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Abstract: In this paper we use catastrophe theory to analyse situations in which agents with similar
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considerably different. We first provide two simple analytical examples of this phenomenon and then set
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1. Introduction

Consider a set of agents, all of whom face the
same environment (e.g. the same data or informa-
tion) and the same set of choices. If the agents
differ among themselves, we would expect them to
make different choices. Intuition, however, sug-
gests that similar agents with similar objectives
should make similar choices. The purpose of this
paper is to show that it is possible to have diver-
gence of choices despite similarity of characteris-
tics and objectives, and, furthermore, that this is a
stable phenomenon, in the sense that it cannot be
eliminated by means of small changes in the
specification of the model. A consequence of this
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is that such phenomena cannot be considered
‘unlikely’ or ‘pathological’.

The mathematical tool which we use is
catastrophe theory '. In the following two sections
we illustrate the phenomenon with the help of two
simple analytical examples, while in Section 4 we
set up a general framework and apply the classifi-
cation theorem of catastrophe theory to it. Section
5 provides a summary.

2. Example 1: Forecasting the value of a random
variable 2

Consider a situation in which a number of
agents are asked to make a forecast x about the

! For an elementary exposition of catastrophe theory see
Chillingworth (1976) and Fararo (1978).

2 This example is based on Smith, Harrison and Zeeman
(1981) and Zeeman (1982). It will be pointed out later that
the work of Smith (1978) is also directly relevant to this
example.
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Figure 1. Skew probability density function

value of a random variable Y (for example, the
price of a particular stock). The probability distri-
bution of Y is common knowledge and given by
the density function P(y). Let x be the forecast
value and y the observed value. Then the payoff is
as follows: if the forecast is approximately correct,
ie if 0<|x—y|B (where >0 is small), the
agent receives a prize p > 0; if the forecast is
considerably wrong, i.e. if |x—y| >y (where y
> 0 is large) the agent has to pay a fine s> 0; in
every other case the agent receives and pays noth-
ing.

Suppose the density function P(y) is as shown
in Figure 1.

We have deliberately chosen a skew distribu-
tion so that the mode m is different from the
mean p. The mode represents the most likely
outcome, while the mean represents the expected
outcome. Will an agent’s forecast be based on the
mean or on the mode?

We consider a large number (in fact a con-
tinuum) of agents. Each agent is identified by a
value, between 0 and 1, of the parameter w, which
gives the weight the agent attaches to the prize p
(and (1 — w) is the weight he attaches to the fine
s). Intuitively we would expect the agent for whom
the prize is all that matters (w = 1) to follow the
mode m (the most likely outcome), and the agent
who is entirely worried about the fine (w=0) to
follow the mean p. We would also expect that as
w increases from O to 1 the forecast varies con-
tinuously from the mean to the mode. We now
show that this need not be the case.

loss
La
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Figure 2. Two-step loss function

A agent w € [0, 1] will view the game as having
the following loss function as payoff

—wp ifO<|x-yl<B,
L,(x, y)=(0 if B<|x-yl<y, (1)
1-w)s ifjx—y|>7.

For each agent w, define the risk of making
forecast x as follows:

R,(x)=[L.(x, y)P(») dy. )

In other words, the risk function is the expected
loss. We assume that each agent makes the fore-
cast x* that minimizes R (x).

Let

a=wp/[wp+(1—w)s]. (3)

Then we can normalize L, by defining
wp+L,(x, y)

Lo(x, y) = ——F— ==

wp+(1—w)s

0 ifO0g|x—y|<8B,

={a ifp<|x-y|<v, (4)

1 if [x—y|>y.

Such a normalization is admissible because affine 3
changes of L induce the same affine changes in R
and so do not alter the critical points of R. The

3 A transformation 7: R — R is called affine if it takes the
form T(x) = ax + b, where a and b are constants.
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two-step loss function L is shown in Figure 2.

As w varies between 0 and 1, so does a and we
can identify an agent with a value a € [0, 1]. The
parameter a can be interpreted as a measure of
confidence: the higher «, the more confident the
agent.

