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Preface to the third edition, 2024

The stimulus to prepare a third edition was a long list of comments and suggestions
provided by Christian Bach, who adopted the second edition of this book as textbook for
his undergraduate Game Theory course at the University of Liverpool. I am very grateful
to him for his detailed suggestions — chapter by chapter — on how to improve the book by
adding results, proofs, explanations and observations. Most chapters of this book have
been expanded and modified along the lines suggested by Christian Bach. Details on the
major changes introduced in the third edition are given in Chapter 1.

I also added a companion book,
EXERCISES IN GAME THEORY — Volume 1: Basic Concepts,
available at
https://www.amazon. com/EXERCISES-GAME-THEORY-Concepts-Textbooks/dp/BOD538MPTF

that contains an additional set of 180 fully solved exercises for Chapters 2-7 and a similar

companion book for Chapters 8-15 is in preparation.

This book is suitable for both self-study and for an undergraduate course in Game
Theory (probably based on the first 7-10 chapters) as well as (in its entirety) a first-year
graduate-level class. It is written to be accessible to anybody with high-school knowledge
of mathematics. The book is richly illustrated with 422 figures. At the end of each chapter
there is a collection of exercises (a total of 193 exercises) accompanied by complete and

detailed answers.
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Preface to the second edition, 2018

This second edition introduces

¢ substantial reformatting (having translated into IATEX the previous file written in

Microsoft Word),
¢ the addition of 15 new exercises (bringing the total to 180),
¢ 1mproved exposition, with additional text and examples, and enhanced topics,

¢ the availability of a printed version of the book, split into two volumes (the first

covering the basic concepts and the second dealing with advanced topics).

I am indebted to Elise Tidrick for the enormous amount of work she put into helping
me with this new edition. Not only did she design the covers of the two volumes with
original artwork, but she spent hours helping me translate the original file into I£IEX code,
taking care of reformatting the figures and nudging and instructing me on how to modify

the I&TEX output so as to ensure a smooth flow in the reading of the book.

I would like to thank Dr. Chula Kooanantkul for pointing out several typos and
Mathias Legrand for making the latex template used for this book available for free
(the template was downloaded from http://www.latextemplates.com/template/

the-legrand-orange-book).

v.9 9-23
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Preface to the first edition, 2015

After teaching game theory (at both the undergraduate and graduate level) at the
University of California, Davis for 25 years, I decided to organize all my teaching material
in a textbook. There are many excellent textbooks in game theory and there is hardly any
need for a new one. However, there are two distinguishing features of this textbook: (1) it
is open access and thus free,! and (2) it contains an unusually large number of exercises
with complete and detailed answers.

I tried to write the book in such a way that it would be accessible to anybody with
minimum knowledge of mathematics (high-school level algebra and some elementary
notions of probability) and no prior knowledge of game theory. However, the book is
intended to be rigorous and it includes several proofs. I believe it is appropriate for an
advanced undergraduate class in game theory and also for a first-year graduate-level class.

I expect that there will be some typos and (hopefully minor) mistakes. If you come
across any typos or mistakes, I would be grateful if you could inform me: I can be reached
at gfbonanno@ucdavis.edu. I will maintain an updated version of the book on my web
page at

http://www.econ.ucdavis.edu/faculty/bonanno/

I also intend to add, some time in the future, a further collection of exercises and exam
questions with detailed answers. Details will appear on my web page.

I am very grateful to Elise Tidrick for meticulously going through each chapter of
the book and for suggesting numerous improvements. Her insightful and constructive
comments have considerably enhanced this book.

I would also like to thank Nicholas Bowden, Lester Lusher, Burkhard Schipper,
Matthieu Stigler, Sukjoon Lee, Minfei Xu and Pedro Paulo Funari for pointing out typos.

IThere may be several other free textbooks on game theory available. The only one I am aware of is the
excellent book by Ariel Rubinstein and Martin Osborne, MIT Press, 1994, which can be downloaded for free
from Ariel Rubinstein’s web page: http://arielrubinstein.tau.ac.il. In my experience this book
is too advanced for an undergraduate class in game theory.
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1. Infroduction

The discipline of game theory was pioneered in the early 20/ century by mathematicians
Ernst Zermelo (1913) and John von Neumann (1928). The breakthrough came with John
von Neumann and Oskar Morgenstern’s book, Theory of Games and Economic Behavior,
published in 1944. This was followed by important work by John Nash (1950-51) and
Lloyd Shapley (1953). Game theory had a major influence on the development of several
branches of economics (industrial organization, international trade, labor economics,
macroeconomics, etc.). Over time the impact of game theory extended to other branches
of the social sciences (political science, international relations, philosophy, sociology,
anthropology, etc.) as well as to fields outside the social sciences, such as biology,
computer science, logic, etc. In 1994 the Nobel Memorial prize in economics was given to
three game theorists, John Nash, John Harsanyi and Reinhard Selten, for their theoretical
work in game theory which was very influential in economics. At the same time, the US
Federal Communications Commission was using game theory to help it design a $7-billion
auction of the radio spectrum for personal communication services (naturally, the bidders
used game theory too!). The Nobel Memorial prize in economics was awarded to game
theorists three more times: in 2005 to Robert Aumann and Thomas Schelling, in 2007 to
Leonid Hurwicz, Eric Maskin and Roger Myerson and in 2012 to Lloyd Shapley and Alvin
Roth.

Game theory provides a formal language for the representation and analysis of inter-
active situations, that is, situations where several “entities”, called players, take actions
that affect each other. The nature of the players varies depending on the context in which
the game theoretic language is invoked: in evolutionary biology (see, for example, John
Maynard Smith, 1982) players are non-thinking living organisms;' in computer science

'Evolutionary game theory has been applied not only to the analysis of animal and insect behavior but
also to studying the “most successful strategies” for tumor and cancer cells (see, for example, Gerstung et
al., 2011).
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(see, for example, Shoham-Leyton-Brown, 2008) players are artificial agents; in behavioral
game theory (see, for example, Camerer, 2003) players are “ordinary” human beings,
etc. Traditionally, however, game theory has focused on interaction among intelligent,
sophisticated and rational individuals. For example, Robert Aumann describes game theory
as follows:

“Briefly put, game and economic theory are concerned with the interactive
behavior of Homo rationalis — rational man. Homo rationalis is the species
that always acts both purposefully and logically, has well-defined goals, is
motivated solely by the desire to approach these goals as closely as possible,
and has the calculating ability required to do so.” (Aumann, 1985, p. 35.)

This book is concerned with the traditional interpretation of game theory.

Game theory is divided into two main branches. The first is cooperative game theory,
which assumes that the players can communicate, form coalitions and sign binding agree-
ments. Cooperative game theory has been used, for example, to analyze voting behavior
and other issues in political science and related fields.

We will deal exclusively with the other main branch, namely non-cooperative game
theory. Non-cooperative game theory models situations where the players are either unable
to communicate or are able to communicate but cannot sign binding contracts. An example
of the latter situation is the interaction among firms in an industry in an environment where
antitrust laws make it illegal for firms to reach agreements concerning prices or production
quotas or other forms of collusive behavior.

The book is divided into five parts. The printed version of the book is split into two
volumes. Volume 1 covers the basic concepts and encompasses Chapters 1-7 (Parts I and
II), while Volume 2 is devoted to advanced topics, encompassing Chapters 8-16 (Parts III
to V).

Part I deals with games with ordinal payoffs, that is, with games where the players’
preferences over the possible outcomes are only specified in terms of an ordinal ranking
(outcome o is better than outcome o’ or o is just as good as o’). Chapter 2 covers strategic-
form games, Chapter 3 deals with dynamic games with perfect information and Chapter 4
with general dynamic games with (possibly) imperfect information.

Part II is devoted to games with cardinal payoffs, that is, with games where the players’
preferences extend to uncertain prospects or lotteries: players are assumed to have a
consistent ranking of the set of lotteries over basic outcomes. Chapter 5 reviews the theory
of expected utility, Chapter 6 discusses the notion of mixed strategy in strategic-form games
and of mixed-strategy Nash equilibrium, while Chapter 7 deals with mixed strategies in
dynamic games.

Parts III, IV and V cover a number of advanced topics.

Part III deals with the notions of knowledge, common knowledge and belief. Chapter
8 explains how to model what an individual knows and what she is uncertain about and
how to extend the analysis to the interactive knowledge of several individuals (e.g. what
Individual 1 knows about what Individual 2 knows about some facts or about the state
of knowledge of Individual 1). The chapter ends with the notion of common knowledge.
Chapter 9 adds probabilistic beliefs to the knowledge structures of the previous chapter
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and discusses the notions of Bayesian updating, belief revision, like-mindedness and the
possibility of “agreeing to disagree”. Chapter 10 uses the interactive knowledge-belief
structures of the previous two chapters to model the players’ state of mind in a possible
play of a given game and studies the implications of common knowledge of rationality in
strategic-form games.

Part IV focuses on dynamic (or extensive-form) games and on the issue of how to refine
the notion of subgame-perfect equilibrium (which was introduced in Chapters 4 and 7).
Chapter 11 introduces a simple notion, called weak sequential equilibrium, which achieves
some desirable goals (such as the elimination of strictly dominated choices) but fails
to provide a refinement of subgame-perfect equilibrium. Chapter 12 explains the more
complex notion of sequential equilibrium, which is extensively used in applications of game
theory. That notion, however, leaves much to be desired from a practical point of view (it is
typically hard to show that an equilibrium is indeed a sequential equilibrium) and also from
a conceptual point of view (it appeals to a topological condition, whose interpretation is not
clear). Chapter 13 introduces an intermediate notion, called perfect Bayesian equilibrium,
whose conceptual justification is anchored in the so called AGM theory of belief revision,
extensively studied in philosophy and computer science, which was pioneered by Carlos
Alchourrén (a legal scholar), Peter Girdenfors (a philosopher) and David Makinson
(a logician) in 1985. In Chapter 13 we also provide an alternative characterization of
sequential equilibrium based on the notion of perfect Bayesian equilibrium, which is free
of topological conditions.

Part V deals with the so-called “theory of games of incomplete information”, which was
pioneered by John Harsanyi (1967-68). This theory is usually explained using the so-called
“type-space” approach suggested by Harsanyi. However, we follow a different approach:
the so-called “state-space” approach, which makes use of the interactive knowledge-belief
structures developed in Part III. We find this approach both simpler and more elegant. For
completeness, in Chapter 16 we explain the commonly used type-based structures and
show how to convert a state-space structure into a type-space structure and vice versa (the
two approaches are equivalent). Chapter 14 deals with situations of incomplete information
that involve static (or strategic-form) games, while Chapter 15 deals with situations of
incomplete information that involve dynamic (or extensive-form) games.

At the end of each section of each chapter the reader is invited to try the exercises
for that section. All the exercises are collected in the penultimate section of the chapter,
followed by a section containing complete and detailed answers for each exercise. For each
chapter, the set of exercises culminates in a “challenging question”, which is more difficult
and more time consuming than the other exercises. In game theory, as in mathematics in
general, it is essential to test one’s understanding of the material by attempting to solve
exercises and problems. The reader is encouraged to attempt solving exercises after the
introduction of every new concept.
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Major changes in the third edition

Throughout the book I improved the exposition, added text, examples and figures, and
expanded several topics. I also tried to make the notation uniform across all the chapters.
Below I will focus only on the major additions.

Chapter 2

In Section 2.6 T added two theorems (Theorem 2.6.1 and 2.6.2) on the relationship between
Nash equilibria and the output of the procedures of iterated deletion of strictly/weakly
dominated strategies and provided proofs in Section 2.8.

Chapter 3

In Section 3.4 1 added a theorem (Theorem 3.4.1) on the relationship between the notions
of backward induction and Nash equilibrium. The proof is given in Section 3.6.

Chapter 5
I re-organized the exposition of the theory of Expected Utility in order to make it easier to
grasp.

Chapter 6

In Section 6.4 I clarified the content of Theorem 6.4.1 and added Theorem 6.4.2 that
clarifies the difference between two-player games and games with more than two players.

Chapter 8

In the second edition, Chapter 8 was entirely focused on the notions of knowledge and
common knowledge. I have now added two sections (Sections 8.4 and 8.5) on the more
general, and conceptually more appealing, notions of belief and common belief. I corre-
spondingly added five new exercises on these notions (Exercises 5, 15, 16, 17 and 18) and
13 new figures.

Chapter 10

In the second edition, the notions of rationality, model of a game and the implications
of common knowledge of rationality were dealt with exclusively within the context of
games with cardinal payoffs. I have now added a section (Section 10.1) dealing with games
with ordinal payoffs, alternative notions of rationality and the weaker and more general
notion of belief. I also added two theorems (Theorems 10.1.1 and 10.1.2) providing a
characterization of the output of the iterated deletion of strictly dominates strategies in
terms of common belief of rationality. These two theorems are proved in Section 10.5,
where I also simplified the proofs of the other two theorems dealing with games with
cardinal payoffs. I correspondingly added four new exercises and eight new figures.
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2. Ordinal Games in Strategic Form

Game frames and games

Game theory deals with interactive situations where two or more individuals, called players,
make decisions that jointly determine the final outcome. To see an example point your
browser to the following video:!
https://www.youtube.com/watch?v=tBtr8-VMjOE.

In this video each of two players, Sarah and Steve, has to pick one of two balls: inside one
ball appears the word ‘split’ and inside the other the word ‘steal’ (each player is first asked
to secretly check which of the two balls in front of him/her is the split ball and which is the
steal ball). They make their decisions simultaneously. The possible outcomes are shown in
Figure 2.1, where each row is labeled with a possible choice for Sarah and each column
with a possible choice for Steven. Each cell in the table thus corresponds to a possible pair
of choices and the resulting outcome is written inside the cell.

Steven
Split Steal
. Sarah gets $50,000 Sarah gets nothing
Split Steven gets $50,000 | Steven gets $100,000
Sarah Steal Sarah gets $100,000 Sarah gets nothing
Steven gets nothing Steven gets nothing

Figure 2.1: The Golden Balls “game”.

What should a rational player do in such a situation? It is tempting to reason as follows.

!The video shows an excerpt from Golden Balls, a British daytime TV game show. If you search for
‘Split or Steal’ on youtube.com you will find several instances of this game.


https://www.youtube.com/watch?v=tBtr8-VMj0E
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Let us focus on Sarah’s decision problem. She realizes that her decision alone
is not sufficient to determine the outcome; she has no control over what Steven
will choose to do. However, she can envision two scenarios: one where Steven
chooses Steal and the other where he chooses Split.

e If Steven decides to Steal, then it does not matter what Sarah does,
because she ends up with nothing, no matter what she chooses.

o If Steven picks Split, then Sarah will get either $50,000 (if she also picks
Split) or $100,000 (if she picks Steal).

Thus Sarah should choose Steal.

The above argument, however, is not valid because it is based on an implicit and unwar-
ranted assumption about how Sarah ranks the outcomes; namely, it assumes that Sarah is
selfish and greedy, which may or may not be true. Let us denote the outcomes as follows:

o1 : Sarah gets $50,000 and Steven gets $50,000.
07 . Sarah gets nothing and Steven gets $100,000.
03 : Sarah gets $100,000 and Steven gets nothing.
04 : Sarah gets nothing and Steven gets nothing.

Table 2.1: Names for the outcomes shown in Figure 2.1.

If, indeed, Sarah is selfish and greedy — in the sense that, in evaluating the outcomes,
she focuses exclusively on what she herself gets and prefers more money to less — then her
ranking of the outcomes is as follows: 03 > 01 > 07 ~ 04 (which reads ‘o3 is better than
01, 01 1s better than 0> and o, is just as good as 04’). But there are other possibilities. For
example, Sarah might be fair-minded and view the outcome where both get $50,000 as
better than all the other outcomes. For instance, her ranking could be 01 > 03 > 02 > 04;
according to this ranking, besides valuing fairness, she also displays benevolence towards
Steven, in the sense that — when comparing the two outcomes where she gets nothing,
namely 0, and o4 — she prefers the one where at least Steven goes home with some
money. If, in fact, Sarah is fair-minded and benevolent, then the logic underlying the above
argument would yield the opposite conclusion, namely that she should choose Split.

Thus we cannot presume to know the answer to the question “What is the rational
choice for Sarah?” if we don’t know what her preferences are. It is a common mistake
(unfortunately one that even game theorists sometimes make) to reason under the assump-
tion that players are selfish and greedy. This is, typically, an unwarranted assumption.
Research in experimental psychology, philosophy and economics has amply demonstrated
that many people are strongly motivated by considerations of fairness. Indeed, fairness
seems to motivate not only humans but also primates, as shown in the following video:?
http://www.ted.com/talks/frans_de_waal_do_animals_have_morals.

The situation illustrated in Figure 2.1 is not a game as we have no information about
the preferences of the players; we use the expression game-frame to refer to it. In the case

2Also available at https://www.youtube.com/watch?v=GcJxRqTs5nk
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where there are only two players and each player has a small number of possible choices
(also called strategies), a game-frame can be represented — as we did in Figure 2.1 — by
means of a table, with as many rows as the number of possible strategies of Player 1 and
as many columns as the number of strategies of Player 2; each row is labeled with one
strategy of Player 1 and each column with one strategy of Player 2; inside each cell of the
table (which corresponds to a pair of strategies, one for Player 1 and one for Player 2) we
write the corresponding outcome.

Before presenting the definition of game-frame, we remind the reader of what the
Cartesian product of two or more sets is. Let §1 and S, be two sets. Then the Cartesian
product of S| and S,, denoted by S| X Sy, is the set of ordered pairs (x1,x;) where x; is an
element of S} (x; € S}) and x; is an element of S, (x; € S). For example, if S| = {a,b,c}
and S, = {D,E} then

S1 xS ={(a,D),(a,E),(b,D),(b,E),(c,D),(c,E)}.

The definition extends to the general case of n sets (n > 2): an element of S} X S X ... X S,
is an ordered n-tuple (x1,x2,...,x,) where, foreachi=1,...,n, x; € S;.
The definition of game-frame is as follows

Definition 2.1.1 A game-frame in strategic form is a list of four items (a quadruple)
(I1,(S1,82,...,8,),0, f) where:

o I={1,2,...,n} is a set of players (n > 2).

* (S1,82,...,8,) is a list of sets, one for each player. For every Player i € I, S;
is the set of strategies (or possible choices) of Player i. We denote by S the
Cartesian product of these sets: § =81 X S X -+ X §y; thus an element of S is a
list s = (s1,52,...,5,) consisting of one strategy for each player. We call S the set
of strategy profiles.

* O s a set of outcomes.

* f:S5 — O1is afunction that associates with every strategy profile s an outcome

f(s)€o.

Using the notation of Definition 2.1.1, the situation illustrated in Figure 2.1 is the following
game-frame in strategic form:
o I ={1,2} (letting Sarah be Player 1 and Steven Player 2),
* (81,82) = ({Split,Steal },{Split,Steal } ); thus S| = S, = {Split,Steal}, so that the
set of strategy profiles is
S = {(Split,Split), (Split,Steal), (Steal , Split), (Steal , Steal ) },
¢ O is the set of outcomes listed in Table 2.1,
* f1is the following function:

st (Split,Split) (Split,Steal) (Steal,Split) (Steal,Steal)
f(s): 01 0 03 04
(that is, f (Split,Split) = o1, f (Split,Steal) = 0, etc.).
From a game-frame one obtains a game by adding, for each player, her preferences
over (or ranking of) the possible outcomes. We use the notation shown in Table 2.2. For
example, if M denotes ‘Mexican food’ and J denotes ‘Japanese food’, then M > 4sic. J

means that Alice prefers Mexican food to Japanese food and M ~p,, J means that Bob is
indifferent between the two.
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Notation Interpretation

,  Player i considers outcome o to be at least as good as o

0 Zio L .
~! (that is, either better than or just as good as)
oy Player i considers outcome o to be better than o’

00 _

! (that is, she prefers o to o)
, Player i considers outcome o to be just as good as o'

o ~;0

(that is, she is indifferent between o and o')

Table 2.2: Notation for preference relations.

The “at least as good” relation 7 is sufficient to capture also strict preference > and
indifference ~. In fact, starting from 77, one can define strict preference as follows:
o > o' if and only if 0 7~ o' and o' %7 0 and one can define indifference as follows:
o~ o ifand only if 0 7 0’ and o' - 0.

We will assume throughout this book that the “at least as good” relation 7~; of Player i —
which embodies her preferences over (or ranking of) the outcomes — is complete (for every
two outcomes o0 and o0, either o 7Z; 03 or 0y 7; 01, or both) and transitive (if 0] 7~; 02
and o> i‘ll 03 then o0 ?\‘J, 03).3

There are (at least) four ways of representing, or expressing, a complete and transitive
preference relation over (or ranking of) a set of outcomes. For example, suppose that
O = {01,02,03,04,05} and that we want to represent the following ranking (expressing
the preferences of a given individual): o3 is better than os, which is just as good as o1, 0;
is better than o4, which, in turn, is better than o, (thus, 03 is the best outcome and o5 is the
worst outcome). We can represent this ranking in one of the following ways:

* Asasubset of O x O (the interpretation of (0,0’) € O x O is that o is at least as good

as o'):

{(01,01),(01,02),(01,04),(01,05)

(0270 )

(03,01),(03,02),(03,03),(03,04), (03, 05),
50470237( )

05,01 ,(05,02),(05,04),(05,05)}

* By using the notation of Table 2.2: 03 > 05 ~ 01 > 04 > 0.

3Transitivity of the “at least as good” relation implies transitivity of the indifference relation (if 0 ~ 0
and 0; ~ 03 then 01 ~ 03) as well as transitivity of the strict preference relation (not only in the sense that (1)
if 01 > 07 and 0, > 03 then 0 > 03, but also that (2) if 01 > 07 and 03 ~ 03 then 01 > 03 and (3) if 01 ~ 07
and 0y > 03 then 0] > 03).
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* By listing the outcomes in a column, starting with the best at the top and proceeding
down to the worst, thus using the convention that if outcome o is listed above
outcome o’ then o is preferred to o, while if 0 and o’ are written next to each other
(on the same row), then they are considered to be just as good:

best 03
01,05
04

worst o0

* By assigning a number to each outcome, with the convention that if the number
assigned to o is greater than the number assigned to o' then o is preferred to o', and
if two outcomes are assigned the same number then they are considered to be just as

01 0p 03 04 O5

6 1 8 2 6

Such an assignment of numbers is called a utility function. A useful way of thinking

of utility is as an “index of satisfaction”: the higher the index the better the outcome;

however, this suggestion is just to aid memory and should be taken with a grain
of salt because a utility function does not measure anything and, furthermore, as
explained below, the actual numbers used as utility indices are completely arbitrary.*

good. For example, we could choose the following numbers:

Definition 2.1.2 Given a complete and transitive ranking 7~ of a finite set of outcomes
0, a function U : O — R (where R denotes the set of real numbers)? is said to be an
ordinal utility function that represents the ranking = if, for every two outcomes o and o/,
U(o) > U(0) if and only if 0 > o’ and U(0) = U(0') if and only if 0 ~ o’. The number
U (o) is called the utility of outcome 0.

“The notation f : X — Y is used to denote a function that associates with every x € X an element
y=f(x)withyeY.
bThus, 0 >~ o' if and only if U(0) > U(0').

Note that the statement “for Alice the utility of Mexican food is 10” is in itself a
meaningless statement; on the other hand, what would be a meaningful statement is
“for Alice the utility of Mexican food is 10 and the utility of Japanese food is 5,
because such a statement conveys the information that she prefers Mexican food to
Japanese food. However, the two numbers 10 and 5 have no other meaning besides
the fact that 10 is greater than 5: for example, we cannot infer from these numbers
that she considers Mexican food to be twice as good as Japanese food. The reason for
this is that we could have expressed the same fact, namely that she prefers Mexican
food to Japanese food, by assigning utility 100 to Mexican food and —25 to Japanese
food, or with any other two numbers (as long as the number assigned to Mexican
food is larger than the number assigned to Japanese food).

“Note that assigning a utility of 1 to an outcome o does not mean that o is the “first choice”. Indeed, in
this example a utility of 1 is assigned to the worst outcome: 0, is the worst outcome because it has the lowest
utility (which happens to be 1, in this example).
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It follows from the above remark that there is an infinite number of utility functions that
represent the same ranking. For instance, the following are equivalent ways of representing
the ranking o3 > 01 > 02 ~ 04 (f, g and h are three out of the many possible utility
functions):

outcome —» 01 03 03 04
utility function |
f 5 2 10 2
g: 0.8 0.7 1 0.7
h: 27 1 100 1

Utility functions are a particularly convenient way of representing preferences. In
fact, by using utility functions one can give a more condensed representation of games, as
explained in the last paragraph of the following definition.

Definition 2.1.3 An ordinal game in strategic form is a quintuple
(I,(S1,.--,80),0, f,(Z1,---,7on)) where:

e (I,(S1,...,S,),0, f) is a game-frame in strategic form (Definition 2.1.1) and

» for every Player i € I, 77; is a complete and transitive ranking of the set of

outcomes O.

If we replace each ranking ~~; with a utility function Uj that represents it, and we assign,
to each strategy profile s, Player i’s utility of f(s) (recall that f(s) is the outcome
associated with s) then we obtain a function 7; : S — R called Player i’s payoff function.
Thus 7;(s) = U; (f(s)).“ Having done so, we obtain a triple (I, (S1,...,S,), (71, ..., T,))
called a reduced ordinal game in strategic form (‘reduced’ because some information is
lost, namely the specification of the possible outcomes).

“Note that, in this book, the symbol 7 is not used to denote the irrational number used to compute the
circumference and area of a circle, but rather as the Greek letter for ‘p’ which stands for ‘payoft’.

For example, take the game-frame illustrated in Figure 2.1, let Sarah be Player 1
and Steven Player 2 and name the possible outcomes as shown in Table 2.1. Let us add
the information that both players are selfish and greedy (that is, Player 1’s ranking is
03 =1 01 =1 02 ~1 04 and Player 2’s ranking is 0o >> 01 >2 03 ~7 04) and let us represent
their rankings with the following utility functions (note, again, that the choice of numbers
2, 3 and 4 for utilities is arbitrary: any other three numbers would do):

outcome — 01 0 03 04
utility function |
U, (Player 1): 3 2 4 2
U, (Player 2): 3 4 2 2
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Then we obtain the reduced game shown in Figure 2.2, where in each cell the first number
is the payoff of Player 1 and the second number is the payoff of Player 2.

Player 2 (Steven)

Split Steal

Split| 3 3 2 4
Player 1
h

Sarah) gl 4 2 |2 9

Figure 2.2: One possible game based on the game-frame of Figure 2.1.

On the other hand, if we add to the game-frame of Figure 2.1 the information that
Player 1 is fair-minded and benevolent (that is, her ranking is 01 > 03 > 02 > 04),
while Player 2 is selfish and greedy and represent these rankings with the following utility
functions:

outcome — 01 03 03 04
utility function |

U, (Player 1): 4 2 3 1
U, (Player 2): 3 4 2 2

then we obtain the reduced game shown in Figure 2.3.

Player 2 (Steven)

Split Steal
Split| 4 2 4
Player 1 P 3
arah
Sarah) gl 3 2|1 2

Figure 2.3: Another possible game based on the game-frame of Figure 2.1.

In general, a player will act differently in different games, even if they are based on the
same game-frame, because her incentives and objectives (as captured by her ranking of the
outcomes) will be different. For example, one can argue that in the game of Figure 2.2 a
rational Player 1 would choose Steal, while in the game of Figure 2.3 the rational choice
for Player 1 is Split.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 2.9.1 at the end of this chapter.
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Strict and weak dominance

In this section we define two relations on the set of strategies of a player. Before introducing
the formal definition, we shall illustrate these notions with an example. The first relation
is called “strict dominance”. Let us focus our attention on one player, say Player 1, and
select two of her strategies, say a and b. We say that a strictly dominates b (for Player
1) if, for every possible strategy profile of the other players, strategy a of Player 1, in
conjunction with the strategies selected by the other players, yields a payoff for Player
1 which is greater than the payoff associated with strategy b (in conjunction with the
strategies selected by the other players). For example, consider the following two-player
game, where only the payoffs of Player 1 are shown:

Player 2
E F G
A3 2.1
2 I ...]10
Player 1
Cl|3 2 |
D|2 0 ..]0

Figure 2.4: A game showing only the payoffs of Player 1.

In this game for Player 1 strategy A strictly dominates strategy B:
« if Player 2 selects E then A in conjunction with E gives Player 1 a payoff of 3, while
B in conjunction with E gives her only a payoff of 2,

* if Player 2 selects F' then A in conjunction with F' gives Player 1 a payoff of 2, while
B in conjunction with F gives her only a payoff of 1,

* if Player 2 selects G then A in conjunction with G gives Player 1 a payoff of 1, while
B in conjunction with G gives her only a payoff of 0.

In the game of Figure 2.4 we also have that A strictly dominates D, and C strictly
dominates D; however, it is not the case that B strictly dominates D because, in conjunction
with strategy E of Player 2, B and D yield the same payoff for Player 1.

The second relation is called “weak dominance”. The definition is similar to that
of strict dominance, but we replace ‘greater than’ with ‘greater than or equal to” while
insisting on at least one strict inequality: a weakly dominates b (for Player 1) if, for every
possible strategy profile of the other players, strategy a of Player 1, in conjunction with
the strategies selected by the other players, yields a payoff for Player 1 which is greater
than or equal to the payoff associated with strategy b (in conjunction with the strategies
selected by the other players) and, furthermore, there is at least one strategy profile of the
other players against which strategy a gives a larger payoff to Player 1 than strategy b. In
the example of Figure 2.4, we have that, while it is not true that B strictly dominates D, it
is true that B weakly dominates D:
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* if Player 2 selects E, then B in conjunction with E gives Player 1 the same payoff as
D in conjunction with E (namely 2),

* if Player 2 selects F, then B in conjunction with F gives Player 1 a payoff of 1, while
D in conjunction with F gives her only a payoff of 0,

* if Player 2 selects G then B in conjunction with G gives Player 1 the same payoff as
D in conjunction with G (namely 0).

In order to give the definitions in full generality we need to introduce some notation.
Recall that S denotes the set of strategy profiles, that is, an element s of S is an ordered list
of strategies s = (s, ..., S, ), one for each player. We will often want to focus on one player,
say Player i, and view s as a pair consisting of the strategy of Player i and the remaining
strategies of all the other players. For example, suppose that there are three players and the
strategy sets are as follows: S| = {a,b,c}, S» = {d, e} and S3 = {f,g}. Then one possible
strategy profile is s = (b,d, g) (thus s; = b, s, = d and 53 = g). If we focus on, say, Player
2 then we will denote by s_, the sub-profile consisting of the strategies of the players other
than 2: in this case s_» = (b,g). This gives us an alternative way of denoting s, namely as
(s2,5_2). Continuing our example where s = (b,d, g), letting s_, = (b,g), we can denote
s also by (d,s_») and we can write the result of replacing Player 2’s strategy d with her
strategy e in s by (e,s_7); thus (d,s_») = (b,d,g) while (e,s_») = (b,e,g). In general,
given a Player i, we denote by S_; the set of strategy profiles of the players other than i (that
1s, S_; 1s the Cartesian product of the strategy sets of the other players; in the above example

we have thatsz :Sl XS3 = {Cl,b,C} X {f7g} :{(a7f)7(avg)u(b7f)7(b7g)7(Cuf)u(cug)}'
We denote an element of S_; by s_;.

Definition 2.2.1 Given an ordinal game in strategic form, let i be a Player and a and b
two of her strategies (a,b € S;). We say that, for Player i,

* a strictly dominates b (or b is strictly dominated by a) if, in every situation (that
is, no matter what the other players do), a gives Player i a payoff which is greater
than the payoff that b gives. Formally: for every s_; € S_;, m;(a,s_;) > m;(b,s_;).%

* a weakly dominates b (or b is weakly dominated by a) if, in every situation, a
gives Player i a payoff which is greater than or equal to the payoff that b gives
and, furthermore, there is at least one situation where a gives a greater payoff
than b. Formally: for every s_; € S_;, m;(a,s—;) > mi(b,s_;) and there exists an
5_; € S_; such that m;(a,5_;) > m(b,5_;).b

* a is equivalent to b if, in every situation, a and b give Player i the same payoff.
Formally: for every s_; € S_;, m;(a,s—;) = mi(b,s_;).

40r, stated in terms of rankings instead of payoffs, f(a,s_;)>f(b,s_;) for every s_; € S_;.

bOr, stated in terms of rankings, f(a,s_;)=if(b,s_;), forevery s_; € S_;, and there exists an5_; € S_;
such that f(a,5_;)>;if(b,5_;).

“Or, stated in terms of rankings, f(a,s_;)~;f(b,s—;), for every s_; € S_;.
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For example, in the game of Figure 2.5 (which reproduces Figure 2.4), we have that
* A strictly dominates B.

A and C are equivalent.

A strictly dominates D.

B is strictly dominated by C.

B weakly (but not strictly) dominates D.

C strictly dominates D.

Player 2
E F G

A3 2.1

Player 1

Figure 2.5: Copy of Figure 2.4.

Note that if strategy a strictly dominates strategy b then it also satisfies the conditions
for weak dominance, that is, ‘a strictly dominates b’ implies ‘a weakly dominates b’.
Throughout the book the expression ‘a weakly dominates b’ will be interpreted as ‘a
dominates b weakly but not strictly’.

The expression ‘a dominates b’ can be understood as ‘a is better than b’. The next term we
define is ‘dominant’ which can be understood as ‘best’. Thus one cannot meaningfully
say “a dominates” because one needs to name another strategy that is dominated by a; for
example, one would have to say “a dominates b”. On the other hand, one can meaningfully

say “a is dominant” because it is like saying “a is best”, which means “a is better than
every other strategy”.

Definition 2.2.2 Given an ordinal game in strategic form, let i be a Player and a one of
her strategies (a € §;). We say that, for Player i,

* a is a strictly dominant strategy if a strictly dominates every other strategy of
Player i.

* ais a weakly dominant strategy if, for every other strategy x of Player i, one of
the following is true: either (1) a weakly dominates x or (2) a is equivalent to x.
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For example, in the game shown in Figure 2.5, A and C are both weakly dominant
strategies for Player 1. Note that if a player has two or more strategies that are weakly
dominant, then any two of those strategies must be equivalent. On the other hand, there
can be at most one strictly dominant strategy.

The reader should convince herself/himself that the definition of weakly dominant
strategy given in Definition 2.2.2 is equivalent to the following: a € S; is a weakly
dominant strategy for Player i if and only if, for every s_; € S_;, m;(a,s_;) > m;(s;,5—;)
for every s; € S;.2

In accordance with the convention established earlier, the expression ‘a is a weakly
dominant strategy’ will have the default interpretation ‘a is a weakly but not strictly
dominant strategy’.

Note: if you claim that, for some player, “strategy x is (weakly or strictly) dominated”
then you ought to name another strategy of that player that dominates x. Saying “x is
dominated” is akin to saying “x is worse”: worse than what? On the other hand, claiming
that strategy x is weakly dominant is akin to claiming that it is best, that is, better than, or
just as good as, any other strategy.

Definition 2.2.3 Given an ordinal game in strategic form, let s = (sy, ...,s,) be a strategy
profile. We say that?
* s1is a strict dominant-strategy profile or a strict dominant-strategy solution if, for
every Player i, s; is a strictly-dominant strategy.
* s is a weak dominant-strategy profile or a weak dominant-strategy solution if, for
every Player i, s; is a weakly-dominant strategy and, furthermore, for at least one
Player j, s; is not a strictly-dominant strategy.

“In the literature, the expression ‘dominant-strategy equilibrium’ is often used instead of ‘dominant-
strategy profile’, but the latter seems to be more appropriate.

If we refer to a strategy profile as a dominant-strategy profile, without qualifying it as
weak or strict, then the default interpretation will be ‘weak’.

In the game of Figure 2.6 (which reproduces Figure 2.2), Steal is a weakly dominant
strategy for each player and thus (Steal,Steal) is a weak dominant-strategy profile.

Player 2 (Steven) Player 2 (Steven)
Split Steal Split Steal
Split| 3 3 2 4 Split| 4 3 2 4
Player 1 P Player 1 P
Sarah Sarah
Garah) gl 4 2|2 2 Sarah) gl 3 211 2

Figure 2.6: Copy of Figure 2.2.

Figure 2.7: Copy of Figure 2.3.

In the game of Figure 2.7 (which reproduces Figure 2.3), Split is a strictly dominant
strategy for Player 1, while Steal is a weakly (but not strictly) dominant strategy for Player
2 and thus (Split,Steal) is a weak dominant-strategy profile.

>0r, stated in terms of rankings, for every s_; € S_;, fla,s—;) =i f(si,s—;) for every s; € S;.
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The Prisoner’s Dilemma is an example of a game with a strict dominant-strategy

profile. For a detailed account of the history of this game and an in-depth analysis of it see
http://plato.stanford.edu/entries/prisoner-dilemma or
http://en.wikipedia.org/wiki/Prisoner’s_dilemma.
An instance of the Prisoner’s Dilemma is the following situation. Doug and Ed work
for the same company and the annual party is approaching. They know that they are the
only two candidates for the best-worker-of-the-year prize and at the moment they are tied;
however, only one person can be awarded the prize and thus, unless one of them manages
to outperform the other, nobody will receive the prize. Each chooses between exerting
Normal effort or Extra effort (that is, work overtime) before the party. The corresponding
game-frame is shown in Figure 2.8.

Player 2 (Ed)
Normal Extra
effort effort
Normal 01 02
Player 1 effort
(Doug) Extra
effort 03 04

01 : nobody gets the prize and nobody sacrifices family time
07 : Ed gets the prize and sacrifices family time, Doug does not
03 . Doug gets the prize and sacrifices family time, Ed does not
04 . nobody gets the prize and both sacrifice family time

Figure 2.8: The Prisoner’s Dilemma game-frame.

Suppose that both Doug and Ed are willing to sacrifice family time to get the prize, but
otherwise value family time; furthermore, they are envious of each other, in the sense
that they prefer nobody getting the prize to the other person’s getting the prize (even
at the personal cost of sacrificing family time). That is, their rankings are as follows:
03 >Doug 01 =Doug 04 =Doug 02 and 02 =gq4 01 =g 04 =E4 03. Using utility functions
with values from the set {0, 1,2,3} we can represent the game in reduced form as shown
in Figure 2.9. In this game exerting extra effort is a strictly dominant strategy for every
player; thus (Extra effort, Extra effort) is a strict dominant-strategy profile.

Definition 2.2.4 Given an ordinal game in strategic form, let 0 and o’ be two outcomes.
We say that o is strictly Pareto superior to o' if every player prefers o to o’ (that is, if
o = 0, for every Player i). We say that o is weakly Pareto superior to o' if every player
considers o to be at least as good as o’ and at least one player prefers o to o’ (that is, if
o 7; o, for every Player i and there is a Player j such that o >~ o).

In reduced games, this definition can be extended to strategy profiles as follows. If s
and s’ are two strategy profiles, then s is strictly Pareto superior to s’ if m;(s) > m;(s’)
for every Player i and s is weakly Pareto superior to s’ if m;(s) > m;(s’) for every Player
i and, furthermore, there is a Player j such that ;(s) > m;(s’).
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Player 2 (Ed)
Normal Extra
effort effort

Normal 9) 2) 0 3
Player 1 effort

D Extr
(Doug) Bara | 3 g | 1

Figure 2.9: The Prisoner’s Dilemma game.

For example, in the Prisoner’s Dilemma game of Figure 2.9, outcome o is strictly Pareto
superior to o4 or, in terms of strategy profiles, (Normal effort, Normal effort) is strictly
Pareto superior to (Extra effort, Extra effort).

When a player has a strictly dominant strategy, it would be irrational for that player to
choose any other strategy, since she would be guaranteed a lower payoff in every possible
situation (that is, no matter what the other players do). Thus in the Prisoner’s Dilemma
individual rationality leads to (Extra effort, Extra effort) despite the fact that both players
would be better off if they both chose Normal effort. 1t is obvious that if the players could
reach a binding agreement to exert normal effort then they would do so; however, the
underlying assumption in non-cooperative game theory is that such agreements are not
possible (e.g. because of lack of communication or because such agreements are illegal or
cannot be enforced in a court of law, etc.). Any non-binding agreement to choose Normal
effort would not be viable: if one player expects the other player to stick to the agreement,
then he will gain by cheating and choosing Extra effort (on the other hand, if a player does
not believe that the other player will honor the agreement then he will gain by deviating
from the agreement herself). The Prisoner’s Dilemma game is often used to illustrate
a conflict between individual rationality and collective rationality: (Extra effort, Extra
effort) is the individually rational profile while (Normal effort, Normal effort) would be the
collectively rational one.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 2.9.2 at the end of this chapter.

Second-price auction

The second-price auction, or Vickrey auction, is an example of a game that has a weak
dominant-strategy profile (or solution). It is a “sealed-bid” auction where bidders submit
bids without knowing the bids of the other participants in the auction. The object which
is auctioned is then assigned to the bidder who submits the highest bid (the winner), but
the winner pays not her own bid but rather the second-highest bid, that is the highest bid
among the bids that remain after removing the winner’s own bid. Tie-breaking rules must
be specified for selecting the winner when the highest bid is submitted by two or more
bidders (in which case the winner ends up paying her own bid, because the second-highest
bid is equal to the winner’s bid). We first illustrate this auction with an example:
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Two oil companies bid for the right to drill a field. The possible bids are $10 million,
$20 million, ..., $50 million. In case of ties the winner is Player 2 (this was decided earlier
by tossing a coin). Let us take the point of view of Player 1. Suppose that Player 1 ordered
a geological survey and, based on the report, concludes that the oil field would generate a
profit of $30 million. Suppose also that Player 1 is indifferent between any two outcomes
where the oil field is given to Player 2 and prefers to get the oil field herself if and only
if it has to pay not more than $30 million for it; furthermore, getting the oil field for $30
million is just as good as not getting it. Then we can take as utility function for Player 1
the net gain to Player 1 from the oil field (defined as profits from oil extraction minus the
price paid for access to the oil field) if Player 1 wins, and zero otherwise.

Player 2
$10M $20M $30M $40M $50M
$10M 0 0 0 0 0
$20M 20 0 0 0 0
Plaver 1
(Valuey $30M) $30M 20 10 0 0 0
$40M 20 10 0 0 0
$50M 20 10 0 —10 0

Figure 2.10: A second-price auction where, in case of ties, the winner is Player 2.

In Figure 2.10 we have written inside each cell only the payoff of Player 1. For example,
why is Player 1’s payoff 20 when it bids $30M and Player 2 bids $10M? Since Player 1’s
bid is higher than Player 2’s bid, Player 1 is the winner and thus the drilling rights are
assigned to Player 1; hence Player 1 obtains something worth $30M and pays, not its own
bid of $30M, but the bid of Player 2, namely $10M; it follows that Player 1’s net gain is
$(30 — 10)M = $20M.
The reader should verify that, for Player 1, submitting a bid equal to the value it assigns to
the object (namely, a bid of $30M) is a weakly dominant strategy: it always gives Player 1
the largest of the payoffs that are possible, given the bid of the other player. This does not
imply that it is the only weakly dominant strategy; indeed, in this example bidding $40M
is also a weakly dominant strategy for Player 1 (in fact, it is equivalent to bidding $30M).
Now we can describe the second-price auction in more general terms. Let n > 2 be
the number of bidders. We assume that all non-negative numbers are allowed as bids and
that the tie-breaking rule favors the player with the lowest index among those who submit
the highest bid: for example, if the highest bid is $250 and it is submitted by Players 5, 8
and 10, then the winner is Player 5. We shall denote the possible outcomes as pairs (i, p),
where i is the winner and p is the price that the winner has to pay. Finally we denote by
b; the bid of Player i. We start by describing the case where there are only two bidders
and then generalize to the case of an arbitrary number of bidders. We denote the set of
non-negative numbers by [0, ).
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The case where n = 2: in this case we have that I = {1,2}, S| = S, = [0,), O =
{(i,p):ie{1,2},p€[0,00)} and f: S — O is given by

[ (1,by) ifby > by
f(bl’bZ)_{ (2,by) ifby <by

The case where n > 2: in the general case the second-price auction is the following
game-frame:

« I={1,...,n}.
* S;i=1[0,) forevery i = 1,...,n. We denote an element of S; by b;.

s O={(i,p):i€l,pe0,)}.

* f:8S — O is defined as follows. Let H (by,...,b,) C I be the set of bidders
who submit the highest bid: H (by,...,b,) = {i €l:bj>bjforall je I} and let
i(by,...,by,) be the smallest number in the set H (by, ..., b,), that is, the winner of the
auction. Finally, let ™ (by,...,b,) denote the maximum bid and 6°“°"“ (by,...,b,)
denote the second-highest bid,® that is,

b"™ (by,...,by) = Max{by,...,b,}

b (b1, ... by) = Max ({by,...,by} \ {b™(by,...,b,)}).

Then f (b1,....by) = (i(b1,...,by) , b (by,....by)).

How much should a player bid in a second-price auction? Since what we have described is
a game-frame and not a game, we cannot answer the question unless we specify the player’s
preferences over the set of outcomes O. Let us say that Player i in a second-price auction
is selfish and greedy if she only cares about whether or not she wins and — conditional on
winning — prefers to pay less; furthermore, she prefers winning to not winning if and only
if she has to pay less than the true value of the object for her, which we denote by v;, and is
indifferent between not winning and winning if she has to pay exactly v;. Thus the ranking
of a selfish and greedy Player i is as follows (together with everything that follows from
transitivity):

(i,p) =i (i,p’) ifandonlyifp < p’

(i,p) =i (j,p') forall j+iand forall p/,if and only if p < v; @D
(i,vi) ~i (j,p') forall j#i and for all p’ '
(j,p) ~i (k,p’) forall j#i, ki and forall p and p'.

An ordinal utility function that represents these preferences is:’

. vi—p ifi=j

®For example, if n = 5,b; = $10,by = $14,b3 = $8,b4 = $14 and bs = $14 then
H ($10,$14,$8,$14,$14) = {2,4,5},1($10,$14,$8,$14,$14) = 2, ™ ($10,$14,$8,$14,$14) = $14 and
p*econd (810,914, $8,$14,$14) = $14.
70f course there are many more. For example, also the following utility function represents those
s oy f2ume) ifi=
preferences: U; (j,p) = { | it
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Using this utility function we get the following payoff function for Player i:

. A vi=brd (by, . by) ifi=1i(b1,...,by)
”’(bl"“’b”)_{ 0 i i # 7(b1, ..., b)

We can now state the following theorem. The proof is given in Section 2.8.

— Vickrey, 1961. In a second-price auction, if Player i is selfish and
greedy (as specified in (2.1)) then it is a weakly dominant strategy for Player i to bid her
true value, that is, to choose b; = v;.

Note that, for a player who is not selfish and greedy, Theorem 2.3.1 is not true. For
example, if a player has the same preferences as above for the case where she wins, but,
conditional on not winning, prefers the other player to pay as much as possible (she is
spiteful) or as little as possible (she is benevolent), then bidding her true value is no longer
a dominant strategy.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 2.9.3 at the end of this chapter.

The pivotal mechanism

An article in the Davis Enterprise (the local newspaper in Davis, California) on January
12, 2001 started with the following paragraph:

“By consensus, the Davis City Council agreed Wednesday to order a commu-
nitywide public opinion poll to gauge how much Davis residents would be
willing to pay for a park tax and a public safety tax.”

Opinion polls of this type are worthwhile only if there are reasons to believe that the people
who are interviewed will respond honestly. But will they? If I would like more parks
and believe that the final tax I will have to pay is independent of the amount I state in the
interview, I would have an incentive to overstate my willingness to pay, hoping to swing
the decision towards building a new park. On the other hand, if I fear that the final tax
will be affected by the amount I report, then I might have an incentive to understate my
willingness to pay.

The pivotal mechanism, or Clarke mechanism, is a game designed to give the partici-
pants an incentive to report their true willingness to pay.

A public project, say to build a park, is under consideration. The cost of the project
is $C. There are n individuals in the community. If the project is carried out, individual
i (i=1,...,n) will have to pay $¢; (with ¢c; + ¢+ - - - 4+ ¢, = C); these amounts are specified
as part of the project. Note that we allow for the possibility that some individuals might
have to contribute a larger share of the total cost C than others (e.g. because they live
closer to the projected park and would therefore benefit more from it). Individual i has an
initial wealth of $m; > 0. If the project is carried out, individual i receives benefits from
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it that she considers equivalent to receiving $v;. Note that for some individual i, v; could
be negative, that is, the individual could be harmed by the project (e.g. because she likes
peace and quiet and a park close to her home would bring extra traffic and noise). We
assume that individual i has the following utility-of-wealth function:

m if the project is not carried out
m+v; if the project is carried out

Ui($m) = {

n
The socially efficient decision is to carry out the project if and only if )} v; > C (recall that
i=1

n
Y is the summation sign: Y v; is a short-hand for vi +v, 4 ... +vy).
i=1
For example, suppose that n = 2, m; = 50, mp = 60, vi = 19, v, = —15, C = 6,

n

c1 =6, ¢ =0. In this case ) vi =19—15=4 < C = 6 hence the project should not
i=1

be carried out. To see this consider the following table:

If the project is | If the project is

not carried out carried out
Utility of Individual 1 50 50+19-6=063
Utility of Individual 2 60 60 —15=45

If the project is carried out, Individual 1 has a utility gain of 13, while Individual 2 has
a utility loss of 15. Since the loss is greater than the gain, we have a Pareto inefficient
situation. Individual 2 could propose the following alternative to Individual 1: let us not
carry out the project and I will pay you $14. Then Individual 1’s wealth and utility would
be 50+ 14 = 64 and Individual 2’s wealth and utility would be 60 — 14 = 46 and thus
they would both be better off.

Thus Pareto efficiency requires that the project be carried out if and only if i vi > C.

i=1
This would be a simple decision for the government if it knew the v;’s. But, typically, these

values are private information to the individuals. Can the government find a way to induce
the individuals to reveal their true valuations? It seems that in general the answer is No:
those who gain from the project would have an incentive to overstate their potential gains,
while those who suffer would have an incentive to overstate their potential losses.

Influenced by Vickrey’s work on second-price auctions, Clarke suggested the following
mechanism or game. Each individual i is asked to submit a number w; which will be
interpreted as the gross benefit (if positive) or harm (if negative) that individual i associates
with the project. Note that, in principle, individual i can lie and report a value w; which is
different from the true value v;. Then the decision will be:

n

Yes if ) wi>C
j=1
n

No if Y w;<C
j=1

Carry out the project?



36 Chapter 2. Ordinal Games in Strategic Form

However, this is not the end of the story. Each individual will be classified as either not
pivotal or pivotal.

either (Z w;>C and ij > Zq)
J# J#
Individual i is not pivotal if

or (ZWJ<C and ij<2cj>
\

J#i J#i

and she is pivotal otherwise. In other words, individual i is pivotal if the decision about the
project that would be made in the restricted society resulting from removing individual i is
different from the decision that is made when individual i is included. If an individual is
not pivotal then she has to pay no taxes. If individual i is pivotal then she has to pay a tax
in the amount of

Lwi— e

J#i J#i

, that is, the absolute value of Z wj— Z cj
J# J#i

(recall that the absolute value of a is equal to a, if a is positive, and to —a, if a is a negative;
for instance, [4| =4 and | —4| = —(—4) =4).
For example, letn =3, C=10, ¢; =3, ¢c; =2, c3=235.
Suppose that they state the following benefits/losses (which may or may not be the true
ones): wy = —1,wp = 8, w3 = 3.
3

Then )} w; =10=C.

i=1
Thus the project will not be carried out. Who is pivotal? The answer is provided in Figure
2.11.

Individual w j Yc j Decision | 22 W ji#i Yc ji# Decision | Pivotal? Tax
i= (including i) | (including 7) (without i) | (without i)
1 10 10 No 8+3=11| 24+5=7 Yes Yes 11-7=4
2 10 10 No —143=2| 345=38 No No 0
3 10 10 No —148=7| 3+2=5 Yes Yes 7-5=2

Figure 2.11: Example of pivotal mechanism.

It may seem that, since it involves paying a tax, being pivotal is a bad thing and one
should try to avoid it. It is certainly possible for individual i to make sure that she is
not pivotal: all she has to do is to report w; = ¢;; in fact, if )} w; > } ¢, then adding c;

J#i J#i
to both sides yields Z w;>C and if ), w; < ) c; then adding ¢; to both sides yields
J=1 J# J#i
Z w; < C. It is not true, however, that it is best to avoid being pivotal. The following
j=1
example shows that one can gain by being truthful even if it involves being pivotal and
thus having to pay atax. Letn =4,C=15,¢1 =5,¢ =0,c3 =5and ¢4 = 5.
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Suppose that m; = 40 and v = 25.

Imagine that you are Individual 1 and, for whatever reason, you expect the following
reports by the other individuals: wy = —40,w3 = 15 and w4 = 20.

If you report w; = ¢; = 5 then you ensure that you are not pivotal.

In this case ﬁ‘, wj=5-40+15+20=0<C=15 and thus the project is not carried
out and youir:&tility is equal to m; = 40. If you report truthfully, that is, you report
wi = vy = 25 then i w;j=25-40+15+20=20> C =15 and the project is carried
out; furthermore, y(;lj 1are pivotal and have to pay a tax ¢#; equal to

4 4
Lwi—Le
= j=

and your utility will be m; +v; —cy —t; =404 25 -5 — 15 = 45; hence you are better
off. Indeed, the following theorem states that no individual can ever gain by lying.

= |(—40+15+20) — (0+5+5)| = |—15| = 15

The proof of Theorem 2.4.1 is given in Section 2.8.

— Clarke, 1971. In the pivotal mechanism (under the assumed pref-
erences) truthful revelation (that is, stating w; = v; ) is a weakly dominant strategy for
every Player i.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 2.9.4 at the end of this chapter.

Ilterated deletion procedures

If in a game a player has a (weakly or strictly) dominant strategy then the player ought to
choose that strategy: in the case of strict dominance, choosing any other strategy guarantees
that the player will do worse and in the case of weak dominance, no other strategy can
give a better outcome, no matter what the other players do. Unfortunately, games that
have a dominant-strategy profile (or solution) are not very common. What should a player
do when she does not have a dominant strategy? We shall consider two iterative deletion
procedures that can help solve some games.

IDSDS

The Iterated Deletion of Strictly Dominated Strategies (IDSDS) is the following procedure
or algorithm. Given a finite ordinal strategic-form game G, let G' be the game obtained by
removing from G, for every Player i, those strategies of Player i (if any) that are strictly
dominated in G by some other strategy; let G* be the game obtained by removing from G,
for every Player i, those strategies of Player i (if any) that are strictly dominated in G' by
some other strategy, and so on. Let G™ be the output of this procedure. Since the initial
game G is finite, G™ will be obtained in a finite number of steps.
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Figure 2.12 illustrates this procedure. If G”contains a single strategy profile (this is
not the case in the example of Figure 2.12), then we call that strategy profile the iterated
strict dominant-strategy profile (or solution). If G* contains two or more strategy profiles
then we refer to those strategy profiles merely as the output of the IDSDS procedure. For
example, in the game of Figure 2.12 the output of the IDSDS procedure is the set of
strategy profiles {(A,e), (A, f),(B,e), (B, f)}.

What is the significance of the output of the IDSDS procedure? Consider game G of
Figure 2.12. Since, for Player 2, A is strictly dominated by g, if Player 2 is rational she
will not play 4. Thus, if Player 1 believes that Player 2 is rational then he believes that
Player 2 will not play 4, that is, he restricts attention to game G'; since, in G', D is strictly
dominated by C for Player 1, if Player 1 is rational he will not play D. It follows that if
Player 2 believes that Player 1 is rational and that Player 1 believes that Player 2 is rational,
then Player 2 restricts attention to game G> where rationality requires that Player 2 not play
g, etc. It will be shown in a later chapter that if there is common knowledge of rationality,®
then only strategy profiles that survive the IDSDS procedure can be played; the converse
is also true: any strategy profile that survives the IDSDS procedure is compatible with
common knowledge of rationality.

Player 2

e f 8 h

Ale 3[4 4f4 1|3 0 flayer%
Player B [5 4[6 3]0 2[5 1
= - GO Player 4|6 3|4 4 4 -
| cl[s o 26 1+ o G=GC I s[5 a6 31 G =G

D2 0|2 3(3 3|6 |1

delete i 1
(dominated by g)

v delete C
(dominated by A)
Player 2

< f g Player 2

Al6 3[4 4|4 1 e
Player 815 416 3]0 2 1 A6 3[4 4
1 ocls o3 26 1] G Player )54 3] 3
p[2 o[z 3[3 3 ¢ 03 2
delete D
(dominated by C) Player 2 delete g
e f g (dominated by f)
. Al6 314 414 1
Player p 15316 3l0 2] G2
L[5 o3 26 1

Figure 2.12: An example of the IDSDS procedure.

p ) Infinite games, the order in which strictly dominated strategies are deleted is irrelevant,
in the sense that any sequence of deletions of strictly dominated strategies leads to
the same output.

8 An event E is commonly known if everybody knows E and everybody knows that everybody knows E
and everybody knows that everybody knows that everybody knows E, and so on.
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IDWDS

The Iterated Deletion of Weakly Dominated Strategies (IDWDS) is a weakening of IDSDS
in that it allows the deletion also of weakly dominated strategies. However, this procedure
has to be defined carefully, since in this case the order of deletion can matter. To see this,
consider the game shown in Figure 2.13.

Player 2
L R

Player 1

RN
S|l—=|W| s
Ol = | O
el =N H\° N Ne»)
el =N N\ =}

Figure 2.13: A strategic-form game with ordinal payoffs.

Since M is strictly dominated by T for Player 1, we can delete it and obtain the reduced
game shown in Figure 2.14

Player 2
L R
A4
Player 1 T
B |0

Figure 2.14: The game of Figure 2.13 after deletion of strategy M.

Now L is weakly dominated by R for Player 2. Deleting L we are left with the reduced
game shown in Figure 2.15.

Player 2
R
A
Player 1 T
B|1l 1

Figure 2.15: The game of Figure 2.14 after deletion of strategy L.

Now A and B are strictly dominated by 7. Deleting them we are left with | (7,R) |, with
corresponding payoffs (2,2).
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Alternatively, going back to the game of Figure 2.13, we could note that B is strictly
dominated by T’ deleting B we are left with

Player 2

Al4 010 O

Player1 T 3 2|2 2

M|1 1|0 O

Figure 2.16: The game of Figure 2.13 after deletion of strategy B.

