• The expected utility of choosing investment A is
E[U(A)] = 2

10

√
100−20+ 5

10

√
100+100+ 3

10

√
100+10 = 12.0063 .

• The expected utility of choosing investment B is
E[U(B)] = 2

10

√
100+200+ 5

10

√
100+10+ 3

10

√
100+20 = 11.9945.

Thus, in the absence of information, the DM would choose investment A.8

Suppose now that the DM can pay $x up front to obtain perfect information. Then it is
clear that if informed that the state is s1 she will choose B, if informed that the state is s2
she will choose A and if informed that the state is s3 she will choose B. Thus,

• the DM’s expected utility from availing herself of perfect information is

2
10

√
100+200− x+ 5

10

√
100+100− x+ 3

10

√
100+20− x

=
2
√

300− x+5
√

200− x+3
√

120− x
10

.

Call the above expression f (x):

f (x) =
2
√

300− x+5
√

200− x+3
√

120− x
10

.

The maximum amount that the DM is willing to pay for perfect information is that value of
x that solves the equation f (x) = 12.0063 (12.0063 is the utility that she gets if she does
not consult the expert and takes the corresponding optimal action, which is A). This is not
an easy equation to solve. However, we can try two significant values of the function f (x).

7Furthermore, if one were to try to compute the utility of the outcome that occurs if the DM takes action
A and the state is s1 one would have to take the square root of a negative number!

8This is in contrast to what a risk-neutral person would do, which – as determined in Section 9.2.1 – is to
choose investment B.
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First of all, if we set x = 0 then we get that f (0) = 13.8215, showing that – if information
is free – then the DM will definitely want it (without information her expected utility is
12.0063, with free information her expected utility is 13.8215). The other interesting value
is x = 45, because $45 is the maximum amount that a risk-neutral person would be willing
to pay for perfect information (as shown in Section 9.2.1). Now, f (45) = 12.0168 implying
that the DM is strictly better off paying $45 for perfect information: 12.0168 > 12.0063.
Thus, the solution to the equation f (x) = 12.0063 is a number greater than 45.9 Thus,
our risk-averse person is willing to pay more for perfect information than the risk-neutral
person.

Let us now revisit the second example of Section 9.2.1 where the decision problem
was as follows (as before, the sums of money represent changes in wealth):

probability 2
8

4
8

2
8

state →
act ↓

s1 s2 s3

A $4 $36 $49
B $64 $81 $9
C $25 $100 $16

We represented this decision problem as a tree in Figure 9.1. In Section 9.2.1 we focused
on the case of risk-neutrality. Here we want to continue looking at the case of a risk-averse
DM whose von Neumann-Morgenstern utility-of-money function is U($x) =

√
x. To make

calculations easy, let us assume that the DM’s initial wealth is zero, so that changes in
wealth and total wealth coincide (in Exercise 9.6 the reader is asked to look at a case
with positive initial wealth). We can re-draw Figure 9.1 by replacing monetary outcomes
with the corresponding utilities (for example, outcome $64 is replaced with a utility of√

64 = 8). The re-drawn tree is shown in Figure 9.3.

Let us now consider a particular value of x (which is the fee charged by the expert).
Let us take the value x = 20. We know from Section 9.2.1 that the maximum amount that a
risk-neutral person would be willing to pay for perfect information is $18, so that if x = 20
a risk-neutral DM would choose not to hire the expert. What about our risk-averse DM?
Using backward induction we can replace the lotteries corresponding to taking (with no
information) actions A, B and C, respectively, with their expected utilities which are:

• For A: 2
8(2)+

4
8(6)+

2
8(7) = 5.25,

• for B: 2
8(8)+

4
8(9)+

2
8(3) = 7.25,

• for C: 2
8(5)+

4
8(10)+ 2

8(4) = 7.25,

so that, in the absence of information, the DM would choose either action B or action C
and get an expected utility of 7.25.

9This footnote is for the mathematically sophisticated reader. First one can show that the function f (x) is
strictly decreasing in x by calculating the first derivative: d

dx

(
2
√

300−x+5
√

200−x+3
√

120−x
10

)
=− 1

10
√

300−x
−

1
4
√

200−x
− 3

20
√

120−x
, which is negative for every meaningful value of x (that is, for x ≤ 120). Hence, since

f (45) > 12.0063, the solution to the equation f (x) = 12.0063 is greater than 45. Indeed, the solution is
x = 45.2397.
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consult
expert

2

8

2

8

4

8

A

2

8

2

8

2

8

2

8

4

8

4

8

3

5

10

4

2

8

2

8

4

8

1s

2s

3s

A

A

B

B

C

C

A

B
C

C

B

2 7
6

8

9

4 x

64 x

25 x

36 x

81 x

100 x

49 x 9 x
16 x

Figure 9.3: The tree of Figure 9.1 with utilities instead of sums of money

On the other hand, the expected utility of paying $20 for perfect information is

• 2
8

√
64−20+ 4

8

√
100−20+ 2

8

√
49−20 = 7.4767.

The reduced tree is shown in Figure 9.4.

consult
expert

B

C

A

7.25

7.25

5.25

7.4767

Figure 9.4: The reduced tree of Figure 9.3

Thus, DM would be willing to pay $20 for perfect information. Indeed, the maximum
amount that our DM would be willing to pay for perfect information must be greater than
$20 (while a risk-neutral person would not go beyond $18).10

10The maximum amount that the DM would be willing to pay for perfect information is $23.18. In fact,
2
8

√
64−23.18+ 4

8

√
100−23.18+ 2

8

√
49−23.18 = 7.25.
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In Section 9.5.1 we considered the case of perfect information and risk neutrality and
in this section the case of perfect information and risk aversion. What about the case of
risk loving? We shall not discuss the case of risk loving because the logic is exactly the
same as in the case of risk aversion: all that changes is the utility function. In Exercise 9.9
the reader is asked to analyze a case of perfect information where the DM is risk loving.

9.2.3 Imperfect information

So far we have considered the value of perfect information. In this section, while continuing
to assume that outcomes are sums of money, we turn to the case of imperfect information,
which arises when the partition that represents the possible items of information has at
least one element containing two or more states.

Consider the following decision problem, where the amounts are changes in wealth
(gains/losses):

probability 1
3

1
12

1
6

1
4

1
6

state →
act ↓

s1 s2 s3 s4 s5

a $56 $376 $64 $36 $284
b $89 $200 $100 $241 $25
c $124 $161 $(−4) $25 $376

Consider first the case where the DM is risk neutral. Then, as we saw above, the DM’s
initial wealth is irrelevant and we can carry out the analysis in terms of changes in wealth.
First of all, let us determine what the DM would do in the absence of further information.
The expected values of the lotteries associated with the three actions are:

E[a] = 1
356+ 1

12376+ 1
664+ 1

436+ 1
6284 = 117,

E[b] = 1
389+ 1

12200+ 1
6100+ 1

4241+ 1
625 = 127.4167 ,

E[c] = 1
3124+ 1

12161+ 1
6(−4)+ 1

425+ 1
6376 = 123.

Thus, in the absence of information, the DM would choose action b.
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Suppose that the DM has the opportunity to pay $x now to have an expert give her some
information about the state later (so that the DM will be able to make a more informed
decision about what action to take). The expert will not be able to give the DM perfect
information: he will only be able to let her know whether the state is (1) either s1 or s2 (one
piece of information) or (2) neither s1 nor s2 (the other possible piece of information).

Thus, the information that the expert is offering the DM is represented by the partition
{{s1,s2} ,{s3,s4,s5}}. The DM can look ahead and figure out what she would do after
receiving each piece of information.

• If given information {s1,s2} the DM would, first of all, have to update her beliefs.

Using Bayes’ rule her updated beliefs would be
s1 s2 s3 s4 s5
4
5

1
5 0 0 0

or, written

more succinctly,
s1 s2
4
5

1
5

. Given these updated beliefs, the decision problem would

become
probability 4

5
1
5

state →
act ↓

s1 s2

a $(56− x) $(376− x)
b $(89− x) $(200− x)
c $(124− x) $(161− x)

so that

E[a] = 4
5(56− x)+ 1

5(376− x) = 120− x,

E[b] = 4
5(89− x)+ 1

5(200− x) = 111.2− x,

E[c] = 4
5(124− x)+ 1

5(161− x) = 131.4− x .

Thus, if informed that {s1,s2} the DM would choose action c.

• If given information {s3,s4,s5} the DM would, first of all, have to update her beliefs.

Using Bayes’ rule her updated beliefs would be
s3 s4 s5
2
7

3
7

2
7

. Given these updated

beliefs, the decision problem would become

probability 2
7

3
7

2
7

state → s3 s4 s5
act ↓

a $(64− x) $(36− x) $(284− x)
b $(100− x) $(241− x) $(25− x)
c $(−4− x) $(25− x) $(376− x)
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so that

E[a] = 2
7(64− x)+ 3

7(36− x)+ 2
7(284− x) = 114.8571− x,

E[b] = 2
7(100− x)+ 3

7(241− x)+ 2
7(25− x) = 139− x ,

E[c] = 2
7(−4− x)+ 3

7(25− x)+ 2
7(376− x) = 117− x.

Thus, if informed that {s3,s4,s5} the DM would choose action b.

What is the DM’s expected utility of availing herself of the offered information? Given
her initial beliefs, the probability that she will be informed that {s1,s2} is 1

3 +
1
12 = 5

12 and
the probability that she will be informed that {s3,s4,s5} is 1

6 +
1
4 +

1
6 = 7

12 . Thus, she can
compute her expected utility from paying x for the information as follows:

5
12

(131.4− x)︸ ︷︷ ︸
utility from taking action c

+
7

12
(139− x)︸ ︷︷ ︸

utility from taking action b

= 135.8333− x

Thus, since the maximum expected utility that the DM gets without information is
127.4167 (by taking action b),

• If 135.8333− x > 127.42, that is, if x < 8.413, then the DM is better off hiring the
expert,

• if 135.8333− x < 127.42, that is, if x > 8.413, then the DM is better off not hiring
the expert,

• if 135.8333− x = 127.42, that is, if x = 8.413, then the DM is indifferent between
hiring and not hiring the expert.

Thus, the maximum price that the DM is willing to pay for information

{{s1,s2} ,{s3,s4,s5}}

is $8.41.

It should be clear that, once again, what we have done is to apply the method of
backward induction. To make this more transparent, we can represent the decision problem
as a tree, as shown in Figure 9.5. Applying backward induction with the calculations
shown in Figure 9.5, we can reduce the tree as shown in Figure 9.6.
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acquire
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2

3

4

a

b
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2
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Figure 9.5: The decision problem represented as a tree
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b

c
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 1 2,s s
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12

7
12
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information
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$127.42
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The expected
value of this
lottery is $135.83

 

Figure 9.6: The reduced version of the tree of Figure 9.5

Let us now analyze the above decision problem from the point of view of a risk-averse
DM whose von Neumann-Morgenstern utility-of-money function is U($x) =

√
x and

whose initial wealth is $200. The decision problem expressed in terms of changes in
wealth (gains/losses) is as before, namely:

probability 4
12

1
12

2
12

3
12

2
12

state →
act ↓

s1 s2 s3 s4 s5

a $56 $376 $64 $36 $284
b $89 $200 $100 $241 $25
c $124 $161 −$4 $25 $376

In the absence of information, the expected utility of the lottery associated with each action
is (recall that the DM’s initial wealth is $200):

E[U(a)] = 4
12

√
256+ 1

12

√
576+ 2

12

√
264+ 3

12

√
236+ 2

12

√
484 = 17.55,

E[U(b)] = 4
12

√
289+ 1

12

√
400+ 2

12

√
300+ 3

12

√
441+ 2

12

√
225 = 17.97 ,

E[U(c)] = 4
12

√
324+ 1

12

√
361+ 2

12

√
196+ 3

12

√
225+ 2

12

√
576 = 17.67.

Thus, in the absence of information the DM would choose b.
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As before, suppose that the DM is offered information represented by the partition
{{s1,s2} ,{s3,s4,s5}}. Let the up-front fee charged by the expert be $8.50 (an amount that,
as we saw above, a risk neutral person would not be willing to pay). If the DM decides
to hire the expert, then her choice of action will depend on what piece of information she
gets from the expert.

• If given information {s1,s2} the DM’s updated beliefs are
s1 s2
4
5

1
5

. Given these

updated beliefs, the decision problem becomes

probability 4
5

1
5

state →
act ↓

s1 s2

a $(256−8.5) $(576−8.5)
b $(289−8.5) $(400−8.5)
c $(324−8.5) $(361−8.5)

so that
E[U(a)] = 4

5

√
256−8.5+ 1

5

√
576−8.5 = 17.3502,

E[U(b)] = 4
5

√
289−8.5+ 1

5

√
400−8.5 = 17.3558,

E[U(c)] = 4
5

√
324−8.5+ 1

5

√
361−8.5 = 17.9649 .

Thus, if informed that {s1,s2} the DM would choose action c.

• If given information {s3,s4,s5} the DM’s updated beliefs are
s3 s4 s5
2
7

3
7

2
7

.

Given these updated beliefs, the decision problem becomes

probability 2
7

3
7

2
7

state → s3 s4 s5
act ↓

a $(264−8.5) $(236−8.5) $(484−8.5)
b $(300−8.5) $(441−8.5) $(225−8.5)
c $(196−8.5) $(225−8.5) $(576−8.5)

so that

E[U(a)] = 2
7

√
264−8.5+ 3

7

√
236−8.5+ 2

7

√
484−8.5 = 17.2614,

E[U(b)] = 2
7

√
300−8.5+ 3

7

√
441−8.5+ 2

7

√
225−8.5 = 17.9949 ,

E[U(c)] = 2
7

√
196−8.5+ 3

7

√
225−8.5+ 2

7

√
576−8.5) = 17.0246.

Thus, if informed that {s3,s4,s5} the DM would choose action b.

Given the DM’s initial beliefs, the probability that she will be informed that {s1,s2} is 5
12

and the probability that she will be informed that {s3,s4,s5} is 7
12 . Thus, she can compute

her expected utility from paying $8.5 for the information as

5
12

17.9649︸ ︷︷ ︸
utility from taking action c

+
7

12
17.9949︸ ︷︷ ︸

utility from taking action b

= 17.9824
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which is greater than 17.97 (the maximum expected utility that the DM gets without
information, by taking action b). Hence, the DM is better off hiring the expert.

Also in this section we restricted attention to risk neutrality and risk aversion. What
about the case of risk loving? Since the logic is exactly the same as in the case of risk
aversion (one just uses a different utility function), we shall not discuss risk loving. In
Exercise 9.10 the reader is asked to analyze a case of imperfect information where the DM
is risk loving.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 9.5.2 at the end of this chapter.

9.3 The general case
In the general case, where outcomes are not sums of money, it may be more difficult to
calculate the value of information. However, it is relatively simple to compare the option
of not availing oneself of information to the option of acquiring information at a specified
cost. In this section we show how one would go about doing so.

Let us go back to the example of the fictional diseases considered in Section 9.1. The
patient is informed that there are three possible causes of his symptoms: globoma, popitis
and flapemia, and that past data suggests that the probabilities are as follows:

disease Globoma(G) Popitis(P) Flapemia(F)
probability 0.8 0.1 0.1

The patient is also told that he can treat only one disease and that a drug targeted to one
disease is ineffective against the other two. If the chosen drug matches the actual disease,
the patient will be cured, otherwise all his symptoms will remain. To make things simple,
let us assume that, after a failed attempt to treat a disease, it would be too dangerous for
the patient to try another drug, targeted to a different disease. Finally, the patient is told
that he can undergo an ET scan, for which he will have to pay $K. The result of the scan
can be positive (+) or negative (–) and the conditional probabilities are as follows:11

P(+|G) = 0.1 P(−|G) = 0.9
P(+|P) = 1 P(−|P) = 0
P(+|F) = 0 P(−|F) = 1

The patient’s initial wealth is $W (with W > K). Let us represent the patient’s decision
problem in terms of states, acts and outcomes. We can think of a state as a pair (x,y) where
x is the disease that the patient has (thus, x is either G or P or F) and y is the result of the
scan if it were to be taken (thus, y is either + or –). For example, (G,−) is the state where
the patient has disease G and if he takes the scan then the result will be negative. Using
the doctor’s initial assessment and the given conditional probabilities we can compute the
probabilities of all the states. By the conditional probability rule, P(+|G) = P(G,+)

P(G) so that
P(G,+) = P(+|G)×P(G) = 0.1× 0.8 = 0.08. Similarly, P(G,−) = 0.9× 0.8 = 0.72,
etc. Thus, the probabilities are as follows:

state: (G,+) (G,−) (P,+) (P,−) (F,+) (F,−)
probability: 0.08 0.72 0.1 0 0 0.1

11Note that P(+|G)< 1
8 and thus the scan is potentially valuable, as shown in Section 9.1.
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We will ignore the two states that have zero probability and thus let the set of states be
{(G,+),(G,−),(P,+),(F,−)}:

state: (G,+) (G,−) (P,+) (F,−)
probability: 0.08 0.72 0.1 0.1

There are many possible plans of action for the patient, but some of them do not make
sense. For example, the plan to take the scan and then treat F if the scan is positive and
treat P if the scan is negative is doomed to failure: there is no state where the plan manages
to treat the patient’s actual disease. However, for completeness, we will list all the possible
plans of action; we will then show that half of them should be dropped because they are
dominated. There are twelve possible plans of action (¬S means ‘do not take the scan’, S
means ‘take the scan’, G means ‘treat disease G’, etc.):

(¬S,G) : Do not take the scan and treat disease G
(¬S,P) : Do not take the scan and treat disease P
(¬S,F) : Do not take the scan and treat disease F
(S,G) : Scan and treat G no matter whether the scan is + or –
(S,P) : Scan and treat P no matter whether the scan is + or –
(S,F) : Scan and treat F no matter whether the scan is + or –
(S,G+,P−) : Scan and treat G if scan is + and P if scan is –
(S,G+,F−) : Scan and treat G if scan is + and F if scan is –
(S,P+,G−) : Scan and treat P if scan is + and G if scan is –
(S,P+,F−) : Scan and treat P if scan is + and F if scan is –
(S,F+,G−) : Scan and treat F if scan is + and G if scan is –
(S,F+,P−) : Scan and treat F if scan is + and P if scan is –

To complete the representation of the decision problem we need to specify what a possible
outcome is. We can represent an outcome as a pair (x,y) where x is either c for ‘cured’ or
¬c for ‘not cured’ and y is the level of the patient’s wealth, which is $W if he does not take
the scan and $(W −K) if he takes the scan. It is natural to assume that the patient values
both his health and his wealth. That is,

• conditional on the same level of wealth, he prefers to be cured than to remain sick:

(c,W )≻ (¬c,W ) and (c,W −K)≻ (¬c,W −K) (9.2)

• conditional on the same state of health, he prefers more money to less:

(c,W )≻ (c,W −K) and (¬c,W )≻ (¬c,W −K). (9.3)

This is not a full specification of the patient’s preferences, but it is sufficient to show that
six plans of action are dominated. Consider the following reduced representation of the
decision problem, where we have written only some of the acts (or plans of action):

state → (G,+) (G,−) (P,+) (F,−)
act ↓
(¬S,G) (c,W ) (c,W ) (¬c,W ) (¬c,W )
(¬S,P) (¬c,W ) (¬c,W ) (c,W ) (¬c,W )
(¬S,F) (¬c,W ) (¬c,W ) (¬c,W ) (c,W )
(S,G) (c,W −K) (c,W −K) (¬c,W −K) (¬c,W −K)
(S,P) (¬c,W −K) (¬c,W −K) (c,W −K) (¬c,W −K)
(S,F) (¬c,W −K) (¬c,W −K) (¬c,W −K) (c,W −K)
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It is clear that, by (9.2) and (9.3),

• (S,G) is strictly dominated by (¬S,G) (same health outcome but less wealth in each
state),

• (S,P) is strictly dominated by (¬S,P) (same health outcome but less wealth in each
state),

• (S,F) is strictly dominated by (¬S,F) (same health outcome but less wealth in each
state).

Thus, we can drop three acts ((S,G),(S,P) and (S,F)) from consideration. Now consider
the following subset of acts:

state → (G,+) (G,−) (P,+) (F,−)
act ↓
(S,G+,P−) (c,W −K) (¬c,W −K) (¬c,W −K) (¬c,W −K)
(S,G+,F−) (c,W −K) (¬c,W −K) (¬c,W −K) (c,W −K)
(S,P+,G−) (¬c,W −K) (c,W −K) (c,W −K) (¬c,W −K)
(S,F+,G−) (¬c,W −K) (c,W −K) (¬c,W −K) (¬c,W −K)
(S,F+,P−) (¬c,W −K) (¬c,W −K) (¬c,W −K) (¬c,W −K).

It is clear that, by (9.2) and (9.3),

• (S,G+,P−) is weakly dominated by (S,G+,F−),12

• (S,F+,G−) is weakly dominated by (S,P+,G−),
• (S,F+,P−) is weakly dominated by (S,P+,G−).

Thus, we can drop three more acts ((S,G+,P−),(S,F+,G−) and (S,F+,P−)) from
consideration.13 Hence, we are left with the following reduced decision problem:

probability: 0.08 0.72 0.1 0.1
state → (G,+) (G,−) (P,+) (F,−)
act ↓
(¬S,G) (c,W ) (c,W ) (¬c,W ) (¬c,W )
(¬S,P) (¬c,W ) (¬c,W ) (c,W ) (¬c,W )
(¬S,F) (¬c,W ) (¬c,W ) (¬c,W ) (c,W )
(S,G+,F−) (c,W −K) (¬c,W −K) (¬c,W −K) (c,W −K)
(S,P+,F−) (¬c,W −K) (¬c,W −K) (c,W −K) (c,W −K)
(S,P+,G−) (¬c,W −K) (c,W −K) (c,W −K) (¬c,W −K)

12(S,G+,F−) yields a better outcome than (S,G+,P−) in state (F,−) and the same outcome in every
other state.

13Note that if act A is weakly dominated by act B and all the states under consideration have positive
probability, then the expected utility of act A is strictly less than the expected utility of act B.



9.3 The general case 197

In order to proceed, we need to know more about the patient’s preferences, in particular,
how he ranks the two outcomes (¬c,W ) and (c,W −K): if the patient were guaranteed that
an expenditure of $K would lead to his recovery, would he be willing to spend that sum
of money? If the answer is No, that is, if (¬c,W )≻ (c,W −K), then (S,G+,F−) would
be strictly dominated by (¬S,G), (S,P+,F−) would be strictly dominated by (¬S,P) and
(S,P+,G−) would be strictly dominated by (¬S,P) so that the patient will decide not to
take the scan (in which case, as shown below, the best choice is to treat G). Thus, we will
assume that (c,W −K) ≻ (¬c,W ), that is, the patient would be willing to pay $K to be
cured with certainty. Hence, the patient’s ranking of the outcomes is:

outcome
best (c,W )

(c,W −K)
(¬c,W )

worst (¬c,W −K)

If we assume that the patient satisfies the axioms of Expected Utility Theory, we can focus
on his normalized von Neumann-Morgenstern utility function, which assigns value 1 to
the best outcome and 0 to the worst outcome. We don’t have enough information about the
other two values, so let us call them p and q, where p =U(c,W −K) and q =U(¬c,W ).
Thus, we have that

outcome utility
best (c,W ) 1

(c,W −K) p
(¬c,W ) q

worst (¬c,W −K) 0

with 0 < q < p < 1.

Then we can rewrite the reduced decision problem in terms of utilities:

probability: 0.08 0.72 0.1 0.1
state → (G,+) (G,−) (P,+) (F,−)
act ↓
(¬S,G) 1 1 q q
(¬S,P) q q 1 q
(¬S,F) q q q 1
(S,G+,F−) p 0 0 p
(S,P+,F−) 0 0 p p
(S,P+,G−) 0 p p 0

The reader should convince herself/himself that no act is weakly or strictly dominated.14

What is the optimal choice for the patient? Let us analyze the decision problem in two
steps. First of all, if the patient decided to not have the scan, what treatment should he
choose? We need to compute the following expected utilities:

14For example, (S,G+,F−) is not dominated because in state (F,−) it is better than (¬S,G) (since p > q)
and in state (G,+) it is better than every other act (other than (¬S,G)), since p > q > 0.
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• E[U(¬S,G)] = 0.8+0.2q,
• E[U(¬S,P)] = 0.1+0.9q,
• E[U(¬S,F)] = 0.1+0.9q.

Since q < 1, we have that 0.8+0.2q > 0.1+0.9q and thus – conditional on not taking
the scan – the patient should treat G (which makes sense, since – according to the initial
beliefs – G is the most likely disease). As a second step, let us see what the patient should
do conditional on taking the scan. We need to compute the following expected utilities:

• E[U(S,G+,F−)] = 0.18p,
• E[U(S,P+,F−)] = 0.2p,
• E[U(S,P+,G−)] = 0.82p.

Thus, conditional on taking the scan, the best policy is to treat P if the scan is positive
and G if the scan is negative. Indeed, as we saw in Section 9.1, the patient’s beliefs, updated
on the information that the scan is positive, are such that P is the most likely disease and
the beliefs updated on the information that the scan is negative are such that G is the most
likely disease. Thus, the final step consists in comparing (¬S,G) and (S,P+,G−). Recall
that the expected utilities are:

• E[U(¬S,G)] = 0.8+0.2q,
• E[U(S,P+,G−)] = 0.82p.

Hence, the optimal decision is as follows:

• if 0.8+0.2q > 0.82p, that is, if p < 0.9756+0.2439q, then the best plan is to not
take the scan and treat G,

• if 0.8+0.2q < 0.82p, that is, if p > 0.9756+0.2439q, then the best plan is to take
the scan and then treat P if the scan is positive and treat G if the scan is negative.

• if 0.8+0.2q = 0.82p, that is, if p = 0.9756+0.2439q, then either of the above two
plans is optimal.

To summarize, in order to make his decision, the patient needs to ask himself the
following two questions:

1. What value of r ∈ (0,1) would make me indifferent between the following two

lotteries:

(
(c,W ) (¬c,W −K)

r 1− r

)
and

(
(c,W −K)

1

)
? The answer to this

question gives the value of p.

2. What value of s ∈ (0,1) would make me indifferent between the following two lot-

teries:

(
(c,W ) (¬c,W −K)

s 1− s

)
and

(
(¬c,W )

1

)
? The answer to this question

gives the value of q.
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If the answer to the second question is a value grater than or equal to 0.1 (so that q≥ 0.1)
then it is not possible for p to be less than 1 and also greater than 0.9756+0.2439 q (since
q ≥ 0.1 implies that 0.9756+0.2439 q ≥ 1) and thus the optimal decision is to not take
the scan and treat G: (¬S,G). If, on the other hand, the answer to the second question is a
value less than 0.1 then the optimal decision depends on the answer to the first question.

For example, if the answer to the second question is 0.05 (so that q = 0.05) and
the answer to the first question is 0.99 (so that p = 0.99) then the optimal decision is
(S,P+,G−) (take the scan and treat P if positive and G if negative), because 0.99 >
0.9756+(0.2439)(0.05) = 0.9878; if the answer to the second question is 0.05 (so that
q = 0.05) and the answer to the first question is 0.9 (so that p = 0.9) then the optimal
decision is (¬S,G) (not take the scan and treat G).

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 9.5.3 at the end of this chapter.

9.4 Different sources of information

As a way of summarizing the topics considered in this chapter, in this section we will go
through an example where the DM is faced with two possible sources of information.

A risk-neutral investor faces two alternative investment opportunities. Investment 1
will yield a profit of $8,000,000 if the market conditions are Good (G) and nothing if the
market conditions are Bad (B). Investment 2 yields a profit of $12,000,000 if G and a loss
of $8,000,000 if B. The probabilities of G and B are p and (1− p), respectively:

p 1− p
G B

Investment 1 $8M 0
Investment 2 $12M $(−8M)

The expected return from Investment 1 is 8p+0(1− p) = 8p and the expected return from
Investment 2 is 12p−8(1− p) = 20p−8. Note that, 8p > 20p−8 if and only if p < 2

3 .
Thus, in the absence of further information, the DM will:

• choose Investment 1 if p < 2
3 ,

• choose Investment 2 if p > 2
3 ,

• choose either one if p = 2
3 .
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Suppose now that, before the investment takes place, the investor can consult one of
two experts. One is Expert A, who always correctly forecasts G but is as reliable as a coin
toss when it comes to B (that is, she gets it right 50% of the time). That is, letting AG stand
for “Expert A forecasts G” and AB stand for “Expert A forecasts B”,

P(AG|G) = 1, P(AB|G) = 0, P(AG|B) = P(AB|B) = 1
2 . (9.4)

The other is Expert Z, who always correctly forecasts B but is as reliable as a coin toss
when it comes to G. That is, letting ZG stand for “Expert Z forecasts G” and ZB stand for
“Expert Z forecasts B”,

P(ZG|G) = P(ZB|G) = 1
2 , P(ZG|B) = 0, P(ZB|B) = 1. (9.5)

Let us first compute the probability that Expert A will forecast G. This can be done using
the rules of probability,15 but we can also see it graphically as shown in Figure 9.7.

Chance

A A

forecasts
G 1

2

1

2

1

p 1 p

G B

forecasts
G

forecasts
B

p 1

2

p 1

2

p

1
the sum of theses two is 

2

................................
p



 

Figure 9.7: Expert A’s forecast

15P(AG) = P(AG|G)×P(G)+P(AG|B)×P(B) = 1× p+ 1
2 × (1− p) = 1+p

2 .
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Similarly, we can compute the probability that Expert Z forecasts B as shown in Figure
9.8.16

forecasts
G

Chance

B

1

2

1

2

B

forecasts
B 1

G B
p 1 p

forecasts
B

2

p

2

p
1 p

 

Figure 9.8: Expert Z’s forecast

In what follows we will assume that

p =
3
4

so that, in the absence of consultation with an expert, the DM will choose Investment 2,
whose expected value is $7M (while the expected value of Investment 1 is $6M).

16Or, using the rules of probability: P(ZB) = P(ZB|G)×P(G)+P(ZB|B)×P(B) = 1
2 × p+1× (1− p) =

2−p
2 .
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We now want to calculate the value of consulting Expert A and the value of consulting
Expert Z.

Let us begin with Expert A. Suppose that Expert A has been consulted and her forecast
is G. What is the probability that G is in fact true? We can compute this probability using
Bayes’ rule17 or graphically as shown in Figure 9.9 (where the blue number on the left of
each node is that node’s prior probability and the red number on the right is the posterior,
or updated, probability and the rounded rectangles represent information).18

Chance

3

4

1

4A A

1

2

1

2

1

3

4

1

8

1

8

6

7

1

7
1investor

investor

G B

forecasts
G

forecasts
G

forecasts
B

 

Figure 9.9: Expert A

Thus, if Expert A reports that the state is B then the DM will attach probability 1 to B and
choose Investment 1 (with zero expected return) while if Expert A reports that the state is
G then the DM will attach probability 6

7 to G and probability 1
7 to B and choose Investment

2 (since the expected return from Investment 1 is 6
7(8)+

1
7(0) =

48
7 while the expected

return from Investment 2 is 6
712+ 1

7(−8) = 64
7 ). Thus, the expected return from consulting

Expert A is (recall that P(AG) =
7
8 : see Footnote 17):

P(AG)× 64
7 +P(AB)×0 = 7

8 ×
64
7 + 1

8 ×0 = 8 . (9.6)

17 Recall that P(AG) =
1+p

2 =
1+ 3

4
2 = 7

8 . Then, by Bayes’ rule, P(G|AG) =
P(AG|G)×P(G)

P(AG)
=

1× 3
4

7
8

= 6
7 .