The risk function

R.(x)=[L(x, y)P(y)dy ()

can now be computed as follows. Regard L_ as
the constant function, with value 1, minus two
rectangles, the first of width 28 and height a, and
the second of width 2y and height (1 — «). There-
fore

R,(x) = [L,(x, y)P(y)dy

=1-aB(x)—(1-a)I(x) (6)
where
B(x)= P(y)dy=[""P(y)dy, (7)
[x—yi<B x—B

F(x)=f

[x=yl<y

PO ay= [P 4y @)

It is interesting to note that the risk function is
smooth, despite the fact that the loss function is
not continuous (it is a step function). The critical
points of B are given by

dB/dx=P(x+B8)~P(x—B)=0. 9)

Therefore B has a unique maximum at m’, say,

B(x)
rix)

1/

1
1
|
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Figure 3. The functions B(x) and I'(x)

where m’ is the mid-point of the unique horizon-
tal chord of P of length 28. Since 8 is small, m’ is
near the mode of P. Similarly, I" has a unique
maximum at p’, say, where g’ is the mid-point of
the chord of length 2y. If y is of the order of
about twice the standard deviation of P then it
can be seen from Figure 1 that g’ is near the mean
p of P, as shown in Figure 3.

Therefore if a=0 then R, has a unique
minimum atp’ and if @« =1 then R has a unique
minimum at m’. If 0 <a <1 then R, is a linear
combination of B and I, and so it is either
unimodal, with a unique minimum between m’
and p’, or else bimodal, with two minima, one
near the mode and the other near the mean, as
shown in Figure 4. As the parameter « varies from
0 to 1, the decreasing family of loss functions give
rise to a smooth decreasing family of smooth risk
functions, one possibility being the one shown in
Figure 4 (in the Appendix we give a very simple
example of a bimodal risk function arising from a
unimodal probability density function and the
two-step loss function (4) illustrating this possibil-
ity).

Let x* =g(a) be the absolute minimum of
R (x). For the family shown in Figure 4 there is a
critical value a* of the parameter for which the
risk function R (x) has both minima at the same
level. If & < a* then the lower minimum g(«) will
be a point p’ near the mean, and if a > a* then

risk
o

R

ywww.

0 mode mean

forecast

Figure 4. The family of risk functions. The absolute minimum

of each risk function is indicated by a solid dot. At the critical

value a* the risk function has both minima at the same level,
indicated by the horizontal dotted line
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Figure 5. Discontinuous choice function

g(a) will be a point m’ near the mode. Therefore
if a increases past a* then g(a) will switch
discontinuously from u’ to m’.

This is shown more clearly in Figure 5. The
smooth S-shaped curve consists of all points («, x)
for which x is a stationary value (minimum or
maximum) of R,(x). The thick part of the curve
represents the absolute minima, the thin part rep-
resents the local (but not absolute) minima, while
the dotted part represents maxima. Therefore the
graph of x* = g(a) (absolute minima) is the thick
curve, with the discontinuity at a*. We call this
function x* = g(a) the choice function, since it
gives the forecast chosen by agent « (choice func-
tions will be discussed in more general terms in
Section 4).

We therefore observe a phenomenon of polari-
zation, with some agents making forecasts near the
mean and the remaining agents making forecasts
near the mode, while no agent makes a forecast in
between. Figure 5 also illustrates two phenomena
—divergence and inaccessibility-—which will be
discussed at greater length in Section 4.

Values of x between x; and x, are not forecast
by any agents (inaccessibility; these are values
which correspond to local maxima or local—but
not global—minima of R,) and agents with simi-
lar characteristics and objectives (e.g. agents a;
and «,) end up making forecasts which are con-
siderably different (divergence).

In the preceding discussion the density function
P was fixed, while the loss function varied within
a one-parameter family, L,. We can now extend

the analysis by considering a one-parameter family
of density functions P,. We define the parameter
7 as follows

n = — m = mean minus mode. (10)