Now R is weakly dominated by L for Player 2. Deleting R we are left with the reduced
game shown in Figure 2.17.

Player 2

Al4 O

Player1 T | 3 2
M| 1 1

Figure 2.17: The game of Figure 2.16 after deletion of strategy R.

Now T and M are strictly dominated by A and deleting them leads to | (A, L) | with corre-

sponding payoffs (4,0). Since one order of deletion leads to (T, R) with payoffs (2,2) and
the other to (A, L) with payoffs (4,0), the procedure is not well defined.

Definition 2.5.1 — IDWDS. In order to avoid the problem illustrated above, the IDWDS
procedure is defined as follows: at every step identify, for every player; all the strategies
that are weakly (or strictly) dominated and then delete all such strategies in that step. If
the output of the IDWDS procedure is a single strategy profile then we call that strategy
profile the iterated weak dominant-strategy profile (or solution) (otherwise we just use

the expression ‘output of the IDWDS procedure’).
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For example, the IDWDS procedure when applied to the game of Figure 2.13 leads to
the set of strategy profiles shown in Figure 2.18, namely {(A,L),(A,R),(T,L),(T,R)}.°

Player 2
L R

4

Player 1

Figure 2.18: The output of the IDWDS procedure applied to the game of Figure 2.13.

Hence the game of Figure 2.13 does not have an iterated weak dominant-strategy profile
(or solution).

The interpretation of the output of the IDWDS procedure is not as simple as that of the
IDSDS procedure: certainly common knowledge of rationality is not sufficient. In order
to delete weakly dominated strategies one needs to appeal not only to rationality but also
to some notion of caution: a player should not completely rule out any of her opponents’
strategies. However, this notion of caution is in direct conflict with the process of deletion
of strategies. In this book we shall not address the issue of how to interpret or justify the
IDWDS procedure.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 2.9.5 at the end of this chapter.

Nash equilibrium

Games where either the IDSDS procedure or the IDWDS procedure leads to a unique
strategy profile are not very common. How can one then “solve” games that are not solved
by either procedure? The notion of Nash equilibrium offers a more general alternative. We
first define Nash equilibrium for a two-player game.

Definition 2.6.1 Given an ordinal game in strategic form with two players, a strategy
profile s* = (s7,53) € S1 x S7 is a Nash equilibrium if the following two conditions are
satisfied:
1. for every sy € Sy, m (s7,85) > 7 (s1,85) (or stated in terms of outcomes and
preferences, f (s7,s5) 21 f(s1,53)), and
2. forevery so € So, m (s7,5%) > m(s],s2) (or, f(s7,55) 2 f(s],52)).

9Note that the output of the IDWDS procedure is a subset of the output of the IDSDS procedure (not
necessarily a proper subset; for example, in the game of Figure 2.13 the two procedures yield the same
output).



42 Chapter 2. Ordinal Games in Strategic Form

In the game of Figure 2.19 there are two Nash equilibria: (7,L) and (B,C).
(T,L) is a Nash equilibrium because (1) m(T,L) =3 = m;(M,L) and m(T,L) =3 >
m(B,L)=1and 2) m(T,L) =2 > m(T,C) =0 and my(7T,L) =2 > m(T,R) = 1.
(B,C) is a Nash equilibrium because (1) m;(B,C) =2 > m;(M,C) = 1 and 7;(B,C) =2 >
m(T,C)=0and (2) m(B,C) =3 > m(B,L) =0 and m(B,C) =3 > m(B,R) = 0.
No other strategy profile in the game of Figure 2.19 is a Nash equilibrium.

Player 2

T3 210 0|1 1

Player | M| 3 0|1 5|4 4

B|1 012 3|3 O

Figure 2.19: A strategic-form game with ordinal payoffs.

There are several possible interpretations of this definition:

“No regret” interpretation: s* is a Nash equilibrium if there is no player who, after
observing the opponent’s choice, regrets his own choice (in the sense that he could have
done better with a different strategy of his, given the observed strategy of the opponent).

“Self-enforcing agreement” interpretation: imagine that the players are able to com-
municate before playing the game and reach a non-binding agreement expressed as a
strategy profile s*; then no player will have an incentive to deviate from the agreement (if
she believes that the other player will follow the agreement) if and only if s* is a Nash
equilibrium.

“Viable recommendation” interpretation: imagine that a third party makes a public
recommendation to each player on what strategy to play; then no player will have an
incentive to deviate from the recommendation (if she believes that the other players will
follow the recommendation) if and only if the recommended strategy profile is a Nash
equilibrium.

“Rationality with correct beliefs” interpretation: suppose that Player 1 believes that
Player 2 will choose y and she herself chooses x and, symmetrically, Player 2 believes that
Player 1 will choose x and he himself chooses y, then, if both players have correct beliefs
and their choices are rational, (x,y) is a Nash equilibrium.

It should be clear that all of the above interpretations are just verbal translations of the
formal definition of Nash equilibrium in terms of the inequalities given in Definition 2.6.1.
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The generalization of Definition 2.6.1 to games with more than two players is straight-
forward.

Definition 2.6.2 Given an ordinal game in strategic form with n players, a strategy
profile s* € S is a Nash equilibrium if the following n inequalities are satisfied: for every
Playeri=1,...,n,

* * * * *
Ti(s") > Wi(ST, s Si_1, 8058141, ---,8,) forall s; € S;.

What is the relationship between the notion of Nash equilibrium and the solution
concepts defined in Section 2.5? Fix an ordinal strategic-form game G and let S(G) be
the set of strategy profiles in G. Let NE(G) C S(G) be the (possibly empty) set of Nash
equilibria of G, let IDSDS(G) C S(G) be the output of the iterated deletion of strictly
dominated strategies (IDSDS) and let IDWDS(G) C S(G) be the output of the iterated
deletion of weakly dominated strategies (IDSDS). The following theorem is proved in
Section 2.8.

For every ordinal strategic-form game G,
NE(G) C IDSDS(G).

On the other hand, it is possible that NE(G)# @ and yet NE(G) N IDWDS(G)= @.

In the case where IDSDS(G) is a singleton, that is, IDSDS(G) = {s}, the strategy profile s
is a strict dominant-strategy solution of G; similarly, if IDWDS(G) = {s}, then s is a weak
dominant-strategy solution of G (see Definition 2.2.3). The next theorem, which is proved
in Section 2.8, says that (A) a strict dominant-strategy solution is a strict Nash equilibrium
(s* is a strict Nash equilibrium if, for every Player i, m;(s?,s*; > m(s;,s* ;) for all s; €
Si\ {s7}) and (B) a weak dominant-strategy solution is a Nash equilibrium.

Let G be an ordinal strategic-form game and s € S(G) a strategy profile
in G.
(A) If IDSDS(G) = {s} then s is a strict Nash equilibrium.
(B) If IDWDS(G) = {s} then s is a Nash equilibrium.

Definition 2.6.3 Consider an ordinal game in strategic form, a Player i and a strategy
profile s_; € S_; of the players other than i. A strategy s; € S; of Player i is a best reply
(or best response) to 5_; if m;(s;,5-;) > mi(s},5_;), for every s/ € S;.

For example, in the game of Figure 2.20, for Player 1 there are two best replies to L,
namely M and T', while the unique best reply to C is B and the unique best reply to R is M;
for Player 2 the best reply to T is L, the best reply to M is C and the best reply to B is C.

Using the notion of best reply, an alternative definition of Nash equilibrium is as
follows: 5 € § is a Nash equilibrium if and only if, for every Player i, 5; € S; is a best
replytos_; € S_;.
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Player 2

r{3 210 0|1 1

Player 1 M| 3 0 I 5|4 4

Bl 1 012 3|3 O

Figure 2.20: A strategic-form game with ordinal payoffs.

A quick way to find the Nash equilibria of a two-player game is as follows: in each column
of the table underline the largest payoff of Player 1 in that column (if there are several
instances, underline them all) and in each row underline the largest payoff of Player 2 in
that row; if a cell has both payoffs underlined then the corresponding strategy profile is
a Nash equilibrium. Underlining of the maximum payoff of Player 1 in a given column
identifies the best reply of Player 1 to the strategy of Player 2 that labels that column and
similarly for Player 2. This procedure is illustrated in Figure 2.21, where there is a unique
Nash equilibrium, namely (B, E).

Player 2
Al 4 0|3 212 3|4 1
B4 2|2 1|1 2|0 2
Player 1
c|3 6|5 5|3 1|5 0
D|2 3|3 2|1 2(3 3

Figure 2.21: A strategic-form game with ordinal payoffs.

Exercise 2.3 in Section 2.9.1 explains how to represent a three-player game by means
of a set of tables. In a three-player game the procedure for finding the Nash equilibria is
the same, with the necessary adaptation for Player 3: in each cell underline the payoff of
Player 3 if and only if her payoff is the largest of all her payoffs in the same cell across
different tables. This is illustrated in Figure 2.22, where there is a unique Nash equilibrium,
namely (B,R,W).

Unfortunately, when the game has too many players or too many strategies — and it is
thus impossible or impractical to represent it as a set of tables — there is no quick procedure
for finding the Nash equilibria: one must simply apply the definition of Nash equilibrium.
This is illustrated in the following example.
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Player 2 Player 2
L R L R
Player T 0 0 02 8 6 Player T O 0 0j1 2 5
I B|5 3 2|3 4 2 LBl 6 10 0 1
Player 3 chooses W Player 3 chooses E

Figure 2.22: A three-player game with ordinal payoffs.

= Example 2.1 There are 50 players. A benefactor asks them to simultaneously and
secretly write on a piece of paper a request, which must be a multiple of $10 up to a
maximum of $100 (thus the possible strategies of each player are $10,$20,...,$90,$100).
The benefactor will then proceed as follows: if not more than 10% of the players (that is, 5
or fewer players) ask for $100 then he will grant every player’s request, otherwise every
player will get nothing. Assume that every player is selfish and greedy (only cares about
how much money she gets and prefers more money to less). What are the Nash equilibria
of this game? There are several:

* every strategy profile where 7 or more players request $100 is a Nash equilibrium
(everybody gets nothing and no player can get a positive amount by unilaterally
changing her request, since there will still be more than 10% requesting $100; on the
other hand, convince yourself that a strategy profile where exactly 6 players request
$100 is not a Nash equilibrium),

* every strategy profile where exactly 5 players request $100 and the remaining players
request $90 is a Nash equilibrium.

Any other strategy profile is not a Nash equilibrium: (1) if fewer than 5 players request
$100, then a player who requested less than $100 can increase her payoff by switching
to a request of $100, (2) if exactly 5 players request $100 and among the remaining
players there is one who is not requesting $90, then that player can increase her payoff by
increasing her request to $90. .

We conclude this section by noting that, since so far we have restricted attention to ordinal
games, there is no guarantee that an arbitrary game will have at least one Nash equilibrium.
An example of a game that has no Nash equilibria is the Matching Pennies game. This is a
simultaneous two-player game where each player has a coin and decides whether to show
the Heads face or the Tails face. If both choose H or both choose T then Player 1 wins,
otherwise Player 2 wins. Each player strictly prefers the outcome where she herself wins
to the alternative outcome. The game is illustrated in Figure 2.23.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 2.9.6 at the end of this chapter.




46 Chapter 2. Ordinal Games in Strategic Form

Player 2

H{ 1 0]0 1
Player 1

ry o 1|1 O

Figure 2.23: The matching pennies game.

Games with infinite strategy sets

Games where the strategy set of one or more players is infinite cannot be represented using
a table or set of tables. However, all the concepts introduced in this chapter can still be
applied. In this section we will focus on the notion of Nash equilibrium. We start with an
example.

= Example 2.2 There are two players. Each player has to write down a real number (not
necessarily an integer) greater than or equal to 1; thus the strategy sets are S| = S, = [1,00).
Payoffs are as follows (7 is the payoff of Player 1, @, the payoff of Player 2, x is the
number written by Player 1 and y the number written by Player 2):

_fx—1 ifx<y _fy—1 ifx>y
”1(x’y)_{ 0 ifx>y and ”2<x’y)_{ 0 ifx<y
What are the Nash equilibria of this game? .

There is only one Nash equilibrium, namely (1,1) with payoffs (0,0). First of all, we
must show that (1,1) is indeed a Nash equilibrium.
If Player 1 switched to some x > 1 then her payoff would remain O: 7 (x,1) = 0, for all
x € [1,00) and the same is true for Player 2 if he unilaterally switched to some y > 1:
m(l,y) =0, forall y € [1,c0).
Now we show that no other pair (x,y) is a Nash equilibrium.
Consider first an arbitrary pair (x,y) with x =y > 1. Then 7;(x,y) = 0, but if Player 1
switched to an £ strictly between 1 and x (1 < £ < x) her payoff would be m; (£,y) =£—1 >
0 (recall that, by hypothesis, x = y).
Now consider an arbitrary (x,y) with x < y. Then m; (x,y) = x — 1, but if Player 1 switched
to an £ strictly between x and y (x < £ < y) her payoff would be 7; (£,y) =£—1 >x— 1.
The argument for ruling out pairs (x,y) with y < x is similar.
Note the interesting fact that, for Player 1, x = 1 is a weakly dominated strategy: indeed it
is weakly dominated by any other strategy: x = 1 guarantees a payoff of O for Player 1,
while any X > 1 would yield a positive payoff to Player 1 in some cases (against any y > X)
and 0O in the remaining cases. The same is true for Player 2. Thus in this game there is a
unique Nash equilibrium where the strategy of each player is weakly dominated!

[Note: the rest of this section makes use of calculus. The reader who is not familiar with
calculus should skip this part.]

We conclude this section with an example based on the analysis of competition among
firms proposed by the French economist Augustine Cournot in a book published in 1838.
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In fact, Cournot is the one who invented what we now call ‘Nash equilibrium’, although
his analysis was restricted to a small class of games. Consider n > 2 firms that produce an
identical product. Let g; be the quantity produced by Firm i (i = 1,...,n). For Firm i the
cost of producing g; units of output is ¢;q;, where c¢; is a positive constant. For simplicity
we will restrict attention to the case of two firms (n = 2) and identical cost functions:
c1 = cp = c. Let Q be total industry output, that is, Q = g1 + ¢». The price at which each
firm can sell each unit of output is given by the inverse demand function P = a — bQ where
a and b are positive constants (with a > ¢). Cournot assumed that each firm was only
interested in its own profit and preferred higher profit to lower profit (that is, each firm is
“selfish and greedy”).
The profit function of Firm 1 is given by

m(q1,q2) = Pq1 —cq1 = [a—b(q1 +q2)] q1 — cq1 = (a —¢)q1 — b(q1)* — bq1qa.

Similarly, the profit function of Firm 2 is given by

m(q1,q2) = (a—c)qa — b(q2)* — bq1q2

Cournot defined an equilibrium as a pair (g;,¢,) that satisfies the following two inequali-
ties:

ual (71752) > (ql,ﬁz), for every ¢q; >0 (&)

%) (2117212) >m (617QZ) ’ for every g» > 0. (‘)

Of course, this is the same as saying that (g;,g,) is a Nash equilibrium of the game
where the players are the two firms, the strategy sets are S| = S, = [0,0) and the payoff
functions are the profit functions. How do we find a Nash equilibrium? First of all,
note that the profit functions are differentiable. Secondly note that (&) says that, having
fixed the value of ¢ at g,, the function 7, (¢1,g,) — viewed as a function of ¢; alone —
is maximized at the point g; = g,. A necessary condition for this (if g; > 0) is that the
partial derivative of this function with respect to g; be zero at the point g, that is, it must

be that 3—(’; (4,,49,) = 0. This condition is also sufficient since the second derivative of this
function is always negative (‘2;—;? (91,9,) = —2b for every (q1,q2)). Similarly, by (¢), it

must be that g—’qr; (44,9,) = 0. Thus the Nash equilibrium is found by solving the system of

two equations

J
a_;r]l(%a%) =a—c—2bgq; —bg, =0

J
a_jqr;(‘ha%) =a—c—2bgy —bq1 =0

The solution is g, = g, = %;¢. The corresponding price is P = a - b(24¢) = “42€ and
the corresponding profits are 7 (%5;°, %5°) = M (%", 55°) = %.

For example, if a = 25, b = 2, ¢ = 1 then the Nash equilibrium is given by (4,4) with
corresponding profits of 32 for each firm. The analysis can easily be extended to the case

of more than two firms.
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The reader who is interested in further exploring the topic of competition among firms
can consult any textbook on Industrial Organization.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 2.9.7 at the end of this chapter.

Proofs of theorems

Theorem [Vickrey, 1961] In a second-price auction, if Player i is selfish and greedy (as
specified in (2.1)) then it is a weakly dominant strategy for Player i to bid her true value,
that is, to choose b; = v;.

Proof. In order to make the notation simpler and the argument more transparent, we give
the proof for the case where n = 2. We shall prove that bidding v; is a weakly dominant
strategy for Player 1 (the proof for Player 2 is similar). Assume that Player 1 is selfish and
greedy. Then we can take her payoff function to be as follows:

vi—by ifby >b
ﬂl(blabZ):{Ol ? lfbizbi

We need to show that, whatever bid Player 2 submits, Player 1 cannot get a higher payoff

by submitting a bid different from v;. Two cases are possible (recall that b, denotes the
actual bid of Player 2, which is unknown to Player 1).

Case 1: b, < vy. In this case, bidding v; makes Player 1 the winner and his payoff
is vi — by > 0. Consider a different bid by. If by > b, then Player 1 is still the winner
and his payoff is still vi — by > 0; thus such a bid is as good as (hence not better
than) v;. If b1 < b then the winner is Player 2 and Player 1 gets a payoff of 0. Thus
such a bid is also not better than v;.

Case 2: by > vy. In this case, bidding v makes Player 2 the winner and thus Player
1 gets a payoff of 0. Any other bid b; < b, gives the same outcome and payoff. On
the other hand, any bid b| > b, makes Player 1 the winner, giving him a payoff of
v1 — by < 0, thus making Player 1 worse off than with a bid of v;.
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Theorem [Clarke, 1971] In the pivotal mechanism (under the assumed preferences) truthful

revelation (that is, stating w; = v;) is a weakly dominant strategy for every Player i.

Proof. Consider an individual i and possible statements w; for j # i. Several cases are

possible.

Casel: Y w;> Y cjandv;+ ) w;j>c;+ Y cj=C. Then

J#i J#i J#i J#i
decision i’s tax i’s utility
if i states v; Yes 0 m;+v;—c¢;
if i states w; such that Yes 0 m;+v;—c;
wi+ Y w;>C
J#i

if i states w; such that No Ywi—Yc; mi— | Ywi—Ycj
J#i JF#i J#i JF#i

wi+ Y w; <C
J#i

Individual i cannot gain by lying if and only if
J#i J#i J#i

which is true by our hypothesis.

m;+v,—c; >m;— <ij—20j> , 1.e. if and only if Vj+ZWj >C,
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Case2: Y w;> ) cjandvi+ ) w;j<c;+ Y cj=C.Then

J#i J#i

J#i J#i J#i J#i
decision i’s tax i’s utility
if i states v; No ZWJ'—ZC]' mi—<2 Wj-ZCj)

if i states w; such that No

wi+ Y w;<C
J#i

Lwj—Lcj e (.Z.Wj— ?Z,Cf>
J#i J#i

if i states w; such that Yes
wi+ Y w;>C
J#i

i#

Individual i cannot gain by lying if and only if 7; —

0 m;+v; —c;

Ywi—Yci|=>mi+vi—c,
J#i J#i

ie. if and only if v; + ) w; < C, which is true by our hypothesis.

Case3: Y w;< ) cjandvi+ ) w;j<c;+ Y c;j=C. Then

wi+ Y w; <C
J#i

al J# J# al
decision i’s tax i’s utility
if i states v; No 0 m;
if i states w; such that No 0 m;

if i states w; such that

J#

Yes (

i# i

ZCJ'— ZWj) m;+v;—c;— (Z cj— ZWj)

wi+ Y w;>C (recall that
Vi
Ywi< Ycj)
J#i J#i

Individual i cannot gain by lying if and only if m; > m; +v; —¢; — ( Yci—Yw j> ,

J#i J#i

i.e. if and only if v; + } w; < C, which is true by our hypothesis.
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Cased:) w; < Y cjandv;+ Y} wj>c;+ ) ¢j=C. Then
J#i J#i J#i
decision i’s tax i’s utility
if 7 states v; Yes ZCJ'—ZWJ' m;+vi—c;— ZWJ'—ZCJ'
J#i J#i J#i J#i
(recall that
Ywi< Ycj)
JFi JFi
if i states w; such that ~ Yes Yci—Yw;j mi+vi—ci—| Lwi— Y
JF JF# JF JF#
wi+ Y wj>C (recall that
J#i
Ywi< Y cj)
J#i J#i
if i states w; such that No 0 m;
wi+ )Y w; <C
J#

J#i

Individual i cannot gain by lying if and only if m; +v; —c¢; — (Z wi—Yc j> > m;,

J#i J#i

i.e. if and only if v;+ Y} w; > C, which is true by our hypothesis.

Since we have covered all the possible cases, the proof is complete. |
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Theorem. For every ordinal strategic-form game G, NE(G) C IDSDS(G). On the other
hand, it is possible that NE(G)# @ and yet NE(G) N IDWDS(G)= &.

Proof. Fix an arbitrary game G. First we show that NE(G) C IDSDS(G). If NE(G) = @
there is nothing to prove. Assume, therefore, that NE(G) # @ and let s* = (s7,...,s};) €
NE(G). We need to show that s* € IDSDS(G). Suppose not. Then there is a step in
the IDSDS procedure at which the strategy s; of some Player i is deleted. Let k be the
first such step, that is, letting G* be the game obtained after implementing step k of the
procedure, the strategy profile s* is in game G*~!, while the strategy s; of Player i in not
in GK. Then there must be a strategy §; of Player i in G~! that strictly dominates s7,in
particular, it must be that m;(s?,s* ;) < m;(§;,s* ;) contradicting the hypothesis that s* is a
Nash equilibrium.

To prove the second part of the theorem it is sufficient to construct a game G such
that NE(G)# @ and NE(G) N IDWDS(G) = @. Let G be the game shown in Figure 2.24.
Then NE(G) = {(C,F)}. Since, for Player 1, C is weakly dominated by A (and also by B),
and, for Player 2, F' is weakly dominated by (D (and also by E), the output of the IDWDS
procedure applied to this game is the set of strategy profiles {(A,D), (A,E), (B,D) (B,E)},

which has an empty intersection with NE(G). [
Player 2
D E F
All 010 1710 O
Player
) BlO 1|1 O0]0 O
clo0 0]J]0 O[O0 O

Figure 2.24: A game with only one Nash equilibrium, namely (C, F'), which is eliminated
by the IDWDS procedure.

Theorem. Let G be an ordinal strategic-form game and s € S(G) a strategy profile in G.
(A) If IDSDS(G) = {s} then s is a strict Nash equilibrium.
(B) If IDWDS(G) = {s} then s is a Nash equilibrium.

Proof. (A) Fix an ordinal game G and let S be the set of strategy profiles in G and, for

every player i, let S; be the set of strategies of player i in G. Let IDSDS(G) = {s*} (thus,
s7 € S;, for every player i) . We need to show that, for every player i,

mi(s7, 8% ;) > mi(si,s™;), forevery s; € S;\ {s}}. (2.2)

Fix an arbitrary player i. If S; = {s} } then there is nothing to prove. Assume, therefore, that
the cardinality of S; is at least 2 (that is, Player i has at least one other strategy besides s7).
Let m > 1 be the number of steps that lead from G to the output of the IDSDS procedure
(thus, step m is the last step; it is possible that m = 0, that is, that S = {s*}, in which case
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(2.2) is trivially true). Let G° = G and, for every k € {1,...,m}, let G* be the reduced
game obtained after step k of the procedure and, for every player i, let Sf-‘ be the set of
strategies of player i in game GX. Since S = {s}}, there must be a step k < m in the
procedure such that S¥~! is a proper superset of {s*} and S¥ = {s¥}. Then it must be that,
for player i, s7 strictly dominates every other strategy in Sf-‘_]; in particular,

mi(st,s*;) > m(si,s*,), forevery s; € SK1\ {571 (2.3)

It Sf_] = §; then the proof is complete. Suppose, therefore, that Sf.‘_] is a proper subset of
Si. Then there is an earlier step j < k in the procedure where Slj is a proper superset of Sf-‘_l
and Slj = Sf-‘*l. Then it must be that, every strategy s; € Slj \ Sf-‘*l is strictly dominated
by some strategy in S¥ 1. It follows from this and (2.3) that m;(s},s* ;) > mi(s;,s* ;), for
every s; € S{ \ {s7}. Repeating this argument (by visiting, if necessary, earlier steps) we
obtain (2.2).

(B) The proof of this part is essentially the same as the proof of Part (A): the only modifica-
tion is the replacement of strict inequalities in (2.2) and (2.3) with weak inequalities. W

Exercises

Exercises for Section 2.1: Game frames and games

The answers to the following exercises are in Section 2.10 at the end of this chap-
ter.

Antonia and Bob cannot decide where to go to dinner. Antonia proposes
the following procedure: she will write on a piece of paper either the number 2 or the
number 4 or the number 6, while Bob will write on his piece of paper either the number
1 or 3 or 5. They will write their numbers secretly and independently. They then will
show each other what they wrote and choose a restaurant according to the following
rule: if the sum of the two numbers is 5 or less, they will go to a Mexican restaurant, if
the sum is 7 they will go to an Italian restaurant and if the number is 9 or more they will
go to a Japanese restaurant.

(a) Let Antonia be Player 1 and Bob Player 2. Represent this situation as a game
frame, first by writing out each element of the quadruple of Definition 2.1.1 and
then by using a table (label the rows with Antonia’s strategies and the columns
with Bob’s strategies, so that we can think of Antonia as choosing the row and
Bob as choosing the column).

(b) Suppose that Antonia and Bob have the following preferences (where M stands
for ‘Mexican’, I for ‘Italian’ and J for ‘Japanese’):
for Antonia: M > pnronia I = Antonia J; ~ for Bob: I =pg,p M >=pop J.

Using utility function with values 1, 2 and 3 represent the corresponding reduced
game as a table.
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Consider the following two-player game-frame where each player is given
a set of cards and each card has a number on it. The players are Antonia (Player 1) and
Bob (Player 2). Antonia’s cards have the following numbers (one number on each card):
2, 4 and 6, whereas Bob’s cards are marked 0O, 1 and 2 (thus different numbers from
the previous exercise). Antonia chooses one of her own cards and Bob chooses one of
his own cards: this is done without knowing the other player’s choice. The outcome
depends on the sum of the points of the chosen cards. If the sum of the points on the two
chosen cards is greater than or equal to 5, Antonia gets $(10 minus that sum); otherwise
(that is, if the sum is less than 5) she gets nothing; furthermore, if the sum of points is
an odd number, Bob gets as many dollars as that sum; if the sum of points turns out to
be an even number and is less than or equal to 6, Bob gets $2; otherwise he gets nothing.
(The money comes from a third party.)

(a) Represent the game-frame described above by means of a table. As in the previous
exercise, assign the rows to Antonia and the columns to Bob.

(b) Using the game-frame of Part (a) obtain a reduced game by adding the information
that each player is selfish and greedy. This means that each player only cares
about how much money he/she gets and prefers more money to less.

Alice (Player 1), Bob (Player 2), and Charlie (Player 3) play the following
simultaneous game. They are sitting in different rooms facing a keyboard with only one
key and each has to decide whether or not to press the key. Alice wins if the number of
people who press the key is odd (that is, all three of them or only Alice or only Bob or
only Charlie), Bob wins if exactly two people (he may be one of them) press the key
and Charlie wins if nobody presses the key.

(a) Represent this situation as a game-frame. Note that we can represent a three-
player game with a set of tables: Player 1 chooses the row, Player 2 chooses the
column and Player 3 chooses the table (that is, we label the rows with Player 1’s
strategies, the columns with Player 2’s strategies and the tables with Player 3’s
strategies).

(b) Using the game-frame of Part (a) obtain a reduced game by adding the information
that each player prefers winning to not winning and is indifferent between any
two outcomes where he/she does not win. For each player use a utility function
with values from the set {0,1}.

(c) Using the game-frame of Part (a) obtain a reduced game by adding the information
that (1) each player prefers winning to not winning, (2) Alice is indifferent
between any two outcomes where she does not win, (3) conditional on not
winning, Bob prefers if Charlie wins rather than Alice, (4) conditional on not
winning, Charlie prefers if Bob wins rather than Alice. For each player use a
utility function with values from the set {0,1,2}.
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Exercises for Section 2.2: Strict/weak dominance
The answers to the following exercises are in Section 2.10 at the end of this chapter.

There are two players. Each player is given an unmarked envelope and
asked to put in it either nothing or $300 of his own money or $600 of his own money. A
referee collects the envelopes, opens them, gathers all the money, then adds 50% of that
amount (using his own money) and divides the total into two equal parts which he then
distributes to the players.

(a) Represent this game frame with two alternative tables: the first table showing in
each cell the amount of money distributed to Player 1 and the amount of money
distributed to Player 2, the second table showing the change in wealth of each
player (money received minus contribution).

(b) Suppose that Player 1 has some animosity towards the referee and ranks the
outcomes in terms of how much money the referee loses (the more, the better),
while Player 2 is selfish and greedy and ranks the outcomes in terms of her own
net gain. Represent the corresponding game using a table.

(c) In the game of Part (b), is there a strict dominant-strategy profile?

Consider again the game of Part (b) of Exercise 2.1 (Figure 2.28).
(a) Determine, for each player, whether the player has strictly dominated strategies.

(b) Determine, for each player, whether the player has weakly dominated strategies.

There are three players. Each player is given an unmarked envelope and
asked to put in it either nothing or $3 of his own money or $6 of his own money. A
referee collects the envelopes, opens them, gathers all the money and then doubles the
amount (using his own money) and divides the total into three equal parts which he then
distributes to the players.
For example, if Players 1 and 2 put nothing and Player 3 puts $6, then the referee adds
another $6 so that the total becomes $12, divides this sum into three equal parts and
gives $4 to each player.
Each player is selfish and greedy, in the sense that he ranks the outcomes exclusively
in terms of his net change in wealth (what he gets from the referee minus what he
contributed).

(a) Represent this game by means of a set of tables. (Do not treat the referee as a
player.)

(b) For each player and each pair of strategies determine if one of the two dominates
the other and specify if it is weak or strict dominance.

(c) Is there a strict dominant-strategy profile?
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Exercises for Section 2.3: Second price auction
The answers to the following exercises are in Section 2.10 at the end of this chapter.

For the second-price auction partially illustrated in Figure 2.10 — repro-
duced below (recall that the numbers are the payoffs of Player 1 only) — complete the
representation by adding the payoffs of Player 2, assuming that Player 2 assigns a value
of $50M to the field and, like Player 1, ranks the outcomes in terms of the net gain
from the oil field (defined as profits minus the price paid, if Player 2 wins, and zero
otherwise).

Player 2
$10M $20M $30M $40M $50M
$10M 0 0 0 0 0

Player $20M 20 0 0 0

1 $30M 20 10 0 0
$40M 20 10 0 0
$50M 20 10 0 —10

o o o O

Consider the following “third-price” auction. There are n > 3 bidders. A
single object is auctioned and Player i values the object $v;, with v; > 0. The bids are
simultaneous and secret.

The utility of Player i is: O if she does not win and (v; — p) if she wins and pays $p.
Every non-negative number is an admissible bid. Let b; denote the bid of Player i.
The winner is the highest bidder. In case of ties the bidder with the lowest index among
those who submitted the highest bid wins (e.g. if the highest bid is $120 and it is
submitted by players 6, 12 and 15, then the winner is Player 6). The losers don’t get
anything and don’t pay anything. The winner gets the object and pays the third highest
bid, which is defined as follows.

Let i be the winner and fix a Player j such that
bj =max ({b1,...,b,} \ {bi})
[note: if

max ({b1,...,b,} \ {bi})

contains more than one element, then we pick any one of them]. Then the third price is
defined as

max ({b1,...,bx} \ {bi,b;}) .



2.9 Exercises 57

For example, if n = 3 and the bids are by =30, b, =40 and b3 =40 then the
winner is Player 2 and she pays $30. If b; = b, = b3 = 50 then the winner is Player 1
and she pays $50. For simplicity, let us restrict attention to the case where n = 3 and

vi > vy >v3 > 0. Does Player 1 have a weakly dominant strategy in this auction?

Exercises for Section 2.4: The pivotal mechanism
The answers to the following exercises are in Section 2.10 at the end of this chapter.

The pivotal mechanism is used to decide whether a new park should be

built. There are 5 individuals. According to the proposed project, the cost of the park
would be allocated as follows:

Individual | 1 | 2 | 3 | 4 | 5 |
Share of cost | c; =$30 | ¢, =$25 [ c3 =925 [ c4 =$15 | c5 =95 |

For every individual i = 1,...,5, let v; be the perceived gross benefit (if positive; per-
ceived gross loss, if negative) from having the park built. The v;’s are as follows:
Individual | 1 | 2 | 3 | 4 | 5 |
Gross benefit | vi = $60 | vy = $15 | v3 =$55 [ v4 = —$25 | vs = —$20 |

(Thus the net benefit (loss) to individual i is v; — ¢;). Individual i has the following
utility of wealth function (where m; denotes the wealth of individual i):

m; if the project is not carried out
Ui($m;) = . L .

m; +v; if the project is carried out
Let m; be the initial endowment of money of individual i and assume that m; is large
enough that it exceeds ¢; plus any tax that the individual might have to pay.

(a) What is the Pareto-efficient decision: to build the park or not?

Assume that the pivotal mechanism is used, so that each individual i is asked to state
a number w; which is going to be interpreted as the gross benefit to individual i from
carrying out the project. There are no restrictions on the number w;: it can be positive,
negative or zero. Suppose that the individuals make the following announcements:

Individual | 1 | 2 | 3 | 4 | 5 |
Stated benefit | wi = $70 | wy = $10 | w3 = $65 [ wy = —$30 | ws = —$5 |

(b) Would the park be built based on the above announcements?

(¢) Using the above announcements and the rules of the pivotal mechanism, fill in
the following table:
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Individual | 1 2 3 4 5
Pivotal?
Tax

(d) As you know, in the pivotal mechanism each individual has a dominant strategy.
If all the individuals played their dominant strategies, would the park be built?

(e) Assuming that all the individuals play their dominant strategies, find out who is
pivotal and what tax (if any) each individual has to pay?

(f) Show that if every other individual reports his/her true benefit, then it is best for
Individual 1 to also report his/her true benefit.

Exercises for Section 2.5: Iterated deletion procedures

The answers to the following exercises are in Section 2.10 at the end of this chap-
ter.

Consider again the game of Part (b) of Exercise 2.1 (Figure 2.28).
(a) Apply the IDSDS procedure (Iterated Deletion of Strictly Dominated Strategies).
(b) Apply the IDWDS procedure (Iterated Deletion of Weakly Dominated Strategies).

Apply the IDSDS procedure to the game shown in Figure 2.25. Is there
a strict iterated dominant-strategy profile?

Player 2

Player1 5|3 2|2 1|4 3

Figure 2.25: A strategic-form game with ordinal payoffs.
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Consider the following game. There is a club with three members: Ann,
Bob and Carla. They have to choose which of the three is going to be president next
year. Currently, Ann is the president. Each member is both a candidate and a voter.
Voting is as follows: each member votes for one candidate (voting for oneself is
allowed); if two or more people vote for the same candidate then that person is chosen
as the next president; if there is complete disagreement, in the sense that there is exactly
one vote for each candidate, then the person for whom Ann voted is selected as the next
president.

(a) Represent this voting procedure as a game frame, indicating inside each cell of
each table which candidate is elected.

(b) Assume that the players’ preferences are as follows: Ann >4, Carla > ,, Bob,
Carla >p,p Bob =g, Ann, Bob >curq Ann >carq Carla. Using utility values
0, 1 and 2, convert the game frame into a game.

(c¢) Apply the IDWDS to the game of Part (b). Is there an iterated weak dominant-
strategy profile?

(d) Does the extra power given to Ann (in the form of tie-breaking in case of complete
disagreement) benefit Ann?

Consider the game shown in Figure 2.26.
(a) Apply the IDSDS procedure. Is there an iterated strict dominant-strategy profile?
(b) Apply the IDWDS procedure. Is there an iterated weak dominant-strategy profile?

Player 2

a2 312 2|3 1

Player 1 p| 2 0|3 1|1 0

ci1 412 070 4

Figure 2.26: A strategic-form game with ordinal payoffs.
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Exercises for Section 2.6: Nash equilibrium

The answers to the following exercises are in Section 2.10 at the end of this chap-
ter.

I Exercise 2.14 Find the Nash equilibria of the game of Exercise 2.2 (Figure 2.30). =

Exercise 2.15 Find the Nash equilibria of the games of Exercise 2.3 (b) (Figure 2.32)
and (c) (Figure 2.33). n

I Exercise 2.16 Find the Nash equilibria of the game of Exercise 2.4 (b) (Figure 2.35). =

I Exercise 2.17 Find the Nash equilibria of the game of Exercise 2.6 (Figure 2.37). =

I Exercise 2.18 Find the Nash equilibria of the game of Exercise 2.7 (Figure 2.38). =

Exercise 2.19 Find a Nash equilibrium of the game of Exercise 2.8 for the case where
n=3 and vi>vy>v3>0

(note that there are several Nash equilibria). .

I Exercise 2.20 Find the Nash equilibria of the game of Exercise 2.12 (b) (Figure 2.43).

I Exercise 2.21 Find the Nash equilibria of the game of Exercise 2.13 (Figure 2.26). =

Exercises for Section 2.7: Games with infinite strategy sets

The answers to the following exercises are in Section 2.10 at the end of this chap-
ter.

Exercise 2.22 Consider a simultaneous n-player game where each Player i chooses an
effort level g; € [0, 1]. The payoff to Player i is given by

mi(ay,...,ay) =4 min{ay,...,a,} —2q;

(interpretation: efforts are complementary and each player’s cost per unit of effort is 2).
(a) Find all the Nash equilibria and prove that they are indeed Nash equilibria.
(b) Are any of the Nash equilibria Pareto efficient?
(c) Find a Nash equilibrium where each player gets a payoff of 1.
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— %% % Challenging Question %% %.

The Mondevil Corporation operates a chemical plant, which is located on the banks of
the Sacramento river. Downstream from the chemical plant is a group of fisheries. The
Mondevil plant emits by-products that pollute the river, causing harm to the fisheries.
The profit Mondevil obtains from operating the chemical plant is $IT > 0.

The harm inflicted on the fisheries due to water pollution is equal to $L > 0 of lost
profit [without pollution the fisheries’ profit is $A, while with pollution it is $(A — L)].
Suppose that the fisheries collectively sue the Mondevil Corporation. It is easily verified
in court that Mondevil’s plant pollutes the river. However, the values of IT and L cannot
be verified by the court, although they are commonly known to the litigants.

Suppose that the court requires the Mondevil attorney (Player 1) and the fisheries’
attorney (Player 2) to play the following litigation game. Player 1 is asked to announce
a number x > 0, which the court interprets as a claim about the plant’s profits. Player 2
is asked to announce a number y > 0, which the court interprets as the fisheries’ claim
about their profit loss. The announcements are made simultaneously and independently.

Then the court uses Posner’s nuisance rule to make its decision (R. Posner, Economic
Analysis of Law, 9th edition, 1997). According to the rule, if y > x, then Mondevil must
shut down its chemical plant. If x > y , then the court allows Mondevil to operate the
plant, but the court also requires Mondevil to pay the fisheries the amount y. Note that
the court cannot force the attorneys to tell the truth: in fact, it would not be able to tell
whether or not the lawyers were reporting truthfully. Assume that the attorneys want to
maximize the payoff (profits) of their clients.

(a) Represent this situation as a strategic-form game by describing the strategy set of
each player and the payoff functions.

(b) Is it a dominant strategy for the Mondevil attorney to make a truthful announce-
ment (i.e. to choose x = I1)? [Prove your claim.]

(¢) Is it a dominant strategy for the fisheries’ attorney to make a truthful announce-
ment (i.e. to choose y = L)? [Prove your claim.]

(d) For the case where IT > L (recall that IT and L denote the true amounts), find all
the Nash equilibria of the litigation game. [Prove that what you claim to be Nash
equilibria are indeed Nash equilibria and that there are no other Nash equilibria. ]

(e) For the case where Il < L (recall that IT and L denote the true amounts), find all
the Nash equilibria of the litigation game. [Prove that what you claim to be Nash
equilibria are indeed Nash equilibria and that there are no other Nash equilibria.]

(f) Does the court rule give rise to a Pareto efficient outcome? [Assume that the
players end up playing a Nash equilibrium.]



62 Chapter 2. Ordinal Games in Strategic Form

Solutions to exercises

Solution to Exercise 2.1.
(@ 1={1,2}, S1={2,4,6}, S={1,3,5}, O0={M,1,J}

(where M stands for ‘Mexican’, [ for ‘Italian’ and J for ‘Japanese’).
The set of strategy profiles is
§=A{(2,1), (2,3), (2,5), (4,1), (4,3), (4,5), (6,1), (6,3), (6,5)}:
the outcome function is:
f(2,1)=f(2,3):f(4, M,
f(zas):f(4=3):f(6a I,
f(4a5) :f(6a3> :f(675) =J.

The representation as a table is shown in Figure 2.27.

1)
)

Player 2 (Bob)

1 3 5
2| M M I

Player 1
(Antonia) 41 M I ]
6| I J J

Figure 2.27: The game-frame for Part (a) of Exercise 2.1.

(b) Using values 1, 2 and 3, the utility functions are as follows, where U is the utility

function of Player 1 (Antonia) and U is the utility function of Player 2 (Bob):

U]Z

M
3
Uy: 2

W N~
—_ =

The reduced game is shown in Figure 2.28.

Player 2 (Bob)
1 3 5
213 213 212 3
Player 1
(Anfonia) 413 212 311 1

612 3(1 1|1 1

Figure 2.28: The game for Part (b) of Exercise 2.1.
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Solution to Exercise 2.2.

(a) The game-frame is shown in Figure 2.29.

(b) Denote an outcome as a pair ($x, $y) where x is the amount of money given to Player

1 and y is the amount of money given to Player 2. If Player 1 is selfish and greedy,

we can take the following as Player 1’s utility function: U; ($x,$y) = x (other utility

functions would do too: the only requirement is that the utility of a larger sum of

money is larger than the utility of a smaller sum of money); similarly, if Player 2

is selfish and greedy we can take U, ($x,$y) = y. With these utility functions, the

Player 1
(Antonia)

reduced game is shown in Figure 2.30. U
Player 2 (Bob)
0 1 2
Antonia gets nothing | Antonia gets nothing | Antonia gets nothing
Bob gets $2 Bob gets $3 Bob gets $2
Antonia gets nothing Antonia gets $5 Antonia gets $4
Bob gets $2 Bob gets $5 Bob gets $2
Antonia gets $4 Antonia gets $3 Antonia gets $2
Bob gets $2 Bob gets $7 Bob gets nothing

Figure 2.29: The game-frame for Part (a) of Exercise 2.2.

Player 2 (Bob)
1 2
210 210 310
Player 1
(Antonia) 410 205 S|4
6|4 213 712

Solution to Exercise 2.3.

(a) The game-frame is shown in Figure 2.31.

(b) The reduced game is shown in Figure 2.32.

Figure 2.30: The game for Part (b) of Exercise 2.2.

(¢) The reduced game is shown in Figure 2.33. For Alice we chose 1 and 0 as utilities,

but one could also use 2 and 1 or 2 and 0.

O
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P Bob not P
. P | Alice wins Bob wins
Alice not P Bob wins Alice wins
Charlie: P
P Bob not P

Alice P Bob wins Alice wins
notP | Alice wins Charlie wins

Charlie: not P

Figure 2.31: The game-frame for Part (a) of Exercise 2.3.

Bob not P

. prl1T 0 0oJTO0O 1 0
Alice | p 01 011 0 0

Charlie: P

Alice

notP| 1 0 0 0O O 1
Charlie: not P

Figure 2.32: The reduced game for Part (b) of Exercise 2.3.

Bob not P

. P10 010 2 1
Alice | p 02 111 0 0

Charlie: P

P Bob not P
) Pl O 2 1 I 0 0
Alice o0 010 1 2

Charlie: not P

Figure 2.33: The reduced game for Part (c) of Exercise 2.3.
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Solution to Exercise 2.4.

(a) The tables are shown in Figure 2.34.

(b) For Player 1 we can take as his payoff the total money lost by the referee and for
Player 2 her own net gain as shown in Figure 2.35.

(c) For Player 1 contributing $600 is a strictly dominant strategy and for Player 2
contributing $0 is a strictly dominant strategy. Thus ($600,$0) is the strict dominant-
strategy profile. O

Distributed money:
Player 2

0 300 600
0 0 0 225 225 | 450 450
Player 1 300| 225 225 | 450 450 | 675 675
600| 450 450 | 675 675 | 900 900

Net amounts: Player 2
0 300 600

0 0 0 225 =75 | 450 —150
Player 1 300{ —75 225 | 150 150 | 375 75

600 —150 450 | 75 375 | 300 300

Figure 2.34: The tables for Part (a) of Exercise 2.4.

Player 2
0 300 600

0] O 0 [ 150 =75 | 300 —150
Player 1 300{ 150 225 | 300 150 | 450 75
600 300 450 | 450 375 | 600 300

Figure 2.35: The game for Part (b) of Exercise 2.4.
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Solution to Exercise 2.5. The game under consideration is reproduced in Figure 2.36.

Player 2 (Bob)
1 3 5

2
4

Player 1
(Antonia)

N [ | w
W |
— [ [ w
— W[
— = [

el Bl BV

Figure 2.36: The game for Exercise 2.5.

(a) For Player 1, 6 is strictly dominated by 2. There is no other strategy which is strictly
dominated. Player 2 does not have any strictly dominated strategies.

(b) For Player 1, 6 is weakly dominated by 4 (and also by 2, since strict dominance
implies weak dominance); 4 is weakly dominated by 2. Player 2 does not have any
weakly dominated strategies. 0

Solution to Exercise 2.6.
(a) The game under consideration is shown in Figure 2.37.

(b) For Player 1, 0 strictly dominates 3 and 6, 3 strictly dominates 6 (the same is true for
every player). Thus 0 is a strictly dominant strategy.

(¢) The strict dominant-strategy profile is (0,0,0) (everybody contributes 0). ]
Player 2
0 3 6
0jo o of2-1 2|4 -2 4
Player
31-1 2 211 1 43 0 6
! 6|2 4 410 3 62 2 8
Player 3: 0 Player 2
0 3 6
2 2—-114 1 1 6 0 3
PlayerO
) 311 4 13 3 3|5 25
60 6 3|12 5 54 47
Player 2 Player 3: 3
0 3 6
014 4-216 3 0 2 2
Player
1 313 6 05 5 2 4 4
612 8 214 7 4 6 6
Player 3: 6

Figure 2.37: The game for Exercise 2.6.
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Solution to Exercise 2.7. The game under consideration is shown in Figure 2.38. O

Player 2 (value $50M)
$10M $20M $30M $40M $50M

SIOM [0 400 40|0 40[0 400 40
Player 1 $20M |20 0/0 30]0 30|0 300 30
(value $30M) $30M |20 0|10 0|0 20/0 20[0 20
$40M[20 0110 0|0 0[O0 10/0 10
$0M [20 010 0|0 0 |-10 0[0 0

Figure 2.38: The game for Exercise 2.7.

Solution to Exercise 2.8. No. Suppose, by contradiction, that b; is a weakly dominant
strategy for Player 1. It cannot be that lel > v1, because when by, = b3 = l;l Player 1 wins
and pays by, thereby obtaining a payoff of v| — b; < 0, whereas bidding 0 would give him
a payoff of 0.

It cannot be that 131 = vq because when b, > 131 and b3 < v; the auction is won by Player 2
and Player 1 gets a payoff of 0, while a bid of Player 1 greater than b, would make him
the winner with a payoff of vi — b3 > 0.

Similarly, it cannot be that 131 < v; because when b, > v and b3 < v then with 131 the
auction is won by Player 2 and Player 1 gets a payoff of 0, while a bid greater than b,
would make him the winner with a payoff of vi — b3 > 0. U

Solution to Exercise 2.9.

5 5
(a) Since ) v; =85 < Y ¢; = 100 the Pareto efficient decision is not to build the park.
= .

= i=1

1

5
(b) Since } w; =110 >
=1

1

5
Y. ¢; = 100 the park would be built.
=1

5 5
(¢) Individual 1 is pivotal and has to pay a tax equal to | Y w;— ) ¢; =40—-70| =
i=2 i=2

|—30| = 30. The other pivotal individual is individual 3 who has to pay a tax equal
to |[wi +wy +wq+ws —cy —ca — cq4 — ¢5| = |—30| = 30. The other individuals are
not pivotal and thus are not taxed.

(d) For each individual i it is a dominant strategy to report v; and thus, by Part (a), the
decision will be the Pareto efficient one, namely not to build the park.

(e) When every individual reports truthfully, Individuals 4 and 5 are pivotal and Individ-
ual 4 has to pay a tax of $25, while individual 5 has to pay a tax of $10. The others
are not pivotal and do not have to pay a tax.

(f) Assume that all the other individuals report truthfully; then if Individual 1 reports
truthfully, he is not pivotal, the project is not carried out and his utility is 7. Any
other wy that leads to the same decision (not to build the park) gives him the same
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utility.

If, on the other hand, he chooses a w that leads to a decision to build the park, then
Individual 1 will become pivotal and will have to pay a tax #; = 45 with a utility
of mjy+vy—c; —t1 =m; +60—30—45=m; — 15, so that he would be worse off
relative to reporting truthfully. U

Solution to Exercise 2.10. The game under consideration is reproduced in Figure 2.39.

Player 2 (Bob)
1 3 5
213 213 212 3
Player 1
(Antonia) 3 2|2 311 1

Figure 2.39: The game for Exercise 2.10.

(a) The first step of the IDSDS procedure eliminates 6 for Player 1 (strictly dominated

by 2). After this step the procedure stops and thus the output is as shown in Figure
2.40.

Player 2 (Bob)

Plyer1 2|3 2[3 2|2 3
(Antonia) 4 3 51y 3]

Figure 2.40: The output of the IDWDS procedure applied to the game of Figure 2.39.

(b) The first step of the procedure eliminates 4 and 6 for Player 1 and nothing for Player

2. The second step of the procedure eliminates 1 and 3 for Player 2. Thus the output
is the strategy profile (2,5), which constitutes the iterated weak dominant-strategy
profile of this game. 0

Solution to Exercise 2.11. The game under consideration is reproduced in Figure 2.41.
In this game c is strictly dominated by b;

- after deleting ¢, d becomes strictly dominated by f;

- after deleting d, a becomes strictly dominated by b;

- after deleting a, e becomes strictly dominated by f;

- deletion of e leads to only one strategy profile, namely (b, f ).

Thus (b, f) is the iterated strict dominant-strategy profile. 0
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Player 2
d e f
a|g 6|10 9|3 8
Player 1 p |3 212 1[4 3
c|2 8|1 503 |
Figure 2.41: The game for Exercise 2.11.
Solution to Exercise 2.12.
(a) The game-frame under consideration is shown in Figure 2.42.
BOB BOB BOB
A B C A B C A B C
AlA | A | A AlA | B | A A|lA|C
A A A
NB|A|B|B NB|B | B |B N B|B|C
N N N
ClA|C|C clc|B|C c|C|C
CARLA: A CARLA: B CARLA: C
Figure 2.42: The game-frame for Part (a) of Exercise 2.12.
(b) The game under consideration is shown in Figure 2.43.
BOB BOB BOB
A B C A B C A B C
A l2,0,1]2,0,1]2,0,1 Al2,0,1]0,1,2]2,0,1 2,0,1]2,0,1|1,2,0
A A A
N B |2.0,1]0,1,2]0,1,2 N B|0,1,2]0,1,2]0,1,2 N B |0,1,2]0,1,2[1,2,0
N N N
C 12,0,1]1,2,0/1,2,0 c|1,2,0l0,1,2[1,2,0 1,2,0{1,2,0]1,2,0
CARLA: A CARLA: B CARLA: C

Figure 2.43: The game for Part (b) of Exercise 2.12.

(¢) For Ann, both B and C are weakly dominated by A; for Bob, A is weakly dominated
by C; for Carla, C is weakly dominated by B.
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Thus in the first step of the IDWDS we delete B and C for Ann, A for Bob and C for
Carla.

Hence the game reduces to the Figure 2.44. In this game, for Bob, C is weakly
dominated by B and for Carla, A is weakly dominated by B.

Thus in the second and final step of the IDWDS we delete C for Bob and A for Carla
and we are left with a unique strategy profile, namely (A, B, B), that is, Ann votes for
herself and Bob and Carla vote for Bob. This is the iterated weak dominant-strategy

profile.
CARLA
A B
B| 0 1 1 2
BOB
c| 0 1 0

Figure 2.44: The reduced game for Part (c) of Exercise 2.12.

(d) The elected candidate is Bob, who is Ann’s least favorite; thus the extra power given

to Ann (tie breaking in case of total disagreement) turns out to be detrimental for
Ann! 0

Solution to Exercise 2.13. The game under consideration is reproduced in Figure 2.45.

Player 2

a2 3|12 2|3 1
Player 1 p|2 0|3 1|1 0
c|i1 412 0]0 4

Figure 2.45: The game for Exercise 2.13.

(a) The output of the IDSDS is shown in Figure 2.46 (first delete ¢ and then F). Thus
there is no iterated strict dominant-strategy profile.

Player 2
D E
a 2 3 2 2
Player 1 b > 0 3 0

Figure 2.46: The output of the IDSDS procedure applied to the game of Figure 2.45.

(b) The output of the IDWDS is (b, E) (in the first step delete ¢ and F, the latter because
it is weakly dominated by D; in the second step delete a and in the third step delete
D). Thus (b, E) is the iterated weak dominant-strategy profile. U
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Solution to Exercise 2.14. The game under consideration is reproduced in Figure 2.47.
There is only one Nash equilibrium, namely (4,1) with payoffs (5,5). U

Player 2 (Bob)

210 2(0 3]0 2

Player 1

(Antonia) 4]0 2|5 5[4 2

6|14 2|3 712 0

Figure 2.47: The game for Exercise 2.14.

Solution to Exercise 2.15. The game of Exercise 2.3 (b) is shown in Figure 2.48. This
game has only one Nash equilibrium, namely (not P, P, not P).

P Bob not P
. pl1 0 0J]0 1 0
Alice P01 01 0 0
__________________ Charlie: P~
P Bob not P

Alice

notP| 1 0 O 0 0 1
Charlie: not P

Figure 2.48: The first game for Exercise 2.15.

The game of Exercise 2.3 (c) is shown in Figure 2.49. This game does not have any Nash

equilibria. U
P Bob not P
Alice o0 p [T 1T—0—
__________________ Charlie: P ..
P Bob not P
Alice notg (1) (2) (1) (]) (1) g

Charlie: not P

Figure 2.49: The second game for Exercise 2.15.
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Solution to Exercise 2.16. The game under consideration is reproduced in Figure 2.50.

This game has only one Nash equilibrium, namely (600, 0).

Solution to Exercise 2.17. The game under consideration is reproduced in Figure 2.51.

Play

Player 2
0 300 600
0O O 0 | 150 =75 ]300 —150
er 1 300 150 225 | 300 150 | 450 75
600 300 450 | 450 375 | 600 300

Figure 2.50: The game for Exercise 2.16.

This game has only one Nash equilibrium, namely (0,0,0).

Player 2 Player 2
0 3 6 0 3 6
0]0 0 Of2—-1 2(4-2 4 012 2—-114 1 1|6 0 =
Player Player
13—122114306 13141333525
6l-24 4[0 3 6|2 2 8 610 6 3|2 5 5[4 4 7
Player 3: 0 Player 3: 3
Player 2
0 3 6
Plavey 044216 3 0[8 2 2
1y3360552744
612 8 214 7 4|16 6 6
Player 3: 6
Figure 2.51: The game for Exercise 2.17.
Solution to Exercise 2.18. The game under consideration is reproduced in Figure 2.52.
This game has 15 Nash equilibria:
(10,30), (10,40), (10,50), (20,30), (20,40), (20,50), (30,30), (30,40),
(30,50), (40,40), (40,50), (50,10), (50,20), (50,30), (50,50). O
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Player 2 (value $50M)
$10M $20M $30M $40M $50M

$1IO0M | O 40 | O 40 | O 40| 0 40 |0 40

Player 1 $20M [ 20 O | O 30| 0 30 |0 300 30
(value $30M) $30M | 20 O | 10 O[O 20, 0 20| 0 20
$40M [ 20 O] 10 O[O OO 100 10

$5o0M | 20 O |10 O] O O | =10 0] 0 O

Figure 2.52: The game for Exercise 2.18.

Solution to Exercise 2.19. A Nash equilibrium is by = b, = b3 = v; (with payoffs (0,0,0)).
Convince yourself that this is indeed a Nash equilibrium.

There are many more Nash equilibria: for example, any triple (by,b;,b3) with by = bz = v
and by > v; is a Nash equilibrium (with payoffs (0,0,0)) and so is any triple (b1,b,,b3)
with by = b3 = v, and by > v, (with payoffs (v —v;,0,0)). d

Solution to Exercise 2.20. The game under consideration is reproduced in Figure 2.53.

There are 5 Nash equilibria: (A,A,A), (B,B,B),(C,C,C),(A,C,A) and (A,B,B). O
BOB BOB BOB
A B C A B C A B C
Al2,0,1]2,0,1]2,0,1 Al2,01]0,1,2]2,0,1 Al2,01]2,0,1]1,2,0
A A A
N B |2,0,1|0,1,2]0,1,2 N B|0,1,2/0,1,2]0,1,2 N Blo,1,2|0,1,21,2,0
N N N
Cl2,0,1[1,2,0[1,2,0 cl1,2,0]0,1,2]1,2,0 cl1,2,0(1,2,0[1,2,0
CARLA: A CARLA: B CARLA: C

Figure 2.53: The game for Exercise 2.20.
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Solution to Exercise 2.21. The game under consideration is reproduced in Figure 2.54.

There are two Nash equilibria: (a,D) and (b, E).

O

Player 2
D E F
a 312 213 1
Player 1 p 0 1 I 0
¢ 412 010 4

Figure 2.54: The game for Exercise 2.21.

Solution to Exercise 2.22.

(a)

(b)

(c)

For every e € [0,1], (e,e,...,e) is a Nash equilibrium.