18The colors show in the pdf version of the book, not in the print version.
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Let us now consider Expert Z. Suppose that Expert Z has been consulted and his
forecast is B. What is the probability that B is in fact true? We can compute this probability
using Bayes’ rule19 or graphically as shown in Figure 9.10 (where, as before, the blue
number on the left of each node is that node’s prior probability and the red number on the
right is the posterior probability and the rounded rectangles represent information).
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3

4
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2

1

1
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Figure 9.10: Expert Z

Thus, if Expert Z reports that the state is G then the DM will attach probability 1 to G and
choose Investment 2 (with an expected return of $12M) while if Expert Z reports that the
state is B then the DM will attach probability 3

5 to G and probability 2
5 to B and choose

Investment 1 (since the expected return from Investment 1 is 3
5(8)+

2
5(0) =

24
5 while the

expected return from Investment 2 is 3
5(12)+ 2

5(−8) = 20
5 ). Thus, the expected return from

consulting Expert Z is (recall that P(ZB) =
5
8 : see Footnote 19):

P(ZG)×12+P(ZB)× 24
5 = 3

8 ×12+ 5
8 ×

24
5 = 7.5 . (9.7)

Comparing (9.6) and (9.7) we see that Expert A is more valuable than Expert Z. Whether
the investor will decide to consult an expert, or make her investment decision without
consultation, will depend on how much it costs to consult an expert. Relative to no
consultation, the gain from consulting Expert A is 8− 7 = 1 (recall that the maximum
expected utility from not consulting an expert is 7, obtained by choosing Investment 2) and
the gain from consulting Expert Z is 8−7.5 = 0.5. Let xA be the fee charged by Expert A
and xB the fee charged by Expert Z. Then:

• if xA < 1 and 1− xA > 0.5− xB, that is, if xA < min{1, 0.5+ xB} then the optimal
decision is to consult Expert A and then choose Investment 1 if Expert A reports B
and Investment 2 if Expert A reports G,

• if xA > min{1, 0.5+xB} and xB < 0.5 then the optimal decision is to consult Expert
Z and then choose Investment 1 if Expert Z reports B and Investment 2 if Expert Z
reports G,

19 Recall that P(ZB) =
2−p

2 =
2− 3

4
2 = 5

8 . Then, by Bayes’ rule, P(B|ZB) =
P(ZB|B)×P(B)

P(ZB)
=

1× 1
4

5
8

= 2
5 .
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• in every other case it is optimal to choose Investment 2 without consulting an
expert.20

Suppose that consulting the experts is free (xA = xB = 0). Then the DM would certainly
benefit from consulting an expert and, having to choose between them, she will choose
Expert A. But why limit herself to one consultation? Would it pay to consult both experts?
As before, we need to compute the probabilities of G and B conditional on the information
acquired from the two experts, which can be one of three: (1) both experts claim that
the state is G (AG and ZG), (2) both experts claim that the state is B (AB and ZB) and (3)
Expert A claims that the state is G and Expert Z claims that the state is B (AG and ZB).
We will assume that the opinions of the experts are independent, so that, for example,
P(AGZB|G) = P(AG|G)×P(ZB|G). We can compute these conditional probabilities using
Bayes’ rule (see Exercise 9.12) or graphically as shown in Figure 9.11 (as before, the blue
number on the left of a node is the prior, or unconditional, probability of that node, while
the red number on the right of the node is the probability conditional on the information
represented by the rounded rectangle that encloses that node).
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Figure 9.11: Consulting both experts

20Not necessarily uniquely optimal: it may be that not consulting an expert is just as good as consulting
an expert. This would be true, for example, if xA = 1 and xB > 0.5, in which case the investor would be
indifferent between no consultation and consulting Expert A.
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Thus,
• if both experts report G then the investor will attach probability 1 to G and choose

Investment 2, expecting a return of 12,
• if both experts report B then the investor will attach probability 1 to B and choose

Investment 1, expecting a return of 0,
• if Expert A reports G and Expert Z reports B then the investor will attach probability

3
4 to G and probability 1

4 to B and will thus choose Investment 2, expecting a return
of 7.21

Thus, the expected return from consulting both experts is:

P(AGZG)×12+P(ABZB)×0+P(AGZB)×7

= 3
8 ×12+ 1

8 ×0+
(3

8 +
1
8

)
×7 = 64

8 = 8.

Hence, the expected return from consulting both experts is the same as the expected return
from consulting only Expert A. In other words, consulting Expert Z has no additional value
once Expert A has been consulted.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 9.5.4 at the end of this chapter.

9.5 Exercises
The solutions to the following exercises are given in Section 9.6 at the end of this chapter.

9.5.1 Exercises for Section 9.1: When is information potentially valuable?
Exercise 9.1 Consider again the case of the three diseases (flapemia, globoma and
popitis) discussed in Section 9.1. Let the conditional probabilities of a positive and a
negative scan be

P(+|G) = p P(−|G) = 1− p
P(+|P) = 1 P(−|P) = 0
P(+|F) = 0 P(−|F) = 1

(a) Show that if p < 7
8 and the result of the scan is negative, then globoma is the most

likely disease.
(b) Show that if p > 1

8 and the result of the scan is positive, then globoma is the most
likely disease.

■

21The expected value of Investment 1 is 3
4 (8)+

1
4 (0) = 6 while the expected value of Investment 2 is

3
4 (12)+ 1

4 (−8) = 7.



206 Chapter 9. The Value of Information

Exercise 9.2 Consider again the case of the three diseases (flapemia, globoma and
popitis) discussed in Section 9.1. Let us now change the data of the problem. The
doctor’s initial beliefs are as follows:

disease Globoma(G) Popitis(P) Flapemia(F)
probability 0.3 0.5 0.2

Let the conditional probabilities of a positive and a negative scan be

P(+|G) = 0.9 P(−|G) = 0.1
P(+|P) = 0.7 P(−|P) = 0.3
P(+|F) = 0.2 P(−|F) = 0.8

As before, assume that the doctor’s decision rule is to treat the disease that she considers
most likely.

(a) What disease will the doctor treat if she does not perform a scan?
(b) What disease will the doctor treat if she performs the scan and the result is

positive?
(c) What disease will the doctor treat if she performs the scan and the result is

negative?
■

9.5.2 Exercises for Section 9.2: The value of information when outcomes are sums
of money

Exercise 9.3 David faces the following investment opportunities, where the amounts of
money represent changes in his wealth. His initial wealth is $30. David is risk neutral.

probability 1
2

1
2

state →
act ↓

s1 s2

A $70 $19
B $24 $53

(a) Which investment opportunity will he choose? Perform the relevant calculations
in terms of changes in wealth and also in terms of total wealth.

(b) An expert offers to provide David with perfect information concerning the state.
What is the maximum amount that David is willing to pay the expert for his
services (assuming that the payment is to be made before the information is
revealed)? Again, perform the relevant calculations in terms of changes in wealth
and also in terms of total wealth.

■
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Exercise 9.4 As in Exercise 9.3, David faces the following investment opportunities,
where the amounts of money represent changes in his wealth. His initial wealth is
$30. This time assume that David is not risk neutral: his von Neumann-Morgenstern
utility-of-money function is U($x) =

√
x.

probability 1
2

1
2

state →
act ↓

s1 s2

A $70 $19
B $24 $53

(a) Which investment opportunity will he choose?
(b) An expert offers to provide David with perfect information concerning the state.

Write an equation whose solution gives the maximum amount that David is
willing to pay the expert for his services (assuming that the payment is to be made
before the information is revealed).

(c) Would David be willing to pay $18 for perfect information?
■

Exercise 9.5 Both Bill and Carla face two investment opportunities: A and B which
will yield the following changes in wealth (gains/losses):

probability 2
10

5
10

3
10

state →
act ↓

s1 s2 s3

A $(−20) $100 $10
B $200 $10 $20

Both Bill and Carla have an initial wealth of $500. Bill is risk-neutral, while Carla has
the following von Neumann-Morgenstern utility-of-money function: U($x) =

√
x.

(a) Which of A and B will Bill choose?
(b) Which of A and B will Carla choose?
(c) Does Carla’s choice depend on her initial wealth (that is, could her choice be

different with different levels of initial wealth)?
(d) Suppose that an expert offers to provide perfect information (that is, to reveal

what the true state is) for a fee of $42.50. Bill has to pay the expert before the
information is revealed. Will Bill accept the offer?

(e) Suppose that an expert offers to provide perfect information (that is, to reveal
what the true state is) for a fee of $42.50. Carla has to pay the expert before the
information is revealed. Will Carla accept the offer?

■
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Exercise 9.6 Let us revisit the second example of Section 9.2.2 where the decision
problem was as follows (the sums of money represent changes in wealth):

probability 2
8

4
8

2
8

state →
act ↓

s1 s2 s3

A $4 $36 $49
B $64 $81 $9
C $25 $100 $16

The DM’s initial wealth is $300 and her von Neumann-Morgenstern utility-of-money
function is U($x) =

√
x.

(a) What action will the DM choose?
(b) Suppose that an expert offers to provide the DM with perfect information for a

fee of $46 (to be paid before the information is revealed). Will the DM accept the
offer?

(c) Write an equation whose solution gives the maximum amount of money that the
DM is willing to pay for perfect information.

■

Exercise 9.7 Once again, consider the following decision problem, where the sums of
money represent changes in wealth:

probability 2
8

4
8

2
8

state →
act ↓

s1 s2 s3

A $4 $36 $49
B $64 $81 $9
C $25 $100 $16

Assume now that the expert is no longer able to provide perfect information: the
information that he is offering is represented by the partition {{s1},{s2,s3}}. In this
exercise we focus on the case where the DM is risk neutral and in the following exercise
we will consider the case of a risk-averse DM.

(a) What would the DM do if she decided not to consult the expert?
(b) If the expert charges $x for providing the information, for what values of x would

the DM hire the expert (by paying $x before the information is revealed)?
■
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Exercise 9.8 Consider a DM whose initial wealth is $400 and whose von Neuman-
Morgenstern utility-of-money function is U($x) =

√
x. As in the previous exercise,

consider the following decision problem (where the sums of money represent changes
in wealth):

probability 2
8

4
8

2
8

state →
act ↓

s1 s2 s3

A $4 $36 $49
B $64 $81 $9
C $25 $100 $16

.

Assume, again, that the information that the expert is offering is represented by the
partition {{s1},{s2,s3}}.

(a) What would the DM do if she decided not to consult the expert?

(b) If the expert charges $4 for providing the information, would the DM hire the

expert (by paying $4 before the information is revealed)?

■

Exercise 9.9 As in Exercise 9.4, David faces the following investment opportunities,
where the amounts of money represent changes in his wealth. His initial wealth is
$30. This time assume that David is risk loving: his von Neumann-Morgenstern
utility-of-money function is U($x) = x2.

probability 1
2

1
2

state →
act ↓

s1 s2

A $70 $19
B $24 $53

(a) Which investment opportunity will he choose?
(b) An expert offers to provide David with perfect information concerning the state.

Write an equation whose solution gives the maximum amount that David is
willing to pay the expert for his services (assuming that the payment is to be made
before the information is revealed).

(c) Would David be willing to pay $18 for perfect information?
■
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Exercise 9.10 Amy faces the following investment opportunities, where the amounts
of money represent changes in her wealth. Her initial wealth is $40. Amy is risk loving:
her von Neumann-Morgenstern utility-of-money function is U($x) = x2.

probability 1
8

3
8

1
8

3
8

state → s1 s2 s3 s4
act ↓

A $(−10) $10 $20 $30
B $35 $(−5) $25 $15

(a) Which investment opportunity will she choose?
(b) An expert offers to provide Amy with information represented by the partition

{{s1,s2},{s3,s4}} for a price of $4. Should Amy accept?
■
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9.5.3 Exercises for Section 9.3: The general case

Exercise 9.11 Andrea is seeing her doctor for persistent debilitating symptoms. The
doctor tells her that her symptoms are consistent with two diseases: Anxiomatitis (A)
and Boredomitis (B). Based on his past experience, the doctor thinks that Andrea has
disease A with probability 60% and disease B with probability 40%. An expensive test,
which is not covered by Andrea’s insurance, could give some information about her
disease. The test costs $250 and can give a positive (+) or a negative (–) result. The
conditional probabilities are as follows:

P(+|A) = 80% P(−|A) = 20%
P(+|B) = 10% P(−|B) = 90%

(9.8)

Andrea’s initial wealth is $900. If she takes the test she will have to pay for it herself.
There is a treatment for disease A which will not be effective against disease B and there
is a treatment for disease B which will not be effective against disease A. Pursuing one
treatment precludes pursuing the other treatment later on. Andrea is asked to choose
between the following six options:

(¬T,A) : Not take the test and treat disease A
(¬T,B) : Not take the test and treat disease B
(T,A) : Test and treat disease A no matter whether the test is + or −
(T,B) : Test and treat disease B no matter whether the test is + or −
(T,A+, B−) : Test and treat disease A if test is + and disease B if test is −
(T,B+, A−) : Test and treat disease B if test is + and disease A if test is −

An outcome can be thought of as a pair (x,y) where x is either c for ‘cured’ or ¬c for
‘not cured’ and y is the level of Andrea’s wealth (which is $900 if she does not take the
test and $650 if she takes the test). Andrea ranks the outcomes as follows:

outcome
best (c,$900)

(c,$650)
(¬c,$900)

worst (¬c,$650)

Think of a state as a pair (x,y) where x is the disease that Andrea has (thus, x is either A
or B) and y is the result of the test if it were to be taken (thus, y is either + or –). For
example, (A,−) is the state where Andrea has disease A and if she takes the test then
the result will be negative.

(a) Using the doctor’s initial assessment (A with probability 60% and B with probabil-
ity 40%) and the conditional probabilities given in (9.8), compute the probabilities
of the four states.

(b) Write Andrea’s decision problem in terms of acts, states and outcomes.
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(c) Assuming that Andrea satisfies the axioms of Expected Utility Theory, and using
her normalized von Neumann-Morgenstern utility function (use variables p and q
for the values that you don’t know), re-write Andrea’s decision problem in terms
of acts, states and utilities.

(d) Which acts are strictly dominated?
(e) If Andrea were to decide not to take the test, which disease would she want to be

treated?
(f) If Andrea were to decide to take the test, what treatment policy (that is, treatment

decision conditional on the outcome of the test) would she want to implement?
(g) What restrictions on U(c,$650) and U(¬c,$900) would guarantee that Andrea

would choose to take the test?
(h) If U(c,$650) = 0.86 and U(¬c,$900) = 0.3, will Andrea decide to take the test?

■

9.5.4 Exercises for Section 9.4: Different sources of information
Exercise 9.12 Consider the two-expert example at the end of Section 9.4: there are two
states, G with probability p and B with probability (1− p) and two experts, A and Z,
who independently give their opinions on which state has occurred, with the following
conditional probabilities (where AG means that Expert A reports that the state is G,
etc.):

P(AG|G) = 1, P(AB|G) = 0, P(AG|B) = P(AB|B) = 1
2 .

P(ZB|B) = 1, P(ZG|B) = 0, P(ZG|G) = P(ZB|G) = 1
2 .

Use Bayes’ rule to compute the probabilities P(G|AGZG),P(G|AGZB),P(G|ABZB). ■

9.6 Solutions to Exercises
Solution to Exercise 9.1.

(a) We saw in Section 9.1 that

P(G|−) =
0.8(1− p)

0.8(1− p)+0.1
, P(P|−) = 0 and P(F |−) =

0.1
0.8(1− p)+0.1

.

Thus, globoma is the most likely disease, conditional on a negative scan, if and only
if 0.8(1−p)

0.8(1−p)+0.1 > 0.1
0.8(1−p)+0.1 , which is true if and only if 0.8(1− p)> 0.1, that is,

if and only if p < 7
8 .

Thus, if p < 7
8 then it is indeed the case that, conditional on a negative scan, globoma

is the most likely disease.
(b) We saw in Section 9.1 that P(G|+) = 0.8 p

0.8 p+0.1 ,P(P|+) = 0.1
0.8 p+0.1 and P(F |+) = 0.

Thus, globoma is the most likely disease, conditional on a positive scan, if and only
if 0.8 p

0.8 p+0.1 > 0.1
0.8 p+0.1 which is true if and only if 0.8 p > 0.1, that is, if and only if

p > 1
8 . Thus, if p > 1

8 then it is indeed the case that, conditional on a positive scan,
globoma is the most likely disease. □
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Solution to Exercise 9.2. The data is:

disease Globoma(G) Popitis(P) Flapemia(F)
probability 0.3 0.5 0.2

P(+|G) = 0.9 P(−|G) = 0.1
P(+|P) = 0.7 P(−|P) = 0.3
P(+|F) = 0.2 P(−|F) = 0.8

(a) Without a scan the doctor will treat popitis, since it is more likely than the other two
diseases.

(b) We need to compute the conditional probabilities:

P(G|+) =
P(+|G)P(G)

P(+|G)P(G)+P(+|P)P(P)+P(+|F)P(F)

=
0.9(0.3)

0.9(0.3)+0.7(0.5)+0.2(0.2)
= 40.91%,

P(P|+) =
P(+|P)P(P)

P(+|G)P(G)+P(+|P)P(P)+P(+|F)P(F)

=
0.7(0.5)

0.9(0.3)+0.7(0.5)+0.2(0.2)
= 53.03%,

P(F |+) =
P(+|F)P(F)

P(+|G)P(G)+P(+|P)P(P)+P(+|F)P(F)

=
0.2(0.2)

0.9(0.3)+0.7(0.5)+0.2(0.2)
= 6.06%.

Thus, after a positive scan, the doctor would treat popitis.
(c) We need to compute the conditional probabilities:

P(G|−) =
P(−|G)P(G)

P(−|G)P(G)+P(−|P)P(P)+P(−|F)P(F)

=
0.1(0.3)

0.1(0.3)+0.3(0.5)+0.8(0.2)
= 8.82%,

P(P|−) =
P(−|P)P(P)

P(−|G)P(G)+P(−|P)P(P)+P(−|F)P(F)

=
0.3(0.5)

0.1(0.3)+0.3(0.5)+0.8(0.2)
= 44.12%,

P(F |−) =
P(−|F)P(F)

P(−|G)P(G)+P(−|P)P(P)+P(−|F)P(F)

=
0.8(0.2)

0.1(0.3)+0.3(0.5)+0.8(0.2)
= 47.06%

Thus, after a positive scan, the doctor would treat flapemia. □
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Solution to Exercise 9.3.

(a) In terms of changes in wealth: E[A] = 1
270+ 1

219 = 44.5 and
E[B] = 1

224+ 1
253 = 38.5; thus, he would choose A.

In terms of total wealth: E[A] = 1
2(30 + 70) + 1

2(30 + 19) = 74.5 and
E[B] = 1

2(30+24)+ 1
2(30+53) = 68.5; thus, he would choose A.

(b) If informed that the state is s1, David will choose A and if informed that the state is
s2, he will choose B.
Let x be the fee requested by the expert. Then the value of perfect information is
given as follows.

In terms of changes in wealth: 1
2(70−x)+ 1

2(53−x) = 61.5−x; thus, the maximum
amount he is willing to pay for perfect information is the solution to the equation
61.5− x = 44.5 which is $17.

In terms of total wealth: 1
2(30+ 70− x) + 1

2(30+ 53− x) = 91.5− x; thus, the
maximum amount he is willing to pay for perfect information is the solution to the
equation 91.5− x = 74.5 which is $17. □

Solution to Exercise 9.4.

(a) E[U(A)] = 1
2

√
30+70+ 1

2

√
30+19 = 8.5 and

E[U(B)] = 1
2

√
30+24+ 1

2

√
30+53 = 8.2295. Thus, he would choose A.

(b) If informed that the state is s1, David will choose A and if informed that the state is
s2, he will choose B.
Let x be the fee requested by the expert. Then the expected utility from perfect
information is: 1

2

√
30+70− x+ 1

2

√
30+53− x.

Thus, the maximum amount he is willing to pay for perfect information is the
solution to the equation 1

2

√
30+70− x+ 1

2

√
30+53− x = 8.5 (which is $19).

(c) Yes, because 1
2

√
30+70−18+ 1

2

√
30+53−18 = 8.5588 > 8.5. □
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Solution to Exercise 9.5.

(a) Since – when a DM is risk neutral – the initial wealth is irrelevant, the calculations
done in Section 9.2.1 remain valid and thus Bill would choose B.

(b) For Carla the expected utility of choosing investment A is

E[U(A)] =
2

10

√
500−20+

5
10

√
500+100+

3
10

√
500+10 = 23.4042.

and the expected utility of choosing investment B is

E[U(B)] =
2

10

√
500+200+

5
10

√
500+10+

3
10

√
500+20 = 23.4241 .

Thus, Carla would choose B.

(c) We saw in Section 9.2.2 that with an initial wealth of $100 Carla would choose A;
thus, her decision does depend on her initial wealth.

(d) Once again, since for a risk-neutral person the initial wealth is irrelevant, the conclu-
sion reached in Section 9.2.1 – namely that the maximum amount that Bill would be
willing to pay for perfect information is $45 – remains valid.

(e) It is clear that if informed that the state is s1, Carla will choose B, if informed
that the state is s2, she will choose A and if informed that the state is s3, she will
choose B. Thus, her expected utility from availing herself of perfect informa-

tion by paying $x is 2
10

√
500+200− x+ 5

10

√
500+100− x+ 3

10

√
500+20− x =

2
√

700−x+5
√

600−x+3
√

520−x
10 .

Call this expression f (x). Since f (42.5) = 23.4896 is greater than the maximum
utility she can get without information (namely, 23.4241 by taking action B), Carla
(unlike Bill) would indeed be willing to pay $42.5 for perfect information. □

Solution to Exercise 9.6.

(a) Expected utilities are as follows: E[U(A)] = 2
8

√
304+ 4

8

√
336+ 2

8

√
349 = 18.1944,

E[U(B)]= 2
8

√
364+ 4

8

√
381+ 2

8

√
309= 18.9239 and E[U(C)]= 2

8

√
325+ 4

8

√
400+

2
8

√
316 = 18.951 . Thus, the DM would choose C.

(b) If informed that s1, the DM would choose B, if informed that s2, she would choose
C and if informed that s3, she would choose A. Thus, the expected utility of availing
herself of perfect information for a fee of $46 is: 2

8

√
364−46+ 4

8

√
400−46+

2
8

√
349−46 = 18.2173; since this is less than 18.951 the DM would not be willing

to pay $46 for perfect information.

(c) The equation is 2
8

√
364− x+ 4

8

√
400− x+ 2

8

√
349− x = 18.951 (the solution is

18.758). □
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Solution to Exercise 9.7.

(a) If the DM takes action A, then she faces the lottery

(
$4 $36 $49
2
8

4
8

2
8

)
, whose

expected value is 2
8(4)+

4
8(36)+ 2

8(49) = 31.25.

If she takes action B, then she faces the lottery

(
$64 $81 $9

2
8

4
8

2
8

)
, whose expected

value is 2
8(64)+ 4

8(81)+ 2
8(9) = 58.75.

If she takes action C, then she faces the lottery

(
$25 $100 $16

2
8

4
8

2
8

)
, whose ex-

pected value is 2
8(25)+ 4

8(100)+ 2
8(16) = 60.25 .

Thus, her optimal choice, if she does not consult the expert, is action C. Indeed we
did all theses calculations in Section 9.2.1!

(b) If the DM hires the expert, then the expert will either tell her that the true state is s1,
in which case it would be optimal for her to take action B, or the expert would tell
her that the true state is either s2 or s3, in which case what should the DM do? She
should first update her beliefs based on the information {s2,s3}. Using Bayes’ rule,

her updated beliefs are
s1 s2 s3

0 2
3

1
3

. Using these updated beliefs she can compute

the expected utility of each action.
If she takes action A, her expected utility is 2

3(36− x)+ 1
3(49− x) = 40.33− x.

If she takes action B, her expected utility is 2
3(81− x)+ 1

3(9− x) = 57− x.
If she takes action C, her expected utility is 2

3(100− x)+ 1
3(16− x) = 72− x.

Thus, she would take action C, because it yields a higher expected utility than the
other two actions.
Is it worth consulting the expert? The DM’s expected utility when she does not
consult the expert is 60.25 (the expected utility of taking action C, which is the
best action when no further information is available, as shown above). The expected
utility of paying $x to the expert for information {{s1},{s2,s3}} is computed as
follows. According to the DM’s initial beliefs, with probability 2

8 the expert will
tell her that the state is s1, in which case she will take action B and get a utility
of (64− x); with probability 4

8 +
2
8 = 6

8 she will be given information {s2,s3}, in
which case, as shown above, she will take action C and get an expected utility of
(72− x). Thus, the DM’s expected utility, if she consults the expert for a fee of $x,
is: 2

8(64− x)+ 6
8(72− x) = 70− x . Thus, it is in her interest to hire the expert and

pay his fee of $x if and only if 70− x > 60.25, that is, if x < 9.75 (if x = 9.75 then
she is indifferent between hiring and not hiring the expert). Thus, if x < 9.75 the
DM will hire the expert and then act as follows: if told s1, then she will take action
B and if told {s2,s3}, she will take action C. □
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Solution to Exercise 9.8.

(a) If the DM takes action A, then she faces the lottery

(
$404 $436 $449

2
8

4
8

2
8

)
(where

the sums of money represent her total wealth), whose expected utility is 2
8

√
404+

4
8

√
436+ 2

8

√
449 = 20.7626.

If she takes action B, then she faces the lottery(
$464 $481 $409

2
8

4
8

2
8

)
, whose expected utility is 2

8

√
464+ 4

8

√
481+ 2

8

√
409 =

21.407.

If she takes action C, then she faces the lottery

(
$425 $500 $416

2
8

4
8

2
8

)
, whose

expected utility is 2
8

√
425+ 4

8

√
500+ 2

8

√
416 = 21.4332 .

Thus, her optimal decision, if she does not consult the expert, is to take action C.

(b) If the DM hires the expert, then the expert will either tell her that the true state is s1,
in which case it would be optimal for her to take action B, or the expert would tell
her that the true state is either s2 or s3, in which case what should the DM do? She
should first update her beliefs based on the information {s2,s3}. Using Bayes’ rule,

her updated beliefs are
s1 s2 s3

0 2
3

1
3

. Using these updated beliefs she can compute

the expected utility of each action.
If she takes action A, her expected utility is 2

3

√
436−4+ 1

3

√
449−4 = 20.8881.

If she takes action B, her expected utility is 2
3

√
481−4+ 1

3

√
409−4 = 21.2684.

If she takes action C, her expected utility is 2
3

√
500−4+ 1

3

√
416−4 = 21.6133 .

Thus, she would take action C, because it yields a higher expected utility than the
other two actions.
Is it worth consulting the expert? The DM’s expected utility when she does not
consult the expert is 21.4332 (the expected utility of taking action C, which is the
best action when no further information is available, as shown above).
The expected utility of paying $4 to the expert for information {{s1},{s2,s3}} is
computed as follows. According to the DM’s initial beliefs, with probability 2

8 the
expert will tell her that the state is s1, in which case she will take action B and
get a utility of

√
464−4 = 21.4476; with probability 4

8 +
2
8 = 6

8 she will be given
information {s2,s3}, in which case, as shown above, she will take action C and get
an expected utility of 21.6133.
Thus, the DM’s expected utility, if she consults the expert for a fee of $4, is:
2
821.4476+ 6

821.6133 = 21.5719 . Thus, it is indeed in her interest to hire the
expert and pay his fee of $4; she will then act as follows: if told s1, she will take
action B and if told {s2,s3}, she will take action C. □
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Solution to Exercise 9.9.
(a) E[U(A)] = 1

2(30+70)2 + 1
2(30+19)2 = 6,200.5 and

E[U(B)] = 1
2(30+24)2 + 1

2(30+53)2 = 4,902.5. Thus, he would choose A.
(b) If informed that the state is s1, David will choose A and if informed that the state is

s2, he will choose B.
Let x be the fee requested by the expert. Then the value of perfect information is
given as follows: 1

2(30+70− x)2 + 1
2(30+53− x)2 = x2 −183x+ 16,889

2 ; thus, the
maximum amount he is willing to pay for perfect information is the solution to the
equation x2 −183x+ 16,889

2 = 6,200.5 (which is $13.21686).
(c) No, because 1

2(30+70−18)2 + 1
2(30+53−18)2 = 5,474.5 < 6,200.5. □

Solution to Exercise 9.10.
(a) E[U(A)] = 1

8(40−10)2+ 3
8(40+10)2+ 1

8(40+20)2+ 3
8(40+30)2 = 3,337.5 and

E[U(B)] = 1
8(40+35)2 + 3

8(40−5)2 + 1
8(40+25)2 + 3

8(40+15)2 = 2,825. Thus,
the DM would choose action A.

(b) If informed that the state belongs to {s1,s2}, Amy should update her beliefs to
s1 s2
1
4

3
4

so that

E[U(A)] = 1
4(40−10−4)2 + 3

4(40+10−4)2 = 1,756 and
E[U(B)] = 1

4(40+35−4)2 + 3
4(40−5−4)2 = 1,981 .

Thus, in this case she would choose B.
On the other hand, if informed that the state belongs to {s3,s4}, Amy should update

her beliefs to
s3 s4
1
4

3
4

so that

E[U(A)] = 1
4(40+20−4)2 + 3

4(40+30−4)2 = 4,051 and
E[U(B)] = 1

4(40+25−4)2 + 3
4(40+15−4)2 = 2,881.

Thus, in this case she would choose A.
Hence, her expected utility from hiring the expert is 4

8(1,981)+ 4
8(4,051) = 3,016.

Since this is less than 3,337.5, Amy is better off without hiring the expert. □
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Solution to Exercise 9.11.
(a) By the conditional probability rule, P(+|A) = P(A,+)

P(A) ; hence,
P(A,+) = P(+|A)×P(A) = 0.8×0.6 = 0.48.
Similarly, P(A,−) = 0.2×0.6 = 0.12, P(B,+) = 0.1×0.4 = 0.04 and
P(B,−) = 0.9×0.4 = 0.36.
Thus, the probabilities are as follows:

state: (A,+) (A,−) (B,+) (B,−)
probability: 0.48 0.12 0.04 0.36

(b) The decision problem is as follows:

probability 0.48 0.12 0.04 0.36
state → (A,+) (A,−) (B,+) (B,−)
act ↓
(¬T,A) (c,$900) (c,$900) (¬c,$900) (¬c,$900)
(¬T,B) (¬c,$900) (¬c,$900) (c,$900) (c,$900)
(T,A) (c,$650) (c,$650) (¬c,$650) (¬c,$650)
(T,B) (¬c,$650) (¬c,$650) (c,$650) (c,$650)
(T,A+,B−) (c,$650) (¬c,$650) (¬c,$650) (c,$650)
(T,B+,A−) (¬c,$650) (c,$650) (c,$650) (¬c,$650)

(c) The normalized utility function is as follows, with 0 < q < p < 1:

outcome utility
best (c,$900) 1

(c,$650) p
(¬c,$900) q

worst (¬c,$650) 0

Thus, in terms of utilities, the decision problem is as follows:

probability 0.48 0.12 0.04 0.36
state → (A,+) (A,−) (B,+) (B,−)

act ↓
(¬T,A) 1 1 q q
(¬T,B) q q 1 1
(T,A) p p 0 0
(T,B) 0 0 p p
(T,A+,B−) p 0 0 p
(T,B+,A−) 0 p p 0

(d) (T,A) is strictly dominated by (¬T,A) and (T,B) is strictly dominated by (¬T,B).
(e) The expected utility of (¬T,A) is 0.6+0.4q while the expected utility of (¬T,B) is

0.6q+0.4. The former is greater than the latter if and only if 6+4q > 6q+4 if and
only if 2 > 2q, which is true, since q < 1. Thus, if Andrea decided not to take the
test then she would treat disease A.
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(f) Since (T,A) and (T,B) are strictly dominated, Andrea will not consider them. Thus,
we only need to compare (T,A+,B−) and (T,B+,A−). The expected utility of
(T,A+,B−) is 0.84p, while the expected utility of (T,B+,A−) is 0.16p. Thus, if
she decided to take the test, Andrea would want to treat A if the test is positive and B
if the test is negative.

(g) We are looking for the conditions under which the expected utility from (T,A+,B−)
exceeds the expected utility from (¬T,A), that is, 0.84p > 0.6+0.4q. This is true if
and only if p > 0.7143+0.4762q.

(h) Yes, because 0.86 > 0.7143+0.4762×0.3 = 0.8572. □

Solution to Exercise 9.12.
By Bayes’ rule,

P(G|AGZG) =
P(AGZG|G)×P(G)

P(AGZG|G)×P(G)+P(AGZG|B)×P(B)

By independence, P(AGZG|G) = P(AG|G)×P(ZG|G) = 1× 1
2 = 1

2
and P(AGZG|B) = P(AG|B)×P(ZG|B) = 1

2 ×0 = 0. Thus,

P(G|AGZG) =
1
2 × p

1
2 × p+0× (1− p)

= 1.

Similarly,

P(G|AGZB) =
P(AGZB|G)×P(G)

P(AGZB|G)×P(G)+P(AGZB|B)×P(B)

By independence, P(AGZB|G) = P(AG|G)×P(ZB|G) = 1× 1
2 = 1

2
and P(AGZB|B) = P(AG|B)×P(ZB|B) = 1

2 ×1 = 1
2 . Thus,

P(G|AGZB) =
1
2 × p

1
2 × p+ 1

2 × (1− p)
= p.

Finally,

P(G|ABZB) =
P(ABZB|G)×P(G)

P(ABZB|G)×P(G)+P(ABZB|B)×P(B)

By independence, P(ABZB|G) = P(AB|G)×P(ZB|G) = 0× 1
2 = 0

and P(ABZB|B) = P(AB|B)×P(ZB|B) = 1
2 ×1 = 1

2 . Thus,

P(G|ABZB) =
0× p

0× p+ 1
2 × (1− p)

= 0.

□
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10. Intertemporal Choice

10.1 Introduction

So far we have considered decision problems where the outcomes were implicitly assumed
to take place at a point in time and the DM’s current decision had no effect on what options
would be available to her in the future. For many decisions – such as decisions about
borrowing and saving, exercise, nutrition, education, etc. – costs are incurred and benefits
obtained at different points in time and thus require comparing one’s own welfare at some
time t with one’s own welfare at some later time t ′ > t. Furthermore, a decision today
might affect the options that will be available at a later date. We call such such situations
intertemporal choice problems.

For example, suppose that every month John sets aside $200 to be used for entertain-
ment expenses during the weekends. If, on the first weekend, John spends the entire $200
to try to impress his new date by taking her to a posh restaurant, then he will not have any
money left for entertainment for the rest of the month. He has to weigh the potential benefit
of this decision (a suitably impressed date) against the future “cost” of not being able to,
for example, join his friends at the movie theater or at a restaurant. Another example of an
intertemporal choice problem is the decision of how much of one’s income to set aside for
retirement: in this case the tradeoff is between consumption when young and consumption
when old.

A common trait of human beings is a tendency to favor present rewards relative to
later ones. In the 1960s the psychologist Walter Mischel ran a number of experiments at
Stanford university on delayed gratification involving children, mostly around the ages of
4 and 5. In these experiments, each child was offered a choice between a small reward
(one marshmallow) available immediately or a larger reward (two marshmallows) available
with a delay of approximately 15 minutes; during this short period of time the child was
left alone, without distractions, and facing the temptation of eating the one marshmallow
lying in front of him/her. This became known as the “Marshmallow test”. A video of
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this experiment can be found on youtube.com.1 As the video shows, some children are
unable to resist the temptation to eat the single marshmallow before 15 minutes elapse
(thus forgoing the larger later reward), while others muster enough self control to delay
gratification and enjoy two marshmallows at the end of the 15-minute period. Follow-up
studies showed that those children who were able to delay gratification, tended in later life
to have higher SAT scores than their counterparts, lower levels of substance abuse, and
were reported by their parents to be more competent.