We can interpret n as a measure of the ambiguity
of the information about the random variable Y.
A symmetrical distribution like the normal would
have 7 =0. If > 0 then P is skewed to the right
as in Figure 1, and if 1 <0 then P is skewed to
the left. First consider only non-negative values of
1. Let x*=g(a, 1) be the forecast chosen by
agent a when he faces the density function P,. If
1 = 0 the mode and the mean coincide and there-
fore all agents will make the same forecast x = p
= m. Therefore g(a, 0) is a horizontal straight
line, hence continuous. If 4 is positive we are in
the situation analyzed previously where the func-
tion g(a, n) has a discontinuity as shown in Fig-
ure 5. The classification theorem of catastrophe
theory, which will be stated in Section 4, enables
us to conclude that the graph G of the choice
function g(a, ) is a surface which is equivalent
to that shown in Figure 13(c) (cusp). If the infor-
mation is skewed the other way (1 <0), implying
i <m, then another symmetrically placed cusp
appears, with the orientation reversed. The graph
G of g(a, 1) would therefore look like Figure 6. If
n =0 our two agents o; and a, make the same
forecast, but if P becomes skewed either way then
they will find their forecasts diverging in opposite
directions, with «; always following the mean and
a, following the mode.

We conclude this section with a remark. We
have considered the case where a two-step loss

X

Figure 6. Skewing either way gives two cusps
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function coupled with a unimodal density func-
tion gives rise to a bimodal risk function (an
example is given in the Appendix) and therefore
to the possibility of a discontinuous choice func-
tion. It is worth stressing that in general the risk
function need not be bimodal. Smith (1978) gives
sufficient conditions on the skew density which,
together with a double-step loss function, ensure
bimodality of the resultant risk function (see also
Smith, Harrison and Zeeman, 1981) .

3. Example 2: Asking for the ‘right’ salary °

Consider the case of a firm and a large number
of workers. The firm believes that each worker’s
productivity is the same and equal to S, which,
without loss of generality, we can take to be a
positive number less than or equal to 1. The firm,
however, does not want to disclose its beliefs;
instead, it asks each worker to state the salary
x &[0, 1] at which he is willing to work and it will
employ the worker if and only if x < S. All workers
have the same utility function °

U(x)=x. (11)

They differ, however, in their beliefs concerning
the value of S. A worker’s beliefs are expressed by
a density function h: [0, 1] = R whose cumulative
distribution function we denote by H. Thus H(x)
is the probability, according to the worker’s be-
liefs, that S < x, that is, that if he requests salary
x, the firm will not employ him. In other words,
the worker attaches probability 1 — H(x) to the
event that the firm will employ him if he requests
salary x.

We want to consider a one-parameter family of
beliefs, H,, where a is a one-dimensional parame-
ter and each value of the parameter identifies a

* The class of skew densities which—together with the two-
step loss function (4)—give rise to a bimodal risk function
includes the lognormal, inverse gamma and the Pareto
distributions (cf. Smith, 1978), as well as the one con-
structed in the Appendix. It does not, however, include
commonly used densities, such as the gamma.

The example of this section i1s formally similar to Bonanno
(1987). In fact, the function f, (x) given by (19) is for-
mally identical to a revenue function.

The utility function was chosen to be linear (risk-neutrality)
only in order to simplify the analysis, but similar results can
be proved with concave utility functions (risk-aversion) (cf.
Bonanno, 1986).

>

worker (or agent); furthermore, we want increas-
ing «a to mean increasing pessimism. We say that
worker « is more pessimistic than worker o if his
beliefs, H,, dominate those of worker &', H_, in

the sense of strict first-order stochastic dominance.
that is, if

H,(x)>H_(x)

forall xe[0,1] and H, # H_. (12)

(recall that H(x) is the probability, according to
the worker’s beliefs, that if he requests salary x
the firm will not employ him) .

For the time being we shall leave aside the
parameter a (worker) and consider the following
two-parameter family of cumulative distribution
functions (beliefs):

Hb.c(x)
[ bx if0<sx<(1—c¢)/(b—c),
T ll-ctex if(1-¢)/(b—c)<sx<].
(13)
Define
Ph,c(x)zl_Hb.c(x)' (14)

For a worker whose beliefs are represented by the
point (b, ¢), P, .(x) gives the probability that
x < §, that is, the probability that if he asks for
salary x he will be employed at that salary. From
(13) we obtain

1-—bx

C—CX

if0<x<(1=¢c)/(b—¢),
if(1—c)/(b—c)<x<1.
(15)

Figure 7 illustrates the function P, (x) for the
cases where b=c=1 and 0 <¢ <1 <b. Accord-
ing to our definition (b, c) represents more pessi-
mistic beliefs than (b’, ¢) if and only if P, (x) <

)|

7 The intuition behind our definition of greater pessimism is
reinforced by the following well-known property (cf. Lipp-
man and McCall, 1982, pp. 215-216): H_, dominates H, in
the sense of strict first-order stochastic dominance if and
only if for every increasing function U,

fU(x)ha(x)dx</U(x)har(x)dx.