Proof. The payoff of Player i is 7;(e,e,...,e) = 2e; if player i increases her effort
to a > e (of course, this can only happen if e < 1), then her payoff decreases to
4e —2a < 4e —2e = 2e and if she decreases her effort to a < e (of course, this can

only happen if e > 0), then her payoff decreases to 4a —2a = 2a < 2e.

There is no Nash equilibrium where it is not the case that all the players choose the

same level of effort.

Proof. Suppose there is an equilibrium (ay,ay, . ..,a,) where a; # a; for two players
iand j. Let apmi, = min{ay,...,a,} and let k be a player such that a; > ap;i, (such a
player exists by our supposition). Then the payoff to player k is m; = 4 apmin — 2 ax
and if she reduced her effort to ap,;, her payoff would increase to 4 apin — 2 amin >

4amin — 2ak.

Any symmetric equilibrium with e < 1 is Pareto inefficient, because all the players
would be better off if they collectively switched to (1,1,...,1). On the other hand,

the symmetric equilibrium (1,1,...,1) is Pareto efficient.

). 0

B[ —

The symmetric equilibrium is (%, %, .
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Solution to Exercise 2.23.

(a) The strategy sets are S| = Sy = [0, o). The payoff functions are as follows:!°

M—y ifx> A—L if x >
mi(x,y) = YUEEY and m(x,y) = Ty odte=y
0 ify>x A ify>x

(b) Yes, for player 1 choosing x = IT is a weakly dominant strategy.
Proof. Consider an arbitrary y. We must show that x = IT gives at least as high a

payoff against y as any other x. Three cases are possible.

Case 1: y <II. In this case x = IT or any other x such that x > y yields 7; =I1—y > 0,
while any x < y yields m; = 0.

Case 2: y =II. In this case 1’s payoff is zero no matter what x he chooses.

Case 3: y > I1. In this case x = IT or any other x such that x < y yields 7; = 0, while
any x >y yields t;y =I1—y < 0.

(¢) No, choosing y = L is not a dominant strategy for Player 2. For example, if x > L
then choosing y = L yields m, = A — L+ L = A while choosing ay such that L <y <x
yields ;, =A—L+y > A.

(d) Suppose that IT > L. If (x,y) is a Nash equilibrium with then it must be
that IT—y > 0, that is, y < II (otherwise Player 1 could increase his payoff to 0 by
reducing x below y) and A — L+y > A, that is, y > L (otherwise Player 2 would be
better off by increasing y above x).

Thus it must be L <y < II, which is possible, given our supposition that IT > L.
However, it cannot be that x > y, because Player 2 would be getting a higher payoff
by increasing y to x.

Thus it must be x <y, which (together with our hypothesis that x > y) implies that
x =Y. Thus the following are Nash equilibria:

all the pairs (x,y) with L<y <ITandx=y.

10'We have chosen to use accounting profits as payoffs. Alternatively, one could take as payoffs the
changes in profits relative to the initial situation, namely

—y ifx>y y ifx>y
nl(x,y)z{ —II ify>x and ﬂz(x,y)z{ L ify>x.

The answers are the same, whichever choice of payoffs one makes. This is because the set of Nash equilibria
does not change if, for each player, his payoffs are changed by adding a (positive or negative) constant.
Similarly, the dominance relation between the strategies of a player is not affected by the addition of a
constant to all of the player’s payoffs.
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(e)

®

Now consider pairs (x,y) with . Then it cannot be that y < IT (that is, [T —y >
0), because Player 1 could increase its payoff by increasing x to y. Thus it must be
y > IT (hence, by our supposition that IT > L, y > L). Furthermore, it must be that
x < L (otherwise Player 2 could increase its profits by reducing y to (or below) x.
Thus

(x,y) with x <y is a Nash equilibrium if and only if x <L and y > IL

Suppose that IT < L. For the same reasons given above, an equilibrium with x >y

requires L <y < II. However, this is not possible given that IT < L. Hence,
there is no Nash equilibrium (x,y) with x > y.

Thus we must restrict attention to pairs (x,y) with x < y. As explained above, it must
be that y > IT and x < L. Thus,

(x,y) with x <y is a Nash equilibrium if and only if IT<yand x < L.

Pareto efficiency requires that the chemical plant be shut down if IT < L and that it
remain operational if IT > L.

Now, when IT < L all the equilibria have x < y which leads to shut-down, hence a
Pareto efficient outcome.

When IT > L, there are two types of equilibria: one where x =y and the plant remains
operational (a Pareto efficient outcome) and the other where x < y in which case the

plant shuts down, yielding a Pareto inefficient outcome. ([l



3. Perfect-information Games

Trees, frames and games

Often interactions are not simultaneous but sequential. For example, in the game of
Chess the two players, White and Black, take turns moving pieces on the board, having
full knowledge of the opponent’s (and their own) past moves. Games with sequential
interaction are called dynamic games or games in extensive form. This chapter is devoted to
the subclass of dynamic games characterized by perfect information, namely the property
that, whenever it is her turn to move, a player knows all the preceding moves.

Perfect-information games are represented by means of rooted directed trees.

Definition 3.1.1 A rooted directed tree consists of a set of nodes and directed edges
joining them.

* The root of the tree has no directed edges leading to it (has indegree 0), while
every other node has exactly one directed edge leading to it (has indegree 1).

* There is a unique path (that is, a unique sequence of directed edges) leading
from the root to any other node. A node that has no directed edges out of it (has
outdegree 0) is called a terminal node, while every other node is called a decision
node.

* We shall denote the set of nodes by X, the set of decision nodes by D and the set
of terminal nodes by Z. Thus X = DUZ.
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Definition 3.1.2 A finite extensive form (or extensive-form game-frame) with perfect
information consists of the following items.

e A finite rooted directed tree.

» A set of players I = {1,...,n} and a function that assigns one player to every
decision node.

* A set of actions A and a function that assigns one action to every directed edge,
satisfying the restriction that no two edges out of the same node are assigned the
same action.

* A set of outcomes O and a function that assigns an outcome to every terminal
node.

= Example 3.1 Amy (Player 1) and Beth (Player 2) have decided to dissolve a business

partnership whose assets have been valued at $100,000. The charter of the partnership

prescribes that the senior partner, Amy, make an offer concerning the division of the assets
to the junior partner, Beth. The junior partner can either Accept, in which case the proposed
division is implemented, or Reject, in which case the case goes to litigation.

- Litigating involves a cost of $20,000 in legal fees for each partner and the typical verdict
assigns 60% of the assets to the senior partner and the remaining 40% to the junior
partner.

- Suppose, for simplicity, that there is no uncertainty about the verdict (how to model
uncertainty will be discussed in a later chapter). Suppose also that there are only two
possible offers that Amy can make: a 50-50 split or a 70-30 split.

This situation can be represented as a finite extensive form with perfect information as

shown in Figure 3.1. Each outcome is represented as two sums of money: the top one is

what Player 1 (Amy) gets and the bottom one what Player 2 (Beth) gets. .

1

[ [
01 (0)) 03 04
$50,000 $40,000 $70,000 $40,000
$50,000 $20,000 $30,000 $20,000

Figure 3.1: An extensive-form game-frame with perfect information representing the
situation described in Example 3.1.
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What should we expect the players to do in the game of Figure 3.1?7 Consider the
following reasoning, which is called backward induction reasoning, because it starts from
the end of the game and proceeds backwards towards the root:

- If Player 2 (the junior partner) is offered a 50-50 split then, if she accepts, she will
get $50,000, while, if she rejects, she will get $20,000 (the court-assigned 40%
minus legal fees in the amount of $20,000); thus, if rational, she will accept.

- Similarly, if Player 2 is offered a 70-30 split then, if she accepts, she will get $30,000,
while, if she rejects, she will get $20,000 (the court-assigned 40% minus legal fees
in the amount of $20,000); thus, if rational, she will accept.

- Anticipating all of this, Player 1 realizes that, if she offers a 50-50 split then she
will end up with $50,000, while if she offers a 70-30 split then she will end up with
$70,000; thus, if Player 1 is rational and believes that Player 2 is rational, she will
offer a 70-30 split and Player 2, being rational, will accept.

The above reasoning suffers from the same flaw as the reasoning described at the
beginning of Chapter 2 (in the context of the Golden Balls game): it is not a valid argument
because it is based on an implicit assumption about how the players rank the outcomes,
which may or may not be correct. For example, Player 2 may feel that she worked as hard
as her senior partner and thus she thinks that the only fair division is a 50-50 split; indeed
she may feel so strongly about this that — if offered an unfair 70-30 split — she would be
willing to sacrifice $10,000 in order to “teach a lesson to Player 17; in other words, it is
possible that she ranks outcome o4 above outcome 03.

In accordance with the terminology introduced in Chapter 2, we say that the situation
represented in Figure 3.1 is not a game but a game-frame. In order to convert that frame
into a game we need to add a ranking of the outcomes for each player.

Definition 3.1.3 A finite extensive game with perfect information is a finite extensive
form with perfect information together with a ranking >~; of the set of outcomes O, for
every playeri € I.

As usual, it is convenient to represent the ranking of Player i by means of an ordinal utility
function U; : O — R. For example, take the extensive form of Figure 3.1 and assume that
Player 1 is selfish and greedy, that is, her ranking is:

best 03
01 (or, in the alternative notation, 03 >| 01 > 02 ~ 04).
worst 02,04

while Player 2 is concerned with fairness and her ranking is:

best 0;
02,04 (or, in the alternative notation, o >, 07 ~2 04 >2 03)
worst 03

Then we can represent the players’ preferences using the following utility functions:
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outcome —
utility function |

01 0y 03 04

Uy (Player1) |2 1 3 1
Uy (Player2) |3 2 1 2
and replace each outcome in Figure 3.1 with a pair of utilities or payoffs, as shown in

Figure 3.2, thereby obtaining one of the many possible games based on the frame of Figure
3.1.

Figure 3.2: A perfect-information game based on the frame of Figure 3.1.

Now that we have a game (rather than just a game-frame), we can apply the backward-
induction reasoning and conclude that Player 1 will offer a 50-50 split (anticipating that
Player 2 would reject the offer of a 70-30 split) and Player 2 will accept Player 1’s 50-50
offer. The choices selected by the backward-induction reasoning have been highlighted in
Figure 3.2 by doubling the corresponding edges.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 3.7.1 at the end of this chapter.
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Backward induction

The backward-induction reasoning mentioned above can be formalized as an algorithm for
solving any finite perfect-information game.

Definition 3.2.1 Fix a finite perfect-information game. We say that a node is marked if
a utility vector is associated with it. Initially all and only the terminal nodes are marked.
The backward-induction algorithm is the following procedure leading to a marking of
all the nodes.

1. Select a decision node x whose immediate successors are all marked. Let i be
the player who moves at x. Select a choice that leads to an immediate successor
of x with the highest payoff (or utility) for Player i (highest among the utilities
associated with the immediate successors of x). Mark x with the payoff vector
associated with the node that follows the selected choice.

2. Repeat the above step until all the nodes have been marked.

Note that, since the game is finite, the above procedure is well defined. In the initial
steps one starts at those decision nodes that are followed only by terminal nodes, call
them penultimate nodes. After all the penultimate nodes have been marked, there will
be unmarked nodes whose immediate successors are all marked and thus the step can be
repeated. Note also that, in general, at a decision node there may be several choices that
maximize the payoff of the player who moves at that node. If that is the case, then the
procedure requires that one such choice be selected. This arbitrary selection may lead to
the existence of several backward-induction solutions, as discussed below.

)
oQ
oy

Player 1’s payoff: 2

-
p—

Player 2’s payoff: 1

\S]

Player 3’s payoff: 0 °
1
2
1

— o o @

Figure 3.3: A perfect-information game with multiple backward-induction solutions.

For example, in the game of Figure 3.3 starting at node x of Player 2 we select choice ¢
(since it gives Player 2 a higher payoff than d: a payoff of 1 rather than 0) and mark node x
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with the payoff vector (2,1,0) associated with choice c¢. Then we move on to Player 3’s
node and we find that both choices there are payoff maximizing for Player 3; thus there are
two ways to proceed, as shown in the next two figures.

In Figure 3.4 we show the steps of the backward-induction algorithm with the selection
of choice g at Player 3’s node, while Figure 3.5 shows the steps of the algorithm with the
selection of choice h. As before, the selected choices are shown as double edges. In Figures
3.4 and 3.5 the marking of nodes is shown explicitly, but later on we will represent the
backward-induction solution more succinctly by merely highlighting the selected choices.

S =N @
oo O
O = W
N

® ° °
1 0 I 0
2 0 2 0
STEP L . L STEP2 b
1 3 1 2
L) ¥ o 0
/N :/ \i
. e o e
2 0 3 ¢//\n 0 g
1 0 1 1 0 1
0 2 0 o ° 20 o .
1 0 i 1 0
2 0 i 2 0
STEP 3 ! I LAST STEP ! !

Figure 3.4: One possible output of the backward-induction algorithm applied to the game
of Figure 3.3.
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AN N

2
g 1 ! °
3 A 3
[ @ o 0@
2 0 3 \:l ! 0 3 4 \l
1 0 1 1 0 1
0 2 0 y, 0 20 g X
1 0 i 1 0
2 0 2 0
STEP 1 I 1 STEP 2 1 1
1 : |
9, .0
a b a b
2 Ko s 2 TN ST W)
.x(l) (1))’. .X(l) (l)y.
[ o 0 s o o 0 @
2 0 3 Nl ! 0 3 \l
1 0 1 T 0 1
0 2 0 L 0 2 0 X
1 0 i ! 0
2 0o 2 0
STEP 3 1 I LAST STEP ! 1

Figure 3.5: Another possible output of the backward-induction algorithm applied to the
game of Figure 3.3.

How should one define the output of the backward-induction algorithm and the notion
of backward-induction solution? What kind of objects are they? Before we answer this
question we need to introduce the notion of strategy in a perfect-information game.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 3.7.2 at the end of this chapter.
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Strategies in perfect-information games

A strategy for a player in a perfect-information game is a complete, contingent plan on how
to play the game. Consider, for example, the game shown in Figure 3.6 (which reproduces
Figure 3.3) and let us focus on Player 2.

e
"
;g/ h

S =N @
o OO @
S - W e

—_ N — @
—_ O O @

Figure 3.6: Copy of the game of Figure 3.3.

Before the game is played, Player 2 does not know what Player 1 will do and thus a
complete plan needs to specify what she will do if Player 1 decides to play a and what she
will do if Player 1 decides to play b. A possible plan, or strategy, for Player 2 is “if Player
1 chooses a then I will choose ¢ and if Player 1 chooses b then I will choose e”, which we
can denote more succinctly as (c,e). The other possible plans, or strategies, for Player 2
are (c, f),(d,e) and (d, f). The formal definition of strategy is as follows.

Definition 3.3.1 A strategy for a player in a perfect-information game is a list of choices,
one for each decision node of that player.

For example, suppose that Player 1 has three decision nodes in a given game: at one node
she has three possible choices, a1, a; and a3, at another node she has two possible choices,
by and bj, and at the third node she has four possible choices, c1,c,c3 and ¢4. Then a
strategy for Player 1 in that game can be thought of as a way of filling in three blanks:

( g - ’ < )
N—— ~~ ~~ .

one of ay,as,a3 one of by,by one of ¢y,¢3,¢3,¢4

Since there are 3 choices for the first blank, 2 for the second and 4 for the third, the total
number of possible strategies for Player 1 in this case would be 3 x 2 x 4 = 24. One
strategy is (az,b1,c1), another strategy is (a;,by,c4), etc.
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Note that the notion of strategy involves redundancies. To see this, consider the game
of Figure 3.7. In this game a possible strategy for Player 1 is (a,g), which means that
Player 1 is planning to choose a at the root of the tree and would choose g at her other node.
But if Player 1 indeed chooses a, then her other node will not be reached and thus why
should Player 1 make a plan about what to do there? One could justify this redundancy in
the notion of strategy in a number of ways:

1. Player 1 is so cautious that she wants her plan to cover also the possibility that she
might make mistakes in the implementation of parts of her plan (in this case, she
allows for the possibility that — despite her intention to play a — she might end up
playing b), or

2. we can think of a strategy as a set of instructions given to a third party on how to
play the game on Player 1’s behalf, in which case Player 1 might indeed worry about
the possibility of mistakes in the implementation and thus might want to cover all
contingencies.

An alternative justification relies on a different interpretation of the notion of strategy: not
as a plan of Player 1 but as a belief in the mind of Player 2 concerning what Player 1 would
do. For the moment we will set this issue aside and simply use the notion of strategy as
given in Definition 4.2.1.

[ o o [
2 0 3 g A
1 0 1
[ [
1 1
2 0

Figure 3.7: A perfect-information game.

Using Definition 4.2.1, one can associate with every perfect-information game a
strategic-form game: a strategy profile determines a unique terminal node that is reached if
the players act according to that strategy profile and thus a unique vector of payoffs. Figure
3.8 shows the strategic-form associated with the perfect-information game of Figure 3.7,
with the Nash equilibria highlighted.
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Player 2
ce cf de df
agl2 12 1|0 00

ah|2 12 1|0 00

Player 1

S || O | O

Figure 3.8: The strategic form of the perfect-information game of Figure 3.7 with the five
Nash equilibria highlighted.

Because of the redundancy discussed above, the strategic form displays redundancies:
in this case the top two rows are identical.

Armed with the notion of strategy, we can now revisit the notion of backward-induction
solution. Figure 3.9 shows the two backward-induction solutions of the game of Figure
3.7.

2/\2 2/\2
/\, ,/\f /\,j ¢

0O 3 & gg 0 3 & h
1 0 1 1 0 1
1 L
1 | 1 1
(@ - 0 (b) - 0

Figure 3.9: The two backward-induction solutions of the game of Figure 3.7.

It is clear from the definition of backward-induction algorithm (Definition 3.2.1) that
the procedure selects a choice at every decision node and thus yields a strategy profile for
the entire game: the backward-induction solution shown in Panel (a) of Figure 3.9 is the
strategy profile ((a,g), (¢, f)), while the backward-induction solution shown in Panel (b)
is the strategy profile ((b,h), (c,e)). Both of them are Nash equilibria of the corresponding
strategic-form game, but not all the Nash equilibria correspond to backward-induction
solutions. The relationship between the two concepts is explained in the next section.
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A backward-induction solution is a strategy profile. Since strategies contain a
description of what a player actually does and also of what the player would do in
circumstances that do not arise, one often draws a distinction between the backward-
induction solution and the backward-induction outcome which is defined as the
sequence of actual moves. For example, the backward-induction outcome associated
with the solution ((a, g), (c, f)) is the play ac with corresponding payoff (2, 1), while
the backward-induction outcome associated with the solution ((b,h),(c,e)) is the
play be with corresponding payoff (3,1).

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 3.7.3 at the end of this chapter.

Relationship between backward induction and other solutions

If you have gone through the exercises for the previous three sections, you will have
seen that in all those games the backward-induction solutions are also Nash equilibria.
This is always true, as stated in the following theorem, which is proved in Section 3.6.

Every backward-induction solution of a perfect-information game is a
Nash equilibrium of the associated strategic form.

In some games the set of backward-induction solutions coincides with the set of Nash
equilibria (see, for example, Exercise 3.9), but typically the set of Nash equilibria is larger
than (is a proper superset of) the set of backward-induction solutions (for example the
game of Figure 3.7 has two backward-induction solutions — shown in Figure 3.9 — but five
Nash equilibria, shown in Figure 3.8).

Nash equilibria that are not backward-induction solutions often involve incredible
threats. To see this, consider the following game.

An industry is currently a monopoly and the incumbent monopolist is making a profit of
$5 million. A potential entrant is considering whether or not to enter this industry.

- If she does not enter, she will make $1 million in an alternative investment.

- If she does enter, then the incumbent can either fight entry with a price war whose
outcome is that both firms make zero profits, or it can accommodate entry, by sharing
the market with the entrant, in which case both firms make a profit of $2 million.

This situation is illustrated in Figure 3.10 with the associated strategic form. Note that we
are assuming that each player is selfish and greedy, that is, cares only about its own profit
and prefers more money to less.

The backward-induction solution is (in, accommodate) and it is also a Nash equilibrium.
However, there is another Nash equilibrium, namely (out, fight). The latter should be
discarded as a “rational solution” because it involves an incredible threat on the part of the
incumbent, namely that it will fight entry if the potential entrant enters.
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Potential
>0 >0
In Accommodate
. 2
Out Fight

0
0

whn — @

Incumbent (chain store)

Fight Accommodate
Potential 0 0 2 2
entrant Out 1 5 1 5

Figure 3.10: The entry game.

- It is true that, if the potential entrant believes the incumbent’s threat, then she is
better off staying out; however, she should ignore the incumbent’s threat because
she should realize that — when faced with the fait accompli of entry — the incumbent
would not want to carry out the threat.

Reinhard Selten (who shared the 1994 Nobel Memorial prize in economics with two other
game theorists, John Harsanyi and John Nash) discussed a repeated version of the above
entry game, which has become known as Selten’s Chain Store Game. The story is as
follows:

- A chain store is a monopolist in an industry. It owns stores in m different towns
(m>2).

- In each town the chain store makes $5 million if left to enjoy its current monopoly
position undisturbed.

- In each town there is a businesswoman who could enter the industry in that town, but
earns $1 million if she chooses not to enter; if she decides to enter, then the monopolist
can either fight the entrant, leading to zero profits for both the chain store and the entrant
in that town, or it can accommodate entry and share the market with the entrant, in which
case both players make $2 million in that town.

Thus, in each town the interaction between the incumbent monopolist and the potential
entrant is as illustrated in Figure 3.10.
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However, decisions are made sequentially, as follows:

- Atdate 7 (t = 1,...,m) the businesswoman in town ¢ decides whether or not to enter and,
if she enters, then the chain store decides whether or not to fight in that town.

- What happens in town ¢ at date ¢t becomes known to everybody. Thus, for example, the
businesswoman in town 2 at date 2 knows what happened in town 1 at date 1 (either that
there was no entry or that entry was met with a fight or that entry was accommodated).

Intuition suggests that in this game the threat by the incumbent to fight early entrants might

be credible, for the following reason. The incumbent could tell Businesswoman 1 the

following:

“It is true that, if you enter and I fight you, I will make zero profits, while
by accommodating your entry I would make $2 million and thus it would
seem that it cannot be in my interest to fight you. However, somebody else is
watching us, namely Businesswoman 2. If she sees that I have fought your
entry then she might fear that I would do the same with her and decide to
stay out, in which case in town 2 I would make $5 million, so that my total
profits in towns 1 and 2 would be $(0+5) = $5 million. On the other hand, if
I accommodate your entry, then she will be encouraged to entry herself and I
will make $2 million in each town, for a total profit of $4 million. Hence, as
you can see, it is indeed in my interest to fight you and thus you should stay
out.”

Does the notion of backward induction capture this intuition? To check this, let us consider
the case where m = 2, so that the extensive game is not too large to draw. The game is
shown in Figure 3.11, where at each terminal node the top number is the profit of the
incumbent monopolist (it is the sum of the profits in the two towns), the middle number
is the profit of Businesswoman 1 and the bottom number is the profit of Businesswoman
2. All profits are expressed in millions of dollars. We assume that all the players are
selfish and greedy, so that we can take the profit of each player to be that player’s payoff.
The backward-induction solution is unique and is shown by the double edges in Figure
3.11. The corresponding outcome is that both businesswomen enter and the incumbent
monopolist accommodates entry in both towns.

Thus the backward-induction solution does not capture the “reputation” argument outlined
above. However, the backward-induction solution does seem to capture the notion of
rational behavior in this game. Indeed, Businesswoman 1 should reply to the incumbent
with the following counter-argument:

“Your reasoning is not valid. Whatever happens in town 1, it will be common
knowledge between you and Businesswoman 2 that your interaction in town
2 will be the last; in particular, nobody else will be watching and thus there
won’t be an issue of establishing a reputation in the eyes of another player.
Hence in town 2 it will be in your interest to accommodate entry, since in
essence you will be playing the one-shot entry game of Figure 3.10. Hence a
rational Businesswoman 2 will decide to enter in town 2 whatever happened in
town I: what you do against me will have no influence on her decision. Thus
your “reputation” argument does not apply and it will in fact be in your interest
not to fight my entry: your choice will be between a profit of $(0+2) = $2
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million, if you fight me, and a profit of $(2 + 2) = $4 million, if you don’t
fight me. Hence I will enter and you will not fight me.”

$oM $2M $5M

$OM $oM $oM

$OM $2M $1M
(]

fight
out incumbent: $10M
bsnswmn 1: $1M
bsnswmn 2: $1M

incumbent

businesswoman 2 P
4 A
fight business out
woman 1 -
incumbent @€————————@ > business
in out woman 2
share in
businesswoman 2 incumbent
fight share
incumbent
out °
fight $5M -y
$1M SIM
° som $2M
$2M $4M $TM
$2m $2M $2M
somM $2m $1M

Figure 3.11: Selten’s Chain-Store game.

In order to capture the reputation argument described above we need to allow for some
uncertainty in the mind of some of the players, as we will show in a later chapter. In a
perfect-information game uncertainty is ruled out by definition.
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By Theorem 3.4.1 the notion of backward induction can be seen as a refinement of the
notion of Nash equilibrium. Another solution concept that is related to backward induction
is the iterated deletion of weakly dominated strategies (IDWDS). Indeed the backward-
induction algorithm could be viewed as a step-wise procedure that eliminates dominated
choices at decision nodes, and thus strategies that contain those choices. What is the exact
relationship between the two notions? In general this is all that can be said: applying
the iterated deletion of weakly dominated strategies to the strategic form associated with
a perfect-information game leads to a set of strategy profiles that contains at least one
backward-induction solution; however,

(1) it may also contain strategy profiles that are not backward-induction solutions, and

(2) it may fail to contain all the backward-induction solutions, as shown in Exercise 3.8.

Perfect-information games with two players

We conclude this chapter with a discussion of a class of finite two-player extensive games
with perfect information.

We will start with games that have only two outcomes, namely ‘“Player 1 wins” (denoted
by W) and “Player 2 wins” (denoted by W,). We assume that Player 1 strictly prefers
W to W, and Player 2 strictly prefers W, to Wj. Thus we can use utility functions with
values 0 and 1 and associate with each terminal node either the payoff vector (1,0) (if the
outcome is W)) or the payoff vector (0, 1) (if the outcome is W,). We call these games
win-lose games. An example of such a game is the following.

= Example 3.2 Two players take turns choosing a number from the set {1,2,...,10}, with
Player 1 moving first. The first player who brings the sum of all the chosen numbers to
100 or more wins. ]

The following is one possible play of the game (the bold-face numbers are the ones
chosen by Player 1 and the underlined numbers the ones chosen by Player 2):

10, 9, 9, 10, 8, 7, 4, 10, 1, 8, 3, 3, 8, 10.

In this play Player 2 wins: before her last move the sum is 90 and with her final choice of
10 she brings the total to 100. However, in this game Player 1 has a winning strategy, that
1s, a strategy that guarantees that he will win, no matter what numbers Player 2 chooses.
To see this, we can use backward-induction reasoning. Drawing the tree is not a practical
option, since the number of nodes is very large: one needs 10,000 nodes just to represent
the first 4 moves! But we can imagine drawing the tree, placing ourselves towards the
end of the tree and ask what partial sum represents a “losing position”, in the sense that
whoever is choosing in that position cannot win, while the other player can then win
with his subsequent choice. With some thought one can see that 89 is the largest losing
position: whoever moves there can take the sum to any number in the set {90,91,...,99},
thus coming short of 100, while the other player can then take the sum to 100 with an
appropriate choice. What is the largest losing position that precedes 89? The answer is 78:
whoever moves at 78 must take the sum to a number in the set {79,80,...,88} and then
from there the other player can make sure to take the sum to 89 and then we know what
happens from there! Repeating this reasoning we see that the losing positions are: 89, 78,
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67, 56, 45, 34, 23, 12, 1. Since Player 1 moves first he can choose 1 and put Player 2 in
the first losing position; then, whatever Player 2 chooses, Player 1 can put her in the next
losing position, namely 12, etc. Recall that a strategy for Player 1 must specify what to do
in every possible situation in which he might find himself. In his game Player 1’s winning
strategy is as follows:

Start with the number 1. Then, at every turn, choose the number
(11 —n), where n is the number that was chosen by Player 2 in the
immediately preceding turn.

Here is an example of a possible play of the game where Player 1 employs the winning
strategy and does in fact win:

We can now state a general result about this class of games.

In every finite two-player, win-lose game with perfect information one
of the two players has a winning strategy.

Although we will not give a detailed proof, the argument of the proof is rather simple. By
applying the backward-induction algorithm we assign to every decision node either the
payoff vector (1,0) or the payoff vector (0, 1). Imagine applying the algorithm up to the
point where all the immediate successors of the root have been assigned a payoff vector
(have been “marked" according to Definition 3.2.1). Two cases are possible.

Case 1: at least one of the immediate successors of the root has been assigned the payoff
vector (1,0). In this case Player 1 is the one who has a winning strategy and his initial
choice should be such that a node with payoff vector (1,0) is reached and then his future
choices should also be such that only nodes with payoff vector (1,0) are reached.

Case 2: all the immediate successors of the root have been assigned the payoff vector
(0,1). In this case it is Player 2 who has a winning strategy. An example of a game where
it is Player 2 who has a winning strategy is given in Exercise 3.11.

We now turn to finite two-player games where there are three possible outcomes:
“Player 1 wins” (W}), “Player 2 wins” (W;) and “Draw” (D). We assume that the rankings
of the outcomes are as follows: W| =1 D >1 W, and W, >, D >, W;. Examples of such
games are Tic-Tac-Toe (http://en.wikipedia.org/wiki/Tic-tac-toe), Draughts
or Checkers (http://en.wikipedia.org/wiki/Draughts) and Chess (although there
does not seem to be agreement as to whether the rules of Chess guarantee that every
possible play of the game is finite). What can we say about such games? The answer is
provided by the following theorem.


http://en.wikipedia.org/wiki/Tic-tac-toe
http://en.wikipedia.org/wiki/Draughts
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Every finite two-player, perfect-information game with three outcomes:
Player 1 wins (W), Player 2 wins (W;) and Draw (D), and preferences Wi >~ D = W,
and W, =, D =, W, falls within one of the following three categories:

1. Player 1 has a strategy that guarantees outcome Wj.
2. Player 2 has a strategy that guarantees outcome W,.

3. Player 1 has a strategy that guarantees that the outcome will be W; or D and Player
2 has a strategy that guarantees that the outcome will be W, or D, so that, if both
players employ these strategies, the outcome will be D.

The logic of the proof is as follows. By applying the backward-induction algorithm we
assign to every decision node either the payoff vector (2,0) (corresponding to outcome
W) or the payoff vector (0,2) (corresponding to outcome W,) or the payoff vector (1,1)
(corresponding to outcome D). Imagine applying the algorithm up to the point where the
immediate successors of the root have been assigned a payoff vector. Three cases are
possible.

Case 1: at least one of the immediate successors of the root has been assigned the payoff
vector (2,0); in this case Player 1 is the one who has a winning strategy.

Case 2: all the immediate successors of the root have been assigned the payoff vector
(0,2); in this case it is Player 2 who has a winning strategy.

Case 3: there is at least one immediate successor of the root to which the payoff vector
(1,1) has been assigned and all the other immediate successors of the root have been
assigned either (1, 1) or (0,2). In this case we fall within the third category of Theorem
3.5.2.

Both Tic-Tac-Toe and Checkers fall within the third category (http://en.wikipedia.
org/wiki/Solved_game#Solved_games). As of the time of writing this book, it is not
known to which category the game of Chess belongs.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 3.7.4 at the end of this chapter.

Proofs

Theorem. Every backward-induction solution of a perfect-information game is a Nash

equilibrium of the associated strategic form.


http://en.wikipedia.org/wiki/Solved_game#Solved_games
http://en.wikipedia.org/wiki/Solved_game#Solved_games
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This is easy to see if the game is such that along any play of the game!

each player
moves at most once (that is, there is no play of the game where some player moves two
or more times; an example of such a game is Selten’s Chain-Store game shown in Figure
3.11). Let the strategy profile s* be a backward-induction solution and pick an arbitrary
Player i and an arbitrary strategy s; of Player i different from s7. If s; differs from s} only
at nodes not reached by the play generated by s*, then Player i’s switch to s; does not
alter the play, that is, the same terminal node is reached and thus 7;(s;,s* ;) = m (s}, s* ;).
Suppose that there is a decision node of Player i on the play generated by s*, and let a be
the choice prescribed by s} at that node and b # a be the choice prescribed by s; at that
node. If Player i’s payoff increased by switching from a to b, then the backward-induction
algorithm would not have picked choice a at that node. The proof for the general case is

given below.

Proof. For every strategy profile s let PI(s) be the play (that is, the sequence of nodes)
generated by s. Let the strategy profile s* be a backward-induction solution and pick an

arbitrary Player i and an arbitrary strategy s; of Player i. We need to show that
mi(s,8%;) > mi(siysty). G.D

If either there are no decision nodes of Player i in PI(s*) or there are decision nodes of
Player i in PI(s*) but s; prescribes the same choices at those nodes as s, then PI(s;,s* ;) =
PI(s?,s* ;) and thus m;(s;,s*;) = m(s},s" ;). Assume, therefore, that s; and s} prescribe
different choices at one or more decision nodes of Player i that belong to PI(s*) and let
x1 be the first such decision node (that is, any other such nodes are successors of x1) so
that Pl(s;,s* ;) and PI(s},s* ;) diverge at x;. Let a; be the choice prescribed by s at x; and
b1 # a; be the choice prescribed by s; at x; and let y; be the immediate successor of x;
following choice b;. Construct a new strategy s} of Player i that coincides with s; at all her
decision nodes on PI(s;,s* ;) up to, and including, x; and coincides with s} at all of Player
i’s decision nodes (if any) that are successors of y;. Then, since the backward-induction

algorithm picked choice a; at xy, it must be that
mi(sf,s%) > mls!,s). (3.2)

If there are no successors of y; that are decision nodes of Player i or if s; and s; prescribe the
same choices at such nodes, then PI(s},s* ;) = Pl(s;,s* ;) and thus m;(s},s* ;) = mi(s;, 5" ;)

and by (3.2) the proof is complete. Suppose, therefore, that si1 and s; prescribe different

'A play is a path, that is a sequence of connected nodes, from the root of the tree to a terminal node.
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choices at one or more decision nodes of Player i that are successors of y; and let x, be
the first such decision node (that is, any other such nodes are successors of x;). Let a; be
the choice prescribed by si1 (and thus, by how si1 was constructed, also by s7) at x, and
b, # ay be the choice prescribed by s; at x, and let y, be the immediate successor of x;
following choice b;. Construct a new strategy sl2 of Player i that coincides with s; at all her
decision nodes on PI(s;,s* ;) up to, and including, x, and coincides with s} at all of Player
i’s decision nodes (if any) that are successors of y,. Then, since the backward-induction

algorithm picked choice a; at x;, it must be that
mi(si, ") = (st 7). (3.3)

If there are no successors of y; that are decision nodes of Player i or if s; and sl-2 prescribe the
same choices at such nodes, then PI(s?,s* .) = Pl(s;,s* ;) and thus m;(s?,s* ;) = mi(s;,5* ;)
and by (3.2) and (3.3) the proof is complete. Otherwise we repeat the above argument.
Since the game is finite we get to a point where we constructed a strategy 7" (with m > 2)
of player i such that Pl(s;,s* ;) = PI(s}",s* ;) and

mi(s,5%) > m(st, ™) = oo > m(sls™,) = milsi,sty) (3.4)

—i

so that (3.1) follows from (3.4). |
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Exercises
Exercises for Section 3.1: Trees, frames and games

The answers to the following exercises are in Section 3.8 at the end of this chapter.

How could they do that! They abducted Speedy, your favorite tortoise!
They asked for $1,000 in unmarked bills and threatened to kill Speedy if you don’t pay.
Call the tortoise-napper Mr. T. Let the possible outcomes be as follows:

o1 : youdon’t pay and Speedy is released
07 : you pay $1,000 and Speedy is released
03 : you don’t pay and Speedy is killed

04 : you pay $1,000 and Speedy is killed

You are attached to Speedy and would be willing to pay $1,000 to get it back. However,
you also like your money and you prefer not to pay, conditional on each of the two
separate events “Speedy is released” and “Speedy is killed”. Thus your ranking of the
outcomes is 01 >you 02 > you 03 >you 04. On the other hand, you are not quite sure of
what Mr. T’s ranking is.

(a) Suppose first that Mr T has communicated that he wants you to go to Central Park
tomorrow at 10:00 a.m. and leave the money in a garbage can; he also said that,
two miles to the East and at the exact same time, he will decide whether or not to
free Speedy in front of the police station. What should you do?

(b) Suppose that Mr T is not as dumb as in Part (a) and instead gives you the following
instructions: first you leave the money in a garbage can in Central Park and then
he will go there to collect the money. He also told you that if you left the money
there then he will free Speedy, otherwise he will kill it. Draw an extensive-form
game-frame to represent this situation.

(c) Now we want to construct a game based on the extensive-form game-frame of
Part (b). For this we need Mr T’s preferences. There are two types of criminals in
Mr T’s line of work: the professionals and the one-timers. Professionals are in the
business for the long term and thus, besides being greedy, worry about reputation;
they want it to be known that (1) every time they were paid they honored their
promise to free the hostage and (2) their threats are to be taken seriously: every
time they were not paid, the hostage was killed. The one-timers hit once and then
they disappear; they don’t try to establish a reputation and the only thing they
worry about, besides money, is not to be caught: whether or not they get paid, they
prefer to kill the hostage in order to eliminate any kind of evidence (DNA traces,
fingerprints, etc.). Construct two games based on the extensive-form game-frame
of Part (b) representing the two possible types of Mr T.
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A three-man board, composed of A, B, and C, has held hearings on a
personnel case involving an officer of the company. This officer was scheduled for
promotion but, prior to final action on his promotion, he made a decision that cost the
company a good deal of money. The question is whether he should be (1) promoted
anyway, (2) denied the promotion, or (3) fired. The board has discussed the matter at
length and is unable to reach unanimous agreement. In the course of the discussion it
has become clear to all three of them that their separate opinions are as follows:

* A considers the officer to have been a victim of bad luck, not bad judgment, and
wants to go ahead and promote him but, failing that, would keep him rather than
fire him.

* B considers the mistake serious enough to bar promotion altogether; he’d prefer
to keep the officer, denying promotion, but would rather fire than promote him.

* C thinks the man ought to be fired but, in terms of personnel policy and morale,
believes the man ought not to be kept unless he is promoted, i.e., that keeping an
officer who has been declared unfit for promotion is even worse than promoting
him.

PROMOTE  KEEP FIRE

A: best middle worst
B: worst best middle
C: middle WOrst best

Assume that everyone’s preferences among the three outcomes are fully evident as a
result of the discussion. The three must proceed to a vote.

Consider the following voting procedure. First A proposes an action (either promote or
keep or fire). Then it is B’s turn. If B accepts A’s proposal, then this becomes the final
decision. If B disagrees with A’a proposal, then C makes the final decision (which may
be any of the three: promote, keep or fire). Represent this situation as an extensive-form
game with perfect information. Use utility numbers from the set {1,2,3}.

Exercises for Section 3.2: Backward induction
The answers to the following exercises are in Section 3.8 at the end of this chapter.

Apply the backward-induction algorithm to the two games of Exercise
3.1 Part (¢) (Figure 3.16).

Apply the backward-induction algorithm to the game of Exercise 3.2
(Figure 3.17).
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3.7.3 Exercises for Section 3.3: Strategies in perfect-information games

The answers to the following exercises are in Section 3.8 at the end of this chapter.

Exercise 3.5 Write the strategic form of the game of Figure 3.2, find all the Nash
equilibria and verify that the backward-induction solution is a Nash equilibrium. n

Exercise 3.6 Write the strategic form of the game of Figure 3.3, find all the Nash
equilibria and verify that the backward-induction solutions are Nash equilibria. .

Exercise 3.7 Consider the game of Exercise 3.2.
(a) Write down all the strategies of Player B.
(b) How many strategies does Player C have?

(a) Find the backward-induction solutions.

(b) Write down all the strategies of Player 1.

(c) Write down all the strategies of Player 2.

(d) Write the strategic form associated with this game.
(e) Does Player 1 have a dominant strategy?

(f) Does Player 2 have a dominant strategy?

(g) Is there a dominant-strategy profile (or solution)?
(h) Does Player 1 have any dominated strategies?

(i) Does Player 2 have any dominated strategies?

(j) What do you get when you apply the iterative deletion of weakly dominated
strategies (IDWDS)?

Exercise 3.8 Consider the perfect-information game shown in Figure 3.12.
(k) What are the Nash equilibria?
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NG
/\i /1\1

Figure 3.12: The perfect-information game for Exercise 3.8.

Consider an industry where there are two firms, a large firm, Firm 1, and

a small firm, Firm 2. The two firms produce identical products.

(a)
(b)

Let x be the output of Firm 1 and y the output of Firm 2. Industry output is
Q=x+y.
The price P at which each unit of output can be sold is determined by the inverse
demand function P = 130 — 10Q. For example, if Firm 1 produces 4 units and
Firm 2 produces 2 units, then industry output is 6 and each unit is sold for
P =130—-60 = $70.
For each firm the cost of producing ¢ units of output is C(g) = 10g + 62.5.
Each firm is only interested in its own profits.
The profit of Firm 1 depends on both x and y and is given by
IT; (x,y) = x [130 — 10(x + y)] — (10x + 62.5)

revenue CBEt
and similarly the profit function of Firm 2 is given by
I (x,y) = y [130 — 10(x+ )] —SlOy + 62.52.

revenue CB,St
The two firms play the following sequential game. First Firm 1 chooses its own
output x and commits to it; then Firm 2, after having observed Firm 1’s output,
chooses its own output y; then the price is determined according to the demand
function and the two firms collect their own profits. In what follows assume, for
simplicity, that x can only be 6 or 6.5 units and y can only be 2.5 or 3 units.
Represent this situation as an extensive-form game with perfect information.

Solve the game using backward induction.

(c) Write the strategic form associated with the perfect-information game.

(d)

Find the Nash equilibria of this game and verify that the backward-induction
solutions are Nash equilibria.
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Consider the perfect-information game shown in Figure 3.13 where x is
an integer.
(a) For every value of x find the backward induction solution(s).
(b) Write the corresponding strategic-form and find all the Nash equilibria.

\S)
— @
e

Figure 3.13: A perfect-information game.

Exercises for Section 3.5: Two-player games
The answers to the following exercises are in Section 3.8 at the end of this chapter.

Consider the following perfect-information game. Player 1 starts by
choosing a number from the set {1,2,3,4,5,6,7}, then Player 2 chooses a number from
this set, then Player 1 again, followed by Player 2, and so on. The first player who
brings the cumulative sum of all the numbers chosen (up to and including the last one)
to 48 or more wins. By Theorem 3.5.1 one of the two players has a winning strategy.
Find out who that player is and fully describe the winning strategy.
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Consider Figure 3.14 and the following two-player, perfect-information
game. A coin is placed in the cell marked ‘START’ (cell A1). Player 1 moves first and
can move the coin one cell up (to A2) or one cell to the left (to B1) or one cell diagonally
in the left-up direction (to B2). Then Player 2 moves, according to the same rules (e.g.
if the coin is in cell B2 then the admissible moves are shown by the arrows). The players
alternate moving the coin. Black cells are not accessible (so that, for example, from
A3 the coin can only be moved to A4 or B3 and from F3 it can only be moved to G4,
as shown by the arrow). The player who manages to place the coin in the cell marked
‘END’ wins.

(a) Represent this game by means of an extensive form with perfect information by
drawing the initial part of the tree that covers the first two moves (the first move
of Player 1 and the first move of Player 2).

(b) Suppose that the coin is currently in cell G4 and it is Player 1’s turn to move.
Show that Player 1 has a strategy that allows her to win the game starting from
cell G4. Describe the strategy in detail.

(c) Describe a play of the game (from cell A1) where Player 1 wins (describe it by
means of the sequence of cells visited by the coin).

(d) Describe a play of the game (from cell A1) where Player 2 wins (describe it by
means of the sequence of cells visited by the coin).

(e) Now go back to the beginning of the game. The coin is in cell Al and Player
1 has the first move. By Theorem 3.5.1 one of the two players has a winning
strategy. Find out who that player is and fully describe the winning strategy.

[\O RS BN Y e N e e BN )

[E—

Q;}
%&v
H G F E D C B A

Figure 3.14: The coin game.
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— xx+ Challenging Question x x x.
Two women, Anna and Bess, claim to be the legal owners of a diamond ring that -
each claims - has great sentimental value. Neither of them can produce evidence of
ownership and nobody else is staking a claim on the ring. Judge Sabio wants the ring to
go to the legal owner, but he does not know which of the two women is in fact the legal
owner. He decides to proceed as follows. First he announces a fine of $F > 0 and then
asks Anna and Bess to play the following game.

Move 1: Anna moves first. Either she gives up her claim to the ring (in which case
Bess gets the ring, the game ends and nobody pays the fine) or she asserts her claim, in
which case the game proceeds to Move 2.

Move 2: Bess either accepts Anna’s claim (in which case Anna gets the ring, the game
ends and nobody pays the fine) or challenges her claim. In the latter case, Bess must
put in a bid, call it B, and Anna must pay the fine of F' to Sabio. The game goes on to
Move 3.

Move 3: Anna now either matches Bess’s bid (in which case Anna gets the ring, Anna
pays $B to Sabio, in addition to the fine that she already paid, and Bess pays the fine of
$F to Sabio) or chooses not to match (in which case Bess gets the ring and pays her bid
of $B to Sabio and, furthermore, Sabio keeps the fine that Anna already paid).

Denote by C4 the monetary equivalent of getting the ring for Anna (that is, getting the
ring is as good, in Anna’s mind, as getting $C4) and Cp the monetary equivalent of
getting the ring for Bess. Not getting the ring is considered by both to be as good as
getting zero dollars. Both Anna and Bess are "selfish and greedy", that is, care only
about their own wealth.
(a) Draw an extensive game with perfect information to represent the above situation,
assuming that there are only two possible bids: B; and B,>. Anna and Bess are the
only players (Sabio is not to be treated as a player).

(b) Find the backward-induction solution of the game you drew in Part (a) for the
case where By > C4 >Cp > By > F > 0.

Now consider the general case where the bid B can be any non-negative number and
assume that both Anna and Bess are very wealthy. Assume also that C4,Cp and F are
positive numbers and that C4 and Cp are common knowledge between Anna and Bess.
We want to show that, at the backward-induction solution of the game, the ring always
goes to the legal owner. Since we (like Sabio) don’t know who the legal owner is, we
must consider two cases.

Case 1: the legal owner is Anna. Let us assume that this implies that C4 > Cp.
Case 2: the legal owner is Bess. Let us assume that this implies that Cp > Cy.

(¢) Find the backward-induction solution for Case 1 and show that it implies that the
ring goes to Anna.

(d) Find the backward-induction solution for Case 2 and show that it implies that the
ring goes to Bess.

(e) How much money does Sabio make at the backward-induction solution? How
much money do Ann and Bess end up paying at the backward-induction solution?
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Solutions to exercises

Solution to Exercise 3.1.
(a) For you it is a strictly dominant strategy to not pay and thus you should not pay.

(b) The extensive-form game-frame is shown in Figure 3.15.

You
()
not pay pay
Mr T Mr T
® [ ]
releas/ kﬂl release kill
o o o o
01 03 0)) 04

Figure 3.15: The game-frame for Part (b) of Exercise 3.1.

(c) For the professional, concern with reputation implies that 0 > 7,7 04 and 03 >y, 1 01.
If we add the reasonable assumption that, after all, money is what they are after,
then we can take the full ranking to be 03 >y 04 >=nmrr 03 =M,7 01. Representing
preferences with ordinal utility functions with values in the set {1,2,3,4}, we have

outcome — 01 02 03 04
utility function |

Uyou 4 3 2 1

Umirr 1 4 2 3

The corresponding game is obtained by replacing, in Figure 3.15, 01 with the payoff
vector (4,1), o3 with the payoff vector (2,2), etc. It is shown in the left panel of
Figure 3.16.

For the one-timer, the ranking can be taken to be (although this is not the only
possibility) o4 =7 02 >=mrT 03 M7 01, With corresponding utility representation:

outcome — 01 02 03 04
utility function |

Uyou 4 3 2 1

Umrr 1 3 2 4

The corresponding game is shown in the right panel of Figure 3.16. U
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not Iﬁy \ not pay
Mr T Mr T Mr T

Mr T
releasc/ &dll releasc/ &dll relea7 &(iH releaSV xdll
° ° ° ® ® ® ®
4

1 2 4 3 1 2

3 4
Figure 3.16: Left panel: Mr T is a professional. Right panel: Mr T is a one-timer.

Solution to Exercise 3.2. The game is shown in Figure 3.17 (‘P’ stands for promote, ‘K’
for keep (without promoting), ‘F’ for fire).

O

F
accept B accept (F)
. B o—>0 |
reject accep reject reject 2
3
V
Ce e C C
K| F Pf/ K\ F
Y
L [ |
(K) (F) (P (K) (F)
3 2 l 3 2 1 3 2 1
1 3 2 1 3 2 1 3 2
2 1 3 2 1 3 2 1 3

Figure 3.17: The game for Exercise 3.2.
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Solution to Exercise 3.3. The application of the backward-induction algorithm is shown
by double edges in Figure 3.18 for the case of a professional Mr. T and in Figure 3.19
for the case of a one-timer Mr. T. Thus, against a professional you will pay and against a
one-timer you would not pay. With the professional you would get Speedy back, with the
one-timer you will hold a memorial service for Speedy. U

not py \ not pa/ \
Mr T Mr T Mr T Mr T
releasc% \qll releas% \(lll release/ \(lll release/ \qll

1 2 3 4

(o)

1 2 4

Figure 3.18: Mr T is a professional. Figure 3.19: Mr T is a one-timer.

Solution to Exercise 3.4. The backward-induction algorithm yields two solutions, shown
in Figures 3.20 and 3.21. The difference between the two solutions lies in what Player B
would do if Player A proposed F. In both solutions the officer is kept without promotion.[]

A
)
P K F
(P) accept B accept (F)
3 .4—. e B o————po |
accept . .
1 reject (K) / reject reject 2
2 3
2 @
Ce 3 !
1
\ P/ K\F
V
L
P (K) (F) e K F) (P (K (F)
3 2 1 3 2 1 3 2 1
1 3 2 1 3 2 1 3 2
2 1 3 2 1 3 2 1 3

Figure 3.20: The first backward-induction solution for Exercise 3.4.
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A
(
P K F
(P) accept B B accept (F)
3 O4¢——©@ e B o0 |
1 reject (K)aC(V reject reject 2
2 3
2@ Y
Ce 3 e C | N@&
1
P/ K I\ P/ K| F P/ K\F
Y
o [ [ o o o
(P) (K) (F) (P) (K) (F) (P) (K) (F)
3 2 1 3 2 1 3 2 1
1 3 2 1 3 2 1 3 2
2 1 3 2 1 3 2 1 3

Figure 3.21: The second backward-induction solution for Exercise 3.4.

Solution to Exercise 3.5. The game of Figure 3.2 is reproduced in Figure 3.22, with the
unique backward-induction solution marked by double edges. The corresponding strategic
form is shown In Figure 3.23 (for each of Player 2’s strategies, the first element in the
pair is what Player 2 would do at her left node and the second element what she would do
at her right node). The Nash equilibria are highlighted. One Nash equilibrium, namely
(Offer 50-50,(Accept,Reject)), corresponds to the backward induction solution, while the
other Nash equilibrium, namely (Offer 70-30,( Reject,Reject)) does not correspond to a
backward-induction solution. U

Accept Reject Accept Reject
] L [ ]
2 1 3 1
3 2 2

Figure 3.22: The extensive-form game for Exercise 3.5.
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Player 1

Player 2
(Accept,Accept) (Accept,Reject) (Reject,Accept) (Reject,Reject)
Offer 50-50 [ 2 312 311 2 |1 2
Offer 70-30 [ 3 I |1 213 I |1 2

Figure 3.23: The strategic-form game for Exercise 3.5.

Solution to Exercise 3.6. The game of Figure 3.3 is reproduced in Figure 3.24 with the
two backward-induction solutions marked by double edges. The corresponding strategic
form is shown in Figure 3.25. The Nash equilibria are highlighted. The backward-

induction solutions are (a

(e ),

g) and (b

(6

e),h) and both of them are Nash equilibria.

There are three more Nash equilibria which are not backward-induction solutions, namely

(b,(d, [).8),(a

(e, ),

AN,

/X

S~ @

Figure 3.24: The two backward-induction solutions for the game of Exercise 3.6.
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Player 2
ce cf de df
Player 1 al2 1 2 1 0j0 O 0 2
b|3 1 1 2 1
Player 3: g
Player 2
ce cf de df
Playerle 1 2 1 0|0 O 0 2
b3 1 0 0 1
Player 3: h

Figure 3.25: The strategic-form game for Exercise 3.6.

Solution to Exercise 3.7. The game of Exercise 3.2 is reproduced in Figure 3.26.
(a) All the possible strategies of Player B are shown in Figure 3.27.

(b) Player C has three decision nodes and three choices at each of her nodes. Thus she

has 3 x 3 x 3 = 27 strategies. 0
F
accept B accept (F)
0 B o—>0 |
ccept )
reject reject re]ect
3
& 1\ % \ / \V\\
o [
(P) (K) (F) (P) (K) (F)
3 2 1 3 2 1 3 2 1
1 3 2 1 3 2 1 3 2
2 1 3 2 1 3 2 1 3

Figure 3.26: The extensive-form game for Exercise 3.7.
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If A chooses P | If A chooses K | If A chooses F
1. accept accept accept
2. accept accept reject
3. accept reject accept
4. accept reject reject
5. reject accept accept
6. reject accept reject
7. reject reject accept
8. reject reject reject

Figure 3.27: The eight strategies of Player B.

Solution to Exercise 3.8.

(a) One backward-induction solution is the strategy profile ((L,W), (a,e)) shown by
double edges in Figure 3.28. The corresponding backward-induction outcome is the
play La with associated payoff vector (2, 1). The other backward-induction solution
is the strategy profile ((R,W),(a,d)) shown in Figure 3.29. The corresponding
backward-induction outcome is the play Rd with associated payoff vector (3,2).

a b c /d e
o o o ] 1
2 4 2 3 W B
1 0 0 2
o ([
1 0
2 3

Figure 3.28: One backward-induction solution of the game of Part (a) of Exercise 3.8.

(b) Player 1 has four strategies: LW,LE,RW and RE.
(c) Player 2 has six strategies: ac,ad,ae,bc,bd and be.
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1
A
2 2
a b c/dll \e
° ® e o 1
2 2 %WE
1 o 2
° °
1 0
2

Figure 3.29: A second backward-induction solution of the game of Part (a) of Exercise 3.8.

(d) The strategic form is shown in Figure 3.30.

Player 2
ac ad ae bc bd be

w2 12 1|2 114 04 04 O

PlayerLE212121404040

RE|2 03 2|0 32 0|3 2,0 3

Figure 3.30: The strategic-form game for Part (d) of Exercise 3.8.

(e) Player 1 does not have a dominant strategy.

(f) For Player 2 ae is a weakly dominant strategy.

(g) There is no dominant strategy profile (or solution).

(h) For Player 1 RE is weakly dominated by RW (and LW and LE are equivalent).

(i) For Player 2 ac is weakly dominated by ad (and ae), ad is weakly dominated by ae,
bc is (strictly or weakly) dominated by every other strategy, bd is weakly dominated
by be (and by ae and ad), be is weakly dominated by ae.

Thus the dominated strategies are: ac,ad,bc,bd and be.
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(j) The iterative elimination of weakly dominated strategies yields the following reduced
game (in Step 1 eliminate RE for Player 1 and ac,ad,bc,bd and be for Player 2; in
Step 2 eliminate RW for Player 1):

Player 2

ae

Player LW 2.1
1 LE 2,1

Thus we are left with one of the two backward-induction solutions, namely
((L,W),(a,e)) but also with ((L,E), (a,e)) which is not a backward-induction solu-
tion.

(k) The Nash equilibria are highlighted in Figure 3.31.

There are five Nash equilibria: (LW, ac), (LE,ac),(RW,ad), (LW ,ae) and (LE,ae).
U

Player 2
ac ad ae bc bd be
w2 12 12 14 04 0/4 0
Player LE|2 1|2 12 14 0/4 04 0
I rw|2 03 21 2(2 o0/3 2/1 2
RE|2 0|3 2/0 3|2 0/3 20 3

Figure 3.31: The highlighted cells are the Nash equilibria (for Part (k) of Exercise 3.8).
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Solution to Exercise 3.9.

(a) The extensive-form game is shown in Figure 3.32.

y=2.5
o

147.5 117.5 132.5 100
25 27.5 12.5 12.5

Figure 3.32: The extensive-form game for Exercise 3.9.

(b) There are two backward-induction solutions.

The first is the strategy profile shown in Figure 3.33. The corresponding backward-
induction outcome is given by Firm 1 producing 6 units and Firm 2 producing 3
units with profits 117.5 for Firm 1 and 27.5 for Firm 2.

The other backward-induction solution is the strategy profile shown in Figure 3.34.
The corresponding backward-induction outcome is given by Firm 1 producing 6.5
units and Firm 2 producing 2.5 units with profits 132.5 for Firm 1 and 12.5 for Firm
2.



3.8 Solutions to exercises 113

147.5 117.5 132.5 100
25 27.5 12.5 12.5

Figure 3.33: One backward-induction solution of the game of Figure 3.32.

147.5 117.5 132.5 100
25 27.5 12.5 12.5

Figure 3.34: A second backward-induction solution of the game of Figure 3.32.
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(¢) The strategic form is shown in Figure 3.35.

Firm 2
(2.5, 2.5) (2.5, 3) (3, 2.5) (3, 3)
147.5 25|147.5 25|117.5 27.5|117.5 27.5
132.5 12.5|100 12.5]132.5 12.5|100 12.5

Firm 1

Figure 3.35: The strategic-form game for Part (c) of Exercise 3.9.

(d) The Nash equilibria are highlighted in Figure 3.35. In this game the set of Nash
equilibria coincides with the set of backward-induction solutions. U

Solution to Exercise 3.10. The game under consideration is shown in Figure 3.36, where
X 1s an integer.

C D E F
® Y ® Y
2 1 1 X
5 0 0 2

Figure 3.36: The extensive-form game for Part (a) of Exercise 3.10.