This chapter discusses how to think about intertemporal decision problems and how
to represent different attitudes concerning the trade-off between earlier rewards/costs and
later rewards/costs.

10.2 Present value and discounting
Suppose I promise to give you $100 and ask you to decide whether I should give it to you
today or a year from today. What would you choose? Most people would choose to get
$100 today. There are a number of reasons why. One reason is uncertainty. The future is
necessarily clouded in uncertainty: you know you are alive now and can enjoy $100 now,
but you cannot be certain that you will be alive a year from now; you do not know if I will
be around next year to give you the promised $100; you do not know if I would keep my
promise next year, etc. Another reason is impatience: usually people tend to favor current
enjoyments/rewards/pleasures over future ones.

What if the choice were between $100 today and more than $100 a year from today, say
$110. What would you choose? The same considerations apply in this case: uncertainty,
impatience, etc. might induce you to choose the smaller sum of money today. What about
$100 versus $500 a year from today? The difficulty in making such choices is that we
are comparing two very different objects: a sum of money available today is not directly
comparable to a (possibly different) sum of money available in the future. We could,
however, force them to be comparable by modifying the choice problem as follows. What
would/should you choose between:

• $B a year from today, and
• $A today with the constraint that you cannot spend this money until a year has

passed?
When the choice problem is framed this way, then the considerations raised above concern-
ing uncertainty, impatience, etc., no longer apply, because we have made the two options
directly comparable: we are comparing two sums of money available for use a year from
now. In such a case, your choice is no longer a matter of preference: there is now a rational
way of choosing that everybody should conform to. If you take $A today and cannot
spend it until next year, your best course of action is to deposit it into an interest-bearing
account. Let the yearly interest rate be r. Then after one year the initial deposit of $100
(the principal) will have increased by an interest payment of $100r, so that the balance of
your account will be $(100+100r) = $100(1+ r). We call this the future value of $100
today: more precisely, the value, one year from today, of $100 today. Then the answer to
the above question is clear:

• choose $A today if A(1+ r)> B and choose $B a year from today if A(1+ r)< B
(and you would be indifferent between the two if A(1+ r) = B).

1https://www.youtube.com/watch?v=QX_oy9614HQ

https://www.youtube.com/watch?v = QX_oy9614HQ
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An alternative, but equivalent, approach is to consider the present value of $B a year
from today instead of the future value of $A today. The present value of $B available one
year from today is that sum of money x that – if available today and deposited in an account
that yields interest at the yearly rate r – would become $B after one year; that is, it is the
solution to the equation

x(1+ r) = B.

Hence, the present value of $B available one year from today is

B
(

1
1+ r

)
.

While r is called the interest rate or discount rate,
( 1

1+r

)
is called the discount factor and

is usually denoted by δ :

δ =
1

1+ r
.

Hence, we can write the present value of $B available one year from today as Bδ . The
above decision rule can also be written in terms of present values as:

• choose $A today if A > Bδ and choose $B a year from today if A < Bδ (and you
would be indifferent between the two if A = Bδ ).

The comparison in terms of present values is preferable to the comparison in terms of
future values when different future sums of money are considered. For example, suppose
that you are turning 25 today and a relative of yours, who recently passed away, left the
following provision in his will: on each of your 26th, 27th, 28th, 29th and 30th birthdays
you will receive $12,000. What is the present value of this sequence of future payments?

• The present value of $12,000 paid to you on your 26th birthday is, as explained
above,

$
[

12,000
(

1
1+ r

)]
= $(12,000δ ) .

• The present value of $12,000 paid to you on your 27th birthday is that sum of money
x that – if available today and deposited in an account that yields interest at the
yearly rate r – would become $12,000 after two years, that is, it is the solution to
the equation2 x(1+ r)2 = 12,000, which is

$
[

12,000
(

1
(1+ r)2

)]
= $

[
12,000

(
1

1+ r

)2
]
= $

(
12,000δ

2) .
• The present value of $12,000 paid to you on your 28th birthday is

$

[
12,000

(
1

1+ r

)3
]
= $

(
12,000δ

3) .
2Why this equation? If you deposit $x into an account that pays interest at the yearly rate r, then – after

one year – the balance of your account will be $y, where y = x(1+ r) and this will become the new principal
on which interest is calculated from that time onwards, so that – after one more year – you account balance
will be $y(1+ r) = [x(1+ r)](1+ r) = x(1+ r)2.
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• Similarly for the remaining sums of money: the present value of $12,000 paid to
you t years from now is $(12,000 δ t).

Thus, the present value of the above sequence of payments is

12,000δ +12,000δ
2 +12,000δ

3 +12,000δ
4 +12,000δ

5 = 12,000
5

∑
n=1

δ
n.

For example, if r = 8% then δ = 1
1.08 = 0.9259 and the present value of the above sequence

of payments is

12,000
(

0.9259+0.92592 +0.92593 +0.92594 +0.92595
)
= 47,912.52.

Thus, getting $47,912.52 today is equivalent to getting $12,000 on each birthday from the
26th to the 30th. In what sense is it equivalent? In the precise sense that with $47,912.52
today you can exactly replicate that sequence. To see this, imagine that you get $47,912.52
today and put this entire amount in an account that yields interest at the yearly rate of 8%.
Then,

• After one year (on your 26th birthday) you will have $[47,912.52(1.08)]= $51,745.52
in your account. Withdraw $12,000 from the account (thus making this sum available
to yourself on your 26th birthday) and leave the remaining $(51,745.52−12,000) =
$39,745.52 in the account.

• After one more year (on your 27th birthday) you will have $[39,745.52(1.08)] =
$42,925.16 in you account. Withdraw $12,000 from the account (thus making
this sum available to yourself on your 27th birthday) and leave the remaining
$(42,925.16−12,000) = $30,925.16 in the account.

• After one more year (on your 28th birthday) you will have $[30,925.16(1.08)] =
$33,399.17 in you account. Withdraw $12,000 from the account (thus making
this sum available to yourself on your 28th birthday) and leave the remaining
$(33,399.17−12,000) = $21,399.17 in the account.

• After one more year (on your 29th birthday) you will have $[21,399.17(1.08)] =
$23,111.11 in you account. Withdraw $12,000 from the account (thus making
this sum available to yourself on your 29th birthday) and leave the remaining
$(23,111.11−12,000) = $11,111.11 in the account.

• After one more year (on your 30th birthday) you will find $11,111.11(1.08) =
$12,000 in your account, available to you on your 30th birthday.

To sum up, if
– (1) we call today date 0,
– (2) date t is t periods into the future,
– (3) r is the rate of interest per period, and
– (4) δ = 1

1+r ,
then
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⋆ The present value (that is, the value at date 0) of $B available at date t is3

Bδ
t .

⋆ The present value of the sequence ⟨$B0,$B1, . . . ,$Bn⟩ (where, for every t = 0,1, . . . ,n,
$Bt is a sum of money available at date t) is

B0δ
0 +B1δ

1 + · · ·+Bnδ
n.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 10.6.1 at the end of this chapter.

10.3 Exponential discounting
The notion of discounting explains why, as long as the rate of interest is positive, $B today
is preferable to $B at a later date. It is important to understand, however, that the notion of
present value has nothing to do with impatience. The rationale for preferring $100 today
to $100 a year from now is not that you don’t have to wait one year to spend $100: the
idea is that if you get $100 now and put it in an interest-bearing account and wait one year,
then you will have more than $100 to spend a year from now. However, if one is truly
faced with the choice between, say, $1,000 today with no restrictions (that is, being free to
spend this money any time) and, say, $1,500 a year from now, then the notion or present
value becomes irrelevant. It can be perfectly rational to prefer $1,000 today even if the
rate of interest is less than 50%;4 indeed, even if the rate of interest is zero. You might
need $1,000 now to pay an overdue bill, or you might be in poor health and not be sure
that you will be alive a year from now or, less dramatically, you might just prefer to spend
$1,000 today instead of waiting one year to spend the larger sum of $1,500. Furthermore,
it may be that the options that you are considering are not sums of money. For example,
suppose that you employer wants to reward your performance and offers a choice between
an all-expenses-paid 3-day vacation in Hawaii starting today or an all-expenses-paid 7-day
vacation in Hawaii three months from now. In this case one cannot even compute the
present value of a 7-day vacation in Hawaii three months from now! It is clear that, in
principle, a 7-day vacation is better than a 3-day vacation, but what makes the choice
difficult is that the latter can be enjoyed immediately, while one has to wait three months
to enjoy the former. Intuitively, somebody who chooses the shorter, but earlier, vacation
displays more impatience that somebody who chooses the longer, later, vacation. How can
we model impatience? A common approach in economics is to model impatience with a
formula that is mathematically similar to present-value discounting, but conceptually quite
different.

Before we go into the details, it is worth noting that the approach is very general and
applies not only to rewards but also to costs, such as the unpleasantness associated with an
onerous activity. For example, if you need to submit an essay for a class tomorrow by noon
and face the decision between working on it now or working on it tomorrow morning, then

3Recall that, for every number x, x0 = 1 and thus Bδ 0 = B(1) = B, so that the present value (at date 0) of
$B available at date 0 is $B, as it should be!

450% is the value of r that makes the present value of $1,500 a year from now equal to $1,000. Thus, if
r < 50% then the present value of $1,500 a year from now is greater than $1,000.
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– if you are like many students – you prefer to postpone the task. Wanting to experience
a reward earlier or wanting to avoid spoiling your present moment with an unpleasant
activity, by postponing it, are both manifestations of favoring the present over the future.

In what follows we will not restrict ourselves to outcomes that are sums of money, but
rather we will consider general outcomes.
Let Z be a set of outcomes5 and T = {0,1, . . . ,n} be a set of dates, where t = 0 is interpreted
as now, t = 1 is interpreted as one period from now, etc. Depending on the context, a
period could be a year or a month or a week, etc.
The Cartesian product Z×T is the set of dated outcomes: (z, t)∈ Z×T means that outcome
z is to be experienced at date t.
We consider an individual who, at date 0, has a complete and transitive preference relation
≿0 on Z ×T . The interpretation of (z, t)≿0 (z′,s) is that – at date 0 (the subscript of ≿) –
the individual considers outcome z experienced at time t to be at least as good as outcome
z′ experienced at time s, with t ≥ 0 and s ≥ 0.6 As usual, strict preference is denoted by ≻
and indifference is denoted by ∼.
For example, let z be “a 3-day trip to Disneyland” and z′ be “a 5-day trip to Chicago”and
take a period to be a week. Then (z,4)≻0 (z′,1) means that today (date 0: the subscript of
≻) the individual prefers a 3-day trip to Disneyland four weeks from now to a 5-day trip to
Chicago next week.

Note that if we restrict attention to pairs of the form (z,0), then we have a ranking of
the outcomes for date 0: this would correspond to the preference relation for static choice
that we considered in Chapter 2. But we want to go beyond this, by expressing also how
the individual ranks the pairs (z, t) for t possibly greater than 0.
Furthermore, we also want to consider the individual’s preferences at any date t, expressed
by the preference relation ≿t . In this case, if we write (z, t̂) ≻t (z′, t̄) then we assume
that t̂ ≥ t and t̄ ≥ t (otherwise we would be capturing wishful thinking: see Footnote 6).
Continuing the previous example of the 3-day trip to Disneyland (outcome z) versus the
5-day trip to Chicago (outcome z′), it is possible that today the individual prefers waiting
four weeks for a 3-day trip to Disneyland relative to waiting one week for a 5-day trip to
Chicago: (z,4)≻0 (z′,1) but after one week he reverses his preferences: (z′,1)≻1 (z,4)
(that is, after one week he prefers going to Chicago right away rather than waiting three
more weeks to go to Disneyland).

The ranking ≿t at time t restricted to pairs of the form (z, t) is called the instantaneous
ranking at date t. Let ut : Z → R (where R denotes the set of real numbers) be a utility
function that represents this instantaneous ranking, in the sense that ut(z)≥ ut(z′) if and
only if (z, t)≿t (z′, t).

5In previous chapters we denoted an outcome with the letter ‘o’, but in this chapter we will use the letter
‘z’ to avoid potential confusion between the letter o and the number 0, which will be used to denote the
present.

6 We allow for t ̸= s. The reason for restricting t and s to be greater than, or equal to, 0 is that we want to
model decisions that affect the present or the future. There is nothing wrong, from a conceptual point of view,
with stating preferences about the past. For example, if yesterday you wasted two hours watching a mediocre
movie, then you can express the following preferences: (not watch,−1)≻0 (watch,−1), that is, today (date
0) you prefer if yesterday (date −1) you had not watched the movie, that is, you regret watching the movie.
However, the past cannot be changed and current decisions can only affect the present or the future. There is
no point in analyzing preferences over past outcomes, since they merely represent wishful thinking.
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The exponential utility (or discounted utility) model assumes that at date 0 the ranking
≿0 of Z ×T can be represented by the utility function U0 : Z ×T → R given by

U0(z, t) = δ
tut(z) (10.1)

where δ is called the discount factor and is such that 0 < δ ≤ 1. By analogy to the notion
of present value, we let δ = 1

1+ρ
and call ρ ≥ 0 the discount rate. Thus,

(z, t)≿0 (z′,s) if and only if U0(z, t)≥U0(z′,s), that is, δ
tut(z)≥ δ

sus(z′). (10.2)

■ Example 10.1 Let z denote “going to the movies” and z′ denote “going to dinner at
a restaurant”. Today (date 0) Ann is indifferent between (z,0) and (z′,2), that is, she is
indifferent between going to the movies today and going to the restaurant the day after
tomorrow (periods are measured in days): (z,0)∼0 (z′,2).
Suppose also that Ann’s preferences can be represented by a utility function of the form
(10.1) above and u0(z) = 3 and u2(z′) = 5. What is Ann’s discount factor? What is her
discount rate?
Since (z,0)∼0 (z′,2), U0(z,0) =U0(z′,2), that is, δ 0u0(z) = δ 2u2(z′);7 thus, 3 = 5δ 2 so

that δ =
√

3
5 =

√
0.6 = 0.775.

Furthermore, since δ = 1
1+ρ

, to find the discount rate we have to solve the equation
1

1+ρ
= 0.775. The solution is ρ = 0.29.

Continuing the example, suppose that – before she makes her decision between going
to the movies today or to dinner the day after tomorrow – Ann learns that an option she
thought she did not have, namely going to a dance performance (outcome z′′) tomorrow, is
now available and u1(z′′) = 4. What decision will she make? We saw above that U0(z,0) =
U0(z′,2) = 3; on the other hand, U0(z′′,1) = δu1(z′′) = (0.775)(4) = 3.1. Hence, she will
choose to go to the dance performance tomorrow (her preferences today are: (z′′,1)≻0
(z,0)∼0 (z′,2)). ■

One special case is where instantaneous utility is always the same, that is, ut(z) = u(z),
for every t ∈ T (and for every z ∈ Z). Thus, the instantaneous utility of, say, spending a
day at Disneyland is the same, no matter whether you go today or tomorrow or 10 days
from now. Then, if you have a choice between outcome z today and outcome z tomorrow,
what will you choose? We have to distinguish two cases. First of all, let us normalize the
instantaneous utility function so that the utility of the status quo is 0.
Case 1: u(z)> 0. This means that outcome z is better than the status quo. For example, z
might be a pleasurable activity, like watching a movie, playing a video game, etc. Then
U0(z,0) = δ 0u(z) = u(z) and U0(z,1) = δ 1u(z) = δu(z). If δ < 1 (and u(z) > 0), then
δu(z)< u(z) and thus you prefer experiencing z today to experiencing it tomorrow. Thus,
δ < 1 captures the notion of impatience (that is, favoring the present over the future): you
would rather do something pleasurable today than do it later.

7Recall that, for every number x, x0 = 1.
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Case 2: u(z)< 0. This means that outcome z is worse than the status quo. For example,
z might be an unpleasant activity, like washing the dishes, doing homework, etc. Also in
this case U0(z,0) = δ 0u(z) = u(z) and U0(z,1) = δ 1u(z) = δu(z). If δ < 1 (and u(z)< 0),
then δu(z) > u(z) and thus you will want to delay experiencing z. Once again, δ < 1
captures the notion of favoring the present over the future: you would rather postpone
something unpleasant to a later date.

A more general situation is one where we do not simply compare one outcome at date
t with another outcome at date s but a series of outcomes at dates t1, t2, . . . with a different
series of outcomes at those same dates. For example, let m denote “watching a movie” and
h “doing homework” and suppose that instantaneous utility is the same at every date, with
ut(m) = u(m) = 2 and ut(h) = u(h) = 1, for every t ∈ T . Suppose also that the discount
factor is δ = 0.9. Imagine that you have two choices:

Today Tomorrow
date 0 date 1

Plan A: m h
Plan B: h m

Thus, Plan A is to watch a movie today and do the homework tomorrow, while Plan B
is to reverse the order of these two activities. Let us rewrite the above table in terms of
instantaneous utilities:

Today Tomorrow
date 0 date 1

Plan A: 2 1
Plan B: 1 2

How do you rank these two plans? What is the utility of Plan A? And the utility of Plan B?
A commonly used extension of the utility representation (10.1) is the following additive
representation:

U0(Plan A) = δ
0u(m)+δ

1u(h) = 2+(0.9)(1) = 2.9,

U0(Plan B) = δ
0u(h)+δ

1u(m) = 1+(0.9)(2) = 2.8.

Thus, you will choose to watch the movie now and do the homework tomorrow. Does it
seem familiar?

As a further example, suppose that Bob has to decide between the following two plans:

date: 0 1 2
Plan A: x y z
Plan B: y z x

Assume that his preferences have an exponential utility representation, so that

U0(Plan A) = δ
0u0(x)+δ

1u1(y)+δ
2u2(z) = u0(x)+δu1(y)+δ

2u2(z)

and U0(Plan B) = u0(y)+δu1(z)+δ
2u2(x).
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If u0(x) = 1,u1(y) = 4,u2(z) = 3,u0(y) = 4,u1(z) = 2,u2(x) = 0, we can re-write the
decision problem in terms of utilities as follows:

date: 0 1 2
Plan A: 1 4 3
Plan B: 4 2 0

For what value of the discount factor δ will Bob choose Plan A? U0(Plan A)= 1+4δ +3δ 2

and U0(Plan B) = 4+2δ +0δ 2; hence, Bob will choose Plan A if 1+4δ +3δ 2 > 4+2δ ,
that is, if δ > 0.7208 (and will choose Plan B if δ < 0.7208 and will be indifferent between
the two plans if δ = 0.7208).

10.3.1 Time consistency

Suppose that you make a plan today involving future activities or outcomes. For example,
suppose that today is Monday and you have to submit your homework on Thursday
morning. Let z denote the activity/outcome of doing the homework. You can do it
today (option (z,Monday)) or tomorrow (option (z,Tuesday)) or on Wednesday (option
(z,Wednesday)). Suppose that your ranking today (Monday: the subscript of ≻) is

(z,Tuesday)≻Monday (z,Wednesday)≻Monday (z,Monday)

that is, doing the homework today is your least preferred option, but you prefer to do it
with a day to spare (on Tuesday) rather than at the last moment (on Wednesday). Thus,
you decide to postpone doing the homework. However, there is no way today of forcing
your “Tuesday-self” to do the homework on Tuesday. All you can do is decide whether
or not to do the homework today (Monday) and – if you decide to postpone – then the
decision of when to do the homework will be made by your future self. So today you
decide to postpone and plan to do the homework tomorrow. You wake up on Tuesday and
have to decide when to do the homework. Obviously, the option (z,Monday) is no longer
available, but the other two options are. On this new day (Tuesday) you have preferences
over these two options. We must distinguish two cases.

Case 1: your Tuesday preference are

(z,Tuesday)≻Tuesday (z,Wednesday),

as they were on Monday. Then you will decide to do the homework today (Tuesday).
In this case we say that your preferences are time-consistent: if at an earlier date (e.g.
Monday) you make some plans for a future date (e.g. Tuesday), then when that future date
comes along your plans do not change.

Case 2: your Tuesday preference are

(z,Wednesday)≻Tuesday (z,Tuesday),

a reversal of what they were on Monday. Then you will decide, once again, to postpone
doing the homework. In this case we say that your preferences are time-inconsistent: if at
an earlier date you make some plans for a future date, then when that future date comes
along you no longer want to carry out those plans.
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Let us consider another example. Today is Monday and you have to decide on some
activities, call them x,y and z, for Friday, Saturday and Sunday. You can ask yourself
how you rank alternative plans (for Friday, Saturday and Sunday) today but you can also
ask yourself how you will rank those alternative plans (for Friday, Saturday and Sunday)
on, say, Thursday. Suppose that you are thinking about two plans in particular, shown in
Figure 10.1.

Monday
(today, date 0)

Tuesday
(date 1)

Wesdesday
(date 2)

Thursday
(date 3)

Friday
(date 4)

Saturday
(date 5)

Sunday
(date 6)

Plan A x y z
Plan B y z x  

Figure 10.1: Two possible week-end plans

At time 0 (on Monday) the utilities are as follows:

U0(Plan A) = δ
4u4(x)+δ

5u5(y)+δ
6u6(z)

U0(Plan B) = δ
4u4(y)+δ

5u5(z)+δ
6u6(x).

What are the utilities on Thursday (= date 3)? The dominant approach is to assume that the
structure of the preferences does not change so that

U3(Plan A) = δ
(4−3)u4(x)+δ

(5−3)u5(y)+δ
(6−3)u6(z) = δu4(x)+δ

2u5(y)+δ
3u6(z)

U3(Plan B) = δ
(4−3)u4(y)+δ

(5−3)u5(z)+δ
(6−3)u6(x) = δu4(y)+δ

2u5(z)+δ
3u6(x).

In other words, the utility at time t of outcome w occurring at time t + s is

Ut(w, t + s) = δ
sut+s(w) . (10.3)

Continuing the example, suppose that your daily discount factor is δ = 0.95 and

u4(x) = 4,u5(y) = 1,u6(z) = 5
u4(y) = 2,u5(z) = 3,u6(x) = 6.

Then we can rewrite the problem in terms of instantaneous utilities as shown in Figure
10.2.
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Monday
(today, date 0)

Tuesday
(date 1)

Wesdesday
(date 2)

Thursday
(date 3)

Friday
(date 4)

Saturday
(date 5)

Sunday
(date 6)

Plan A 4 1 5
Plan B 2 3 6  

How do you rank the plans at date 0?  

4 5 6 4 5 6
0 (Plan A) ( ) ( ) ( ) (0.95) (4) (0.95) (1) (0.95) (5) 7.71U u x u y u z           

4 5 6 4 5 6
0 (Plan B) ( ) ( ) ( ) (0.95) (2) (0.95) (3) (0.95) (6) 8.36U u y u z u x         . 

Hence on Monday you prefer Plan B to Plan A: 0Plan B Plan A . How will you feel about 

these two plans on Thursday (date 3)? 

2 3 2 3
3(Plan A) ( ) ( ) ( ) (0.95)(4) (0.95) (1) (0.95) (5) 8.99U u x u y u z           

2 3 2 3
3(Plan B) ( ) ( ) ( ) (0.95)(2) (0.95) (3) (0.95) (6) 9.75U u y u z u x          

and thus also on Thursday you prefer Plan B to Plan A: 3Plan B Plan A . How will you feel 

about these two plans on Friday (date 4)? 

2 2
4(Plan A) ( ) ( ) ( ) 4 (0.95)(1) (0.95) (5) 9.46U u x u y u z          

2 2
4(Plan B)= ( ) ( ) ( ) 2 (0.95)(3) (0.95) (6) 10.27U u y u z u x        

and thus also on Friday you prefer Plan B to Plan A: 4Plan B Plan A .  

Since your ranking does not change over time, we say that you are time consistent. 

C. Exponential discounting and time consistency  

An important consequence of exponential discounting is that it implies time consistency. 
The proof is quite simple. Suppose that at date t you compare two plans involving dates 

4, 5, ..., 10t t t   : 

4 5 ... 10

...

...

date t t t

Plan A x y z

Plan B z x y

  

 

Then  

Figure 10.2: The decision problem in terms of utilities

How do you rank the two plans at date 0?

U0(Plan A)= δ
4u(x)+δ

5u(y)+δ
6u(z) = (0.95)4(4)+(0.95)5(1)+(0.95)6(5) = 7.71



10.3 Exponential discounting 233

U0(Plan B)= δ
4u(y)+δ

5u(z)+δ
6u(x) = (0.95)4(2)+(0.95)5(3)+(0.95)6(6) = 8.36.

Hence, on Monday (date 0) you prefer Plan B to Plan A:

Plan B ≻0 Plan A.

How will you feel about these two plans on Thursday (date 3)?

U3(Plan A) = δu(x)+δ
2u(y)+δ

3u(z) = (0.95)(4)+(0.95)2(1)+(0.95)3(5) = 8.99

U3(Plan B) = δu(y)+δ
2u(z)+δ

3u(x) = (0.95)(2)+(0.95)2(3)+(0.95)3(6) = 9.75

thus, on Thursday you also prefer Plan B to Plan A:

Plan B ≻3 Plan A.

How will you feel about these two plans on Friday (date 4)?

U4(Plan A) = u(x)+δu(y)+δ
2u(z) = 4+(0.95)(1)+(0.95)2(5) = 9.46

U4(Plan B) = u(y)+δu(z)+δ
2u(x) = 2+(0.95)(3)+(0.95)2(6) = 10.27

thus, on Friday you also prefer Plan B to Plan A:

Plan B ≻4 Plan A.

Since your ranking does not change over time, your preferences are time consistent.

It is an important feature of exponential discounting that it implies time consistency.
The proof is quite simple. We illustrate the proof for the case where at date t you compare
two plans involving dates t +4, t +5, . . . , t +10:

date: t +4 t +5 ... t +10
Plan A: x4 x5 ... x10
Plan B: y4 y5 ... y10

Then

Ut(PlanA) = δ
4ut+4(x4)+δ

5ut+5(x5)+ ...+δ
10ut+10(x10),

and

Ut(PlanB) = δ
4ut+4(y4)+δ

5ut+5(y5)+ ...+δ
10ut+10(y10).

Suppose that you prefer Plan A: Ut(PlanA)>Ut(PlanB), that is,

δ
4ut+4(x4)+δ

5ut+5(x5)+...+δ
10ut+10(x10)> δ

4ut+4(y4)+δ
5ut+5(y5)+...+δ

10ut+10(y10).

(10.4)
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Now date t + 4 comes along and your utility becomes

Ut+4(PlanA) = δ
0ut+4(x4)+δ

1ut+5(x5)+ ...+δ
6ut+10(x10),

and

Ut+4(PlanB) = δ
0ut+4(y4)+δ

1ut+5(y5)+ ...+δ
6ut+10(y10).

Divide both sides of (10.4) by δ 4 (note that, since δ > 0, δ 4 > 0) to get

δ
0ut+4(x4)+δ

1ut+5(x5)+...+δ
6ut+10(x10)> δ

0ut+4(y4)+δ
1ut+5(y5)+...+δ

6ut+10(y10)

that is,

Ut+4(PlanA)>Ut+4(PlanB).

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 10.6.2 at the end of this chapter.

10.4 Hyperbolic discounting
On January 1, 2017 Roy was asked whether he would rather get $1,000 nine months
later (i.e. on October 1, 2017) or $1,500 fifteen months later (i.e. on April 1, 2018).
His answer was “$1,500 in 15 months”. On October 1, 2017 (9 months after the first
interview) he was offered to reconsider the initial choice: “would you rather get $1,000
today (October 1, 2017) or $1,500 in 6 months (i.e. on April 1, 2018)?” His answer
was “I would rather get $1,000 today”, thus displaying time inconsistency. This example
illustrates a commonly observed phenomenon: many individuals prefer an immediate,
smaller reward to a later, larger reward, but prefer the latter to the former when both
alternatives are equally delayed. Such people are said to exhibit diminishing impatience (or
present bias). Numerous experimental studies have shown that this is a robust characteristic
of many people’s preferences. Then we must conclude that the preferences of such people
cannot be represented by the exponential utility model described in the previous section,
since – as shown in the previous section – exponential utility implies time consistency.

A somewhat similar model to the exponential utility model that is capable of capturing
the type of time inconsistency illustrated above is the hyperbolic discounting model. With
hyperbolic discounting a higher discount rate or, equivalently, a lower discount factor
(implying a higher degree of impatience) is used between the present and the near future,
and a lower discount rate or higher discount factor (that is, a lower degree of impatience)
between the near future and the more distant future. The simplest version of hyperbolic
discounting is the so-called (β ,δ ) model. This model can be seen as a small departure
from the exponential discounting model. With exponential discounting the utility now (=
date 0) of outcome z at date t ≥ 0 is U0(z, t) = δ tut(z). This applies to both t = 0 and t > 0.
We can write exponential discounting as follows:

U0(z, t) =
{

δ 0u0(z) = u0(z) if t = 0
δ tut(z) if t > 0.
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More generally, if s ≥ t:

Ut(z,s) =
{

ut(z) if s = t
δ s−tus(z) if s > t.

With hyperbolic discounting the utility now (= date 0) of outcome z at date t ≥ 0 is

U0(z, t) =
{

δ 0u0(z) = u0(z) if t = 0
β δ tut(z) if t > 0

with 0 < β < 1 (if β = 1 then we are back to the case of exponential discounting).
More generally,

Ut(z,s) =
{

ut(z) if s = t
β δ s−tus(z) if s > t. (s ≥ t).

■ Example 10.2 Suppose that you are a hyperbolic discounter with monthly discount factor
δ = 0.95 and parameter β = 0.8 and your instantaneous utility of money is ut($m) =

√
m

for every t (thus the same at every date).
You are given the following choice: (A) $100 twelve months from now or (B) $160 sixteen
months from now. Then

U0($100,12) = βδ
12
√

100 = (0.8)(0.95)1210 = 4.32 and

U0($160,16) = βδ
16
√

160 = (0.8)(0.95)16(12.65) = 4.45.

Thus, you choose Option B: $160 sixteen months from now. Twelve months later you are
given a chance to reconsider. Thus, at that time your choice is between (A) $100 now or
(B) $160 four months from now. Then

U12($100,12) = δ
0
√

100 = 10 and

U12($160,16) = βδ
4
√

160 = (0.8)(0.95)4(12.65) = 8.24;

hence, you change your mind and switch to Option A, displaying time inconsistency. ■

■ Example 10.3 Today is Friday and you are planning your weekend. Let x denote “go
on a trip”, y “clean the house without help”, w “clean the house with help” and z “go
to a party”. You have two options: (A) go on a trip (outcome x) tomorrow and clean the
house without help (outcome y) on Sunday, or (B) clean the house with help (outcome w)
tomorrow and go to a party (outcome z) on Sunday:

Friday (date 0) Saturday (date 1) Sunday (date 2)
Plan A x y
Plan B w z
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Suppose that u1(x) = 4,u2(y) = 0,u1(w) = 1 and u2(z) = 6. Thus, in utility terms we
have:

Friday (date 0) Saturday (date 1) Sunday (date 2)
Plan A 4 0
Plan B 1 6

Suppose that δ = 7
10 and β = 2

3 . What plan will you choose on Friday?

U0(PlanA) = 4βδ +0βδ
2 = 4

(2
3

)( 7
10

)
= 28

15 = 1.867

and

U0(PlanB) = 1βδ +6βδ
2 =

(2
3

)( 7
10

)
+6
(2

3

)( 7
10

)2
= 182

75 = 2.427.

Thus, you decide that you will follow Plan B: do the cleaning on Saturday with help and
go to the party on Sunday:

Plan B ≻Friday Plan A .

Now it is Saturday morning and, as you wake up, you think about what to do this week-end.
You remember “choosing” Plan B yesterday. Do you want to stick with this choice?

U1(PlanA) = 4+0βδ = 4

and

U1(PlanB) = 1+6βδ = 1+6
(2

3

)( 7
10

)
= 19

5 = 3.8.

Thus, you will change your plans and switch to Plan A: go on the trip today and clean the
house without help on Sunday:

Plan A ≻Saturday Plan B .

■

10.4.1 Interpretation of the parameter β

What does the parameter β capture? To answer this question, let us first consider the
case of exponential discounting. The general formula for exponential discounting is

U0(z, t) =
{

u0(z) i f t = 0
δ tut(z) i f t > 0 when evaluation takes place at date 0 and t ≥ 0 is the date

at which outcome z is experienced. To simplify the exposition, let us focus on the case
where ut(z) = u(z) for all t (that is, the instantaneous utility of z is the same at every date).
Then,

with exponential discounting: U0(z, t) =
{

u(z) i f t = 0
δ tu(z) i f t > 0.

We assume that u(z)> 0.
Consider first the utility cost of delaying z by one period from date 1 to date 2.
U0(z,1) = δu(z) and U0(z,2) = δ 2u(z) = δ (δ u(z)) = δ U0(z,1) so that

U0(z,2) = δU0(z,1) or
U0(z,2)
U0(z,1)

=
δU0(z,1)
U0(z,1)

= δ .
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Assuming that 0< δ < 1 (and u(z)> 0 so that U0(z,1)= δu(z)> 0), U0(z,2)= δ U0(z,1)<
U0(z,1), that is, the delay reduces time-0 utility by a factor of δ (the utility cost of delaying
is (1−δ )u(z)).
Consider now the utility cost of delaying z by one period from date 0 to date 1:
U0(z,0) = u(z) and U0(z,1) = δu(z) = δU0(z,0). Thus,

U0(z,1) = δ U0(z,0) or
U0(z,1)
U0(z,0)

=
δU0(z,0)
U0(z,0)

= δ .

