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THE LOGIC OF RATIONAL
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For the past 20 years or so the literature on noncooperative games has
been centered on the search for an equilibrium concept that expresses
the notion of rational behavior in interactive situations. A basic tenet in
this literature is that if a "rational solution" exists, it must be a Nash equi-
librium.1 The consensus view, however, is that not all Nash equilibria
can be accepted as rational solutions. Consider, for example, the game
of Figure 1.

Both (B, Y) and (A, X) are Nash equilibria. The strategy pair (B, Y),
however, is usually rejected as a rational solution on the grounds that
it is sustained by player II's threat to play Y, which is not a credible
threat, since a rational player II would not choose Y if her decision node
were actually reached.

It is examples like this one that have stimulated the search for a

This is a substantial revision of a Working Paper with the same title which appeared in
1987. 1 am grateful to Michael Bacharach for many detailed and illuminating comments
on the first draft of this article and to John Roemer and Roberto Lucchetti for their en-
couragement and very helpful suggestions. I have also benefited greatly from the com-
ments and criticisms of Jerry Cohen, Robin Cubitt, Daniel Hausman, Aanund Hylland,
David Kreps, Paul Milgrom, Philip Reny, Ariel Rubinstein, and Hyun Shin.

A number of arguments have been suggested in support of this claim: the concept of
transparency of reason (cf. Bacharach, 1987; Bjerring, 1978), the notion of self-enforcing
agreement (cf. Kreps, 1987), the notion of an "authoritative game theory book" con-
sulted by all the players (cf. Binmore, 1990, pp. 60-61).

There are also exceptions to this claim. Important ones are Aumann (1987a),
Bernheim (1984), Brandenburger and Dekel (1987), Pearce (1984), and Tan and Werlang
(1984).
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FIGURE 1.

suitable refinement of the Nash equilibrium concept.2 The central idea
of the refinement program is that if a player's strategy is to be part of
a rational solution, it must prescribe a rational choice of action in all
circumstances, including those that are ruled out by the candidate equi-
librium. Thus, the central question of the refinement program is what
constitutes rational behavior at information sets that are not reached by
the equilibrium path.

What kind of reasoning lies behind the attempt to determine "ra-
tional" choices of action at information sets that are not reached by the
equilibrium path? In discussing the game of Figure 1, Harsanyi and
Selten write:

In modern logic the problem . . . can be restated as follows: The
assumption that player II will use strategy Y is equivalent to the
conditional statement S, "If player I were to make move A, then
player II would make move Y." If this conditional statement is
interpreted as Material Implication, it will automatically become vac-
uously true whenever the stated condition (player I's making move
A) does not arise. But if statement S is interpreted as a Subjunctive
Conditional . . . it will be simply false. If player I does make move
A, then player II (assuming that he is a rational individual who
tries to maximize his payoff) would most certainly not make
move Y.

2. The following is a (possibly incomplete) list of published contributions, each proposing
a different refinement of the Nash equilibrium concept: Banks and Sobel (1987), Cho
(1987), Cho and Kreps (1987), Grossman and Perry (1986), Harsanyi and Selten (1988),
Kalai and Samet (1984), Kohlberg and Mertens (1986), Kreps and Wilson (1982a),
McLennan (1985), Myerson (1978), Okada (1981), Selten (1965, 1975), and Wu Wen-
Tsun and Jiang Jia-He (1962). There are also a number of as yet unpublished articles
where more solution concepts are put forward. For an overview of the literature see
Van Damme (1987).
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The strategy pair (B, Y) is formally an equilibrium point. For
this to be the case, all we need is that statement S should be true
when it is interpreted as a Material Implication. . . . Nevertheless,
our game-theoretical intuition judges (B, Y) to be an irrational equi-
librium point because this intuition would accept the truth of state-
ment S only if it remained true even when interpreted as a
Subjunctive Conditional, which is obviously not the case. (1988,
pp. 18-19)

This quotation suggests that: (1) strategies ought to be thought of as
hypothetical statements;3 however, if strategies are treated as instances
of material implication, then all one can prove is that all the Nash equi-
libria and only the Nash equilibria of a particular game constitute the
rational solutions of that game; and (2) in order to obtain sharper results,
that is, in order to refine the notion of Nash equilibrium, it is necessary
to construe strategies as subjunctive conditionals or, as some authors
put it (cf. Bicchieri, 1988a; Selten and Leopold, 1982), as counterfactuals.

Unfortunately, an explicit definition of rationality and a clear illus-
tration of the logical reasoning that leads from the notion of rationality
to the hypothetical statements that make up the "rational strategies"
cannot be found in standard game theory.4 This is unfortunate, since
the very notion of rationality seems to refer to a process of logical de-
duction from given premises, and, indeed, the desirability of an axio-
matic approach has been recognized by some of the leading contributors
to the refinement program: "An ideal way to discuss which equilibria
are stable . . . would be to proceed axiomatically" (Kohlberg and Mer-
tens, 1986, p. 1005).

The purpose of this article is to attempt a logical analysis of extensive
games (in particular, games of perfect information) that does not take
Nash equilibrium as a starting point. We start from an explicit and in-
tuitively plausible axiom of individual rationality and define a strategy
profile to be a rational solution of a given game if it can be deduced
from the axiom of rationality and the description of the game by using
the language of propositional logic.

The approach suggested in this article is unconventional in other
respects, too. First, of all, we treat strategies as instances of material
implication rather than as counterfactuals. Second, we use propositional
logic rather than epistemic logic, so that we do not model players' knowl-

3. A strategy for a player in an extensive-form game is defined as a function that associates
with every information set of that player a choice of action at that information set.

4. Bacharach (1987) is an exception, although he is not concerned with extensive-form
games or with counterfactuals. Other exceptions, although at a less formal level, are
Bicchieri (1988a) and Cubitt (1989). For more recent contributions, see Kaneko and
Nagashima (1990a, 1990b) and Shin (1989). See section on related literature for a more
detailed discussion of some of these contributions.