(a) The backward-induction strategy of Player 2 is the same, no matter what x is, namely
(C,F). Thus the backward induction solutions are as follows.
 If x < 2, there is only one: (A, (C,F)).
e If x = 2 there are two: (A, (C,F)) and (B, (C,F)).
 [fx > 2, there is only one: (B, (C,F)).



3.8 Solutions to exercises 115

(b) The strategic form is shown in Figure 3.37. First note that (A, (C,E)) is a Nash
equilibrium for every value of x. Now, depending on the value of x the other Nash
equilibria, besides (A, (C,E)), are as follows:

e Ifx<1, (A, (C,F)).
¢ If 1 <x<2,(A,(C,F)) and (B,(D,F)).
e Ifx=2, (A,(C,F)),(B,(C,F)) and (B, (D,F)).

e Ifx>2,(B,(C,F)) and (B,(D,F)). O
Player 2
CE CF DE DF
Al 2 5 2 5 1 0 1 0
Pl 1
WL BT o lx 21 o0]x 2

Figure 3.37: The strategic-form game for Part (b) of Exercise 3.10.

Solution to Exercise 3.11. Let us find the losing positions. If Player i, with his choice, can
bring the sum to 40 then he can win (the other player with her next choice will take the sum
to a number between 41 and 47 and then Player i can win with his next choice). Working
backwards, the previous losing position is 32 (from here the player who has to move will
take the sum to a number between 33 and 39 and, after this, the opponent can take it to
40). Reasoning backwards, the earlier losing positions are 24, 16, 8 and 0. Thus Player 1
starts from a losing position and therefore it is Player 2 who has a winning strategy. The
winning strategy is: at every turn, if Player 1’s last choice was n then Player 2 should
choose (8 —n). O

Solution to Exercise 3.12.
(a) The initial part of the game is shown in Figure 3.38.

1

A2 Bl N2
Y
2 2 2
A3 B3 B2 2 B3 C3
B2 fl 2

Figure 3.38: The initial part of the game of Part (a) of Exercise 3.12.
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(b) From G4 Player 1 should move the coin to H5. From there Player 2 has to move it to
H6 and Player 1 to H7 and Player 2 to H8 and from there Player 1 wins by moving
it to HO.

(©) Al5B25C3-5 D4 ES S F55Go— HT > H8 > HO.

d) Al 5B23C3 5 D43 ES S F53 665613 HT -5 H8 > HO.

(e) Using backward induction we can label each cell with a W (meaning that the player
who has to move when the coin is there has a winning continuation strategy) or with
an L (meaning that the player who has to move when the coin is there can be made
to lose).

If all the cells that are accessible from a given cell are marked with a W then that
cell must be marked with an L.

If from a cell there is an accessible cell marked with an L then that cell should be
marked with a W.  See Figure 3.39.

From the picture it is clear that it is Player 1 who has a winning strategy. The winning
strategy of Player 1 is: move the coin to cell B1 and from then on, after every move
of Player 2, move the coin to a cell marked L (or to END if accessible). ]

Figure 3.39: Solution for the coin game.
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Solution to Exercise 3.13.

(a) Let an outcome be denoted as a pair ($x,$y), where x is the net change in Anna’s
wealth and y is the net change in Bess” wealth. Then we can take the following utility

functions: Uppna($x,8y) = x and Upegs($x,$y) = y. The game is shown in Figure

3.40.
Give u
Anna - P
claim
® »® (
Assert C B
claim
Accept
> (4
0
Challenge and Challenge and
choose B; choose B,
Anna Anna
Match Not Match
match
Cy—B|—F —F —F Cy—B,—F

—F Cp—B; Cp—B» —F

Figure 3.40: The extensive-form game for Part (a) of Exercise 3.13.

(b) Assume that By > C4 > Cg > By > F > 0. The backward-induction solution is
marked by double arrows in Figure 3.40. The corresponding outcome is that Anna

asserts her claim and Bess accepts.
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(¢) The sequence of moves is shown in Figure 3.41.

Give up
Anna claim
¢ >0 (
C
Assert B
claim
Accept
Bess ¢ > (,
0
Challenge
and choose B
Y Not match
Anna ¢ e |
Cp—B
Match
Y
o
Cy—B—F

—F

Figure 3.41: The extensive-form game for Part (c) of Exercise 3.13.

Suppose that Anna is the legal owner and values the ring more than Bess does:
C4 > Cp. At the last node Anna will choose “match” if C4 > B and “not match” if
B > Cy4. In the first case Bess’ payoff will be —F, while in the second case it will
be Cp — B, which is negative since B > C4 and C4 > Cp. Thus in either case Bess’
payoff would be negative. Hence at her decision node Bess will choose “accept”
(Bess can get the ring at this stage only if she bids more than the ring is worth to
her). Anticipating this, Anna will assert her claim at the first decision node. Thus at
the backward-induction solution the ring goes to Anna, the legal owner. The payoffs

are C4 for Anna and O for Bess. Note that no money changes hands.
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(d) Suppose that Bess is the legal owner and values the ring more than Anna does:
Cp > C4. At the last node Anna will choose "match" if C4 > B and "not match"
if B > Cy4. In the first case Bess’ payoff will be —F, while in the second case it
will be Cg — B, which will be positive as long as Cg > B. Hence at her decision
node Bess will choose to challenge and bid any amount B such that Cg > B > Cy.
Anticipating this, at her first decision node Anna will give up (and get a payoff of 0),
because if she asserted her claim then her final payoff would be negative. Thus at
the backward-induction solution the ring goes to Bess, the legal owner. The payoffs

are 0 for Anna and Cp for Bess. Note that no money changes hands.

(e) As pointed out above, in both cases no money changes hands at the backward-
induction solution. Thus judge Sabio collects no money at all and both Anna and

Bess pay nothing. O






4. General Dynamic Games

Imperfect Information

There are many situations where players have to make decisions with only partial infor-
mation about previous moves by other players. Here is an example from my professional
experience: in order to discourage copying and cheating in exams, I prepare two versions
of the exam, print one version on white paper and the other on pink paper and distribute the
exams in such a way that if a student gets, say, the white version then the students on his left
and right have the pink version. For simplicity let us assume that there is only one question
in the exam. What matters for my purpose is not that the question is indeed different in the
two versions, but rather that the students believe that there is a difference and thus refrain
from copying from their neighbors. The students, however, are not naive and realize that I
might be bluffing; indeed, introducing differences between the two versions of the exam
involves extra effort on my part. Consider a student who finds himself in the embarrassing
situation of not having studied for the final exam and is tempted to copy from his neighbor,
whom he knows to be a very good student. Let us assume that, if he does not copy, then he
turns in a blank exam; in this case, because of his earlier grades in the quarter, he will get
a C; on the other hand, if he copies he will get an A if the two versions are identical but
will be caught cheating and will get an F if the two versions are different. How can we
represent such a situation?

Clearly this is a situation in which decisions are made sequentially: first the Professor
decides whether to write identical versions (albeit printed on different-color paper) or
different versions and then the Student chooses between copying and leaving the exam
blank. We can easily represent this situation using a tree as we did with the case of perfect-
information games, but the crucial element here is the fact that the Student does not know
whether the two versions are identical or different. In order to represent this uncertainty
(or lack of information) in the mind of the Student, we use the notion of information set.
An information set for a player is a collection of decision nodes of that player and the
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interpretation is that the player does not know at which of these nodes he is making his
decision. Graphically, we represent an information set by enclosing the corresponding
nodes in a rounded rectangle. Figure 4.1 represents the situation described above.

Professor
[ )
Identical Different
versions versions
/ Student \
COV Yank COI% Nank

Student Student Student caught Student
gets A gets C cheating, gets F gets C

Figure 4.1: An extensive-form game-frame with imperfect information.

As usual we need to distinguish between a game-frame and a game. Figure 4.1 depicts
a game-frame: in order to obtain a game from it we need to add a ranking of the outcomes
for each player. For the moment we shall ignore payoffs and focus on frames. A game-
frame such as the one shown in Figure 4.1 is called an extensive-form game-frame with
imperfect information: in this example it is the Student who has imperfect information, or
uncertainty, about the earlier decision of the Professor.

Before we give the definition of extensive-form game-frame, we need to introduce

some additional terminology and notation.

Given a directed tree and two nodes x and y we say that y is a successor of x, or x is a
predecessor of y, if there is a sequence of directed edges from x to y. If the sequence
consists of a single directed edge then we say that y is an immediate successor of x or x is

the immediate predecessor of y.

A partition of a set H is a collection ¢ = {H,,...,Hy,} (m > 1) of non-empty subsets of
H such that: (1) any two different elements of 7 are disjoint (if H;, Hy € ¢ with j # k
then H; N Hy = 0) and (2) the elements of ¢ cover H, thatis, H{U...UH,, = H.
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The definition of extensive form given below includes, as a special case, extensive
forms with perfect information. The first four items of Definition 4.1.1 (marked by the
bullet symbol e) appear also in Definition 3.1.1 in Chapter 3 (which covers the case of
perfect information); what is new is the additional item marked by the symbol .

Definition 4.1.1 A finite extensive-form game-frame consists of the following items.
* A finite rooted directed tree.

* A set of players I = {1,...,n} and a function that assigns one player to every
decision node.

* A set of actions A and a function that assigns one action to every directed edge,
satisfying the restriction that no two edges out of the same node are assigned the
same action.

* A set of outcomes O and a function that assigns an outcome to every terminal
node.

% For every player i € I, a partition &, of the set D; of decision nodes assigned to
player i (thus Z; is a collection of mutually disjoint subsets of D; whose union is
equal to D;). Each element of ¥ is called an information set of player i.* The
elements of Z; satisfy the following restriction: the actions available at any two
nodes in the same information set must be the same (that is, for every D € &, if
x,y € D then the outdegree of x is equal to the outdegree of y and the set of actions
assigned to the directed edges out of x is equal to the set of actions assigned to
the directed edges out of y).

“Perfect information is the special case where every element of & is a singleton.

Most of the game-theory literature focuses on games that satisfy the property of perfect
recall, which is defined below. We shall also restrict attention to such games, throughout
this book.

Definition 4.1.2 An extensive-form is said to have perfect recall if it satisfies the
following properties:
* if x and y are two nodes in the same information set, then it is not the case that
one node is a predecessor of the other,
e if node x € D € Z; is a predecessor of node y € D' € Z; (thus, by the previous
property, D # D’), and a is the action assigned to the directed edge out of x in
the sequence of edges leading from x to y, then for every node z € D’ there is a
predecessor w € D such that the action assigned to the directed edge out of w in
the sequence of edges leading from w to z is that same action a.

Perfect-recall says that if a player takes action a at an information set and later on
moves again, then at the later time she remembers that she took action a at that earlier
information set (because every node she is uncertain about at the later time comes after
taking action a at the earlier information set). Perfect recall can be interpreted as requiring
that a player always remember what she knew in the past and what actions she herself took
in the past.
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Figure 4.2 shows two examples of violation of perfect recall. In the extensive form
shown in Panel (i) Player 1 first chooses between a and b and then chooses between ¢ and
d having forgotten his previous choice: he does not remember what he chose previously.
In the extensive form shown in Panel (i7) when Player 2 has to choose between e and f she
is uncertain whether this is the first time she moves (left node) or the second time (right
node): she is uncertain whether she moved in the past.

1

N /\ e

C d C d

/\f /\f

(2) (i)

Figure 4.2: Examples of violations of perfect recall.

If every information set of every player consists of a single node, then the extensive
form is said to have perfect-information: it is easy to verify that, in this case, the last item
of Definition 4.1.1 (marked by the symbol %) is trivially satisfied and thus Definition 4.1.1
coincides with Definition 3.1.1 (Chapter 3). Otherwise (that is, if at least one player has at
least one information set that consists of at least two nodes), the extensive form is said to
have imperfect information. An example of an extensive form with imperfect information
is the one shown in Figure 4.1. We now give two more examples. In order to simplify the
figures, when representing a game-frame in extensive form we enclose an information set
in a rounded rectangle if and only if that information set contains at least two nodes.

= Example 4.1 There are three players, Ann, Bob and Carla. Initially, Ann and Bob are in
the same room and Carla is outside the room. Ann moves first, chooses either a red card
or a black card from a full deck of cards, shows it to Bob and puts it, face down, on the
table. Now Carla enters the room and Bob makes a statement to Carla: he either says “Ann
chose a Red card” or he says “Ann chose a Black card”; Bob could be lying or could be
telling the truth. After hearing Bob’s statement Carla guesses the color of the card that was
picked by Ann. The card is then turned and if Carla’s guess was correct then Ann and Bob
give $1 each to Carla, otherwise Carla gives $1 to each of Ann and Bob. When drawing an
extensive frame to represent this situation, it is important to be careful about what Carla
knows, when she makes her guess, and what she is uncertain about. The extensive frame is
shown in Figure 4.3. .
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- Carla’s top information set captures the situation she is in after hearing Bob say “Ann
chose a black card” and not knowing if he is telling the truth (left node) or he is lying
(right node).

- Carla’s bottom information set captures the alternative situation where she hears Bob say
“Ann chose a red card” and does not know if he is lying (left node) or telling the truth
(right node).

- In both situations Carla knows something, namely what Bob tells her, but lacks informa-
tion about something else, namely what Ann chose.

- The fact that Bob knows the color of the card chosen by Ann is captured by giving
Bob two information sets, each consisting of a single node: Bob’s left node represents
the situation he is in when he sees that Ann picked a black card, while his right node
represents the situation he is in when he sees that Ann picked a red card.

—$1 $1 $1 —$1
—$1 $1 $1 —$1
$2 —$2 —-$2 $2
Black Red Black Red
4 \
o o
C‘ Carla A
3 s
= =
a Ann o
Black Red
Bob o< @ »>® Bob
= =
2 2
Y c Y
arla
(/.\ ! /.
Black Red Black Red
® o o o
—$1 $1 $1 —$1
—$1 $1 $1 —$1
$2 —$2 -$2 $2

Figure 4.3: The extensive form game-frame representing Example 4.1.
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= Example 4.2 Yvonne and Fran were both interviewed for the same job, but only one
person can be hired. The employer told each candidate: “don’t call me, I will call you if I
want to offer you the job”. He also told them that he desperately needs to fill the position
and thus, if turned down by one candidate, he will automatically make the offer to the
other candidate, without revealing whether he is making a first offer or a “recycled” offer.
This situation is represented in the extensive-form game-frame shown in Figure 4.4. =

Yes No Yes

Y vonne /’)

)
>0l

No

No

o<

Figure 4.4: The extensive form, or frame, representing Example 4.2.

As before, in order to obtain a game from an extensive-form frame all we need to
do is add a ranking of the outcomes for each player. As usual, the best way to represent
such rankings is by means of an ordinal utility function for each player and thus represent
an extensive-form game by associating a vector of utilities with each terminal node. For
instance, expanding on Example 4.2, suppose that the employer only cares about whether
the position is filled or not, prefers filling the position to not filling it, but is indifferent
between filling it with Yvonne or with Fran; thus we can assign a utility of 1 for the
employer to every outcome where one of the two candidates accepts the offer and a utility
of 0 to every other outcome.
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Yvonne’s favorite outcome is to be hired if she was the recipient of the first call by the
employer; her second best outcome is not to be hired and her worst outcome is to accept a
recycled offer (she expects that, in the latter case, Fran would take pleasure telling Yvonne
“You took that job?! It was offered to me but I turned it down. Who, in her right mind,
would want that job? What’s wrong with you?!”). Thus for Yvonne we can use utilities of
2 (if she accepts a first offer), 1 (if she is not hired) and O (if she accepts a recycled offer).
Finally, suppose that Fran has preferences similar (but symmetric) to Yvonne’s. Then the
extensive frame of Figure 4.4 gives rise to the extensive game shown in Figure 4.5.

1 0 (Employer’s payoff) 1
0 1 (Yvonne’s payoff) 2
1 1 (Fran’s payoff) 1
o L L
A
Yes No Yes
C:' Yvonne /')
>
Q'x*%\ s
) No
No
(./ Fran ;;)
Yes Yes No
Y
L [ L
1 1 0
1 1 1
2 0 1

Figure 4.5: A game based on the extensive-form frame of Figure 4.4.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 4.6.1 at the end of this chapter.
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Strategies

The notion of strategy for general extensive games is the same as before: a strategy for
Player i is a complete, contingent plan that covers all the possible situations Player i might
find herself in. In the case of a perfect-information game a “possible situation” for a
player is a decision node of that player; in the general case, where there may be imperfect
information, a “possible situation” for a player is an information set of that player.

The following definition reduces to Definition 3.3.1 (Chapter 3) if the game has perfect-
information (that is, if every information set consists of a single node).

Definition 4.2.1 A strategy for a player in an extensive-form game is a list of choices,
one for every information set of that player.

For example, in the game of Figure 4.5, Yvonne has only one information set and thus
a strategy for her is what to do at that information set, namely either say Yes or say No.
Yvonne cannot make the plan “if the employer calls me first I will say Yes and if he calls
me second I will say No”, because when she receives the call she is not told if this is a first
call or a recycled call and thus she cannot make her decision dependent on information she
does not have.

As in the case of perfect-information games, the notion of strategy allows us to associate
with every extensive-form game a strategic-form game. For example, the strategic form
associated with the game of Figure 4.5 is shown in Figure 4.6 with the Nash equilibria
highlighted.

Yvonne
Yes No
Yvonne
Employer first 1 2 1 1 1 0
Fgf‘; 1 1 2 1 1 2
Fran: Yes
Y vonne
Yes 0
el 1 2 1 0o 1 1
Employer .,
first 1 0 1 0 1 1
Fran: No

Figure 4.6: The strategic form of the game of Figure 4.5 with the Nash equilibria high-
lighted.
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As another example, consider the extensive form of Figure 4.3 and view it as a game
by assuming that each player is selfish and greedy (only cares about how much money
he/she gets and prefers more money to less). Then the associated strategic form is shown
in Figure 4.7, where Bob’s strategy (x,y) means “I say x if Ann chose a black card and I
say y if Ann chose a red card”. Thus (R,B) means “if Ann chose a black card I say Red
and if Ann chose a red card I say Black™ (that is, Bob plans to lie in both cases). Similarly,
Carla’s strategy (x,y) means “I guess x if Bob tells me Black and I guess y if Bob tells me
Red”. Thus (B,R) means “if Bob tells me Black I guess Black and if Bob tells me Red I
guess Red” (that is, Carla plans to repeat what Bob says).

BOB BOB
BB RR BR RB BB RR BR RB
Aplr —r ol o1 2 21 2 —r o] AR 1 2l 1 2l 1 2] 1 2
NR112112112112§§NR112112112112
N — — — — o NTL_ 4 7 7
CARLA: B.B CARLA: R.R
BOB ! BOB
BB _RR _BR RB BB RR BR RB
Aplor ool 12 -2l 1 2] A 2 S o[ 1 o[- <12
N i N
R| 1L L2t —121-12) 1 12 gR[EL-12/ 1 121 12112
CARLA: B.R CARLA: R.B

Figure 4.7: The strategic form of the game of Figure 4.3.

In order to “solve” an extensive-form game we could simply construct the associated
strategic-form game and look for the Nash equilibria. However, we saw in Chapter 3 that
in the case of perfect-information games not all Nash equilibria of the associated strategic
form can be considered “rational solutions” and we introduced the notion of backward
induction to select the “reasonable” Nash equilibria. What we now need is a generalization
of the notion of backward induction that can be applied to general extensive-form games.
This generalization is called subgame-perfect equilibrium. First we need to define the
notion of subgame.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 4.6.2 at the end of this chapter.
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Subgames

Loosely speaking, a subgame of an extensive-form game is a portion of the game that
could be a game in itself. Before introducing the formal definition, we describe informally

a procedure for identifying the subgames of a given game:

(1) start from a decision node x whose information set consists of node x only and

enclose in an oval node x itself and all its successors,

(2) if the oval does not “cut” any information sets (that is, it is not the case that there is
an information set D and two nodes y,z € D such that y is a successor of x while z is

not) then what is included in the oval is a subgame, otherwise it is not.

As an illustration, consider the extensive-form game of Figure 4.8. There are four possible
starting points for identifying a subgame: the root of the tree and nodes x, y and z (the

other decision nodes are part of a larger information set and thus fail condition (1) above).

1. If we start from the root of the tree and enclose all its successors, we end up with the
entire game; indeed every game is trivially a subgame of itself (just like a set is a
subset of itself). A subgame that does not coincide with the entire game is called a

proper subgame.

2. Next consider node x. Starting from node x and including all of its successors, we
do indeed obtain a subgame, in fact a proper subgame, namely the portion included

in the oval on the left.

3. Starting from node y and including all of its successors we obtain the portion of the
game that is included in the oval on the right; in this case, condition (2) above is
violated, since we are cutting the top information set of Player 3; hence the portion

of the game inside this oval is not a subgame.

4. Finally, starting from node z and including all of its successors, we obtain another

proper subgame, which is the portion included in the oval at the bottom.

Thus the game of Figure 4.8 has three subgames: the entire game and two proper subgames,

one starting at node x and the other starting at node z.
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Proper subgame

Not a
subgame

Proper subgame

Figure 4.8: An extensive-form game with two proper subgames.

Now we can proceed to the formal definition. Given an extensive-form game and a
decision node x in it, denote by S(x) the set consisting of x itself as well as all the nodes
that are successors of x (that is, that can be reached from x by a sequence of directed
edges).

Definition 4.3.1 Given an extensive-form game and a decision node x, the set S(x) is a
subgame starting at x if the following two conditions are satisfied:

1. the information set that contains x is the singleton {x}, and
2. for every information set D in the game, if DN S(x) # @ then D C S(x).

A subgame starting at decision node x is a proper subgame if and only if x is not the
root of the entire game.

Definition 4.3.2 A subgame of an extensive-form game is called minimal if it does
not strictly contain another subgame, that is, S(x) is a minimal subgame if (1) it is a
subgame and (2) there is no successor y of x (thus y # x and S(y) C S(x)) such that S(y)
is a subgame.
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For example, the game shown in Figure 4.9 has three proper subgames, one starting at
node x, another at node y and the third at node z. The ones starting at nodes x and z are
minimal subgames, while the one that starts at node y is not a minimal subgame, since it
strictly contains the one that starts at node z.

Figure 4.9: An extensive-form game with three proper subgames, two of which are
minimal.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 4.6.3 at the end of this chapter.
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Subgame-perfect equilibrium

A subgame-perfect equilibrium of an extensive-form game is a Nash equilibrium of the
entire game that remains a Nash equilibrium in every proper subgame.

Consider an extensive-form game and let s be a strategy profile for that game. Let G
be a subgame. The restriction of s to G, denoted by s|g, 1s that part of s which prescribes
choices at every information set of G and only at those information sets (if G is the entire
game, then s|g = ).

For example, consider the extensive-form game of Figure 4.9 and the strategy profile

§= (aac> ) (d7fvE>7 (h7B)
~—— ~—— ~——

I’s strategy 2’s strategy 3’s strategy

Let G be the subgame that starts at decision node y of Player 2. Then

S|IG — C 5 (f,E) ) B

~
1’s strategy in G 2’s strategy in G 3’s strategy in G

Definition 4.4.1 . Given an extensive-form game, let s be a strategy profile for the
entire game. Then s is a subgame-perfect equilibrium if, for every subgame G, s|¢ (the
restriction of s to G) is a Nash equilibrium of G. Thus, since the entire game is also a
subgame, it follows that a subgame-perfect equilibrium is a Nash equilibrium of the
entire game.

For example, consider again the extensive-form game of Figure 4.9 and the strategy
profile s = ((a,C),(d, f,E),(h,B)). Then s is a Nash equilibrium of the entire game:
Player 1’s payoff is 2 and if he were to switch to any strategy where he plays b his payoff
would be 0; Player 2’s payoff is 1 and if she were to switch to any strategy where she
plays ¢ her payoff would be 0; Player 3’s payoff is 2 and if he were to switch to any
strategy where he plays g his payoff would be 1. However, s is not a subgame-perfect
equilibrium, because the restriction of s to the proper subgame that starts at node z of
Player 1, namely (C,E), is not a Nash equilibrium of that subgame: in that subgame, for
Player 2 the unique best reply to C is F.

One way of finding the subgame-perfect equilibria of a given game is to first find
the Nash equilibria and then, for each of them, check if the condition of Definition 4.4.1
is satisfied, namely if the restriction of the strategy profile to every subgame is a Nash
equilibrium of the subgame. However, this is not a practical way to proceed. A quicker and
easier way is to apply the following algorithm, which generalizes the backward-induction
algorithm for games with perfect information (Definition 3.2.1, Chapter 3).
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Definition 4.4.2 Given an extensive-form game I', the subgame-perfect equilibrium

algorithm is the following procedure.

Step 1.

Step 2.

Step 3.

Identify a minimal subgame G of T".

(i) If G =T, that is, if I" has no proper subgames, then the set of subgame-
perfect equilibria coincides with the (possibly empty) set of Nash equi-
libria.

(ii) If G is a proper subgame of I" and G has no Nash equilibria, then I" has

no subgame-perfect equilibria.

(iii) If G is a proper subgame of I" and G has one or more Nash equilibria,
select a Nash equilibrium of G and proceed to Step 2.

Delete the minimal proper subgame G and replace it with the payoff vector
associated with the selected Nash equilibrium, making a note of the strategies
that constitute the Nash equilibrium. This yields a smaller extensive-form

game.

Repeat Steps 1 and 2 in the smaller game so obtained, until the game has been

reduced to one, call it I”, that has no proper subgames.

(i) If I has no Nash equilibria, then the original game I" has no subgame-

perfect equilibria.

(ii) If If I has one or more Nash equilibria, select one and augment it with
the strategies noted in Step 2 to obtain a strategy profile for I', call this

strategy profile s. Then s is a subgame perfect equilibrium.

If, at any step, the game under consideration had several Nash equilibria, then
the procedure should be repeated by selecting a different Nash equilibrium

from the one(s) selected earlier.

As an illustration, let us apply the algorithm to the game of Figure 4.9. Begin with the

proper subgame that starts at node x of Player 2, shown in Figure 4.10 with its associated

strategic form; this game has a unique Nash equilibrium, namely (d, /). Note that this is a

game only between Players 2 and 3 and thus in Figure 4.10 we only show the payoffs of

these two players.

Now we delete the proper subgame, thereby turning node x into a terminal node to which

we attach the full payoff vector associated, in the original game, with the terminal node

following history adh, namely (2,1,2). Hence we obtain the smaller game shown in Figure

4.11.
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Figure 4.10: A minimal proper subgame of the game of Figure 4.9 and its strategic form.
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Figure 4.11: The reduced game obtained after replacing, in the game of Figure 4.9, the
minimal subgame of Figure 4.10 with the payoff vector (2,1,2) associated with the Nash

equilibrium (d, h).
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Now, in the reduced game of Figure 4.11, we select the only minimal subgame, namely
the one that starts at the bottom decision node of Player 1. This subgame is shown in
Figure 4.12 together with its associated strategic form. The unique Nash equilibrium of

this subgame is (C, F).

1
@
¢ D Player 2
E F
S 2 %
C‘ ’J cl3 01 1
E F E F Player 1
D |1 1{1 O
o o [ J
0 1 1 0

Figure 4.12: The minimal subgame of the game of Figure 4.11 and its strategic form.

Then, in the reduced game of Figure 4.11, we replace the above subgame with the payoff
vector associated with the history beACF, namely (1,1, 1), thus obtaining the smaller game

shown in Figure 4.13.

/\
AWA

° e o °
1 0 3 0
(CF) 4 2 2 0
1 0 1 1

Figure 4.13: The reduced game obtained after replacing, in the game of Figure 4.11, the
minimal subgame of Figure 4.12 with the payoff vector (1,1,1) associated with the Nash

equilibrium (C, F).
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The game of Figure 4.13 has a unique proper subgame that starts at Player 2’s decision
node; it is shown in Figure 4.14 with its associated strategic form; this game has a unique
Nash equilibrium, namely (f,A).

/ \ Player 3

A B

elfl 1(2 0
Player 1
f12 1|0 1

1 O 1 1

Figure 4.14: The minimal subgame of the game of Figure 4.13 and its strategic form.

Replacing the subgame with the payoff vector associated with the history b fA, namely
(3,2,1), we get the smaller game shown in Figure 4.15.

1

o
f (d,h) (f,A)
2

Figure 4.15: The reduced game after replacing the proper subgame in the game of Figure
4.13 with the payoff vector associated with the Nash equilibrium (f,A), namely (3,2,1).

In the reduced game of Figure 4.15 the unique Nash equilibrium is 5. Now patching
together the choices selected during the application of the algorithm we get the following
subgame-perfect equilibrium for the game of Figure 4.9: ((b,C),(d, f,F), (h,A)).
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As a second example, consider the game of Figure 4.16 (which reproduces the game of
Figure 4.8).

R U 4
(1 >0 >0
y 1
L D )
C 1 a Y Y| a
oo 1Lo 3 o ol
1 1d 2
2 l b b 4
o

0 Zx 2 z

4 2

4 e/ / 0

3

S W~ O o9
SO~ —~ @ =

Figure 4.16: Copy of the game of Figure 4.8.

Begin with the subgame that starts at node x of Player 1 and replace it with the payoff
vector (3,1,2) associated with the Nash equilibrium c¢. Next replace the subgame that
starts at node z with the payoff vector (3,2, 1) associated with the Nash equilibrium (e, /)
of that subgame, so that the game is reduced to the one shown in Figure 4.17, together
with its strategic form. [Note that the only minimal subgame of the game of Figure 4.17 is
the entire game itself.]
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Figure 4.17: The game of Figure 4.16 reduced after solving the proper subgames, together
with the associated strategic form, where the Nash equilibria are highlighted.

The reduced game of Figure 4.17 has two Nash equilibria: (L,D,a) and (R,U,b). Thus
the game of Figure 4.16 has two subgame-perfect equilibria:

(L,c) , (D,e) , (a,h) and (R,c) , (Uye) , (b,h)
—— e —— S

Player 1 Player2  Player 3 Player 1 Player2  Player 3
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* As shown in the last example, it is possible that — when applying the subgame-
perfect equilibrium algorithm — one encounters a subgame that has several
Nash equilibria. In this case one Nash equilibrium must be selected in order
to continue the procedure and in the end one obtains one subgame-perfect
equilibrium. One then has to repeat the procedure by selecting a different Nash
equilibrium and thus obtain a different subgame-perfect equilibrium, and so
on. This is similar to what happens with the backward-induction algorithm in
perfect-information games.

* It is also possible that — when applying the subgame-perfect equilibrium algo-
rithm —one encounters a subgame that has no Nash equilibria.! In such a case
the game under consideration does not have any subgame-perfect equilibria.

* When applied to perfect-information games, the notion of subgame-perfect
equilibrium coincides with the notion of backward-induction solution.
Thus subgame-perfect equilibrium is a generalization of backward induction.

* For extensive-form games that have no proper subgames (for example, the game
of Figure 4.3) the set of Nash equilibria coincides with the set of subgame-
perfect equilibria. In general, however, the notion of subgame-perfect equilib-
rium is a refinement of the notion of Nash equilibrium.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 4.6.4 at the end of this chapter.

Games with chance moves

So far we have only considered games where the outcomes do not involve any uncertainty.
As a way of introducing the topic discussed in Part II, in this section we consider games
where uncertain, probabilistic events are incorporated in the extensive form.

We begin with an example: There are three cards, one black and two red. They are
shuffled well and put face down on the table. Adele picks the top card, looks at it without
showing it to Ben and then tells Ben either “the top card is black™ or “the top card is red”;
she could be telling the truth or she could be lying. Ben then has to guess the true color
of the top card. If he guesses correctly he gets $9 from Adele, otherwise he gives her $9.
How can we represent this situation?

Whether the top card is black or red is not the outcome of a player’s decision, but
the outcome of a random event, namely the shuffling of the cards. In order to capture
this random event we introduce a fictitious player called Nature or Chance. We assign
a probability distribution to Nature’s “choices”. In this case, since one card is black and
the other two are red, the probability that the top card is black is % and the probability
that the top card is red is % Note that we don’t assign payoffs to Nature and thus the only
‘real’ players are Adele and Ben. The situation can be represented as shown in Figure 4.18,
where the numbers associated with the terminal nodes are dollar amounts.

'We will see in Part II that, when payoffs are cardinal and one allows for mixed strategies, then every
finite game has at least one Nash equilibrium in mixed strategies.
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Figure 4.18: An extensive form with a chance move.

Clearly, the notion of strategy is not affected by the presence of chance moves. In the
game of Figure 4.18 Adele has four strategies and so does Ben. However, we do encounter
a difficulty when we try to write the associated strategic form. For example, consider the
following strategy profile: ((B,R),(B,B)) where Adele’s strategy is to be truthful (say
“Black” if she sees a black card and say “Red” if she sees a red card) and Ben’s strategy is
to guess Black no matter what Adele says. What is the outcome in this case? It depends on
what the true color of the top card is and thus the outcome is a probabilistic one:

outcome  Adele gives $9 to Ben Ben gives $9 to Adele
( probability % % )
We call such probabilistic outcomes lotteries. In order to convert the game-frame into a
game we need to specify how the players rank probabilistic outcomes. Consider the case
where Adele is selfish and greedy, in the sense that she only cares about her own wealth

and she prefers more money to less. Then, from her point of view, the above probabilistic

. —-$9 $9 .
outcome reduces to the following monetary lottery ( ;$ $2 ) . If Ben is also selfish
3 3
—$9
and greedy, then he views the same outcome as the lottery < 1 2$ > . How do we
3 3

convert a lottery into a payoff or utility? The answer to this question will be provided
in the next chapter. Here we focus on a special case of the general theory introduced in
Chapter 5, in order to give a simple illustration of the conceptual issues involved when

outcomes are allowed to be probabilistic.
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Definition 4.5.1 Given a lottery whose outcomes are sums of money

( $X1 $X2 $xn )
Pt P2 ... Dn
(with p; >0, forall i=1,2,...,n, and p; + p2+---+ p, = 1) the expected value of the

lottery is the following sum of money: (x;p +x2p2 + -+ X,pp)-
We call lotteries whose outcomes are sums of money, money lotteries.

For example, the expected value of the lottery

<$5 $15 $25)
12 2

5 5 5
$[5(2)+15(2)+25(3)] =$(1+6+10) =817

and the expected value of the lottery
< —-$9 $9 )
1 2
3 3

Definition 4.5.2 A player is defined to be risk neutral if she considers a money lottery
to be just as good as its expected value. Hence a risk neutral person ¢ ranks money
lotteries according to their expected value.”

is $3.

“From now on, we will implicitly assume that the individuals considered prefer more money to less.

bTt is important to stress that our focussing on the case of risk neutrality should not be taken to
imply that a rational individual ought to be risk neutral nor that risk neutrality is empirically particularly
relevant. At this stage we assume risk neutrality only because it yields a very simple type of preferences
over money lotteries and allows us to proceed without the heavy machinery of Expected Utility Theory
developed in Chapter 5.

For example, consider the following money lotteries:

5 $15 $25 1 0 $32 $48
L1=($1 15 52 ),L2:<$16>andL3:($5 532 54 )

5 5 5

8 8 4

The expected value of L; is $17 and the expected value of both L, and L3 is $16.
Thus a risk-neutral player would have the following ranking: L; > L, ~ L3, that is, she
would prefer L to L, and be indifferent between L, and L3.
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For a selfish and greedy player who is also risk neutral we can take the expected value
of a money lottery as the utility of that lottery. For example, if we make the assumption
that, in the extensive form of Figure 4.18, Adele and Ben are selfish, greedy and risk
neutral then we can associate a strategic-form game to it as shown in Figure 4.19. Note
that inside each cell we have two numbers: the first is the utility (= expected value) of the
underlying money lottery as perceived by Adele and the second number is the utility (=
expected value) of the underlying money lottery as perceived by Ben.

The first element of Adele’s strategy is what she says if she sees a black card and the
second element is what she says if she sees a red card. The first element of Ben’s strategy

is what he guesses if Adele says “Black”, the second element is what he guesses if Adele
says “Red”.

Ben

BB BR RB RR
BB| 3 -3 3 3 ([-3 3 -3 3

BR| 3 -3 |-9 9 9 -9 -3 3

RB| 3 -3 9 -91-9 9 -3 3

o —0 QP>

RR| 3 -3 [-3 3 3 -3 -3 3

Figure 4.19: The strategic form of the game of Figure 4.18 when the two players are selfish,
greedy and risk neutral.

We conclude this section with one more example.

» Example 4.3 There are three unmarked, opaque envelopes. One contains $100, one
contains $200 and the third contains $300. They are shuffled well and then one envelope is
given to Player 1 and another is given to Player 2 (the third one remains on the table).

- Player 1 opens her envelope and checks its content without showing it to Player 2. Then
she either says “pass” — in which case each player gets to keep his/her envelope — or she
asks Player 2 to trade his envelope for hers.

- Player 2 is not allowed to see the content of his envelope and has to say either Yes or No.
If he says No, then the two players get to keep their envelopes. If Player 2 says Yes, then
they trade envelopes and the game ends. Each player is selfish, greedy and risk neutral.

This situation is represented by the extensive-form game shown in Figure 4.20, where
(100,200) means that Player 1 gets the envelope with $100 and Player 2 gets the envelope
with $200, etc.; P stands for “pass” and T for “suggest a trade”; Y for “Yes” and N for
“NO”. =
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Nature (the probability of
each edge is %)

100
200

VAW AWATAWAY

100 300 100 1()0 200 300 200 100 300 200
100 200 100 300 200 100 200 300 300 100 300 200

Figure 4.20: The extensive-form game of Example 4.3.

In this game Player 1 has eight strategies. One possible strategy is: “if I get $100 I will
pass, if T get $200 I will propose a trade, if T get $300 I will pass”: we will use the shorthand
PTP for this strategy. Similarly for the other strategies. Player 2 has only two strategies:
Yes and No.

The strategic form associated with the game of Figure 4.20 is shown in Figure 4.21, where
the Nash equilibria are highlighted.

How did we get those payoffs? Consider, for example, the top-left cell. Given the strategies

PPP and Y, the outcomes are:

($100, $200) with probability ¢,  ($100,$300) with probability %,

($200,$100) with probability ¢,  ($200,$300) with probability ¢,

($300,$100) with probability ¢,  ($300,$200) with probability ¢.

Being risk neutral, Player 1 views his corresponding money lottery as equivalent to getting

its expected value $(100+ 100+ 200 + 200 + 300 + 300) (%) = $200. Similarly for Player

2 and for the other cells.
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Figure 4.21: The strategic form of the game of Figure 4.20.

Since the game of Figure 4.20 has no proper subgames, all the Nash equilibria are also
subgame-perfect equilibria. Are some of the Nash equilibria more plausible than others?
Player 1 has two weakly dominant strategies: TPP and TTP; all the other all the strategies
are weakly dominated. Deletion of Player 1’s weakly dominated strategies leads to a game
where Y is strictly dominated for Player 2. Thus one could argue that (TPP, N) and (TTP,

N) are the most plausible equilibria; in both of them Player 2 refuses to trade.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 4.6.5 at the end of this chapter.
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Exercises
Exercises for Section 4.1: Imperfect information

The answers to the following exercises are in Section 4.7 at the end of this chapter.

Amy and Bill simultaneously write a bid on a piece of paper. The bid
can only be either $2 or $3. A referee then looks at the bids, announces the amount of
the lowest bid (without revealing who submitted it) and invites Amy to either pass or
double her initial bid.

The outcome is determined by comparing Amy’s final bid to Bill’s bid: if one is
greater than the other then the higher bidder gets the object and pays his/her own bid;
if they are equal then Bill gets the object and pays his bid.

Represent this situation by means of two alternative extensive-form game-frames.
Note: (1) when there are simultaneous moves we have a choice as to which player we
select as moving first: the important thing is that the second player does not know what
the first player did;

(2) when representing, by means of information sets, what a player is uncertain about,
we typically assume that a player is smart enough to deduce relevant information, even
if that information is not explicitly given to him/her.

Consider the following situation. An incumbent monopolist decides at
date 1 whether to build a small plant or a large plant. At date 2 a potential entrant
observes the plant built by the incumbent and decides whether or not to enter.

- If she does not enter then her profit is $0 while the incumbent’s profit is $25 million
with a small plant and $20 million with a large plant.

- If the potential entrant decides to enter, she pays a cost of entry equal to $K million.

- At date 3 the two firms simultaneously decide whether to produce high output or low
output.

- If there is entry, the profits of the firms are as shown in the following table, where
‘L’ means ‘low output’ and ‘H’ means ‘high output’ (these figures do not include the
cost of entry for the entrant; thus you need to subtract that cost for the entrant); in
each cell, the first number is the profit of the entrant (in millions of dollars) and the
second is the profit of the incumbent.

Incumbent Incumbent
L H L H
L 10, 10 7,7 L 10,7 5,9
Entrant H 7, 6 4.3 Entrant H 7,3 4.5
If Incumbent has small plant \ If Incumbent has large plant

Draw an extensive-form game that represents this situation, assuming that each player
is selfish and greedy (that is, cares only about its own profits and prefers more money to
less).
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4.6.2 Exercises for Section 4.2: Strategies
The answers to the following exercises are in Section 4.7 at the end of this chapter.

Exercise 4.3 Write the strategic-form game-frame of the extensive form of Exercise
4.1 (that is, instead of writing payoffs in each cell, you write the outcome). Verify that
the strategic forms of the two possible versions of the extensive form are identical. =

Exercise 4.4 Consider the extensive-form game of Exercise 4.2.
(a) Write down in words one of the strategies of the potential entrant.
(b) How many strategies does the potential entrant have?
(c) Write the strategic-form game associated with the extensive-form game.
(d) Find the Nash equilibria for the case where K = 2.

4.6.3 Exercises for Section 4.3: Subgames

The answers to the following exercises are in Section 4.7 at the end of this chapter.

I Exercise 4.5 How many proper subgames does the extensive form of Figure 4.3 have?

I Exercise 4.6 How many proper subgames does the extensive form of Figure 4.5 have?

Exercise 4.7 Consider the extensive game Figure 4.22.
(a) How many proper subgames does the game have?
(b) How many of those proper subgames are minimal?

— o
SWwWN @

Figure 4.22: The game of Exercise 4.7.
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Consider the extensive game Figure 4.23.
(a) How many proper subgames does the game have?
(b) How many of those proper subgames are minimal?
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)
0
2

—o O

Figure 4.23: The game of Exercise 4.8.

Exercises for Section 4.4: Subgame-perfect equilibrium
The answers to the following exercises are in Section 4.7 at the end of this chapter.

Find the Nash equilibria and the subgame-perfect equilibria of the game
shown in Figure 4.24.

“’\
/
@)

o b — @ —————
N W

Figure 4.24: The game of Exercise 4.9.
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Find the subgame-perfect equilibria of the game shown in Figure 4.25.

1
el

e
e i [
A » . 8
N
21 \_/R\k.

FGlH FfG| \H FGlH
®
0 1

Y

[ ® [
1 5 1 2 0 3 2 (Player 1’s payoff)
0 2 1 1 1 2 0 0 3 (Player 2’s payoff)
0 0 1 0 2 1 1 | 2 (Player 3’s payoff)

Figure 4.25: The game of Exercise 4.10.
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150
Find the subgame-perfect equilibria of the game shown in Figure 4.26

assuming the following about the players’ preferences. Both Amy and Bill are selfish
and greedy (that is, are interested in their own net gain), Amy values the object at $5

and Bill at $4.

Amy
$2 $3

N

o)

$2/ \$3 52 $3
Amy

\ Amy

7
(£ Amy %)
Pas/ X‘ﬁ‘l Pas/ \‘54 Fass \$6 Pas/ \6

Bill Amy Bill Amy Amy Amy Bill Amy

wins wins wins wins wins wins wins wins

pays pays pays pays pays pays pays pays
$2 $4 $3 $4 83 $6  $3 $6

Figure 4.26: The game of Exercise 4.11.

Exercises for Section 4.5: Games with chance moves

The answers to the following exercises are in Section 4.7 at the end of this chapter.

Modify the game of Example 4.3 as follows: Player 2 is allowed to
privately check the content of his envelope before he decides whether or not to accept
Player 1’s proposal.

(a) Represent this situation as an extensive-form game-frame
(b) List all the strategies of Player 1 and all the strategies of Player 2.
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Three players, Avinash, Brian and John, play the following game. Two
cards, one red and the other black, are shuffled well and put face down on the table.
Brian picks the top card, looks at it without showing it to the other players (Avinash
and John) and puts it back face down on the table. Then Brian whispers either “Black”
or “Red” in Avinash’s ear, making sure that John doesn’t hear. Avinash then tells John
either “Black” or “Red”. Note that both players could be lying. Finally John announces
either “Black” or “Red” and this exciting game ends.

The payoffs are as follows: if John’s final announcement matches the true color of the
card Brian looked at, then Brian and Avinash give $2 each to John. In every other case
John gives $2 each to Brian and Avinash.

(a) Represent this situation as an extensive-form game-frame.

(b) Write the corresponding strategic form assuming that the players are selfish,
greedy and risk neutral. [At least try to fill in a few cells in at least one table.]

Consider the following highly simplified version of Poker.

- There are three cards, marked A, B and C. A beats B and C, B beats C.

- There are two players, Yvonne and Zoe. Each player contributes $1 to the pot before
the game starts. The cards are then shuffled and the top card is given, face down, to
Yvonne and the second card (face down) to Zoe. Each player looks at, and only at,
her own card: she does not see the card of the other player nor the remaining card.

- Yvonne, the first player, may pass, or bet $1. If she passes, the game ends, the cards
are turned and the pot goes to the high-card holder (recall that A beats B and C, B
beats C).

- If Yvonne bets, then Zoe can fold, in which case the game ends and the pot goes to
Yvonne, or Zoe can see by betting $1, in which case the game ends, the cards are
turned and the pot goes to the high-card holder. Both players are selfish, greedy and
risk neutral.

(a) Draw the extensive-form game.

(b) How many strategies does Yvonne have?
(c) How many strategies does Zoe have?

(d) Consider the following strategies. For Yvonne: If A pass, if B pass, if C bet.
For Zoe: if Yvonne bets, I will fold no matter which card I get.
Calculate the corresponding payoffs.

(e) Redo the same with the following strategies. For Yvonne: If A pass, if B pass, if
C bet. For Zoe: see always (that is, no matter what card she gets).

(f) Now that you have understood how to calculate the payoffs, represent the entire
game as a normal form game, assigning the rows to Yvonne and the columns to
Zoe. [This might take you the entire night, so make sure you have a lot of coffee!]

(g) Does Yvonne have any weakly dominated strategies? Does Zoe have any weakly
dominated strategies?

(h) What do you get when you apply the procedure of iterated deletion of weakly
dominated strategies (IDWDS)?
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— xx+ Challenging Question x x x.

In an attempt to reduce the deficit, the government of Italy has decided to sell a 14"
century palace near Rome. The palace is in disrepair and is not generating any revenue
for the government. From now on, we will call the government Player G. A Chinese
millionaire has offered to purchase the palace for $p. Alternatively, Player G can
organize an auction among n interested parties (n > 2). The participants to the auction
(we will call them players) have been randomly assigned labels 1,2,...,n. Player i is
willing to pay up to $p; for the palace, where $p; is a positive integer. For the auction
assume the following:

* it is a simultaneous, sealed-bid, second-price auction,
* bids must be non-negative integers,
* each player only cares about the net change in his own wealth,

* the tie-breaking rule for the auction is that the palace is given to that player -
among those who submitted the highest bid - who has the lowest index (e.g. if
the highest bid was submitted by Players 3, 7 and 12 then the palace is given to
Player 3).

All of the above is commonly known among everybody involved, as is the fact that for
every i,j € {1,...,n} with i # j, p; # p;.

We shall consider four different scenarios. In all scenarios you can assume that the p;’s
are common knowledge.

Scenario 1. Player G first decides whether to sell the palace to the Chinese millionaire
(for $p) or make a public and irrevocable decision to auction it.

(b) Draw the extensive form of this game for the case where n = 2 and the only
possible bids are $1 and $2. [List payoffs in the following order: first G then 1
then 2; don’t forget that this is a second-price auction.]

(c) For the general case where n > 2 and every positive integer is a possible bid, find
a pure-strategy subgame-perfect equilibrium of this game. What are the players’
payoffs at the equilibrium?

Scenario 2. Here we assume that n =2, and p; > po +1 > 2.

- First Player G decides whether to sell the palace to the Chinese or make a public and
irrevocable decision to auction it. In the latter case he first asks Player 2 to publicly
announce whether or not she is going to participate in the auction.

- If Player 2 says Yes, then she has to pay $1 to Player G as a participation fee, which
is non-refundable. If she says No, then she is out of the game.

- After Player 2 has made her announcement (and paid her fee if she decided to
participate), Player 1 is asked to make the same decision (participate and pay a non-
refundable fee of $1 to Player G or stay out); Player 1 observes Player 2’s decision
before he makes his own decision.
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After both players have made their decisions, player G proceeds as follows:

(0

(d)

if both Player 1 and Player 2 said Yes, then he makes them play a simultaneous
second-price auction,

if only one player said Yes, then he/she is asked to put an amount $x of his choice
in an envelope (where x is a positive integer) and give it to Player G in exchange
for the palace,

if both 1 and 2 said No, then G is no longer bound by his commitment to auction
the palace and he sells it to the Chinese millionaire (for $p).

Draw the extensive form of this game for the case where the only possible bids
are $1 and $2 and also x € {1,2} [List payoffs in the following order: first G then
1 then 2; again, don’t forget that this is a second-price auction.]

For the general case where all possible bids are allowed (subject to being positive
integers) and x can be any positive integer, find a pure-strategy subgame-perfect
equilibrium of this game. What are the players’ payoffs at the equilibrium?

Scenario 3. Same as Scenario 2; the only difference is that if both Players 1 and 2
decide to participate in the auction then Player G gives to the loser the fraction a (with
0 < a < 1) of the amount paid by the winner in the auction (note that player G still
keeps 100% of the participation fees). This is publicly announced at the beginning and
is an irrevocable commitment.

(e)

For the general case where all possible bids are allowed (subject to being positive
integers) find a subgame-perfect equilibrium of this game. What are the players’
payoff at the equilibrium?

Scenario 4. Player G tells the Chinese millionaire the following:

“First you (= the Chinese) say Yes or No; if you say No I will sell you
the palace at the price that you offered me, namely $100 (that is, we now
assume that p = 100); if you say Yes then we play the following perfect
information game. I start by choosing a number from the set {1,2,3}, then
you (= the Chinese) choose a number from this set, then I choose again,
followed by you, etc. The first player who brings the cumulative sum of
all the numbers chosen (up to and including the last one) to 40 wins. If
you win I will sell you the palace for $50, while if T win I will sell you the
palace for $200.”

Thus there is no auction in Scenario 4. Assume that the Chinese would actually be
willing to pay up to $300 for the palace.

®)

Find a pure-strategy subgame-perfect equilibrium of this game.



154 Chapter 4. General Dynamic Games

Solutions to exercises

Solution to Exercise 4.1. One possible extensive-form game-frame is shown in Figure
4.27, where Amy moves first. Note that we have only one non-trivial information set for
Amy, while each of the other three consists of a single node. The reason is as follows:
if Amy initially bids $3 and Bill bids $2 then the referee announces “the lowest bid was
$2”; this announcement does not directly reveal to Amy that Bill’s bid was $2, but she
can figure it out from her knowledge that her own bid was $3; similarly, if the initial two
bids are both $3 then the referee announces “the lowest bid was $3”, in which case Amy is
able to figure out that Bill’s bid was also $3. If we included those two nodes in the same

information set for Amy, we would not show much faith in Amy’s reasoning ability!
Amy
$2 $3

(o Bill

$2 $3
ANAN

/\ I\
Pas/ X‘M Pas/ \‘54 Pass $6 Pass 6
o
Bill Amy Bill Amy Amy Amy Bill Amy
wins wins wins wins wins wins wins wins
pays pays pays pays pays pays pays pays
$2 $4 $3 $4 $3 $6 $3 $6

Figure 4.27: One possible game-frame for Exercise 4.1.
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Another possible extensive-form game-frame is shown in Figure 4.28, where Bill moves
first. OJ

Bill

$2/.\$3

(oa™ Amy )
2 \$3

2

$ / $2 / $3
[,o'/ Amy
\ I\
Pass $4 Am}x Pass $4 Amy
Pass $6 Pass $6
(]
Bill Amy @ ® il Amy
wins wins  Amy Amy Wwins wins  Bill Amy
pays pays wins wins  pays pays  wins wins
$2 $4 pays  pays $3 $4  pays pays
$3 $6 $3 $6

Figure 4.28: Another possible game-frame for Exercise 4.1.

Solution to Exercise 4.2. The extensive form is shown in Figure 4.29 ( since the players
are selfish and greedy we can take a player’s utility of an outcome to be the profit of that
player at that outcome). [

Incumbent

| S
Entrant @, ® Entrant

oS & oS %
o .In .Incumbent
25 S S %

cumbent o
) %, :
N %, > %,
C.‘/ Entrant \'.D C.‘/ Entrant \'.D
25 [T A5 2% A5 o 25 o
5/ \&% 5§/\%ﬁ 38 \§% ﬁi/ 5%
S) > S} > o > S ~
® ) [ ) ® ) [ )
10 6 7 3 7 3 9 5

10-K 7-K 7-K 4-K 10-K 7-K 5-K 4-K

Figure 4.29: The extensive-form game for Exercise 4.2.
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Solution to Exercise 4.3. The strategic form of the game of Figure 4.27 is shown in
Figure 4.30. Amy’s strategy (x,y,w,z) means: at the beginning I bid $x, at the non-trivial
information set on the left I choose y, at the singleton node in the middle I choose w and at
the singleton node on the right I choose z. The numbers are bid amounts and P stands for

“Pass”. O
BILL
Bid $2 Bid $3

$2,P,P,P | Bill wins, pays $2 Bill wins, pays $3

$2,P,P,$6 | Bill wins, pays $2 Bill wins, pays $3

$2,P,$6,P | Bill wins, pays $2 Bill wins, pays $3

$2,P,$6,$6 | Bill wins, pays $2 Bill wins, pays $3

$2,$4,P,P | Amy wins, pays $4 Amy wins, pays $4

$2,%$4,P,$6 | Amy wins, pays $4 Amy wins, pays $4

$2,$4,$6,P | Amy wins, pays $4 Amy wins, pays $4

A $2,$4,%$6,$6 | Amy wins, pays $4 Amy wins, pays $4
M

Y $3,P,P,P | Amy wins, pays $3 Bill wins, pays $3

$3,P,P,$6 | Amy wins, pays $3 Amy wins, pays $6

$3,P,$6,P | Amy wins, pays $6 Bill wins, pays $3

$3,P,$6,$6 | Amy wins, pays $6 Amy wins, pays $6

$3,$4,P,P | Amy wins, pays $3 Bill wins, pays $3

$3,%$4,P,$6 | Amy wins, pays $3 Amy wins, pays $6

$3,$4,$6,P | Amy wins, pays $6 Bill wins, pays $3

$3,$4,%6,$6 | Amy wins, pays $6 Amy wins, pays $6

Figure 4.30: The strategic form for Exercise 4.3.

Solution to Exercise 4.4.

(a) The potential entrant has four information sets, hence a strategy has to specify what
she would do in each of the four situations. A possible strategy is: “if the incumbent
chooses a small plant I stay out, if the incumbent chooses a large plant I enter, if
small plant and I entered then I choose low output, if large plant and I entered then I
choose high output”.

(b) The potential entrant has 2% = 16 strategies.

(¢) The strategic form is shown in Figure 4.31.

(d) For the case where K = 2 the six Nash equilibria are highlighted in Figure 4.31. [



4.7 Solutions to exercises 157
INCUMBENT

SLL SLH SHL SHH LLL LLH LHL LHH

0O0LL 0,25 0,25 0,25 0,25 0, 20 0,20 0,20 0,20
oolH | 0.25 0,25 0,25 0,25 0,20 0,20 0,20 0,20
ooHL | 0.25 0,25 0,25 0,25 0,20 0,20 0,20 0,20
ooHH | 0.25 0,25 0,25 0,25 0,20 0,20 0,20 0,20

E o 0,25 0,25 0,25 0,25 10K, 7 | 5K 9 | 10K 7 | 5K9
N oiH 0,25 0,25 0,25 0,25 7K, 3 4K, 5 7K, 3 4K, 5
T omnHL 0,25 0,25 0,25 0,25 10K, 7 | 5K 9 | 10K 7 | 5K9
R  omnH 0,25 0,25 0,25 0,25 7K, 3 4K, 5 7K, 3 4K, 5
A o | 10K 10 | 10K 10 | 7K7 7K, 7 0, 20 0, 20 0, 20 0, 20
N o1 | 1010 | 10K 10 | 7K7 7K, 7 0, 20 0, 20 0, 20 0, 20
T onL 7K, 6 7K, 6 4K, 3 4K, 3 0, 20 0, 20 0, 20 0, 20
IOHH 7K, 6 7K, 6 4K, 3 4K, 3 0, 20 0, 20 0, 20 0, 20

IILL 10K, 10 | 10K, 10 | 7XK,7 7K7 | 10K 7 | 5K9 | 10K 7 | 5K09

IILH 10K, 10 | 10K, 10 | 7K, 7 7K, 7 7K, 3 4K, 5 7K, 3 4K, 5

IIHL 7K, 6 7K, 6 4K, 3 4K 3 | 10K 7 | 5K9 | 10K 7 | 5K09

IIHH 7K, 6 7K, 6 4K, 3 4K, 3 7K, 3 4K, 5 7K, 3 4K, 5

Figure 4.31: The strategic form for Exercise 4.4.The highlighted cells are the Nash

equilibria when K = 2.

Solution to Exercise 4.5. There are no proper subgames.

Solution to Exercise 4.6. There are no proper subgames.
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Solution to Exercise 4.7.
(a) Only one proper subgame: it starts at Player 2’s node.
(b) Since it is the only proper subgame, it is minimal. 0

Solution to Exercise 4.8. The game under consideration is shown in Figure 4.32.

N
AWAY
/N

Figure 4.32: The game considered in Exercise 4.8.
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(a) There are three proper subgames: one starting at node x, one starting at node y and
one starting at the node of Player 3.

(b) Two: the one starting at node x and the one starting at the decision node of Player
3. In a perfect-information game a minimal subgame is one that starts at a decision
node followed only by terminal nodes. 0

Solution to Exercise 4.9. The strategic form is shown in Figure 4.33.

The Nash equilibria are: (A, (G,C),E) and (B, (H,C),F).

The extensive-form game has two proper subgames. The one on the left has a unique Nash

equilibrium: (G, E), and the one on the right has a unique Nash equilibrium: C.