Therefore, worker a is more pessimistic than worker a” if
and only if his expected utility is less than that of worker a”
(assuming that they have the same utility function).
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(b)

Figure 7. The function P, .(x). We have labelled the angles by
the value of their tangents. (a) Case b=c=1; (b)Case 0 <c <
1<b

P, (x) (for all x, with strict inequality for some
x). It is easy to check that a sufficient condition
for this is

b> b’ and ¢ < ¢’ and not both equal. (16)

The two-parameter family of c.d.f’s given by
(13) arises from the following two-parameter
family of two-step density functions, illustrated in
Figure 8:

ifo<S<(1-c)/(b—c),

if(1—¢)/(b—c)<S<1. (17)

b

hu(5) = |
¢
By (16), given any point in the parameter space,
a movement in the South, East or South-East
direction is associated with increasing pessimism.

=2

T
0}

SN

AN

b,c

0 1-c 1 S
b-c

Figure 8. The density function 4, .(S). The two shaded areas
are equal

We shall restrict our attention to values of the
parameters satisfying the condition

0<e<1<b. (18)

The shaded area in Figure 9 illustrates the
region defined by (18) and the arrows at point V
indicate the directions associated with increasing
pessimism (East, South or South-East).

Let

fo.(x) = U(x) P, (x) = xP, o(x). (19)

Thus f, .(x) is the expected utility of asking for
salary x. It follows from (15) that the function

;
1 b
Figure 9. The arrows denote the directions which are associ-

ated with increasing pessimism (from any given starting point
V)
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Figure 10. The function f, .(x) (a) Case 1/4b > c/4; (b) Case
1/4b=c/4; (c) Case 1 /4b < c/4

f»..(x) is the union of two parabolas, as illustrated
in Figure 10 ¥,

We shall assume that each worker asks for that
salary x* which maximizes f, (x). Let x*=
g(b, ¢) be the point at which f, .(x) reaches its
maximum; then it is easy to check that

. (12 if ¢>1/b,
" Tl1/0b) if c<1yb,

while for ¢ =1/b the function (19) has two global

(20)

8 The case 1/(4b) > c/4 (Figure 10(a)) includes two more
cases, where the maximum of the parabola on the right goes
inside the other parabola and therefore the function f
becomes unimodal. Similarly for the case 1/(4b) <c/4
(Figure 10(c)).

[

| Maxwell
txt =1fn) - [ —line

w|-

Y 1 3 b

Figure 11. The line of equation ¢ =1/b is the Maxwell line

maxima at x*=1/2 and x*=1/(2b) (cf. Figure
10(b)).

The above results are visualized in Figure 11.
Any path in the (b, ¢)-space ¢: 4 C R — R?* such
that as a increases the corresponding point ¢(«)
moves in the South, East or South-East direction
(like paths (1) and (2) in Figure 11), can now be
taken as the one-parameter family of beliefs re-
ferred to above: each value of a identifies a worker
and increasing a means increasing pessimism.
Whenever such path crosses the line (which, as we
shall explain in Section 4, is called the Maxwell
line) defined by the equation

c=1/b (21)

there will be a discontinuous jump in the salary
x* = g(a) requested by worker a (as in the previ-
ous section, we shall call the function x* = g(«a)
the choice function). Path (1) in Figure 11 (given
by b=3 and a =1 — ¢) gives rise to a counterin-
tuitive situation, as small differences in beliefs
give rise to large differences in choices; however,
the jump occurs in the ‘right’ direction: a more
pessimistic worker asks for a lower salary (see
Figure 12a). More surprising 1s the situation il-
lustrated in Figure 12b, corresponding to path (2)
in Figure 11 (given by ¢=1/3 and a = b). Here
not only do we have a discontinuity, but the jump
occurs in the ‘wrong’ direction: a more pessimistic
worker asks for a much higher salary than his less
pessimistic colleague!