40 ClACOMO BONANNO

edge. In view of the commonly held opinion about the correct interpre-
tation of strategies (cf. the earlier quotation from Harsanyi and Selten,
1988) and the general agreement that common knowledge of the game
and of players' rationality is a necessary ingredient of a meaningful
analysis of games (cf., e.g., Aumann, 1987b), one might expect that no
interesting results could possibly be obtained within our approach. In-
stead, we show that all games of perfect information that have the
property that no player moves more than once along any given play
(we call such games "nonrecursive") have a rational solution, and all
the rational solutions give rise to the same play, namely, the play as-
sociated with the unique subgame-perfect equilibrium (we consider only
generic games where no player is indifferent between any two terminal
nodes). Thus, this article can be seen as a counterexample to the commonly
held view that it is necessary to define strategies as counterfactuals in order to
eliminate "bad" Nash equilibria. Furthermore, since we model strategies
as material implication, it is perhaps not surprising that there are (non-
recursive) games where there is a rational solution that is not a Nash equilibrium.

With the axiom of individual rationality suggested in this article,
only nonrecursive games can be shown to have a rational solution. It is
conceivable that a stronger axiom (or the addition of further axioms)
would suffice to solve all games of perfect information and maybe also
games of imperfect information. We do not know if such an axiom exists.

It is worth emphasizing that we are not proposing a new theory of
games or even suggesting that our approach is the right one. We are
merely showing that, by taking a point of view that is different from the
conventional one (strategies as material implication rather than sub-
junctive conditionals or counterfactuals, and propositional logic rather
than epistemic logic), one can go surprisingly far. Whether or not it is
possible to go even further remains an open question. If it is not possible,
then the contribution of this article will have been to show the precise
sense in which it is necessary to construe strategies as counterfactuals:
not because otherwise all Nash equilibria turn out to be rational solu-
tions, but because otherwise only a small class of games can be solved
in a satisfactory way. If it is possible, then the contribution of this article
will have been to raise the question: what do we gain by thinking of
strategies as counterfactuals and by modeling players' knowledge?

The article is organized as follows. The next section contains the
definition of rational solution, while in the section following that, we
introduce an axiom of individual rationality and show that, when applied
to one-person games, the solution concept proposed yields results that
are consistent with standard decision theory. The analysis of /(-person
games is contained in another section. The last two sections contain a
brief discussion of related papers in the literature and some concluding
remarks.
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DEFINITION OF RATIONAL SOLUTION

Given an extensive game G, we shall denote by T a formula (a con-
junction of propositions) that gives a complete description of the game-
tree. An example will be useful. Consider again the game of Figure 1.
Let the following symbols have the following interpretation:

A: "player I takes action A";
X: "player II takes action X";
6: "player I takes action B";
Y: "player II takes action Y";
(TT, = t): "player i's payoff is t" (i = I, II; t £ R).

The description of the game of Figure 1, denoted by F1, is given by the
conjunction of the following propositions.5

(H) AyB

(H) i/tAB)

(H) iXAY)

(H) B => ((TT, = 0) A (TT,, = 2))

(H) X => ((TT, = 1) A (TT,, = 1))

(H) Y=>((TT, = - D A K = -1) )

(F|) and (H) say that player I must take one and only one of the two
actions A and B. (H) says that player II must take one of the two actions
X and Y if and only if player I takes action A. (T\) says that player II
can take only one of those two actions. (rjHrj) describe the payoffs.

5. The symbols "--," "A," "\j," ":£>," and " o " read- "not," "and," "or," "implies," "if
and only if," respectively. The symbol "=>" denotes material implication; thus (P =>
Q) is equivalent to (->P V Q)- Throughout this article the superscript of V will denote
the number of the figure that illustrates the game. Thus, for example, V1" is the formula
that describes the game illustrated in Figure 2a.
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(r})-(F7) imply that the only possible assignments of truth-values to
the atomic sentences A, B, X, and Y are the following:

A B X Y

F T F F
T F T F
T F F T

These three assignments are in one-to-one correspondence with the
only three plays of the game.

As explained in the previous section, strategies can be thought of
as hypothetical statements, and we shall formalize these statements as
instances of material implication. Thus, for example, in the game of
Figure 1 a possible strategy for player II is the statement: "If player II
finds herself in the situation of having to choose between action X and
action Y, then she will choose action Y." Formally, the strategies of player
I in the game of Figure 1 are the formulas:

(A V B) => A and (Ay B)^>B

while the strategies of player II in the game of Figure 1 are the formulas:

( X V Y ) ^ X and (XyY)^Y

In general, a strategy for player / will be a formula S, that is a
conjunction of hypothetical statements. A strategy-profile is a formula S
that is the conjunction (St A Sn A . . . A S,,), where S, is a strategy of
player / (i = I, . . . , n). For example, a possible strategy-profile for the
game of Figure 1 is the formula: [{{A y B) => A) A ((X V Y) => X)].

Let R, (i = I, II, . . . , n) be the proposition "player i is rational."
The content of the proposition "player ; is rational" will be specified by
some axioms or rules of inference that express the notion of individual
rationality. In the next section we shall propose a very natural rule of
inference.

DEFINITION OF RATIONAL SOLUTION. The strategy profile S is
a rational solution of the game described by T if and only if S is deducible
from the conjunction (T A R, A Rn A . . . A Rn), that is, if and only if the
folloiving is a theorem (in the sense of propositional logic):6

T A R, A Rn A . . . A R,, => S.

6. See Appendix 1 for an exact definition in terms of the formal language of propositional
logic.
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In other words, it is a logical consequence of the definition of individual
rationality used that, if the description of the game is correct, and it is
true that all players are rational, then the propositions SI# Sn, . . . , S,,
are true.

Every definition must be judged on the basis of the results it pro-
duces. In the next section we shall show that the rational solutions of
one-person games are consistent with standard decision theory, while
in the following section we shall show that for a general class of n-person
games, there is a well-defined correspondence between rational solu-
tions and subgame-perfect equilibria. However, the above definition is
appealing also on intuitive grounds: if all players share a common
method of reasoning, have a common understanding of the meaning of
the word "rational," and start from the same set of hypotheses (namely,
that every player is rational and that the game they are playing is as
described by f), then they must all reach the same conclusion. This
common conclusion is what we call a rational solution.