Hence the game reduces to the game shown in Figure 4.34. In that game A is the unique

optimal choice. Hence there is only one subgame-perfect equilibrium, namely (A, (G,C),E).
OJ
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Player 2
GC GD HC HD
Al2 2 412 2 412 0 12 0 1
Player 1
B 314 3 2|1 4 3|4 3 2
Player 3: E
Player 2
GC GD HC HD
Al4 5 314 5 310 6 0
Player 1
B 4 3 211 4 3

Player 3: F

Figure 4.33: The strategic form for Exercise 4.9.

ST

A OO
whrh— @

Figure 4.34: The reduced extensive-form game for Exercise 4.9.
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Solution to Exercise 4.10. Consider first the subgame that starts at Player 2’s decision
node following choice A of Player 1. The strategic-form of this game is shown in Figure
4.35 (where only the payoff of Players 2 and 3 are shown). The unique Nash equilibrium
is (E,H).

Player 3
F G H
c{o 0|2 O1 1
Player2 D|1 0|1 2|2 1
E1O0 1[0 1|3 2

Figure 4.35: The strategic-form of subgame that starts at Player 2’s decision node following
choice A of Player 1.

Now consider the subgame that starts at Player 2’s decision node following choice B
of Player 1. The strategic-form of this game is shown in Figure 4.36. This game has two
Nash equilibria: (L,P) and (M, R).

Player 3

L2 1|1 0
M0 0|1 1

Player 2

Figure 4.36: The strategic-form of subgame that starts at Player 2’s decision node following
choice B of Player 1,

Thus there are two subgame-perfect equilibria of the entire game:
1. Player 1’s strategy: A;
Player 2’s strategy: E if Player 1 chooses A and L if if Player 1 chooses B;
Player 3’s strategy: H if if Player 1 chooses A and P if if Player 1 chooses B.

2. Player 1’s strategy: B;
Player 2’s strategy: E if if Player 1 chooses A and M if if Player 1 chooses B;
Player 3’s strategy: H if if Player 1 chooses A and R if if Player 1 chooses B. U
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Solution to Exercise 4.11. Given the players’ preferences, we can assign the following
utilities to the outcomes (the utility of a net gain of $x is x):

outcome Amy’s utility | Bill’s utility
Amy wins and pays $3 2 0
Amy wins and pays $4 1 0
Amy wins and pays $6 -1 0
Bill wins and pays $2 2
Bill wins and pays $3 1

In the extensive form there are only two proper subgames: they start at Amy’s singleton
information sets (the two nodes on the right).

- In both subgames Amy will choose to pass (since she values the object at $5 and thus is
not willing to pay $6).

- Replacing Amy’s left singleton node with payoffs of 2 for Amy and O for Bill, and
Amy’s right singleton node with payoffs of O for Amy and 1 for Bill, we get the reduced
game shown in Figure 4.37.

Amy

Figure 4.37: The reduced game obtained from the game of Figure 4.27 by turning the two
singleton nodes of Amy into terminal nodes.

The strategic form associated with the game of Figure 4.37 is as follows (in Amy’s
strategy the first component is the initial bet and the second component is her choice at her
information set following Bill’s choices after Amy’s bet of $2):

Bill

$2,pass 0, 2
Amy $2,$4 1,0
$3,pass 2,0
$3, $4 2,0
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This game has one Nash equilibrium: (($2,$4),$3). Thus the initial extensive-form game
has one subgame-perfect equilibrium, which is as follows: Amy’s strategy is ($2, $4, pass,
pass), Bill’s strategy is $3. The corresponding outcome is: Amy wins the auction and pays
$4. O

Solution to Exercise 4.12.
(a) The extensive-form game is shown in Figure 4.38.

Nature (the probability of
eachedgeis%)

(,o 1 1 ,9)
/ /
o T [ ) T
100 300
200 200
Y 2 \ \ Y
(3 X
Y\ \ /N
Y
o [ ) (}R :2 ‘;’ o [
200 100 200 300
100 200 V \I: T/ \1: 300 200
o [ ) [ ) [
300 100 300 200
100 300 200 300

L 7 ﬁ\]
(A 2 A
VAN VAN
[ ) @ [ ) o
100 200 100 300
200 100 300 100

Figure 4.38: The extensive-form game for Exercise 4.12.

(b) Player 1’s strategies are the same as in Example 4.3. Player 2 now has 8 strategies.
Each strategy has to specify how to reply to Player 1’s proposal depending on the
sum he (Player 2) has. Thus one possible strategy is: if [ have $100 I say No, if I
have $200 I say Yes and if I have $300 I say No. O
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Solution to Exercise 4.13.

(a) The extensive-form game is shown in Figure 4.39

-2 2 2 2 2 2 2 -2
-2 2 2 2 2 2 2 )
4 —4 4 —4 —4 4 —4 4
° o o °
2 4
> >
=\ [Red E
' John
Red
o ;
(/A Avinash
%
S
= Nature
Black Re
[ B - . @ -
Brian 2 3
=
2
Avinash

&l ack

c\ John
%f/ §
[ } ( }
2 2
2 2 2
4 —4 —4

Figure 4.39: The extensive-form game for Part (a) of Exercise 4.13
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(b) Each player has two information sets and two choices at each information set, hence
four strategies.
The strategic form is shown in Figure 4.40 (interpretation: for Avinash “if B, R, if R,
B” means “if Brian tells me B then I say R and if Brian tells me R then I say B”;

similarly for the other strategies and for the other players).

Avinash Avinash
ifB,B  ifB,B ifB,R  ifB,R ifB,B  ifB,B ifB,R  ifB,R
ifR,R __ifR,B__ifRR__ifRB ifR,R__ifR,B__ifR R __ifR B
B itar|2-24000 000|224 giEifooofooo0]ooo0|0o00
riralooojooofloooflooo| rEEElooo0{000][000[000O
;}ﬁﬁ;ﬁoooooooooooo ;gﬁ;ﬁoooooooooooo
n S22 -4looo0|ooo|-2-24 D EEXI000[000[000[000
John:if B, Bandif R, R John:if B, B and if R, B
Avinash Avinash
ifB,B  ifB,B ifB,R  ifB,R ifB,B  ifB,B  ifB,R  ifB,R
ifR.R__ifR,B__ifRR __ifRB ifR,R__ifR,B__ifRR __ifRB
B itrr|000[000[000[000| pgigr|22-4]000]000]|2-24
rirslooojoooflooofooo| I ERFloo0oo0{000[000[000
;i?ﬁ:,ﬁoooooooooooo ;iﬁ,ﬁjﬁoooooooooooo
narslooolooofooolooof MEREL2 24/ 000|000][22 4
John:if B, R and if R, R John:if B, R and if R, B

Figure 4.40: The strategic form for Part (b) of Exercise 4.13.

How can we fill in the payoffs without spending more than 24 hours on this problem?
There is a quick way of doing it. First of all, when John’s strategy is to guess Black, no
matter what Avinash says, he has a 50% chance of being right and a 50% chance of being
wrong. Thus his expected payoff is %(4) + %(—4) = 0 and the expected payoff of each of
the other two players is %(2) + %(—2) = 0. This explains why the second table is filled
with the same payoff vector, namely (0,0,0). The same reasoning applies to the case

where when John’s strategy is to guess Red, no matter what Avinash says (leading to the

third table, filled with the same payoff vector (0,0,0)).
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For the remaining strategies of John’s, one can proceed as follows:

Start with the two colors, B and R. Under B write T (for true) if Brian’s strategy says “if B
then B” and write F (for false) if Brian’s strategy says “if B then R”; similarly, under R
write T (for true) if Brian’s strategy says “if R then R” and write F (for false) if Brian’s

strategy says “if R then B”.

In the next row, in the B column rewrite what is in the previous row if Avinash’s strategy
says “if B then B” and change a T into an F or an F into a T if Avinash’s strategy says “if
B then R”. Similarly for the R column. Now repeat the same for John (in the B column a T
remains a T and an F remains an F is John’s strategy is “if B then B”, while a T is changed

into an F and an F is changed into a T if John’s strategy is “if B then R”).

Now in each column the payoffs are (—2,—2,4) if the last row has a T and (2,2,—4)
if the last row has an F. The payoffs are then given by % times the payoff in the left column

plus % times the payoff in the right column. For example, for the cell in the second row,

third column of the third table we have the calculations shown in Figure 4.41. U
B R
Brian’s strategy: T P
if B,Bandif R, B
Avinash’s strategy: B T
if B,Randif R, R
John’s strategy:
gy F T

if B,Rand if R, R

Payoffs: (2,2,—4)  (-2,-2,4)

Expected payoffs: [1(2,2,—4) 4+ 3(—2,-2,4) = (0,0,0)

Figure 4.41: The calculations for the expected payoffs.
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Solution to Exercise 4.14.

(a) The extensive-form representation of the simplified poker game is shown in Figure
4.42 (the top number is Yvonne’s net take in dollars and the bottom number is Zoe’s
net take).

G” Zoe

Bet Nature (the probability of Bet
each edge is %)

2
Foly See Fold kee Fold See Fold See
® o [ ]
1 2 1 2 1 -2 1 -2
-1 -2 -1 -2 -1 2 —1 2

Figure 4.42: The extensive-form game for Exercise 4.14.

(b) Yvonne has eight strategies (three information sets, two choices at each information

set, thus 2 X 2 x 2 = 8 possible strategies).

(c) Similarly, Zoe has eight strategies.
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(d) Yvonne uses the strategy “If A pass, if B pass, if C bet” and Zoe uses the strategy “If
A fold, if B fold, if C fold”. The table below shows how to compute the expected net

payoff for Yvonne. Zoe’s expected net payoff is the negative of that.

Top card is: A A B B C C
Second card is: B C A C A B
Probability: ST S SR S S
Yvonne’s action: pass pass pass pass bet  bet
Zoe’s action: ——— —— —— —— fold fold
Yvonne’s payoff: 1 1 —1 1 1 1

Yvonne’s expected payoff: %(1 +1—-14+1+1+1)= %.

(e) Yvonne uses the strategy “If A pass, if B pass, if C bet” and Zoe uses the strategy
“see with any card”. The table below shows how to compute the expected net payoff

for Yvonne. Zoe’s expected net payoff is the negative of that.

Top card is: A A B B C C
Second card is: B C A cC A B
Probability: I A
Yvonne’s action: pass pass pass pass bet bet
Zoe’s action: - —— —— —— see see
Yvonne’s payoff: 1 1 —1 1 -2 =2

Yvonne’s expected payoff: %(1 +1-14+1-2-2)=—

[e)1\S]

(f) The strategic form is shown in Figure 4.43.

(g) Let > denote weak dominance, that is, a > b means that a weakly dominates b.
FOR YVONNE (row player): 3" d row > 15 row, 6 row > 4" row (and also
7 row > 4™ row), 7 row > 5 row, 2" row > 8 row.
FOR ZOE (column player): 1% col > 5" col (and also 3" > 5" and 4/"> 5" and
6> 5" and 7> 5", 3> 1%, 31> 4 (and also 67> 4" and 71> 4th),
3> 7" (and also 671> 7", 274> g (and also 37 > 8" and 41> 8" and
6zh > Sth and 7th > 8”’), 6th > 2nd-
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ZOE
If A fold, If A see, If A see, If A fold, If A fold, If A see, If A see, If A fold,
I1f B fold, If B see, If B fold, If B see, If B fold, If B see, If B fold, If B see,
If C fold If C see If C fold If C fold If C see If C fold If C see If C see
!fA pass,
if B pass 0, 0 0, 0 0, 0 0, 0 0, 0 0,0 0,0 0,0
if C pass
If A bet,
if B bet 0 0 0.0
if C bet 1, -1 ) ) 4/6, -4/6 | 8/6,-8/6 | —2/6, 2/6 | 2/6, —2/6 1, -1
If A bet,
if B pass
Y if C pass 0, 0 2/6, —2/6 0, 0 1/6, —1/6 1/6, —1/6 1/6, —1/6 1/6, —1/6 2/6, —2/6
v
If A pass,
O itBpet
N ifC pass 2/6, —2/6 0, 0 -1/6, 1/6 2/6,-2/6 | 3/6,-3/6 | -1/6, 1/6 0, 0 3/6, —3/6
N
If A pass,
E if B pass
if C bet 4/6, —4/6 | -2/6, 2/6 1/6, -1/6 1/6, -1/6 4/6, —4/6 | —-2/6, 2/6 | 1/6, -1/6 1/6, -1/6
If A bet,
if B bet
if C pass 2/6, —2/6 2/6, —2/6 —1/6, 1/6 3/6, —3/6 4/6, —4/6 0, 0 1/6, -1/6 5/6, —5/6
If A bet,
if B pass
if C bet 4/6, —4/6 0, 0 1/6, —1/6 2/6,-2/6 | 5/6,-5/6 | -1/6, 1/6 | 2/6, —-2/6 | 3/6, —3/6
if A Pass,
1B or C, Bet, 1, -1 —2/6, 2/6 0, 0 3/6, —3/6 7/6,—7/6 | —3/6, 3/6 1/6, -1/6 4/6, —4/6

Figure 4.43: The strategic form for Part (f) of Exercise 4.14.

(h) Eliminating rows 1, 4, 5 and 8 and all columns except 3 and 6 we are left with the
reduced game shown below:

Zoe
See only See only
with A with A or B
Bet always 0 0 _% %
Bet only with A 0 0 1 _%
YVONNE ----------mmmmmmmmmimmmmm b
Bet only with A or B —% é 0 0
Bet only with A or C ¢ - -1 !

In this reduced game, the second row dominates the first and the third. Eliminating
them we are led to the reduced game shown below (the output of the IDWDS
procedure), which is a remarkable simplification of the original strategic form:
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Zoe
See only See only
with A with A or B
Bet only with A 0 0 ¢ ¢
DA'70) 11 1 1<t
Betonly withAorC  § —¢ —: .

Solution to Exercise 4.15.

(a) The extensive-form game is shown in Figure 4.44 (recall that the auction is a second-
price auction).

Sell to
Chinese

G
® D (G’s payoff)

0 s payoff)

0 (2’s payoff)

Auction

/ N
ARNA:

p1—1 0 pl—l P1—2
0 pp—1 0 0

Figure 4.44: The extensive form for Part (a) of Exercise 4.15.

(b) In the auction subgame for every player it is a weakly dominant strategy to bid
his own value. Thus a natural Nash equilibrium for this subgame is the dominant-
strategy profile (although there are other Nash equilibria and one could choose any
one of the alternative Nash equilibria).

Let p; = max{pi,...,pn} be the highest value and py = max{p,...,p.} \ {p;}
be the second highest value (note that p; > py since, by assumption, for all i,i’ €
{1,...,n} with i # i, p; # py). Then the auction, if it takes place, will be won by
Player j and he will pay p;. Hence there are three cases.

Case 1: p > p;. In this case Player G will sell to the Chinese (and the strategy of
Player i in the subgame is to bid p;), G’s payoff is p and the payoff of Playeriis O
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(forallie {1,...,n}).

Case 2: p < pi. In this case Player G announces the auction, the strategy of Player i
in the subgame is to bid p;, the winner is Player j and he pays py, so that the payoff
of G is py, the payoff of player j is p; — pi and the payoff of every other player is 0.
Case 3: p = py. In this case there are two subgame-perfect equilibria: one as in
Case 1 and the other as in Case 2 and G is indifferent between the two.

(¢) The extensive-form game is shown in Figure 4.45.

Sell to
Chinese
i
P (G’s payoff)
Auction 0 (I's payoff)

0 (2’s payoff)
No No Y Y

2

1
( B ¢
/Ye s Yes o (2)
$1
1 2 / _
Y No R pr—2

$2

3

oS O

A

] @
@
2 Yes $2 3
p1—2 ¢
: 1 0
p1—3 p2—3
0 $1 $2
W 2 %)
V&z V&
[ )
3 3 3 4
p1—2 -1 pi—2 p1-3
1 pp—2 -1 1

Figure 4.45: The extensive-form game for Part (c) of Exercise 4.15.

(d) In the simultaneous subgame after both players have said Yes, the participation fee

paid is a sunk cost and for every player bidding the true value is a weakly dominant
strategy. Thus the outcome there is as follows: Player 1 bids p, gets the palace
by paying p», G’s payoff is (py +2), 1’s payoff is p; — po — 1 > 0 (recall that
p1 > p2+ 1> 2) and Player 2’s payoff is —1.

In the subgames where one player said No and the other said Yes the optimal choice
is obviously x = 1, with payoffs of 2 for Player G, O for the player who said No and
pi — 2 for the player who said Yes.

Thus the game reduces to the one shown in Panel A of Figure 4.46.
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By assumption, p; > po +1 > 2, so that py —p> —1 >0 and p; —2 > 0. Thus at
the bottom node and at the left node Player 1 prefers Yes to No.
Thus the game reduces to the one shown in Panel B of Figure 4.46.

Sell to Sell to
Chinese Chinese
r—p-Q r—p-Q
. p . p
Auction 0 Auction 0
No 1 No Y 0 No 'y 0
o< - " ) 2 oe—@ )
p Yes p1—2
0 Yes 0 Yes
0 4
Y No i Y
o) ] o—>o [
2 2 p2+2
Yes 0 i —pr—1
0 i P1—DP2
Y =2 -1
( i
p2+2
p1—p2—1

(B)

Figure 4.46: The extensive-form game for Part (d) of Exercise 4.15.

Hence Player 2 will say No. The subgame-perfect equilibrium is as follows:

(a) if p > 2 then player G will sell to the Chinese (and the choices off the equilib-
rium path are as explained above) and the payoffs are (p,0,0);

(b) if p < 2 then G chooses to auction, Player 2 says No, Player 1 says Yes and then
offers $1 and the payoffs are (2, p; —2,0) (and the choices off the equilibrium
path are as explained above);

(c) if p =2 then there are two equilibria: one as in (a) and the other as in (b).

(e) When the loser is given the fraction a of the amount paid by the winner (that is, the
loser is given the fraction a of his own bid), it is no longer true that bidding one’s
true value is a dominant strategy. In fact, (p;, p2) is not even a Nash equilibrium
any more. To see this, imagine that Player 1’s true value is 10 and Player 2’s true
value is 6 and a = 50%. Then if Player 1 bids 10 and 2 bids 6, Player 2 ends up losing
the auction but being given $3, while if he increased his bid to 8 then he would still
lose the auction but receive $4. This shows that there cannot be a Nash equilibrium
where Player 2 bids less than Player 1. Now there are several Nash equilibria
of the auction, for example, all pairs (by,b) with by = by =b and p, < b < p;
provided that py —b > a(b— 1), that is, b < pll:aa (but there are more: for example
all pairs (by,b;) with by = by = b and b < p, provided that p; —b > a(b—1) and
ab > py —b)). Thus to find a subgame-perfect equilibrium of the game one first has
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®

to select a Nash equilibrium of the auction game and then apply backward induction
to see if the players would want to say Yes or No to the auction, etc.

Let us start by considering the perfect-information game that is played if the Chinese
says Yes. This is a game similar to the one discussed in Example 3.2 (Chapter 3,
Section 3.5). We first determine the losing positions. Whoever has to move when
the sum is 36 cannot win. Thus 36 is the largest losing position. Working backwards,
the losing positions are 32, 28, 24, 20, 16, 12, 8, 4 and 0. Thus the first player (=
player G) starts from a losing position: whatever his initial choice, he can be made to
choose the second time when the sum is 4, and then 8, etc. Hence the second player
(= the Chinese) has a winning strategy, which is as follows: if Player G just chose
n, then choose (4 — n). If the Chinese says Yes and then follows this strategy he can
guarantee that he will buy the palace for $50. Thus the subgame-perfect equilibrium
of this game is: the Chinese says Yes and uses the winning strategy described above
in the ensuing game, while for Player G we can pick any arbitrary choices (so that,
in fact, there are many subgame-perfect equilibria, but they share the same outcome).

O
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5. Expected Utility Theory

Money lotteries and attitudes to risk

The introduction of chance moves gives rise to probabilistic outcomes, which we called
lotteries. In Chapter 4 we restricted attention to lotteries whose outcomes are sums of
money (money lotteries) and to one possible way of ranking such lotteries, based on the
notion of risk neutrality. In this section we will continue to focus on money lotteries and
define other possible attitudes to risk, while in the next section we will consider more
general lotteries, where the outcomes need not be sums of money, and introduce the theory
of expected utility.

As before, we restrict attention to finite lotteries. Recall that a money lottery is a

probability distribution of the form

$x1 S0 ... S$x,
Pt p2 -~ Pn
(with0< p; <1, foralli=1,2,....,n, and p;+ p2+---+ p, = 1) and that (Definition

4.2.2, Chapter 4) its expected value is the number (x;p; +x2p2+ -+ + X, pn)-
If L is a money lottery, we denote by E[L] the expected value of L. Thus, for example, if

L ( $30 $45 $90
3 9 9

1 5 1 ) then E[L] =%(30)+§(45)+%(90) —45.

Recall also (Definition 4.2.3, Chapter 4) that a person is said to be risk neutral if she
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considers a money lottery to be just as good as its expected value for certain. For example,

a risk-neutral person would consider getting $45 with certainty to be just as good as playing

lottery L = ( $?0 $4515 $?O
3 9 9

We can now consider different attitudes to risk, besides risk neutrality.

Definition 5.1.1 Let L be a money lottery and consider the choice between L and getting
$EE[L] (the expected value of L) for certain . Then

* An individual who prefers $[E[L] for certain to L is said to be risk averse.

* An individual who is indifferent between $E[L] for certain and L is said to be risk

neutral.

* An individual who prefers L to $E[L] for certain is said to be risk loving.

Note that if an individual is risk neutral, has transitive preferences over money lotter-
ies and prefers more money to less, then we can tell how that individual ranks any two
money lotteries. For example, how would a risk neutral individual rank the two lotteries
$30 $45 $90 $5 $100
L1:< 1 5 ] >andL2:(3 ) )?
3 9 9 5 5
Since E[L;] = 45 and the individual is risk neutral, L; ~ $45; since E[L,] = 43 and the
individual is risk neutral, $43 ~ L,; since the individual prefers more money to less,

$45 > $43; thus, by transitivity, L; > L.

On the other hand, knowing that an individual is risk averse, has transitive preferences
over money lotteries and prefers more money to less is not sufficient to predict how she
will choose between two arbitrary money lotteries.

For example, as we will see later (see Exercise 5.11), it is possible that one risk-averse

28 10 $50
individual prefers L3 = $1 (whose expected value is 28) to Ly = ( $1 $1 )
2 2

(whose expected value is 30), while another risk-averse individual will prefer L4 to Ls.

Similarly, knowing that an individual is risk loving, has transitive preferences over money
lotteries and prefers more money to less is not sufficient to predict how she will choose

between two arbitrary money lotteries.

Note that “rationality”” does not, and should not, dictate whether an individual should
be risk neutral, risk averse or risk loving: an individual’s attitude to risk is merely
a reflection of that individual’s preferences. It is a generally accepted principle
that de gustibus non est disputandum (in matters of taste, there can be no disputes).

According to this principle, there is no such thing as an irrational preference and thus
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there is no such thing as an irrational attitude to risk. From an empirical point of view,
however, most people reveal through their choices (e.g. the decision to buy insurance)

that they are risk averse, at least when the stakes are high.

As noted above, with the exception of risk-neutral individuals, even if we restrict attention
to money lotteries we are not able to say much — in general — about how an individual
would choose among lotteries. What we need is a theory of “rational” preferences over
lotteries that (1) is general enough to cover lotteries whose outcomes are not necessarily
sums of money and (2) is capable of accounting for different attitudes to risk in the case of

money lotteries. One such theory is the theory of expected utility, to which we now turn.

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 5.4.1 at the end of this chapter.

Expected utility: theorems

The theory of expected utility was developed by the founders of game theory, namely
John von Neumann and Oskar Morgenstern, in their 1944 book Theory of Games and
Economic Behavior. In a rather unconventional way, we shall first (in this section) state
the main result of the theory (which we split into two theorems) and then (in the following
section) explain the assumptions (or axioms) behind that result. The reader who is not
interested in understanding the conceptual foundations of expected utility theory, but wants
to understand what the theory says and how it can be used, can study this section and skip
the next.

Let O be a set of basic outcomes. Note that a basic outcome need not be a sum of money:
it could be the state of an individual’s health, or whether the individual under consideration

receives an award, or whether it will rain on the day of her planned outdoor party, etc.
Let .Z(0) be the set of simple lotteries (or probability distributions) over O. We will
assume throughout that O is a finite set: O = {01,02, ...,0} (m > 2).

01 03 ... On

pr P2 - Pm
forall i=1,2,....m, and p1+pr+---+pn=1.

Thus, an element of .Z’(0) is of the form > with 0 < p; <1,

We will use the symbol L (with or without subscript) to denote an element of .Z’(0), that

1s, a simple lottery. Lotteries are used to represent situations of uncertainty. For example, if

0] 03 03 04
2 o9 L 2

5 5 5
eventually, the outcome will be one and only one of 01,03, 03,04, but does not know which

m = 4 and the individual faces the lottery L = ( > then she knows that,
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one; furthermore, she is able to quantify her uncertainty by assigning probabilities to these
outcomes.

We interpret these probabilities either as objectively obtained from relevant (past) data
or as subjective estimates by the individual. For example, an individual who is considering
whether or not to insure her bicycle against theft for the following 12 months knows that
there are two relevant basic outcomes: either the bicycle will be stolen or it will not be
stolen. Furthermore, she can look up data on past bicycle thefts in her area and use the
proportion of bicycles that were stolen as an “objective” estimate of the probability that her
bicycle will be stolen. Alternatively, she can use a more subjective estimate: for example
she might use a lower probability of theft than suggested by the data because she knows
herself to be very conscientious and — unlike other people — to always lock her bicycle
when left unattended.

The assignment of zero probability to a particular basic outcome is taken to be an
expression of belief, not impossibility: the individual is confident that the outcome will not
arise, but she cannot rule out that outcome on logical grounds or by appealing to the laws
of nature.

Among the elements of . (O) there are the degenerate lotteries that assign probability 1

01 0y 03 04
0 0 1 O
To simplify the notation we will often denote degenerate lotteries as basic outcomes, that

to one basic outcome: for example, if m = 4 one degenerate lottery is

01 0y 03 04

00 1 0 ) we will simply write o3.

is, instead of writing (
0i-1 0Oi Oit] ... Om

0O 0 1 0 O

denoted by o;. As another simplification, we will often omit those outcomes that are

Thus, in general, the degenerate lottery will be

01 02 03 0
assigned zero probability. For example, if m = 4, the lottery ( : 02 23 04 ) will be
3

[SSTE

o1 o

w

written more simply as

W=
WIS

In this chapter we shall call the individual under consideration the Decision-Maker,
or DM for short. The theory of expected utility assumes that the DM has a complete and
transitive ranking - of the elements of .Z’(0) (indeed, this is one of the axioms listed in
the next section). As in Chapter 2, the interpretation of L - L' is that the DM considers
L to be at least as good as L. By completeness, given any two lotteries L and L', either
L~ L' (the DM prefers L to L') or L' = L (the DM prefers L' to L) or L ~ L' (the DM is
indifferent between L and L'). Furthermore, by transitivity, for any three lotteries Ly, L,
and L3, if Ly 7~ L, and L, 77 L3, then L 77 L3. Besides completeness and transitivity, a

number of other “rationality” constraints are postulated on the ranking 7~ of the elements
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of Z(0); these constraints are the so-called Expected Utility Axioms and are discussed in

the next section.
Definition 5.2.1 Let O = {01,02,...,0,} be a set of basic outcomes, .Z(0) the set of
simple lotteries over O and 7~ a ranking of .Z(0). A function U : O — R, that assigns

a number (called utility) to every basic outcome is said to provide an expected utility

representation of the ranking 2~ if, for any two lotteries L = O1 =+ Om ) and
Pr -+ DPm
o[ or e om
q1 --- qm
L L'if and only if E[U(L)] > E[U(L')], and
L~ L'ifand only if E[U(L)]=E[U(L')], where
E[U(L)] is the expected value of the lottery U (L) = Ulor) ... Ulom) ,
P1 e Pm
E[U(L")] is the expected value of the lottery U (L") = ( Uler) .. Ulom) ) ,
q1 ce dm
that is,

E[U(L)] = p1U(o1)+-+-+pmU(om) and E[U(L)] =qU(01)+ ...+ quU(om).

E[U(L)] is called the expected utility of lottery L (and E[U (L")] the expected utility of
lottery L').

I Definition 5.2.2 A ranking 7~ of the elements of .Z’(O) that satisfies the Expected Utility
Axioms (listed in the next section) is called a von Neumann-Morgenstern ranking.

The following two theorems are the key results in the theory of expected utility.

Theorem 5.2.1 [von Neumann-Morgenstern, 1944]. Let O = {01,02,...,0,4} be a
set of basic outcomes and let .Z(O) be the set of simple lotteries over O. If - is
a von Neumann-Morgenstern ranking of the elements of Z(0) then there exists a

function U : O — R, called a von Neumann-Morgenstern utility function, that provides

an expected utility representation of the ranking 7~ (Definition 5.2.1).

Before we comment on Theorem 5.2.1 we give an example of how one can use it.
Theorem 5.2.1 sometimes allows us to predict an individual’s choice between two lotteries
C and D if we know how that individual ranks two different lotteries A and B. For example,

suppose that we observe that Susan is faced with the choice between lotteries A and B



180 Chapter 5. Expected Utility Theory

below and she says that she prefers A to B:

A— 01 02 03 B— o)1 02 03
0 0.25 0.75 02 0 038

With this information we can predict which of the following two lotteries C and D she will

choose, if she has von Neumann-Morgenstern preferences:

C— o]y 0y 03 D— 01 0y 03 — 0y,
0.8 0 02 0O 1 O

Let U be a von Neumann-Morgenstern utility function whose existence is guaranteed
by Theorem 5.2.1. Let U(oy) =a, U(0z) = b and U(03) = ¢ (where a, b and ¢ are
numbers). Then, since Susan prefers A to B, the expected utility of A must be greater than
the expected utility of B: 0.25b 4 0.75¢ > 0.2a + 0.8¢. This inequality is equivalent to
0.25b > 0.2a+ 0.05¢ or, dividing both sides by 0.25, b > 0.8a + 0.2¢. It follows from this
and Theorem 5.2.1 that Susan prefers D to C, because the expected utility of D is b and the
expected utility of C is 0.8a 4 0.2¢. Note that, in this example, we merely used the fact
that a von Neumann-Morgenstern utility function exists, even though we do not know what

the values of this function are.

Theorem 5.2.1 is an example of a “representation theorem” and is a generalization of a
similar result for the case of the ranking of a finite set of basic outcomes O. It is not difficult
to prove that if =~ is a complete and transitive ranking of O then there exists a function
U : O — R, called a utility function (see Chapter 2), such that, for any two basic outcomes
0,0 € 0,U(0) > U(0) if and only if 0 7Z o’. Now, it is quite possible that an individual
has a complete and transitive ranking of O, is fully aware of her ranking and yet she is not
able to answer the question “what is your utility function?”, perhaps because she has never
heard about utility functions. A utility function is a fool that we can use to represent her
ranking, nothing more than that. The same applies to von Neumann-Morgenstern rankings:
Theorem 5.2.1 tells us that if an individual has a von Neumann-Morgenstern ranking of
the set of lotteries .Z’(0) then there exists a von Neumann-Morgenstern utility function
that we can use to represent her preferences, but it would not make sense for us to ask the
individual “what is your von Neumann-Morgenstern utility function?” (indeed this was a
question that could not even be conceived before von Neumann and Morgenstern stated
and proved Theorem 5.2.1 in 1944!).

Theorem 5.2.1 tells us that a von Neumann-Morgenstern utility function exists; the
next theorem can be used to actually construct such a function, by asking the individual to
answer a few questions, formulated in a way that is fully comprehensible to her (without

using the word ‘utility’). The theorem says that, although there are many utility functions
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that represent a given von Neumann-Morgenstern ranking, once you know one function
you “know them all”, in the sense that there is a simple operation that transforms one

function into the other.

[von Neumann-Morgenstern, 1944].
Let - be a von Neumann-Morgenstern ranking of the set of simple lotteries -Z(0),

where O = {01, 02, ...,0,, }. Then the following are true.

(A) If U : O — R is a von Neumann-Morgenstern utility function that represents -,
then, for any two real numbers a and b, with a > 0, the function V : O — R
defined by V(0;) = aU(0;) +b (for every i = 1,...,m) is also a von Neumann-
Morgenstern utility function that represents 7.

B) fU:0—RandV : O — R are two von Neumann-Morgenstern utility functions
that represent ~—, then there exist two real numbers a and b, with a > 0, such that
V(oij) =aU(0;)+b (foreveryi=1,...,m).

Proof. The proof of Part A of Theorem 5.2.2 is very simple. Let a and b be two numbers,
with @ > 0. The hypothesis is that U : O — R is a von Neumann-Morgenstern utility

function that represents 77, that is, that, for any two lotteries
[ 01 ... Oy and I — 01 ... Op 7
Pr -~ DPm q1 - dm
L= L' ifand only if piU(01)+ ...+ pnU(0m) > qiU(01) +... +quU(0m) (5.1)

Multiplying both sides of the inequality in (5.1) by @ > 0 and adding (p; + -+ pm) b to
the left-hand side and (g + - - - + ¢;n) b to the right-hand side (note that p; + -+ p,, =
1=¢q1+---+¢gn) we obtain

pilaU(o1) +b)+...4+pm[aU(om) +b] > q1]aU(01) +b]+...4+gm[aU(0p) +b] (5.2)
Defining V (0;) = aU (0;) + b, it follows from (5.1) and (5.2) that
L= L' ifand only if p\V(o1)+...+pmV(om) > q1V(01) +...+quV (0m),

that is, the function V is a von Neumann-Morgenstern utility function that represents the
ranking 7~. The proof of Part B will be given later, after introducing more notation and

some observations. [ |

Suppose that the DM has a von Neumann-Morgenstern ranking of the set of lotteries
Z(0). Since among the lotteries there are the degenerate ones that assign probability 1

to a single basic outcome (so that the set of basic outcomes O can be viewed as a subset
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of £(0)), it follows that the DM has a complete and transitive ranking of the basic
outcomes.! We shall write 0y, for a best basic outcome, that is, a basic outcome which
is at least as good as any other basic outcome (0p,y 2~ 0, for every o € O) and 00,5 for
a worst basic outcome, that is, a basic outcome such that every other outcome is at least
as good as it (0 7~ 0yers, for every o € O). Note that there may be several best outcomes
(then the DM would be indifferent among them) and several worst outcomes; then 0pg
will denote an arbitrary best outcome and 0,5y an arbitrary worst outcome. We shall
assume throughout that the DM is not indifferent among all the outcomes, that is, we shall

assume that opes; > Opors-

We now show that, in virtue of Theorem 5.2.2, among the von Neumann-Morgenstern
utility functions that represent a given von Neumann-Morgenstern ranking 7~ of .Z(0),
there is one that assigns the value 1 to the best basic outcome(s) and the value O to the
worst basic outcome(s). To see this, consider an arbitrary von Neumann-Morgenstern
utility function F : O — R that represents - and define G : O — R as follows: for every
0 € 0,G(0) =F(0) —F(0worst)-

Then, by Theorem 5.2.2 (with a = 1 and b = —F (0yorst)), G is also a utility function that
represents 7, and, by construction, G(0yorst) = F (0yworst) — F(0worst) = 0; note also that,
SINCE Opegr > Oworst» it follows that G(opes ) > 0.

Finally, define U : O — R as follows: for every o € O, U(0) = % .

Then, by Theorem 5.2.2 (with a = m > 0 and b = 0), U is a utility function that
represents 2~ and, by construction, U (0yorst) = 0 and U (0pes) = 1.

For example, if there are six basic outcomes and the ranking of the basic outcomes is
03 ~ 0g = 0] = 04 > 0y ~ 05, then one can take as o0y, either 03 or o0g and as o0yrs
01 0y 03 04 05 O0g
2 -2 8 0 -2

01 02 03 04 05 O0g

either 0, or os; furthermore, if F' is given by then G is the

) 01 02 03 04 05 O0g . )
function and U is the function
4 0 10 2 0 10 04 0 1 02 O 1

Definition 5.2.3 Let U : O — R be a utility function that represents a given von
Neumann-Morgenstern ranking 2~ of the set of lotteries .Z’(0). We say that U is
normalized if U(0yorst) =0 and U (0pes) = 1.

The transformations described above show how to normalize any given utility function.
Armed with the notion of a normalized utility function we can now complete the proof of
Theorem 5.2.2.

"Note that we take as primitive the ranking of the set of lotteries .#’(0) and derive from it the ranking of
the set of basic outcomes O.
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Proof of Part B of Theorem 5.2.2. Let U: 0 — R and V : O — R be two von
Neumann-Morgenstern utility functions that represent a given von Neumann-Morgenstern
ranking of .Z(0).

Let U* : O — R be the normalization of U and V* : O — R be the normalization of V.
First we show that it must be that U* = V*, that is, U*(0) = V*(0) for every o € O.
Suppose, by contradiction, that there is an 6 € O such that U*(6) # V*(6). Without loss of
generality we can assume that U*(0) > V*(0).

Opest  Oworst

Construct the following lottery: L = with p = U*(8) (recall that U* is

5 1—5
normalized and thus takes on values in thé) intervall;rom Oto1).

Then E[U*(L)] = E[V*(L)] = U*(6) (since U (0pest) = V*(Opesr) = 1 and U* (0yorst) =
V*(oworst) = 0). Hence, according to U™ it must be that 6 ~ L (this follows from Theorem
5.2.1), while according to V* it must be (again, by Theorem 5.2.1) that L > ¢ (since
E[V*(L)] = U*(6) and, by hypothesis, U*(6) > V*(0)), yielding a contradiction.

1 _ U(Oworst) L
Ulons) =0 onara) and b = Ulona)=0 (onara) * Note that a; > 0. Then it is

straightforward to verify that, for every o € O, U*(0) = a;U(0) + b;.

_ M
and by = — o~ g

Now let a; =

Similarly let ap = 37—

Vo —Viowms) ; again, ap > 0 and, for every

0 € 0,V*(0) = azV (o) + by. We can invert the latter transformation and obtain that, for

Vo) by
a a’

every o € 0,V (o) =

Thus, we can transform U into U*, which — as proved above — is the same as V*, and

then transform V* into V thus obtaining the following transformation of U into V: V(o) =

aU(o)+bwherea:Z—é>0andb:%. |

Theorem 5.2.2 is often stated as follows: a utility function that provides an expected
utility representation of a von Neumann-Morgenstern ranking 2~ of .Z(0) is unique
up to a positive affine transformation.” Because of Theorem 5.2.2, a von Neumann-
Morgenstern utility function is usually referred to as a cardinal utility function, in
order to distinguish it from a purely ordinal utility function. An ordinal utility function
U : O — R merely represents a ranking = of the elements of O, in the sense that 0 =~ o’
if and only if U(0) > U(0’). If U is an ordinal utility function, then so is the function
V(o) = f(U(0)) obtained by applying an increasing transformation f : R — R to
U, that is, any transformation f : R — R such that x > x’ implies f(x) > f(x). For

example, if U : O — R is an ordinal utility function that represents the ranking 2~ of

2An affine transformation is a function f : R — R of the form f(x) = ax+ b with a,b € R. The affine
transformation is positive if a > 0. Clearly a positive affine transformation f(x) = ax+ b is an increasing
function, that is, if x > x’ then f(x) > f(x'), but not every increasing function is an affine transformation; for
example, the function f(x) = 2* is an increasing, but not an affine, function.



184 Chapter 5. Expected Utility Theory

the elements of O, then so is the function V : O — R given by V(0) = 2Y(°) (since

the function f(x) = 2* is an increasing function).

Theorem 5.2.1 guarantees the existence of a utility function that represents a given
von Neumann-Morgenstern ranking 2~ of .Z(0) and Theorem 5.2.2 characterizes the set
of such functions. Can one actually construct a utility function that represents a given
ranking? The answer is affirmative: if there are m basic outcomes one can construct an
individual’s von Neumann-Morgenstern utility function by asking her at most (m — 1)
questions. The first question is “what is your ranking of the basic outcomes?”. Then
we can construct the normalized utility function by first assigning the value 1 to the
best outcome(s) and the value O to the worst outcome(s). This leaves us with at most
(m —2) values to determine. For this we appeal to one of the axioms discussed in the next
section, namely the Continuity Axiom, which says that, for every basic outcome o; there
is a probability p; € [0,1] such that the DM is indifferent between o; for certain and the
lottery that gives a best outcome with probability p; and a worst outcome with probability

Opest  Oworst
pi 1—pi
not been determined yet, we should ask the individual to tell us the value of p; such that

(1—=pj): oj~ . Thus, for each basic outcome o; for which a utility has

0 0 .
0; ~ ( best lw"r St ) ; then we can set U(o;) = p;, because the expected utility of the
Di —Ppi

o o .
lottery < ;e.st 1W0r;t > 18 piU(obest> + (1 _pi) U<0w0rst) = pi(l) + (1 _pi)o = Di.
i — Vi

= Example 5.1 Suppose that there are five basic outcomes, that is, O = {01,07,03,04,05 }
and the DM, who has von Neumann-Morgenstern preferences, tells us that her ranking of

the basic outcomes is as follows: 0y > 0] ~ 05 > 03 ~ 04.

- Then we can begin by assigning utility 1 to the best outcome 0, and utility O to the worst

outcome: 01 02 03 04 05

outcomes 03 and 04: B
utility: 2 1 0 0 ?

- There is only one value left to be determined, namely the utility of o; (which is also the

utility of os, since 01 ~ 05).
- To find this value, we ask the DM to tell us what value of p makes her indifferent between

the lottery L = ( 92 103 > and outcome o1 with certainty.
p 1=p

- Suppose that her answer is: 0.4. Then her normalized von Neumann-Morgenstern utility

L. outcome: 01 02 03 04 05
function is .

utility: 04 1 0 0 04
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Knowing this, we can predict her choice among any set of lotteries over these five basic

outcomes.

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 5.4.2 at the end of this chapter.

Expected utility: the axioms

We can now turn to the list of rationality axioms proposed by von Neumann and Morgen-
stern. This section makes heavy use of mathematical notation and, as mentioned in the
previous section, if the reader is not interested in understanding in what sense the theory
of expected utility captures the notion of rationality, he/she can skip it without affecting

his/her ability to understand the rest of this book.

Let O = {01,02,...,0n} be the set of basic outcomes and .Z(0) the set of simple
lotteries, that is, the set of probability distributions over O. Let 7, be a binary relation on
Z(0). We say that 2~ is a von Neumann-Morgenstern ranking of .Z'(0) if it satisfies the

following four axioms or properties.

Axiom 1 [Completeness and Transitivity]. > is complete (for every two lotteries L and
L' either L = L' or L’ =~ L or both) and transitive (for any three lotteries Ly, L, and L3, if
L i L, and L, r>\: L3 then L; i’/ L3).

As noted in the previous section, Axiom 1 implies that there is a complete and transitive
ranking of the basic outcomes. Recall that 0.5 denotes a best basic outcome and 0,05
denotes a worst basic outcome and that we are assuming that 0pes; > Oyorst, that is, that the

DM is not indifferent among all the basic outcomes.

o o Y o O
Axiom 2 [Monotonicity]. | ¢ " ) = [ TPt Twot ) ifand only if p > g.
p l-p g l—g

Axiom 3 [Continuity]. For every basic outcome o; there is a p; € [0, 1] such that
Obest  Oworst
0 ~ .
( pi 1-—pi )

Before we introduce the last axiom we need to define a compound lottery.
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X1 X2 ... X
Definition 5.3.1 A compound lottery is a lottery of the form b2 '
pP1 D2 Pr

where each x; is either an element of O or an element of .Z(0).

For example, let O = {01,02,03,04}.

01 02 03 04 \. .
Then L = 21 2 13 24 ) is a simple lottery (an element of .Z(0)),
5 05 5
01 03 03 04 01 03 03 04
A T T T R O S T
while C = 36 3 6 > >3 is a compound lottery,’
1 1 1
2 4 4

which can be viewed graphically as a tree, as shown in Figure 5.1.

0] 07 03 04 01 01 03 04

Figure 5.1: A compound lottery.

SWith r =3, x; = (

4>\~W\'—S
=
(98]
[=)}

pi=3%,py=7and p3=
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X1 X2 ... X
Definition 5.3.2 Given a compound lottery C = b " | the correspond-

pr p2 --- Pr

19) 0] e O
ing simple lottery L(C) = | *' 7 ;
91 92 -~ qm

i=1,...,mand j=1,...,r, define

) is defined as follows. First of all, for

1 ifx]'ZO,‘
(x)) 0 ifx;=orwithk#i
Oin =
. o ... 0Oj—1 0Oj Ojy+1 ... Op
Si lejZ
St oo Si—1 S Si+1 --- Sm

r
Then qi = .Zl pj oi(xj).
J:

Continuing the above example where

o1 03 03 04 o1 02 03 04
O S U A U
C = 3 6 3 6 5
1 1
2 4

01 0y 03 04
L1 ] m=a and x3 =

thus r = 3, x1:< )
3 6 3 6

have that

/\
N|—
Q
N
Q
W
v @
N~
<
a

01()6'1) = %7 OI(XZ) = 1, and 01()(,‘3) = %
and thus g1 = 1 (3) + 3D + 1 () =2 Similarly, ¢ =} (}) + 1O+ (0) = 5 =&,
= () 410+ () =B and gy = L (1) + 1)+ 1 (3) = . These numbers

correspond to multiplying the probabilities along the edges of the tree of Figure 5.1 leading
to an outcome, as shown in Figure 5.2, and then — for each outcome — adding up the
probabilities associated with it, as shown in Figure 5.3. Thus, the simple lottery L(C)

01 02 03 04

28 5 13 14

that corresponds to C is L(C) = (
60 60 60 60

) , namely the lottery shown in Figure

534

4Since, for every compound lottery, there is a corresponding simple lottery, one can derive from the
ranking 7 of the set of simple lotteries . (0) a ranking of the set of compound lotteries €' (O) as follows:
for every C,C’ € €(0), C 7 C' if and only if L(C) 77 L(C"). Thus, from the primitive ranking = over .£(0)
we have derived two rankings: one over O and the other over € (0).
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A=
Sl
QN —
Sl=
N
Sl
S
S

01 02 03 04 o1 01 03 04

Figure 5.2: Simplification of Figure 5.1 obtained by merging paths into simple edges and
associating with the simple edges the products of the probabilities along the path.

14
60

04

Figure 5.3: Simplification of Figure 5.2 obtained by adding, for each outcome, the proba-
bilities of that outcome.

Axiom 4 [Independence]. Consider an arbitrary basic outcome o; and an arbitrary sim-
or .. 0Oi—1 O0; O0Oj+1 ... Opy

ple lottery L =
Pt - Pi-1 Pi Pi+1 - Pm

0; ~ L, then L ~ M where M is the simple lottery corresponding to the compound lottery

> . If L is a simple lottery such that

o1 .. o0i1 L oi1 .. om . . P
C= obtained by replacing o; with L in L.
pr .. Pi-1 Pi Pi+1 - Pm

We can now prove the first theorem of the previous section.

Proof of Theorem 5.2.1. To simplify the notation, throughout this proof we will assume

that we have renumbered the basic outcomes in such a way that oy, = 01 and oyorst = 0.

. . 0 0

First of all, for every basic outcome o;, let u; € [0,1] be such that o; ~ ! | "
u; — U;

The existence of such a value u; is guaranteed by the Continuity Axiom (Axiom 3); clearly
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o0 oo O
u; = 1 and u,,, = 0. Now consider an arbitrary lottery L; = ! " | . First we
D1 Pm
show that
01 Om
Ly~ (5.3)

1

m m
21 piui 1— '21 pilti

1

This is done through a repeated application of the Independence Axiom (Axiom 4), as

follows. Consider the compound lottery

0] o3 ... Oy
G = uy 1—un

pP1 p2 pP3 -+ Pm

uy 1—un
considers to be just as good as 0;. The simple lottery corresponding to C; is

L2=L(C2)=( 01 03 ... Om—1 Om )

p1+pu2 p3 ... DPm—1 Pm-i-l?z(l—uz)

obtained by replacing o, in lottery L; with the lottery or Om > that the DM

Note that 0, is assigned probability O in L, and thus we have omitted it. By Axiom 4,
Li ~ L. Now apply the same argument to L,: let

01 Om
01 Om
G = uy 1—us

p1+ pauty P3 oo Pmt+pa(l—up)

whose corresponding simple lottery is

01 - Om
Ly =L(C3) = .
p1+pua+psuz ... pm+p2(l—u2)+p3(l—us)
Note, again, that o3 is assigned probability zero in L3. By Axiom 4, L, ~ L3; thus, by

transitivity (since L; ~ L, and L, ~ L3) we have that L| ~ L3. Repeating this argument
we get that L ~ L,,,_1, where

01 Om
Ly 1= :
" ( pi+paun+ ..t pmoitm—r pmtpa(l—u2)+ ..+ pm—1(l —ttm—1) )
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Since u; =1 (so that pyu; = p1) and u,, = 0 (so that p,,u,, = 0),

m
p1+pur~+ ...+ pm_1py—1 = Zpiui
i=1
and
-1 m m—1
p2(l—u2)+ ... pm—1(1 —thyy—1) + pm = sz Z piti =p1+ Y, pi— Y, pitli— P
=2 i=2 i=2
m m—1 m
= (since u1=1 and u;,=0) Zpi - Z pPiti — p1ul — PmlUm = m 1 - Zpiui
i=1 =2 (Smee L Pi:l) i=1
01 Om
Thus, L,,—1 = m m , which proves (5.3). Now define the following

Z] piui 11— _Zl pitti
i= i=
utility function U : {oy,...,0n} — [0,1]: U(0;) = u;, where, as before, for every basic

01 Om

outcome o;, u; € [0, 1] is such that o; ~ . Consider two arbitrary lotteries

u; 1-— uj;
L= 7 Vandr/=( °" 7 ™ ). We want to show that L == L' if and only
P1 Pm q1 -~ dm
m m
if E[U(L)] > E[U(L")], that is, if and only if Y, pu; > ¥ qu;. By (5.3), L ~ M, where
1 i=1

i=

01 Om . , , 01 Om
M = m m and also L' ~ M’, where M’ = m m
'Zl piui 11— 'Zl pitt; Z qiui 1— ): qilli
i= i=

Thus, by transitivity of =, L = L if and only 1f M = M'; by the Mon0t0n1c1ty Axiom
(Axiom 2), M = M’ if and only if Z pilti > Z qiu;. Therefore, L = L' if and only if

EU(L)] = ¥ pun> ¥ g = BlU(L). .

The following example, known as the Allais paradox, suggests that one should view
expected utility theory as a “prescriptive” or “normative” theory (that is, as a theory
about how rational people should choose) rather than as a descriptive theory (that is,
as a theory about the actual behavior of individuals). In 1953 the French economist
Maurice Allais published a paper regarding a survey he had conducted in 1952 concerning
a hypothetical decision problem. Subjects “with good training in and knowledge of the
theory of probability, so that they could be considered to behave rationally” were asked to

rank the following pairs of lotteries:

( $5 Million  $0 ) ($1 Million  $0 )
— versus B =

89 11 90 10

100 100 100 100
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and

89 100 L 1
100 100 100

$5 Million  $1 Million  $0 $1 Million
C= versus D = .
Most subjects reported the following ranking: A > B and D > C. Such ranking violates
the axioms of expected utility. To see this, let O = {01,02,03} with 0; = $5 Million,

0> = $1 Million and o3 = $0. Let us assume that the individual in question prefers more

money to less, so that 01 > 02 > 03 and has a von Neumann-Morgenstern ranking of

5 Million 0
the lotteries over .Z(0) . Let up € (0,1) be such that D ~ 55 Milli . 5 (the
up —up

existence of such uj is guaranteed by the Continuity Axiom). Then, since D > C, by

transitivity

($5 Million ~ $0 ) - 54)

Uy 1—u

Let C’ be the simple lottery corresponding to the compound lottery

5 Milli 0
$5 Million <$ illion $ ) $0

U 1—up
89 10 1
100 100 100
$5 Million $0
/ __
ThenC—<&+£u 1_(&4_&”))
100 T 10042 100 T 100%2

By the Independence Axiom, C ~ C’ and thus, by (5.4) and transitivity,

( $5 Million ~ $0 ) . ( $5 Million $0 )
89 10 89 10 :
Uy 1 —up 100 o042 1= (300 + To0t2)

Hence, by the Monotonicity Axiom, u, > % + %uz, that is,
uy > 53 (5.5)

Let B’ be the simple lottery corresponding to the following compound lottery, constructed
$5 Million ~ $0 ) .

from B by replacing the basic outcome ‘$1 Million’ with |
us —Uup

<$5 Million  $0 ) %

Uy 1—u

90 10
100 100

Then
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, $5 Million $0
B = 90 1 — 90 :

Too 42 Too 42

By the Independence Axiom, B ~ B'; thus, since A = B, by transitivity, A = B’ and therefore,

89

by the Monotonicity Axiom, % > %uz, that is, uy < 90°

contradicting (5.5).

Thus, if one finds the expected utility axioms compelling as axioms of rationality, then one

cannot consistently express a preference for A over B and also a preference for D over C.

Another well-known example is the Ellsberg paradox. Suppose that you are told that
an urn contains 30 red balls and 60 additional balls that are either blue or yellow. You
don’t know how many blue or how many yellow balls there are, but the number of blue
balls plus the number of yellow ball equals 60 (they could be all blue or all yellow or any
combination of the two). The balls are well mixed so that each individual ball is as likely

to be drawn as any other. You are given a choice between bets A and B, where

A =you get $100 if you pick a red ball and nothing otherwise,
B = you get $100 if you pick a blue ball and nothing otherwise.

Many subjects in experiments state a strict preference for A over B: A > B. Consider now

the following bets:

C =you get $100 if you pick a red or yellow ball and nothing otherwise,
D = you get $100 if you pick a blue or yellow ball and nothing otherwise.

Do the axioms of expected utility constrain your ranking of C and D? Many subjects in
experiments state the following ranking: A > B and D 7~ C. All such people violate the
axioms of expected utility. The fraction of red balls in the urn is % = % Let p; be the
fraction of blue balls and p3 the fraction of yellow balls (either of these can be zero: all

we know is that pr + p3 = 8—8 = % ). Then A, B,C and D can be viewed as the following

100 0 100 0
A $ 1 $  B— $ 1 $
3 P2tp3 P2 3+p3

100 100 0
Co 1$ $ b= $ X $1
3+pP3 D2 p2t+p3=3 3

Let U be the normalized von Neumann-Morgenstern utility function that represents the
individual’s ranking; then (assuming that she prefers $100 to $0) U ($100) =1 and U(0) =
0. Thus,

lotteries:

E[UA) =1, E[UMB)=py E[UC)=1+ps, and E[U(D)]=ps+p;=2.

W=
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Hence, A > B if and only if% > py, which implies that p3 > %, sothat E[U(C)] = %+p3 >
E[U(D)] = % and thus C > D (similarly, B > A if and only if % < p2, which implies that

E[U(C)] < E[U(D)] and thus D - C).

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 5.4.3 at the end of this chapter.

5.4 Exercises

The solutions to the following exercises are given in Section 5.5 at the end of this chapter.

5.4.1 Exercises for Section 5.1: Money lotteries and attitudes to risk

Exercise 5.1 What is the expected value of the following lottery?

24 12 48 6
12 1 2
6 6 6 6

Exercise 5.2 Consider the following lottery:

01 02 03
1 1 1
i 2 4

* 0] = you get an invitation to have dinner at the White House,
* 0y = you get (for free) a puppy of your choice,
* 03 = you get $600.

What is the expected value of this lottery?

where
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Consider the following money lottery

L ( $10 $15 $18 $20 $25 $30 $36 )
om0 5 B 0 5
(a) What is the expected value of the lottery?

(b) Ann prefers more money to less and has transitive preferences. She says that,
between getting $20 for certain and playing the above lottery, she would prefer
$20 for certain. What is her attitude to risk?

(c) Bob prefers more money to less and has transitive preferences. He says that,
given the same choice as Ann, he would prefer playing the lottery. What is his

attitude to risk?

Sam has a debilitating illness and has been offered two mutually exclusive
courses of action: (1) take some well-known drugs which have been tested for a long
time and (2) take a new experimental drug. If he chooses (1) then for certain his pain
will be reduced to a bearable level. If he chooses (2) then he has a 50% chance of being
completely cured and a 50% chance of no benefits from the drug and possibly some
harmful side effects. He chose (1). What is his attitude to risk?

Exercises for Section 5.2: Expected utility theory

Ben is offered a choice between the following two money lotteries:

4,000 $0 3,000
A= 3, v and B= 53, .
0.8 02 1
He says he strictly prefers B to A. Which of the following two lotteries, C and D, will

Ben choose if he satisfies the axioms of expected utility and prefers more money to

c $4.000 $0 b $3,000 $0
B 02 08 )’ ~\ 025 075 )

less?

There are three basic outcomes: 01,0, and 03. Ann satisfies the axioms of
expected utility theory and her preferences over lotteries involving these three outcomes
can be represented by the following von Neumann-Morgenstern utility function:
V(02) =a>V(o1) =b >V(03) = c. Normalize the utility function.
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Exercise 5.7 Consider the following lotteries:

$3000 $500 $3000 $500
L= 5 1 , L= 5 1 ;

6 6 3 3

1 1 1 1 4= 1 1

1 1 1 1 2 2

. ( $3000 $2000 $1000 $500 ) . ( $2000 $1000 )

3= 0 =h '
Jennifer says that she is indifferent between lottery L; and getting $2,000 for certain.
She is also indifferent between lottery L, and getting $1,000 for certain. Finally, she
says that between L3 and L4 she would chose L3.