Hence, with exponential discounting the utility cost of delaying z by one period is the same,
no matter whether the delay is from date 0 to date 1 or from date 1 to date 2.

Now consider the case of hyperbolic discounting. The general formula for hyperbolic

discounting is U0(z, t) =
{

u0(z) i f t = 0
β δ tut(z) i f t > 0

(with 0 < β < 1 and 0 < δ ≤ 1) when

evaluation takes place at date 0 and t ≥ 0 is the date at which outcome z is experienced.
Again, let us focus on the case where ut(z) = u(z)> 0 for all t (that is, the instantaneous
utility of z is the same at every date). Then

with hyperbolic discounting: U0(z, t) =
{

u(z) i f t = 0
β δ tu(z) i f t > 0.

Consider first the utility cost of delaying z by one period from date 1 to date 2.
U0(z,1) = β δ u(z) and U0(z,2) = β δ 2 u(z) = δ (β δ u(z)) = δ U0(z,1). So

U0(z,2) = δU0(z,1) or
U0(z,2)
U0(z,1)

=
δU0(z,1)
U0(z,1)

= δ .

Assuming, as before, that 0 < δ < 1 (and u(z)> 0), U0(z,2) = δU0(z,1)<U0(z,1), that is,
the delay reduces time-0 utility by a factor of δ (the utility cost of delaying is (1−δ )u(z)).
Consider now the utility cost of delaying z by one period from date 0 to date 1.
U0(z,0) = u(z) and U0(z,1) = βδ u(z) = β δU0(z,0). So

U0(z,1) = βδU0(z,0) or
U0(z,1)
U0(z,0)

=
βδU0(z,0)

U0(z,0)
= βδ .

Assuming that 0 < β < 1, it follows that the delay reduces time-0 utility by a factor of
βδ < δ (the utility cost of delaying is (1−βδ )u(z)> (1−δ )u(z)). Thus, there is a larger
drop in utility in delaying from now to tomorrow than in delaying from tomorrow to the
day after tomorrow. Hence, β is a measure of the bias towards the present: the lower β

the more important the present becomes relative to one period ahead.
If your preferences are represented by the hyperbolic discounting model and you are

sufficiently introspective, then you will realize that any plans that you make today might
be overruled by your future self. Then it seems that there is no point in making any plans
at all! What can a sophisticated decision maker do to protect himself from his future self?
This is the topic of the next section.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 10.6.3 at the end of this chapter.
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10.5 Dealing with time inconsistency
Imagine that you are at the grocery store on Friday. You would like to buy a pint of
ice cream and are thinking about your possible consumption of ice cream on Saturday.
Suppose that there are only three consumption levels: 0, 1

2 pint and 1 pint. Your current
ranking is as follows:

1
2 pint on Saturday ≻Friday zero on Saturday ≻Friday 1 pint on Saturday.

Thus, it seems that you should buy the ice cream and plan to eat half a pint on Saturday.
However, suppose that you realize that, once you have ice cream at home on Saturday you
will not be able to restrain yourself and will end up eating the entire tub of ice cream and
be sick for the rest of the day, that is, you know that your preferences on Saturday will be

1 pint on Saturday ≻Saturday
1
2 pint on Saturday ≻Saturday zero on Saturday.

Thus, you realize that, if you buy ice cream, then the end outcome will be that you will eat
the entire carton of ice cream on Saturday, which – from Friday’s point of view – is the
worst outcome. Situations like these are referred to as situations where the agent lacks self
control.

If we represent your preferences with a utility function that takes on values 0, 1 and 2,
then we have

UFriday(
1
2 pint on Saturday) = 2 USaturday(1 pint on Saturday) = 2

UFriday(zero on Saturday) = 1 USaturday(
1
2 pint on Saturday) = 1

UFriday(1 pint on Saturday) = 0 USaturday(zero on Saturday) = 0

The above example can be represented as a tree, as shown in Figure 10.3. At the terminal
nodes of the tree we write a vector of utilities for the final outcome, where the first number
is the utility on Friday and the second number is the utility on Saturday.
The double edges represent the backward-induction reasoning. First you figure out that if
you buy ice cream on Friday, then the decision of how much to eat will be made by “your
Saturday self”, who will prefer eating 1 pint to eating 1

2 pint. Hence, on Friday you are
effectively deciding between (1) buying ice cream and eating it all on Saturday and (2) not
buying ice cream, thereby restricting your options on Saturday to only one: not eat ice
cream. By not buying ice cream on Friday, you commit yourself to not eating ice cream on
Saturday.

This example illustrates a common phenomenon whereby a decision maker who is
aware of the fact that his intertemporal preferences are time-inconsistent might decide to
restrict his own choices at a later date, by undertaking some form of commitment. The
commitment must be such that it cannot be easily undone (otherwise it would not be a
true commitment!). A situation similar to the one described above is the situation faced
by a student who is going to the library to study for an exam and has to decide whether
to take her laptop computer with her. Having the computer at hand will make it easier to
study, but she fears that, later on, she will be tempted to waste her time on social media or
browsing the internet. Several software applications are available to students who face this
type of lack of self control.
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You on Friday

buy ice cream not buy ice cream

2 0 1

You on Saturday You on Saturday

eat half eat all not eat

1 2 0
 

Figure 10.3: The ice cream decision problem

For example, SelfControl is a

“free Mac application to help you avoid distracting websites. Just set a period
of time to block for, add sites to your blacklist, and click ‘Start’. Until that
timer expires, you will be unable to access those sites – even if you restart
your computer or delete the application”.8

Similar programs are (1) Focus: “a Mac app to block distracting websites like Facebook
and Reddit”,9 (2) FocusWriter: “a simple, distraction-free writing environment”,10

(3) AntiSocial: “a productivity application for Macs that turns off the social parts of the
internet; when Anti-Social is running, you’re locked away from hundreds of distracting
social media sites, including Facebook, Twitter and other sites you specify”,11

(4) StayFocusd, which “blocks apps on iPhone and iPad, plus all browsers on Windows
and Mac”,12 and more.

What if there is no possibility of commitment? What should a DM – who is aware
of his time-inconsistent preferences – do in general? The best that one can do is to
apply the method of backward induction, anticipating one’s own future choices and acting
accordingly in the present. We conclude this section by analyzing an example of this.

8https://selfcontrolapp.com/
9https://heyfocus.com/?utm_source=getconcentrating

10https://focuswriter.en.softonic.com/?ex=DSK-309.4
11https://itunes.apple.com/us/app/anti-social-block-social-media-content-from-websites/

id1046835945?mt=8
12http://www.stayfocusd.com/

https://selfcontrolapp.com/
https://heyfocus.com/?utm_source=getconcentrating
https://focuswriter.en.softonic.com/?ex=DSK-309.4
https://itunes.apple.com/us/app/anti-social-block-social-media-content-from-websites/id1046835945?mt=8
https://itunes.apple.com/us/app/anti-social-block-social-media-content-from-websites/id1046835945?mt=8
http://www.stayfocusd.com/
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Suppose that you have a season pass to the theater, which entitles you to attend a play
every Saturday for the next four weeks. It is now Friday of the first week and you have
been told by your employer that you need to work one Saturday over the next four weeks
(and thus you will have to miss the play on that Saturday). It is up to you to choose which
Saturday. Let x be the outcome of attending a play and y be the outcome of working. Your
possible plans are shown in Figure 10.4.

Plan

First 
Saturday

Second 
Saturday 

Third 
Saturday

Fourth 
Saturday 

A y x x x

B x y x x

C x x y x

D x x x y  

Figure 10.4: The season pass example

Let us take a time period to be a week, with the current week being time 0. Assume that
the instantaneous utilities are as follows: ut(y) = 0, for every t = 0, . . . ,3, and u0(x) =
4, u1(x) = 6, u2(x) = 7,u3(x) = 13 (for example, because the play tomorrow is a mediocre
one, the one next week is a good one, the one in two weeks’ time is a very good one and
the one on the last week is the best of all). Then we can rewrite the table of Figure 10.4 in
terms of utilities, as shown in Figure 10.5.

Choice

First 
Saturday

Second 
Saturday 

Third 
Saturday

Fourth 
Saturday 

A 0 6 7 13
B 4 0 7 13
C 4 6 0 13
D 4 6 7 0  

Figure 10.5: The season pass example in terms of utilities

Suppose that your preferences can be represented by a hyperbolic-discounting utility
function with β = 1

2 and δ = 9
10 . Let us consider two cases.

Case 1: You can commit (that is, make an irrevocable decision) today as to which Saturday
you will work. What will you choose? Utilities at date 0 are as follows:

U0(A) = 0+6βδ +7βδ
2 +13βδ

3 = 10.274,

U0(B) = 4+0βδ +7βδ
2 +13βδ

3 = 11.573 ,

U0(C) = 4+6βδ +0βδ
2 +13βδ

3 = 11.439,

U0(D) = 4+6βδ +7βδ
2 +0βδ

3 = 9.535.

Thus, Option B gives the highest time-0 utility and you will commit to working on the
second Saturday.
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Case 2: You cannot commit today. Each Saturday you decide whether or not to go to work,
if you have not already worked on a previous Saturday. Of course, if you do not show
up at work on one of the first three Saturdays, then you will have no choice on the fourth
Saturday: you will have to work on that day. You are fully aware of your preferences
(hyperbolic discounting with the same β and δ every week). What will you do? Let us
represent your decision problem using a tree and find the backward-induction solution.
The tree is shown in Figure 10.6: the red numbers (at the top of each vector associated with
a terminal node) were computed above, the blue numbers (in the middle of each vector)
are the utilities from the point of view of Week 1 and the black numbers (at the bottom of
each vector) are the utilities from the point of view of Week 2. The double edges show the
backward-induction solution.

First Saturday

Second Sat

movie go to work

go to workmovie

Third Sat

movie work

Fourth Sat

work

0 ( ) 10.274U A 

0 ( ) 11.573U B 

0 ( ) 11.439U C 

0 ( ) 9.535U D 

2
1( ) 6 0 13 11.265U C     

2
1( ) 0 7 13 8.415U B     

2
1( ) 6 7 0 9.15U D     

2 ( ) 0 13 5.85U C   

2 ( ) 7 0 7U D   
 

Figure 10.6: The decision tree for the season pass example

From the point of view of date 0, alternative B is the best: go to work on the second
Saturday, which involves going to the theater at date 0. However, you anticipate that if you
do so, then at every future date you will postpone working and end up working on the last
Saturday, which – from the point of view of date 0 – is the worst alternative.13 Hence, you
opt to go to work on the first Saturday in order to pre-empt your future procrastination.

13On the third Saturday you will prefer going to the theater that day and to work the following Saturday
(utility 7) to going to work on that day (utility 5.85); thus, you will go to the theater. Hence, on the second
Saturday you will realize that your choice is between going to work that day (utility 8.415) or going to the
theater that day and the following Saturday thus working on the last Saturday (utility 9.15) and you prefer
the latter; thus, you will go to the theater.
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Note that when you act in the way illustrated in the above examples, your present self
is acting in a paternalistic way towards your future selves. Should your date-0 preferences
have higher priority over your future preferences? Are you better off when you don’t buy
ice cream today to prevent your future self from binging? These are not easy questions
to answer, but one argument for giving more weight to your date-0 preferences is that
when you take a long-term point of view of your welfare, you are more detached and more
objective in your assessment, while when you make decisions in the short term you are
more short-sighted and susceptible to temptation.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 10.6.4 at the end of this chapter.

10.6 Exercises
The solutions to the following exercises are given in Section 10.7 at the end of this chapter.

10.6.1 Exercises for Section 10.2: Present value and discounting

Exercise 10.1 A bond pays $10 one year from now, $15 two years from now, $20 three
years from now and $25 four years from now. The yearly interest rate is 7%. What is
the present value of the bond? ■

Exercise 10.2 Which of the following two options is better? (1) you get $100 today,
(2) you wait three years and get $160 three years from now. The yearly rate of interest
is 15%. Answer the question in two ways: (a) using the notion of present value and (b)
using the notion of future value. ■

Exercise 10.3 You need to borrow $1,500 to lease a car for one year. You have two
options: (1) apply for financing from the dealer, in which case you have to pay an
application fee of $85 and you will be charged a yearly interest rate of 16%, or (2)
borrow from a bank at a yearly interest rate of 21%. Which option should you choose?

■

Exercise 10.4 Congratulations: you won the lottery! Now you must collect the prize.
You have two options: (1) get a one-time payment, today, of $11 Million, or (2) get six
annual payments of $2 Million, with the first payment being collected today. The yearly
interest rate is 4%. Based on present values, which option should you choose? ■

Exercise 10.5 You need to borrow $200 from a cousin.
(a) She agrees to lend you $200 but wants you to repay her $225 in one year. What

is the yearly interest rate implicit in this offer?
(b) She agrees to lend you $200 but wants you to repay her $240 in two years. What

is the yearly interest rate implicit in this offer?
■
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10.6.2 Exercises for Section 10.3: Exponential discounting

Exercise 10.6 Assume that preferences have an exponential discounting representation.
For example, U0(z, t) = δ tut(z).

You have a free ticket to the movie theater. You can use it tonight to see a mediocre
movie (call this alternative x) or you can use it next week to see a better movie (call
this alternative y). Suppose that time periods denote weeks, u0(x) = 4 and u1(y) = 7.
What should your time discount rate be for you to be indifferent, today, between the
two options? ■

Exercise 10.7 Assume that preferences have an exponential discounting representation.
Suppose that u10(x) = 12. For t = 10,8,6,4,2,0 and δ = 0.85 calculate Ut(x,10) and
draw a diagram showing these values (measure t on the horizontal axis and utility on
the vertical axis). ■

Exercise 10.8 Assume that preferences have an exponential discounting representation.
Your generous uncle gave you $800 on your birthday. You have the following options:
(1) spend the $800 today, (2) put the $800 in a 3-year CD that pays interest at the rate
of 5% per year, leave the money there for 3 years and spend the entire balance of your
account at the end of the 3 years, (3) put the $800 in a 10-year CD that pays interest
at the rate of 12% per year, leave the money there for 10 years and spend the entire
balance of your account at the end of the 10 years. Suppose that your instantaneous
utility function is the same at every date and is given by u($m) = m

2 . Your time discount
rate is 18%. Calculate today’s utility for each of the three options. ■

10.6.3 Exercises for Section 10.4: Hyperbolic discounting

Exercise 10.9 Today is Thursday (= date 0) and you are thinking about the weekend.
You really want to go to see a movie. Your favorite movie, Ultimate Experience, is
coming out on Sunday. The other alternative is Unlimited Boredom which is showing
on Saturday as well as Sunday. Thus, your options are: (1) stay at home (outcome x) on
Saturday and go to see Ultimate Experience (outcome y) on Sunday, (2) stay at home
(outcome x) on Saturday and go to see Unlimited Boredom (outcome z) on Sunday, (3)
go to see Unlimited Boredom (outcome z) on Saturday and stay at home (outcome x)
on Sunday. These are the only options, because you cannot afford to go to the movies
both days. Time periods represent days, your instantaneous utility is the same every
day, u(x) = 1, u(z) = 5, u(y) = 7. Your preferences are characterized by hyperbolic
discounting with parameters β = 3

4 and δ = 4
5 .

(a) Calculate the utility of each option from the point of view of Thursday, Friday
and Saturday.

(b) Are your preferences time consistent?
■
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Exercise 10.10 Today you have to decide if and when to go to the gym. Plan A is to
go to the gym tomorrow – with instantaneous utility of 0 –in which case you will feel
energetic the next day – obtaining an instantaneous utility of 18. Plan B is to spend the
day tomorrow watching TV – with instantaneous utility of 6 – but then you will feel
tired and grumpy the next day – with instantaneous utility of 1. Your preferences are
characterized by hyperbolic discounting with parameters β = 1

6 and δ = 6
7 .

(a) Calculate the utility of the two plans from the point of view of today and of
tomorrow.

(b) Are your preferences time consistent?
■

10.6.4 Exercises for Section 10.5: Dealing with time inconsistency

Exercise 10.11 Bill is a recovering alcoholic. His friends are meeting at a bar at 8pm.
It is now 7pm and he has to decide whether to meet his friends at the bar or drive to
San Francisco to visit his cousin, whom he finds to be quite boring. At the moment,
his preferences are as follows: his favorite outcome is for him to be with his friends
without drinking any alcohol, his worst outcome is to (be with his friends and) drink
alcohol and he ranks visiting his cousin strictly between those two outcomes. He thinks
that if he goes to the bar then he will not be able to control himself and will order at
least one alcoholic drink (probably several).

(a) What would Bill do if he did not acknowledge his self-control problem?
(b) Assume that Bill is aware of his self-control problem. Represent his decision

problem as a tree and compute the backward-induction solution.
■

Exercise 10.12 You have a season ticket to the movie theater which entitles you to see
a movie every Saturday for the next 3 weeks (this week and the following two weeks).
It is now Friday of the first week and you have been asked by your parents to visit them
one Saturday over the next three weeks (and thus you will have to miss the movie on
that Saturday). You can choose which Saturday. Let x be the outcome of watching a
movie and y the outcome of visiting with your parents.

(a) Represent the possible choices you face as a table showing the sequence of out-
comes for the next three Saturdays.

For Parts (b)-(e) assume that a time period is a week, with the current week being
time 0. Assume that the instantaneous utilities are as follows: ut(y) = 3, for every
t ∈ {0,1,2}, and u0(x) = 5, u1(x) = 8, u2(x) = 12.

(b) Represent again the possible choices you face as a table, but this time show the
possible utility streams.

For Parts (c)-(e) assume that your preferences can be represented by a hyperbolic-
discounting utility function with β = 1

3 and δ = 4
5 .

(c) Suppose that you have to make an irrevocable decision today as to which Saturday
you will visit your parents. What will you choose?
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(d) Suppose that you don’t have to commit now. Each Saturday you decide whether
or not to go to see your parents, if you have not already done so on a previous
Saturday. Of course, if you don’t visit your parents on one of the first two
Saturdays, then you will have no choice on the third Saturday: you will have
to go and see them on that Saturday. You are fully aware of your preferences
(hyperbolic discounting with the same β and δ every week). Represent your
decision problem using a tree and find the backward-induction solution.

(e) Is there a difference between (c) and (d)?
■

Exercise 10.13 You have a season ticket to the movie theater which entitles you to
see a movie every Saturday for the next 4 weeks. It is now Friday of the first week
and you have been told by your employer that you need to work one Saturday over the
next four weeks (and thus you will have to miss the movie on that Saturday). You can
choose which Saturday. Let x be the outcome of watching a movie and y the outcome
of working.

(a) Represent the possible choices you face as a table showing the sequence of out-
comes for the next four Saturdays.

For Parts (b)-(e) assume that a time period is a week, with the current week
being time 0. Assume that the instantaneous utilities are as follows: ut(y) = 0,
for every t ∈ {0,1,2,3}, and u0(x) = 3, u1(x) = 5, u2(x) = 8 and u3(x) = 13 (for
example, because the movie tomorrow is a mediocre one, the one next week is a
good one, the one in two weeks’ time is a very good one and the one on the last
week is the best of all).

(b) Represent again the possible choices you face as a table, but this time show the
possible utility streams.

For Parts (c)-(e) assume that your preferences can be represented by a hyperbolic-
discounting utility function with β = 1

2 and δ = 9
10 .

(c) Suppose that you have to make an irrevocable decision today as to which Saturday
you will work. What will you choose?

(d) Suppose that you don’t have to commit now. Each Saturday you decide whether
or not to go to work, if you have not already worked on a previous Saturday. Of
course, if you don’t show up at work on one of the first three Saturdays, then you
will have no choice on the fourth Saturday: you will have to work on that day.
You are fully aware of your preferences (hyperbolic discounting with the same β

and δ every week). Represent your decision problem using a tree and find the
backward-induction solution.

(e) Is there a difference between (c) and (d)?
■
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10.7 Solutions to Exercises

Solution to Exercise 10.1. The present value of the bond is:

10
(

1
1+0.07

)
+15

(
1

1+0.07

)2

+20
(

1
1+0.07

)3

+25
(

1
1+0.07

)4

= $57.85.

□

Solution to Exercise 10.2. (a) When the rate of interest is 15%, the present value of
$160 available three years from now is 160

( 1
1.15

)3
= $105.203; on the other hand, the

present value of $100 today is $100. Thus, it is better to wait and get $160 three years
from now. (b) When the rate of interest is 15%, the future value, three years from now, of
$100 available today is 100(1.15)3 = $152.10 < 160, confirming that it is better to wait
and get $160 three years from now. □

Solution to Exercise 10.3. The cost of Option 1 is (1,500)(0.16)+85 = $325 while the
cost of Option 2 is (1,500)(0.21) = $315. Thus, you should choose Option 2. □

Solution to Exercise 10.4. A naive calculation would be: $2 Million × 6 = $12 Million
and thus Option 2 is better. However, one should compute the present value of Option 2,
which is

2×106 +
2×106

1.04
+

2×106

(1.04)2 +
2×106

(1.04)3 +
2×106

(1.04)4 +
2×106

(1.04)5 = $10,903,644.66.

Thus, in terms of present value, Option 1 is better. □

Solution to Exercise 10.5.
(a) If you borrow $200 and have to repay $225, you are paying $25 in interest. So the

interest rate is the solution to 200r = 25, which is 25
200 = 0.125 = 12.5%.

(b) If you borrow $200 at the rate of interest r then after two years the amount you need
to repay is 200(1+ r)2 . Thus, you need to solve the equation 200(1+ r)2 = 240.
The solution is r = 0.095 = 9.5%. □

Solution to Exercise 10.6. It must be that U0(x,0) =U0(y,1), that is, δ 0u0(x) = δu1(y):
4 = δ 7. Hence, δ = 4

7 . Since δ = 1
1+ρ

, we must solve 1
1+ρ

= 4
7 . The answer is ρ = 3

4 =
0.75.

□
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Solution to Exercise 10.7. The utility at time t is given by Ut(x,10) = (12)(0.85)(10−t).
Thus, the values are:

Time t 0 2 4 6 8 10
Utility: (12)(0.85)(10−t) 2.362 3.27 4.526 6.264 8.67 12

The diagram is shown in Figure 10.7. □

2.362492852

3.2698863

4.525794188

6.264075

8.67

12

0

2

4

6

8

10

12

 

Figure 10.7: The diagram for Exercise 10.7

Solution to Exercise 10.8. First we have to figure out how much money you would
have in your account under Options 2 and 3. Under Option 2, after 3 years you would
have m3 = (800)(1.05)3 = $926.10, while under Option 3 after 10 years you would have
m10 = (800)(1.12)10 = $2,484.68. Your time discount factor is δ = 1

1+0.18 = 0.8475.
Thus, utilities are as follows:

Option 1: δ
0
(m0

2

)
= (0.8475)0

(
800
2

)
= 400

Option 2: δ
3
(m3

2

)
= (0.8475)3

(
926.10

2

)
= 281.87

Option 3: δ
10
(m10

2

)
= (0.8475)10

(
2,484.68

2

)
= 237.49.

Thus, you are very impatient and will choose to spend the $800 now. □
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Solution to Exercise 10.9. Let R = Thursday, F = Friday and S = Saturday. Then

(a) UR(Option 1) = β δ 2 1+β δ 3 7 = 3
4

(4
5

)2
+ 3

4

(4
5

)3
7 = 3.168.

UR(Option 2) = β δ 2 1+β δ 3 5 = 3
4

(4
5

)2
+ 3

4

(4
5

)3
5 = 2.4.

UR(Option 3) = β δ 2 5+β δ 3 1 = 3
4

(4
5

)2
5+ 3

4

(4
5

)3
1 = 2.784.

Thus, from the point of view of Thursday, Option 1 is the best.

UF(Option 1) = β δ 1+β δ 2 7 = 3
4

(4
5

)
+ 3

4

(4
5

)2
7 = 3.96.

UF(Option 2) = β δ 1+β δ 2 5 = 3
4

(4
5

)
+ 3

4

(4
5

)2
5 = 3.

UF(Option 3) = β δ 5+β δ 2 1 = 3
4

(4
5

)
5+ 3

4

(4
5

)2
1 = 3.48.

Thus, also from the point of view of Friday, Option 1 is the best.

US(Option 1) = 1+β δ 7 = 1+ 3
4

(4
5

)
7 = 5.2.

US(Option 2) = 1+β δ 5 = 1+ 3
4

(4
5

)
5 = 4.

US(Option 3) = 5+β δ 1 = 5+ 3
4

(4
5

)
= 5.6.

Thus, from the point of view of Saturday, Option 3 is the best.
(b) No, because on Thursday you will plan to choose Option 1, on Friday you will renew

your intention to choose Option 1, but on Saturday you will change your mind and
choose Option 3. □

Solution to Exercise 10.10. Let today be date 0, tomorrow date 1 and the day after
tomorrow date 2. The instantaneous utilities are

Today
(date 0)

Tomorrow
(date 1)

Day a f ter tomorrow
(date 2)

Plan A 0 18
Plan B 6 1

(a) Utility at time 0:
U0(Plan A) = βδ0+βδ 218 = 1

6

(6
7

)
0+ 1

6

(6
7

)2
18 = 2.204,

U0(Plan B) = βδ6+βδ 21 = 1
6

(6
7

)
6+ 1

6

(6
7

)2
1 = 0.98

Utility at time 1:
U1(Plan A) = 0+βδ18 = 0+ 1

6

(6
7

)
18 = 2.571,

U1(Plan B) = 6+βδ1 = 6+ 1
6

(6
7

)
1 = 6.143.

Thus, at date 0 Plan A is viewed as better than Plan B, but at date 1 Plan B is viewed
as better than Plan A.

(b) No, because today you decide to follow Plan A, but tomorrow you will switch to
Plan B. □
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Solution to Exercise 10.11.
(a) He will go to the bar, planning not to drink (but he will end up drinking and thus

bringing about what at 7pm he considered to be the worst outcome).
(b) The tree is shown in Figure 10.8. The backward-induction solution is shown by the

double edges. □

Bill at 7pm

go to San Francisco

2 0 1

drink visit with cousin

1 2 0

go to bar

Bill at 8pm Bill at 8pm

not drink

 

Figure 10.8: The tree for Exercise 10.11

Solution to Exercise 10.12.

(a)
Choice 1st Saturday 2nd Saturday 3rd Saturday

A y x x
B x y x
C x x y

(b)
Choice 1st Saturday 2nd Saturday 3rd Saturday

A 3 8 12
B 5 3 12
C 5 8 3

(c) U0(A) = 3+8βδ +12βδ 2 = 3+8
(1

3

)(4
5

)
+12

(1
3

)(4
5

)2
= 7.69.

U0(B) = 5+3βδ +12βδ 2 = 5+3
(1

3

)(4
5

)
+12

(1
3

)(4
5

)2
= 8.36 .

U0(C) = 5+8βδ +3βδ 2 = 5+8
(1

3

)(4
5

)
+3
(1

3

)(4
5

)2
= 7.77.

Thus, you will commit to visiting your parents on the second Saturday.
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(d) The tree is shown in Figure 10.9. The backward-induction solution is shown by the
double edges.

First Saturday

movie visit parents

visit parentsmovie 0 ( ) 7.69U A 

0 ( ) 8.36U B 

0 ( ) 7.77U C 

1 ( ) 8 3 8 .8U C    

1 ( ) 3 12 6.2U B   

visit
parents

Second Saturday

Third Saturday

Figure 10.9: The tree for Exercise 10.12

(e) Yes: if you could commit you would visit your parents on the second Saturday, but
when you are unable to commit you will end up visiting them on the last Saturday.

□

Solution to Exercise 10.13.

(a)
Choice 1st Saturday 2nd Saturday 3rd Saturday 4th Saturday

A y x x x
B x y x x
C x x y x
D x x x y

(b)
Choice 1st Saturday 2nd Saturday 3rd Saturday 4th Saturday

A 0 5 8 13
B 3 0 8 13
C 3 5 0 13
D 3 5 8 0
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(c) U0(A) = 0+5βδ +8βδ 2 +13βδ 3 = 10.229.
U0(B) = 3+0βδ +8βδ 2 +13βδ 3 = 10.979 .
U0(C) = 3+5βδ +0βδ 2 +13βδ 3 = 9.989.
U0(D) = 3+5βδ +8βδ 2 +0βδ 3 = 8.49.
Thus, you will commit to working on the second Saturday.

(d) The tree is is shown in Figure 10.10. The backward-induction solution is shown by
the double edges.

(e) There is no difference: you will end up working on the second Saturday in both
scenarios. □

First Saturday

Second Sat

10.229

20 8 13 8.865   

movie go to work

go to workmovie

Third Sat

movie work

9.989

10.979

25 0 13 10.265   

0 13 5.85 

Fourth Sat

work

8 0 8 

25 8 0 8.6   

8.49

 

Figure 10.10: The tree for Exercise 10.13
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11. Aggregation of Preferences

11.1 Social preference functions

Groups of individuals, or societies, often have to make decisions. Let X be the set of
alternatives that society has to choose from. The elements of X could be alternative tax
rates, alternative health insurance reforms, candidates in an election, etc. We shall assume
that each individual in society has a complete and transitive ranking of the elements of
X . The important issue that arises in a multi-person context is: how to aggregate the
possibly conflicting preferences of the individuals into a single ranking that can be viewed
as “society’s ranking”. We shall denote the social ranking by ≿S (the subscript ‘S’ stands
for ‘society’); thus, the interpretation of x ≿S y is that – according to society as a whole
– alternative x is at least as good as alternative y. As usual, ≻S will be used for strict
preference (x ≻S y means that, from society’s point of view, x is better than y) and ∼S for
indifference (x ∼S y means that, from society’s point of view, x is just as good as y).

In practice, there are a number of procedures that are commonly used to make collective
decisions. The most popular one is the method of majority voting. As pointed out by
the 18th century French scholar Nicolas de Condorcet,1 majority voting can yield an
intransitive social ranking: this is known as the Condorcet paradox.

1His full name was Marie Jean Antoine Nicolas de Caritat, Marquis of Condorcet (1743-1794).
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For example, suppose that there are three voters: 1, 2 and 3. They have to choose a
president among three candidates: A, B and C. Suppose that their preferences are as
follows:

1’s ranking 2’s ranking 3’s ranking
best A C B

B A C
worst C B A

Then
• In the choice between A and B, the majority (consisting of Individuals 1 and 2)

prefers A to B. Thus, we conclude that (for the society consisting of these three
individuals) A is better than B: A ≻S B.

• In the choice between B and C, the majority (consisting of Individuals 1 and 3)
prefers B to C. Thus, we conclude that (for the society consisting of these three
individuals) B is better than C: B ≻S C.

• In the choice between A and C, the majority (consisting of Individuals 2 and 3)
prefers C to A. Thus, we conclude that (for the society consisting of these three
individuals) C is better than A: C ≻S A.

Thus, we have that A ≻S B, B ≻S C and, in violation of transitivity, C ≻S A.
Why is the lack of transitivity problematic? One reason is that a clever manipulator, by

choosing the agenda, can bring about the outcome that he wants. For example, suppose
that the agenda is set by Individual 3. She wants B to win, because it is her most preferred
candidate. To achieve this result, she would first propose a vote between A and C; then the
winner of the first vote (candidate C, supported by Individuals 2 and 3) would be put up
against the remaining candidate (candidate B) and the final winner would be B (supported
by Individuals 1 and 2).2

If the agenda were set by Individual 2, then she would first ask for a vote between A and B
and then for a vote between the winner (candidate A) and C and the latter would be the
final winner.
Similarly, Individual 1 would be able to get A to be the winner by choosing the agenda
appropriately (first a vote between B and C and then a vote between the winner of the first
vote and A).

In his Ph.D. thesis3 the late Kenneth Arrow, joint winner (with John Hicks) of the
Nobel Memorial Prize in Economics in 1972, addressed the question of how to construct a
“good” or “reasonable” procedure for aggregating the preferences of a set of individuals
into a group ranking.

The problem of aggregation of individual preferences is how to design a procedure that
takes as input a list of rankings – one for each individual in the group – and produces as
output a ranking to be interpreted as the group’s ranking (or society’s ranking). We call
such a procedure a “social preference function”, or SPF for short.

2This argument assumes that the voters cast their votes according to their true preferences, but – perhaps –
one of them could gain by misrepresenting her preferences, that is, by voting according to a ranking that is
different from her true ranking. This issue is studied in the next chapter.

3Published as a monograph: Kenneth Arrow, Social Choice and Individual Values, John Wiley & and
Sons, 1951 (second edition published in 1963 by Yale University Press).
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Definition 11.1.1 Let X = {x1,x2, . . . ,xm} (m ≥ 2) be a finite set of alternatives, N =
{1,2, . . . ,n} (n ≥ 2) a finite set of individuals, R the set of complete and transitive
binary relations on X and Q the set of binary relations on X (thus, R ⊆ Q).

Let Rn be the Cartesian product R×R×·· ·×R︸ ︷︷ ︸
n times

(thus an element of Rn is a list of

complete and transitive preference relations on the set of alternatives X , one for each
individual; we call an element of Rn a profile of preferences) and let S be a subset of Rn.
A social preference function (or Arrovian social welfare function) is a function f : S →Q
that takes as input a profile of preferences for the individuals (≿1,≿2, . . . ,≿n)∈ S ⊆Rn

and produces as output a ranking ≿S= f (≿1,≿2, . . . ,≿n) ∈ Q for society.