AXIOM OF INDIVIDUAL RATIONALITY

There are two basic properties that any definition of rational solution
ought to satisfy: (i) it ought to be clear in what sense it is an expression
of rationality; and (ii) when applied to one-person games, it ought to
yield results that are consistent with standard decision theory.

It is clear that the solution concept proposed here satisfies property
(i): given one or more axioms of individual rationality, a strategy-profile
S is defined to be a rational solution if and only if it is a logical implication
of those axioms. In this section we shall propose a natural axiom of
individual rationality and show that, with this axiom, property (ii) is
also satisfied. In a later section we shall turn to the analysis of n-person
games.

The weakest definition of individual rationality seems to be the fol-
lowing: "given two alternatives, a player will always choose the one he
prefers, i.e., the one with the larger utility" (Luce and Raiffa, 1957, p.
55). This definition can be translated into the following sentence:

((If it is true that player i either takes action A, or takes action A2 or
. . . or takes action Am, and action A} leads to a payoff of at most a
and action Ak leads to a payoff of at least (3, and a < p, then the
following is true: if player i takes action Aj he is irrational (or, equiv-
alently, if he is rational he will not take action Aj).))

Formally, let

Alh = "player i takes action Ah" (h = 1, . . . , m),
(IT, ^ (^) t) = "player i's payoff is ^ (^) t" (where t is a real number),
R, = "player i is rational."



44 ClACOMO BONANNO

Then we could express this notion either in the form of an axiom scheme
or in the form of a rule of inference, as follows. Let P denote the formula

(Aa V Aa V • • • V Am)

A (A, => IT, < a) A (A,k => IT, > p) A (a < p) (1)

and Q denote the formula7

(Av ^> -R,) (2)

Axiom scheme:

P^>Q (3)

Rule of inference: if

r A R, A Ru A . . . A RB => P (4)

is a theorem, then also

r A R, A Ru A . . . A Rn ^> Q (5)

is a theorem.8

Unfortunately, both the axiom scheme and the rule of inference
given above are inconsistent.9 We say that an axiom scheme or rule of
inference is inconsistent if for every game that has a rational solution, it
is a logical consequence of the axiom scheme or rule of inference that
the proposition (F A R, A Ru A . . . A Rn) is false (and, hence, by the
"paradox of material implication," every strategy combination is a
rational solution!). In other words, by adding the axiom scheme or
rule of inference to the system of propositional logic, the proposition
-'(F A R, A Ru A . . .A Rn) becomes a theorem. The inconsistency is due
to the fact that circular arguments are possible: the axiom scheme (or
the rule of inference) allows one to deduce (1) from a formula containing
the proposition R, and then conclude that ->R,. While a general proof that
the above axiom scheme and rule of inference are inconsistent is given
in Appendix 2, we shall give an illustration here with reference to the

7. Note that (2) is equivalent to (R, => M,,).
8. As Chellas (1984, p. 15) notes, "a rule of inference is properly understood as meaning

that its conclusion is a theorem if each of its hypotheses is."
9. I am grateful to Aanund Hylland and Philip Reny for clarifying my thoughts on this.
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one-person game (decision problem) illustrated in Figure 2b.
The logical description, Y2b, of this game is as follows:

(A V C V D) A -(/I A C) A »(4 A D) A -(C A D)

A (/I => IT, = 1) A (C => IT, = 0) A (D => ir, = 2)

Since the following is a tautology:

F* ^> (/I V C V D) A (A => IT, = 1) A (C => IT, = 0)

A (D => ir, = 2) A (0 < 2) A (1< 2),

applying the above axiom scheme or rule of inference we obtain that
the following are theorems:

r2* 4> (A => -R.) and T2* >̂ (C >̂ -R,)

which are equivalent to:

P " A R, >̂ -A and T2" A R, >̂ -C.

Thus, since both [r26 A R, ^> T26] and [P6 4> (A V C V D)] are tautologies,
we have:

T2b A R, ^> D.
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Since the following formula (known as the "paradox of material impli-
cation") is a tautology: -C ^> (C => TT| = 15), we can conclude (using the
fact that Y2b A R, =£> -*C is a theorem) that the following is a theorem:

T2b A R, >̂ (A V C V D) A (D => IT, = 2)

A (C 4> i;, = 15) A (2 < 15)

and applying the axiom scheme or rule of inference we obtain:
[F2b A Rt k> (D => -R,)], which is equivalent to

P " A R, ^> -D.

But the conjunction of (T2b A R, =̂> D) and (F2* A R, i> -D) is equivalent
tO - (P* A R,).

We shall therefore use a weaker version of this axiom, which rules
out circular arguments.

DEFINITION OF PLAYER-i-ADMISSIBLE HYPOTHESIS. A for-
mula of the form

F A (A,! V An V • • • V Am), or (7a)

r A Rk A ( A , V Aa V . . . V A J
{for some or all k E {I, . . . , n}\{i}) (7b)

w/iere F is the description of the game-tree, Rk is the proposition "player k
is rational" (with k ^ i), and Alh has the usual meaning ("player i takes
action Ah," h = 1, . . . , m; m > 1).

Thus, a player-i-admissible hypothesis, H,, is a proposition of the form:
the game-tree is as described by F, player i has to choose among actions
Ai/ • • • / Am and (possibly) the other players are rational. Since we want
to be able to say what choices would be irrational for i in the situation
expressed by the hypothesis H,, we should not include in this hypothesis
the proposition "player i is rational."

Rule of inference of individual rationality (NERD):10 If

H, ^> [(An V Aa V • • • V Am)

A {At, => ir, ^ a) A (A,k => TT, > p) A (a < (3)] (8)

is a theorem, then the following is a theorem

H, => [A; 4> -R,] (9)

10. NERD stands for Necessary Element of a Rationality Definition: we believe that the
above rule of inference is very weak, and it is hard to think of a definition of individual
rationality that would not contain or imply it.
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provided that

1. Hj is a player-;-admissible hypothesis, and
2. there is a proof of (8) such that each formula in the proof does

not contain the atomic sentence R, (for a definition of proof, see
Appendix 1).