Is she rational according to the theory of expected utility? [Assume that she prefers

more money to less.] ]

Exercise 5.8 Consider the following basic outcomes:
* 01 = a Summer internship at the White House,
* 0) = a free one-week vacation in Europe,
* 03 = $800,
* 04 = a free ticket to a concert.
Rachel says that her ranking of these outcomes is 07 > 07 > 03 > 04. She also says that

01 04
4 1
5 5

(1) she is indifferent between o0, and ( and (2) she is indifferent between o3

01 04
1 1

. 0y 0y 03 o 01 0y o .
lotterlesL1:< b 72 % o4 ) andL2:< b %293 ) will she choose? .

and . If she satisfies the axioms of expected utility theory, which of the two

2 3 2 3 1

2 3 2 3 1
8 8 8 8 5 5 5

Exercise 5.9 Consider the following lotteries: L; =

. ( $30 $28 $8 )

2 1 1 2 4

1 1 1 1 1

$30 $28 $24 $18 $8>

1L 4 5
0 10 10
(a) Which lottery would a risk neutral person choose?
(b) Paul’s von Neumann-Morgenstern utility-of-money function is U (m) = In(m),

where /n denotes the natural logarithm. Which lottery would Paul choose?
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Exercise 5.10 There are five basic outcomes. Jane has a von Neumann-Morgenstern

ranking of the set of lotteries over the set of basic outcomes that can be represented by
o1 02 03 04 O5

either of the following utility functionsU and V: | U: 44 170 —10 26 98

V. 32 95 5 23 59
(a) Show how to normalize each of U and V and verify that you get the same

normalized utility function.
(b) Show how to transform U into V with a positive affine transformation of the form

x+— ax—+bwitha,b € R and a > 0.

1 1 1
2 2
(a) Ann has the following von Neumann-Morgenstern utility function:
Uann($m) = \/m. How does she rank the two lotteries?

28 10 $50
Exercise 5.11 Consider the following lotteries: L3 = < $ ),L4 = ( $ . $ : >

(b) Bob has the following von Neumann-Morgenstern utility function:

4 .
Upop($m) = 2m — %. How does he rank the two lotteries?

(c) Verity that both Ann and Bob are risk averse, by determining what they would

choose between lottery L4 and its expected value for certain.

5.4.3 Exercises for Section 5.3: Expected utility axioms

Exercise 5.12 Let O = {01,02,03,04}. Find the simple lottery corresponding to the

(5

following compound lottery

N
v S
S-S
3w §
N— E
~___—
Q
[\®)
N
= S
o= wi— S
wilw E

B[ —
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Let O = {01,03,03,04}. Suppose that the DM has a von Neumann-
Morgenstern ranking of .Z(0) and states the following indifference:

02 04 03 04
o1 ~ 1 3 and 0y ~ 3 2 o
4 14 5 5

5 . . 01 0 03 04
Find a lottery that the DM considers to be justas goodasL=| * ,° = | ) .
3 9 9 3

Do not add any information to what is given above (in particular, do not make any

assumptions about which outcome is best and which is worst).

— xx+ Challenging Question x x x.

Would you be willing to pay more in order to reduce the probability of dying within
the next hour from one sixth to zero or from four sixths to three sixths? Unfortunately,
this is not a hypothetical question: you accidentally entered the office of a mad scientist
and have been overpowered and tied to a chair. The mad scientist has put six glasses in
front of you, numbered 1 to 6, and tells you that one of them contains a deadly poison
and the other five contain a harmless liquid. He says that he is going to roll a die and
make you drink from the glass whose number matches the number that shows from the
rolling of the die. You beg to be exempted and he asks you “what is the largest amount
of money that you would be willing to pay to replace the glass containing the poison
with one containing a harmless liquid?”. Interpret this question as “what sum of money
x makes you indifferent between (1) leaving the poison in whichever glass contains
it and rolling the die, and (2) reducing your wealth by $x and rolling the die after the
poison has been replaced by a harmless liquid”. Your answer is: $X. Then he asks you
“suppose that instead of one glass with poison there had been four glasses with poison
(and two with a harmless liquid); what is the largest amount of money that you would
be willing to pay to replace one glass with poison with a glass containing a harmless
liquid (and thus roll the die with 3 glasses with poison and 3 with a harmless liquid)?”.
Your answer is: $Y. Show that if X > Y then you do not satisfy the axioms of Expected
Utility Theory. [Hint: think about what the basic outcomes are; assume that you do not
care about how much money is left in your estate if you die and that, when alive, you

prefer more money to less.]
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Solutions to Exercises

1 2 1
6 6 6
L24)+2(12) + £ (48) + 2(6) = 18. O

) ) 24 12 48 6 ) .
Solution to Exercise 5.1 The expected value of the lottery , |18
6

Solution to Exercise 5.2 This was a trick question! There is no expected value because

the basic outcomes are not numbers. O

Solution to Exercise 5.3

(a) The expected value of the lottery

L_<$10 $15 $18 $20 $25 $30 $36>

3 1 0 3 2 0 3

1 1

I 12

1

isEL] = 5 (10)+ 15 (15)+ (0)(18) + 3(20) + 5 (25) +(0)(30) + (36) = 283 =
$21.92

(b) Since Ann prefers more money to less, she prefers $21.92(= E|[L]) to $20 (E[L] >
$20). She said that she prefers $20 to lottery L ($20 > L). Thus, since her preferences
are transitive, she prefers E[L] to lottery L (E[L] > L). Hence, she is risk averse.

(c) The answer is: we cannot tell. First of all, since Bob prefers more money to less,
he prefers $21.92 to $20 ($21.92 > $20). Bob could be risk neutral, because a risk
neutral person would be indifferent between L and $21.92 = E[L] (L ~ $21.92);
since Bob prefers $21.92 to $20 and has transitive preferences, if risk neutral he
would prefer L to $20.

However, Bob could also be risk loving: a risk-loving person prefers L to $21.92 =
E[L] (L > $21.92) and we know that he prefers $21.92 to $20 ($21.92 - $20); thus,
by transitivity, if risk loving, he would prefer L to $20.

But Bob could also be risk averse: he could consistently prefer $21.92 to L and L to
$20 (for example, he could consider L to be just as good as $20.50). U

Solution to Exercise 5.4 Just like Exercise 5.2, this was a trick question! Here the basic
outcomes are not sums of money but states of health. Since the described choice is not one

between money lotteries, the definitions of risk aversion/neutrality/love are not applicable.
O
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Solution to Exercise 5.5 Since Ben prefers B to A, he must prefer D to C.
Proof. Let U be a von Neumann-Morgenstern utility function that represents Ben’s

preferences.

Let U($4,000) = a,U($3,000) = b and U ($0) = c.

Since Ben prefers more money to less, a > b > c.

Then E[U(A)] = 0.8 U($4,000) +0.2 U($0) = 0.8a + 0.2 and
E[U(B)] = U($3,000) = b.

Since Ben prefers B to A, it must be that » > 0.8a+ 0.2c.

Let us now compare C and D: E[U(C)] =0.2a+0.8c and E[U(D)] = 0.25b+0.75c¢.

- Since b > 0.8a+0.2¢, 0.25b > 0.25(0.8a+0.2¢) = 0.2a+ 0.05¢ and thus,
adding 0.75c¢ to both sides, we get that 0.25b+0.75¢ > 0.2a + 0.8c, that is,
E[U(D)] > E[U(C)], so that D > C.

Note that the proof would have been somewhat easier if we had taken the normalized utility

function, so thata = 1 and ¢ = 0. O

Solution to Exercise 5.6 Define the function U as follows:
_ 1 _ V(x)—c . 1
U(x) = = V(x) — ;5 = — = (note that, by hypothesis, a > ¢ and thus _-— > 0).

a—c
By Theorem 5.2.2, U represents the same preferences as V.

Then U(0;) = Vio)—c _a—c _q U(o)) = Vio=c _ b—c ang U(o3) = Vis)—c _ e=c _ ),

a—c a—c a—c a—c’ a—c a—c

Note that, sincea>b>c,0<lﬁ<l. O

Solution to Exercise 5.7 We can take the set of basic outcomes to be

{$3000, $2000, $1000,$500}. Suppose that there is a von Neumann-Morgenstern utility
function U that represents Jennifer’s preferences. We can normalize it so that U ($3000) = 1
and U($500) = 0.

- Since Jennifer is indifferent between L; and $2000, U ($2000) = % (because the
expected utility of L, is %(1) + %(0) = %).
- Since she is indifferent between L, and $1000, U ($1000) = % (because the expected
utility of Ly is 3(1) + £(0) = 2).
Thus, E[U(L3)] = 3 (1) +3 (3) + 1 (5) +3(0) = g and E[U (L4)] = 5 (§) +3 (5) = 3.

Since % > %, Jennifer should prefer L4 to L3. Hence, she is not rational according to the

theory of expected utility. |
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Solution to Exercise 5.8 Normalize her utility function so that U(o1) =1 and U(04) = 0.

Since Rachel is indifferent between 0, and ( a1

IS

1
5
. ... 01 04 1 o
since she is indifferent between oz and | , U(03) = 5. Then the expected utility
2 2
3
8

01 02 03 04 .
ofL1:< L s > is §(1)+2(3)+2(3)+3(0)=35 =05125,
8 8 8 8

while the expected utility of L, = 011 032 013 18 %(1) + %(%) + %(%) = % =0.78
5 35 53
Hence, she prefers L; to L. O

Solution to Exercise 5.9
(a) The expected value of L; is %(30) + 15(28) + 15(24) + % (18) + 15(8) = 18 and
the expected value of L, is 1—10(30) + %(28) + %8 = 18.2.
Hence, a risk-neutral person would prefer L; to L.
(b) The expected utility of L; is +1n(30) + 151n(28) + 151n(24) + £ In(18) + ZIn(8) =
2.741 while the expected utility of L, is 15 1n(30) + 1n(28) + 3 In(8) = 2.713.
Thus, Paul would choose L; (since he prefers L; to Ly). O

Solution to Exercise 5.10
(a) To normalize U first add 10 to each value and then divide by 180. Denote the
normalization of U by U.
Then

01 07 03 04 05
U: 24 — 180 0 _ o 36 _ 108 _
U: 180 — 0.3 180 — 1 180 — 0 180 — 0.2 180 — 0.6

To normalize V first subtract 5 from each value and then divide by 90. Denote the

normalization of V by V.
Then

(] 02 03 04 05
V. 27— N0 _1 0 _g 18_ 54 _
Vi 55=03 =1 55=0 55=02 5=06

(b) The transformation is of the form V(o) = aU (o) + b. To find the values of a and b
dd4a+b=132

170a+b =95
The solution is a = %, b =10. Thus, V(o) = %U(o) + 10. O

plug in two sets of values and solve the system of equations {



5.5 Solutions to Exercises 201

Solution to Exercise 5.11
(a) Ann prefers L3 to Ly (L3 =aun Lg). In fact, E[Usn,(L3)] = v28 = 5.2915 while

E [Uann(La)] = 3v/10+ 3v/50 = 5.1167.

(b) Bob prefers Ly to L3 (Ls >pop L3). In fact, E[Upg,p(L3)] = 2(28) — % = 55.3853

. 4 4
while E [Upop (La)] = 4 [2(10) - %] +1 [2(50) - %} — 56.87.

(c) The expected value of lottery L4 is %10 + %50 = 30; thus, a risk-averse person would
strictly prefer $30 with certainty to the lottery Ls. We saw in Part (a) that for Ann
the expected utility of lottery L4 is 5.1167; the utility of $30 is v/30 = 5.4772.
Thus, Ann would indeed choose $30 for certain over the lottery Ls. We saw in
Part (b) that for Bob the expected utility of lottery L, is 56.87; the utility of $30
is 2(30) — 300 59,19 Thus, Bob would indeed choose $30 for certain over the

1003 —
lottery Ly. U

1
A8 103 95 24
240 240 240 240

the probability of 0, is computed as follows: § (75) +3(1) +5(0)+3 (3) =15. O

Solution to Exercise 5.12 The simple lottery is ( oL 02 03 o4 > . For example,

Solution to Exercise 5.13 Using the stated indifference, use lottery L to construct the

02 04 03 04
compound lottery i1 5 % , whose corresponding sim-

1 2 11
3 9 9 3
01 02 03 o0
ple lottery is L' = 01 j lj il ) . Then, by the Independence Axiom,
12 45 180
L~L. 0

Solution to Exercise 5.14 Let W be your initial wealth. The basic outcomes are:

1. you do not pay any money, do not die and live to enjoy your wealth W (denote this
outcome by Ap),

2. you pay $Y, do not die and live to enjoy your remaining wealth W —Y (call this
outcome Ay),

3. you pay $X, do not die and live to enjoy your remaining wealth W — X (call this
outcome Ay),

4. you die (call this outcome D); this could happen because (a) you do not pay any
money, roll the die and drink the poison or (b) you pay $Y, roll the die and drink the

poison; the assumption is that you are indifferent between these two outcomes.
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Since, by hypothesis, X > Y, your ranking of these outcomes must be Ay > Ay > Ay >
D. If you satisfy the von Neumann-Morgenstern axioms, then your preferences can be
represented by a von Neumann-Morgenstern utility function U defined on the set of basic
outcomes. We can normalize your utility function by setting U(Ap) = 1 and U(D) = 0.

Furthermore, it must be that
U(Ay) > U(Ax). (5.6)

The maximum amount $P that you are willing to pay is that amount that makes you
indifferent between (1) rolling the die with the initial number of poisoned glasses and (2)

giving up $P and rolling the die with one less poisoned glass.

Thus — based on your answers — you are indifferent between the two lotteries

(D H > <AX )
| s and

z 2 1

6 6

and you are indifferent between the two lotteries:

D Ay D Ay
4 2 and 33 .
6 6 6 6

Thus,
§U(D)+3U(Ag) =U(Ax) and ¢U(D)+3U(Ao) = gU(D) +3U(Ay).
—0+21=2 —d0+21-2 —30+3uay)

Hence, U(Ax) = % and U(Ay) = % = ‘—é, so that U(Ax) > U(Ay), contradicting (5.6). [
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Strategic-form games with cardinal payoffs

At the end of Chapter 4 we discussed the possibility of incorporating random events in
extensive-form games by means of chance moves. The introduction of chance moves
gives rise to probabilistic outcomes and thus to the issue of how a player might rank such
outcomes. Random events can also occur in strategic-form games, as shown in Figure 6.1,
which represents the simple first-price auction of Example 6.1 below.

Player 2

bid $100 bid $200
P o1 o 01 : Player 1 wins and pays $100
1 bid $100 ( N E) 0
a 2 2 0y : Player 2 wins and pays $100
y
c 03 : Player 2 wins and pays $200

o o

" bid$200] 04 ( P 14)
1 2 2 o4 : Player 1 wins and pays $200

Figure 6.1: A game-frame in strategic form representing Example 6.1.

= Example 6.1 Two players simultaneously submit a bid for a painting. Only two bids are
possible: $100 and $200. If one player bids $200 and the other $100 then the high bidder
wins the painting and has to pay her own bid. If the two players bid the same amount then
a fair coin is tossed and if the outcome is Heads the winner is Player 1 (who then has to
pay her own bid) while if the outcome is Tails the winner is Player 2 (who then has to pay
her own bid). "
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Suppose that Player 1 ranks the basic outcomes as follows: o1 > 04 >1 03 ~1 03, that
is, she prefers winning to not winning; conditional on winning, she prefers to pay less and,
conditional on not winning, she is indifferent as to how much Player 2 pays. Suppose also
that Player 1 believes that Player 2 is going to submit a bid of $100 (perhaps she has been
informed of this by somebody spying on Player 2). What should we expect Player 1 to do?
Knowing her ranking of the basic outcomes is of no help, because we need to know how

e - o o . .
she ranks the probabilistic outcome ( 1] 12 ) relative to the basic outcome o4.
2 2

The theory of expected utility introduced in Chapter 5 provides one possible answer to
the question of how players rank probabilistic outcomes. With the aid of expected utility
theory we can now generalize the definition of strategic-form game. First we generalize
the notion of game-frame in strategic form (Definition 2.1.1, Chapter 2) by allowing
probabilistic outcomes, or lotteries, to be associated with strategy profiles. In the following
definition, the bulleted items coincide with the first three items of Definition 2.1.1 (Chapter
2); the modified item is the last one, preceded by the symbol .

Definition 6.1.1 A game-frame in strategic form is a quadruple (1, (S:);c;, O, f ) where:
o I={l1,...,n}is asetof players (n > 2).
* For every Player i € 1, S; is the set of strategies (or choices) of Player i. As before,
we denote by S = §1 x --- X §,, the set of strategy profiles.
* O is aset of basic outcomes.
* f:S— Z(0) is a probabilistic outcome function that associates with every

strategy profile s a lottery over the set of basic outcomes O (as in Chapter 5, we
denote by .Z’(0) the set of lotteries, or probability distributions, over O).

If, for every s € S, f(s) is a degenerate lottery (that is, a basic outcome) then we are back
to Definition 2.1.1 (Chapter 2).

From a game-frame one obtains a game by adding, for every player i € I, a von
Neumann-Morgenstern ranking 2-; of the elements of .Z’(0). It is more convenient
to represent such a ranking by means of a von Neumann-Morgenstern utility function
U;: O — R. We denote by E[U;(f(s))] the expected utility of lottery f(s) € £ (O) for
Player i. The following definition mirrors Definition 2.1.2 of Chapter 2.

Definition 6.1.2 A game in strategic form with cardinal payoffs is a quintuple
(I,(S)ier,0, f+(Zi)iep) Where:
* {I,(S);e1,0, f) is a game-frame in strategic form (Definition 6.1.1) and

» for every Player i € I, 7; is a von Neumann-Morgenstern ranking of the set of
lotteries -Z(O).

If we represent each ranking 2~; by means of a von Neumann-Morgenstern utility func-
tion U; and define ; : S — R by m;(s) = E[U;(f(s))], then (I, (S1,...,Sn) , (71, ..., Ty)) is
called a reduced game in strategic form with cardinal payoffs (reduced’ because some
information is lost, namely the specification of the possible outcomes). The function
7; - § — Ris called the von Neumann-Morgenstern payoff function of Player i.
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For example, consider the first-price auction of Example 6.1 whose game-frame in strate-
gic form was shown in Figure 6.1. Let O = {01,02,03,04} and suppose that Player 1
has a von Neumann-Morgenstern ranking of .Z'(O) that is represented by the following
von Neumann-Morgenstern utility function U (note that the implied ordinal ranking of

. o | outcome: 01 03 03 04
the basic outcomes is indeed 0] > 04 =1 02 ~1 03): I 41 1 2
1-

Then, for Player 1, the expected utility of lottery <01

of lottery <013 014> is 1.5.
2 2

1 012) is 2.5 and the expected utility
2 2

Suppose also that Player 2 has (somewhat spiteful) preferences represented by the fol-
outcome: 01 03 03 04

lowing von Neumann-Morgenstern utility function Us:
U, : 1 6 4 5

Thus, for Player 2, the expected utility of lottery 011 012 is 3.5 and the expected utility

2 2
of lottery | 014 is 4.5. Then we can represent the game in reduced form as shown in
2 2
Figure 6.2.
Player 2
$100 $200

$100 |2.5 3.5|1 4

Player 1
$200 | 2 5115 45

Figure 6.2: A cardinal game in reduced form based on the game-frame of Figure 6.1.

The game of Figure 6.2 does not have any Nash equilibria. However, we will show
in the next section that if we extend the notion of strategy, by allowing players to choose
randomly, then the game of Figure 6.2 does have a Nash equilibrium.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 6.5.1 at the end of this chapter.

'Recall from Chapter 5 that a von Neumann-Morgenstern utility function is usually referred to as a
cardinal utility function, in order to distinguish it from a purely ordinal utility function. An ordinal function
U : O — R merely represents a ranking = of the elements of O, in the sense that o =~ o’ if and only if
U(o) > U(0'). If U is an ordinal utility function, then so is a function V (0) = f (U(0)) obtained by applying
an increasing transformation f : R — R to U, that is, any transformation f : R — R such that x > x’ implies
f(x) > f(x'). On the other hand, if U : O — R is a von Neumann-Morgenstern utility function representing
a ranking of the set of lotteries .Z(0), then so is another function V : O — R if and only if, for every o € O,
V(o) = aU(0) + b, with a > 0, that is, if and only if V is obtained by applying an affine transformation to U.
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Mixed strategies

Definition 6.2.1 Consider a game in strategic form with cardinal payoffs and recall
that S; denotes the set of strategies of Player i. From now on, we shall call S; the set of
pure strategies of Player i. We assume that §; is a finite set (for every i € I). A mixed
strategy of Player i is a probability distribution over the set of pure strategies S;. The set
of mixed strategies of Player i is denoted by X;.

Since among the mixed strategies of Player i there are the degenerate strategies that
assign probability 1 to a pure strategy, the set of mixed strategies includes the set of
pure strategies (viewed as degenerate probability distributions).

For example, one possible mixed strategy for Player 1 in the game of Figure 6.2 is

$100 $200

1 2

3 3
randomization: the player, instead of choosing a pure strategy herself, delegates the choice

$100 $2oo>

) . The traditional interpretation of a mixed strategy is in terms of objective

1 2
3 3
is interpreted as a decision to let, say, a die determine whether she will bid $100 or $200:

to a random device.? For example, Player 1 choosing the mixed strategy (

Player 1 will roll a die and if the outcome is 1 or 2 then she will bid $100, while if the
outcome is 3, 4, 5 or 6 then she will bid $200.

The traditional interpretation of mixed strategies is conceptually problematic: can it
ever be in a player’s interest to delegate the choice of her pure strategy to a random
device? As we will see below (Theorem 6.3.1), this skepticism is strengthened by
the fact that, at a Nash equilibrium in mixed strategies, a player is in fact indifferent
between playing her mixed strategy and playing any pure strategy to which her mixed

strategy assigns positive probability.

100 $200
Suppose that Player 1 chooses the mixed strategy ($ ) 3 5 ) and Player 2 chooses the
3 3

$100 $200
3 2
5 5
random devices, this pair of mixed strategies gives rise to the following probabilistic

mixed strategy ( ) . Since it is assumed that the players rely on independent

2An alternative interpretation of mixed strategies in terms of beliefs will be discussed in Chapter 10 and
in Part V (Chapters 14-16).
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outcomes:

pure strategy profile

—~

$100,$100)  ($100,$200)  ($200,$100)

~

$200,$200)

01 03 03 04

outcome 03 04

(=5 363 =%

If the two players have von Neumann-Morgenstern preferences, then — by the Compound

L 1
2 2
4

probability S

W= ~ N

—
il NI—
SN—

W ~ ~

SIS

—~

iy DI—
N

—_

W|—

=3
15

Lottery Axiom (Chapter 5) — they will view the above as the following lottery:

basic outcome 07 02 03 04
3 3 8 16

probability 35 35 35 39

Using the von Neumann-Morgenstern utility functions postulated in the previous section,

namely
basic outcome: 0; 02 03 04 4 basic outcome: 07 02 03 04
an
Up: 4 1 1 2 U, : 1 6 4 5
1 02 03 04 o
the lottery s 3 s 16 has an expected utility of
30 30 30 30

for Player 2: 35 (1) + 35 (6) +% (4) +§_8 (5) = %.

Thus we can define the payoffs of the two players from this mixed strategy profile by

$100 $200 $100 $200 55
: 1 2 : 3 2 ~ 30
3 3 5 5
$100 $200 $100 $200 133
2 1 2 )| 3 2 T30
3 3 5 5

Note that we can calculate these payoffs in a different — but equivalent — way by using the
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reduced game of Figure 6.2, as follows:

pure strategy profile  ($100,$100)  ($100,$200) ($200,$100) ($200,$200)

expected utilities (2.5,3.5) (1,4) (2,5) (1.5,4.5)
s 1 (3 3 1 (2 2 2 (3 6 2 (2 4
probability 3 (3) = 3 (5) =i z (3) =5 Z (5) — 4

so that the expected payoff of Player 1 is

22 +E2M)+L2)+E(15 =3
and the expected payoff of Player 2 is

2B+ &M@ +L(5)+ =45 =1

The previous example provides the rationale for the following definition. First some
notation.

- Let 0; € X; be a mixed strategy of Player i; then, for every pure strategy s; € S; of
Player i, we denote by o;(s;) the probability that o; assigns to s;.>

- Let X be the set of mixed-strategy profiles, thatis, X =X; X --- X X,,.

- Consider a mixed-strategy profile ¢ = (01, ...,0,) € X and a pure-strategy profile
s = (s1,...,5,) € S; then we denote by o(s) the product of the probabilities o;(s;),
n
that is, o(s) = [] 0i(s;) = o1(s1) X ... X O (s,).*
i=1

3In the above example, if o] = <$ 1100 $2200> then o7 ($200) = %
3 3

“In the above example, if ¢ = (01, 0,) with o] = <$1100 $2200> and 0y = <$ 1300 $220 0)
3 5 5

3 3
then 01 ($200) = %, 6>($100) = 2 and thus o (($200,$100)) = 3 (2) = &.
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Definition 6.2.2 Consider a reduced game in strategic form with cardinal payoffs
G={(I,(S1,...,8,),(m,...,m,)) (Definition 6.1.2), where, for every Player i € I, the set
of pure strategies S; is finite. Then the mixed-strategy extension of G is the reduced
game in strategic form (/, (X,...,%,), (ITy, ..., IT,)) where, for every Playeri € I,

» ¥, is the set of mixed strategies of Player i in G (that is, ¥; is the set of probability
distributions over S;).

* The payoff function IT; : £ — R is defined by IT;(c) = Y, o(s) m(s).*
ses

. 100  $200 100 $200
“In the above example, if o] = ($ $2 ) and oy = ($3 $2 ) then

I (01,00) = = (2.5)+ & (1) + % (2) + 15 (1.5)

3 5 5

| wi—
.

35
30°

Definition 6.2.3 Fix a reduced game in strategic form with cardinal payoffs G =
(I,(S1,...,80),(m,...,m,)) (Definition 6.1.2), where, for every player i € I , the set
of pure strategies S; is finite. A Nash equilibrium in mixed-strategies of G is a Nash

equilibrium of the mixed-strategy extension of G.

For example, consider the reduced game of Figure 6.3 (which reproduces Figure 6.2,
with all the payoffs multiplied by 10; this corresponds to representing the preferences of
the players with different utility functions that are a obtained from the ones used above by

multiplying them by 10).

1 2 3 2
o _ 3 3 5 5
Nash equilibrium of this game?

) $100 $200 $100 $200
Is 0 = (01,07) with 01 = and 0, =

> a mixed-strategy

Player 2
$100 $200

$100 | 25 35|10 40

Player 1
$200 | 20 50 | 15 45

Figure 6.3: The game of Figure 6.2 with the payoffs multiplied by 10.

The payoff of Player 1 is

I (01,02) = £ (25) + % (10) + %(20) + 1£(15) = 3.
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) $100 $200 . $100 $200 )
If Player 1 switched from o7 = | 5 to 61 = . 0 , that is, to

3 3
the pure strategy $100, then Player 1’s payoff would be larger:

I1,(61,02) = 2(25) + 2(10) = 19.

Thus, since 19 = 5?7 > %, it is not a Nash equilibrium.

John Nash (who shared the 1994 Nobel Memorial prize in economics with John
Harsanyi and Reinhard Selten), proved the following theorem.

Theorem 6.2.1 — Nash, 1951. Every reduced game in strategic form with cardinal
payoffs (1,(S1,...,8.), (m,...,m,)) (Definition 6.1.2), where, for every Player i € I, the
set of pure strategies S; is finite, has at least one Nash equilibrium in mixed-strategies.

We will not give the proof of this theorem, since it is rather complex (it requires the use of
fixed-point theorems).

Player 2
$100 $200

$100 |25 35|10 40

Player 1
$200 | 20 50 |15 45

Going back to the game of Figure 6.3, reproduced above, let us verify that, on the

$100 $200

1 1
2 2

other hand, 6* = (o}, 0;) with 6] = 05 = is a Nash equilibrium. The

payoff of Player 1 is

I (o},05) = $(25)+ $(10) + 1(20) + 1 (15) = 2 = 17.5.

IN
IN

$100 $200
p 1l—p

Could Player 1 obtain a larger payoff with some other mixed strategy o] =

for some p # %?

Fix an arbitrary p € [0, 1] and let us compute Player 1’s payoff if she uses the strategy

$100 $200 . ) $100 $200
01 = against Player 2’s mixed strategy o, = | |

p l-p 3 2
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$100 $200 $100 $200

) = 1p25+1p10+1(1-p)20+1(1-p)15
o 2 2

=p(325+310) +(1-p) (320+315) = ¥ =175.

. . $100 $200
Thus if Player 2 uses the mixed strategy o) = | | , then Player I gets the
2 2
same payoff no matter what mixed strategy she employs. It follows that any mixed
. $100 $200 i )
strategy of Player 1 is a best reply to o5 = ] . ; in particular, 6] =
2 2
$100 $200 \ . . $100 $200 . .
| ) is a best reply to o, = | . . It 1s straightforward to
2 2 2 2
verify that the same applies to Player 2: any mixed strategy of Player 2 is a best reply to
. . $100 $200 . . e
Player 1’s mixed strategy o, = ) ) .Hence 6* = (0}, 05) is indeed a Nash
2 2

equilibrium in mixed strategies.

We will see in the next section that this "indifference" phenomenon is true in general.

Since, among the mixed strategies of Player i there are the degenerate strategies that
assign probability 1 to a pure strategy, every Nash equilibrium in pure strategies is
also a Nash equilibrium in mixed strategies. That is, the set of mixed-strategy Nash
equilibria includes the set of pure-strategy Nash equilibria.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 6.5.2 at the end of this chapter.

Computing the mixed-strategy Nash equilibria

How can we find the mixed-strategy equilibria of a given game? The first important
observation is that if a pure strategy is strictly dominated by another pure strategy then it
cannot be played with positive probability at a Nash equilibrium. Thus, for the purpose of
finding Nash equilibria, one can delete all the strictly dominated strategies and focus on
the resulting smaller game. But then the same reasoning applies to the resulting game and
one can delete all the strictly dominated strategies in that game, and so on. Thus we have
the following observation.

In order to find the mixed-strategy Nash equilibria of a game one can first apply the
iterated deletion of strictly dominated strategies (IDSDS: Chapter 2) and then find the
Nash equilibria of the resulting game (which can then be viewed as Nash equilibria
of the original game where all the pure strategies that were deleted are assigned zero
probability). Note, however, that — as we will see in Section 6.4 — one can perform
more deletions than allowed by the IDSDS procedure (defined in Chapter 2).
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For example, consider the game of Figure 6.4.

Player 2
E F G
A2 413 316 0
Player | P[4 0f2 4]+ 2
cC|3 314 213 1
D |3 6| 1 ]2 6

Figure 6.4: A reduced game with cardinal payoffs.

In this game there are no pure-strategy Nash equilibria; however, by Nash’s theorem there
will be at least one mixed-strategy equilibrium. To find it we can first note that, for Player
1, D is strictly dominated by B; deleting D we get a smaller game where, for Player 2, G is
strictly dominated by F. Deleting G we are left with a smaller game where A is strictly
dominated by C. Deleting A we are left with the game shown in Figure 6.5.

Player 2
E F
Player 1 4 042 4
3 314 2

Figure 6.5: The result of applying the IDSDS procedure to the game of Figure 6.4.

We will see that the game of Figure 6.5 has a unique Nash equilibrium in mixed strategies

. B C E F
given by Coa s .
55 3 3

Thus the game of Figure 6.4 has a unique Nash equilibrium in mixed strategies given by

((ABCD)(EFG))
1 4 s\ 2 1 .
0 55 0/°\5 50

Once we have simplified the game by applying the IDSDS procedure, in order to find
the mixed-strategy Nash equilibria we can use the following result.

First we recall some notation that was introduced in Chapter 2. Given a mixed-strategy pro-
file c = (oy,...,0,) and a Player i, we denote by 6_; the profile of strategies of the players
other than i and use (0}, 6_;) as an alternative notation for o; furthermore, (7;, 6_;) denotes
the result of replacing o; with 7; in o, that is, (7;,0-;) = (O1,...,G;j—1,Ti, Cit1,- - -, On)-
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— Indifference Principle. Consider a reduced game in strategic form
with cardinal payoffs.

- Suppose that 6* = (07,...,0, ) is a Nash equilibrium in mixed strategies.

- Consider an arbitrary Player i. Let ;" = IT;(c*) be the payoff of Player i at this
Nash equilibrium and let s;, s} € S; be two pure strategies of Player i such that
o7 (si) > 0 and o;(s}) > 0, that is, s; and s/ are two pure strategies to which the
mixed strategy o;" of Player i assigns positive probability (in other words, s; and
s} are in the support of 6" ).

- Then IT; (s,-, Gii) =1I; (Sfa Gii) =

That is, when the other players use the mixed-strategy profile 6*;, Player i gets the same
payoff no matter whether she plays the mixed strategy o;* or the pure strategy s; or the
pure strategy s".

The details of the proof of Theorem 6.3.1 will be omitted, but the idea is simple:
if s; and s} are two pure strategies to which the mixed strategy o of Player i assigns
positive probability and IT; (si, Gii) > I1; (sg, Gfl.) , then Player i can increase her payoff
from 7 = I1;(0*) to a larger number by reducing the probability of s’ to zero and adding
that probability to ;" (s;), that is, by switching from o/ to the mixed strategy 6; obtained as
follows: 6;(s%) =0, 6;(si) = 6/ (si) + 6;°(s:) and, for every other 7; € S;, 6;(t;) = 6;*(#;). But
this contradicts the hypothesis that 6* = (o}, ...,0,;) is a Nash equilibrium. Furthermore,
since o is a convex combination of the pure strategies in its support, it follows that
II(o],0*;) =TIl(s;,0%;) for every pure strategy s; in the support of o;*.

Let us now go back to the game of Figure 6.5, which is reproduced in Figure 6.5, and
see how we can use Theorem 6.3.1 to find the Nash equilibrium in mixed strategies.

Player 2
E F

Player 1

Figure 6.6: Copy of Figure 6.5.

We want to find values of p and ¢ (strictly between O and 1) such that

(G5 )05)

is a Nash equilibrium.
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E F
By Theorem 6.3.1, if Player 1 were to play the pure strategy B against ( | ) she
q —q
should get the same payoff as if she were to play the pure strategy C.

The former would give her a payoff of 4g+2(1 — g) and the latter a payoff of 3g+4(1—gq).
Thus we need ¢ to be such that 4¢+2(1 — q) =3¢ +4(1 —q), thatis, g = %

When g = %, both B and C give Player 1 a payoff of 13—0 and thus any mixture of B and C

would also give the same payoff of 13—0. In other words, Player 1 is indifferent among all her

E F
mixed strategies and thus any mixed strategy of Player 1 is a best response to ( 5 ) .

3 3
Similar reasoning for Player 2 reveals that, by Theorem 6.3.1, we need p to be such that

1 4

5 5
Player 2 gives him the same payoff of 12; thus any mixed strategy of Player 2 is a best

B C
reply to (1 4>.
553
B C E F ) .
It follows that B is a Nash equilibrium.
553 3 3

It follows from Theorem 6.3.1, and was illustrated in the above example, that at a
mixed strategy Nash equilibrium where Player i plays two or more pure strategies
with positive probability, Player i does not have any incentive to use that mixed
strategy: she would get the same payoff if, instead of randomizing, she played one
of the pure strategies in the support of her mixed strategy (that is, if she increased
the probability of any such pure strategy to 1).°> The only purpose of randomizing is
to make the other player indifferent among two or more of his own pure strategies.
As remarked earlier, this fact makes the notion of mixed-strategy Nash equilibrium
conceptually problematic and unappealing.

B C
Op+3(1—p)=4p+2(1—p), thatis, p = % Against ( > any mixed strategy of

Player 2

Al 3 0|0 2
Player1 Bl 0o 2 | 3
C| 2 0 | 2 1

Figure 6.7: A reduced game with cardinal payoffs.

>The support of a mixed strategy is the set of pure strategies that are assigned positive probability by that
mixed strategy.



6.3 Computing the mixed-strategy Nash equilibria 215

The “indifference” condition explained above provides a necessary, but not sufficient,
condition for a mixed-strategy profile to be a Nash equilibrium. To see that the con-

dition is not sufficient, consider the game of Figure 6.7 and the mixed-strategy profile

A B C D E ) ) D E
U o - Given that Player 2 plays the mixed strategy | , |, Player
22 9/ \3 3 702

1 is indifferent between the two pure strategies that are in the support of her own mixed

strategy, namely A and B: the payoff from playing A is 1.5 and so is the payoff from playing

A B C
B, and 1.5 is also the payoff associated with the mixed strategy L . However,
2 2
A B C D E ) T
the profile L1 o)\ is not a Nash equilibrium, because Player 1 could
2 2 2 2

get a payoff of 2 by switching to the pure strategy C.
We know from Theorem 6.2.1 that this game does have a mixed-strategy Nash equilibrium.

How can we find it? Let us calculate the best response of Player 1 to every possible mixed
D E
strategy ( . ) of Player 2 (with ¢ € [0, 1]). For Player 1 the payoff from playing A
q9 1—q
. D E . . ) .
against ( ) is 3¢, the payoft from playing B is 3 — 3g and the payoff from playing

q 1—gq
C is constant and equal to 2. These functions are shown in Figure 6.8.

3 T !  pl
3 3
2.5 .
.
A(q)
B(q) 1.5 —
C(a)
= -
0.5 7
0 [ Iy N Y S N

Figure 6.8: Player 1’s payoff from each pure strategy against an arbitrary mixed strategy
of Player 2.
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The upward-sloping line plots the function A(g) = 3¢, the downward-sloping line plots
the function B(g) = 3 — 3¢ and the horizontal dashed line the function C(g) = 2.

The downward-sloping and horizontal lines intersect when g = % and the upward-sloping

and horizontal lines intersect when g = %

The maximum payoff is given by the downward-sloping line up to g = %, then by the
horizontal line up to g = % and then by the upward-sloping line.

Thus the best reply function of Player 1 is as follows:

(B if0<g<3
B C o
forany p€|0,1| ifg=x
Q,l_p) ypel0,1] ifg=j
Playerl’s best reply = ¢ C if}<g<3

A C N
(p 1—p> forany p € [0,1] ifg=35

A if$<qg<1

\

Hence if there is a mixed-strategy Nash equilibrium it is either of the form

A B C D E A B C D E
s 1 2 or of the form 1 2 1 .
O p 1-p)'\3 3 p 0 1-p/°\5 3

The latter cannot be a Nash equilibrium for any p, because when Player 1 plays B with
probability 0, E is strictly better than D for Player 2 and thus Player 2’s mixed strategy is
not a best reply (E is the unique best reply). Thus the only candidate for a Nash equilibrium

is of the form
A B C D E
0 p 1—p)’ % % )

In this case, by Theorem 6.3.1, we need p to be such that Player 2 is indifferent between D
and E: we need 2p = 1 — p, that is, p = % Hence the Nash equilibrium is

(619G )

In games where the number of strategies or the number of players are larger than in
the examples we have considered so far, finding the Nash equilibria involves lengthier
calculations. However, computer programs have been developed that can be used to
compute all the mixed-strategy Nash equilibria of a finite game in a very short time.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 6.5.3 at the end of this chapter.
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Strict dominance and rationalizability

We remarked in the previous section that a pure strategy that is strictly dominated by
another pure strategy cannot be played with positive probability at a Nash equilibrium.
Thus, when looking for a Nash equilibrium, one can first simplify the game by applying
the IDSDS procedure (Chapter 2). When payoffs are cardinal (von Neumann-Morgenstern
payoffs) it turns out that, in a two-player game, a pure strategy cannot be a best response to
any mixed-strategy of the opponent not only when it is strictly dominated by another pure
strategy but also when it is strictly dominated by a mixed strategy. To see this, consider the
game of Figure 6.9.

Player 2

D E
Al 0 1| 4 0
Player1 Bl 1 2|1 4

C|l 2 010 1

Figure 6.9: A strategic-form game with cardinal payoffs.

The pure strategy B of Player 1 is not strictly dominated by another pure strategy and yet it
cannot be a best reply to any mixed strategy of Player 2.

D E

To see this, consider an arbitrary mixed strategy ( . of Player 2 with ¢ € [0, 1].
q 1—q

If Player 1 plays B against it, she gets a payoff of 1; if, instead, she plays the mixed strategy

A B C | 2 4
L 2 then her payoff is 34(1 —¢q) +52¢g =5 > L.
3 3

— Pearce, 1984. Consider a two-player reduced game in strategic form
with cardinal payoffs, an arbitrary Player i and a pure strategy s; of Player i. There is
no mixed-strategy of the opponent to which s; is a best response, if and only if s; is
strictly dominated by a mixed strategy o; of Player i (that is, there is a ¢; € X; such that
Hi(Gi, Gj) > Hi(sivcj)’ for every (oS Zj,j 7& Q).

Note that, since the set of mixed strategies includes the set of pure strategies, strict
dominance by a mixed strategy includes as a sub-case strict dominance by a pure strategy.

An equivalent way of understanding Theorem 6.4.1 is as follows. Let us focus on
Player 1. Suppose that Player 1 — being uncertain about what Player 2 is going to do
— forms a probabilistic belief about it; such a belief can be represented as a probability
distribution over S, the set of pure strategies of Player 2. We can then say that a pure
strategy s1 of Player 1 is rational if maximizes Player 1’s payoffs given those beliefs (that
is, if it is a best reply to those beliefs). Since a belief of Player 1 about Player 2’s choice is
the same mathematical object as a mixed strategy of Player 2, one can restate Theorem
6.4.1 as follows:
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Consider a two-player reduced game in strategic form with cardinal
payoffs, an arbitrary Player i and a pure strategy s; of Player i. There is no belief of
Player i relative to which s; is rational if and only if s; is strictly dominated by a mixed
strategy o; of Player i.

When the number of players is 3 or more, it is no longer true that a probabilistic
belief about the opponents’ choices is the same mathematical object as a profile of mixed
strategies of the opponents. To see this, consider a 3-player game where S| = {A, B},
S» ={C,D} and S3 = {E,F} and take the point of view of Player 1. A profile of mixed

. : . . cC D E F
strategies of Player 1’s opponents is the following object: ,
p 1—p qg 1—¢q

(with p,q € [0,1]), while a belief of Player 1 about what Players 2 and 3 are going to
. o (C.E) (C,F) (D,E) (D,F)\
do is the following object: (with ry,rp,r3 € [0,1] and
ry r r3 rq
r4 =1 —r; —ry —r3), that is, a probability distribution over the possible combinations of
choices of Players 2 and 3. A belief of Player 1 could involve correlation between the
CE CF DE DF
3 0 0 3
no mixed-strategy profile of Players 2 and 3 that corresponds to such beliefs.®

choices of Players 2 and 3; an example is the belief ( ) and there is

The reason for this is that a mixed-strategy profile incorporates the assumption of in-
dependence in the choices of Players 2 and 3, which rules out correlation. The Nobel
laureate Robert Aumann put forward the thesis — which is by now generally accepted — that
Player 1, while recognizing that Players 2 and 3 act independently, may nevertheless have
beliefs about their choices that display correlation, because she might believe that some
unobserved common factor has helped determine the choices of both of her opponents:

In games with more than two players, correlation may express the fact that what
[Player] 3, say, thinks that 1 will do may depend on what he thinks [Player]
2 will do. This has no connection with any overt or even covert collusion
between [Players] 1 and 2; they may be acting entirely independently. Thus
it may be common knowledge that both 1 and 2 went to business school, or
perhaps to the same business school; but 3 may not know what is taught there.
In that case 3 would think it quite likely that they would take similar actions,
without being able to guess what those actions might be.”

Exercise 6.14 shows that Theorem 6.4.1 does not generalize to games with more than

®Fix an arbitrary strategy profile ((IC; | Dp) , (2 1 Fq) ) . The induced probability distribution
CE CF DE DF
pg p(1—q) (1-p)g (1-p)(1-
bility of CF we need either p = 0 or ¢ = 1, but if p = 0 then the probability of CE is 0, not % andifg=1
then the probability of DF is 0, not %

7Robert Aumann, "Correlated equilibrium as an expression of Bayesian rationality", Econometrica, 1987,
Vol. 55, p. 16.

over the set {CE,CF,DE,DF} is ( q)) ; in order to get zero proba-
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two players. On the other hand, Theorem 6.4.2 does generalize to more than 2 players, if
beliefs are allowed to incorporate correlation in the opponents’ choices.

Theorem 6.4.3 Consider an n-player (n > 2) reduced game in strategic form with
cardinal payoffs, an arbitrary Player i and a pure strategy s; of Player i. There is
no (possibly correlated) belief of Player i (about the profile of pure strategies of his
opponents) relative to which s; is rational if and only if s; is strictly dominated by a
mixed strategy o; of Player i.

In virtue of Theorem 6.4.3 we cam refine the IDSDS procedure for general n-player
games with cardinal payoffs as follows.

Definition 6.4.1 — Cardinal IDSDS. The Cardinal Iterated Deletion of Strictly Domi-
nated Strategies is the following algorithm. Given a finite n-player (n > 2) strategic-form
game with cardinal payoffs G, let G! be the game obtained by removing from G, for
every Player i, those pure strategies of Player i (if any) that are strictly dominated
in G by some mixed strategy of Player i; let G* be the game obtained by removing
from G!, for every Player i, those pure strategies of Player i (if any) that are strictly
dominated in G! by some mixed strategy of Player i, and so on. Let G* be the output
of this procedure. Since the initial game G is finite, G™ will be obtained in a finite
number of steps. For every Player i, the pure strategies of Player i in G are called her
rationalizable strategies.

Figure 6.10 illustrates this procedure as applied to the game in Panel (7).

Player 2 Player 2
D E F D E F
al3 42 11 2] & PlayerA|[3 4]2 1|1 2
Player
;o BIO_OJT 314 1f 5 1 B|lO 0|1 3[4 |
cl[1 4|1 4|2 6| :
. |
(i) The game G° = G (ll) The game G" after Step 1
....................................................................................................... P]ayerz
D E
Player 2 i Player1 A[3 4|2 1
D&
Player A|3  4]2 1 (iv) (a) The game G after Step 3
I B|O O]1 3 Player 2
D
(iii) The game G? after Step 2 Player 1 A[3 4

(iv) (b) The game G* = G

Figure 6.10: Application of the cardinal IDSDS procedure.
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In the first step, the pure strategy C of Player 1 is deleted, because it is strictly dominated

. A B L .
by the mixed strategy ( 11 ) thus yielding game G'! shown in Panel (7).
2 2
In the second step, the pure strategy F' of Player 2 is deleted, because it is strictly dominated
. D E L .
by the mixed strategy ( 1 ) thus yielding game G? shown in Panel (iii).

2 2
In the third step, B is deleted because it is strictly dominated by A thus yielding game G°
shown in the top part of Panel (iv).

In the final step, E is deleted because it is strictly dominated by D so that the final output
is the strategy profile (A, D).

Hence the only rationalizable strategies are A for Player 1 and D for Player 2.

As noted in Chapter 2 the significance of the output of the IDSDS procedure is as
follows. We defined a player to be rational if she chooses a pure strategy which is a best
reply to her (possibly correlated) beliefs about what the opponents’ choices. Consider
game G in Panel (i) of Figure 5.9. Since, for Player 1, C is strictly dominated (by a mixed
strategy of Player 1), by Theorem 6.4.3 if Player 1 is rational she will not play C. Thus, if
Player 2 believes that Player 1 is rational then he believes that Player 1 will not play C, that
is, he restricts attention to game G': since, in G!, F is strictly dominated for Player 2 (by a
mixed strategy of Player 2), by Theorem 6.4.3 if Player 2 is rational he will not play F.
It follows that if Player 1 believes that Player 2 is rational and that Player 2 believes that
Player 1 is rational, then Player 1 restricts attention to game G* where rationality requires
that Player 1 not play B, etc.

The iterated reasoning illustrated above can be captured by means of the notion of
common knowledge of rationality. Indeed, it will be shown in Chapter 10 that if there
is common knowledge of rationality then only rationalizable pure strategies (that is,
pure strategies that survive the cardinal IDSDS procedure) will be played.

The iterated reasoning outlined above requires that the von Neumann-Morgenstern
preferences of both players be common knowledge between them. For example, if
Player 2 believes that Player 1 is rational but only knows Player 1’s ordinal ranking
of the outcomes, then Player 2 will not be able to deduce that it is irrational for Player
1 to play C and thus it cannot be irrational for him to play F. Expecting a player to
know the von Neumann-Morgenstern preferences of another player is often (almost
always?) very unrealistic! Thus one should be aware of the implicit assumptions
that one makes (and one should question the assumptions made by others in their
analyses).

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 6.5.4 at the end of this chapter.
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Exercises

Exercises for Section 6.1: Strategic-form games with cardinal payoffs
The answers to the following exercises are in Section 6.6 at the end of this chapter.

Consider the following game-frame in strategic form, where 01,0, 03
and o4 are basic outcomes:

Player 2

c d

Player a 0] 02
1 b 03 04

The preferences of both players satisfy the axioms of expected utility theory.
- The best outcome for Player 1 is 03; she is indifferent between outcomes o1 and 04
and ranks them both as worst; she considers 0, to be worse than o3 and better than

04; she is indifferent between 0, with certainty and the lottery (0023 5 0071 5) .

- The best outcome for Player 2 is 04, which he considers to be just as good as oy;
he considers o0, to be worse than o and better than o3; he is indifferent between
. . 01 03
0, with certainty and the lotter .
2 g / ( 04 0.6 >
Find the normalized von Neumann-Morgenstern utility functions for the two players
and write the corresponding reduced game.

Consider the game-frame shown in Figure 6.11, where oy, ..., 04 are basic
outcomes. Both players have von Neumann-Morgenstern preferences over lotteries
over basic outcomes. The preferences of Player 1 can be represented by the following
outcome: 01 02 03 04

Ui : 12 10 6 16
preferences of Player 2 can be represented by the following von Neumann-Morgenstern
outcome: 01 02 03 04

U, : 6 14 8 10°

von Neumann-Morgenstern utility function: and the

utility function: Write the corresponding reduced

game.

Player 2
C D

01 04 o1 02
A (1 3)(1 1)
7 3 2 2

03 04
B| O3 <z 5)
5 5

Figure 6.11: A game-frame in strategic form.

Player 1
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6.5.2 Exercises for Section 6.2: Mixed strategies

The answers to the following exercises are in Section 6.6 at the end of this chapter.

Player 2
D E

A
Player I B

C

Figure 6.12: A strategic-form game with cardinal payoffs.

Exercise 6.3 Consider the reduced game with cardinal payoffs shown in Figure 6.12.
(a) Calculate the players’ payoffs from the mixed strategy profile

(430G D)

2

(b) Is ((1? C) , <ll) lf)) a Nash equilibrium?
3 0/ \7 2

Exercise 6.4 Consider the following reduced game with cardinal payoffs:

[ —

~lw Oy

Player 2
C D
Player A 2 3|8 5
1 B 6 6 2
Prove that ((‘;‘ ?) (? ?)) is a Nash equilibrium.
3 3 2 2

6.5.3 Exercises for Section 6.3: Computing the mixed-strategy Nash equilibria
The answers to the following exercises are in Section 6.6 at the end of this chapter.

Exercise 6.5 Consider again the game of Exercise 6.1.
(a) Find the mixed-strategy Nash equilibrium.

(b) Calculate the payoffs of both players at the Nash equilibrium.

Chapter 6. Strategic-form Games
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I Exercise 6.6 Find the Nash equilibrium of the game of Exercise 6.2. n

Exercise 6.7 Find all the mixed-strategy Nash equilibria of the game of Exercise 6.4
and calculate the payoffs of both players at every Nash equilibrium. n

Exercise 6.8 Find the mixed-strategy Nash equilibria of the following game:

Player 2
L R
T 1 4| 4 3
Player1 C 2 O 1 2
B 1 5|0 6
|
Exercise 6.9 Consider the following two-player game-frame, where 01,03, ...,0q are
basic outcomes.
Player 2
d e

a 01 02
Player 1 b 03 04
C 05 06

The players rank the outcomes as indicated below (as usual, if outcome o is above
outcome o’ then o is strictly preferred to o’ and if 0 and o’ are on the same row then the
player is indifferent between the two):

01

03,0
(S 3(; 4
Player 1 : 04,02 Player 2 : 2
01,05
0s
06
03

(a) One player has a strategy that is strictly dominated. Identify the player and the
strategy.
[Note: in order to answer the following questions, you can make your life a lot easier if
you simplify the game on the basis of your answer to Part (a).]

Player 1 satisfies the axioms of Expected Utility Theory and is indifferent between og

and the lottery ( 041 015 ) and is indifferent between o0, and the lottery ( 016 015 )

2 2

5 5

(b) Suppose that Player 1 believes that Player 2 is going to play d with probability %
and e with probability % Which strategy should he play?
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Player 2 satisfies the axioms of Expected Utility Theory and is indifferent between o5
and the lottery ( 012 036 ) .

i 4

(c) Suppose that Player 2 believes that Player 1 is going to play a with probability %
and ¢ with probability %. Which strategy should she play?

(d) Find all the (pure- and mixed-strategy) Nash equilibria of this game.

Exercise 6.10 Consider the following game (where the payoffs are von Neumann-
Morgenstern payoffs):

Player 2
C D
Player A x y 30
1 B 6 2 0 4

(a) Suppose that x =2 and y = 2. Find the mixed-strategy Nash equilibrium and
calculate the payoffs of both players at the Nash equilibrium.

5 5

(b) For what values of x and y is ( (1? ?) , ((; ?) ) a Nash equilibrium?
14 1

Exercise 6.11 Find the mixed-strategy Nash equilibria of the game of Exercise 6.3.
Calculate the payoffs of both players at every Nash equilibrium that you find. .

6.5.4 Exercises for Section 6.4: Strict dominance and rationalizability

The answers to the following exercises are in Section 6.6 at the end of this chapter.

Exercise 6.12 In the following game, for each player, find all the rationalizable pure
strategies (that is, apply the cardinal IDSDS procedure).

Player 2
L M R
A 3 5 2 0 2 2
Player1 B 5 2 1 2 2 1
c 9 0 1 5 3 2
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Note: The next three exercises are more difficult than the previous ones.

Is the following statement true or false? Either prove that it is true or
give a counterexample.

Consider a two-player strategic-form game with cardinal payoffs.

- Let A and B be two pure strategies of Player 1.

- Suppose that both A and B are rationalizable (that is, they survive the
cardinal IDSDS procedure).

- Then any mixed strategy that attaches positive probability to both A
and B and zero to every other strategy is a best reply to some mixed
strategy of Player 2.

Consider the three-player game shown in Figure 6.13, where only the
payoffs of Player 1 are recorded.

(a) Show that if Player 1 assigns probability % to the event “Player 2 will play E and
Player 3 will play G” and probability % to the event “Player 2 will play F and
Player 3 will play H”, then playing D is a best reply.

Next we want to show that there is no mixed-strategy profile

= ((515) (%)

of Players 2 and 3 against which D is a best reply for Player 1.

Define the following functions: A(p,q) = I1;(A,0_1) (that is, A(p,q) is Player 1’s
expected payoff if she plays the pure strategy A against 6_1), B(p,q) =I1;(B,0_1),
C(p,q) =111 (C,0-1) and D(p,q) =I1;(D,0-1).

(b) In the (p,q) plane (with 0 < p <1 and 0 < g < 1) draw the curve corresponding
to the equation A(p,q) = D(p,q) and identify the region where A(p,q) > D(p,q).

(c) Inthe (p,q) plane draw the curve corresponding to the equation C(p,q) = D(p,q)
and identify the region where C(p,q) > D(p,q).

(d) Inthe (p,q) plane draw the two curves corresponding to the equation B(p,q) =
D(p,q) and identify the region where B(p,q) > D(p,q).

(e) Infer from Parts (b)-(d) that there is no mixed-strategy profile of Players 2 and 3
against which D is a best reply for Player 1.
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Player 2 Player 2

E F z E F

A 3 0 A 0 0

Player B 0 3 Player B 3 0
1 C 0 0 I c 0 3

D 2 0 D 0 2
Player 3: G Player 3: H

Figure 6.13: A three-player game where only the payoffs of Player 1 are shown.

— xx* Challenging Question xx. A team of n professional swimmers
(n > 2) — from now on called players — are partying on the bank of the Sacramento
river on a cold day in January. Suddenly a passerby shouts “Help! My dog fell into the
water!” Each of the swimmers has to decide whether or not to jump into the icy cold
water to rescue the dog. One rescuer is sufficient: the dog will be saved if at least one
player jumps into the water; if nobody does, then the dog will die. Each player prefers
somebody else to jump in, but each player prefers to jump in himself if nobody else
does.

Let us formulate this as a game. The strategy set of each playeri =1,...,n1s S; =
{J,—J}, where J stands for ‘jump in’ and —J for ‘not jump in’.
The possible basic outcomes can be expressed as subsets of the set I = {1,...,n} of
players: outcome N C [ is interpreted as "the players in the set N jump into the water
(and the others do not)"; if N = 0 the dog dies, while if N # 0 the dog is saved.
Player i has the following ordinal ranking of the outcomes:
(1) N ~N', forevery N #0, N' 0 withi ¢ N and i ¢ N,
(2) N = N' forevery N # 0, N' # @ withi ¢ N and i € N,
(3) {i} = 0.

(a) Find all the pure-strategy Nash equilibria.

(b) Suppose that each player i has the following von Neumann-Morgenstern payoff
function (which is consistent with the above ordinal ranking):

v ifN#0Oandi¢ N
mi(N)=< v—c ifieN with0 <c<v
0 ifN=0

Find the symmetric mixed-strategy Nash equilibrium (symmetric means that all
the players use the same mixed strategy).
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(¢) Assuming that the players behave according to the symmetric mixed-strategy
Nash equilibrium of Part (b), is it better for the dog if n (the number of players)
is large or if n 1s small? Calculate the probability that the dog is saved at the
mixed-strategy Nash equilibrium as a function of n, for all possible values of ¢
and v (subject to 0 < ¢ < v), and plot it for the case where ¢ = 10 and v = 12.

Solutions to exercises

Solution to Exercise 6.1. The normalized von Neumann-Morgenstern utility functions
are:

outcome Uj outcome U,
Player 1: 03 1 Player 2: 91,04 1
02 0.25 02 0.4
01,04 0 03 0
The reduced game is shown in Figure 6.14. 0
Player 2
¢ d
0 1 0.25 04
Player 1
1 0 0 1

Figure 6.14: The reduced game for Exercise 6.1.

Solution to Exercise 6.2.

04

0
The expected utility of the lottery ( 11

§> is $(12) + %(16) = 15 for Player 1 and
2

|

%(6) + %(10) =9 for Player 2.

0
The expected utility of the lottery < is 11 for Player 1 and 10 for Player 2.

1 02
1
2 2
03 04 .
3 ) is 12 for Player 1 and 9.2 for Player 2.
5 5

The expected utility of the lottery ( 5

The reduced game is shown in Figure 6.15. U
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Player 2
C D

Al I5 9 |11 10

Player 1
B| 6 8 | 12 9.2

Figure 6.15: The reduced game for Exercise 6.2.

Solution to Exercise 6.3.