For example, suppose that there are only two alternatives, A and B (thus, X = {A,B} and
R = {A ≻ B,A ∼ B,B ≻ A}), two voters (N = {1,2}), S = R2 and the social ranking is
constructed as follows: if at least one individual prefers alternative x to alternative y and
the other individual considers x to be at least as good as y then x is declared to be better for
society than y, otherwise society is said to be indifferent between x and y. Such a social
preference function can be represented by the following table:

Individual 2’s ranking
A ≻2 B A ∼2 B B ≻2 A

Individual A ≻1 B A ≻S B A ≻S B A ∼S B
1’s A ∼1 B A ≻S B A ∼S B B ≻S A

ranking B ≻1 A A ∼S B B ≻S A B ≻S A

Alternatively, we can represent the above social preference function as a table where each
column corresponds to a profile of rankings and below each profile the corresponding
social ranking is recorded. This is shown in Figure 11.1.

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

Profile:

social

ranking:
S S S S S S S S S

A B A B A B A B A B A B B A B A B A

A B A B B A A B A B B A A B A B B A

A B A B A B A B A B B A A B B A B A

        

        

        

 

Figure 11.1: A social preference function with 2 alternatives and 2 individuals
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As a second example, suppose that there are three alternatives A, B and C (X =
{A,B,C}) and three individuals (N = {1,2,3}) and only strict rankings can be reported;
thus, S = P ×P ×P where

P = {A ≻ B ≻C, A ≻C ≻ B, B ≻ A ≻C, B ≻C ≻ A, C ≻ A ≻ B, C ≻ B ≻ A}

The preference function is defined as follows: for any two alternatives x and y, x ≻S y if
and only if at least two individuals prefer x to y.4 Since there are 63 = 216 possible profiles
of preferences, it is more laborious to represent the entire social preference function (one
would need six tables, each with six rows and six columns);5 however, we can illustrate it
by listing a couple of entries:

1’s ranking: C≻1B≻1A
2’s ranking: B≻2A≻2C
3’s ranking: A≻3C≻3B

 7→ social ranking: B ≻SA, A≻SC, C≻SB.

1’s ranking: C≻1B≻1A
2’s ranking: A≻2B≻2C
3’s ranking: C≻3A≻3B

 7→ social ranking: A≻SB, C≻SA, C≻SB.

It is clear that there are many possible social preference functions. Are they all
“reasonable”? In principle, one could list them all and test each of them against some
properties that are considered to be “reasonable” or “desirable”. In practice, this is not
feasible because of the large number of possibilities. However, it will be useful to provide
an illustration for a simple case where the number of possibilities is small.
Consider again the case where there are only two alternatives, A and B (thus, X = {A,B})
and two voters (N = {1,2}), but restrict the set of rankings by ruling out indifference, that
is, let S = {A ≻ B,B ≻ A}×{A ≻ B,B ≻ A} and Q = {A ≻ B,B ≻ A}.
Then there are 4 possible profiles of preferences for the two individuals and 16 possible
preference functions, which are listed in the table below, where – as in Figure 11.1 – each
column corresponds to a profile of rankings. Each row in the table represents a possible
social preference function (SPF).

4Note that, since individuals are restricted to reporting strict preferences, for any two alternatives it will
always be the case that at least two individuals will prefer one to the other.

5We will use such representations in the next chapter.
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profile →
SPF ↓

A≻1B
A≻2B

A≻1B
B≻2A

B≻1A
A≻2B

B≻1A
B≻2A

SPF - 1 A ≻S B A ≻S B A ≻S B A ≻S B
SPF - 2 A ≻S B A ≻S B A ≻S B B ≻S A
SPF - 3 A ≻S B A ≻S B B ≻S A A ≻S B
SPF - 4 A ≻S B A ≻S B B ≻S A B ≻S A
SPF - 5 A ≻S B B ≻S A A ≻S B A ≻S B
SPF - 6 A ≻S B B ≻S A A ≻S B B ≻S A
SPF - 7 A ≻S B B ≻S A B ≻S A A ≻S B
SPF - 8 A ≻S B B ≻S A B ≻S A B ≻S A
SPF - 9 B ≻S A A ≻S B A ≻S B A ≻S B

SPF - 10 B ≻S A A ≻S B A ≻S B B ≻S A
SPF - 11 B ≻S A A ≻S B B ≻S A A ≻S B
SPF - 12 B ≻S A A ≻S B B ≻S A B ≻S A
SPF - 13 B ≻S A B ≻S A A ≻S B A ≻S B
SPF - 14 B ≻S A B ≻S A A ≻S B B ≻S A
SPF - 15 B ≻S A B ≻S A B ≻S A A ≻S B
SPF - 16 B ≻S A B ≻S A B ≻S A B ≻S A

(11.1)

In the next section we will consider several properties suggested by Arrow as an attempt
to capture the notion of a “reasonable” SPF. Here we will give a preview of two of those
properties.
The first property, called Unanimity, requires that if everybody in the group agrees that one
alternative is better than another, then the social ranking should reflect this judgment. We
can see in the above table that the bottom eight SPFs (SPF-9 to SPF-16) fail this property,
because in the first column we have that both individuals consider A to be better than B
(A ≻1 B and A ≻2 B) and yet society judges B to be better than A (B ≻S A).
By appealing to Unanimity we can also discard SPF-1, SPF-3, SPF-5 and SPF-7 because
in the last column we have that both individuals consider B to be better than A (B ≻1 A
and B ≻2 A) and yet society judges A to be better than B (A ≻S B). Hence, we can reduce
our search for a “reasonable” SPF to the smaller table below:

profile →
SPF ↓

A≻1B
A≻2B

A≻1B
B≻2A

B≻1A
A≻2B

B≻1A
B≻2A

SPF - 2 A ≻S B A ≻S B A ≻S B B ≻S A
SPF - 4 A ≻S B A ≻S B B ≻S A B ≻S A
SPF - 6 A ≻S B B ≻S A A ≻S B B ≻S A
SPF - 8 A ≻S B B ≻S A B ≻S A B ≻S A

In the reduced table, we can see that SPF-4 merely reproduces the ranking of Individual
1: in a sense, SPF-4 amounts to appointing Individual 1 as a “dictator”. Similarly, SPF-6
merely reproduces the ranking of Individual 2, thus appointing Individual 2 as a “dictator”.
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A second property suggested by Arrow, called Non-dictatorship, aims at ruling this
out. Thus, by appealing to Unanimity and Non-dictatorship, we can reduce the number of
candidates for a “reasonable” SPF from sixteen to the two: SPF-2 and SPF-8, shown in the
table below:

profile →
SPF ↓

A≻1B
A≻2B

A≻1B
B≻2A

B≻1A
A≻2B

B≻1A
B≻2A

SPF - 2 A ≻S B A ≻S B A ≻S B B ≻S A
SPF - 8 A ≻S B B ≻S A B ≻S A B ≻S A

SPF-2 embodies the following rule: if both individuals agree in their ranking of the two
alternatives, then reflect this common ranking in the social ranking; if there is disagreement,
then declare A to be better than B for society.
SPF-8 embodies the following rule: if both individuals agree in their ranking of the two
alternatives, then reflect this common ranking in the social ranking; if there is disagreement,
then declare B to be better than A for society.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 11.5.1 at the end of this chapter.

11.2 Arrow’s Impossibility Theorem
As noted in the previous section, Arrow posed the following question: what properties
should one impose on a social preference function in order to obtain a “reasonable”
aggregation procedure? He listed some desirable properties, known as Arrow’s axioms,
and studied the implications of those properties.

The first axiom requires that there be no restrictions on what preferences each individual
can state or report (except for the requirement that the reported preferences be “rational”,
in the sense that they satisfy completeness and transitivity). If, for some reason, some
preferences were to be considered “inappropriate” or “unacceptable” they could always
be ignored in forming the social ranking; but in terms of reporting preferences, anything
should be allowed:

• Axiom 1: Unrestricted Domain or Freedom of Expression. The domain of the
social preference function should be the entire set Rn.

The second axiom requires that the social ranking satisfy the same “rationality” proper-
ties as the individual rankings: if ≿S is the social ranking obtained by aggregating the
reported rankings of the n individuals then ≿S must be complete and transitive:

• Axiom 2: Rationality. The set of social rankings generated by the social preference
function should be a subset of R.

Thus, referring to Definition 11.1.1, if f : S → Q is the social preference function, then the
Unrestricted Domain axiom requires that S = Rn and the Rationality axiom requires that
Q ⊆ R.

Note that the Rationality axiom in itself is sufficient to rule out majority voting as
a “reasonable” method of aggregating preferences whenever there are three or more
alternatives. Indeed, as we saw in Section 11.1, in such cases majority voting fails to
guarantee transitivity of the social ranking.
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The aggregation of individual preferences into a preference ordering for the group is a
difficult task because different individuals might have very different opinions on how to
rank the alternatives under consideration. The aggregation rule must, somehow, resolve
such potential conflicts. However, in the – perhaps rare – occasions where individuals
agree, it seems straightforward to require that this agreement be reflected in the social
ranking. This is what the third axiom postulates: if everybody strictly prefers x to y then
society should also strictly prefer x to y:

• Axiom 3: Unanimity or the Pareto Principle. For any two alternatives x,y ∈ X , if
x ≻i y, for every i = 1,2, . . . ,n, then x ≻S y (where ≿S= f (≿1,≿2, . . . ,≿n)).

Note that the Unanimity axiom is a very weak requirement. Consider again the 3-person,
3-alternative example given in Section 11.1, reproduced below:

1’s ranking 2’s ranking 3’s ranking
best A C B

B A C
worst C B A

If these are the reported preferences of the three individuals, then the Unanimity axiom
imposes no restrictions at all, since, for any two alternatives, it is never the case that all
three individuals rank them the same way (for example, for alternatives A and B we have
that Individuals 1 and 2 strictly prefer A to B but Individual 3 has the opposite ranking: she
prefers B to A). As a second example, suppose that the reported rankings are as follows:

1’s ranking 2’s ranking 3’s ranking
best A C A

B A C
worst C B B

In this case the Unanimity axiom requires A ≻S B, since every individual prefers A to B.
It is silent concerning the ranking of B versus C, since there is disagreement among the
individuals (2 and 3 rank C above B but 1 has the opposite ranking) and – for the same
reason – it is silent concerning the ranking of A versus C. Finally, note that, if even just
one individual is indifferent between alternatives x and y, then the Unanimity axiom is
silent concerning the social ranking of x versus y.

Are there any social preference functions that satisfy the above three axioms? The
answer is affirmative. For example, one could (1) allow each individual to report any
complete and transitive ranking and (2) pick one individual and postulate that the social
ranking should coincide with the ranking reported by that individual. Such an aggregation
procedure, however, is hardly reasonable: it amounts to appointing one individual as a
dictator and completely ignoring the preferences of all the other individuals. The fourth
axiom explicitly rules this out.
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• Axiom 4: Non-dictatorship. There is no individual i such that, for any two
alternatives x and y, and for all profiles of preferences (≿1,≿2, . . . ,≿n), if x ≻i y
then x ≻S y [where ≿S= f (≿1,≿2, . . . ,≿n)].
Equivalently, for every individual i there must be (at least) two alternatives x and
y and a profile of preferences (≿1,≿2, . . . ,≿n) such that x ≻i y and y ≿S x [where
≿S= f (≿1,≿2, . . . ,≿n)].

The Non-dictatorship axiom does not allow a single individual to always have his/her strict
preferences reflected in the social ranking.6 Note that Non-dictatorship does not rule out
the possibility of the social ranking mirroring the strict ranking of a particular individual
for some alternatives:7 it only rules out this being the case for every pair of alternatives.

Before stating the fifth, and last, axiom formally, we elucidate its content in an example.
The axiom says that the social ranking of any two alternatives x and y should depend only
on how the individuals rank x versus y and not on how other alternatives are ranked vis a
vis x and y.
Let us illustrate this in a 2-person (N = {1,2}), 3-alternative (X = {A,B,C}) context.
Suppose that the social preference function under consideration yields the ranking A ≻S B
when the stated rankings of the individuals are as follows:8

individual 1 individual 2
best A A,B

B
worst C C

7→ A≻SB (11.2)

If we change the rankings of the two individuals without affecting the relative ranking of A
and B (thus maintaining A ≻1 B and A ∼2 B) then – according to the next axiom – it should
still be true that A ≻S B.

6It does allow for x ∼i y to coexist with x ≻S y.
7For example, Non-dictatorship allows the SPF to consider two particular alternatives A and B to be

exclusively under the control of one individual, say Individual 1, in the sense that the social ranking of A and
B should coincide with the way in which A and B are ranked by Individual 1. For instance, it could be that A
is the “state of the world” where Individual 1 is a member of a religious group and B is the state of the world
where Individual 1 is not a member. Then having the social ranking reflect Individual 1’s ranking of these
two alternatives would amount to a guarantee of religious freedom to Individual 1.

8That is, A ≻1 B ≻1 C and A ∼2 B ≻2 C.
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Thus, in each of the following 14 cases it must still be true that A ≻S B:9

1 2
best A A,B,C

B
worst C

1 2
best A C

B
worst C A,B

1 2
best C A,B

A
worst B C

1 2
best A,C A,B

worst B C

1 2
best A A,B

C
worst B C

1 2
best A A,B

worst B,C C

1 2
best C A,B,C

A
worst B

1 2
best A,C A,B,C

worst B

1 2
best A A,B,C

C
worst B

1 2
best A A,B,C

worst B,C

1 2
best C C

A
worst B A,B

1 2
best A,C C

worst B A,B

1 2
best A C

C
worst B A,B

1 2
best A C

worst B,C A,B

• Axiom 5: Independence of Irrelevant Alternatives. Let x and y be two alternatives.
Let (≿1,≿2, . . . ,≿n) and (≿′

1,≿
′
2, . . . ,≿

′
n) be two profiles of individual rankings

such that, for every i = 1,2, ...,n, x ≿i y if and only if x ≿′
i y (that is, the ranking

of x and y is the same in ≿i as in ≿′
i, for every individual i). Then the ranking of

x and y in the social ranking derived from (≿1,≿2, . . . ,≿n) must be the same as
the ranking of x and y in the social ranking derived from (≿′

1,≿
′
2, . . . ,≿

′
n). That

is, if ≿S= f (≿1,≿2, . . . ,≿n) and ≿′
S= f (≿′

1,≿
′
2, . . . ,≿

′
n) then x ≿S y if and only if

x ≿′
S y.

Clearly, if there are only two alternatives the Independence of Irrelevant Alternatives axiom
is trivially satisfied. This axiom has bite only if there are at least three alternatives.

R If there are only two alternatives (and any number of individuals) then the method of
majority voting satisfies all of Arrow’s axioms. The reader is asked to prove this in
Exercise 11.6.

9The first two are obtained from (11.2) by keeping the preferences of Individual 1 fixed and changing
the preferences of Individual 2 by changing the position of alternative C in the ranking (moving it to the
same level as A and B or putting it above A and B). The next four are obtained by keeping the preferences of
Individual 2 fixed and changing the preferences of Individual 1 by changing the position of alternative C
in the ranking (above A, at the same level as A, between A and B, at the same level as B). Similarly for the
remaining eight profiles.
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The following theorem, known as Arrow’s impossibility theorem, states that as soon as the
number of alternatives exceeds 2, it is impossible to design an aggregation procedure that
satisfies all of the five axioms given above.

Theorem 11.2.1 — Arrow’s Impossibility Theorem. If the number of alternatives is
at least three (that is, the cardinality of the set X is at least 3), then there is no social
preference function that satisfies the five axioms listed above.

An equivalent formulation of Arrow’s impossibility theorem is as follows: if f is a social
preference function that satisfies any four of Arrow’s axioms, then it must violate the
remaining axiom. For example, since the method of majority voting satisfies Unrestricted
Domain, Unanimity, Non-dictatorship and Independence of Irrelevant Alternatives, then it
must violate Rationality (when the number of alternatives is at least 3): we saw an example
of this in Section 11.1.

In Section 11.3 we illustrate the proof of Theorem 11.2.1 for the case of three alterna-
tives and three voters.10

In the exercises for this section (see Section 11.5.2) several social preference functions
are considered (e.g the Borda count) and the reader is asked to determine which of Arrow’s
axioms is satisfied and which is violated.

We conclude this section by considering a social preference function, known as the
Kemeny-Young method, and analyzing it in terms of Arrow’s axioms. The method works
as follows. Fix a profile of individual rankings. For each pair of alternatives, x and y, we
count:

1. the number of individuals for whom x ≻ y; call this the score for x ≻ y and denote it
by #(x ≻ y),

2. the number of individuals for whom x ∼ y; call this the score for x ∼ y and denote it
by #(x ∼ y), and

3. the number of individuals from whom y ≻ x (call this the score for y ≻ x and denote
it by #(y ≻ x).

Next we go through all the complete and transitive rankings of the set of alternatives and
for each of them we compute a total score by adding up the scores of each pairwise ranking:
for example, if there are three alternatives, A, B and C, then the score for the ranking
B ≻ A ∼C is computed as #(B ≻ A)+#(B ≻C)+#(A ∼C).
Finally, we select as social ranking the ranking with the highest score (if there are ties, we
pick one of them). The idea of this method is to find the preference relation which is a
“closest match” to the given profile of preferences.

For example, suppose that there are three alternatives: A, B and C and five voters. Their
stated preferences are as follows:

voter 1 voter 2 voter 3 voter 4 voter 5
best A B B C B

B C C A A
worst C A A B C

10Relatively short proofs for the general case can be found in John Geanakoplos, “Three brief proofs of
Arrow’s impossibility theorem”, Economic Theory, Vol. 26, 2005, pages 211-215 and Ning Neil Yu, “A
one-shot proof of Arrow’s impossibility theorem”, Economic Theory, Vol. 50, 2012, pages 523-525.
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Then the scores are computed as follows:11

Ranking Score
A ≻ B ≻C #(A ≻ B)+#(A ≻C)+#(B ≻C) = 2+2+4 = 8
A ≻C ≻ B #(A ≻C)+#(A ≻ B)+#(C ≻ B) = 2+2+1 = 5
B ≻ A ≻C #(B ≻ A)+#(B ≻C)+#(A ≻C) = 3+4+2 = 9
B ≻C ≻ A #(B ≻C)+#(B ≻ A)+#(C ≻ A) = 4+3+3 = 10
C ≻ A ≻ B #(C ≻ A)+#(C ≻ B)+#(A ≻ B) = 3+1+2 = 6
C ≻ B ≻ A #(C ≻ B)+#(C ≻ A)+#(B ≻ A) = 1+3+3 = 7

Thus, the Kemeny-Young method selects, as social ranking, B ≻S C ≻S A, since it has the
largest score (namely 10).

Let us now check which of Arrow’s axioms is satisfied and which is violated by the
Kemeny-Young procedure.

1. Unrestricted domain: this is satisfied by construction, since any complete and
transitive ranking can be reported by the individuals.

2. Rationality: this is also satisfied by construction, since scores are only computed
for complete and transitive rankings.

3. Unanimity: this is also satisfied. To see this, suppose that A and B are two alter-
natives such that A ≻i B, for every individual i = 1,2, . . . ,n. We need to show that
A ≻S B where ≿S is a ranking selected by the Kemeny-Young method. Suppose, by
contradiction, that B ≿S A and modify the ranking ≿S by moving alternative A up in
the social ranking to a position immediately above B but below any other alternative
x such that x ≻S B. For example, if the set of alternatives is X = {A,B,C,D,E,F}
and ≿S is the ranking E ≻S B ∼S D ≻S A ∼S F ≻S C, then the modified ranking
would be as shown below:

initial ranking:

best E
B,D
A,F

worst C

modified ranking:

best E
A

B,D
F

worst C

We want to show that the score of the modified ranking is higher than the score of ≿S
and thus ≿S could not have been a ranking with maximum score. The only scores
that change as a consequence of the modification are:

(1) The score for the pair (A,B). In the sum giving the total score for ≿S there was
either #(A ∼ B) or #(B ≻ A), which are both 0 (because of the hypothesis that A ≻i B,
for all i = 1,2, . . . ,n) and now in the sum for the total score of the modified ranking
there is #(A ≻ B) = n; thus, on this account, the total score increases by n;

11There is no need to consider rankings involving indifference since every pair (x,y) such that x ∼ y gets a
score of zero and thus any such ranking would get a total score lower than one of the scores computed below.
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(2) The scores for pairs of the type (A,x) where x is an alternative such that
B ≿S x ≿S A (that is, in the social ranking, x was above, or at the same level as,
A and also not higher than B). In the sum giving the total score for ≿S there was
either #(x ∼ A) or #(x ≻ A) and now in the sum for the total score of the modified
ranking there is #(A ≻ x). Consider an arbitrary individual i who makes a positive
contribution to #(x ∼ A) or #(x ≻ A), that is, an individual i such that either x ∼i A
or x ≻i A. Then this individual i contributed one point to the score for x ∼S A or for
x ≻S A and that point is lost in the computation of the score of the modified ranking;
however – by transitivity of ≿i – for such an individual i it must be that x ≻i B
because, by hypothesis, x ≿i A and A ≻i B (the latter being true for every individual).
Thus, such an individual i was not contributing to #(B ≻ x) or #(B ∼ x) in the
computation of the score for ≿S and is now contributing to #(x ≻ B) in the modified
ranking. Thus, one point lost and one gained on account of such an individual i.
Hence, the net effect of modifying the ranking as explained above is an increase
in the score of the ranking, implying that ≿S could not have been a ranking with
maximum score.

4. Non-dictatorship: this axiom is also satisfied. We need to show that there is no
dictator. Consider an arbitrary individual; without loss of generality we can take
it to be Individual 1 (otherwise we can just renumber the individuals). Fix two
alternatives, say A and B, and a ranking for Individual 1 such that A ≻1 B. For every
other individual start with the same ranking as for Individual 1 but swap the positions
of A and B. For example, if the set of alternatives is X = {A,B,C,D,E,F} and the
ranking of Individual 1 is E ≻1 A ≻1 D ∼1 F ≻1 B ≻1 C then the ranking of every
other individual is as follows:

1’s ranking:

best E
A

D,F
B

worst C

everybody else:

best E
B

D,F
A

worst C

Then – if there are at least three individuals – the common ranking of the individuals
other than 1 gets the highest score (and higher than any ranking that has A ≻ B
in it), so that B ≻S A, while – if there are exactly two individuals – then both the
ranking of Individual 1 and the ranking of Individual 2 get the highest score (and the
other rankings a lower score), so that the chosen social ranking can be the one of
Individual 2, implying that B ≻S A.

Since the Kemeny-Young method satisfies four of Arrow’s five axioms, by Theorem 11.2.1
it must violate the remaining axiom, namely Independence of Irrelevant Alternatives. To
see this, consider the following example, where there are three alternatives (X = {A,B,C})
and seven voters with the following stated preferences:

1 2 3 4 5 6 7
best A A A B B C C

B B B C C A A
worst C C C A A B B
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Then the scores are computed as follows:12

Ranking Score
A ≻ B ≻C #(A ≻ B)+#(A ≻C)+#(B ≻C) = 5+3+5 = 13
A ≻C ≻ B #(A ≻C)+#(A ≻ B)+#(C ≻ B) = 3+5+2 = 10
B ≻ A ≻C #(B ≻ A)+#(B ≻C)+#(A ≻C) = 2+5+3 = 10
B ≻C ≻ A #(B ≻C)+#(B ≻ A)+#(C ≻ A) = 5+2+4 = 11
C ≻ A ≻ B #(C ≻ A)+#(C ≻ B)+#(A ≻ B) = 4+2+5 = 11
C ≻ B ≻ A #(C ≻ B)+#(C ≻ A)+#(B ≻ A) = 2+4+2 = 8

Thus, the Kemeny-Young method selects, as social ranking, A ≻S B ≻S C .
Now consider the following alternative profile of preferences, which differs from the
previous one only in that the ranking of Voters 4 and 5 is C ≻ B ≻ A instead of B ≻C ≻ A
(we have highlighted the change with bold fonts).

1 2 3 4 5 6 7
best A A A C C C C

B B B B B A A
worst C C C A A B B

The scores for the new profile of preferences are computed as follows:

Ranking Score
A ≻ B ≻C #(A ≻ B)+#(A ≻C)+#(B ≻C) = 5+3+3 = 11
A ≻C ≻ B #(A ≻C)+#(A ≻ B)+#(C ≻ B) = 3+5+4 = 12
B ≻ A ≻C #(B ≻ A)+#(B ≻C)+#(A ≻C) = 2+3+3 = 8
B ≻C ≻ A #(B ≻C)+#(B ≻ A)+#(C ≻ A) = 3+2+4 = 9
C ≻ A ≻ B #(C ≻ A)+#(C ≻ B)+#(A ≻ B) = 4+4+5 = 13
C ≻ B ≻ A #(C ≻ B)+#(C ≻ A)+#(B ≻ A) = 4+4+2 = 10

Thus, in this case, the Kemeny-Young method selects, as social ranking, C ≻S A ≻S B .
Note that the ranking of A versus C has changed: in the previous social ranking A was
deemed to be better than C while in the new social ranking C is judged to be better than A.
This is a violation of Independence of Irrelevant Alternatives since the ranking of A versus
C has not changed in any of the individual rankings.

In the next section we illustrate the proof of Arrow’s impossibility theorem in the
special case where there are three alternatives and three individuals. The reader who is not
interested in how one would go about proving this remarkable result can skip to Section
11.4 which points out a somewhat surprising application of Arrow’s theorem to the case of
individual decision making.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 11.5.2 at the end of this chapter.

12There is no need to consider rankings involving indifference since every pair (x,y) such that x ∼ y gets a
score of zero and thus any such ranking would get a total score lower than one of the scores computed below.
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11.3 Illustration of the proof of Arrow’s theorem
In this section we prove Arrow’s impossibility theorem (Theorem 11.2.1) for the case
where there are three alternatives, called A, B and C, and three individuals.
For each individual there are 13 possible complete and transitive rankings of the set
X = {A,B,C} and thus there are 133 = 2,197 possible profiles of preferences. Thus, a
Social Preference Function (SPF) that satisfies Unrestricted Domain and Rationality would
associate with each of these 2,197 profiles one of the possible 13 complete and transitive
rankings of X = {A,B,C} (thus, there are 132,197 possible SPF’s!).
We can think of each SPF as a table consisting of 2,197 columns and two rows: in the
first row we record a preference profile and in the second row the corresponding social
ranking (similarly to what we did in Figure 11.1). For example, the following would be
one column in such a table:

voter 1 voter 2 voter 3
best A C A, C

profile of preferences: C A
worst B B B

best A, B
social ranking:

worst C

Note that a SPF that contains the above column violates Unanimity since the profile of
preferences is such that everybody prefers A to B and yet society is indifferent between A
and B (also, everybody prefers C to B and yet society ranks B above C).

Definition 11.3.1 Let P be a profile of preferences and let x and y be two alternatives.
1. We say that there is a conflict on x over y in P if one individual strictly prefers x

to y while the other two individuals strictly prefer y to x.
2. We say that an individual is decisive for x over y in P if (a) that individual prefers

x to y while the other two individuals prefer y to x and (b) in the social ranking
associated with P, x is preferred to y (that is, society sides with the lone dissenter).

For example, in the following profile

Voter 1 Voter 2 Voter 3
best A A B

B B C
worst C C A

there is a conflict on B over A (Voter 3 prefers B to A while Voters 1 and 2 prefer A to B);
furthermore, if it is the case that B is preferred to A in the corresponding social ranking,
then Individual 3 is decisive for B over A.
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Fix a social preference function f and assume that it satisfies all of Arrow’s axioms.
Through a series of three steps, outlined below, we will show that we reach a contradiction.

• Step 1: we show that in the presence of conflict over a pair of alternatives, society
cannot be indifferent between these two alternatives.

• Step 2: we show that if society sides with the single dissenting individual in a given
case of conflict over a pair of alternatives, then it must side with him all the time,
thus making him a dictator.

• Step 3: it follows from the previous two steps that, in case of disagreement over a
pair of alternatives, society must side with the majority. The final step is to show
that the majority rule yields intransitivity of social preferences (the well-known
Condorcet paradox: see Section 11.1).

We shall use the following notation: if P is a profile of preferences, then we denote the
associated social ranking selected by the SPF f (that is, f (P)) by ≿S(P).

STEP 1. Consider a profile of preferences P such that there is a conflict over a pair of
alternatives. Without loss of generality, let this pair be (A,B) and let Individuals 1 and 2
prefer A to B, so that Individual 3 prefers B to A:

 A ≻1 B
A ≻2 B
B ≻3 A

 . (11.3)

Note that, by Independence of Irrelevant Alternatives, this information about how the
individuals feel about A and B is sufficient to determine the social ranking of A and B for
all profiles that contain (11.3). In this first step we show that it cannot be that society is
indifferent between A and B in the social ranking associated with any profile of preferences
that contains (11.3). Suppose, to the contrary, that there is a profile P that contains (11.3)
and is such that, in the associated social ranking (denoted by ≿S(P)), A is deemed to be just
as good as B:

A ∼S(P) B. (11.4)
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Consider the following two profiles that satisfy (11.3):

Profile I
Voter 1 Voter 2 Voter 3

best A A C
C C B

worst B B A

Profile II
Voter Voter 2 Voter 3

best A A B
B B C

worst C C A

– In Profile I everybody prefers C to B and thus, by Unanimity, in the social ranking
associated with Profile I, it must be that C is preferred to B:

C ≻S(I) B. (11.5)

– By Independence of Irrelevant Alternatives and hypothesis (11.4), in the social
ranking associated with Profile I society is indifferent between A and B:13

B ∼S(I) A. (11.6)

– By Rationality (in particular, transitivity of the social ranking associated with Profile
I) it follows from (11.5) and (11.6) that

C ≻S(I) A. (11.7)

△ In Profile II everybody prefers B to C and thus, by Unanimity, in the social ranking
associated with Profile II, it must be that B is preferred to C:

B ≻S(II) C. (11.8)

△ By Independence of Irrelevant Alternatives and hypothesis (11.4),14

A ∼S(II) B. (11.9)

△ By Rationality (in particular, transitivity of ≿S(II)), it follows from (11.9) and (11.8)
that

A ≻S(II) C. (11.10)

△ Since, for every individual, the ranking of A and C is the same in Profile I and in
Profile II, by Independence of Irrelevant Alternatives, it follows from (11.7) that

C ≻S(II) A, (11.11)

yielding a contradiction with (11.10).15

13Because, for each individual, the ranking of A and B is the same in P and in Profile I: they both satisfy
(11.3).

14Again, because, for each individual, the ranking of A and B is the same in P and in Profile II: they both
satisfy (11.3).

15Alternatively, by transitivity of ≿S(II) one can infer from (11.9) and (11.8) that A ≻S(II) C, contradicting
(11.11).
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Thus, since supposition (11.4) (namely that A ∼S(P) B for some profile of preferences
P that contains (11.3)) leads to a contradiction, it must be that – in the social ranking
associated with any profile of preferences P′ that contains (11.3) – either B ≻S(P′) A or
A ≻S(P′) B.

STEP 2. Next we show that, in case of conflict over a pair of alternatives, society
cannot side with the dissenting individual, otherwise that individual will be a dictator. We
prove this through a number of lemmas.

Lemma 11.1 If an individual is decisive for x over y in a particular profile P then he is
decisive for x over y in any other profile where he strictly prefers x to y and the other two
individuals strictly prefer y to x.

Proof. This is an immediate consequence of Independence of Irrelevant Alternatives. ■

Thus, by Lemma 11.1, one can simply state that ‘individual i is decisive for x over y’
without reference to a specific profile.16

Lemma 11.2 If individual i is decisive for x over y then he is also decisive for x over z
with z ̸= y.

Proof. Without loss of generality, we prove it for the case where

i = 1, x = A, y = B and z =C.

Assume that Individual 1 is decisive for A over B. Consider the profile P given below:

Profile P
Voter 1 Voter 2 Voter 3

best A B B
B C C

worst C A A

By hypothesis (namely, that Individual 1 is decisive for A over B),

A ≻S(P) B

16Let P be a profile where Individual 1 is the only one who prefers A to B, that is, P contains A ≻1 B
B ≻2 A
B ≻3 A

 . (11.12)

Then there are 33 = 27 profiles that contain (11.12): they are obtained by replacing, for each individual, one
of the three squares shown below with alternative C:

Voter 1 Voter 2 Voter 3
□ □ □
A B B
□ □ □
B A A
□ □ □
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and, by Unanimity,

B ≻S(P) C

so that, by transitivity of ≿S(P),

A ≻S(P) C.

Thus, Individual 1 is decisive for A over C in profile P. Hence, by Lemma 11.1, Individual

1 is decisive for A over C in every profile that contains

 A ≻1 C
C ≻2 A
C ≻3 A

. ■

Lemma 11.3 If individual i is decisive for x over y then he is also decisive for z over y
with z ̸= x.

Proof. Without loss of generality, we prove it for the case where i = 1,x = A,y = B and
z = C. Assume that Individual 1 is decisive for A over B. Consider the profile P given
below:

Profile P
Voter 1 Voter 2 Voter 3

best C B B
A C C

worst B A A

By hypothesis,

A ≻S(P) B

and, by Unanimity,

C ≻S(P) A

so that, by transitivity of ≿S(P),

C ≻S(P) B.

Thus, Individual 1 is decisive for C over B in profile P. Hence, by Lemma 11.1, Individual

1 is decisive for C over B in every profile that contains

 C ≻1 B
B ≻2 C
B ≻3 C

. ■

Lemma 11.4 If individual i is decisive for x over y then he is also decisive for any
alternative over any other different alternative.

Proof. Without loss of generality, we prove it for the case where i = 1,x = A,y = B.
Suppose that Individual 1 is decisive for A over B. We need to show that he is also decisive
for the following: A over C, C over B, B over C, C over A and B over A.