We shall now investigate the NERD-rational solutions of one-person
games. It may seem that in one-person games a direct application of
NERD ought to automatically select the payoff-maximizing action. This
is not so, since even in a one-person game choices may have to be made
sequentially, and the proviso of NERD does not allow sequential ap-
plication of the axiom to the same player. Consider the following ex-
ample, illustrated in Figure 2a.

The logical description of the game, denoted by P°, is the following
formula:

(A V B) A -(A A B) A (B <=> C V D) A -.(C A D)

A (A z> IT, = 1) A (C i> IT, = 0) A (D z> IT, = 2) (10)

Any reasonable solution concept ought to select (B, D) as the unique
solution. This is indeed the case with our solution concept. It may be
instructive, however, to show first that axiom NERD does not allow a
proof based on backward induction. In fact, backward induction is rep-
resented by the following argument: (T) next to a formula signifies that
the formula is a tautology, (NERD) means that the corresponding for-
mula is obtained from the preceding one by applying the rule of inference
of individual rationality, and, finally, (IM) means that the corresponding
formula is implied by the preceding one:

P" A (C V D) => [(C V D) A (C => 77, = 0)

A (D => IT, = 2) A (0 < 2)] (T)

P" A (C V D) => (R, 4> -C) (NERD)

P " A R, => (B => TT, = 2) (IM)

P° A R, >̂ [(A V B) A (A => ir, = 1)

A (B => i7, = 2) A (1< 2)] (IM)

P° AR,^> (R, >̂ -A) (*)

P"AR,^BA D. (IM)
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This argument, however, is not valid, since to obtain formula (*), one
would need to invoke NERD, but the proviso of NERD does not allow
this.

We now show that the conclusion (P" A R, ̂  B A D) can be reached
without recurring to backward induction and, therefore, without violat-
ing the proviso of NERD. It is easy to check that the following is a
tautology:

p° => r2b (ID

where P 6 is given by (6) and P" by (10).n Furthermore, a direct appli-
cation of NERD to P 6 yields the following theorem:

P" AR,^»D (12)

Thus, by (11) and (12) we obtain that (P° A K, >̂ D) is a theorem. Finally,
since the following is a tautology: P" =̂  (D =£> B), we can conclude that
(P" A R, => B A D) is a theorem.

In fact, the following general result can be proved:12

Proposition 1: Consider a finite, one-person game of perfect infor-
mation with a unique maximum payoff (and without chance moves).
Let p be the unique play that leads to the maximum payoff and S be
a strategy that gives rise to p. Then S is a rational solution of the game.
Conversely, if S is a rational solution of the game, then S gives rise
to p.

We can now turn to the analysis of games with more than one player.

APPLICATION TO N-PERSON GAMES

We shall first highlight some properties of our solution concept by ap-
plying it to a few examples and then prove some general results.

Claim 1: In the game of Figure 1, (A, X) is the unique rational
solution (thus the Nash equilibrium (B, Y) is not a rational solution).

Proof: The logical description of the game-tree of Figure 1, denoted
by F1, was given in a previous section. The proof is as follows:

P A (X V Y) => (X V Y) A (X => iru = 1)

A(Y îru = -l)A(-Kl) (T)

11. In fact, [(A V B) A (B O C V D)] implies {A V C V D); -(A A B) is equivalent to
(B >̂ ->A) and, since (C => C V D) is a tautology, it follows that (C => -A), which is
equivalent to ->(A A C); and so forth.

12. The proof is similar to the one given for the game of Figure 2a and consists in showing
that the description of any one-person extensive game of perfect information with
sequential moves implies a game without sequential moves (to which NERD can be
applied without violating the proviso).
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r'Aixvyj^ir^^,,) (NERD)

T1 A Ru ^>(A^>X) (IM)

P A Rn 4> (A V B) A (A => TT, = 1)

A (B z$» 77, = 0) A (0 < 1) (IM)

P A Rn => (B 4> -K|) (NERD)

P A R, A R,, => A A X (IM)

P A R, A R,, => [(A VB)d>A]
V I ^ X ] . (IM)

This shows that (A, X) is a rational solution. Uniqueness is a conse-
quence of proposition 2. •

Thus, this example shows that, despite the fact that we defined strategies
as instances of material implication, not all Nash equilibria are rational solutions.

Consider now the game illustrated in Figure 3. Apart from the pay-
offs, the logical description of this game is the same as that of the game
of Figure 1.

Claim 2: The rational solutions of the game of Figure 3 are (B, X),
which is a Nash equilibrium, and (B, Y), which is not a Nash equi-
librium.

Proof:

P A (X V Y) => (X V Y) A (X => TT,, = 1)

A (Y =£> TT,, = -1) A ( - 1 < 1) (T)

P A (XV Y) => (Y=> -.£,,) (NERD)

P A Ru => (A => X) (IM)

P A R,, => (A V B) A (A 4> IT, = -1)

A ( B ^ T T , = 0) A ( - l < 0 ) (IM)

p A Ru => (A => -RO (NERD)

P A R, A Ru => B (IM)

P=>[B=> - (XVY)] (T)
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(IM)P A R, A Ru => [(A V B) => B] A [(X V V) ^> X]

P A R, A Rn ^ [(A V B) => B] A [(X V V) => y]-

This shows that (B, X) and (B, Y) are both rational solutions. That they
are the only rational solutions follows from proposition 2. •

Thus, this example shows that rational solutions need not be Nash equilibria.
The two rational solutions of this game, however, are equivalent in the
sense that they both give rise to the same outcome, namely, the outcome
associated with action B. It will be shown later (proposition 2) that this
is always true: whenever there are multiple solutions, they are all out-
come-equivalent. Note also that in the games of both Figure 1 and Figure
3, the rational outcome (or play) identified by the rational solution(s)
coincides with the subgame-perfect equilibrium outcome. We shall see
later that this is true for a general class of games.

The reason why the non-Nash equilibrium (B, Y) is a rational so-
lution of the game of Figure 3 is that since from (P A R, A Ru) we can
deduce that it is not the case that (X V Y), then any hypothetical state-
ment with (X V Y) as antecedent, that is, any strategy of player II, is
necessarily a true statement. This is, of course, a consequence of the
fact that we defined strategies as instances of material implication. One
could suggest that, since for the game of Figure 3 the following is a
theorem,
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this theorem could be used to construct the "counterfactual" statement

(X\/ Y) —* X (where "—>" denotes counterfactual implication)

that would then be considered to be the unique rational strategy of player
II. What kind of reasoning lies behind this suggestion? We know that
the following is a theorem: [P A R, A Ru 4> - (X V Y)]. But this is
equivalent to

X y Y 4 > - ( P A R, A Ru).