The intuition behind these results is as follows.
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Figure 12. Evolution of requested salary along paths 1 and 2
(Figure 11) (a) Path (1) of Figure 11; (b) Path (2) of Figure 11

When b is close to 1, the probability function (15)
is almost linear (cf. Figure 7(a)) and as a conse-
quence the function f (given by (19)) has a unique
maximum. With ¢ fixed, an increase in b means
that the probability of S being close to zero
increases and the probability of intermediate val-
ues of S decreases, while the probability of §
being close to 1 remains unchanged. The maxi-
mum of the function f, therefore, will move to the
left towards 0, but at the same time a new local
maximum will appear near 1. When the probabil-
ity of S being close to zero becomes very high
(that is, when beliefs become very pessimistic)
then the worker knows that if he asks for a very
low salary he is very likely to get the job, but his
utility will also be very low. Therefore he may as

well take a chance and ask for a high salary, since
he believes there is a positive, although very small,
probability that S is in fact large. Between a very
likely life of misery and a not impossible life of
luxury some workers will opt for the former and
some— the slightly more pessimistic ones—for the
latter. Here we can notice again the two phenom-
ena of divergence and inaccessibility, which were
pointed out in the previous section and will be
discussed at length in Section 4.

We shall conclude this section with a remark.
The functions which we considered in this exam-
ple are continuous but not smooth: the functions
(15) have a kink at the point (1 —¢)/(b —¢) and
therefore the density functions (17) have a discon-
tinuity at that point. It is clear from Figure 10,
however, that the kink (and corresponding discon-
tinuity) are irrelevant from our point of view,
since the point (1—c¢)/(b—¢) is a (kinked)
minimum of the functions f, (x) while we are
interested in the maxima of those functions, which
are smooth. We chose the family of functions (13)
because of its simplicity. However, since smooth
functions are dense in the space of continuous
functions °, we can choose a smooth approxima-
tion of the family (13), (thereby eliminating the
discontinuity in the density functions 4, ), and
invoke the classification theorem of catastrophe
theory (cf. Section 4) to conclude that any suffi-
ciently close smooth approximation of the func-
tions considered would exhibit the qualitative
properties illustrated above.

4. A general framework

The purpose of this section is to set up a
general framework which can accomodate the ex-
amples given above and enables us to state some
general results.

Let A4 be a set of agents, with a topology on it
which enables us to say whether two agents are
similar (close) or different. In general each agent
can be identified with a vector of k characteristics
and therefore we can think of A as a subset of R¥.
We shall denote an element of 4 by a.

The state of the environment may affect the
action chosen by each agent and we assume that
we can measure the data or information about the

° Cf. Hirsh (1976, p. 47, Theorem 2.4).



G. Bonanno, E.C. Zeeman / Divergence of choices despite similarity of characteristics 387

environment by g parameters. Let £ denote the
space of possible parameter values, which will
therefore be a subset of RY Let an element of E
be denoted by 7.

Let X be the set of choices facing each agent.
In general X will be a subset of R".

We shall make two hypotheses.

Hypothesis 1. Each agent « € 4 in each environ-
ment n € E has an objective function

Jog: X R (22)

and the agent chooses x so as to maximize f, ,.

Hypothesis 2. Similar agents in similar environ-
ments have similar objective functions. This can
be formalized by requiring

F: AXEXX-R (23)

given by F(a, 1, x) =f, .(x) to be smooth '°.

Now it is a trivial but important consequence
of these two hypotheses that although F is smooth,
the resulting choice may not necessarily depend
smoothly on the agent and environment, and can
exhibit standard types of discontinuity. To focus
attention upon this crucial fact we introduce the
notion of the choice function

g: AXE->X (24)

where g(a, 1) is defined to be the choice made by
agent « in environment 1. In general f,  will
have a unique global maximum at a unique point
x€ X, and so g(a, n)=x. However, in special
cases f,, may have two global maxima at the
same level at two different points x;, x, and in
this case g(«, 1) will be double-valued and equal
to the point pair { x,, x, }. Moreover, such special
cases may be unavoidable if 4 X E is at least
one-dimensional, because perturbations one way
may raise one of the two maxima to be the unique
global maximum, while perturbations the other
way may raise the other maximum, causing a
discontinuity in the choice function, as shown in
Figure 13(b).