1. A over C: this follows from Lemma 11.2 (with i = 1,x = A,y = B and z =C).
2. C over B: this follows from Lemma 11.3 (with i = 1,x = A,y = B and z =C).
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3. B over C: by Point 1, Individual 1 is decisive for A over C; thus, by Lemma 11.3
(with i = 1,x = A,y =C and z = B), 1 is decisive for B over C.

4. C over A: by Point 2, Individual 1 is decisive for C over B; thus, by Lemma 11.2
(with i = 1,x =C,y = B and z = A), 1 is decisive for C over A.

5. B over A: by Point 3, Individual 1 is decisive for B over C; thus, by Lemma 11.2
(with i = 1, x = B, y =C and z = A), 1 is decisive for B over A.

■

Lemma 11.5 If individual i is decisive for x over y then, for every profile P that contains
x ≻i y, x ≻S(P) y.

Proof. Without loss of generality, we prove it for the case where i = 1,x = A,y = B. The
hypothesis is that Individual 1 is decisive for A over B. By Lemma 11.4, Individual 1 is
also decisive for A over C. Consider the following profile P:

Profile P
Voter 1 Voter 2 Voter 3

best A C C
C A B

worst B B A

Since 1 is decisive for A over C,

A ≻S(P) C.

By Unanimity,

C ≻S(P) B.

Thus, by transitivity of ≿S(P),

A ≻S(P) B.

By Independence of Irrelevant Alternatives, A ≻S(P′) B for any other profile P′ that contains A ≻1 B
A ≻2 B
B ≻3 A

. By swapping the ranking of Individuals 2 and 3 in P, an analogous argument

shows that A ≻S(P′′) B for any other profile P′′ that contains

 A ≻1 B
B ≻2 A
A ≻3 B

. Finally, if a

profile contains A ≻i B for every individual i, then in the corresponding social ranking A is
strictly better than B by Unanimity. Thus, we have covered every possible case. ■

Corollary 11.3.1 If there is a profile of preferences P where there is a conflict (that is,
there are two alternatives x and y and individual i strictly prefers x to y, whereas the
other two individuals strictly prefer y to x) and the associated social ranking sides with
individual i (that is, x ≻S(P) y) then individual i is a dictator.
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Proof. If there is a profile of preferences P where there is a conflict and the associated
social ranking sides with the dissenting individual, call him i, then, by Lemma 11.4, i is
decisive for every pair of alternatives. Thus, by Lemma 11.5, for any two alternatives x
and y, if P is a profile that contains x ≻i y then in the associated social ranking x is strictly
preferred to y (that is, x ≻S(P) y). This is precisely the definition of individual i being a
dictator. ■

STEP 3. By Step 1 if there is a conflict over a pair of alternatives, then society cannot
be indifferent between the two alternatives, that is, society has to side either with the lone
dissenting individual or with the majority.
By Step 2, if society sides with the lone dissenting individual, then that individual must be
a dictator. Thus, if the SPF satisfies Non-dictatorship, whenever there is a conflict society
must side with the majority. But then, because of the Condorcet paradox, the SPF cannot
satisfy transitivity, that is, it must fail Rationality. The Condorcet paradox was illustrated
in Section 11.1 and is reproduced below. Consider the following profile of preferences:

Profile P
Voter 1 Voter 2 Voter 3

best A C B
B A C

worst C B A

Then
• In the choice between A and B, the majority (consisting of Individuals 1 and 2)

prefers A to B. Thus, since society must side with the majority, it must be that
A ≻S(P) B.

• In the choice between B and C, the majority (consisting of Individuals 1 and 3)
prefers B to C. Thus, since society must side with the majority, it must be that
B ≻S(P) C.

• In the choice between A and C, the majority (consisting of Individuals 2 and 3)
prefers C to A. Thus, since society must side with the majority, it must be that
C ≻S(P) A.

Thus, we have that A ≻S(P) B, B ≻S(P) C and – in violation of transitivity – C ≻S(P) A.

This concludes the proof of Arrow’s theorem for the case of three individuals and three
alternatives. The proof for the general case is not much different. Instead of referring to a
single individual as being decisive one starts with a group of individuals being decisive and
then one shows that if a (non-empty) group T is decisive,17 then there is a single individual
in T who is decisive. Having established this, one can then essentially repeat the three-step
proof given above.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 11.5.3 at the end of this chapter.

17Note that, for every pair of alternatives x and y, there must be a non-empty group who is decisive for x
over y: indeed the group N consisting of all the individuals satisfies the definition of decisiveness.
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11.4 Application of Arrow’s theorem to individual choice

Although Arrow’s theorem was conceived within the context of group decision making, it
also has an interesting application within the setting of individual decision making.

We often evaluate alternatives along different dimensions. Consider the following
example: Jane is relocating because of her job and is looking to buy a house in the new
location. She has seen two houses that are offered at the same price. House A is rather
far from the workplace but is in very good condition and requires very little remodeling.
House B is very close to her new place of work but is in very poor condition and requires
substantial remodeling. This is illustrated in Figure 11.2, where on the horizontal axis we
measure the amount of remodeling required – the less the better – and on the vertical axis
we measure the house’s distance from the workplace – the less the better.

distance from
workplace

better

better

worse

worse

0

amount of
remodeling
required

Figure 11.2: Two houses ranked in terms of two dimensions

It is clear that along the “distance dimension”, denoted by d, house B is better than
house A (B ≻d A), while along the “remodeling dimension”, denoted by r, house A is better
than house B (A ≻r B). Thus, in order to decide which house to buy, Jane will need to
somehow resolve this conflict.
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Let us now look at a three-attribute example. John is considering buying a new car. He
has narrowed down his choice to three models, which he ranks as follows in terms of three
attributes (price, speed and fuel efficiency):

Attribute
Price Speed Fuel efficiency

A Best Worst Middle
Model B Middle Best Worst

C Worst Middle Best

Suppose that John decides to rank model x above model y if and only if the former is better
than the latter in terms of at least two attributes.
Then his ranking will be as follows: A ≻ B (because A is better than B in terms of price
and fuel efficiency), B ≻C (because B dominates C in terms of price and speed) and C ≻ A
(because C is better than A in terms of speed and fuel efficiency).
Thus, his ranking violates transitivity (and he can be subjected to a money pump: see
Chapter 1). Of course, we are familiar with this example because it is nothing more than
Condorcet’s paradox.

In general we can think of each attribute as a “voter” and of the individual’s overall
ranking as the “social ranking”, that is, we can think of multi-attribute situations as a
problem of aggregation of preferences.

Suppose that there there are at least three alternatives and an individual is able to come
up with a complete and transitive ranking of the alternatives in terms of each of two or
more attributes and aims to “extract” a ranking of the set of alternatives by devising a
method that satisfies the following properties:

1. For each attribute, no complete and transitive ranking of the alternatives should be
ruled out in principle.

2. The overall ranking should be complete and transitive.

3. If an alternative x is better than another alternative y in terms of each attribute then x
should be better than y in the overall ranking.

4. No single attribute should be a “dictator”in the sense that, for every pair of alterna-
tives x and y, x being better than y in terms of that attribute is sufficient for x to be
ranked above y in the overall ranking.

5. In the overall ranking, the ranking of any two alternatives x and y should be based
only on how these two alternatives are ranked according to each attribute.

Then, by Arrow’s theorem, it is impossible to find such a method.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 11.5.4 at the end of this chapter.
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11.5 Exercises

The solutions to the following exercises are given in Section 11.6 at the end of this chapter.

11.5.1 Exercises for Section 11.1: Social preference functions

Exercise 11.1 Consider the following voting procedure, called the Borda count. Each
person states a strict ranking (that is, no indifference is allowed) of the m alternatives
and the committee chair proceeds as follows. For each voter’s ranking, the chair assigns
m points to the alternative ranked first, m−1 points to the alternative ranked second,
and so on. Then, for each alternative, the chair adds up all the points and ranks the
alternatives based on the total points received. This procedure thus extracts a social
ranking from a profile of individual rankings.

(a) Consider the following rankings of three alternatives, called a, b and c, by three
individuals. What is the social ranking obtained with the Borda count?

Voter 1 Voter 2 Voter 3
best a b c

b a b
worst c c a

(b) Consider now the following ranking. What is the social ranking obtained with the
Borda count?

Voter 1 Voter 2 Voter 3
best a c b

b a c
worst c b a

■

Exercise 11.2 There are four candidates for one position. The candidates are identified
by the first letter of their last name: a, b, c and x. There are seven voters, with the
following preferences (most preferred at the top and least preferred at the bottom).

Voter: 1 2 3 4 5 6 7
best x a b x a b x

c x a c x a c
b c x b c x b

worst a b c a b c a

Suppose that the Borda count is used and voters report their preferences truthfully.
(a) What is the social ranking? Who wins the election? If voting takes place over the

four candidates and then, after the election, candidate x is disqualified, who is
the chosen candidate according to the social ranking?

(b) Suppose that, just before the vote, candidate x drops out (e.g. because he is
disqualified). What is the new social ranking, given that voting is only over
candidates a, b and c? Who wins the election?

■
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Exercise 11.3 As shown in Section 11.1, the majority rule does not always yield a
transitive social ranking. In this exercise you are asked to show that there are other
problems with the majority rule. Consider the method of majority voting with a pre-
determined agenda: it is established in advance that a series of votes will be taken, each
vote will concern two alternatives and the winner of one vote will be put up against
another alternative for the next vote, etc., until a final choice is made. The sequence in
which votes will be taken is pre-determined; for example, first there will be a vote to
choose between a and b and then there will be a vote to choose between the winner of
the first vote and c, and so on.

(a) Give an example with three voters and four alternatives where this procedure will
end up selecting an alternative y as the final choice despite the fact that there is
another alternative x that everybody prefers to y.

(b) So far we have assumed that individuals vote according to their true preferences.
Now consider the situation where there are three voters and three alternatives:
a, b and c and the agenda is such that the first vote is between a and b and the
second vote is between the winner of the first vote and c. Construct an example
where (that is, specify a possible profile of preferences such that) one voter can
gain by “lying”, that is, by voting according to a ranking which is not her true
ranking.

■

11.5.2 Exercises for Section 11.2: Arrow’s impossibility theorem
Exercise 11.4 Consider again the Borda count (explained in Exercise 11.1).

(a) Which of Arrow’s axioms does the Borda count satisfy?

(b) Which of Arrow’s axioms does the Borda count violate? Show by means of an
example that the property you claim to be violated is indeed violated.

■

Exercise 11.5 Consider the following social preference function, which could be named
“Reverse Dictatorship”. First of all, each individual is allowed to state any complete
and transitive ranking of the alternatives.
Secondly, for any two alternatives x and y, (1) if x ≻1 y then y ≻S x and (2) if x ∼1 y
then x ≿S y if and only if x ≿2 y (thus the social ranking is determined exclusively by
the rankings of Individuals 1 and 2).

(a) Illustrate this aggregation procedure for the case of two alternative (X = {A,B})
and two individuals (N = {1,2}), using a table.

(b) Now consider the general case of any number of alternatives (greater than or
equal to 2) and any number of individuals (greater than or equal to 2). For each of
Arrow’s axioms state whether this procedure satisfies or violates the axiom and
provide enough details to support your claim.

■
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Exercise 11.6 In this exercise you are asked to show that the majority rule satisfies all
of Arrow’s axioms when there are only two alternatives. First, let us define (a version
of) the majority rule.
Majority rule: (1) x ≻S y if and only if the number of individuals who prefer x to y is
greater than the number of individuals who prefer y to x and (2) x ∼S y if and only if
the number of individuals who prefer x to y is equal to the number of individuals who
prefer y to x (note that it is possible for these two numbers to be equal to zero, which is
the case when everybody is indifferent between x and y).
Prove that the majority rule defined above satisfies all of Arrow’s axioms when the set
of alternatives is X = {A,B}. ■

Exercise 11.7 In Section 11.1 we considered the case where there are only two alterna-
tives, A and B (thus, X = {A,B}) and two voters (N = {1,2}) and restricted the set of
rankings by ruling out indifference, that is, S = {A ≻ B,B ≻ A}×{A ≻ B,B ≻ A} and
Q = {A ≻ B,B ≻ A}. We showed that in this case there are 16 possible social preference
functions, which are listed in (11.1). By appealing to Unanimity and Non-dictatorship
we were able to narrow down the list to the two SPFs shown below:

profile →
SPF ↓

A≻1B
A≻2B

A≻1B
B≻2A

B≻1A
A≻2B

B≻1A
B≻2A

SPF - 2 A ≻S B A ≻S B A ≻S B B ≻S A
SPF - 8 A ≻S B B ≻S A B ≻S A B ≻S A

Show that these two SPFs satisfy Arrow’s axioms (except for, of course, Unrestricted
Domain). ■

Exercise 11.8 There are three alternatives: A, B and C and five voters. Their stated
preferences are as follows:

Voter 1 Voter 2 Voter 3 Voter 4 Voter 5
best A B B C C

B C C A A
worst C A A B B

Use the Kemeny-Young method (explained in Section 11.2) to determine the associated
social ranking. [Note: you can restrict attention to strict rankings.] ■

11.5.3 Exercises for Section 11.3: Illustration of the proof of Arrow’s theorem

Exercise 11.9 Let the set of alternatives be X = {A,B,C}.
(a) List all the complete and transitive rankings of the elements of X .
(b) If there are 4 voters, how many profiles of preferences are there if we require

every individual ranking to be complete and transitive?
(c) If there are 2 individuals, how many social preference functions are there that

satisfy Unrestricted Domain and Rationality?
■
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11.5.4 Exercises for Section 11.4: Application of Arrow’s theorem to individual
choice

Exercise 11.10 Dan wants to come up with a ranking of three items, call them A,B and
C. He wants to buy the one that ends up being ranked highest. There are three attributes
that he can use to rank each alternative. He decides to use the following method.
First of all, for each attribute he classifies each item as ‘very good’ (V), ‘good’ (G) or
‘mediocre’ (M).
Then he assigns 3 points for a judgment of V, 2 points for a judgment of G and 1 point
for a judgment of M.
Finally, he adds up the points scored by each item and ranks the items according to the
total number of points received.
Which of Arrow’s axioms (restated as explained in Section 11.5.4) does this method
satisfy and which does it violate? ■

11.6 Solutions to Exercises
Solution to Exercise 11.1.

(a) Alternative a gets 3+ 2+ 1 = 6 points, b gets 2+ 3+ 2 = 7 points and c gets
1+1+3 = 5 points. Thus, the social ranking is

best b
a

worst c

(b) Each alternative gets 6 points. Thus, the social ranking is: society is indifferent
among all three alternatives. □

Solution to Exercise 11.2. Recall that the preferences of the seven voters are as follows:

Voter: 1 2 3 4 5 6 7
best x a b x a b x

c x a c x a c
b c x b c x b

worst a b c a b c a

(a) With the Borda count (and sincere reporting) x gets 4+3+2+4+3+2+4 = 22
points, a gets 1+4+3+1+4+3+1 = 17, b gets 2+1+4+2+1+4+2 = 16
and c gets 3+2+1+3+2+1+3 = 15. Thus, the social ranking is

best x
a
b

worst c

and the winner is x. If, after the election, x is disqualified and drops out then the next
best candidate will be chosen, that is candidate a.
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(b) Eliminating x from the above profile we have:

Voter: 1 2 3 4 5 6 7
best c a b c a b c

b c a b c a b
worst a b c a b c a

and using the Borda count with this profile we have that a gets 1+ 3+ 2+ 1+
3 + 2 + 1 = 13 points, b gets 2 + 1 + 3 + 2 + 1 + 3 + 2 = 14 points and c gets
3+2+1+3+2+1+3 = 15 points. Thus, the social ranking becomes

best c
b

worst a

that is, a complete reversal of the previous one! The winner is now c, who was the
lowest ranked candidate before! □

Solution to Exercise 11.3.
(a) Here is an example with three voters and four alternatives: a,b,x and y. The voters’

preferences are as follows:

Voter: 1 2 3
best x a b

y x a
b y x

worst a b y

The agenda is as follows: the first vote is between a and x, the second vote is between
the winner of the first vote and b, the third vote is between the winner of the second
vote and y. Then the winner of the first vote is a, the winner of the vote between a
and b is b and, finally, the winner of the vote between b and y is y. Thus, the selected
alternative is y. However, all three voters strictly prefer x to y!

(b) Let there be three voters and three alternatives: a,b and c and suppose that the
agenda is to choose first between a and b and then the winner is put up against c. Let
the voters’ preferences be as follows:

1’s ranking 2’s ranking 3’s ranking
best a b c

b c a
worst c a b

If everybody votes sincerely, then in the vote between a and b, the winner is a and in
the final vote between a and c the winner is c, which is Voter 1’s worst outcome. If 1
voted as if her true preferences were b ≻1 a ≻1 c, then she will vote for b in the first
round, so that (if everybody else votes sincerely) the winner is b and then in the final
vote between b and c, the winner is b, whom Voter 1 prefers to c (according to her
true preferences a ≻1 b ≻1 c). □
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Solution to Exercise 11.4.
(a) The Borda count satisfies Rationality, Non-dictatorship and Unanimity.
(b) The Borda count violates Unrestricted Domain (also called Freedom of Expression)

because it does not allow expression of indifference between two or more alternatives.
The Borda count also violates Independence of Irrelevant Alternatives. To see this,
consider the following profile of preferences:

1’s ranking 2’s ranking 3’s ranking
best a b c

b c a
worst c a b

The Borda count assigns 6 points to each alternative and thus the social ranking is
a ∼S b ∼S c; note that, in particular, a∼S b . Consider now the following profile of
preferences, which does not differ from the previous one in terms of how the three
individuals rank a versus b:

1’s ranking 2’s ranking 3’s ranking
best a b a

b c c
worst c a b

In this profile the Borda count assigns 7 points to a, 6 points to b and 5 points to c,
so that the associated social ranking is

best a
b

worst c

so that, in particular, a ≻S b yielding a violation of Independence of Irrelevant
Alternatives.18 □

Solution to Exercise 11.5.
(a) The table is as follows:

Individual 2’s ranking
A ≻2 B A ∼2 B B ≻2 A

Individual A ≻1 B B ≻S A B ≻S A B ≻S A
1’s A ∼1 B A ≻S B A ∼S B B ≻S A

ranking B ≻1 A A ≻S B A ≻S B A ≻S B

18Since, for each individual, the ranking of a and b is the same in the two profiles (namely, a ≻1 b, b ≻2 a,
and a ≻3 b), Independence of Irrelevant Alternatives requires that the social ranking of a and b be the same
in the two profiles.
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(b) The Unrestricted Domain axiom is satisfied by construction (each individual is
allowed to state any complete and transitive ranking.
The Unanimity axiom fails: suppose that x ≻i y, for all i ∈ N; then, in particular,
x ≻1 y and thus we have that y ≻S x.
The Independence of Irrelevant Alternatives axiom is satisfied: the ranking of any
two alternatives is only based on how individuals 1 and 2 rank them and nothing
else.
The Non-dictatorship axiom is satisfied: individual 1 is clearly not a dictator and
individual 2 is not a dictator either because in the case where x ≻2 y and x ≻1 y we
have that y ≻S x.
The Rationality axiom requires some thinking. Clearly the social ranking is complete,
because for any two alternatives x and y, the rule yields a social ranking of them (if
x ≻1 y then y ≻S x, if y ≻1 x then x ≻S y and if x ∼1 y then the social ranking of x
and y mirrors the ranking of Individual 2).
The issue is whether the social ranking is transitive. The answer is affirmative and
we prove this by contradiction. Suppose that transitivity fails, that is, suppose there
are three alternatives x, y and z such that

• x ≿S y (which implies that y ≿1 x),

• y ≿S z (which implies that y ≿1 z)

• and yet z ≻S x.

Let us think about why it is the case that z ≻S x. There are two possibilities.

CASE 1: z ≻S x because

x ≻1 z. (11.13)

From y≿1 x (implied by the hypothesis that x≿S y) and (11.13) we get, by transitivity
of 1’s ranking, that y ≻1 z, but this requires z ≻S y, contradicting our hypothesis that
y ≿S z. Thus, this case is ruled out.

CASE 2: z ≻S x because

x ∼1 z and z ≻2 x. (11.14)

It cannot be that y ≻1 x because, together with x ∼1 z it would yield (by transitivity of
1’s ranking) that y ≻1 z, from which it would follow that z ≻S y, contradicting your
hypothesis that y ≿S z. Thus, since y ≿1 x (implied by the hypothesis that x ≿S y), it
must be that y ∼1 x, so that (by transitivity of 1’s ranking) x ∼1 y ∼1 z and thus the
ranking of any two of these three alternatives mirrors the ranking of Individual 2.
Since Individual 2’s ranking is transitive we have reached a contradiction. Thus, we
conclude that the Rationality axiom is indeed satisfied.
To sum up: the social preference function under consideration satisfies all of Arrow’s
axioms, except Unanimity. □
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Solution to Exercise 11.6.
1. Unrestricted Domain is satisfied, because the rule allows for every possible individual

ranking (A ≻ B,A ∼ B and B ≻ A).
2. Rationality is also satisfied: transitivity is trivially true when there are only two

alternatives and completeness is satisfied because one of A ≻S B, A ∼S B and B ≻S A
is always true.

3. Unanimity is clearly satisfied because when all the individuals prefer x to y the
number of individuals who prefer x to y is n and the number of individuals who
prefer y to x is 0 and thus x ≻S y.

4. Non-dictatorship is satisfied because, for every pair of alternatives x and y and for
every individual, there is a profile where she prefers x to y and everybody else prefers
y to x, in which case either y ≻S x, if n ≥ 3, or x ∼S y, if n = 2.

5. Independence of Irrelevant Alternatives, like transitivity, is trivially true when there
are only two alternatives. □

Solution to Exercise 11.7.
1. Rationality is clearly satisfied (as remarked in the previous exercise, transitivity is

trivially satisfied when there are only two alternatives).
2. Unanimity is also clearly satisfied: it only requires A ≻S B in the first column and

B ≻S A in the fourth column.
3. Non-dictatorship is also satisfied. In SPF-2 Individual 1 is not a dictator because of

column 3 (B ≻1 A but A ≻S B) and Individual 2 is not a dictator because of column
2 (B ≻2 A but A ≻S B). In SPF-8 Individual 1 is not a dictator because of column 2
and Individual 2 is not a dictator because of column 3.

4. As remarked in the previous exercise, Independence of Irrelevant Alternatives is
trivially satisfied when there are only two alternatives. □

Solution to Exercise 11.8. The stated preferences are:

voter 1 voter 2 voter 3 voter 4 voter 5
best A B B C C

B C C A A
worst C A A B B

The scores are computed as follows:

Ranking Score
A ≻ B ≻C #(A ≻ B)+#(A ≻C)+#(B ≻C) = 3+1+3 = 7
A ≻C ≻ B #(A ≻C)+#(A ≻ B)+#(C ≻ B) = 1+3+2 = 6
B ≻ A ≻C #(B ≻ A)+#(B ≻C)+#(A ≻C) = 2+3+1 = 6
B ≻C ≻ A #(B ≻C)+#(B ≻ A)+#(C ≻ A) = 3+2+4 = 9
C ≻ A ≻ B #(C ≻ A)+#(C ≻ B)+#(A ≻ B) = 4+2+3 = 9
C ≻ B ≻ A #(C ≻ B)+#(C ≻ A)+#(B ≻ A) = 2+4+2 = 8

Thus, the Kemeny-Young method selects either B ≻C ≻ A or C ≻ A ≻ B as social ranking.
□
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Solution to Exercise 11.9.

(a) There are 13 such rankings:

(1) A ∼ B ∼C, (2) A ∼ B ≻C, (3) A ∼C ≻ B, (4) B ∼C ≻ A,

(5) A ≻ B ∼C, (6) B ≻ A ∼C, (7) C ≻ A ∼ B, (8) A ≻ B ≻C,

(9) A ≻C ≻ B, (10) B ≻ A ≻C, (11) B ≻C ≻ A, (12) C ≻ A ≻ B,

(13) C ≻ B ≻ A.

(b) We have to specify one of 13 possible rankings for each individual, thus the total
number of profiles is 134 = 28,561.

(c) With 2 individuals the number of profiles of preferences is 132 = 169. For each
of these we have to pick one ranking out of the 13 listed in Part (a), thus the total
number of SPFs is 13169 = 18,048×10184 (greater than 18 followed by 187 zeros)!

□

Solution to Exercise 11.10. This is essentially the Borda count (see Exercise 11.5.1)
applied to this context. It satisfies all of Arrow’s axioms except for Independence of
Irrelevant Alternatives.19 To see this, consider the following classification:

Attribute 1 Attribute 2 Attribute 3
Very good A C B

Good B A C
Mediocre C B A

Then each alternative gets 3+2+1 = 6 points and thus the derived ranking is A ∼ B ∼C.
Now consider the following alternative ranking which preserves the ordinal ranking of A
and B in terms of each attribute:

Attribute 1 Attribute 2 Attribute 3
Very good A, C A, C B, C

Good B B A
Mediocre

Then A gets 3+ 3+ 2 = 8 points, B gets 2+ 2+ 3 = 7 points and C gets 3+ 3+ 3 = 9
points. Thus, the associated ranking is C ≻ A ≻ B. Hence, the ranking of A and B has
changed from A ∼ B to A ≻ B, despite the fact that the ordinal ranking A and B in terms of
each attribute has not changed: a violation of Independence of Irrelevant Alternatives. □

19Contrary to Exercise 11.5.4, Unrestricted Domain is satisfied, because the stated rule does not require a
strict ranking in terms of individual attributes: for example, all three items can be classified as V in terms of
one attribute.





12. Misrepresentation of Preferences

12.1 Social choice functions

Arrow’s theorem says that it is not possible to extract from a profile of individual pref-
erences a preference ranking for society with a procedure that satisfies five desirable
properties: Unrestricted Domain, Rationality, Unanimity, Non-dictatorship and Indepen-
dence of Irrelevant Alternatives. Perhaps Arrow’s approach is too demanding, in that it
requires that a ranking of the entire set of alternatives be obtained for society. After all, if
the purpose of voting procedures is to arrive at some choice among the alternatives, then
we can dispense with a complete ranking and just focus on the final choice. Thus, we
could look for a simpler object that extracts from a profile of individual preferences one
alternative, to be thought of as society’s choice. Such an object is called a Social Choice
Function (SCF).

Definition 12.1.1 Let X = {x1,x2, . . . ,xm} (m ≥ 2) be a finite set of alternatives, N =
{1,2, . . . ,n} (n ≥ 2) a finite set of individuals, R the set of complete and transitive
binary relations on X , Rn the cartesian product R×R×·· ·×R︸ ︷︷ ︸

n times

(thus an element of

Rn is a list of complete and transitive preference relations on the set of alternatives X ,
one for each individual; we call an element of Rn a profile of preferences) and let S be
a subset of Rn. A social choice function is a function f : S → X that takes as input a
profile of preferences for the individuals (≿1,≿2, . . . ,≿n) ∈ S and produces as output
an alternative f (≿1,≿2, . . . ,≿n) ∈ X to be thought of as “society’s choice”.

For example, suppose that there are only two alternatives, a and b (thus X = {a,b}), only
strict rankings can be reported (that is, S = {a ≻ b,b ≻ a}×{a ≻ b,b ≻ a}), and two
voters (N = {1,2}). Then, in order to construct a SCF we need to replace each □ in the
following table with either an a or a b:
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Individual 2’s ranking
a ≻2 b b ≻2 a

Individual 1’s a ≻1 b □ □
ranking b ≻1 a □ □

Thus, there are 24 = 16 possible SCFs, which are listed below:

(SCF-1)

2
a ≻2 b b ≻2 a

1
a ≻1 b a a
b ≻1 a a a

(SCF-2)

2
a ≻2 b b ≻2 a

1
a ≻1 b a a
b ≻1 a a b

(SCF-3)

2
a ≻2 b b ≻2 a

1
a ≻1 b a a
b ≻1 a b a

(SCF-4)

2
a ≻2 b b ≻2 a

1
a ≻1 b a b
b ≻1 a a a

(SCF-5)

2
a ≻2 b b ≻2 a

1
a ≻1 b b a
b ≻1 a a a

(SCF-6)

2
a ≻2 b b ≻2 a

1
a ≻1 b a a
b ≻1 a b b

(SCF-7)

2
a ≻2 b b ≻2 a

1
a ≻1 b a b
b ≻1 a a b

(SCF-8)

2
a ≻2 b b ≻2 a

1
a ≻1 b a b
b ≻1 a b a

(SCF-9)

2
a ≻2 b b ≻2 a

1
a ≻1 b b a
b ≻1 a a b

(SCF-10)

2
a ≻2 b b ≻2 a

1
a ≻1 b b a
b ≻1 a b a

(SCF-11)

2
a ≻2 b b ≻2 a

1
a ≻1 b b b
b ≻1 a a a

(SCF-12)

2
a ≻2 b b ≻2 a

1
a ≻1 b a b
b ≻1 a b b

(SCF-13)

2
a ≻2 b b ≻2 a

1
a ≻1 b b a
b ≻1 a b b

(SCF-14)

2
a ≻2 b b ≻2 a

1
a ≻1 b b b
b ≻1 a a b

(SCF-15)

2
a ≻2 b b ≻2 a

1
a ≻1 b b b
b ≻1 a b a

(SCF-16)

2
a ≻2 b b ≻2 a

1
a ≻1 b b b
b ≻1 a b b
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Which of these SCFs should one reject on the basis of some general “reasonable” require-
ments?

First requirement: Unanimity. If all the individuals list alternative x at the top of their
reported rankings then x should be chosen. In the above example this requirement amounts

to insisting that the main diagonal be as follows:
a

b .

By appealing to Unanimity we can thus reject SCF-1, SCF-3, SCF-4, SCF-5, SCF-8,
SCF-9, SCF-10, SCF-11, SCF-13, SCF-14, SCF-15 and SCF-16. Thus, we are left with
the following four SCFs:

(SCF-2)

2
a ≻2 b b ≻2 a

1
a ≻1 b a a
b ≻1 a a b

(SCF-6)

2
a ≻2 b b ≻2 a

1
a ≻1 b a a
b ≻1 a b b

(SCF-7)

2
a ≻2 b b ≻2 a

1
a ≻1 b a b
b ≻1 a a b

(SCF-12)

2
a ≻2 b b ≻2 a

1
a ≻1 b a b
b ≻1 a b b

Second requirement: Non-dictatorship. There should not be a “dictator”, that is, an
individual whose top alternative is always chosen. In the above example there should not
be an individual who is such that if he reports a ≻ b then a is chosen and if he reports
b ≻ a then b is chosen.

On the basis of Non-dictatorship we must thus reject SCF-6 (where Individual 1 is a
dictator) and SCF-7 (where Individual 2 is a dictator).

Hence, we are left two SCFs:

(SCF-2)

2
a ≻2 b b ≻2 a

1
a ≻1 b a a
b ≻1 a a b

(SCF-12)

2
a ≻2 b b ≻2 a

1
a ≻1 b a b
b ≻1 a b b

Can these two remaining SCFs be considered “reasonable”or “good”? Are there any other
requirements that one should impose?

One issue that we have not addressed so far is the issue of misrepresentation of
preferences. We have implicitly assumed up to now that each individual, when asked to
report her ranking of the alternatives, will do so sincerely, that is, she will not report a
ranking that is different from her true ranking. Is this an issue one should worry about?
In the next section we will go through a number of popular SCFs and show that they all
provide incentives for individuals to lie in reporting their preferences.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 12.5.1 at the end of this chapter.
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12.2 Strategic voting
We shall illustrate the issue of strategic voting, or misrepresentation of preferences, in
several popular voting methods which can be viewed as social choice functions.

Plurality voting with a default alternative. We illustrate this procedure for the
case of three alternatives: X = {a,b,c} and three voters: N = {1,2,3}. We assume that
each voter can only report a strict ranking of the alternatives (that is, indifference is not
allowed). Thus – as we saw in the previous chapter – there are six possible rankings that
an individual can choose from when deciding what to report: a ≻ b ≻ c, a ≻ c ≻ b, b ≻
a ≻ c, b ≻ c ≻ a, c ≻ a ≻ b, c ≻ b ≻ a. To simplify the notation, we shall write them
as abc, acb, bac, bca, cab, cba, that is, we read xyz as x ≻ y ≻ z. We take a to be the
designated default alternative and the voting procedure is as follows:

• If two or more individuals list alternative b at the top of their ranking, then b is
chosen,

• if two or more individuals list alternative c at the top of their ranking, then c is
chosen,

• otherwise, the default alternative a is chosen (thus, a is chosen when two or more
individuals list it at the top of their ranking or when there is complete disagreement,
in the sense that one individual lists a at the top, another lists b at the top and the
third lists c at the top).

How can we represent this voting procedure or SCF? We need six tables: each table labeled
with one possible reported ranking of Individual 3; each table has six rows: each row
labeled with one possible reported ranking of Individual 1, and six columns: each column
labeled with one possible reported ranking of Individual 2. Inside each cell of each table
we write the alternative chosen by the procedure described above. This is shown in Figure
12.1.

Let us first check if this SCF satisfies Unanimity and Non-dictatorship. Unanimity
requires that when an alternative is listed at the top of each reported ranking then it should
be chosen, that is, it requires the following, which is highlighted in Figure 12.2:

1. in the two tables at the top (corresponding to the cases where Voter 3 reports abc or
acb) there should be an a in the following cells: (row 1, column 1), (row 1, column
2), (row 2, column 1) and (row 2, column 2) [these are the cases where every voter
ranks a at the top],

2. in the two tables in the middle (corresponding to the cases where Voter 3 reports bac
or bca) there should be a b in the following cells: (row 3, column 3), (row 3, column
4), (row 4, column 3) and (row 4, column 4) [these are the cases where every voter
ranks b at the top],

3. in the two tables at the bottom (corresponding to the cases where Voter 3 reports cab
or cba) there should be a c in the following cells: (row 5, column 5), (row 5, column
6), (row 6, column 5) and (row 6, column 6) [these are the cases where every voter
ranks c at the top].