Thus, we cannot consistently ask the question "suppose the description
of the game-tree, F3, is correct and both players are rational and player
II has to make a choice between X and Y; what choice would be rational
for her?" The supposition is inconsistent, and from an inconsistent prem-
ise we can deduce anything. The suggestion we are considering, there-
fore, amounts to the following: if player II's information set happens to
be reached, abandon the hypothesis that player I is rational and maintain
the other hypotheses, namely, that F3 and Rn are true. There are a
number of objections to this suggestion.

First of all, this suggestion cannot be made by those who insist on
the assumption that the structure of the game and the rationality of the
players be common knowledge. Any reasonable definition of knowledge
requires that only true propositions can be known and that, if one knows
P, and P implies Q, then one knows Q, too. Thus we would have (where
CK(P) stands for "P is common knowledge")

CK(V3 A R, A Rn) => (F3 A R, A Rn) (axiom of knowledge)

(F3 A R, A Rn) ^ - . ( X y Y ) (consequence of NERD)

v CKh(X V Y)] (axiom of knowledge)

Thus, if player II's information set happens to be reached, then she
would know that (X\/Y) and she would also know that -<(X V V), which
contradicts the notion of knowledge.13

13. Binmore (1984, p. 55) makes a similar observation: "If players insist that 'perfect
rationality' is to be taken as given and then ask what conjecture is reasonable at an
information set which is unreachable given this hypothesis, then the only viable
conjecture would seem to be that the model they are using is refuted." From this
observation Binmore draws the conclusion that the notion of "perfect rationality" is
not well defined and proceeds to develop a theory of limited rationality (Binmore,
1987a, 1987b).
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However, in this article we are not making the assumption of com-
mon knowledge.14 Thus, we can consistently talk about starting from
an initial set of hypotheses and then revising them when the evidence
(e.g., the fact that player II's information set is actually reached) shows
that the set is inconsistent. The question is, however: why should the
revision ( P A --R, A Kn) be considered more natural than, or preferable
to, say, the revision (-T3 A R, A Ru)?15 Consider the following example.
Two players are asked to play the following game: player I will enter
the room first and can either take the $100 bill that is on the table, in
which case the game ends, or leave the room without taking it. In the
latter case, player II can either enter the room or not, and if she does,
then she can take the $100 bill or leave the room without it. Suppose
that player II is strongly convinced of player I's rationality, and yet she
observes that player I comes out of the room without the $100 bill. Is it
obvious that we ought to label player II as irrational if she decides not
to enter the room? An explanation of the following type seems to be
entirely rational: "I know that player I would never forgo the opportunity
of getting $100 for free, so I have concluded that the description of the
game was not correct. I don't know what the true situation is, but I can
conjecture that maybe there wasn't a $100 bill in the room, or that it
was a counterfeit, or. . . . " Some game theorists would probably argue
that the description of the game ought to be the last hypothesis to be
abandoned. It is hard to see why, and, indeed, some recent contributions
(Dekel and Fudenberg, 1987; Fudenberg, Kreps, and Levine, 1988) have
investigated the consequences of allowing players to react to unexpected
moves by questioning the correctness of the description of the game, in
particular the description of the payoffs of the other players.

The last objection to the suggestion that in the game of Figure 3,
the theorem [r A Ru => ((X V "O => X)] could be used to define the
counterfactual statement that a rational player II would choose X if her

14. In her analysis of strategies as counterfactuals, Bicchieri (1988a) attributes to players
not knowledge but beliefs. Bicchieri introduces into game theory the notion, due to
Gaerdenfors (1978), of belief revisions that involve a minimum loss of information.
Bicchieri's article is very interesting but is not in the spirit of this article, since she
assumes (p. 157) that the initial set of beliefs of the players include, among other
things, the sentence "the players only consider Nash equilibria." Thus, that rationality
implies Nash equilibrium is a datum in her analysis and not a theorem. Furthermore,
she does not start from an explicit (axiomatic) definition of individual rationality.

15. Bicchieri's (1988a) suggestion would probably be that the belief revision (P A --R, A
Ru) involves a smaller loss of information than the revision (->P A R, A R,,). This is
because she assumes (p. 157) that the initial belief set of the players, which is common
knowledge, includes the propositions: "player I chooses to play B" and "players always
play what they choose." She suggests that abandoning the latter hypothesis, that is,
explaining unexpected events as involuntary deviations involves a smaller belief re-
vision than the one required by the hypothesis that the deviation was voluntary. This
suggestion is related to Selten's (1975) notion of deviations as mistakes, which will be
discussed in the next section.
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decision node were reached is that this suggestion does not have a
counterpart in recursive situations, as the following examples show.

Example 7.16 We are told that an individual is faced with the de-
cision whether or not to join an expedition to the North Pole and that
he is aware that, if he does, he will find himself in the situation of having
to choose between eating canned meat or starving (since, we are told,
canned meat is the only kind of food that can be taken on an expedition).
We are also told that the individual is a vegetarian and eating meat is
the second worst thing that could happen to him (the worst being dying).
We are asked to make a prediction on the assumption that he is a rational
individual. The prediction is, of course, that he will not join the expe-
dition. We are then told that, contrary to our prediction, he did join the
expedition and we are again asked to make a prediction of whether he
will eat meat or choose to die. Wouldn't we react by saying: "the evidence
you are giving me (his joining the expedition) contradicts the hypotheses
you gave me at the beginning. I must now conclude that those hy-
potheses are wrong: either he is not rational, or he is not a vegetarian,
or he didn't really have a choice between joining and not joining the
expedition, or it is not true that meat is the only food available, or. . . .
If you ask me to retain the hypothesis that the original description of
the situation is correct, then I have to conclude that this individual is
not rational and it is hard to predict the behavior of irrational people."17

Example 2. Consider the game illustrated in Figure 4a. In this game,
player I gets the largest possible payoff if he plays Dx. Hence, it is an
immediate consequence of the rule of inference NERD that (F4" A R, =£>
D,) and, therefore, that (by the "paradox of material implication")
all the strategy combinations with Dx as first component are rational
solutions. Moreover, neither [F4n A Rn => ((A2 V D2) 4> A2)] nor [F4n A
Rn z> ((A2 V D2) => D2)] can be proved using NERD. Furthermore,
concerning player I's last decision node we have that, by NERD, the
following is a theorem: [P1" AR,^> ((A3 V E>3) => D3)]. However, since
[T4- => (D, => ->(A3 V D3))] and (F4n A R, >̂ D,) are both theorems, it
follows that also [F4" A R, => ((A, V D3) => A3)] is a theorem. Thus,
following this suggestion, we would obtain two contradictory counter-
factual statements for player I at his last decision node and we would
not be able to obtain a counterfactual statement for player II.