If A X E is two-dimensional, a further com-
plexity can arise with three global maxima at the

¥ The smoothness assumption is not a strong one, since every
continuous function can be approximated by a smooth
function (cf. Hirsh, 1976, p. 47, Theorem 2.4).

same level, as shown in Figure 13(d), but this is
the worst possible case, as indicated by the theo-
rem below.

Let G denote the graph of g, that is,

G={(a,m, x)EAXEXX|x=g(a,n)}.
(25)

We call G the choice graph. Over most points of
A X E the graph G will be single-valued and con-
tinuous, but over certain points G can be multi-
valued and discontinuous. The theorem below
classifies the types of discontinuity that can arise.

We specialize to the case k=g=1, that is,
where agents are distinguished by a one-dimen-
sional characteristic and face an environment that
can be represented by a one-dimensional parame-
ter. Note, however, that we impose no restrictions
on n, the dimension of the set of choices X.

Let 2 be the space !' of smooth functions F:
AXEXX—>R. We can now state the theorem,
which is an immediate deduction from the deep
classification theorem of elementary catastrophe
theory due to René Thom and the trivial Gibbs
phase rule (see Thom, 1972; Zeeman, 1977).

Theorem. There exists an open dense subset Z of £,
such that if F € Z, then the resulting choice-graph G
is a two-dimensional surface, which is locally equiv-
alent at each point to one of the graphs shown in
Figure 13. Furthermore, each graph in Figure 13 is
stable in the sense that it cannot be eliminated by
small perturbations of F.

We remark that Thom’s theorem classifies the
types of smooth surfaces M of stationary values
that can occur, whereas we are only interested in
those stationary values that happen to be absolute
minima. Therefore our choice graph G is a subset
of M and in fact is a surface-with-boundary, with
the boundaries occurring wherever the choice
function is discontinuous. In Figure 13 the discon-
tinuities are indicated by vertical lines (which are
not actually part of G). The situation is the two-
dimensional analogue of the one-dimensional
graph shown in Figure 5: there the S-shaped curve
is the smooth curve M of stationary values, and

1 The topology of £ is an obvious one: two functions are
close if their values are close and their partial derivatives up
to some order are close, and, to avoid problems at infinity,
the closeness may tail off towards infinity. This is called the
Whitney topology (see Zeeman, 1977).
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Figure 13. (a) Continuous choice; (b) Maxwell line; (¢) Cusp point; (d) Maxwell point

the graph G is the subset given by the thick curve,
which is in fact a curve-with-boundary, the
boundary points occurring where the choice func-
tion is discontinuous.

Notice also that G lies in 4 X E X X which is
(2 + n)-dimensional, while the graphs illustrated
in Figure 13 lie in three dimensions. The dif-
ference is allowed for by the definition of ‘local
equivalence’, which means that for each point
p €A XE there is a neighbourhood N of p in
A X E, a picture Q in Figure 13, and a diffeomor-
phism of N onto the horizontal square C of Q,

throwing p onto the dot, and underlying a projec-
tion of N X X into C X (x-axis) that throws the
subset of G above N onto the graph in Q.

Case (a) of Figure 13 is the intuitive situation
that one would expect to observe: choices vary
continuously with characteristics and environ-
ment, and therefore similar agents in similar en-
vironments make similar choices.

Case (b) of Figure 13 is the counterintuitive
situation of ‘unavoidable’ polarization: despite the
fact that agents’ characteristics are spread over a
continuous range, we observe, essentially, only
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two types of choice rather than a continuum of
choices. These two types of choice are separated
by a line (a curve) in the (a, n)-plane which is
called the Maxwell line. The Maxwell line is the
set of points (&, n) at which the corresponding
objective function f, . (x) has two global maxima.
Two agents lying on either side of the Maxwell
line may have characteristics so close as to be
almost indistinguishable, yet will make very differ-
ent choices, x; and x,. In a given environment the
set of agents is split into two by the Maxwell line.
Similarly, for a given agent the set of environ-
ments is split into two by the Maxwell line. If the
environment is gradually changing then the agent
will suddenly switch decision as she crosses the
Maxwell line. Different agents will switch at dif-
ferent times, so that the switch of decision will
proceed like a wave along the spectrum of agents.