(@) I = 5(0) +5(6) +5(4) +5(2) =3 and I, = g(1) + 5(3) + 5(4) + 3(0) = 2.

ool

(b) No, because if Player 1 switched to the pure strategy C then her payoff would be
13)+4(4)=3.5>3. O

Solution to Exercise 6.4. Player 1’s payoff is IT} = %(2) + %(8) +4(6)+<(4) =5.

. . A B .
If Player 1 switches to any other mixed strategy ( ! , while Player 2’s strategy
p

is kept fixed at (? ?) , then her payoff is ITj = £(p)(2) +%(p)(8) + (1 — p)(6) +
2 2
(1-p)(4)=5.

. . C D .
Thus any mixed strategy of Player 1 is a best response to (1 1 ) . Similarly, Player
2

2
2’s payoff is I, = 23 + 2(5) + £(6) + £ (2) = 4. If Player 2 switches to any other mixed

=

C D . . A B
strategy ( | > , while Player 1’s strategy is kept fixed at (2 > , then her payoff
q 1—q

1
3 3
isTh = 3(¢q)(3)+3(1—q)(5)+3(¢)(6) + 3(1 — g)(2) = 4. Thus any mixed strategy of
A B
Player 2 is a best response to | ,
3 3

A B C D C D). A B
Hence | , is a best reply to ]Jand | | | |isabestreplyto |, |, that
3 i 2 2 2 3 3

1
3
A B
( (2 1 > ( 1 > ) is a Nash equilibrium. 0
33 2 2
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Solution to Exercise 6.5.
(a) We have to find the Nash equilibrium of the following game:

(b)

Player 2
c d
Player a O 1 0.25 0.4
1 b 1 0 0 1

To make calculations easier, let us multiply all the payoffs by 100 (that is, let us
re-scale the von Neumann-Morgenstern utility functions):

Player 2
c d
Player a O 100 25 40
1 b 100 0 0 100

There are no pure-strategy Nash equilibria. To find the mixed-strategy Nash equilib-
rium, let p be the probability with which Player 1 chooses a and ¢ be the probability
with which Player 2 chooses c.

Then, for Player 1, the payoff from playing a against (; 1 f q) must be equal to the

payoff from playing b against (; | f q) . That is, it must be that 25 (1 — ¢) = 100gq,
which yields g = % Similarly, for Player 2, the payoff from playing ¢ against

a b a b
must be equal to the payoff from playing d against . This
(p 1— p) q pay playmng a ag < po1— p>

requires 100p = 40p + 100(1 — p), that is, p = %. Thus the Nash equilibrium is

(GG D)

At the Nash equilibrium the payoffs are 20 for Player 1 and 62.5 for Player 2. (If
you worked with the original payoffs, then the Nash equilibrium payoffs would be
0.2 for Player 1 and 0.625 for Player 2.) U

Solution to Exercise 6.6. We have to find the Nash equilibria of the following game.

Player 2
C D
Player A 15 9 11 10
1 B 6 8 12 9.2

For Player 2 D is a strictly dominant strategy, thus at a Nash equilibrium Player 2 must play
D with probability 1. For Player 1, the unique best reply to D is B. Thus the pure-strategy
profile (B, D) is the only Nash equilibrium. O]
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Solution to Exercise 6.7. We have to find the Nash equilibria of the following game.

Player 2

D E
Player A 2 3 8 5
1 B 6 6 4 2

(B,D) (with payoffs (6,6)) and (A, E) (with payoffs (8,5)) are both Nash equilibria. To
see if there is also a mixed-strategy equilibrium we need to solve the following equations,
where p is the probability of A and ¢ is the probability of D: 2¢+8(1 —q) = 6g+4(1 —q)
and 3p+6(1 —p) =5p+2(1 — p). The solution is p = % and g = % so that

(G1)C )

is a Nash equilibrium. The payoffs at this Nash equilibrium are 5 for Player 1 and 4 for
Player 2. O

Solution to Exercise 6.8. Since B is strictly dominated (by C), it cannot be assigned
positive probability at a Nash equilibrium. Let p be the probability of 7 and g the
probability of L. Then p must be such that 4p +0(1 — p) =3p+2(1 — p) and ¢ must be
such that g +4(1 —gq) =2q+ (1 —g). Thus p = % and g = %. Hence there is only one
mixed-strategy Nash equilibrium, namely

(G10-GD)

Solution to Exercise 6.9.
(a) Since Player 1 prefers o5 to 03 and prefers o¢ to 04, strategy b is strictly dominated
by strategy c.
Thus, at a Nash equilibrium, Player 1 will not play b with positive probability and we can

simplify the game to

Player 2

d e

Player a o 02
1 c 05 06

Of the remaining outcomes, for Player 1 o, is the best outcome (we can assign utility 1
to it) and o5 is the worst (we can assign utility O to it). Since he is indifferent between og

01

05 . . 4 . 05 06\ .
and the lottery < 4 ), the utility of o6 is 5. Hence the expected utility of ( ) ) is
5

1 1
5

2 2
%(O) + % (%) = % and thus the utility of o, is also %
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(b) If Player 2 plays d with probability % and e with probability %, then for Player 1

(c)

(d)

playing a gives a payoff of %(1) + % (%) = 17—0, while playing ¢ gives a payoff of

1(0)+ % (%) = 15. Hence he should play a.

If you did not follow the suggestion to simplify the analysis as was done above, then
you can still reach the same conclusion, although in a lengthier way. You would still

set U(o1) = 1. Then the expected payoff from playing a is

I (a) = 3U(01) + 35U (02) = 5 + 3U (02) (%)

. . 05 0g
Since o, is as good as b
2 2

. . 01 05
Since og is as good as 4 1]
5 5

Replacing (1) in (¢)( we get U(02) = % + 2U(0s) and replacing this expression in
(%) we get I (a) = % + l%U(05). Similarly,
i(c) =

U(os) + 5U(06) = 5U(0s) + 3 (3 +1U(05)) = 15 + 5U (0s)

N[ —
=

Now, IT;(a) > IT;(c) if and only if {5+ U (z5) > 75 + U (zs) if and only if
3 > 3U(o0s) if and only if U(os) < 1, which is the case because os is worse than o,

and U (o) = 1. Similar steps would be taken to answer parts (c) and (d).

In the reduced game, for Player 2 05 is the best outcome (we can assign utility 1 to

it) and og 1s the worst (we can assign utility O to it). Thus, since she is indifferent

between o5 and the lottery (012 036 , the utility of o5 is }‘ and so is the utility of o;.
4 4
Thus playing d gives her an expected payoff of %(%) + 43—1(%) = % and playing e gives

her an expected payoff of (1) + %(0) = . Thus she is indifferent between playing

d and playing e (and any mixture of d and e).

Using the calculations of Parts (b) and (c) the game is as follows:
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Player 2

d e
Player a 1 zlt % 1
1 c 0 }1 % 0

There is no pure-strategy Nash equilibrium. At a mixed-strategy Nash equilibrium,
each player must be indifferent between his/her two pure strategies. From Part (c)
we already know that Player 2 is indifferent if Player 1 plays a with probability
zlt and ¢ with probability %. Now let g be the probability with which Player 2
plays d. Then we need g + %(1 —q) = ;—‘(1 —q), that is, g = % Thus the Nash

e a b c d e . . :
equilibrium is L g , 5 which can be written more succinctly as
Z

ey

~ro

R . :

Solution to Exercise 6.10.

(a) Let p be the probability of A and g the probability of B. Player 1 must be indifferent
between playing A and playing B: 2¢+ 3(1 — g) = 6q; this gives g = 7 Similarly,
Player 2 must be indifferent between playing C and playing D: 2 = 4(1 — p); this
gives p = 1. Thus the Nash equilibrium is given by

((2 RE)

The equilibrium payoffs are & = 2.57 for Player 1 and 2 for Player 2.

ENTEES
Al O

(b) Player 1 must be indifferent between playing A and playing B: Z(x) + %(3) = %(6).

Thus x = 5. Similarly, Player 2 must be indifferent between playing C and playing

D: L(y)+2(2) = 2(4). Thus y = 8. O

Solution to Exercise 6.11. We have to find the Nash equilibria of the following game:

Player 2
D E
A 0 1
Player1 B 4 4
c 3 0

There are two pure-strategy equilibria, namely (B, D) and (A, E). To see if there is a mixed-
strategy equilibrium we calculate the best response of Player 1 to every possible mixed
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strategy <lq) 1 fq) of Player 2 (with g € [0, 1]). For Player 1 the payoff from playing

A against (Iq) 1 Eq) is 6 — 6g, the payoff from playing B is 4¢+2(1 —gq) =2+ 2¢q

and the payoff from playing C is 3¢ +4(1 —q) = 4 — q. These functions are shown in
Figure 6.16, where the downward-sloping line plots the function where A(q) = 6 — 6¢,
the upward-sloping line plots the function B(g) = 2 + 2¢ and the dotted line the function

C(q) =4—q.

4
A(Q) /

B(q)

C(q) /
) ]

Figure 6.16: The best-reply diagram for Exercise 6.11.

It can be seen from Figure 6.16 that
forany p €[0,1] ifg=2

A
Player1’s best reply = < C if % <g< %
forany p € [0,1] if g =3
p 1-p
B
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Thus if there is a mixed-strategy equilibrium it is either of the form

A C D B C
) or of the form ,

p 1-p z p 1-p

t
&)
t

W
SN

W|—

In the first case, where Player 1 chooses B with probability zero, E is strictly better than D

D E
for Player 2 and thus s 3 is not a best reply for Player 2, so that
5 5

A C D . R
, is not a Nash equilibrium for any p.

p l-p z

&

(9,1[9)

In the second case we need D(p) = E(p), that is, 4p = 2(1 — p), which yields p = %

B C D E

. el . . 10
Thus the mixed-strategy Nash equilibrium is with payoffs of 5

for Player 1 and % for Player 2. U

o : A
Solution to Exercise 6.12. For Player 1, B is strictly dominated by ( 1 f ) ; for Player

2 2
o . L M o .
2, R is strictly dominated by ( 1 ) . Eliminating B and R we are left with
2 2
Player 2
L M

Player A 3 5 2 0
1 c 9 0 I 5

In this game no player has a strictly dominated strategy. Thus for Player 1 both A and C
are rationalizable and for Player 2 both L and M are rationalizable. U

Solution to Exercise 6.13. The statement is false. Consider, for example, the following
game:

Player 2
L R
A 3 1 0 O
Player1 B 0 O 3 1
c 2 1 2

Here both A and B are rationalizable (indeed, they are both part of a Nash equilibrium; note
that the cardinal IDSDS procedure leaves the game unchanged). However, the mixture

A B
( 101 ) (which gives Player 1 a payoff of 1.5, no matter what Player 2 does) cannot be a

2 2
best reply to any mixed strategy of Player 2, since it is strictly dominated by C. 0J



6.6 Solutions to exercises 235

Solution to Exercise 6.14.

(a)

If Player 1 assigns probability % to the event “Player 2 will play E and Player 3 will
play G” and probability % to the event "Player 2 will play F and Player will play H",
then A gives Player 1 an expected payoff of 1.5, B an expected payoff of 0,

C an expected payoff of 1.5 and D an expected payoff of 2.

Thus D is a best reply to those beliefs.

The functions are as follows: A(p,q) = 3pq, B(p,q) = 3(1 — p)qg+3p(1 —q),

C(p,q) =3(1—p)(1—q), D(p,q) =2pq+2(1—p)(1 —q).

(b) A(p,q) = D(p,q) at those points (p,q) such that g = % The set of such points is

(c)

(d)

Thus

the continuous curve in the Figure 6.17. The region where A(p,q) > D(p,q) is the
region above the continuous curve.

C(p,q) = D(p,q) at those points (p,q) such that g = %. The set of such points is
the dotted curve in the diagram shown in Figure 6.17. The region where C(p,q) >

D(p,q) is the region below the dotted curve.

B(p,q) = D(p,q) at those points (p,q) such that g = 52:15& (for p # %). The set of
such points is given by the two dashed curves in the diagram below. The region
where B(p,q) > D(p,q) is the region between the two dashed curves.

<

in the region strictly above the continuous curve, A is better than D,

in the region strictly below the dotted curve, C is better than D and

in the region on and between the continuous curve and the dotted curve, B is better
that D.

Hence, at every point in the (p,q) square there is a pure strategy of Player 1 which is
strictly better than D. It follows that there is no mixed-strategy 6_; (of the players other
than 1) against which D is a best reply. 0

0.8

2-2p

2-p
am (.6
1-p

1+p
LN N N ]

2-5p 04
5-10p

0.2

Figure 6.17: The diagram for Exercise 6.14.
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Solution to Exercise 6.15.
(a) There are n pure-strategy Nash equilibria: at each equilibrium exactly one player
jumps in.
(b) Let p be the probability with which each player jumps into the water. Consider a

Player i. The probability that none of the other players jump in is (1 — p)"_1 and
thus the probability that somebody else jumps in is [1 —(1- p)”_1 .

Player i’s payoff if he jumps in is v — ¢, while his expected payoff if he does not
jump inis v[ 1= (1= p)" ™| +0(1—p)" " =v|1=(1=p)""].

1
C\ n—1
p \%

(c) At the Nash equilibrium the probability that nobody jumps in is (1 — p)" = (9) 1
thus this is the probability that the dog dies.
Hence, the dog is rescued with the remaining probability 1 — () T
This is a decreasing function of n. The larger the number of swimmers who are
present, the more likely it is that the dog dies.

, which is strictly

Thus weneedv—c=v [1 —(1 —p)"_l] , that is,

between 0 and 1 because ¢ < v.

The plot of this function when ¢ = 10 and v = 12 is shown in Figure 6.18. U
0.35 T T T T T | T T T
e
g) | -
= 0.3
w
4
on
o
ie)
+—
S f(n - .
< (n) 0.25
>
=
E
¥
2 0.2 .
a
0.15 ] ] ] ] ] ] ] ] ]
70 4 8 12 16 20 24 28 32 36 4

number of players

Figure 6.18: The probability that the dog is saved as a function of the number of potential
rescuers.
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Behavioral strategies in dynamic games
The definition of dynamic (or extensive-form) game with cardinal payoffs is just like the
definition of extensive-form game with ordinal payoffs (Definition 4.1.1, Chapter 4), the

only difference being that we postulate von Neumann-Morgenstern preferences instead of
merely ordinal preferences.

N
INCTN

01 02 03 01 03 04
2 1 13 1
303 5 5 5/ o °
24 <5
04 05
Figure 7.1: An extensive-form game-frame with probabilistic outcomes. {z1,22,...,25} is

the set of terminal nodes and {01,037, ...,05} is the set of basic outcomes.
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In Chapter 6 we generalized the notion of strategic-form game-frame by allowing
for lotteries (rather than just simple outcomes) to be associated with strategy profiles.
One can do the same with extensive-form game-frames. For example, Figure 7.1 shows
an extensive-form game-frame where associated with each terminal node (denoted by
zi, 1 =1,2,...,5) is either a basic outcome (denoted by o;, j = 1,2,...,5) or a lottery
(probability distribution) over the set of basic outcomes {01,02,03,04,05}. Associated

. . 01 0 . . . . (o1 03 o
with z; is the lottery ( 21 12> , while the lottery associated with z3 is 11 33 14) , etc.
33 5 5 3

As we saw at the end of Chapter 4, in extensive forms one can explicitly represent ran-
dom events by means of chance moves (also called moves of Nature). Thus an alternative
representation of the extensive-form game-frame of Figure 7.1 is as shown in Figure 7.2.

We can continue to use the definition of extensive-form game-frame given in Chapter
4, but from now on we will allow for the possibility of chance moves.

The notion of strategy remains, of course, unchanged: a strategy for a player is a list
of choices, one for every information set of that player (Definition 4.2.1, Chapter 4). For
example, the set of strategies of Player 1 in the extensive-form frame of Figure 7.2 is
S1={(a,e),(a,f),(b,e),(b,f)}. Thus mixed strategies can easily be introduced also in
extensive frames. For example, in the extensive-form frame of Figure 7.2, the set of mixed
strategies of Player 1, denoted by X, is the set of probability distributions over S;:

El:{((a,e) @f) (be)  (b.f)

:p,q,r€|0,1|and p+qg+r<1;.
e 1_p_q_r) p,¢;r € [0, 1] and p+4 }

V< SA
C 2 o
C C d
d
Nature Nature o 1
2 1 1

o o o o
01 o)) 03 04 04 05

Figure 7.2: An alternative representation of the extensive-form frame of Figure 7.1. The
terminal nodes have not been labeled. The o;’s are basic outcomes.
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However, it turns out that in extensive forms with perfect recall (Definition 4.1.2,
Chapter 4) one can use simpler objects than mixed strategies, namely behavioral strategies.

Definition 7.1.1 A behavioral strategy for a player in an extensive form is a list of
probability distributions, one for every information set of that player; each probability
distribution is over the set of choices at the corresponding information set.

For example, the set of behavioral strategies of Player 1 in the extensive-form frame of

Figure 7.2 is:
a b e f
:p,q € (0,1 ;.
{(p 1=p | q 1—61) pacl ]}

A behavioral strategy is a simpler object than a mixed strategy: in this example, specifying
a behavioral strategy of Player 1 requires specifying the values of two parameters (p and
q), while specifying a mixed strategy requires specifying the values of three parameters (p,
g and r). Can one then use behavioral strategies rather than mixed strategies? For extensive
forms with perfect recall the answer is affirmative, as Theorem 7.1.1 below states.

First we illustrate with an example based on the extensive form of Figure 7.3 (the z;’s
are terminal nodes and the outcomes have been omitted).

1

Figure 7.3: An extensive-form frame with the outcomes omitted. The z;’s are terminal
nodes.

Consider the mixed-strategy profile ¢ = (07, 0,) with

a- (G0 @) 00 0N g o

12 1 12 1

W= O
Wi
~_
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We can compute the probability of reaching terminal node z;, denoted by P(z;), as follows:

P(z1) = o1 (a,e) oa(c)+ 01 (a, f) oa(c) = % (%) + % (%) =

P(22) = 01 (a,¢) 32(d) + 01 (a,f) oa(d) = 15 (3) + 15 (3) =
P(z3) = 01 (b,e) o2(c) + 01 (b, f) oa(c) =5 (3) + 55 (3) =
P(z4) = 01 (b,e) oa(d) = 5 (3) = 3%
P(z5) = 61 (b,f) 02(d) = 75 (3) = 30

That is, the mixed-strategy profile ¢ = (01, 0,) gives rise to the following probability

distribution over terminal nodes:

7N
&l &
wl_(\l
o N
&= &
w|-'>(ﬁ'
W= N
o
N~

<l
N——

N

What probability distribution over the set of terminal nodes would this behavioral strategy

c
1

induce in conjunction with Player 2’s mixed strategy 0, = (
3

3

d
2) ? The calculations

are simple (P(x) denotes the probability of choice x for Player 1, according to the given

behavioral strategy):

P(z) = P(a)oa(d) = 35 (3) = 38
P(z3) = P(b) o2(c) = 15 (%) = %-
P(z4) = P(b) 03(d) Pe) = 15 (3) (3) = 3%
P(zs) = P(b) oa(d) P(f) =15 (3) 3) = ¢

Thus, against 0, =

ol 8

d
(i ) , Player 1’s behavioral strategy <
3
e)

(b, f)
5
1

mixed strategy (
2

SIS

=N

N[V

) and her

) are equivalent, in the sense that they give
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rise to the same probability distribution over terminal nodes, namely

21 22 3 4 5
5 10 7 4 10
36 36 36 36 36

— Kuhn, 1953. In extensive forms with perfect recall, behavioral
strategies and mixed strategies are equivalent, in the sense that, for every mixed strategy
there is a behavioral strategy that gives rise to the same probability distribution over
terminal nodes.?

%A more precise statement is as follows. Consider an extensive form with perfect recall and a Player
i. Let x_; be an arbitrary profile of strategies of the players other than i, where, for every j # i, x; is
either a mixed or a behavioral strategy of Player j. Then, for every mixed strategy o; of Player i there
is a behavioral strategy b; of Player i such that (o;,x_;) and (b;,x_;) give rise to the same probability
distribution over the set of terminal nodes.

Without perfect recall, Theorem 7.1.1 does not hold. To see this, consider the one-
player extensive form shown in Figure 7.4 and the mixed strategy

((aiC) (a(,)d) (b(,)c) (b,%d))

2
which induces the probability distribution (le ZOZ ZS Z14 ) on the set of terminal nodes.
2 2
L
a b

<1 <2 <3 <4

Figure 7.4: A one-player extensive-form frame without perfect recall.

Consider an arbitrary behavioral strategy

a b c d
p l-p | q l—gq
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whose corresponding probability distribution over the set of terminal nodes is

<1 Vé) 23 24
pg p(1—q) (1—p)g (1—-p)(1—¢q) )

In order to have P(z) =0 it must be that either p =0or g = 1.
If p=0 then P(z;) =0andifg=1then P(z4) =0.

J1 22 23 4

Thus the probability distribution | 1
3 00 3

) cannot be achieved with a behavioral
strategy.

Since the focus of this book is on extensive-form games with perfect recall, by appealing
to Theorem 7.1.1, from now on we can restrict attention to behavioral strategies.

As usual, one goes from a frame to a game by adding preferences over outcomes.
Let O be the set of basic outcomes (recall that with every terminal node is associated
a basic outcome, while probabilistic outcomes are represented as moves of Nature as
shown in Figure 7.2) and let £’ (O) be the set of lotteries (probability distributions) over
0.

Definition 7.1.2 An extensive-form game with cardinal payoffs (or cardinal extensive-
form game for short) is a game-frame in extensive-form (with, possibly, chance moves)
together with a von Neumann-Morgenstern ranking ~; of the set of lotteries .Z’(0), for
every Player i .

As usual, it is convenient to represent a von Neumann-Morgenstern ranking by means
of a von Neumann-Morgenstern utility function and replace the outcomes with a vector
of utilities, one for every player. Mirroring the definition of reduced game for the case of
strategic-form games (Definition 2.1.3, Chapter 2) we can call a cardinal strategic-form
game obtained this way (that is, by replacing outcomes with utilities and thus associating a
vector of utilities with every terminal node) a reduced cardinal extensive-form game.

For example, consider the extensive-form game-frame below (which reproduces Figure
7.2), where O = {01,02,03,04,05} is the set of basic outcomes, and suppose that Player 1
has a von Neumann-Morgenstern ranking of .Z(0) that is represented by the following
von Neumann-Morgenstern utility function:

outcome: 01 03 03 04 05
U : 5 2 0 1 3

Suppose also that Player 2 has preferences represented by the von Neumann-Morgenstern
utility function

outcome: 01 0y 03 04 Os5

U: 3 6 4 5 0

Then, by replacing the basic outcomes with utilities, we obtain the reduced cardinal
extensive-form game shown in Figure 7.5.



7.1 Behavioral strategies in dynamic games

1
a b
Ca 2 e
C C d
d
Nature Nature 1
o ®
2 1 1 1
% ¥ 3 % 5 e f
o o o o [ )
01 (0)) 03 01 03 04 04 05
1
a b
V' SA
& z .
C C d
Nature d Nature 1
@ o
2 1 1 1
o o o
5 2 0 5 0 1 1 3
3 6 4 3 4 5 5 0

Figure 7.5: An extensive game based on the game-frame of Figure 7.2 (reproduced above).
The terminal nodes have not been labeled.

0
Since the expected utility of lottery ( 21
3

0] 03 04
1 3 1

utility of lottery (
5 5 5

) is 4 for both players, and the expected

W= S

> is 1.2 for Player 1 and 4 for Player 2, we can simplify the
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game by replacing the left node of Nature with the payoff vector (4,4) and the right node
of Nature with the payoff vector (1.2, 4). The simplified game is shown in Figure 7.6.

/N /\

° °
4 0 1.2
4 4
1 3
5 0

Figure 7.6: A simplified version of Figure 7.5, which, in turn, is based on the game-frame
of Figure 7.3.

Given an extensive-form game with cardinal payoffs, associated with every behav-

ioral strategy profile is a lottery over basic outcomes and thus — using a von Neumann-
Morgenstern utility function for each player — a payoff for each player. For example, the

behavioral strategy profile
e f c d
2 5)-\1 2
707 3 3

a b
5 7
12 12

for the extensive game of Figure 7.5 gives rise to the lottery

o1 02 03 04 05
71 25 213 81 150

540 340 3540 3540 540

(for instance, the probability of basic outcome o is calculated as follows:

P(o1) = P(a)P(c)3 + P(b)P(c)} = 35

SIS

711_ 71
+1235 = 530):
Using the utility function postulated above for Player 1, namely

outcome: 01 03 03 04 O5
U - 5 2 0 1 3
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we get a corresponding payoff for Player 1 equal to
71 25 213 81 150 7 __ 936 _
sa09 Tt 5552+ 5550+ 3550l + 55103 =535 = 1.733.

An alternative way of computing this payoff is by using the reduced game of Figure 7.6

where the behavioral strategy profile
a b e f c d
S 1z 5)o\1 2
2 12 7 7 3 3

yields the probability distribution over terminal nodes (labeled, from left to right, z; to z5)

which, in turn, yields the probability distribution

4 0 12 1 3
S 10 7 4 10
36 36 36 36 36

over utilities for Player 1. From the latter we get that the expected payoff for Player 1 is

5 10 7 4 102 _ 936 _
364+ 360+ 3612+ 56 14+ 563 =535 = 1.733.

The calculations for Player 2 are similar (see Exercise 7.3).

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 7.4.1 at the end of this chapter.

Subgame-perfect equilibrium revisited

The notion of subgame-perfect equilibrium was introduced in Chapter 4 (Definition 4.4.1)
for extensive-form games with ordinal payoffs.

When payoffs are ordinal, a subgame-perfect equilibrium may fail to exist because either
the entire game or a proper subgame does not have any Nash equilibria.

In the case of extensive-form games with cardinal payoffs, a subgame-perfect equilibrium
always exists, because — by Nash’s theorem (Theorem 6.2.1, Chapter 6) — every subgame
has at least one Nash equilibrium in mixed strategies (recall that we have restricted attention
to finite games).

Thus, in the case of cardinal payoffs, the subgame-perfect equilibrium algorithm (Defi-
nition 4.4.2, Chapter 4) never halts and the output of the algorithm is a subgame-perfect
equilibrium.
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We shall illustrate this with the extensive-form game shown in Figure 7.7.

1

.\ / \ /
C D C D G H G H
o o [ e O o
1 2 2 0 2 0 1 2
3 0 O I 0 I 2 0
1 2 3 2 3 2 1 3

Figure 7.7: An extensive-form game with cardinal payoffs.

Let us apply the subgame-perfect equilibrium algorithm to this game. We start with the
proper subgame that begins at Player 2’s decision node on the left (after choice L of
Player 1), whose strategic form is shown in Figure 7.8. Note that this subgame has no
pure-strategy Nash equilibria. Thus if payoffs were merely ordinal payoffs the algorithm
would halt and we would conclude that the game of Figure 7.7 has no subgame-perfect
equilibria. However, we will assume that payoffs are cardinal (that is, that they are von
Neumann-Morgenstern utilities).

Player 3

A
Player 2
B0 3|1 2

Figure 7.8: The strategic form of the proper subgame on the left in the game of Figure 7.7.

To find the mixed-strategy Nash equilibrium of the strategic-form game of Figure 7.8,
let p be the probability of A and g the probability of C. Then we need g to be such that
3g=1—gq, thatis, g = le and p to be such that p+3(1 — p) =2, that is, p = %

Thus the Nash equilibrium of this proper subgame is:
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(GD-(0)

for Player 1: %(%) 1—1—% (%)2%—%(%)2—#% (%)0: 1.125

yielding the following payoffs:

for Player 2: %(%)3—1—% (%)0%—%(%)0—1—% (%) 1=0.75
for Player 3: %(%) 1—1—%(%)2—#%(%)3—#%(%)2:2.

Thus we can simplify the game of Figure 7.7 as shown in Figure 7.9.

1
AL/.\RA,
o 2
1.125 E/ r

0.75
i

L e O L
2 0 1 2
0 | ) 0
3 2 1 3

Figure 7.9: The game of Figure 7.7 after replacing the proper subgame on the left with the
payoffs associated with its Nash equilibrium.

Now consider the proper subgame of the game of Figure 7.9 (the subgame that starts at
Player 2’s node). Its strategic form is shown in Figure 7.10.

Player 3
G H

0 3

Player 2

Figure 7.10: The strategic form of the proper subgame of the game of Figure 7.9.
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Again, there is no pure-strategy Nash equilibrium. To find the mixed-strategy equilibrium
let p be the probability of £ and g the probability of G. Then we need g to be such that
1 —q=2gq, thatis, g = 3, and p to be such that 3p+1—p=2p+3(1 — p), thatis, p = 3.

Hence the Nash equilibrium is <(§ I;) , (? g)) yielding the following payoffs:

W=

3 3

3 3

HE+3Q OB M+ =1,

[SN1\S]

for Player 1:

W

(3) ©+35(3) (1 +3(3) 2 +35(3) (0) =067,

for Player3: $(3)(3)+3(3)2)+1(3) () +1(3)(3)=2.33.

for Player 2:

[I\S]

Thus we can simplify the game of Figure 7.9 as shown in Figure 7.11, where the optimal
choice for Player 1 is L.

1
L '\RA
o/ ®
1.125 1
0.75 0.67
) 2.33

Figure 7.11: The game of Figure 7.9 after replacing the proper subgame with the payoffs
associated with the Nash equilibrium.

Hence the subgame-perfect equilibrium of the game of Figure 7.7 (expressed in terms

of behavioral strategies) is:
E F C D| GH
2 1)\ 1 3 12
3 3 4 4 3 3

(Rt

We conclude this section with the following theorem, which is a corollary of Theorem
6.2.1 (Chapter 6).

0I— &y

— Selten, 1965. Every finite extensive-form game with cardinal payoffs
has at least one subgame-perfect equilibrium in mixed strategies.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 7.4.2 at the end of this chapter.




7.3 Problems with the notion of subgame-perfect equilibrium 249

Problems with the notion of subgame-perfect equilibrium

The notion of subgame-perfect equilibrium is a refinement of Nash equilibrium. As
explained in Chapter 3, in the context of perfect-information games, the notion of subgame-
perfect equilibrium eliminates some “unreasonable” Nash equilibria that involve incredible
threats. However, not every subgame-perfect equilibrium can be viewed as a “reasonable
solution”. To see this, consider the extensive-form game shown in Figure 7.12. This game
has no proper subgames and thus the set of subgame-perfect equilibria coincides with the
set of Nash equilibria. The pure-strategy Nash equilibria of this game are (a, f,c), (a,e,c),
(b,e,c) and (b, f,d). It can be argued that neither (a, f,c) nor (b, f,d) can be considered
“rational solutions”.

Consider first the Nash equilibrium (a, f,c). Player 2’s plan to play f is rational only in the
very limited sense that, given that Player 1 plays a, what Player 2 plans to do is irrelevant
because it cannot affect anybody’s payoft (in particular, it cannot affect Player 2’s payoff);
thus f is just as good as e. However, if we take Player 2’s strategy as a “serious” plan
specifying what Player 2 would actually do if she had to move, then — given that Player 3
plans to play ¢ — e would give Player 2 a payoff of 2, while f would only give a payoff of 1.
Thus e seems to be a better strategy than f, if Player 2 takes the contingency “seriously”.

b 2 f

1
‘ >0 >0
Y
®

¢

O = =

W
(o)
\—/

-
Y,
-

2 0 2 0
2 0 2 0
2 0 2 0

Figure 7.12: An extensive-form game showing some drawbacks of the notion of subgame-
perfect equilibrium. This game is known as "Selten’s horse".

Consider now the Nash equilibrium (b, f,d) and focus on Player 3. As before, Player
3’s plan to play d is rational only in the very limited sense that, given that Player 1 plays
a and Player 2 plays f, what Player 3 plans to do is irrelevant, so that c is as good as d.
However, if Player 3 did find himself having to play, it would not be rational for him to
play d, since d is a strictly dominated choice: no matter whether he is making his choice at
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the left node or at the right node of his information set, ¢ gives him a higher payoff than
d. How can it be then that d can be part of a Nash equilibrium? The answer is that d is
strictly dominated conditional on Player 3’s information set being reached but not as a
plan formulated before the play of the game starts. In other words, d is strictly dominated
as a choice but not as a strategy.!

The notion of subgame-perfect equilibrium is not strong enough to eliminate “unrea-
sonable” Nash equilibria such as (a, f,c) and (b, f,d) in the game of Figure 7.12. In order
to do that we will need a stronger notion. This issue will be addressed in Part IV (Chapters
11-13).

Exercises

Exercises for section 7.1: Behavioral strategies in dynamic games

The answers to the following exercises are in Section 7.5 at the end of this chapter.

What properties must an extensive-form frame satisfy in order for it to
be the case that, for a given player, the set of mixed strategies coincides with the set of
behavioral strategies? [Assume that there are at least two choices at every information
set.]

Suppose that, in a given extensive-form frame, Player 1 has four informa-
tion sets: at one of them she has two choices and at each of the other three she has three
choices.

(a) How many parameters are needed to specify a mixed strategy of Player 1?

(b) How many parameters are needed to specify a behavioral strategy of Player 1?

From the behavioral strategy profile

7N
7N
Sl &

SIS
[

S~
~__
Y
W= O

Wi QL
~__
~__

calculate the payoff of Player 2 in two ways:
(a) using the game of Figure 7.5 and
(b) using the reduced game of Figure 7.6.

! Alternatively one could say that d is locally, but not globally, strictly dominated: decisions at information
sets are local choices, while strategies can be thought of as "global" choices.
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2 ¥ Nature

1
[ > >
Y
o

D=
DI —

(o<
o
:\._4-)
®
®

Figure 7.13: The game for Exercise 7.4.

Consider the extensive form of Figure 7.13, where O = {0y,...,06} is the
set of basic outcomes. All three players have von Neumann-Morgenstern preferences
over the set of lotteries .Z’(0).

Player 1’s ranking of O is 01 =1 06 =1 04 =1 02 ~1 03 ~1 05. Furthermore, she is

e 01 0y 0 . o
indifferent between og and the lottery ( 61 12 13) and is also indifferent between 04

8 8 8
and the lottery (022 Of’>.

3 3

Player 2’s ranking of O is 01 ~3 03 ~3 04 ~2 05 =2 03 =7 0g. Furthermore, he is

01 02 O¢g
8

indifferent between o3 and the lottery | |
0 10 10

Finally, Player 3’s ranking of O is 03 ~3 05 >3 04 >3 03 ~3 0g >3 01. Furthermore, she

o 01 02 0 . .
is indifferent between o4 and the lottery ( 11 12 13 and is also indifferent between
4 2 1

o3 and the lottery (0§1 022>.

5 5

Write the corresponding extensive-form game.
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Exercises for section 7.2: Subgame-perfect equilibrium revisited

The answers to the following exercises are in Section 7.5 at the end of this chapter.

Consider the extensive-form game with cardinal payoffs shown in Figure
7.14.

(a) Write the corresponding strategic-form game and find all the pure-strategy Nash
equilibria.

(b) Find the subgame-perfect equilibrium.

1
@ U >0
1
D 5
2 4
[ r
"4 N J
[/.\ 1 I
L R L R
o o
3 2 0 1
2 4 3 1

Figure 7.14: The game for Exercise 7.5.
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Consider the extensive form shown in Figure 7.15 (where 01,03, ...,019
are the basic outcomes). All the players satisfy the axioms of expected utility. They rank
the outcomes as indicated below (as usual, if outcome o is above outcome o’ then o is
strictly preferred to o/, and if 0 and o’ are on the same row then the player is indifferent
between the two):

01,03
07,09 02,07
01,072,04,05 05 08,010
Player 1 : e Player2:| 02,07,08 Player 3 : ’
010 06,010 01,04,09
03,06, 08 ;9 03,0s5,06

1

01 0
Furthermore, Player 2 is indifferent between o4 and the lottery ( ! 12 )
2 2

1 1

and Player 3 is indifferent between o and the lottery ( o295 > .
2 2

Although the above information is not sufficient to completely determine the von
Neumann-Morgenstern utility functions of the players, it is sufficient to compute the
subgame-perfect equilibrium. [Hint: first apply the IDSDS procedure to the subgame
and then ignore irrelevant outcomes. ]

Find the subgame-perfect equilibrium.

Figure 7.15: The game for Exercise 7.6.
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Consider the extensive-form game shown in Figure 7.16.
(a) Write the corresponding strategic-form game.
(b) Find all the pure-strategy Nash equilibria.

(¢) Find the mixed-strategy subgame-perfect equilibrium.

L R
2. 2
A B C D
7 \J [/ \]
[f\ . s 1 e
E F E F G H G H
@ ([ ) o ([ ) o o o ([ )
2 0 0 4 1 2 4 1
0 6 2 1 4 0 3 2

Figure 7.16: The game for Exercise 7.7.
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Consider the extensive-form game shown in Figure 7.17.
(a) Find all the pure-strategy Nash equilibria. Which ones are also subgame perfect?

(b) [This is a more challenging question.] Prove that there is no mixed-strategy Nash
equilibrium where Player 1 plays M with probability strictly between O and 1.

R
@ | (Player 1’s payoff)
0 (Player 2’s payoff)
0 (Player 3’s payoff)
L M

S,
/\
FEER

J\
0 0 0
1 |

1

vd

r

O»—A»—t.
N eNel |

()

o

Figure 7.17: The game for Exercise 7.8.
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— xxx Challenging Question x x x.

You have to go to a part of town where many people have been mugged recently. You
consider whether you should leave your wallet at home or carry it with you. Of the
four possible outcomes, your most preferred one is having your wallet with you and
not being mugged. Being mugged is a very unpleasant experience, so your second
favorite alternative is not carrying your wallet and not being mugged (although not
having any money with you can be very inconvenient). If, sadly enough, your destiny
is to be mugged, then you prefer to have your wallet with you (possibly with not too
much money in it!) because you don’t want to have to deal with a frustrated mugger.
A typical potential mugger’s favorite outcome is the one where you have your wallet
with you and he mugs you. His least preferred outcome is the one where he attempts to
mug you and you don’t have your wallet with you (he risks being caught for nothing).
He is indifferent as to whether or not you are carrying your wallet if he decides not to
mug you. Denote the possible outcomes as shown in Figure 7.18.

(a) What is the ordinal ranking of the outcomes for each player?

Suppose that both players have von Neumann-Morgenstern utility functions. You are
indifferent between the following lotteries:

01 02 03 04 01 02 03 04\
Ll:(i 14 3 0) and L2:<0 1 0 l)’
20 20 20 2 2

furthermore, you are indifferent between

O] 03 03 04 01 0y 03 04
3(0%%0>an4<%%00)

The potential mugger is indifferent between the two lotteries

O] 03 03 04 01 02 03 04
L5:(1 [ 1) and L6:<L 6 16 ﬂ)'
4 4 4 4 128 128 128 128

(b) For each player find the normalized von Neumann-Morgenstern utility function.

You have to decide whether or not to leave your wallet at home. Suppose that, if you
leave your wallet at home, with probability p (with 0 < p < 1) the potential mugger
will notice that your pockets are empty and with probability (1 — p) he will not notice;
in the latter case he will be uncertain as to whether you have your wallet with you or
you don’t. He will be in the same state of uncertainty if you did take your wallet with
you.

(c) Represent this situation as an extensive game with imperfect information.
(d) Write the corresponding strategic form.

(e) Find all the subgame-perfect equilibria (including the mixed-strategy ones, if
any). [Hint: your answer should distinguish between different values of p.]
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Potential mugger

Not
mug Mug
Leave wallet
YOU. at home 0 1 02
Take wallet
with you 03 04

Figure 7.18: The outcomes for Exercise 7.9.

Solutions to exercises

Solution to Exercise 7.1 It must be the case that the player under consideration has only
one information set. O

Solution to Exercise 7.2
(a) 53. The number of pure strategies is 2 X 3 x 3 x 3 =54 and thus 53 probabilities
are needed to specify a mixed strategy.
(b) 7: one probability for the information set where she has two choices and two
probabilities for each of the other three information sets. U

Solution to Exercise 7.3
(a) The induced probability distribution on basic outcomes is

01 02 03 04 05
71 25 213 81 150 |-

540 540 340 540 540

Thus Player 2’s expected utility is: % 34+ % 6+ % 4+ 58710 54+ % 0= % —3.

(b) The induced probability distribution on terminal nodes (labeled from left to right: z;

is the left-most terminal node and z5 is the right-most terminal node) is

21 22 <5
S5 10 10 /-
36 36 36

Thus Player 2’s expected payoff is %44— %4—# %4—1— ;—654— %0 = % =3.

g~ &
= &

Not surprisingly, the same number as in Part (a). U
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Solution to Exercise 7.4
The normalized von Neumann-Morgenstern utility functions are

01 07 03 04 0s 06
Uy 1 0 0 0.25 0 0.75
U, 1 1 0.2 1 1 0
Us 0 1 0.4 0.6 1 0.4

The extensive-form game is shown in Figure 7.19.

1 b 2 f Nature
I > @ >0
1 1
a e ‘ 2 2
& 3 3
[ o ) L)
0 0.75
c d c d 1 0
1 0.4
) (] ® )
1 0 0 0.25
1 1 0.2 1
0 1 0.4 0.6

Figure 7.19: The game for Exercise 7.4.

Or, in a simplified form obtained by removing Nature’s node, as shown in Figure 7.20.0]

>0 >0
0.375
e 0.5
0.7
¥ Y
¢ :)
® ® ® L
1 0 0 0.25
1 1 0.2 1
0 1 0.4 0.6

Figure 7.20: The simplified game for Exercise 7.4.
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Solution to Exercise 7.5

(a) The strategic form is shown in Figure 7.21. The pure-strategy Nash equilibria are
(UL,r) and (UR,r).

Player 2
) r
uL| 1 5|1 5
Player 1 Rl > | | 8
DL| 3 2 10 3
DR| 2 4 11 1

Figure 7.21: The strategic form for Part (a) of Exercise 7.5.

(b) The strategic form of the proper subgame that starts at Player 2’s node is as follows:

Player 2
[ r

Player L 3,2 0,3
1 R 2,4 1,1

This game has a unique mixed-strategy Nash equilibrium given by

h

R

~

,
, | , yielding Player 1 an expected payoft of 1.5.

B[ —
[\S]]

1
1

EE[SS)

Thus the unique subgame-perfect equilibrium, expressed as a behavioral-strategy

profile, is
U D L R [ r
3 1] \1 1
0 1 i 3 2 2

or, expressed as a mixed-strategy profile,

UL UR DL DR l r
3 1 11 1
0 0 7 7 2 2
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Solution to Exercise 7.6 There is only one proper subgame starting from Player 2’s node;
its strategic-form frame is as follows:

Player 3
d e f
a o0 0y 03

Player2 b o4 05 06

C 07 og 09

For Player 2 strategy c is strictly dominated by strategy b (she prefers o4 to 07, and o5 to
og and og t0 09) and for Player 3 strategy f is strictly dominated by strategy d (she prefers
01 t0 03, and 04 to 0g and 07 to 09). Thus we can simplify the game as follows:

Player 3
d e
Player a o 02

2 b 04 05

Restricted to these outcomes the payers’ rankings are:

o1 %)
Player 2 : | 04,05 Player3: | 01,04
0 05

Let U be Player 2’s von Neumann-Morgenstern utility function. We can set U(0;) = 1 and
U(02) = 0. Thus, since she is indifferent between o4 and o5 and also between o4 and the

1 o1 02 . 1
ottery NE U(o4) =U(05) = 5.

1

2 2
Let V be Player 3’s von Neumann-Morgenstern utility function. We can set V(0;) = 1
and V (0s5) = 0. Thus, since she is indifferent between o} and o4 and also between 0; and

0 0
the lottery 12 i ,V(o1)=V(os) = % Hence the above game-frame becomes the

1
2 2
following game:

Player 3

d e
Player a 1 % 0 1
2 b 5 3 10
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There is no pure-strategy Nash equilibrium. Let p be the probability of a and ¢ the

probability of d. Then for a Nash equilibrium we need g = % and p = %

. X o1 02 04 05
Hence in the subgame the outcome will be . | | :

4 4 g 4
Since all of these outcomes are better than x;( for Player 1, Player 1 will play d. Thus the
subgame-perfect equilibrium is

- X
(@) <

- Q

-
(@] 9
= QL
[NSTE
S -

Solution to Exercise 7.7
(a) The strategic form is shown in Figure 7.22.

Player 2

AC AD BC BD

¢[2 0]2 0]0 2]0 2

Hl2 0|2 0|0 20 2

k6|0 6|0 6|4 14 1

rH[ O 60 6|4 14 1
Player 1 ol 414 311 414 3
rREH[ 2 0|1 212 0]1 2

reG| 1 44 3.1 44 3

rREE[ 2 011 212 0]1 2

Figure 7.22: The strategic form for Exercise 7.7.

(b) There are no pure-strategy Nash equilibria.

(c) First let us solve the subgame on the left, whose strategic form is as follows:

Player 2

A B
Player E 2 O 0 2
1 F 0 6 4 1

There is no pure-strategy Nash equilibrium. Let us find the mixed-strategy equilib-
rium. Let p be the probability assigned to E and ¢ the probability assigned to A.
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Then p must be the solution to 6(1 — p) =2p+ (1 — p) and ¢ must be the solution to
2qg=4(1—gq). Thus p = % and g = % The expected payoff of Player 1 is % = 1.33,
while the expected payoff of player 2 is 17—2 = 1.714. Next we solve the subgame on
the right, whose strategic form is as follows:

P layer 2

C D
Player G 1 4 4 3
1 H 2 0 1 2

There is no pure-strategy Nash equilibrium. Let us find the mixed-strategy equilib-
rium. Let p be the probability assigned to G and ¢ the probability assigned to C.
Then p must be the solution to 4p = 3p+2(1 — p) and ¢ must be the solution to
g+4(1—q)=2g+(1—gq). Thus p = % and g = %. The expected payoff of Player
1is % = 1.75. Thus the game reduces to the the one shown in Figure 7.23, where the
optimal choice is R.

1
AL/ .\RA‘
°
133 1.75
1714 2.67

Figure 7.23: The reduced game after eliminating the proper subgames.

Hence the subgame-perfect equilibrium is:

L R
1

v
€0 Ny
Q
=
Wi >
ool
ENISEN G
)

~|Wn
Wt
W=
[OSI
ENT

Solution to Exercise 7.8

(a) The strategic form is shown in Figure 7.24.

The pure-strategy Nash equilibria are highlighted: (R,l,a), (M,r,a), (L,1,a), (R,1,b),
(R,r,b) and (L,1,b). They are all subgame perfect because there are no proper sub-
games.
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Player 2 Player 2

[ r [ r
RI1 0 0|1 O O RI1 0 0|1 O O
PlalyerMo11221 M0 1 0[0 0 0
Ll 1 00 0 O Lt 1 00 0 O

Player 3: a Player 3: b

Figure 7.24: The strategic form for Exercise 7.8.

(b) Since, for Player 3, a strictly dominates b, conditional on his information set being
reached, he will have to play a if his information set is reached with positive
probability. Now, Player 3’s information set is reached with positive probability if
and only if Player 1 plays M with positive probability. Thus when P(M) > 0 the
game essentially reduces to the one shown in Figure 7.25.

I R
>0 1 (Player 1’s payoff)
0 (Player 2’s payoff)
L M O (Player 3’s payoff)
N
[/. \ /.
[ r [ r
o [ o [
| 0 0 2
1 0 1 2
0 0 1 1

Figure 7.25: The extensive-form game for Part (b) of Exercise 7.8.

Now, in order for Player 1 to be willing to assign positive probability to M he must
expect a payoff of at least 1 (otherwise R would be better) and the only way he can
expect a payoff of at least 1 is if Player 2 plays r with probability at least %

- If Player 2 plays r with probability greater than %, then M gives Player 1 a higher
payoft than both L and R and thus he will choose M with probability 1, in which
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case Player 2 will choose r with probability 1 (and Player 3 will choose a with
probability 1) and so we get the pure strategy equilibrium (M, r,a).

- If Player 2 plays r with probability exactly % then Player 1 is indifferent between
M and R (and can mix between the two), but finds L inferior and must give it
probability 0. But then Player 2’s best reply to a mixed strategy of Player 1 that
assigns positive probability to M and R and zero probability to L is to play r with
probability 1 (if his information set is reached it can only be reached at node x;).

- Thus there cannot be a mixed-strategy equilibrium where Player 1 assigns to M
probability p with O < p < 1 : the probability of M must be either O or 1. U

Solution to Exercise 7.9

(a) The rankings are as follows:

best 03
best 04
01
You: , Potential Mugger: 01,03
04
worst 02
worst 02

(b) Let U be your utility function. Let U(03) = 1,U(01) = a,U(04) = b and U(0;) =

0, with 0 < b < a < 1. The expected utilities are as follows: E[U(L)] = s5a+ 35,
E[U(L:)] =3b, E[U(L3)]=3% andE[U(Ls)]=1a.

From E[U(L3)] = E[U(L4)] we get that a = 3.

Substituting this into the equation E[U(L;)] = E[U(Ly)] gives b = 1.

Thus U(o3) =1, U(o1)=3, Ulos)=% andU(o0)=0.

Let V be the mugger’s utility function. Let V(04) = 1,V(01) = V(03) = ¢ and
V(02) =0 with 0 < ¢ < 1. The expected utilities are as follows: E[V(Ls)] = 1(2c+
1) and E[V (Lg)] = 135(24c +37).

Solving E[V (Ls)] = E[V (L¢)] gives ¢ = %.

Thus, V(04) = 1,V(01) =V (03) = g and V(0,) = 0.

(c) The extensive game is shown in Figure 7.26.
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You
Leave
Take
Nature @
Notice Notnotice
p l—p
Mugger
g8 6.‘ Mugger \'.J
Not
Not Not
mug Mug mZg Mug mzig Mug
o o o o o
2 2 |
3 0 3 1 >
1 1 1
8 0 g 8 1

Figure 7.26: The extensive game for Exercise 7.9.

(d) The strategic form is shown in Figure 7.27 (for the mugger’s strategy the first item
refers to the left node, the second item to the information set on the right).

Potential Mugger

NN NM MN MM
2 1| 2 1
L|5 5|37 gp |30-» g0-p|0 O
You
1 1 1 1
T 1 3 3 1 1 3 3 1

Figure 7.27: The strategic form for the game of Figure 7.26.



266 Chapter 7. Extensive-form Games

(e) At a subgame-perfect equilibrium the mugger will choose not to mug when he
notices your empty pockets. Thus the strategic form can be simplified as shown in

Figure 7.28.
Potential Mugger
NN NM
2 112 1
Lys3 8 | 3P 8P
You
1 1
T < ks
S
Figure 7.28: The reduced game for Exercise 7.9.
Thus,

e Ifp< % then Take is a strictly dominant strategy for you and therefore there is
a unique subgame-perfect equilibrium given by (Take, (Not mug,Mug)).

e If p= % then there is a continuum of equilibria where the Mugger chooses
(Not mug, Mug) with probability 1 and you choose L with probability g and T
with probability (1 — g) for any ¢ with 0 < g < %, obtained from the following

condition about the Potential Mugger:

3 1
—_— ~—
expected payoff payoff from
from playing NM playing NN

e Ifp> % then there is no pure-strategy subgame-perfect equilibrium. Let g be
the probability that you choose L and r the probability that the mugger chooses
NN. Then the unique mixed strategy equilibrium is given by the solution to:

fr+3p(l=r)=r+3(1-r) and g=gpg+(1—q)

which is g = % and r = iﬁ—j. Thus the unique subgame-perfect equilibrium

1S:

L T NN NM MN MM
7 1—p | 7 | 4p-3 2
55 8, 1 i1 0 0
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8. Common Knowledge

Individual knowledge

In extensive-form games with imperfect information we use information sets to represent
what the players know about past choices (when it is their turn to move). An information
set of Player i is a collection of nodes in the tree where it is Player i’s turn to move and the
interpretation is that Player i knows that she is making her choice at one of those nodes,
but she does not know which of these nodes has actually been reached. In this chapter we
extend the notion of information set to more general settings.

We start with an example. After listening to her patient’s symptoms, a doctor reaches
the conclusion that there are only five possible causes: (1) a bacterial infection, (2) a
viral infection, (3) an allergic reaction to a drug, (4) an allergic reaction to food and (5)
environmental factors. The doctor decides to do a lab test. If the lab test turns out to be
positive then the doctor will be able to rule out causes (3)-(5), while a negative lab test will
be an indication that causes (1) and (2) can be ruled out. To represent the doctor’s possible
states of information and knowledge, after receiving the result of the lab test, we can use
five states: a,b,c,d, and e. Each state represents a possible cause, as shown in Figure 8.1.

bacterial viral drug food environ-
infection infection allergy allergy ment
€ b) (e 4 )
positive lab test negative lab test

Figure 8.1: The information provided by the lab test.
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We can partition the set {a,b,c,d, e} into two sets: the set {a,b}, representing the state of
knowledge of the doctor if she is informed that the lab test is positive, and the set {c,d, e},
representing the state of knowledge of the doctor if she is informed that the lab test is
negative.

Consider the proposition “the cause of the patient’s symptoms is either an infection or
environmental factors”. We can think of this proposition as the set of states {a,b,e} where
the proposition is in fact true; furthermore, we can ask the question “after receiving the
result of the lab test, at which state would the doctor know the proposition represented by
the set {a,b,e}?”

- If the true state is a, then — after viewing the result of the lab test — the doctor will
think that it is possible that the state is either a or b and thus know that the cause of the
patient’s symptoms is an infection (hence she will also know the weaker proposition that
the cause is either an infection or environmental factors); the same is true if the true state
is b.

- On the other hand, if the true state is e then the doctor will consider ¢, d and e as
possibilities and thus she will not be able to claim to know that the cause of the patient’s
symptoms is either an infection or environmental factors.

Hence the answer to the question “after receiving the result of the lab test, at which state
would the doctor know the proposition represented by the set {a,b,e}?” is “at states a and
b only”.

We can now turn to the general definitions.

Definition 8.1.1 Let W be a finite set of states, where each state is to be understood as
a complete specification of the relevant facts about the world. An information partition
is a partition .# of W (that is, a collection of subsets of W that (1) are pairwise disjoint
and (2) whose union covers the entire set W); the elements of the partition are called
information sets. For every w € W we denote by I(w) the information set that contains
state w.

In the example of the doctor, W = {a,b,c,d,e} and ¥ = {{a,b},{c,d,e}};
furthermore, I(a) = I(b) = {a,b} and I(c) = I(d) =1(e) = {c,d,e}.

A partition of a set W can also be thought of as a binary relation .# CW x W on W
that satisfies two properties (w.#w’ is an alternative notation for (w,w') € .#):

* Reflexivity: for every w € W, w.ow.
¢ Euclideanness: for all w,w’,w” € W, if w.#w' and w.#w" then w'.#w".
Such a relation is called an equivalence relation."

The information set that contains state w is defined as .7 (w) = {w' e W : w.I W'}

Reflexivity is a strong assumption, since it implies that the agent cannot be wrong in
what she knows: see the Remark at the end of this section.

'Note that the conjunction of reflexivity and euclideanness is equivalent to the conjunction of
(1) reflexivity, (2) symmetry (if w.#w’ then w.#w) and (3) transitivity (if w.#w’ and w'.#w" then w.#w"):
see Exercise 8.5.
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Definition 8.1.2 Let W be a set of states. We will call the subsets of W events. Let .%
be a partition of W, E an event (thus £ C W) and w € W a state. We say that at w the
agent knows E if and only if the information set to which w belongs is contained in E,
that is, if and only if /(w) C E.

In the example of the doctor, where W = {a,b,c,d,e} and . = {{a,b},{c,d,e}},
let E ={a,b,d,e}; then at a and b the doctor knows E because I(a) = I(b) ={a,b} CE,
but at d it is not true that the doctor knows E because I(d) = {c,d,e} ¢ E (since ¢ € I(d)
but ¢ ¢ E) and, for the same reason, also at ¢ and e it is not true that the doctor knows E.

Note that it is possible that there is no state where the agent knows a given event. In
the doctor example, if we consider event F = {a,c} then there is no state where the doctor
knows F.

Definition 8.1.3 Using Definition 8.1.2, we can define a knowledge operator K on
events that, given as input any event E, produces as output the event KE defined as the
set of states at which the agent knows E.

Let 2V denote the set of events, that is the set of subsets of W.¢ Then the knowledge
operator is the function K : 2V — 2W defined as follows: for every E C W, KE =
{weWw:I(w) CE}.

4If W contains n elements, then there are 2" subsets of W, hence the notation 2%. For example,
if W = {a,b,c} then 2V = {0, {a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}. (Recall that @ denotes the
empty set.)

In the example of the doctor, where W = {a,b,c,d,e} and .# = {{a,b},{c,d,e}},
let E ={a,b,d,e} and F = {a,c}; then KE = {a,b} and KF = 0.

Given an event G C W we denote by -G the complement of G, that is, the set of states
that are not in G. For example, if W = {a,b,c,d,e} and G = {a,b,d} then =G = {c, e}.
Thus while KG is the event that the agent knows G, =K G is the event that the agent does
not know G.

Note the important difference between event ~KG (the agent does not know G) and event
K—G (the agent knows that it is not the case that G):

* if w € =KG then at state w the agent does not know G but she might not know -G
either, that is, it may be that she considers G possible (I(w) NG # 0) and she also
considers —G possible (I(w) N —G # 0).2

* On the other hand, if w € K—G then at state w the agent knows that G is not true,
because every state that she considers possible is in =G (I(w) C =G).

Thus K—G C =K G but the converse inclusion does not hold.

In the example of the doctor, where W = {a,b,c,d,e} and . = {{a,b},{c,d,e}},
again let E = {a,b,d,e} (so that ~F = {c}) and F = {a,c} (so that -F = {b,d,e}); then
KE = {a,b}, ~KE = {c,d,e}, K—E =0, KF = 0, ~KF = W and K—F = 0.

%In the example of the doctor, where W = {a,b,c,d,e} and .# = {{a,b},{c,d,e}},if F = {a,c} (so that
—F ={b,d,e}) then KF = 0 and K—F = 0; for instance, if the actual state is a then the doctor considers F
possible (because her information set is I(a) = {a,b} and I(a) N F = {a} # 0) but she also considers ~F
possible (because I(a) N\—F = {b} # 0).
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Note the interesting fact that, since we can apply the knowledge operator to any event,

we can also compute the event that the agent knows that she knows E (that is, the event
K(KE), which we will denote more simply as KKE) and the event that the agent knows
that she does not know E (that is, the event K—KFE).
Continuing the example of the doctor, where W = {a,b,c,d,e}, & = {{a,b},{c,d,e}}
and E = {a,b,d,e}, KKE is the set of states where the agent knows event KE = {a,b};
thus KKE = {a,b}. Furthermore, since -KE = {c,d,e}, K—-KE = {c,d,e}. As noted in
the following remark, this is not a coincidence.