We can now turn to some general results that can be proved for our
solution concept. These results are very general, in the sense that they
do not require acceptance of the rule of inference NERD, even though they

16. This example was suggested to me by Jerry Cohen.
17. In this example, most game theorists would probably suggest an explanation in terms

of mistakes: the original description of the decision problem is correct and the indi-
vidual is rational and he decided not to join the expedition, but he mistakenly boarded
the ship. We shall return to this type of explanation in the next section.
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FIGURE 4.

require acceptance of the definition of rational solution and of the def-
inition of strategies as instances of material implication.

Proposition 2: If the hypothesis that the description of the game is
correct and that all players are rational is consistent,18 then all the
rational solutions of a game are equivalent in the sense that they give
rise to the same play and, hence, to the same outcome.

Thus, proposition 2 says that even though there may be many
rational solutions, the prediction in terms of (sequence of actions

18. That is, if it is not the case that the proposition ->(F A R, A R,, A . . .A RM) is a theorem.
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and) outcome is unique. The proof is quite simple: if there were two
rational solutions that gave rise to two different plays, then there would
be an information set of a player, say player ;, that is reached by both
solutions, and two different actions of player i, call them An and A,k, one
prescribed by one solution and the other prescribed by the other solu-
tion. Then - given the definition of rational solution and assuming that
AlU An, . . . , Aim are the actions available to player i at that information
set - we would have that the following proposition is a theorem

r A R, A . . . A RB => (An V • • • V Am) A -(*„ A Ai2)

A . . . A - ( /U- , A Am) A [(A, V • • • V Am) ^ A,,]

A [(An V • • • V Am) => A*]

which implies that -•(r A R, A . . . A R,,) is a theorem.
Proposition 3: If a game has a unique rational solution (and each

player has at least two choices at every information set), then the
corresponding play reaches all the information sets.

The proof is clear: if an information set is not reached, then any
strategy concerning that information set is a hypothetical statement with
a false antecedent, hence, true. Thus, there would be at least two true
hypothetical statements (strategies) concerning that information set. It
is worth noting that the set of perfect-information games where there
is a play that crosses all the information sets is a trivial subset of the set
of games of perfect information. Hence, proposition 3 implies that most
games do not have a unique rational solution.

If the notion of individual rationality is expressed by the rule of
inference NERD alone, then not every game has a solution. An obvious
example is a one-person game with only two actions, both of which give
the same payoff. The following proposition identifies those games that
do have a NERD-rational solution.

DEFINITION. A game in extensive form is called nonrecursive if along
every play of the game each player moves at most once.

Proposition 4: It a game of perfect information (without chance
moves) is nonrecursive and has a unique19 subgame-perfect equilib-
rium, then the subgame-perfect equilibrium is a NERD-rational so-
lution of the game, but, in general, not the only one. However, if
there are many NERD-rational solutions, they all give rise to the
subgame-perfect equilibrium play.

The proof of proposition 4 relies on the fact that, in a nonrecursive
game, a backward induction argument is allowed by NERD, since it is
never the case that the proviso is violated: backward induction can be

19. Uniqueness holds generically.
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done in exactly the same way as it was done in the proof of claims 1
and 2. Furthermore, by proposition 3, we know that if the subgame-
perfect equilibrium play does not cross all the information sets, there
cannot be a unique rational solution. Finally, by proposition 2, we know
that all the rational solutions give rise to the same play.

For games that have a recursive structure, a general result similar
to that of proposition 4 cannot be proved because of the proviso of
NERD. Consider, for example, the game of Figure 4b. The unique
subgame-perfect equilibrium is still (Dv D2, D3). The proviso of NERD,
however, prevents us from claiming that (D,, D2, D3) is a rational
solution. In fact, using NERD we can prove that [F4'1 A R, => ((A, V
D3) 4> D3)], which in turn yields the following theorem: [r4(l A R, A
Rn => ((A2 V D2) >̂ D2)]. At this stage the proviso of NERD does not
allow us to proceed any further. There are good logical reasons why this is
so-. Without the proviso we would be using the following circular ar-
gument: suppose that player I is rational and his second decision node
is reached, then he will choose D3; use this result to conclude that if
player I is rational he will play Dx. But this conclusion invalidates the hy-
pothesis "player 1 is rational and his second decision node is reached" used to
obtain the first conclusion.

Of course, one could "solve" this logical problem by considering
the agent form of the game, that is, by treating the same player at two
different information sets as two different players with the same payoff.
By doing so, one can transform every recursive game into a nonrecursive
one and then apply proposition 4. However, in doing so, one "solves"
the problem by ignoring it.

The discussion so far can be used to raise doubts about commonly
accepted views, such as the one according to which the finitely repeated
prisoners' dilemma has a unique rational solution where each player
acts noncooperatively at each stage. Even though, so far, we have only
considered games of perfect information, there is nothing in what we
said that limits the applicability of our approach to such games. In par-
ticular, our definition of rational solution applies also to games of im-
perfect information (in Appendix 3 we are given an example of a game
of imperfect information that has two pure-strategy Nash equilibria, only
one of which is sequential; we show that that game has a unique NERD-
rational solution that coincides with the sequential equilibrium). Given
the recursive structure of the finitely repeated prisoners' dilemma game,
the proviso of NERD makes it impossible to prove that defection at every
stage is indeed a rational solution. However, we can imagine that a
different axiom (or additional axioms) of individual rationality could do
the job. In such a case, proposition 3 tells us that "defection at every
stage" cannot be the unique rational solution (note that the proof of
proposition 3 is equally valid for games of imperfect information). In
other words, the prediction would be that rational players would defect
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at every stage, but it would not be justified to claim that, once one player
has played cooperatively, the unique rational response of his opponent
is defection: if there is defection at some stage, then the original set of
hypotheses, namely, (F A R, A . . . A Rn), must be abandoned.