Case (c) of Figure 13 represents the ‘threshold
of polarization’. Here the Maxwell line starts at a
point, which marks the onset of polarization in a
gradually changing environment. The graph arises
from the cusp catastrophe (see Thom, 1972; Zee-
man, 1977). Before the threshold the agents face a
continuous spectrum of choice, but after the
threshold they are split into two classes facing
essentially only two types of choice, x, or x;. The
middle choice x, is no longer accessible to them:
we call this phenomenon inaccessibility. Again,
agents who are close but pass the threshold on
either side of the Maxwell line find themselves
gradually diverging in their choice, although previ-
ously their choices had been relatively close: we
call this phenomenon divergence. If the Maxwell
line is at an angle to the environment axis, then
there will be some agents who begin to diverge
one way and then suddenly switch the other way
(a very human trait!).

Case (d) of Figure 13 respresents a ‘comprom-
ise’ situation. The Maxwell line is Y-shaped, and
at the vertex of the Y the three regions repre-
senting essentially three different choices meet.

We remark that this finite classification of types
of discontinuity can be extended to higher dimen-
sions, more precisely for parameter spaces 4 X E
of up to five dimensions. The reason for this is
that Thom’s theorem classifying elementary
catastrophes extends up to this dimension (see
Zeeman, 1977).

We can conclude this section by showing how
the examples of Sections 2 and 3 fit this general
framework.

In the example of Section 2 the set of agents A
is represented by the interval [0, 1] (cf. (3)) and
the set of environments by the real line (the
parameter n defined in (10) can take any value).
The set of choices X is also the real line (each
agent makes a one-dimensional choice consisting
in forecasting the value of the random variable
Y). Finally the objective function (22) is given by

fan(¥) = =Roy(x) = = [Lo(x, »)B,(») dy.
(26)

As far as the example of Section 3 is concerned,
we first note that the theorem stated above refers
to two-parameter families of functions f,  (x),
where the parameters are « and 5. We interpreted
those parameters as agent and environment, but it
is clear that nothing depends on this interpreta-
tion. What we have in Section 3 is exactly a
two-parameter family of functions f, .(x) (given
by (19)) and therefore we can apply the theorem
given above and conclude that the graph of the
choice function g(b, ¢) (that is, the set of points
(b, ¢, x) such that x is a global maximum of the
function f, .(x)) looks like Figure 13(c) (cf. Fig-
ure 11: the Maxwell line starts at the point where
b=c=1 and is given by the line of equation
c=1/b, for b= 1).

5. Summary

The purpose of this paper was to analyse situa-
tions in which similar agents, facing similar or
identical environments and having similar objec-
tives, make choices which are considerably differ-
ent. We first gave two simple examples of this
phenomenon, the first where agents face a random
variable and have to make a forecast of the value
of that variable, the second where workers face a
firm with an unknown reservation wage and have
to state the wage at which they are willing to
work, knowing that they will be employed if and
only if the wage they request is below the firm’s
reservation value. In both examples each agent
was assumed to choose the value of a variable x
(forecast or wage) so as to maximize (or minimize)
his objective function. We showed that agents who
were very close to each other (having objective
functions which were very close) ended up making
very different choices.
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In Section 4 we set up a very general frame-
work, in which those examples could be accom-
odated, and applied to it the classification theo-
rem of catastrophe theory, which essentially says
two things: first, that if situations like the ones
illustrated in the examples arise, they do so in a
stable way (in the sense that the discontinuities
involved cannot be eliminated by small changes in
the specification of the model); second that (lo-
cally) there are only four qualitative types of
situation which can arise, namely those illustrated
in Figure 13. Moreover this classification into a
finite number of qualitative types can be gener-
alized to higher dimensions, for parameter space
of up to five dimensions.

The lesson to modellers is as follows. If in an
investigation of some problem the data on agents’
choices appears to present discontinuities, then
the latter should not necessarily be ascribed to
‘random noise’ and smoothed away by statistical
techniques. An alternative approach would be to
investigate an appropriate model that would pre-
dict such a discontinuity, and then test that model
statistically against the data by, for example,
applying a least-squares fit to the discontinuous
choice graph. Computer programmes for such
statistical tests have been designed by Cobb (1978,
1980).