Thus, Unanimity only restricts the values in four cells in each table as shown in Figure
12.2.

Non-dictatorship is also satisfied, since for each individual there is at least one situation
where she lists an alternative, say x, at the top and yet that alternative is not chosen because
the other two individuals list a different alternative, say y, at the top.
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2’s 
1’s 
abc a a a a a a
acb a a a a a a
bac a a b b a a
bca a a b b a a
cab a a a a c c
cba a a a a c c

3 reports abc

abc acb bac bca cab cba

 

2’s 
1’s 
abc a a a a a a
acb a a a a a a
bac a a b b a a
bca a a b b a a
cab a a a a c c
cba a a a a c c

3 reports acb

abc acb bac bca cab cba

 

2’s 
1’s 
abc a a b b a a
acb a a b b a a
bac b b b b b b
bca b b b b b b
cab a a b b c c
cba a a b b c c

3 reports bac

abc acb bac bca cab cba

 

2’s 
1’s 
abc a a b b a a
acb a a b b a a
bac b b b b b b
bca b b b b b b
cab a a b b c c
cba a a b b c c

3 reports bca

abc acb bac bca cab cba

 

`
1’s 
abc a a a a c c
acb a a a a c c
bac a a b b c c
bca a a b b c c
cab c c c c c c
cba c c c c c c

3 reports cab

abc acb bac bca cab cba

 

`
1’s 
abc a a a a c c
acb a a a a c c
bac a a b b c c
bca a a b b c c
cab c c c c c c
cba c c c c c c

3 reports cba

abc acb bac bca cab cba

 

 

Figure 12.1: Plurality voting with a as the default alternative
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2’s 
1’s 
abc a a a a a a
acb a a a a a a
bac a a b b a a
bca a a b b a a
cab a a a a c c
cba a a a a c c

3 reports abc

abc acb bac bca cab cba

 

2’s 
1’s 
abc a a a a a a
acb a a a a a a
bac a a b b a a
bca a a b b a a
cab a a a a c c
cba a a a a c c

3 reports acb

abc acb bac bca cab cba

 

2’s 
1’s 
abc a a b b a a
acb a a b b a a
bac b b b b b b
bca b b b b b b
cab a a b b c c
cba a a b b c c

3 reports bac

abc acb bac bca cab cba

 

2’s 
1’s 
abc a a b b a a
acb a a b b a a
bac b b b b b b
bca b b b b b b
cab a a b b c c
cba a a b b c c

3 reports bca

abc acb bac bca cab cba

 

`
1’s 
abc a a a a c c
acb a a a a c c
bac a a b b c c
bca a a b b c c
cab c c c c c c
cba c c c c c c

3 reports cab

abc acb bac bca cab cba

 

`
1’s 
abc a a a a c c
acb a a a a c c
bac a a b b c c
bca a a b b c c
cab c c c c c c
cba c c c c c c

3 reports cba

abc acb bac bca cab cba

 

 

Figure 12.2: The highlights show the restrictions imposed by Unanimity
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It remains to verify if it is the case that no individual can ever gain by lying about
her preferences, that is, by reporting a ranking that is not her true ranking. We call this
requirement Non-manipulability or Strategy-proofness. Unfortunately, this requirement
is violated in this voting procedure. To see this, focus on the first table in Figure 12.1,
corresponding to the case where Individual 3 reports the ranking abc. This table is
reproduced in Figure 12.3. Consider the sixth column, corresponding to the case where
Individual 2 reports the ranking cba. Suppose that the true ranking of Individual 1 is bca
(4th row); if she reports her preferences truthfully, that is, if she reports bca (recall that this
means b ≻1 c ≻1 a) then the chosen alternative is a,1 which is the worst, according to her
true preferences; if, on the other hand, she lies and reports the false ranking cab then the
chosen alternative is c, which – according to her true ranking – is better than a (in her true
ranking, namely bca, c is the middle-ranked alternative while a is the worst).

2’s 
1’s 
abc a a a a a a
acb a a a a a a
bac a a b b a a
bca a a b b a a
cab a a a a c c
cba a a a a c c

3 reports abc

abc acb bac bca cab cba

 

Figure 12.3: The top-left table in Figure 12.2

The Condorcet method with a default alternative. The Condorcet method selects
that alternative – called the Condorcet winner – that would win a majority vote in all the
pairwise comparisons with each of the other alternatives; if such an alternative does not
exist, then a pre-determined default alternative is selected. As we did with plurality voting,
we illustrate this procedure for the case of three alternatives: X = {a,b,c} and three voters:
N = {1,2,3}, assuming that each voter can only report a strict ranking of the alternatives.
As before, we denote the ranking x ≻ y ≻ z by xyz. We take a to be the designated default
alternative. Let us first see what alternative the Condorcet method would select in a couple
of situations. If the reported rankings are as follows:

Voter 1 Voter 2 Voter 3
best c b a

b a b
worst a c c

then b is the Condorcet winner: a majority (consisting of Voters 1 and 2) prefers b ro a and
a majority (consisting of Voters 2 and 3) prefers b to c. Thus, b is selected. On the other

1Because there is complete disagreement: Voter 1 lists b at the top, Voter 2 lists c at the top and Voter 3
lists a at the top; hence, the default alternative, namely a, is chosen.
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hand, if the reported rankings are:

Voter 1 Voter 2 Voter 3
best a c b

b a c
worst c b a

then there is no Condorcet winner: a beats b but is beaten by c, b beats c but is beaten
by a and c beats a but is beaten by b (indeed, the majority rule yields a cycle: a majority
prefers a to b, a majority prefers b to c and a majority prefers c to a). Thus, since there is
no Condorcet winner, the default alternative a is chosen.

As we did with plurality voting, we can represent this SCF by means of six tables, each
with six rows and six columns, as shown in Figure 12.4. The reader might want to try to
construct the tables before looking at Figure 12.4.

Page 2 of 3 

2’s 
1’s 
abc a a a a a a
acb a a a a a a
bac a a b b a b
bca a a b b a b
cab a a a a c c
cba a a b b c c

3 reports abc

abc acb bac bca cab cba

 

2’s 
1’s 
abc a a a a a a
acb a a a a a a
bac a a b b a a
bca a a b b c c
cab a a a c c c
cba a a a c c c

3 reports acb

cab cbaabc acb bac bca

 

2’s 
1’s 
abc a a b b a b
acb a a b b a a
bac b b b b b b
bca b b b b b b
cab a a b b c c
cba b a b b c c

3 reports bac

cab cbaabc acb bac bca

 

2’s 
1’s 
abc a a b b a b
acb a a b b c c
bac b b b b b b
bca b b b b b b
cab a c b b c c
cba b c b b c c

3 reports bca

cab cbaabc acb bac bca

 

`
1’s 
abc a a a a c c
acb a a a c c c
bac a a b b c c
bca a c b b c c
cab c c c c c c
cba c c c c c c

3 reports cab

cab cbaabc acb bac bca

 

`
1’s 
abc a a b b c c
acb a a a c c c
bac b a b b c c
bca b c b b c c
cab c c c c c c
cba c c c c c c

3 reports cba

abc acb bac bca cab cba

 

Figure 12.4: The Condorcet method with a as the default alternative

Note that this is a different SCF from the one shown in Figure 12.1. For example, the entry
in the first table, row 6 and column 3 (corresponding to reported rankings cba for Voter 1,
bac for Voter 2 and abc for Voter 3) is a for plurality voting (the default alternative since
no two voters rank the same alternative at the top), but b for the Condorcet method (b is
the Condorcet winner).

It is straightforward to verify that the SCF shown in Figure 12.4 satisfies Unanimity
and Non-dictatorship (see Exercise 12.6). On the other hand, it fails to satisfy Non-
manipulability. To see this, suppose that Voter 2’s true ranking is bca and consider the first
table, row 5 and column 4, corresponding to the case where Voter 1 reports cab, Voter 2
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reports bca (thus, a truthful report) and Voter 3 reports abc. Then the chosen alternative
is a, which is the worst in Voter 2’s true ranking. If Voter 2 were to misrepresent his
preferences by reporting cab, then the chosen alternative would be c, which – according to
his true ranking bca – is better than a.

The Borda count. The Borda count is the following SCF. Each voter states a strict
ranking (that is, no indifference is allowed) of the m alternatives. For each voter’s ranking,
m points are assigned to the alternative ranked first, m−1 points to the alternative ranked
second, and so on, up to 1 point for the worst alternative. Then, for each alternative, all the
points are added up and the alternative with the largest score is chosen. A tie-breaking rule
must be specified in case two or more alternatives receive the largest score.

Like the previous two SCFs, the Borda count satisfies Unanimity and Non-dictatorship
but fails to satisfy Non-manipulability. For example, suppose that there are five alternatives:
X = {a,b,c,d,e} and five voters: N = {1,2,3,4,5}. Suppose that Voter 1’s true ranking
is:

Voter 1’s
true ranking

best a
c
d
b

worst e

(12.1)

Suppose also that Voter 1 expects the other voters to report the following rankings:

Voter 2 Voter 3 Voter 4 Voter 5
best b b c a

c c d b
e a a e
d e e d

worst a d b c

If Voter 1 reports her true ranking, then we get the following profile of rankings:

Voter 1 Voter 2 Voter 3 Voter 4 Voter 5 score
best a b b c a 5

c c c d b 4
d e a a e 3
b d e e d 2

worst e a d b c 1

Applying the Borda count we get the following scores, so that alternative c is chosen.

a : 5+1+3+3+5 = 17
b : 2+5+5+1+4 = 17
c : 4+4+4+5+1 = 18
d : 3+2+1+4+2 = 12
e : 1+3+2+2+3 = 11
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If, instead of her true ranking (12.1), Voter 1 were to report the following ranking:

best a
e
d
c

worst b

then we would get the following profile of rankings:

Voter 1 Voter 2 Voter 3 Voter 4 Voter 5 score
best a b b c a 5

e c c d b 4
d e a a e 3
c d e e d 2

worst b a d b c 1

Applying the Borda count we get the following scores:

a : 5+1+3+3+5 = 17
b : 1+5+5+1+4 = 16
c : 2+4+4+5+1 = 16
d : 3+2+1+4+2 = 12
e : 4+3+2+2+3 = 14

so that alternative a would be chosen, which – according to her true ranking (12.1) –
Voter 1 prefers to c. Hence, Voter 1 has an incentive to misrepresent her preferences.

Note that manipulability of a SCF does not mean that for every individual there is a
situation where that individual can bring about a better outcome by misrepresenting her
preferences. A SCF is manipulable as long as there is at least one individual who can bring
about a better outcome by reporting a ranking which is different from her true ranking in
at least one situation.

For example, consider the following SCF. There are three alternatives: X = {a,b,c}
and three voters: N = {1,2,3}. Each voter reports a strict ranking of the alternatives. Voter
1 is given privileged status in that her top-ranked alternative is assigned 1.5 points (and
the other two alternatives 0 points), while for each of the other two voters his top-ranked
alternative is assigned 1 point (and the other two alternatives 0 points). The alternative
with the largest number of points is selected. This SCF is shown in Figure 12.5 on the next
page.
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Page 1 of 2 

2’s 

1’s 

abc a a a a a a

acb a a a a a a

bac a a b b b b

bca a a b b b b

cab a a c c c c

cba a a c c c c

3 reports abc

abc acb bac bca cab cba

 

2’s 

1’s 

abc a a a a a a

acb a a a a a a

bac a a b b b b

bca a a b b b b

cab a a c c c c

cba a a c c c c

3 reports acb

abc acb bac bca cab cba

 

2’s 

1’s 

abc a a b b a a

acb a a b b a a

bac b b b b b b

bca b b b b b b

cab c c b b c c

cba c c b b c c

3 reports bac

cab cbaabc acb bac bca

 

2’s 

1’s 

abc a a b b a a

acb a a b b a a

bac b b b b b b

bca b b b b b b

cab c c b b c c

cba c c b b c c

3 reports bca

abc acb bac bca cab cba

 

`

1’s 

abc a a a a c c

acb a a a a c c

bac b b b b c c

bca b b b b c c

cab c c c c c c

cba c c c c c c

3 reports cab

abc acb bac bca cab cba

 

`

1’s 

abc a a a a c c

acb a a a a c c

bac b b b b c c

bca b b b b c c

cab c c c c c c

cba c c c c c c

3 reports cba

abc acb bac bca cab cba

 

Figure 12.5: Majority voting with a slight advantage given to Voter 1

The privileged status of Voter 1 has an impact only when there is complete disagreement,
as is the case, for example, in the first table, row 3, column 5, corresponding to the case
where Voter 1 reports bac, Voter 2 reports cab and Voter 3 reports abc. In this case b gets
1.5 points, c gets 1 point and a gets 1 point, so that b – the top alternative in Voter 1’s
reported ranking – is selected. In this SCF there is no situation where Voter 1 can benefit
from misreporting her preferences. To see this, suppose that the top-ranked alternative in
Voter 1’s true ranking is x. One of two scenarios must occur:

1. Voters 2 and 3 report the same alternative, call it y, at the top of their ranking (it
might be that y = x or might it be be that y ̸= x). In this case alternative y is chosen
and it will be chosen no matter what ranking Voter 1 reports (y already gets 2 points
and Voter 1’s report either adds 1.5 points to y or assigns 1.5 points to an alternative
different from y). Thus, in this scenario, telling the truth and lying produce the same
outcome; in particular, lying cannot be better than truthful reporting.

2. Voters 2 and 3 report different alternatives at the top of their rankings. In this case if
Voter 1 reports truthfully, the chosen alternative will be x (either there is complete
disagreement and x gets 1.5 points, while the other two alternatives get 1 point each,
or one of Voters 2 and 3 has x at the top, in which case x gets 2.5 points). If Voter 1
lies then the alternative at the top of her reported ranking is chosen (same reasoning:
either it is chosen because there is complete disagreement or it is chosen because
Voter 1 forms a majority with one of the other two voters). Thus, if the alternative at
the top of her reported ranking is not x, then Voter 1 is worse off by lying.

On the other hand, for both Voter 2 and Voter 3 there are situations where they gain by
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misrepresenting their preferences. We shall show this for Voter 2 and let the reader show
that Voter 3 can gain by misrepresentation (Exercise 12.7). For Voter 2, consider the
situation represented by the first table (Voter 3 reports abc) and row 6 (Voter 1 reports cba)
and suppose that Voter 2’s true ranking is bac (column 3). If Voter 2 reports truthfully,
then the selected alternative is c, which is the worst from his point of view; if, on the other
hand, Voter 3 reports abc, then the selected alternative is a, which – according to Voter 2’s
true ranking bac – is better than c.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 12.5.2 at the end of this chapter.

12.3 The Gibbard-Satterthwaite theorem

The Gibbard-Satterthwaite theorem is a result published independently by philosopher
Allan Gibbard in 19732 and economist Mark Satterthwaite in 1975.3

As for the case of Arrow’s theorem, the objective is to determine if there are Social
Choice Functions (see Definition 12.1.1) that satisfy some “reasonable” properties, which
we will call axioms, as we did in the previous chapter.

We assume that the domain of the Social Choice Function (SCF) is the set of profiles
of strict rankings of the set of alternatives X (that is, indifference is ruled out). Let P
denote the set of strict rankings of the elements of X . Then the domain of the SCF is
taken to be Pn = P ×·· ·×P︸ ︷︷ ︸

n times

. Thus, individuals are not allowed to report indifference

between any two alternatives, but – subject to this restriction – any strict ranking can be
reported. Hence, this is a limited form of the property of Unrestricted Domain considered
in the previous chapter. The axioms that we consider are the following:

• Axiom 1: Unanimity. If alternative x is the top-ranked alternative in the reported
ranking of every individual, then it should be chosen by society: if, for every
individual i, x ≻i y for every alternative y ̸= x then f (≻1, . . . ,≻n) = x.

• Axiom 2: Non-dictatorship. There is no individual i whose top alternative – in her
reported ranking – is always chosen. Formally, this can be stated as follows: for
every individual i ∈ N, there is a profile of reported preferences (≻1, . . . ,≻n) such
that if f (≻1, . . . ,≻n) = x ∈ X then x is not at the top of ≻i (that is, there exists a
y ∈ X such that y ̸= x and y ≻i x).

2Allan Gibbard, “Manipulation of voting schemes: a general result”, Econometrica, 1973, Vol. 41 (4),
pages 587-601.

3Mark Satterthwaite, “Strategy-proofness and Arrow’s conditions: existence and correspondence theo-
rems for voting procedures and social welfare functions”, Journal of Economic Theory, 1975, Vol. 10 (2),
pages 187-217.
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• Axiom 3: Non-manipulability or Strategy-proofness. There is no situation where
some individual can gain by reporting a ranking different from her true ranking.
Formally, this can be stated as follows. Fix an arbitrary individual i ∈ N and an
arbitrary profile (≻1, . . . ,≻i−1,≻i,≻i+1, . . . ,≻n) ∈ Pn and let f (≻1, . . . ,≻i−1,≻i
,≻i+1, . . . ,≻n) = x ∈ X . Then there is no ≻′

i∈P such that f (≻1, . . . ,≻i−1,≻′
i,≻i+1

, . . . ,≻n) ≻i x (think of ≻i as the true ranking of individual i and ≻′
i as a possible

lie).

The following theorem provides an “impossibility result” similar to Arrow’s impossibility
theorem.

Theorem 12.3.1 [Gibbard-Satterthwaite theorem] If the set of alternatives X contains
at least three elements, there is no Social Choice Function f : Pn → X that satisfies
Unanimity, Non-dictatorship and Non-manipulability.

An alternative way of stating the above theorem is as follows: if a SCF satisfies Unanimity
and one of the other two axioms then it fails to satisfy the third axiom (for example, if a
SCF satisfies Unanimity and Non-dictatorship then it violates Non-manipulability).4

In the next section we illustrate the logic of the proof of Theorem 12.3.1 by focusing
on the simple case of three alternatives and two voters.5

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 12.5.3 at the end of this chapter.

4Sometimes the Gibbard-Satterthwaite theorem is stated with the premise ‘if the range of the SCF contains
at least three alternatives ...’, but this clause is implied by the assumptions that the set X contains at least
three elements and that the SCF satisfies Unanimity.

5A relatively simple proof for the general case can be found in Jean-Pierre Benoit, “The Gibbard-
Satterthwaite theorem: a simple proof”, Economics Letters, Vol. 69, 2000, pages 319-322. See also the
references therein for alternative proofs.
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12.4 Illustration of the proof of the Gibbard-Satterthwaite theorem
In this section we prove the Gibbard-Satterthwaite theorem (Theorem 12.3.1) for the case
where there are three alternatives, called x, y and z, and two individuals (N = {1,2}).
There are six possible strict rankings of the set X = {x,y,z} and thus any SCF can be
represented as a table with six rows and six columns. We will show that any SCF that
satisfies Unanimity and Non-manipulability must violate Non-dictatorship. Fix a SCF
that satisfies Unanimity. Then the blocks on the main diagonal must be filled as shown
in Figure 12.6 (Unanimity forces the values of 12 out of 36 entries; as usual, xyz means
x ≻ y ≻ z and similarly for the other rankings).

1 2 3 4 5 6

xyz xzy yxz yzx zxy zyx

A xyz x x

B xzy x x

C yxz y y

D yzx y y

E zxy z z

F zyx z z

V

o

t

e

r

 

1

Voter  2

 

Figure 12.6: The requirement of Unanimity

Now consider the highlighted cell A4 in Figure 12.6. By Non-manipulability there
cannot be a z there otherwise Voter 1, with true preferences xyz (row A), would gain by
lying and reporting yxz (row C) when Voter 2 reports yzx (column 4). Thus, in cell A4
there must be either an x or a y. The strategy of the proof is to show that if there is an x in
cell A4 then Voter 1 must be a dictator, while if there is a y in cell A4 then Voter 2 must
be a dictator. We will only prove the first part, that is, that if there is an x in cell A4 then
Voter 1 must be a dictator.

Suppose that there is an x in cell A4. Then there must be an x also in cell B4 (the
cell marked with a 1 in Figure 12.7) otherwise Voter 1, with true preferences xzy (row
B), would gain by reporting xyz (row A) when Voter 2 reports yzx (column 4). Now, from
Voter 2’s point of view, there must be an x in all the boxes marked with a 2 otherwise
Voter 2, with true preferences yzx (column 4), would gain by “moving” either left or right
to get the “non-x” which she prefers to x. Thus, the top two rows are entirely made of x’s.

Now consider the highlighted cell C6 in Figure 12.7. There cannot be a z there because
Voter 1, with true preferences yxz (row C), would gain by reporting xzy (row B) when Voter
2 reports zyx (column 6); furthermore, there cannot be an x in cell C6 because Voter 2,
with true preferences zyx (column 6), would gain by reporting yzx (column 4) when Voter
1 reports yxz (row C). Thus, there must be a y in cell C6. It follows that there must be a y
also in cell D6 below, otherwise Voter 1, with true preferences yzx (row D), would gain
by reporting yxz (row C) when Voter 2 reports zyx (column 6). Thus, we have reached the
configuration shown in Figure 12.8.
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1 2 3 4 5 6

xyz xzy yxz yzx zxy zyx

A xyz x x


x

(not z) 

x


x



x

B xzy x x

x


x


x


x

C yxz y y

D yzx y y 

E zxy z z

F zyx z z

V

o

t

e

r

 

1

Voter  2

 

 

 Figure 12.7: Inferences from the presence of x in cell A4

1 2 3 4 5 6

xyz xzy yxz yzx zxy zyx

A xyz x x x x x x

B xzy x x x x x x

C yxz y y  y

D yzx y y
not x 
not z 

y

E zxy z z

F zyx z z

V

o

t

e

r

 

1

Voter  2

 

Figure 12.8: Further inferences
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Now consider the highlighted cell D5: there cannot be a z there otherwise Voter 2, with
true preferences zyx (column 6), would gain by reporting zxy (column 5) when Voter 1
reports yzx (row D) and there cannot be an x, otherwise Voter 1, with true preferences yzx
(row D), would gain by reporting zxy (row E) when Voter 2 reports zxy (column 5). Hence,
there must be a y in cell D5. Then there must be a y also in cell C5 otherwise Voter 1 with
true preferences yxz (row C) would gain by reporting yzx (row D) when Voter 2 reports zxy
(column 5). Thus, we have reached the configuration shown in Figure 12.9.

1 2 3 4 5 6

xyz xzy yxz yzx zxy zyx

A xyz x x x x x x

B xzy x x x x x x

C yxz   y y y y

D yzx   y y y y

E zxy z z

F zyx z z

V

o

t

e

r

 

1

Voter  2

 

Figure 12.9: Updated configuration

Now there must be a y in the remaining cells of rows C and D (marked with a 2
in Figure 12.9) because otherwise Voter 2 with true preferences zxy (column 5) would
gain by reporting either xyz (column 1) or xzy (column 2) when Voter 1 reports a ranking
corresponding to either row C or row D. Thus, we have shown that rows C and D consist
entirely of y’s.

Now consider cell E4 in Figure 12.10: there cannot be a y there because Voter 1,
with true preferences zxy (row E), would gain by reporting xyz (row A) in the situation
represented by column 4 and there cannot be an x because Voter 2, with true preferences
yzx (column 4), would gain by reporting zxy (column 5) in the situation represented by row
E.
Thus, there must be a z in cell E4. Then there must be a z also in cell F4 below otherwise
Voter 1, with true preferences zyx (row F), would gain by reporting zxy (row E) in the
situation represented by column 4.
Now in the highlighted cells F1, F2 and F3 there cannot be an x because Voter 1, with
true preferences zyx (row F), would gain by reporting yzx (row D) and there cannot be a y
because Voter 2, with true preferences yzx (column 4), would gain by reporting the ranking
corresponding to either column 1 or column 2 or column 3 in the situation represented by
row F . Thus, there must be a z in F1, F2 and F3. This implies that there must be a z in
the remaining cells too because Voter 1, with true preferences zxy (row E) would gain by
reporting zyx (row F).
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1 2 3 4 5 6

xyz xzy yxz yzx zxy zyx

A xyz x x x x x x

B xzy x x x x x x

C yxz y y y y y y

D yzx y y y y y y

E zxy
not x
not y

z z

F zyx
not x 

not y 

not x 

not y 

not x 

not y 
(z) z z

V

o

t

e

r

 

1

Voter  2

 

Figure 12.10: The last steps

Hence, we have shown that the SCF must have all x’s in rows A and B, all y’s in rows C
and D and all z’s in rows E and F , making Voter 1 a Dictator (in rows A and B her reported
top alternative is x and it is chosen no matter what Voter 2 reports, in rows C and D her
reported top alternative is y and it is chosen no matter what Voter 2 reports and in rows E
and F her reported top alternative is z and it is chosen no matter what Voter 2 reports).

The proof that if there had been a y in cell A4, then Voter 2 would have been a Dictator
is similar and we will omit it.

12.5 Exercises
The solutions to the following exercises are given in Section 12.6 at the end of this chapter.

12.5.1 Exercises for Section 12.1: Social choice functions
Exercise 12.1 Suppose that there are three alternatives: X = {a,b,c} and two voters:
N = {1,2} and consider SCFs that only allow the reporting of strict rankings so that
each individual must report one of the following:

a ≻ b ≻ c, a ≻ c ≻ b, b ≻ a ≻ c, b ≻ c ≻ a, c ≻ a ≻ b, c ≻ b ≻ a.

To simplify the notation, write them as abc, acb, bac, bca, cab, cba. In this case we
can represent a SCF by means of a table with six rows (each row labeled with one
ranking for Individual 1) and six columns (each column labeled with one ranking for
Individual 2).

(a) How many SCFs are there?
(b) Fill in the table as much as you can by using only the Unanimity principle.
(c) How many SCFs that satisfy the Unanimity principle are there?
(d) Show the SCF that corresponds to the case where Individual 2 is a dictator.

■
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Exercise 12.2 Consider again the case where there are three alternatives: X = {a,b,c}
and two voters: N = {1,2} and only strict rankings can be reported. Consider the SCF
shown in Figure 12.11.

(a) Does this SCF satisfy Unanimity?
(b) Show that this SCF satisfies Non-dictatorship.

■

 

2’s ranking  

1’s ranking  

abc acb bac bca cab cba 

abc a a a b c a 

acb a a b a a c 

bac b a b b b c 

bca a b b b c b 

cab a c c b c c 

cba c a b c c c 

 

 
Figure 12.11: An SCF when X = {a,b,c} and N = {1,2}

12.5.2 Exercises for Section 12.2: Strategic voting

Exercise 12.3 In Section 12.1 we considered the case of two alternatives and two
voters, with only strict rankings being allowed. We saw that in this case there are 16
possible SCFs, but by appealing to Unanimity and Non-dictatorship, one can reduce the
number to the two SCFs shown below:

(SCF-2)

2
a ≻2 b b ≻2 a

1
a ≻1 b a a
b ≻1 a a b

(SCF-12)

2
a ≻2 b b ≻2 a

1
a ≻1 b a b
b ≻1 a b b

(a) For SCF-2 show that neither individual can ever gain by misrepresenting his/her
preferences. Give enough details in your argument.

(b) For SCF-12 show that neither individual can ever gain by misrepresenting his/her
preferences. Give enough details in your argument.

■
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Exercise 12.4 Consider the SCF of Exercise 12.2, which is reproduced in Figure 12.12.
(a) Show that there is at least one situation where Individual 1 can gain by misrepre-

senting her preferences.
(b) Show that there is at least one situation where Individual 2 can gain by misrepre-

senting his preferences.
■

 

2’s ranking  

1’s ranking  

abc acb bac bca cab cba 

abc a a a b c a 

acb a a b a a c 

bac b a b b b c 

bca a b b b c b 

cab a c c b c c 

cba c a b c c c 

 

 
Figure 12.12: An SCF when X = {a,b,c} and N = {1,2}

Exercise 12.5 Consider the Borda count explained in Section 12.2, with the following
tie-breaking rule: if two or more alternatives get the highest score, then the alternative
that comes first in alphabetical order is chosen. Suppose that there are three alternatives:
X = {a,b,c} and three voters: N = {1,2,3}. Voter 1’s true ranking is:

Voter 1’s true ranking
best a

b
worst c

(12.2)

Suppose that Voter 1 expects the other two voters to report the following rankings:

Voter 2 Voter 3
best c c

b b
worst a a

(a) What alternative will be chosen if Voter 1 reports her true ranking (12.2)?
(b) Show that, by misrepresenting her preferences, Voter 1 can obtain a better alter-

native than the one found in Part (a).
■
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Exercise 12.6 Consider the SCF shown in Figure 12.13 (the Condorcet method with a
default alternative, previously shown in Figure 12.4), where there are three voters and
three alternatives.

(a) Show that it satisfies the Unanimity principle.
(b) Show it satisfies the Non-dictatorship principle.

■

Page 2 of 3 

2’s 
1’s 
abc a a a a a a
acb a a a a a a
bac a a b b a b
bca a a b b a b
cab a a a a c c
cba a a b b c c

3 reports abc

abc acb bac bca cab cba

 

2’s 
1’s 
abc a a a a a a
acb a a a a a a
bac a a b b a a
bca a a b b c c
cab a a a c c c
cba a a a c c c

3 reports acb

cab cbaabc acb bac bca

 

2’s 
1’s 
abc a a b b a b
acb a a b b a a
bac b b b b b b
bca b b b b b b
cab a a b b c c
cba b a b b c c

3 reports bac

cab cbaabc acb bac bca

 

2’s 
1’s 
abc a a b b a b
acb a a b b c c
bac b b b b b b
bca b b b b b b
cab a c b b c c
cba b c b b c c

3 reports bca

cab cbaabc acb bac bca

 

`
1’s 
abc a a a a c c
acb a a a c c c
bac a a b b c c
bca a c b b c c
cab c c c c c c
cba c c c c c c

3 reports cab

cab cbaabc acb bac bca

 

`
1’s 
abc a a b b c c
acb a a a c c c
bac b a b b c c
bca b c b b c c
cab c c c c c c
cba c c c c c c

3 reports cba

abc acb bac bca cab cba

 

Figure 12.13: The Condorcet method with a as the default alternative

Exercise 12.7 Consider the SCF shown in Figure 12.14 (majority voting with a slight
advantage given to Voter 1), which reproduces Figure 12.5.
Show that there is at least one situation where Voter 3 can benefit from misrepresenting
his preferences. ■

Exercise 12.8 Consider again the SCF shown in Figure 12.14 (which reproduces Figure
12.5). At the end of Section 12.2 we showed that there is no situation where Voter 1
(the one who has a slight advantage in that her top alternative is assigned 1.5 points
instead of 1 point) can gain by misrepresenting her preferences.
Suppose now that (perhaps as a result of previous discussions) it is common knowl-
edge among the three voters that Voter 1’s true ranking is acb (that is, a ≻1 c ≻1 b).
Hence, it is reasonable to assume that Voter 1 will report her ranking truthfully (she
cannot gain by lying) and, indeed, it is common knowledge between Voters 2 and 3 that
they expect Voter 1 to report acb.
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Page 1 of 2 

2’s 

1’s 

abc a a a a a a

acb a a a a a a

bac a a b b b b

bca a a b b b b

cab a a c c c c

cba a a c c c c

3 reports abc

abc acb bac bca cab cba

 

2’s 

1’s 

abc a a a a a a

acb a a a a a a

bac a a b b b b

bca a a b b b b

cab a a c c c c

cba a a c c c c

3 reports acb

abc acb bac bca cab cba

 

2’s 

1’s 

abc a a b b a a

acb a a b b a a

bac b b b b b b

bca b b b b b b

cab c c b b c c

cba c c b b c c

3 reports bac

cab cbaabc acb bac bca

 

2’s 

1’s 

abc a a b b a a

acb a a b b a a

bac b b b b b b

bca b b b b b b

cab c c b b c c

cba c c b b c c

3 reports bca

abc acb bac bca cab cba

 

`

1’s 

abc a a a a c c

acb a a a a c c

bac b b b b c c

bca b b b b c c

cab c c c c c c

cba c c c c c c

3 reports cab

abc acb bac bca cab cba

 

`

1’s 

abc a a a a c c

acb a a a a c c

bac b b b b c c

bca b b b b c c

cab c c c c c c

cba c c c c c c

3 reports cba

abc acb bac bca cab cba

 

Figure 12.14: Majority voting with a slight advantage given to Voter 1

By postulating that Voter 1 reports acb, we can reduce the SCF of Figure 12.14 to an
SCF with only two voters: Voter 2 and Voter 3.

(a) Draw a table that represents the reduced SCF. For example, this table should show
that if Voter 2 reports bca and Voter 3 reports cba, then the chosen alternative is a
(it gets 1.5 points from Voter 1’s report, while each of b and c get only 1 point
each).

(b) In the reduced SCF, can Voter 2 ever gain from misrepresenting his preferences?
(c) In the reduced SCF, can Voter 3 ever gain from misrepresenting his preferences?
(d) Suppose that Voter 3’s true ranking is bac. Can Voter 3 gain by reporting a

different ranking?
(e) Suppose that Voter 2 knows that Voter 3’s true ranking is bac and expects her to

report truthfully. Suppose also that Voter 2’s true ranking is cba. What ranking
should Voter 2 report?

■
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12.5.3 Exercises for Section 12.3: The Gibbard-Satterthwaite theorem

Exercise 12.9 Consider the two SCFs of Exercise 12.3 (SCF-2 and SCF-12), repro-
duced below:

(SCF-2)

2
a ≻2 b b ≻2 a

1
a ≻1 b a a
b ≻1 a a b

(SCF-12)

2
a ≻2 b b ≻2 a

1
a ≻1 b a b
b ≻1 a b b

In Section 12.1 they were shown to satisfy Unanimity and Non-dictatorship and in
Exercise 12.3 they were shown to satisfy Non-manipulability.