RELATED LITERATURE

In this article we used the language of propositional logic to analyze
extensive games. Bacharach (1987) was the first to introduce logic into
the analysis of games. However, he considered only normal-form, si-
multaneous games and used first-order epistemic logic. One of the results
he proves is that only Nash equilibria can be solutions. It is worth noting,
however, that the proof relies on the fact that a defining property of a
solution concept - according to Bacharach - is that it select a unique
strategy profile.

We defined strategies as instances of material implication and ob-
served that this approach is at variance with the prevailing view that
strategies ought to be construed as counterfactual statements. Bicchieri
(1988a) seems to have been the first to study the issue of counterfactual
reasoning in extensive games. Counterfactuals seem to require moving
away from common knowledge of players' rationality and attributing to
players a commonly known hierarchy of beliefs or a commonly known
procedure of belief revision.20 We pointed out in notes 14 and 15 some
important differences between the objectives of this article and those of
Bicchieri's (1988a) article.

Foundational issues in game theory have been raised in a number
of recent articles.21 Space limitations prevent us from discussing all these
contributions.

Binmore (1984,1987a) argues as follows: (i) the attempt to determine
rational behavior at unreachable information sets involves counterfactual
reasoning; (ii) counterfactual reasoning, however, is unavoidable, be-
cause it is off-the-equilibrium-path behavior that determines equilibrium
behavior; (iii) in order to avoid logical inconsistencies, deviations must
be explained as mistakes; (iv) mistakes can take place at the level of
players' reasoning, because there is no such thing as "perfect rational-
ity." Binmore (1987a, p. 179) himself summarizes his contribution as
follows: "The essential point is that the traditional or axiomatic approach
needs to be abandoned in favor of a constructive or algorithmic ap-
proach."

20. Recent interesting contributions along these lines are Battigalli (1989), Bicchieri (1988b,
1988c), Pettit and Sugden (1989), Shin (1989), and Sugden (1988).

21. See Basu (1988, 1990), Battigalli (1989), Bicchieri (1988a, 1988b, 1988c), Binmore (1984,
1987a, 1987b), Cubitt (1988, 1989), Pettit and Sugden (1989), Reny (1985, 1988), Sam-
uelson (1989), Shin (1988), Sugden (1988), and Tan and Werlang (1984).
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Reny (1988) suggests a definition of common belief of Bayesian ra-
tionality at a node of a game of perfect information with two players,
and shows that common belief of rationality is possible at every node if
and only if the subgame-perfect equilibrium play reaches all the decision
nodes. Thus, there is a point in common between Reny's conclusion
and our result that if a game has a unique rational solution, the resulting
play must reach all the information sets.

Some points that are in common as well as some important differ-
ences between our approach and Cubitt's (1989) were pointed out by
Cubitt himself (pp. 120-21).

One of the implications of our approach is that if a game has a
rational solution and the corresponding play does not reach a certain
information set, then the hypothesis (F A R, A R:I A . . . A Rn) - that
is, the hypothesis that the description of the game is correct and that
all players are rational - cannot yield any nontrivial predictions as to
what the relevant player would do at that information set. Selten (1975)
suggests a notion of individual rationality according to which a deviation
from a "rational solution" is interpreted as an involuntary - and ex ante
very unlikely - mistake on the part of one of the players. This notion is
the rationale for most of the refinements proposed in the literature (per-
fect, proper, sequential equilibrium, and so forth). According to this
approach, it is never the case that from the description of the game and
the hypothesis that all players are rational, one can deduce that a certain
information set will not be reached. Furthermore, if common knowledge
of rationality is assumed, then deviations from the equilibrium are always
necessarily interpreted as involuntary mistakes. Rosenthal (1981) and
Binmore (1987a) have argued forcefully that this approach yields un-
acceptable results in games with a recursive structure. Another common
objection to this approach is that it is not clear why we should consider
it desirable to base a definition of individual rationality on the possibility
of mistakes. After all, Selten (1975, p. 25) himself recognizes that "there
cannot be any mistakes if the players are absolutely rational." If the
purpose of introducing mistakes is to eliminate "irrational" Nash equi-
libria, such as Nash equilibria that involve incredible threats, then the
approach suggested in this article provides an alternative: it eliminates
incredible threats without resorting to mistakes (cf. the game of Figure
1, where the only rational solution is (A, X)).

CONCLUSION

The literature of the past 10 years shows that considerable effort has
been spent in the attempt to find a suitable refinement of the Nash
equilibrium concept that would provide the "rational solution" of any
extensive-form game. The basic tenets of this approach are: (i) a "rational
solution" must be a Nash equilibrium; and (ii) the Nash equilibrium
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concept needs to be refined to deal with the problem of "rational" be-
havior at information sets that are not reached by the equilibrium path.
Many equilibrium concepts have been suggested within this approach,
but no one has achieved the goal of the research program.

In this article we suggested a different approach based on an explicit
definition of rationality. The need to start from an explicit definition is
based not only on the need to avoid ambiguity, but also on the fact that
it may be misleading to try to express the notion of rationality by means
of an equilibrium concept. In fact, the concept of rationality seems to
refer to a process of logical deduction, while the concept of equilibrium
(or at least of stable equilibrium) refers to a deviation-correcting process.