Appendix

Here we give a very simple example of the
situation analysed in Section 2, where a unimodal
probability function—together with the two-step
loss function (4)—gives rise to a bimodal risk
function.

Consider the following one-parameter family of
skew density functions, illustrated in Figure 14.

0 if y<0,
2y if0<y<1/2,
_J2-2y if1/2<y<1-1/Q2}),
POI= 2040y if1-1/(2A) <y <1+A
A — 1 - %)% N
222 +1 4
0 if y=1+A,
(A1)
where
A=1. (A2)

It can be seen from Figure 14 that for each A,

P
A

(1/2.1)

\\\\\ 3

)

S
////f‘;\\\\\\\\\\\ —

Figure 14. The density function P\(y)

0 1+ A y

P, is the union of two triangles, each of area 1/2
[one with vertices (0, 0), (1/2,1) and (1 —
1/(2A), 1/\) and the other with vertices (1 —
1/(2X), 1/X), (1, 0) and (1 + A, 0)]. The first tri-
angle represents the most likely value of y (the
mode m = 1/2), the second represents a possibil-
ity of higher y, with likelihood diminishing lin-
early to zero when y =1 + A. Thus we have

mode m=1/2, (A.3)
1/1 (1-1/QA)+1+(Q+A)

mean p= 3|5 3
22 +9A-1 A 3
~— T “e¢tw (A4)
ambiguity n = mean sinus mode = p — m
2X%4+30-1 A 1
=T "sta A

As in Section 2, we first consider a given den-
sity function, that is, we fix a value of A, say
A =5 (in which case, using (A.4) and (A.5) we get
p=1.56 and 1 =1.006). Let the risk function be
given by (6), that is,

R, (x)= [L.(x, »)P(y) dy (A-6)

where L_(x, y) is the two-step loss function of
Figure 2 and P(y) is given by (A.1) with A= 5.
As explained in Section 2, we can write

R (x)=1-aB(x)—(1-a)l(x) (A7)
where
B(x) = ["P(y) dy (A8)
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M (x)

-2 -1

x
Figure 15. The function I'(x)
and Lemma 1. B(x)=02 P(x), except within 0.1 of
x+y discontinuities of P’(x) at 0,1/2,0.9, and 6 where
I'(x) :/ P(y)dy. (A.9) B(x) is smoothed with parabolas.
x—Y
Choose Lemma 2. I'(x) = union of parabolas, as shown in
Fi .
B=01 (A.10) igure 15
and If we now let the parameter a vary between 0
and 1, we get a family of C' risk functions as
y=2 (A11) shown in Figure 16. It can be seen from Figure 16
-2 -1 o] o5 1 2 3 a s e 7 8

Figure 16. The family of risk functions R ,(x)
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Figure 17. Maxwell line with vertex at « = 0.126 and A =1.86

that for values of a close to zero, R(x) is uni-
modal with a unique minimum near the mean,
while for values of a close to 1, R(x) is unimodal
with a unique minimum near the mode. For inter-
mediate values of a, R(x) is bimodal with two
minima, one near the mode and the other near the
mean. The Maxwell point at which the two minima
are at the same level is given by a* = 0.52.

If we now let A vary (subject to A1), the
Maxwell line, that is, the set of points (a, A) at
which the global minimum of the risk function
switches discontinuously from a point near the
mean to a point near the mode, is a curve with a
vertex at a=0.126 and A =1.860, as shown in
Figure 17. Thus we are in the situation illustrated
in Figure 13(c).

Note that, although the density and loss func-
tions are piecewise linear, the risk function is
smooth (more precisely, differentiable with con-
tinuous derivative). The piecewise linearity implies
that the risk function does not have second deriva-
tive and thus is not generic at the cusp point (the
vertex of the curve shown in Figure 17), but
arbitrarily small perturbations are.

Finally, as we said in footnote 4, not all skew
density functions give rise—together with the

two-step loss function (4)—to a bimodal risk
function. For example, it can be shown that the
following density function

P(y)=y/e

(which is a special case of the gamma distribution)
gives rise to a unimodal risk function for every
value of the parameters (the same is true for the
gamma distribution in general). Thus in this case
the Maxwell set is empty and we are in the situa-
tion illustrated in Figure 13(a) (continuous choice).
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