Explain why these two SCFs do not constitute a counterexample to the Gibbard-
Satterthwaite theorem (Theorem 12.3.1). ■

Exercise 12.10 There are five alternatives (X = {a,b,c,d,e}) and fourteen voters
(N = {1,2, . . . ,14}). Consider the following SCF: each voter submits a strict ranking
of the alternatives and there are no restrictions on what strict ranking can be submitted.
Then the procedure is as follows:

1. if Individuals 1-5 all rank the same alternative at the top, then that alternative is
chosen, otherwise

2. if Individuals 6-10 all rank the same alternative at the top, then that alternative is
chosen, otherwise

3. if there is a Condorcet winner in the reported rankings of Individuals 11-13 (the
definition of Condorcet winner was explained in Section 12.2) then that alternative
is chosen, otherwise

4. the top-ranked alternative of individual 14 is chosen.
Does this SCF satisfy Non-manipulability? ■
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12.6 Solutions to Exercises

Solution to Exercise 12.1.

(a) The table has 36 cells that need to be filled, each with one of a,b or c. Thus, there
are 336 = 1.5009×1017, that is, more than 150,000 trillions (recall that a trillion is
1012 or a million million) SCFs!

(b) The Unanimity principle restricts only the values in 12 of the 36 cells, as shown in
Figure 12.15 below.

(c) In Figure 12.15 there are 24 remaining cells to be filled in (each with one of a,b or
c) and thus there are 324 = 282.43×109 (that is, more than 282 billions) SCFs that
satisfy the Unanimity principle!

(d) The case where Individual 2 is a dictator corresponds to the SCF shown in Figure
12.16 below. □

2’s 

1’s 

abc a a

acb a a

bac b b

bca b b

cab c c

cba c c

cab cbaabc acb bac bca

 

Figure 12.15: The restrictions imposed by the Unanimity principle

2’s 

1’s 

abc a a b b c c

acb a a b b c c

bac a a b b c c

bca a a b b c c

cab a a b b c c

cba a a b b c c

abc acb bac bca cab cba

 

Figure 12.16: Individual 2 is a dictator
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Solution to Exercise 12.2.
(a) Yes, this SCF satisfies Unanimity: when both individuals rank alternative x at the

top, x is chosen by society (the main diagonal consists of a block of four a’s, a block
of four b’s and a block of four c’s, fulfilling the requirement shown in Figure 12.15).

(b) This SCF also satisfies Non-dictatorship. In Figure 12.17 we have highlighted two
cells to show this.

For Individual 1, consider the cell in row 4 and column 1: her ranking is bca, thus
her top-ranked alternative is b, and yet the chosen alternative (when Individual 2
reports the ranking abc) is a, not b .

For Individual 2, consider the cell in row 1 and column 6: his ranking is cba, thus his
top-ranked alternative is c, and yet the chosen alternative (when Individual 1 reports
the ranking abc) is a, not c. (Of course, other cells could have been used to make
the same point.) □

 

2’s ranking  

1’s ranking  

abc acb bac bca cab cba 

abc a a a b c a 

acb a a b a a c 

bac b a b b b c 

bca a b b b c b 

cab a c c b c c 

cba c a b c c c 

 

 

Figure 12.17: Neither individual is a dictator
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Solution to Exercise 12.3.
(a) SCF-2. Individual 1 cannot gain by misrepresenting her preferences: if her true

ranking is a ≻1 b then by reporting truthfully she gets her top alternative a and by
misrepresenting she might get a or b; if her true ranking is b ≻1 a and she reports
truthfully, then there are two possibilities:
(1) Individual 2 reports a ≻2 b, in which case the outcome is a, and would still be a
if Individual 1 lied, and
(2) Individual 2 reports b ≻2 a, in which case if Individual 1 reports truthfully then
she gets her top alternative b, while if she lies then she get her worst alternative,
namely a.
Individual 2 cannot gain by misrepresenting his preferences: if his true ranking is
a≻2 b then by reporting truthfully he gets his top alternative a and by misrepresenting
he might get a or b; if his true ranking is b ≻2 a and he reports truthfully, then there
are two possibilities:
(1) Individual 1 reports a ≻1 b, in which case the outcome is a, and would still be a
if Individual 2 lied, and
(2) Individual 1 reports b ≻1 a, in which case if Individual 2 reports truthfully then
he gets his top alternative b, while if he lies then he gets his worst alternative, namely
a.

(b) SCF-12. Individual 1 cannot gain by misrepresenting her preferences: if her true
ranking is b ≻1 a then by reporting truthfully she gets her top alternative b and by
misrepresenting she might get a or b; if her true ranking is a ≻1 b and she reports
truthfully, then there are two possibilities:
(1) Individual 2 reports b ≻2 a, in which case the outcome is b, and would still be b
if Individual 1 lied, and
(2) Individual 2 reports a ≻2 b, in which case if Individual 1 reports truthfully
then she gets her top alternative a, while if she lies she get her worst alternative,
namely b.
Individual 2 cannot gain by misrepresenting his preferences: if his true ranking is
b≻2 a then by reporting truthfully he gets his top alternative b and by misrepresenting
he might get a or b; if his true ranking is a ≻2 b and he reports truthfully, then there
are two possibilities:
(1) Individual 1 reports b ≻1 a, in which case the outcome is b, and would still be b
if Individual 2 lied, and
(2) Individual 1 reports a ≻1 b, in which case if Individual 2 reports truthfully
then he gets his top alternative a, while if he lies he gets his worst alternative,
namely b. □
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Solution to Exercise 12.4.
(a) There are several situations where Individual 1 can gain by lying. For example,

suppose that her true ranking is bca (row 4) and Individual 2 reports abc (column
1). Then, by reporting truthfully, Individual 1 brings about outcome a, which is
her worst outcome, but by lying and reporting bac she obtains her most preferred
outcome, namely b.

(b) There are several situations where Individual 2 can gain by lying. For example,
suppose that his true ranking is abc (column 1) and Individual 1 reports bac (row
3). Then, by reporting truthfully, Individual 2 brings about outcome b, which is his
middle-ranked outcome, but by lying and reporting acb he obtains his most preferred
outcome, namely a. □

Solution to Exercise 12.5.
(a) If Voter 1 reports her true ranking then we get the following profile:

Voter 1 Voter 2 Voter 3 score
best a c c 3

b b b 2
worst c a a 1

The scores computed according to the Borda rule are:

a : 3+1+1 = 5
b : 2+2+2 = 6
c : 1+3+3 = 7

so that alternative c is chosen (Voter 1’s worst).

(b) If instead of her true ranking Voter 1 reports the following ranking:

best b
a

worst c

then the profile of reported rankings is

Voter 1 Voter 2 Voter 3 score
best b c c 3

a b b 2
worst c a a 1

The scores computed according to the Borda rule are:

a : 2+1+1 = 4
b : 3+2+2 = 7
c : 1+3+3 = 7

The largest score is 7 and is shared by both b and c. According to the tie-breaking rule,
in case of ties the alternative that comes first in alphabetical order is chosen. Thus,
the chosen alternative b, which Voter 1 (according to her true ranking a ≻1 b ≻1 c)
prefers to c. Thus, Voter 1 gains by lying and reporting a ranking which is different
from her true ranking. □
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Solution to Exercise 12.6.
(a) Unanimity requires the following:

(1) in the two tables at the top (corresponding to the cases where Voter 3 reports
abc or acb) there should be an a in the following cells: (row 1, column 1), (row 1,
column 2), (row 2, column 1) and (row 2, column 2) [these are the cases where every
voter ranks a at the top],
(2) in the two tables in the middle (corresponding to the cases where Voter 3 reports
bac or bca) there should be a b in the following cells: (row 3, column 3), (row 3,
column 4), (row 4, column 3) and (row 4, column 4) [these are the cases where every
voter ranks b at the top],
(3) in the two tables at the bottom (corresponding to the cases where Voter 3 reports
cab or cba) there should be a c in the following cells: (row 5, column 5), (row 5,
column 6), (row 6, column 5) and (row 6, column 6) [these are the cases where every
voter ranks c at the top].
The SCF shown in Figure 12.13 indeed satisfies these constraints.

(b) To see that Voter 1 is not a dictator, consider the first table (Voter 3 reports abc), row
4 (Voter 1 reports bca) and column 1 (Voter 2 reports abc): b is at the top of Voter
1’s reported ranking and yet the chosen alternative is a.
To see that Voter 2 is not a dictator, consider the first table (Voter 3 reports abc), row
1 (Voter 1 reports abc) and column 4 (Voter 2 reports bca): b is at the top of Voter
2’s reported ranking and yet the chosen alternative is a.
Finally, to see that Voter 3 is not a dictator, consider the first table (Voter 3 reports
abc), row 6 (Voter 1 reports cba) and column 4 (Voter 2 reports bca): a is at the top
of Voter 3’s reported ranking and yet the chosen alternative is b. □

Solution to Exercise 12.7. Consider the situation where Voter 1 reports the ranking cab
(row 5 of any table) and Voter 2 reports bca (column 4 of any table).
Suppose that Voter 3’s true ranking is abc (first table).
If Voter 3 reports truthfully, then the selected alternative is c, which is the worst from his
point of view; if, on the other hand, Voter 3 reports bac (the second table in the first column
of tables), then the selected alternative is b, which – according to Voter 3’s true ranking
abc – is better than c. □

Solution to Exercise 12.8.
(a) The reduced SCF is shown in Figure 12.18 below.
(b) Yes, there are situations where Voter 2 can gain by misrepresenting his preferences.

For example, if his true ranking is cba (row 6) and he expects Voter 3 to report bac
(column 3), then by reporting truthfully he brings about his worst outcome, namely
a, while by lying and reporting bca (row 4) he brings about outcome b which he
prefers to a.

(c) Yes, there are situations where Voter 3 can gain by misrepresenting her preferences.
For example, if her true ranking is cba (column 6) and she expects Voter 2 to report
bac (row 3), then by reporting truthfully she brings about her worst outcome, namely
a, while by lying and reporting bca (column 4) she brings about outcome b which
she prefers to a.
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(d) If Voter 3’s true ranking is bac, then there is no situation where she can gain by
misrepresenting her preferences:
(1) if Voter 2 reports abc or acb, then the outcome is a no matter what Voter 3
reports,
(2) if Voter 2 reports bac or bca, then, by reporting truthfully, Voter 3 gets her best
outcome, namely b,
(3) if Voter 2 reports cab or cba, then, by reporting truthfully, Voter 3 gets outcome
a and by lying she gets either a or her worst outcome, namely c.

(e) If Voter 2’s true ranking is cba and he expects Voter 3 to report bac, then he should
lie and report either bac or bca (and thus bring about outcome b which he prefers to
a, which is the outcome he would get if he reported truthfully). □

3’s 

2’s 

abc a a a a a a

acb a a a a a a

bac a a b b a a

bca a a b b a a

cab a a a a c c

cba a a a a c c

abc acb bac bca

Assuming that Voter 1 reports acb

cab cba

 

Figure 12.18: The reduced SCF from Figure 12.5

Solution to Exercise 12.9. They do not constitute a counterexample to the Gibbard-
Satterthwaite theorem because the set of alternatives contains only two elements. The
Gibbard-Satterthwaite theorem is based on the premise that there are at least three alterna-
tives. □

Solution to Exercise 12.10. This SCF fails to satisfy Non-manipulability. One can try to
show this by identifying a situation where some individual can gain by misrepresenting
her preferences, but a quicker proof is by invoking the Gibbard-Satterthwaite theorem. All
we need to do is show that this SCF satisfies Unanimity and Non-dictatorship, so that – by
the Gibbard-Satterthwaite theorem – it must violate Non-manipulability.
That Unanimity is satisfied is obvious: if all the individuals list the same alternative x at
the top, then – in particular – the first five individuals list x at the top and thus x is chosen.
That the SCF satisfies Non-dictatorship is also straightforward: (1) for any of the first five
individuals, if she reports x at the top, but at least one of the other first five does not and
all of individuals 6-10 report y ̸= x at the top, then y is chosen ; (2) for any of Individuals
6-14, if he reports x at the top but the first five individuals all report y ̸= x at the top, then y
is chosen. □
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13. Biases in Decision Making

13.1 Introduction
This book has been concerned with rational decision making. In this chapter we give an
overview of some common departures from rationality, which are often called “biases in
decision making”. This is a topic that deserves a book-length treatment in itself. Indeed,
it is the object of a relatively new field within economics, called behavioral economics.
The importance of behavioral economics has been underscored by the award of the Nobel
Memorial Prize in Economic Sciences to Daniel Kahneman in 2002 “for having integrated
insights from psychological research into economic science, especially concerning human
judgment and decision-making under uncertainty” and to Richard Thaler in 2017 “for
his contributions to behavioral economics: by exploring the consequences of limited
rationality, social preferences, and lack of self-control, he has shown how these human
traits systematically affect individual decisions as well as market outcomes”. There are
several recent books on behavioral economics and the reader is referred to them for an
in-depth analysis.1

In the following sections we will link to various topics discussed in earlier chapters
and highlight some deviations from the principles of rationality discussed there.

1 The following is only a partial list.
Dan Ariely, Predictably irrational: the hidden forces that shape our decisions, 2010, Harper Perennial.
Edward Cartwright, Behavioral economics, 2014, Routledge.
Sanjit Dhami, The foundations of behavioral economic analysis, 2017, Oxford University Press.
Daniel Kahneman, Thinking, fast and slow, 2013, Farrar, Straus and Giroux.
George Loewenstein and Matthew Rabin, Advances in behavioral economics, 2003, Princeton University
Press.
Richard Thaler, Misbehaving: the making of behavioral economics, 2015, W. W. Norton & Company.
Nick Wilkinson and Matthias Klaes, An introduction to behavioral economics, 2nd edition, 2012, Palgrave
Macmillan.
A useful resource is also the following website: https://www.behavioraleconomics.com/

https://www.behavioraleconomics.com/
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13.2 Incomplete preferences and manipulation of choice
In Chapter 2 we began by considering decision making in situations of certainty and
identified a first requirement of rationality, namely the ability to rank any two possible
outcomes (completeness) and transitivity of such a ranking. In Section 3 of Chapter 2 we
explained the reasons why transitivity of preferences is deemed to be a requirement of
rationality. We also mentioned one reason why preferences may fail to be complete: when
alternatives are described in terms of several attributes, it may be straightforward to rank
them in terms of each attribute but it may be difficult to “aggregate” those attribute-based
rankings; indeed, in Section 4 of Chapter 11 we saw that this difficulty can be viewed as
an implication of Arrow’s Impossibility Theorem.

Let us consider an example of multi-attribute alternatives: Erin, being tired of spending
75 minutes commuting to work every day, is looking to buy a house closer to her place of
work. She has seen two houses: House A is better in terms of size but worse in terms of
commuting time, while House B is worse in terms of size but better in terms of commuting
time. The two houses are represented in Figure 13.1 as points in a two-attribute diagram.
Each axis represents an attribute, which gets better as one moves away from the origin:
one attribute is the size of the house (the larger the square footage the better) and the other
is saving in commuting time relative to the current time of 75 minutes (the greater the
amount of time saved the better).

square footage
of the house

2,100

1,400

1 hour
(commuting 
time: 15 minutes)

20 minutes
(commuting time
55 minutes)

time saved in commuting
relative to current 
75 minutes0

A

B

 

Figure 13.1: Two houses described in terms of two attributes

Suppose that Erin is unable to come up with a ranking of these two houses, that is,
her preferences fail to be complete. It has been shown that in such situations people are
susceptible to manipulation. For example, if you are a real estate agent and you want to
induce Erin to buy House A (e.g. because you will get a larger commission), then what
you could do is show her a third house which is worse than A in both dimensions, call this
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house A ↓. House A ↓ is shown in Figure 13.2. Erin will notice that A is unambiguously
better than A ↓ and is likely to then take the extra step of ranking A also above B and thus
end up choosing A.2

square footage
of the house

2,100

1,400

1 hour
(commuting 
time: 15 minutes)

20 minutes
(commuting time
55 minutes)

time saved in commuting
relative to current 
75 minutes0

A

B

 

Figure 13.2: A third house, A ↓, which is inferior to A

In Chapter 1 of his book Predictably irrational, Dan Ariely gives several examples
of this phenomenon. In an interesting experiment, Ariely and his co-authors presented
several women with the photographs of two handsome men, call them A and B, and asked
with whom they would want to go on a date. More or less 50% chose A and the other 50%
chose B. They then presented another group of women with the photographs of three men:
the same two as before, A and B, plus a less attractive version of A, call him A ↓, obtained
by “photoshopping” the original photo of A, creating a distorted nose, a less symmetric
face, etc. Of the second group of women, 75% chose A and only 25% chose B! A similar
result was obtained by presenting yet another group of women with a different triple of
photographs: the same two as before, A and B, plus a less attractive version of B, call it B ↓:
about 75% chose B and 25% chose A. The trend turned out to be the same, whether the
choosers were women (looking at photographs of men) or men (looking at at photographs
of women) and whether the prospective dates were handsome or not. As long as there was
a worse version of one of the two, the better version was more likely to be chosen.

When preferences are incomplete the use of a third choice as a decoy can often be used
to manipulate choice.

2Note that, while House A ↓ is worse than House A in both dimensions, it is better than House B in one
dimension (size) but worse in the other (commuting time).
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13.3 Gains versus losses
In Chapter 5 we introduced Expected Utility Theory and discussed the notion of attitude to
risk within the context of money lotteries. Recall that a person is said to be risk averse if
she prefers the expected value (with probability 1, that is, for sure) of a money lottery to
the lottery, and risk loving if she has the opposite ranking. It has been amply documented
that many people tend to be risk-averse when dealing with potential gains and risk-loving
when dealing with potential losses. For example, if given a choice between receiving $50
for sure – call this lottery A – and tossing a fair coin and receiving $100 if the outcome is
Heads and nothing if the outcome is Tails – call this lottery B – many people will prefer
the former to the latter, thus displaying risk-aversion:

A =

(
$50
1

)
≻ B =

(
$100 $0

1
2

1
2

.

)
On the other hand, the same people when presented with a choice between losing $50 for
sure – call this lottery A′ – and tossing a coin and losing $100 if the outcome is Heads
and nothing if the outcome is Tails – call this lottery B′ – they will choose the latter, thus
displaying risk-loving:

B′ =

(
−$100 −$0

1
2

1
2

)
≻ A′ =

(
−$50

1

)
.

Kahneman and Tversky3 suggested that the reason for this tendency is rooted in an affective
bias: “the aggravation that one experiences in losing a sum of money appears to be greater
than the pleasure associated with gaining the same amount”. This phenomenon is often
referred to as loss aversion.

Is this different risk attitude towards potential gains and potential losses rational? The
answer, of course, depends on what we mean by “rational”. If we take Expected Utility
Theory as capturing the notion of rationality when dealing with uncertainty (that is, when
choosing among lotteries) then the answer is a qualified Yes: it is possible for a person
with von Neumann-Morgenstern preferences to have the preferences indicated above for a
pair of choices (A versus B and A′ versus B′) but not systematically.

Consider, for example, an individual who has an initial wealth of $100, satisfies the

axioms of Expected Utility and, when offered a choice between lottery A =

(
$50
1

)
and

lottery B =

(
$100 $0

1
2

1
2

)
, states that she prefers A to B (A ≻ B). Could she also prefer

B′ to A′ (B′ ≻ A′), where A′ =

(
−$50

1

)
and B′ =

(
−$100 −$0

1
2

1
2

)
? Given that her

initial wealth is $100, the above lotteries can be re-written in terms of final wealth levels
as follows:

A =

(
$150

1

)
, B =

(
$200 $100

1
2

1
2

)
, A′ =

(
$50
1

)
and B′ =

(
$0 $100
1
2

1
2

)
3Daniel Kahneman and Amos Tversky, Prospect theory: An analysis of decision under risk, Econometrica,

1979, Vol. 47, pages 263-291.
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Let U be this individual’s normalized von Neumann-Morgenstern utility function on the
set of wealth levels {$0,$50,$100,$150,$200}. Assuming that she prefers more wealth
to less,

outcome U
$200 1
$150 a
$100 b
$50 c
$0 0

with 0 < c < b < a < 1. (13.1)

Since she prefers A =

(
$150

1

)
to B =

(
$200 $100

1
2

1
2

)
, U($150) = a > 1

2U($200)+

1
2U($100) = 1

2(1+b), that is,

2a > 1+b. (13.2)

If she also prefers B′ =

(
$0 $100
1
2

1
2

)
to A′ =

(
$50
1

)
, then 1

2U($0)+ 1
2U($100) =

1
2b >U($50) = c, that is:

b > 2c. (13.3)

Inequalities (13.2) and (13.3) are compatible with each other. For example, the following
values satisfy both inequalities: a = 0.8, b = 0.4 and c = 0.1. Hence, it is possible for an
individual with von Neumann-Morgenstern preferences to display risk aversion towards
a potential gain and risk loving towards a symmetric loss. However, this cannot happen
at every wealth level. To see this, consider the same individual whose utility function
(13.1) satisfies inequalities (13.2) and (13.3), but with a different initial wealth than before,
say $200.4 Then the prospect of losing $50 for sure corresponds to the wealth lottery

A′′ =

(
$150

1

)
while the prospect of losing $100 with probability 1

2 and nothing with

probability 1
2 corresponds to the wealth lottery B′′ =

(
$100 $200

1
2

1
2

)
and risk loving

towards these potential losses requires that B′′ ≻ A′′, that is, 1
2U($100)+ 1

2U($200) =
1
2b+ 1

21 >U($150) = a, that is,

2a < 1+b (13.4)

but (13.4) contradicts (13.2).

4We could add outcomes $250 and $300 and assign to them utility d and e respectively, with 1 < d < e,
but it is not necessary for the argument below.
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As noted by Kahneman and Tversky (Econometrica, 1979, p. 277), people tend to
evaluate options in terms of changes in wealth or welfare, rather than final states. They
observe that this is

“[. . . ] compatible with basic principles of perception and judgment. Our
perceptual apparatus is attuned to the evaluation of changes or differences
rather than to the evaluation of absolute magnitudes. When we respond to
attributes such as brightness, loudness, or temperature, the past and present
context of experience defines an adaptation level, or reference point, and
stimuli are perceived in relation to this reference point. Thus, an object at a
given temperature may be experienced as hot or cold to the touch depending
on the temperature to which one has adapted. The same principle applies to
non-sensory attributes such as health, prestige, and wealth.”

People who are consistently (that is, at every initial level of wealth) risk-averse towards
gains and risk-loving towards losses cannot satisfy the axioms of expected utility. If those
axioms capture the notion of rationality, then those people are irrational.

13.4 Framing
Consider the situation described in Figure 13.3. Which option would you choose?

I will give you $200:
         

                      

and then you will have to choose one of: 

OPTION 1  :  I give you an additional $100: 

 

  HEADS: I give you an additional $200 

   

 

OPTION 2  :  I toss a coin

 

 

    TAILS: I give you no additional money 

 

Figure 13.3: A choice between two money lotteries
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Now consider the situation described in Figure 13.4. Which option would you choose?

I will give you $400:
     

                      

and then you will have to choose one of: 

OPTION 1  :  You pay a tax of $100. 

 
 

  HEADS:  You pay no tax

    

 

OPTION 2  :  I toss a coin

 

 

 TAILS: You pay a tax of $200 

 

Figure 13.4: Another choice between two money lotteries

In experiments many people stated that in the situation described in Figure 13.3 they
would choose Option 1, while in the situation described in Figure 13.4 they would choose
Option 2. Such a response can be seen as a reflection of the phenomenon described in the
previous section, namely the different risk attitude towards potential gains and towards
potential losses: the situation described in Figure 13.3 has to do with potential gains and
the risk-averse response is to choose Option 1, while the situation described in Figure 13.4
has to do with potential losses and the risk-loving response is to choose Option 2.

However, in this case we have a more fundamental violation of rationality than in
the case described in the previous section, because there is no difference between the
two situations described in Figures 13.3 and 13.4! Let $W be your initial wealth. In the
situation described in Figure 13.3, Option 1 leaves you with a final wealth of $(W +300)
and the same is true of Option 1 in the situation described in Figure 13.4! Similarly,
in the situation described in Figure 13.3, Option 2 corresponds to the money lottery (in

terms of final wealth)
(

$(W +400) $(W +200)
1
2

1
2

)
and the same is true of Option 2 in

the situation described in Figure 13.4! Thus, in both situations you are asked to choose

between $(W +300) for sure and the lottery
(

$(W +400) $(W +200)
1
2

1
2

)
.

People who choose Option 1 in one case and Option 2 in the other fall victim to the
framing effect. Framing is the phenomenon by which people rank the same two alternatives
differently, depending on how the alternatives are presented or described to them.
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As documented by Kahneman and Tversky5, even well-educated people fall easily prey
to framing. They presented a group of doctors and public health officials with what has
become known as the “Asian disease problem”:

Imagine that the United States is preparing for the outbreak of an unusual
Asian disease, which is expected to kill 600 people. Two alternative
programs to combat the disease have been proposed. Assume that the
exact scientific estimates of the consequences of the programs are as
follows:

• If Program A is adopted, 200 people will be saved.
• If Program B is adopted, there is a one-third probability that 600

people will be saved and a two-thirds probability that no people will
be saved.

Of the respondents, 72% chose Program A while the remaining 28% chose Program B.

A second group was presented with the following description:

Imagine that the United States is preparing for the outbreak of an unusual
Asian disease, which is expected to kill 600 people. Two alternative
programs to combat the disease have been proposed. Assume that the
exact scientific estimates of the consequences of the programs are as
follows:

• If Program A is adopted, 400 people will die.
• If Program B is adopted, there is a one-third probability that nobody

will die and a two-thirds probability that 600 people will die.

In this case the percentages were reversed: the great majority of respondents chose Program
B.

As in the previous example, there is no difference between Program A in the first
description and Program A in the second description: when the total number of potential
victims is 600, “200 people will be saved” is the same outcome as “400 people will
die”; similarly, Program B is the same in both descriptions:it corresponds to the lottery(

no deaths 600 deaths
1
3

2
3

)
. What explains the different response to the two descriptions

is that the first is framed in terms of gains (lives saved) and the risk-averse response is
to choose Program A, while the second description is framed in terms of losses and the
risk-loving response is to choose Program B.

5Amos Tversky and Daniel Kahneman, The framing of decisions and the psychology of choice, Science,
1981, Vol. 211, pages 453-458.
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13.5 The confirmation bias
In Chapter 8 we discussed the notion of information and how to rationally revise one’s
beliefs in response to new information. In Chapter 9 we addressed the issues of how to
assign a value to potential information and when it is worth acquiring costly information.
Sometimes the issue is not whether or not to acquire information, but what information to
acquire: what potential item of information is most useful? The principles discussed in
Chapter 8 can be of help in answering this question.

In the late 1980s researchers presented a group of physicians with hypothetical diag-
nostic situations involving alternative items of information that could be acquired.6 The
subjects were told something along the following lines:

You are facing a patient who could be suffering from one of two diseases,
A and B, which are equally likely in the general population. The two
diseases require very different treatments. For both diseases the two main
symptoms are fever and a skin rash. It so happens that your patient has
both symptoms. You remember a piece of information, namely that 66%
of the patients with Disease A have fever and 34% do not. There are three
additional pieces of information that you could be looking up:

(I) information about the proportion of people with Disease B who have
fever,

(II) the proportion of people with Disease A who have a skin rash,
(III) the proportion of people with Disease B who have a skin rash.

It is an emergency situation and you only have time to look up one of the
three. Which one would you choose, if any?

Let us see how one would approach this problem using the tools discussed in Chapter 8.
Since the patient has both F (fever) and R (rash) you should try to determine P(A|F&R).

By Bayes’ theorem,

P(A|F&R) =
P(F&R|A)P(A)

P(F&R|A)P(A)+P(F&R|B)P(B)

Since the prior (the base rate) is

P(A) = P(B) = 0.5,

this reduces to

P(A|F&R) =
P(F&R|A)

P(F&R|A)+P(F&R|B)
.

Thus, one would need to know the proportions of people with Diseases A and B who have
both fever and rash. Unfortunately, the only information we are given is the percentage of

6F.M. Wolf, L.D. Gruppen and J.E. Billi, Differential diagnosis and the competing-hypotheses heuristic.
A practical approach to judgment under uncertainty and Bayesian probability, Journal of the American
Medical Association, 1985, Vol. 253, pages 2858-2862. We follow the account given in J. Frank Yates,
Judgment and decision making, 1990, Prentice Hall, page 177.
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people with Disease A who have fever, that is, P(F |A) = 0.66. We do not even have the
potential to learn P(F&R|A) and P(F&R|B): neither of these two pieces of information
is listed above as a possibility. Then the best course of action is to take advantage of the
information one does have, namely that P(F |A) = 0.66. Using Bayes’ rule again we have
that

P(A|F) =
P(F |A)P(A)

P(F |A)P(A)+P(F |B)P(B)
=

(0.66)(0.5)
(0.66)(0.5)+P(F |B)0.5

=
0.66

0.66+P(F |B)
.

Thus, the information that one should seek out is item (I) in the list given above, namely
P(F |B): the proportion of patients with Disease B who have fever. If P(F |B)< 0.66 then
one would judge Disease A to be more likely than Disease B and if P(F |B)> 0.66 then
one would diagnose Disease B.7

In the experiment, most physicians opted for item (II) in the above list: the proportion
of people with Disease A who have a skin rash (P(A|R)). The rationale for this is that
when one sees that the patient has fever and that 66% of patients with Disease A have
fever, one hypothesizes that the patient has Disease A. Given that hypothesis, one forms
the expectation that item (II) would reveal that a high percentage of Disease A victims have
a skin rash. The request for item (II) from the above list represents an instance of positive
testing, whereby a person seeks information that is expected to be consistent with one’s
current hypothesis. Item (II), however, is not useful in this example. Suppose that you
discover that, say, 75% of Disease A victims have rashes. Would this affect how sure you
are that you were correct in your hypothesis that the patient has Disease A? If you are like
many people, you will become even more convinced that you were right. However, since
you know nothing about the commonness of either fever or rash among Disease B victims,
your newly acquired information about rash does not help you differentiate between the
two diseases.

What we have described above is an instance of the so-called confirmation bias, which
is the tendency to search for information that confirms one’s prior beliefs. As Kahneman
observes,8

“Contrary to the rules of philosophers of science, who advise testing hypothe-
ses by trying to refute them, people (and scientists, quite often) seek data that
are likely to be compatible with the beliefs they currently hold.”

7If P(F |B)< 0.66 then P(A|F)> 1
2 and thus P(B|F)< 1

2 . Similarly, if P(F |B)> 0.66 then P(A|F)< 1
2

and thus P(B|F) > 1
2 . Item (II) on the list is P(A|R) and item (III) is P(B|R); neither of these two can be

usefully combined with the information at hand, namely the value of P(A|F).
8Daniel Kahneman, Thinking, fast and slow, 2013, page 66.
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13.6 The psychology of decision making
We conclude this chapter by mentioning other common cognitive biases and decision-
making biases, without going into the details. The interested reader is referred to the
references listed in Footnote 1 as well as to overviews given in TED talks by Dan Ariely9,
Dan Gilbert10, Daniel Kahneman11 and others.12 For a comprehensive list of systematic
biases in judgment and decision making see https://en.wikipedia.org/wiki/List_
of_cognitive_biases. Examples of items on this list are the following:

• The anchoring bias is the tendency to be influenced by a (often irrelevant) piece of
information – the “anchor”– received before a judgment is formed or a decision is
made.13

• The status quo bias arises when the current state of affairs (or status quo) is taken as
a reference point and any change from that baseline is perceived as a loss. We tend
to want things to remain the way they are, even if we did not originally make the
choice(s) that led to the status quo.14

• The endowment effect is the tendency to overvalue an object merely because one
owns it. People are commonly willing to pay less to obtain a good than they are
willing to accept as payment for selling the good.15

An excellent discussion of the psychology of decision making is provided by Dan Gilbert
in his book Stumbling on happiness (2007, Vintage).

9https://www.ted.com/search?q=dan+arieli
10https://www.ted.com/search?q=dan+gilbert
11https://www.ted.com/search?q=daniel+kahneman
12https://www.ted.com/search?q=behavioral+economics
13See, for example, Amos Tversky and Daniel Kahneman, Judgment under uncertainty: heuristics and

biases, Science, 1974, Vol. 185, pages 1124-1131.
14See, for example, Samuelson, W. and Zeckhauser, R., Status quo bias in decision making. Journal of

Risk and Uncertainty, 1988, Vol.1, pages 7-59.
15An early laboratory demonstration of the endowment effect was offered by Jack Knetsch and J.A Sinden,

Willingness to pay and compensation demanded: experimental evidence of an unexpected disparity in
measures of value, Quarterly Journal of Economics, 1984, Vol. 99, pages 507-521. The participants in
this study were endowed with either a lottery ticket or $2. Some time later, each subject was offered an
opportunity to trade the lottery ticket for the money, or vice versa. Very few subjects chose to switch. See
also Richard Thaler, Toward a positive theory of consumer choice, Journal of Economic Behavior and
Organization, 1980, pages 39-60.

https://en.wikipedia.org/wiki/List_of_cognitive_biases
https://en.wikipedia.org/wiki/List_of_cognitive_biases
https://www.ted.com/search?q=dan+arieli
https://www.ted.com/search?q=dan+gilbert
https://www.ted.com/search?q=daniel+kahneman
https://www.ted.com/search?q=behavioral+economics
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