As emphasized earlier, the purpose of this article was not to propose
a new theory of games or to suggest that our approach is the correct
one. We merely showed that by taking a point of view that is different
from the conventional one (strategies as material implication rather than
subjunctive conditionals or counterfactuals, and prepositional logic
rather than epistemic logic) one can go surprisingly far. In fact, we were
able to show that the solution concept put forward in this article is
consistent with decision theory, yields solutions that are equivalent (in
the sense that they all give rise to the same outcome), and gives logical
foundation to the selection of outcome implied by the notion of subgame-
perfect equilibrium in nonrecursive games (where no player moves more
than once along any given play). It is conceivable that with a stronger
axiom of individual rationality (or with the addition of further axioms)
one could go even further. If such a stronger axiom does not exist, then
the contribution of this article will have been to show the precise sense
in which it is necessary to construe strategies as counterfactuals: not
because otherwise all Nash equilibria turn out to be rational solutions,
but because otherwise only a small class of games can be solved in a
satisfactory way. If such a stronger axiom does exist, then the contribution
of this article will have been to raise the question: what do we gain by
thinking of strategies as counterfactuals?
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APPENDIX 1

In this appendix we give a rigorous definition of rational solution. With every
n-person extensive game of perfect information we can associate:

(1) the alphabet V consisting of: the atomic formulas used to describe the
game-tree, the n propositions R,, Rlu . . . , Rn (recall that the interpre-
tation of R, is "player i is rational"), the propositions (IT, = t), (IT, > t),
(77, < t) (i = I, . . . , n; t £ R; the interpretation is "player I'S payoff is
equal to/greater than/less than t), and the connectives of propositional
logic,1

(2) the language £, which is the set of all well-defined formulas obtained
from V using the composition rules of propositional logic, together with
the ordering of the real numbers.

Thus, F, the description of the game-tree, is an element of .£, and the set
of strategies 2, of player i is a subset of £.2

Let £* be the language £ together with the axioms of propositional calculus,
the rule of inference modus ponens and the rule(s) of inference (or axiom
scheme(s)) that express the notion of individual rationality (e.g., the rule of
inference NERD).

DEFINITION. The strategy combination (S, A Sn A . . . A Sn) is a rational
solution of the game described by F if and only if the formula

r A R , A R u A . . . A R , ^ S , A S B A . . . A S , (A.I)

is a theorem of £*.
As in propositional calculus, we say that formula $ is a theorem of £* if there

exists a finite sequence of formulas <J>,, <t>2, . . . , 4>m, such that: (1) $m = $, (2)
each <1>; (/ = 1,. . . , m) is either an axiom or is obtained from previous elements
in the sequence by means of the rule of inference modus ponens or the rule(s)
of inference of individual rationality. We say that the sequence <t>,, <J>2/ • • • , ®m
is a proof of $. It is clear that £* is an extension of propositional calculus and
therefore all the theorems of propositional calculus are theorems of £*. Recall
that a formula is a theorem of propositional calculus if and only if it is a tautology.
The rule of inference of individual rationality thus extends the set of theorems
to include formulas that are not tautologies, such as formula (A.I).

1. For example, for the game of Figure 1, V = {A, B, X, Y, it, = (, irn = u, R,, R,,, A, v , •-,
where ( and u are real numbers.

2. For example, in the game of Figure 1, 2, = {{A V B) => A, {A V B) => B} and 2,, = {(X y
(X V Y) => Y).
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APPENDIX 2

In this appendix we show that the axiom scheme (3) and the rule of inference
(4)-(5) are inconsistent. Consider an extensive-form game of perfect information
and let Au A2, • . . , Am (m > 1) be the actions available to the player (call him
player I) who moves at the root of the tree. Then part of the description of the
game-tree, F, will be the formula:

(An V Aa V • • • V An,) A - (Aa A AI2)

A - ( A , A AI3) A . . . A -(AIm_, A Alm) (B.I)

Assume that the game has a rational solution. Then the following formula
must be a theorem for some k = 1, . . . , m:

FAR1ARllA...ARnd>Alk (B.2)

Let p be the largest payoff in the game. Fix an arbitrary j different from k. From
(B.I) we have that (Allc => ->Atl) and therefore, since [-A,, => (A,, => TT, = P + 1)] is
a tautology, it follows from (B.I) and (B.2) that the following is a theorem:

r A R, A Ra A . . . A Rn z> (An V • • • V Am)

A (Att => ir, =s (3) A (A,, => TT, = 3 + 1).

Hence, using axiom (3) or rule of inference (4)-(5) we obtain

r A R, A Rn A . . . A Rn => (R, => -A,,) (B.3)

which is equivalent to

r A R, A Rn A . . . A Rn >̂ -A^ (B.4)

Now, the conjunction of (B.2) and (B.4) is equivalent to

- ( f A R, A Ra A . . . A Rn).
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APPENDIX 3

In this appendix we show, by means of an example, that the definition of rational
solution can be applied to games of imperfect information and that axiom NERD
may be sufficient to eliminate Nash equilibria that are subgame-perfect but not
sequential.

Consider the game of Figure 5. This game has two pure-strategy Nash
equilibria: (R, A) and (M, B). Both are (trivially) subgame-perfect, but only
(M, B) is sequential (because A is a strictly dominated action for player II at her
information set).

The logical description of this game, P , is given by the conjunction of the
following propositions:

L\JM\JR, - ( L A M ) , - ( L A K ) , - ( M A R ) ,

L ^> (A V B), M => (A V B), ^(A A B),

K => (IT, = 2 A iru = 0),

LAA=>(7r , = 0 AIT, , = - 2 ) ,

L A B ^ (IT, = 1 A IT,, = 1),

FIGURE 5.
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M A A ^> (TT, = 0 A IT,, = - 1 ) ,

M A B => (TT, = 3 A TT,, = 3).

Claim: (M, B) is the unique NERD-rational solution.
Proo/:

P A (A V B) => (A V B) A (A => TT,, < - 1 )

A ( B = > T T , , > 1) A ( - l < 1) (T)

P A (A VB) =>(*„=>-A) (NERD)

P A R,, ^> [(A V B ) 4 > B ] (IM)

T5 A R,, ^> (M 4> B) A (L 4> B) (IM)

P A R,, => (L V M V K) A (R => TT, = 2)

A (L ^> TT, = 1) A (M ^> TT, = 3) (IM)

Applying NERD twice to the last sentence gives

T5 A R, A R,, => -R A -L ^> M.

This proves that (M, B) is a NERD-rational solution. Uniqueness follows from
proposition 2. •