The knowledge operator K : 2V — 2% satisfies the following properties (which you
are asked to prove in Exercise 8.5): for every event E C W,

* KE C E (at any state where the agent knows E, E is indeed true).
* KE = KKE (the agent knows E if and only if she knows that she knows FE).

* -KE = K—KE. (the agent does not know E if and only if she knows that she
does not know E).

Because of the first property (for every event E, KE C E), it cannot be the case that
one knows something which is false. This property is what distinguishes knowledge
from belief. The more general notion of (possibly erroneous) belief is discussed in
Section 8.4.

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 8.6.1 at the end of this chapter.

Interactive knowledge

We can now extend our analysis to the case of several agents and talk about not only what
an individual knows about relevant facts but also about what she knows about what other
individuals know and what they know about what she knows, etc.’

We start with a set of states W, where each state represents a complete description of
the relevant facts, and a set {1,...,n} of individuals. To represent the possible states of
knowledge of each individual we use an information partition: .#; denotes the partition of
individual i . As before, we call the subsets of W events.

Definition 8.2.1 An interactive knowledge structure (also known as an Aumann struc-
ture) is a tuple (W,I,{.%},.;), where W is a set of states, I = {1,...,n} is a set of
individuals (n > 2) and, for every i € I, .#; is a partition of W.

3There is an entertaining episode of the TV series Friends in which Phoebe and Rachel reason about
whether Chandler and Monica know that they (= Phoebe and Rachel) know that Chandler and Monica
are having an affair: see https://www.youtube.com/watch?v=LUN2YNObOi8 (or search for the string
‘Friends-They Don’t Know That We Know They Know We Know’).


https://www.youtube.com/watch?v=LUN2YN0bOi8
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Using Definition 8.1.3 we can define a knowledge operator for every individual.

Let K; be the knowledge operator of individual i; thus, for every event E C W, K;E =
{weW :Ij(w) CE}. Now consider an event E and an individual, say Individual 1; since
K\ E is an event (it is the set of states where Individual 1 knows event E), we can compute
the event K, K| E, which is the event that Individual 2 knows event K E, that is, the event
that 2 knows that 1 knows E. But there is no need to stop there: we can also compute
the event K3K, K E (the event that 3 knows that 2 knows that 1 knows E) and the event
K1 K3K> K E (the event that 1 knows that 3 knows that 2 knows that 1 knows E), etc. A
few examples will be useful.

We begin with an abstract example, without interpreting the states in terms of specific
facts. Let the set of states be W = {a,b,c,d, e, f,g,h}. There are three individuals, Ann,
Bob and Carol, with the information partitions shown in Figure 8.2.

olamlojaranio
Bob: (d b) (c d)

Carol: l“l@’dllel’hl

Figure 8.2: The information partitions of three individuals.

Consider the event E = {a,b,c, f,g}. Let us compute the following events:
1. K4;nE (Ann knows E),
2. Kp,pE (Bob knows E),
3. KcarolE (Carol knows E),
4. KcaroiKanmE (Carol knows that Ann knows E),
5. KpopKcaroiKannE (Bob knows that Carol knows that Ann knows E),
6. Kpnn—KpopKcaroiE (Ann knows that Bob does not know that Carol knows E).

All we need to do is apply Definition 8.1.3. First of all,
1. KynnE = {a,b,c}

(for example, b € KgpnE because Iy, (b) = {b,c} and {b,c} C E, while f ¢ Kp,, E because

Laun(f) = {e, f,g} and {e, f, g} is not a subset of E).
Similarly,

2. KBObE = {avbaf} and 3. KCarolE = {b,C,f,g}.
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To compute Kcy0KannE we need to find the set of states where Carol knows event
{a,b,c} = KgpyE. Thus,

4. Kcaror KammE = {bac}'
={a,b,c}

Hence

S. KBob KCaleAnnE — @,
————
={b,c}
that 1s, there is no state where Bob knows that Carol knows that Ann knows E.

To compute Ka,,,—~KpopKcarolE first we start with K, E, which we have already com-
puted: KcgolE =1{b,c, f,g}; then we compute K,y KcarolE , whichis {f}: KgopKcarolE =
——

:{b’c’.f7g}
{f}; then we take the complement of this: =Kp,,KcarolE = {a,b,c,d,e,g,h} and finally

we compute Ky, of this event:

6. Kann _'KB()bKCamlE = {aabacad7h}-
—————
={a,b,c,de,g,h}

Thus, for example, at state a it is true that Ann knows that Bob does not know that Carol
knows E, while at state e this is not true.

Next we discuss a concrete example. The professor in a game theory class calls three
students to the front of the room, shows them a large transparent box that contains many
hats, some red and some white (there are no other colors) and tells them the following:

“I will blindfold you and put a hat on each of you, then I will remove the box
from the room and, after that, I will remove your blindfolds, so that each of
you can see the color(s) of the hats worn by the other two students, but you
will not be able to see the color of your own hat. Then I will ask you questions
starting with Student 1 then Student 2 then Student 3 then back to Student 1
and so on.”

After having placed the hats and removed the blindfolds, the professor asks Student 1 “Do
you know the color of your own hat?” She replies “No.” Then he asks Student 2 the same
question: “Do you know the color of your own hat?”” Student 2 says “No.” Then he asks
Student 3 and she says “No.” Then he asks the same question again to Student 1 and again
the answer is “No,” and so on. After asking the same question over and over and always
hearing the answer “No” he gets tired and tells them “I’ll give you a piece of information:
I did not pick three white hats.” He then resumes the questioning: first he asks Student 1
“Do you know the color of your own hat?” She replies “No.” Then he asks Student 2 the
same question: “Do you know the color of your own hat?” Student 2 says “No.” Then he
asks Student 3 and her reply is “Yes I do!” What color is Student 3’s hat? What color hats
do Students 1 and 2 have?

To answer these questions, we begin by defining the set of possible states. We can think
of a state as a triple (x1,x2,x3), where x; € {R,W} is the color of the hat of Student i (R
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means Red and W means White). For example, (R, W, R) is the state where Students 1 and
3 have a red hat, while Student 2 has a white hat. The possible states of information of
the three students before the professor announces that he did not pick three white hats are
represented by the information partitions shown in Figure 8.3, where we have connected
with a line states that are in the same information set.

- N
Student 1: WW,W) (WWR) (WRW) (WRR—RRR) RRW) RWR) RWW)

N— _ /

Student 2: WW.W) (WWR) (WRW) (WRR) ®RRR) RRW) RWR) RWW)
~_ N~~~

Student 3: WWW)y—W,WR) (WRW—WRR) RRR—RRW) RWR—RWW)

Figure 8.3: The initial information partitions for the Red/White hat example.

Whatever the state (that is, whatever hats the professor picks), each student is only uncertain
about the color of her own hat: she can see, and thus knows, the colors of the hats of the
other two students. Thus each information set contains only two elements.

Consider a particular state, say the state where all three hats are red: (R,R,R). At that state,
obviously, each student knows that not all hats are white: he/she can actually see two red
hats.* Furthermore, each student knows that every other student knows that not all hats
are white.

Take, for example, Student 1. She sees that the hats of the other two students are red
and thus she reasons that Student 2 also sees that the hat of Student 3 is red and hence
Student 2 knows that not all hats are white (similarly, she reasons that Student 3 knows
that not all hats are white). But does Student 1 know that Student 2 knows that Student 3
knows that not all hats are white? The answer is No. Seeing two red hats, Student 1 must
consider it possible that her own hat is white, in which case Student 2 would, like Student
1, see a red hat on Student 3 but would also see a white hat on Student 1; Student 2 would
have to consider the possibility that her own hat is white in which case, putting herself in
the shoes of Student 3, would reason that Student 3 would see two white hats and consider
it possible that her own hat was also white, that is, consider it possible that all hats were
white. We can see this more clearly by using the information partitions and the associated
knowledge operators. To simplify matters, let us assign names to the states and rewrite the
information partitions using these names, as shown in Figure 8.4.

The proposition “not all hats are white” corresponds to event E = {b,c,d,e, f,g,h}
(the set of all states, excluding only state a, where all hats are white).

“It is unfortunate that many people would use, incorrectly, the expression “all hats are not white” to mean
that “it is not the case that all hats are white”. The latter expression is equivalent to “at least one hat is red
(possibly one, possibly two, possibly all three)”, while the former is equivalent to “every hat is not white”,
that is, in this context, “every hat is red”.
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WWW) (WWR) (WRW) (WRR) [RRR) RRW) [RWR) [RWW)

a b c d e f 8 h

Student 1’s partition: {{a,h},{b,g},{c, f},{d,e}}
Student 2’s partition: {{a,c},{b,d},{e,g},{f h}}
Student 3’s partition: {{a,b},{c,d},{e,f},{g,h}}

Figure 8.4: Assignment of names to the states in the Red/White hat example.

Using Definition 8.1.3 we get the following events (recall that E = {b,c,d,e, f,g,h}
represents the proposition “not all hats are white” ):

E ={b,c,d,e, f,g,h},
K\E ={b,c,d,e,f, g},
K>E ={b,d,e, f,g,h},
K3E ={c,d,e,f,g,h}
K\K>E = KK\E = {b,d,e,g},
KIK3E = KK\ E = {c,d,e, f},
K)KiE = K3KoE = {e, f,g,h}

Note that the intersection of all these events is the singleton set {e}. Thus at state ¢ (where
all the hats are red), and only at state e, everybody knows that not all hats are white and
everybody knows that everybody knows that not all hats are white. Proceeding one step
further, we have that

K KoKE = Ki KK E = KO K KGE = KKK E = KK Ko E = K3 KoK E = 0.

Thus there is no state (not even ¢) where a student knows that another student knows that
the third student knows that not all hats are white.

Let us now continue with the formal analysis of the story of the three hats. At some stage
the professor makes the public announcement “I did not choose three white hats” (that is, he
announces event E = {b,c,d,e, f,g,h}). This announcement makes it commonly known
that state a is to be ruled out. Thus, after the announcement, the information partitions are
reduced to the ones shown in Figure 8.5, obtained from Figure 8.3 by deleting the state
(W,W,W).
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Y N
Student 1:  (WWR) (WRW) (WRR—RRR) [RRW) RWR) [RWW)

N— _~
~ N e S
Student 2: (WWR) (WRW) (WRR) [RRR) [RRW) RWR) [RWW)
N— -

Student 3:  (WW.R) (WRWr—WRR) RRR—RRW) [RWR—RWW)

Figure 8.5: The reduced information partitions for the Red/White hat example after the
announcement that not all hats are white: state (W,W,W) is removed from the partitions of
Figure 8.3.

Note that, at this stage, if the actual state is (R, W, W) Student 1 knows that her hat is red
(she sees two white hats and, having been informed that the professor did not choose three
white hats, she can deduce that hers must be red). Similarly, if the actual state is (W,R,W),
Student 2 knows that her own hat is red and, if the true state is (W, W,R), Student 3 knows
that her own hat is red. According to the story, after announcing that not all hats are white,
the professor first asks Student 1 if she knows the color of her hat and she answers “No.”
From this answer everybody can deduce that the state is not (R, W, W) and thus this state
can be deleted and the information partitions reduce to the ones shown in Figure 8.6.

-~ ~
Student I: (WWR) (WRW) (WRR—RRR) [RRW) ([RWR)
~ _
~ N
Student 2:  (WWR) (WRW) (WRR) [RRR) [RRW) ([RWR)
N— i

Student 3: (WWR) (WRWr—WRR) RRR—RRW) ([RWR)

Figure 8.6: The reduced information partitions for the Red/White hat example after Student
1 says that she does not know the color of her own hat: state (R, W,W) is removed from the
partitions of Figure 8.5.

Now, according to the story, Student 2 is asked whether she knows the color of her hat.

Let us see what the possibilities are.

1. Student 2 will answer Yes if state is either (W,R, W) (in fact, in this case, she knew

even before hearing Student 1°s answer) or (R,R,W) (in this case, before hearing
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Student 1’s answer, she thought the state might be either (R,R,W) or (R,W,W) but
then, after hearing Student 1’s answer, she was able to eliminate (R,W,W) as a
possibility). In either of these two states Student 2’s hat is red and thus she knows
that her hat is red. Furthermore, upon hearing Student 2 say Yes, Student 3 learns
that the state is either (W,R,W) or (R,R,W) and in both of these states her hat is
white, thus she acquires the knowledge that her own hat is white.

2. In each of the remaining states, namely (W,W,R), (W,R,R), (R,R,R) and (R,W,R),
Student 2 will answer No. Then everybody learns that the state is neither (W,R, W)
nor (R,R,W) and thus the information partitions reduce to the ones shown in Figure
8.7 (obtained from Figure 8.6 by removing states (W,R,W) and (R,R,W)). Note
that each of the remaining states is now a singleton information set for Student 3
and thus, upon hearing Student 2 say No, she learns what the state is: in particular
she learns that her own hat is red (at each of these states Student 3’s hat is red). In
the original story, Students 1 and 2 answered No and Student 3 answered Yes and

thus we fall in this second case.

Ve ~
Student 1: (W,W,R) (W,R,R—R,R,R) (R,W,R)
v TN
Student 2: (W,WR) (WR.R) (RRR) (R,W,R)
~_ -
Student 3: (WW.R) (WR.R) (RRR) (R,W,R)

Figure 8.7: The reduced information partitions for the Red/White hat example after Student
2 also says that she does not know the color of her own hat: states (W,R,W) and (R,R,W)
are removed from the partitions of Figure 8.6.

Now consider a blindfolded witness, who cannot see the color of anybody’s hat, but
knows that they are either red or white and hears the professor’s announcement and sub-
sequent questions, as well as the answers given by the three students. What would the
blindfolded witness learn about the true state?

The initial information set of the witness would consist of the set of all states; then,

(1) after the announcement of the professor, he would be able to eliminate state (W, W, W),
(2) after the negative answer of Student 1 he would be able to eliminate state (R, W, W) and
(3) after the negative answer of Student 2 he would be able to eliminate states (W,R, W)
and (R,R,W).
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The affirmative answer of Student 3 is not informative, because in each of these states
Student 3 knows that the color of her own hat is red. Thus at the end of the exchange
the witness’s information set is {(W,W.R), (W,R,R), (R,R,R), (R,W,R)}. Hence all the
witness knows is that the hat of Student 3 is red (on the other hand, Student 3 knows the
color of all the hats, because she has figured out the color of her own hat and can see the
hats of the other two students).

Let us now focus on state(R, R, R) where all hats are red. Initially, before the professor
makes the announcement, no student is ever able to figure out the color of her own hat, no
matter how many times the students are asked. However, as we saw, once the professor
announces that not all hats are white, then after Students 1 and 2 reply negatively to the
question whether they know the color of their own hat, Student 3 is able to infer that her
hat is red. Thus the professor’s announcement provides crucial information. This, however,
seems puzzling, because the professor merely tells the students what they already knew:
each student, seeing two red hats, knows that not all hats are white (furthermore, as we
saw above, each student also knows that every other students knows this). So how can
giving the students a piece of information that they already possess make any difference?
The answer is that the professor’s public announcement makes it a matter of common
knowledge that not all hats are white. Indeed, we saw above that — at the beginning — if
the true state is (R, R,R), although everybody knows that not all hats are white and also
everybody knows that everybody knows that not all hats are white, it is not the case that
Student 1 knows that Student 2 knows that Student 3 knows that not all hats are white.
Thus it is not common knowledge that not all hats are white. The notion of common
knowledge is discussed in the next section.

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 8.6.2 at the end of this chapter.

Common knowledge

Common knowledge is the strongest form of interactive knowledge: an event E is common
knowledge if everybody knows E and everybody knows that everybody knows E and
everybody knows that everybody knows that everybody knows E, and so on. For example,
in the case of two individuals, we say that at state w event E is common knowledge if

weKIENKENKIKENKKIENKIKKIENKKKEN...

We denote by CKE the event that (that is, the set of states where) event E is common
knowledge. Thus, in the case of two individuals,

CKE =KIENKENKIKKENKKIENKIKKIENKKKEN...

Given the definition of common knowledge, it may seem impossible to check if an event is
common knowledge, because it requires checking an infinite number of conditions. We
will see that, on the contrary, it is very easy to determine if an event is common knowledge
at any state. We begin with an example.
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= Example 8.1 Abby proposes the following to Bruno and Caroline.

“Tomorrow I will put you in two separate rooms, so that there will be no
possibility of communication between you. I will then pick randomly a
number from the set {2,4,6}. Let n be that number. Then I will write the
number n — 1 on a piece of paper and the number n + 1 on another piece of
paper, shuffle the two pieces of paper and hand one to Bruno and the other to
Caroline. For example, if I happen to pick the number 6, then I will write 5 on
a piece of paper and 7 on another piece of paper, shuffle and give one piece of
paper to each of you. After seeing the number handed to you, each of you will
then write a pair of numbers on your piece of paper and return it to me. If

1. you write the same pair of numbers and

2. at least one of the two numbers is equal to the number that was actually
given to Bruno then I will give $1,000 to each of you, otherwise each of
you will give me $1,000.”

Should Bruno and Caroline accept to play this game? They can agree today on how they
should act tomorrow under various contingencies, bearing in mind that they will be unable
to communicate with each other tomorrow.

We will see that Bruno and Caroline should indeed accept, because they have a strategy
that guarantees that they will each get $1,000 from Abby. The first step is to represent the
set of possible states and the information partitions. We will describe a state by a triple
abc, where a is the number picked by Abby, b is the number given to Bruno and c is the
number given to Caroline. Bruno only observes b and Caroline only observes c. Thus the
information partitions are as shown in Figure 8.8.

Bruno: (213) (231 435) (453 657) (675)

Caroline: (213 (231) [435] 453) (657 [675]

Figure 8.8: The information partitions for Example 8.1.

Let us see if the following would be a successful strategy for Bruno and Caroline: “if
Bruno gets a 1 or a 3 we will write the pair (1,3) and if Bruno gets a 5 or a 7 we will
write the pair (5,7).” Consider the event “Bruno gets a 1 or a 3”: call this event E. Then
E = {213, 231, 435}. If this event occurs (e.g. because the actual state is 213), will it be
common knowledge between Bruno and Caroline that it occurred? It is straightforward
to check that (B stands for Bruno and C for Caroline) KgE = E, KcE = {231} and thus
KpKcE = 0. Hence, while Bruno, of course, will know if he gets a 1 or a 3, Caroline might
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know (if the state is 231) or she might not know (if the state is 213 or 435), but Bruno will
never know that Caroline knows. Thus event E is far from being common knowledge, if
it occurs. It is easy to check that the same is true of the event “Bruno getsa S ora7.” In
order to be successful coordination device, a strategy must be based on events that, when
they occur, are commonly known.

Let us now consider an alternative strategy, namely

if Bruno gets a 1 or a 5 let us write the pair (1,5), and
if Bruno gets a 3 or a 7 let us write the pair (3,7)

Let F be the event “Bruno gets a 1 or a 57, that is, F = {213, 453, 657}. Then KgF = F
and KcF = F, so that KB KcF = F, KcKBF = F, KB KcKBF = F, KcKBKcF = F and so
7 - —F 7
on. Hence CKF = F, that is, if event F occurs then it is common knowledge between
Bruno and Caroline that it occurred. Similarly, letting G = {231, 435, 675} be the event
“Bruno gets a 3 or a 77 we have that CKG = G. Hence strategy (¥ ) will be a successful
strategy for coordination, since the conditioning events, when they occur, are common
knowledge between Bruno and Caroline.

In the above example we were able to show directly that an event was common
knowledge at a given state (we showed that CKF = F, that is, that, for every w € W,
w € F if and only if w € CKF). We now show a faster method for computing, for every
event E, the event CKE. The crucial step is to derive from the individuals’ information
partitions a new partition of the set of states which we call the common knowledge
partition.

Definition 8.3.1 Consider a set of states W and n partitions %1, .%,,...,.%, of W. As
usual, if w is a state, we denote by /;(w) the element (information set) of the partition
7; that contains w. Given two states w,w’ € W, we say that

» w' is reachable from w in one step if there exists an i € {1,...,n} such that
w e Li(w).

e w is reachable from w in two steps if there exists a state x € W such that x is
reachable from w in one step and w’ is reachable from x in one step.?

e In general, w' is reachable from w in m steps (m > 1) if there is a sequence
of states (wy,wa,...,wp,) such that (1) w; = w, (2) w,, = w' and (3) for every
k=2,...,m, wy is reachable from wy_ in one step.

e Finally, we say that w' is reachable from w if, for some m > 1, w' is reachable
from w in m steps.

“Thus w' is reachable from w in two steps if there exist x € W and i, j € {1,...,n} such that x € L;(w)
and w' € I;(x).
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Definition 8.3.2 Consider a set of states W and the partitions .%1,.%,...,.%, of W of n
individuals. Given a state w, the common knowledge set that contains w, denoted by
Icx (w), is the set of states reachable from w. The common knowledge partition is the
collection of common knowledge sets.

That the collection of the common knowledge sets constitutes a partition of W is
easily proved. Since, for every w € W and every individual i, w € I;(w), w € Icx(w); thus

U Ick(w) 2 U {w} =W. Furthermore, for any w,w’ € W, if Icx (w) NIcg (w') # & then
weWw weW
Icxk(w) = Icx(w'). To see this, suppose that Icx (w) N Icg (W) # @. Choose an arbitrary

W € Icx(w) NIck (W'); then W is reachable from every state in Icx(w) and every state in
Ick (W) is reachable from w and thus Icg (w) = Icg (W').

Example 8.1 continued. Let us go back to Example 8.1, where there are two individu-
als, Bruno and Caroline, with the information partitions shown in Figure 8.9:

Bruno: (213) (231 435) (453 657
Caroline: 213/ (231) [435]1453 (657) [675]

Figure 8.9: Copy of Figure 8.8.

Applying Definitions 8.3.1 and 8.3.2 we have that Icg(213) = Icg(453) =Icx(657) =
{213,453, 657} and Icx (231) = Icx (435) =Ic (675) = {231, 435, 675}. Thus the com-
mon knowledge partition is as shown in Figure 8.10.

213 (231 43511453 657 [675]

Figure 8.10: The common knowledge partition for the information partitions of Figure 8.9.

As a second example, consider the information partitions shown in Figure 8.11 (which
reproduces Figure 8.2). The corresponding common knowledge partition is shown in
Figure 8.12.

5In fact, 213 is reachable from itself in one step (through either Bruno or Caroline), 453 is reachable in
one step from 213 (through Caroline) and 657 is reachable in two steps from 213 (the first step — to 453 —
through Caroline and the second step — from 453 — through Bruno).
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Figure 8.11: Copy of Figure 8.2.

(d b C d) (e f 8 h)

Figure 8.12: The common knowledge partition for the information partitions of Figure
8.11.

The following theorem states that, determining whether an event E is common knowl-
edge at a state w, is equivalent to determining whether an individual whose information par-
tition coincided with the common knowledge partition would know E at w.%

At state w € W, event E C W is common knowledge (that is, w € CKE)
if and only if Icx (w) C E. Thus the common knowledge operator CK : 2% — 2% is
given by: CKE = {w e W : Icg(w) C E}.

Example 8.1 continued. Let us go back to Example 8.1 about Bruno and Caroline.
Let F be the event that Bruno gets a 1 or a 5: F = {213, 453, 657}. Then, using Theo-
rem 8.3.1, CKF = F because Icx(213) = Icx(453) =Icx(657) = {213, 453, 657}; thus —
confirming what we found in Example 8.1 — at any state where Bruno getsa 1 ora S itis
common knowledge between Bruno and Caroline that Bruno gota 1 or a 5.

Now let H be the event “Bruno did not get a 57, that is, H = {213, 231, 435, 675}. Then,
using Theorem 8.3.1 we have that CKH = {231, 435, 675}. Thus while at state 231 Bruno
does not get a 5 and this is common knowledge between Bruno and Caroline, at state 213

Bruno does not get a 5 but this is not common knowledge between Bruno and Caroline (in
fact 213 ¢ KcgrorineH = {231,435, 675}).

5The theorem below is often attributed to Aumann (1976), but there are precedents in Friedell (1967,1969)
and Lewis (1969).
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As a last example, consider again the information partitions of Figure 8.11, whose
common knowledge partition was shown in Figure 8.12 and is reproduced in Figure 8.13.

(¢ 5 ¢ a)(e 1 & n)

Figure 8.13: Copy of Figure 8.12.

Let E = {a,b,c,d,e, f};then CKE = {a,b,c,d}. Let F = {a,b, f,g,h}; then CKF = &.

The smallest event that is common knowledge at state a is Icx (a) = {a,b,c,d} and the
smallest event that is common knowledge at state g is Icx(g) = {e, f, g, h}.

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 8.6.3 at the end of this chapter.

Belief

As noted in the Remark at the end of Section 8.1, a defining characteristic of knowledge is
that one cannot know something which is false. However, it is a common occurrence in
real life that one believes something which turns out to be false. Thus it is important to
have a more general notion of belief that allows for the possibility of error.

w2

Figure 8.14: A representation of the following relation on the set W = {w,wy,w3}:
Z ={(wi,w2), (wi,w3), (w2,w2), (w2, w3), (w3, w2), (w3,w3)}.

In Section 8.1 we modeled the possible states of knowledge of an individual by means
of a partition of the set of states. In the Remark after Definition 8.1.1 it was pointed out
that a partition can be viewed as a binary relation on the set of states that satisfies two
properties: reflexivity and euclideanness (such a relation is called an equivalence relation).
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In order to model the more general notion of belief we shall make use of a binary relation
2 over the set of states W. The interpretation of w%w’ (or, equivalently, (w,w') € £) is
that at state w the agent considers w' possible (we say that w' is a doxastic possibility for the
agent at state w). In general, such a relation Z cannot be represented as a partition of the
set of states (unless Z is an equivalence relation). Instead we will represent it as a directed
graph on W where there is an directed edge from w to w’ if and only if w%w’. Consider, for
example, the case where W = {w1,wy, w3} and Z is given by: w| Bw,, w1 Bwsz, wr Bws,
wr Bws, wzHBwy and w3 HBws; this relation is shown graphically in Figure 8.14.

We shall focus on the case where the belief relation satisfies the following three
properties (we will see below that these properties imply that the agent’s beliefs are
consistent and introspective):

o Seriality: forallw e W, Z(w) # @.

e Transitivity: for all w,w’,w" € W, if w%w’ and w 2w, then wBw".
* Buclideanness: for all w,w',w” € W, if w%w’ and w%Bw" then w' %Bw".

For example, the belief relation shown in Figure 8.14 satisfies these three properties. A rela-
tion that is transitive and euclidean can be represented more succinctly as follows: (1) if two
or more states are enclosed in a rounded rectangle, then any two such states are reachable
from each other and from themselves, and (2) if there is an arrow from a state w to a rounded
rectangle then every state in the rounded rectangle is reachable from w; more precisely:
(1) if w and w' are inside a rounded rectangle, then {(w,w), (w,w'), (W', W), (W ,w)} C £
and (2) if there is an arrow from w to a rounded rectangle, then for every w’ in the rectangle
(w,w') € A. Figure 8.15 shows this more succinct representation for the belief relation of
Figure 8.14.

succinctly
represented as: w| ———» [ W) w3 ]

Figure 8.15: A more succinct way of representing a transitive and euclidean relation.

Note that if we add a further property, namely reflexivity (wZAw, for all w € W), then we
fall back to the case of knowledge (see the Remark after Definition 8.1.1 and Exercise
8.5). Indeed, the lack of reflexivity is what gives rise to the possibility of erroneous
beliefs. For example, suppose that on your bedside table you have a battery-operated clock;
from previous experience you know that the clock sometimes gives the correct time and
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sometimes adds exactly 10 minutes. You wake up in the middle of the night and see that
the time displayed on the clock is 1:10; then you believe that the time is either 1:00 or 1:10.
However, it turns out that the battery ran out two hours ago and the actual time is 3:10.
This situation is illustrated in Figure 8.16, where w is the actual state but the states that
you have in mind are w, and ws.

W] e | W2 w3
time time time
3:10 1:00 1:10

Figure 8.16: An example of erroneous beliefs (the actual state is wy).

The definition of believing an event E is essentially the same as the definition of
knowing E (Definition 8.1.2):

Definition 8.4.1 Let W be a set of states, % be a belief relation on W, E C W an event
and w € W a state. We say that ar w the agent believes E if and only if B(w) C E.

As we did with knowledge (Definition 8.1.3), we can define a belief operator on events as
follows:

Definition 8.4.2 Using Definition 8.4.1, we can define a belief operator B that, given
as input any event E, produces as output the event BE consisting of the set of states at
which the agent believes E. Thus B : 2W s 2W is defined as follows: for every ECW,
BE={weW:%(w)CE}.

If the belief relation % is serial, transitive and euclidean then the belief operator
B : 2V — 2W satisfies the following properties (which you are asked to prove in
Exercise 8.15): for every event E C W,

* BENB-E = & (Consistency: there is no state state where the agent believes
both E and its negation —F).

* BE C BBE (Positive Introspection: if the agent believes E then she believes
that she believes E).

* —BE C B-BE (Negative Introspection: if the agent does not believe E then she
believes that she does not believe E).

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 8.6.4 at the end of this chapter.
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Interactive Belief and Common Belief

The extension of belief from the single-agent to the multiple-agent case mimics what was
done for the case of knowledge in Sections 8.2 and 8.3. We begin with an abstract example.
Let the set of states be W = {a,b,c,d, e} and let there be two agents. The belief relation
of Agent 1 is

%1 = {(a,b),(a,c),(b,b), (b;c),(c,b),(c,c), (d,e), (e, e) }

and the belief relation of Agent 2 is

% ={(a,b),(b,b),(c,d), (c,e),(d,d),(d,e), (e,d), (e,e)}.

The two belief relations are illustrated in Figure 8.17.

Ia—k___ g «—(g

2: a—@) c—@_<

Figure 8.17: The belief relations of two individuals.

Consider the event E = {b,e}. Then the event that Agent 1 believes E is BjE = {d, e}
(since HA)(d) = A (e) = {e}), while the event that Agent 2 believes E is BoE = {a,b}
(since A, (a) = $B>(b) = {b}); hence B1B,E = & and B,B|E = {c,d,e}. Note that at
state ¢ Agent 2 believes that Agent 1 believes E (¢ € BB E) but she does not believe E
herself (¢ ¢ ByE). In fact, if the actual state is ¢ then the two agents can have completely
divergent beliefs. For example, let p be a fact that is true at states a,b and ¢ and false at
states d and e; then at state ¢ Agent 1 believes p while Agent 2 believes its negation —p.

Let us consider another example. Don is courting two women, Ann and Bea, who are
aware of this fact. Today Don told both of them, separately and privately, "you are the only
woman I love and I informed the other one that I love only you". Ann believes him and so
does Bea. This situation can be represented as follows. The set of states is W = {a,b,c};
at state a Don tells only Ann "you are the only woman I love" and informs Bea of this; at
state b Don tells only Bea "you are the only woman I love" and informs Ann of this; at
state ¢ — which is the actual state — Don tells both women, separately and privately, "you
are the only woman I love and I informed the other one that I love only you". The belief
relations of Ann and Bea are as shown in Figure 8.18.
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Ann: (@Je——:c ()

Bea: (4 c—(b)

Don tells Don tells Don tells
Ann only both Bea only

Figure 8.18: The belief relations of Ann and Bea: B, (a) = Bann(c) = {a}, Bann(b) =
{b}; Bpeala) = {a}, Bpea(b) = Bpea(c) = {b}.

Note that, in the above example, at state ¢ Ann believes that Bea shares her belief, namely
that Don said only to Ann "you are the only woman I love"; in fact — as we will see below —
we can make an even stronger statement: at state ¢ Ann believes that it is common belief
between her and Bea that Don loves Ann only. Similarly at state ¢ Bea holds the opposite
belief that it is common belief between her and Ann that Don loves Bea only.

The definition of common belief mirrors the definition of common knowledge: an
event E is common belief if everybody believes E and everybody believes that everybody
believes E and everybody believes that everybody believes that everybody believes E,
and so on. For example, in the case of two individuals, we say that at state w event E is
common belief if

weBIENBENB|BoENByBIENBB,BiENByB1BEN...

We denote by B*E the event that (that is, the set of states where) event E is common belief.
Thus, in the case of two individuals,

B*E = BJENB,ENB1BENByBIENB1B,Bi{ENByBBEN...

As in the case of knowledge, in order to determine what events are commonly believed
we first construct a new relation, called the common belief relation, and then use that
relation in the same way in which we use an individual’s relation to determine what
events that individual believes. The following definition or reachability mimics Definition
8.3.1.

Definition 8.5.1 Consider a set of states W and n belief relations %, %,,...,%, on W.
Given two states w,w’ € W, we say that

* w' is reachable from w in one step if there exists an i € {1,...,n} such that
w € Bi(w) (that is, wBw').

e w' is reachable from w in m steps (m > 1) if there is a sequence of states
(wi,w2,...,wy) such that (1) w; =w, (2) w,, =w' and (3) forevery k =2,...,m,
wy 1s reachable from wy_; in one step.

e Finally, we say that w' is reachable from w if, for some m > 1, w' is reachable
from w in m steps.
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Definition 8.5.2 Consider a set of states W and n belief relations %A, %>, ..., %, on W.
The common belief relation on W, denoted by Z8*, is defined as follows: for every state
w, B*(w) is the set of states that are reachable from w.?

“An equivalent definition of the relation % is as the transitive closure of (that is, the smallest transitive
relation that contains) %, U %, U - --U Z,. Note that, while 28" is a transitive, it may fail to be euclidean
even if all the individual relations are euclidean; an example of this failure is the case illustrated in Figure

8.18.
The following theorem is a generalization of Theorem 8.3.1.7

At state w € W, event E C W is common belief (that is, w € B*E) if
and only if %*(w) C E. Thus the common belief operator B* : 2 — 2W is given by:
B'E={weW:%*(w) CE}.

1ma—k__ 9 «—(g

2: a—@) c—@_2

In the example of Figure 8.17, reproduced above, the common belief relation is as follows:

PB*(a) = HB*(b) = $B*(c) =1{b,c,d,e}

B (d) = $B*(e) ={d,e}.

Let F = {c,d,e}; then F is commonly believed at, and only at, states d and e, that is,
B*F = {d,e}. On the other hand, if G = {a,b,c,d} then B*G = @, that is, there is no state
where G is commonly believed.

In the Ann-Bea example of Figure 8.18 the common belief relation is as follows:
PB*(a) = {a},#*(b) = {b},#B*(c) = {a,b}. Let A ={a}. Then B*A = {a} and thus,
since Baun(c) = {a}, ¢ € BannB*A, that is, at state ¢ Ann erroneously believes that it is
common belief between herself and Bea that event A is true. Similarly, ¢ € Bp.,B*G where
G = {b}.

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 8.6.5 at the end of this chapter.

"Theorem 8.3.1 is a special case of 8.5.1 when the belief relations are reflexive.
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Exercises

Exercises for Section 8.1: Individual knowledge

The answers to the following exercises are in Section 8.7 at the end of this chapter.

You are in a completely dark room, where you cannot see anything. You open a drawer
that you know to contain individual socks, all of the same size but of different colors.
You know that 5 are blue and 7 are white.

(a) First use your intuition to answer the following question: what is the smallest
number of socks you need to take out in order to know (that is, to be absolutely
certain) that you have a matching pair (i.e. either a pair of blue socks or a pair of
white socks)?

(b) Now represent this situation using states and information sets. Do this to
1. represent the situation after you have taken out one sock,
2. represent the situation after you have taken out two socks and
3. represent the situation after you have taken out three socks.
A state should encode a complete description of the relevant aspects of the situation; in
particular, the state should tell us how many socks you have taken out and the color of

each sock that you have taken out (thus the set of states changes over time as you take
out more socks).

Consider the situation described in Exercise 8.1: the room is dark and you have taken
out three socks. Consider the following alternative scenarios.

(a) Somebody tells you the color of the third sock (but you still don’t know the color
of the other two socks). Represent your possible states of knowledge by means of
an information partition.

(b) Somebody tells you the color of the matching pair (but you don’t know what
socks you picked). Represent your possible states of knowledge by means of an
information partition.
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Let the set of states be W = {a,b,c,d, e, f,g,h,k,m,n} and the information partition of
an individual be {{a,b,c},{d},{e, f,g,h},{k,m},{n}}. Consider the following event:
E ={a,b,d,k,n}.

(a) Does the individual know E at state a?

(b) Does the individual know E at state ¢?

(¢) Does the individual know E at state d?

(d) Does the individual know E at state /?

(e) Does the individual know E at state k?

(f) Let KE denote the event that the individual knows E (that is, the set of states
where the individual knows E). What is KE?

For the next question, recall that, given an event F', we denote by —F the complement
of F, that is, the set of states that are not in F'.

(g) Once again, let E = {a,b,d,k,n}. What is the event ~KE, that is the event that
the individual does not know E? What is the event K—KE, that is, the event that
the individual knows that she does not know E?

The famous pirate Sandokan has captured you and put you in front of three numbered
chests containing coins. Chest 1 is labeled “gold,” Chest 2 is labeled “bronze,” and
Chest 3 is labeled “gold or silver.” One chest contains gold coins only, another contains
silver coins only, and the third bronze coins only.

(a) Represent the set of possible states in the case where the labels might or might
not be correct (a state must describe the label and content of each box).

(b) Let E be the event “Chest 1 is mislabeled” (that is, what the label says is false).
What states are in event E?

(c¢) Let F be the event “Chest 2 is mislabeled”. What states are in event F'?
(d) What is the event “both Chests 1 and 2 are mislabeled”?

(e) Suppose now that Sandokan tells you that all the chests are falsely labeled, that
is, what the label says is false (for example, if it says “gold” then you can be sure
that the chest does not contain gold coins). If you correctly announce the content
of all the chests you will be given a total of $1,000. If you make a mistake (e.g.
state that a chest contains, say, gold coins while in fact it contains bronze coins)
then you don’t get any money at all. You can open any number of chests you like
in order to inspect the content. However, the first time you open a chest, you have
to pay $500, the second time $300, the third time $100.

1. What is the set of possible states (assuming that Sandokan told you the
truth)?

2. What is the maximum amount of money you can be absolutely certain to
make?
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Recall the following properties of a binary relation R C W x W on a set W (recall also
the following notation: R(w) = {w' € W : wRw'}):

(a)
(b)
(¢

reflexivity: wRw, for all w € W (that is, w € R(w)),

euclideanness: if wRw' and wRw" then w'Rw” (that is, if w' € R(w) then
R(w) CR(W)),

symmetry: if wRw' then w'Rw (that is, if w' € R(w) then w € R(w')),
transitivity: if wRw’ and w'Rw” then wRw" (that is, if w' € R(w) then

R(w') C R(w)).

Prove that a binary relation that is reflexive and euclidean satisfies symmetry.
Prove that a binary relation that is reflexive and euclidean satisfies transitivity.

Prove that a binary relation that is symmetric and transitive satisfies euclideanness.

Prove each of the following properties of the knowledge operator. The proofs are
straightforward applications of Definition 8.1.2.

Truth: KE C E, that is, if at a state w one knows E, then E is indeed true at w.

Consistency: KE N K—FE = 0, that is, one never simultaneously knows E and
also ~E (—E denotes the complement of E).

Positive introspection: KE C KKE, that is, if one knows E then one knows that
one knows E (one is fully aware of what one knows). [Note that it follows from
this and Truth that KE = KKE, because from Truth we get that KKE C KE.]
Negative Introspection: ~KE C K—KE, that is, if one does not know E, then
one knows that one does not know E (one is fully aware of what one does not
know). [Note that it follows from this and Truth that -KE = K—KE, because
from Truth we get that K—-KE C —KE']

Monotonicity: If £ C F, then KE C KF, that is, if E implies F then if one knows
E then one knows F.

Conjunction: KENKF = K(ENF), that is, if one knows E and one knows F,

then one knows E and F, and vice versa.
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Exercises for Section 8.2: Interactive knowledge

The answers to the following exercises are in Section 8.7 at the end of this chapter.

Let the set of states be W = {a,b,c,d, e, f,g,h}. There are three individuals with the
information partitions shown in Figure 8.19.

Consider the event E = {a,b,c, f,g}. Find the following events.
(a) Ku,,E (the event that Ann knows E).

(b) Kp,»E (the event that Bob knows E).
(¢) KcuroiE (the event that Carol knows E).
(d) KcuroiKannE (the event that Carol knows that Ann knows E).

(@) KpopKcaroiKannE (the event that Bob knows that Carol knows that Ann knows
E).

() Kann—KpopKcarolE (the event that Ann knows that Bob does not know that Carol
knows E).

Ann: @ (e / g)
Bob: (¢ b) (¢ )
Carol: m@ ﬂ mﬁ]

Figure 8.19: The information partitions for Exercise 8.7.
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Dan is at the airport. He calls his office and leaves the following voicemail: “My flight
was cancelled and I am waiting to see if they can re-route me through Los Angeles or
San Francisco. I will call one of you at home tonight at 8:00 pm sharp to let that person
know whether I am in San Francisco or Los Angeles.” Dan’s office staff, consisting
of Ann, Barb and Carol, were out for lunch. When they come back they listen to the
message together. They leave the office at 5:00 pm and they go to their separate homes.

(a) Using information partitions, represent the possible states of knowledge of Ann,
Barb and Carol concerning Dan’s whereabouts at 8:15 pm, after Dan’s call (there
has been no communication among Ann, Barb and Carol after they left the office).

(b) Let E be the event that Dan calls either Barb or Carol. What states are in £?

(¢) For the event E of Part (b), find K4FE (Ann knows E), KgKsE (Barb knows that
Ann knows E) and —K¢cE (Carol does not know E, that is, it is not the case that
Carol knows E).

(d) For the event E of Part (b), find a state x where all of the following are true:
(1) at x Ann knows E,
(2) at x Barb knows that Ann knows E,
(3) at x it is not the case that Carol knows E.

A set of lights is controlled by two switches, each of which can be in either the Up
position or in the Down position. One switch is Room 1, where Ann is; the other switch
is in Room 2, where Bob is. The lights are in Room 3, where Carla is.
There are two lights: one red and one green. The red light is on if the two switches are
in different positions (one up and the other down: it doesn’t matter which is up and
which is down), while the green light is on if the two switches are in the same position
(both up or both down).
All this is common knowledge among Ann, Bob and Carla.
(a) Represent the possible states (you need to specify the position of each switch and
which light is on).
(b) Represent the possible states of information of Ann, Bob and Carla by means of
information partitions.

(c) Let G be the event “the green light is on”. Find the events G, K4G (Ann knows
G), KgG (Bob knows G), KcG (Carla knows G).

(d) Let L be the event “either the green light is on or the red light is on”. Find the
events L, K4L (Ann knows L), KgL (Bob knows L), KcL (Carla knows L).
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8.6.3 Exercises for Section 8.3: Common knowledge
The answers to the following exercises are in Section 8.7 at the end of this chapter.

Exercise 8.10
Consider again the information partitions of Exercise 8.7 (Figure 8.19).

(a) Find the common knowledge partition.
(b) Let E ={a,b,c,f,g}.

Find the event CKE, that is, the event that £ is common knowledge.
(c) Let F ={a,b,c,d,e,g}.

Find CKF, that is, the event that F' is common knowledge.

Exercise 8.11
In Exercise 8.8,

(a) Find the common knowledge partition.
(b) Find the event CKE (where E is the event that Dan calls either Barb or Carol).

Exercise 8.12
In Exercise 8.9,

(a) Find the common knowledge partition.

(b) Find the event CKG (where G is the event “the green light is on”).

(c) Find the event CKL (where L is the event “either the green light is on or the red
light is on”).

Exercise 8.13

The set of states is W = {a,b,c,d, e, f,g,h}. There are four individuals with the follow-
ing information partitions:

Individual 1:  {{a, b}, {c}, {d}, {e, f}, {g}, {h}}
Individual 2:  {{a}, {b, ¢}, {d, e}, {f}, {g}, {h}}
Individual 3:  {{a, ¢}, {b}, {d}, {e}., {g}, {f, h}}
Individual 4:  {{a},{b, ¢}, {d, e}, {f, g}, {h}}

(@) Let E ={a,c,d,e}.
Find the following events: K\ E, K> E, K3E, K4E and K| K>~ K3E.
(Recall that — denotes the complement of a set, that is, —F is the set of all states
that are not in F).

(b) Find the common knowledge partition.
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(c) At what states is event E = {a,c,d, e} common knowledge?
(d) Let F ={a,b,c,d,g,h}. Find the event that F is common knowledge.

Amy, Beth and Carla are now in Room 1 as shown in Figure 8.20. They are asked to
proceed, one at a time, to Room 3 through Room 2. In Room 2 there are two large
containers, one with many red hats and the other with many white hats. They have to
choose one hat, put it on their head and then go and sit in the chair in Room 3 that has
their name on it.

Amy goes first, then Beth then Carla. The chairs are turned with the back to the door.
Thus a person entering Room 3 can see whomever is already seated there but cannot be
seen by them. Beth and Carla don’t know how many hats there were in each box.

(a) Use information partitions to represent the possible states of knowledge of Amy,
Beth and Carla after they are seated in Room 3.

(b) Suppose that Amy chose a white hat, Beth a red hat and Carla a white hat. Find
the smallest event that is common knowledge among them. Give also a verbal
description of this event.

(c) Repeat Parts (a) and (b) for the modified setting where there is a mirror in Room
3 that allows Amy to see the hat of Carla (but not that of Beth).

N i N
hats

‘Carla ‘Beth ‘Amy
red
i nEnEE
Room 1 / Room 2 Room 3

Figure 8.20: The situation described in Exercise 8.14.

Exercises for Section 8.4: Belief

The answers to the following exercises are in Section 8.7 at the end of this chapter.

Let W = {w;,w2,w3, w4} and consider the belief relation % on W represented in Figure
8.21 below, where there is a directed edge from w to w’ if and only if wBw'.
(a) Write the relation 4 as a subset of W x W.

(b) Is the relation & serial, transitive and euclidean?

(c) Represent graphically the relation % in the more succinct form explained in
Section 8.4 and illustrated in Figure 8.15.
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(d) Let E = {wy,w3}. Find the event BE (the agent believes E).
(e) Let F = {w;,w,}. Find the event BF (the agent believes F).
(f) Let G = {w;,w2,w3}. Find the event BG (the agent believes G)

Figure 8.21: The relation for Exercise 8.16.

Exercise 8.16
Let W be a set of states and % C W x W a binary relation on W. Let B : 2% — 2V be the
corresponding operator defined by: BE = {w € W : Z(w) C E}. Prove the following:
(a) If #is serial? then, for every event E C W, BENB—E = &.
(b) If Zis transitive? then, for every event E C W, BE C BBE.
(c) If A is euclidean® then, for every event E C W, -BE C B—BE.

“ B(w) # o, foreveryw e W.

b For all w,w',w" € W, if w#w' and if w ZBw" then wZBw" or, equivalently, if w' € %(w) then
B(wW) C B(w).

For all w,w',w" € W, if wBw and wPBw" then w' Bw" or, equivalently, if w' € Z(w) then ZB(w) C
B(W).
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Exercises for Section 8.5: Interactive Belief and Common Belief

Consider the belief relations shown in Figure 8.22 below.
(a) Forevery w € {a,b,c,d}, find the set Z;(w).
(b) For every w € {a,b,c,d}, find the set %,(w).
(c¢) Let E = {a,b,d}. Find the events B| E (1 believes E) and ByE (2 believes E).
(d) Find the common belief relation.

(e) Let F = {b,c}. Find the event B*F (F is common belief).

1: (aJe—b (Je—ua

2: a—>b____cJe—d

Figure 8.22: The belief relations for Exercise 8.17.
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Consider the belief relations shown in Figure 8.23.

(a) Forevery w € {a,b,c,d}, find the set A3 (w).
(b) Let E = {a,b,c}. Find the following events:

- B1E (1 believes E),
ByE (2 believes E),
B3E (3 believes E),

(¢) Find the common belief relation.

B1B3E (1 believes that 3 believes E),
- B3BE (3 believes that 1 believes E).

(d) Let F = {b,c,d}. Find the event B*F (F is common belief).

N+ a—|b

3. a—|b

c —>»\d

Figure 8.23: The belief relations for Exercise 8.18.
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— xx+xChallenging Question. * x *.

Francis and his three daughters Elise, Sophia and Justine are in the same room. Francis
gives a sealed envelope to Elise and tells her (in a loud voice, so that everybody can
hear)

“In this envelope I put a sum of money; I don’t remember how much I put
in it, but I know for sure that it was either $4 or $8 or $12. Now, my dear
Elise, go to your room by yourself and open it. Divide the money into two
equal amounts, put the two sums in two different envelopes, seal them and
give one to Sophia and one to Justine.”

Unbeknownst to her sisters, Elise likes one of them more than the other and decides to
disobey her father: after dividing the sum into two equal parts, she takes $1 from one
envelope and puts it in the other envelope. She then gives the envelope with more money
to her favorite sister and the envelope with the smaller amount to the other sister. Sophia
and Justine go to their respective rooms and privately open their envelopes, to discover,
to their surprise, an odd number of dollars. So they realize that Elise did not follow their
father’s instructions. Neither Sophia nor Justine suspect that Elise kept some money
for herself; in fact, it is common knowledge between them that Elise simply rearranged
the money, without taking any for herself. Of course, neither Sophia nor Justine know
in principle how much money Elise took from one envelope (although in some cases
they might be able to figure it out). Thus it is not common knowledge between Sophia
and Justine that Elise took only $1 from one of the two envelopes. Your answers should
reflect this.

(a) Use states and information partitions to represent the possible states of knowledge
of Sophia and Justine.

(b) Let E be the event that Sophia is Elise’s favorite sister. Find the events KgE (the
event that Sophia knows it), K;E (the event that Justine knows it), KsK;E and
K;KgE.

(¢) Find the common knowledge partition.

(d) Is there a state at which it is common knowledge between Sophia and Justine
that Elise’s favorite sister is Sophia?

(e) The night before, Francis was looking through his digital crystal ball and saw
what Elise was planning to do. However the software was not working properly
(the screen kept freezing) and he could not tell whether Elise was trying to favor
Sophia or Justine. He knew he couldn’t stop Elise and wondered how much
money he should put in the envelope to make sure that the mistreated sister
(whether it be Sophia or Justine) would not know that she had been mistreated.
How much money should he put in the envelope?
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Solutions to Exercises

Solution to Exercise 8.1
(a) The answer is that you need to take out three socks.
(b) Describe a state by the number of socks you have taken out and the color of each
sock that you have taken out. After you have taken out only one sock:

1 1
B W

(the information set captures the fact that you cannot see the color of the sock
because it is dark). After you have taken out two socks:

2 2 2
B w W
w B W

After you have taken out three socks:

3
w
B
B

S o o w
T ® @ ow
> T & ow
T X mow
T %O W
x> T T w
T E X ow

Now at every state there are (at least) two socks of the same color, thus you know

that you have a matching pair, even though you don’t know what state you are in and
hence you don’t know the color of the matching pair. An alternative (and equivalent)
way to proceed would be to describe the state as a quadruple of numbers as follows:

number of blue socks in drawer X1
number of white socks in drawer X2
number of blue socks in your hand X3

number of white socks in your hand x4

Clearly, it must always be that x; +x3 = 5 and x, + x4 = 7. The initial state is
x1 =5,xp =7,x3 = x4 = 0. Taking one sock from the drawer will modify the state
as shown in Figure 8.24.
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Since it is dark and you don’t know
what color sock you took, you cannot
distinguish between the two states:
we have represented this by enclosing
the two states in an information set,
shown as a rounded rectangle

Figure 8.24: The possible states after taking one sock.

Since you could not distinguish
between the two initial states,
you cannot now distinguish
among the three states that
represent all the possibilities. In
two of the states you have a
matching pair, but you cannot
be certain that you have a
matching pair because you
might be in the middle state
where you have one blue sock
and one white sock.

Figure 8.25: The possible states after taking two socks.

SN 3 W
==
N O

O W
— N O\ W
N = D
W O~ W

Figure 8.26: The possible states after taking three socks.
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Now taking a second sock will modify the state as shown in Figure 8.25.
Now taking a third sock will modify the state as shown in Figure 8.26.

Now you know that you have a matching pair because in every possible state you
have at least 2 socks of the same color. Thus the answer is indeed that you need to
take out three socks. U

Solution to Exercise 8.2
(a) The left information set represents your state of knowledge if you are told that the
third sock that you picked was blue and the right information set represents your
state of knowledge if you are told that the third sock that you picked was white:

3 3 3 3 3 3 3 3
B B w w B B w w
B w B w B w B w
B B B B w w w w
(b)
3 3 3 3 3 3 3 3
B B W B w B W W
B W B B w w B w
B B B w B w w w
ou have a blae. matching pair ’ You have a white matching pair ’

Solution to Exercise 8.3

(a) No, because the information set containing a is {a, b, c} which is not a subset of
E ={a,b,d k,n}.

(b) No, because the information set containing c is {a, b, c} which is not a subset of
E ={a,b,d,k,n}.

(c) Yes, because the information set containing d is {d} which is a subset of
E ={a,b,d k,n}.

(d) No, because the information set containing / is {e, f,g,h} which is not a subset of
E ={a,b,d,k,n}.

(e) No, because the information set containing k is {k,m} which is not a subset of
E ={a,b,d k,n}.

(f) KE ={d,n}.
(g) “KE ={a,b,c,e,f,g,h,k,m}. K-KE ={a,b,c,e, f,g,h,k,m} = —KE. O
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Solution to Exercise 8.4
(a) Describe a state by a triple ((x1,y1), (x2,¥2), (x3,y3)) where x; is the label on box
number i (i = 1,2,3) and y; is the content of box number i.

Then the set of possible states is
1= ((GvB)7<BvG)7(G or S,S)), 22 = ((G7B)7(BvS>7(G or S,G))

7z =((G,G),(B,B),(Gor S,S)), z4 = ((G,G),(B,S), (G or S,B))
z5s = ((G,S),(B,B),(Gor S,G)), z6 = ((G,S),(B,G),(G or S,B)).

Thus, for example, state z4 is one where box number 1 (which is labeled ‘gold‘) in
fact contains gold coins, box number 2 (which is labeled ‘bronze‘) as a matter of
fact contains silver coins, and box number 3 (which is labeled ‘gold or silver®) as a
matter of fact contains bronze coins. More simply, we could write a state as a triple
(y1,¥2,y3) denoting the content of each box (since we are told what the labels are).
In this simpler notation the states are:

1= (B,G,S), = <B7S7G)7 3= (GaBaS)

24=(G,S,B), 5 =($,B,G), 26 = (5,G,B))

(b) E={(B,G,S),(B,S,G),(S,B,G),(S,G,B)} (recall that the label says “gold”).

(¢) F={(B,G,S),(B,S,G),(G,S,B),(S,G,B)} (recall that the label says “bronze”).

(d) EnF={(B,G,S),(B,S,G),(S,G,B)}.

(e) Of all the states listed above, only state z¢ is such that all the labels are false. Hence
Sandokan’s statement reduces the set of states to only one: zg = (S, G, B). This is
because the label “gold or silver” must be on the chest containing the bronze coins.
Hence we are only left with gold and silver. Then silver must be in the chest labeled
“gold”. Hence gold must be in the chest labeled “bronze”. Thus, by looking at the
labels you can correctly guess the content without opening any chests: you know that
the true state is (S, G,B). So you will get $1,000 (you are not guessing at random,
you are deducing by reasoning and you don’t need to open any chests). U

Solution to Exercise 8.5

(a) Let R be a reflexive and euclidean relation and let w,w’ € W be such that wRw'. We
need to show that w'Rw. Since R is reflexive, wRw. By euclideanness, it follows
from wRw' and wRw that w'Rw.

(b) Let R be a reflexive and euclidean relation and let w,w’,w"” € W be such that wRw'
and w'Rw"”. We need to show that wRw”. Since wRw', by symmetry (proved in part
(a)), W' Rw. By euclideanness, it follows from w'Rw and w'Rw” that wRw" .

(¢) Let R be a symmetric and transitive relation and let w,w’,w” € W be such that wRw'
and wRw”. We need to show that w'Rw”. Since wRw', by symmetry w'Rw. By
transitivity it follows from w'Rw and wRw" that w'Rw".
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Solution to Exercise 8.6

e Truth: KE C E. Consider an arbitrary w € KE. We have to show that w € E.
Since w € KE, by Definition 8.1.2, I(w) CE.
Since w € I(w), it follows that w € E.

* Consistency: KENK—-E =0.
Suppose that w € KE N K—E for some w and some E.
Then, by Definition 8.1.2, I(w) C E (because w € KE) and I(w) C —E
(because w € K—F) and thus I(w) C EN—E.
Since E N —E = 0, this implies that /(w) = 0, which is not true because w € I(w).

* Positive introspection: KE C KKE. Consider an arbitrary w € KE.
We need to show that w € KKE, that is, that I(w) C KE which means that w' € KE
for every w' € I(w).
Since w € KE, by Definition 8.1.2, I(w) CE.
Consider an arbitrary w’ € I(w). By definition of partition, I(w') = I(w).
Thus I(w') C E; hence, by Definition 8.1.2, w' € KE.

* Negative introspection: ~KE C K—KE. Consider an arbitrary w € -KE.
We need to show that w € K—KE, that is, that I(w) C -KE. By Definition 8.1.2,
since I(w) C =KE,I(w) N —E # 0.
Consider an arbitrary w' € I(w); then, since (by definition of partition)
IW) =1(w),I(W)N—E # 0 so that w € —-KE.
Thus we have shown that, for every w' € I(w),w’ € =KE, that is, I(w) C —=KE which,
by Definition 8.1.2, yields w € K—KE.

* Monotonicity: if E C F, then KE C KF. Consider an arbitrary w € KE.
We need to show that w € KF. Since w € KE, by Definition 8.1.2, I(w) CE.
Hence, since, by hypothesis, E C F,I(w) C F, that is, by Definition 8.1.2, w € KF.

* Conjunction: KENKF =K(ENF). Letwe KENKF. Thenw € KE and
w € KF; by Definition 8.1.2, the former implies that /(w) C E and the latter that
I(w) C F, sothat I(w) C ENF and hence, by Definition 8.1.2, we K(ENF).

Conversely, suppose that w € K(E N F). Then, by Definition 8.1.2, I(w) CENF
and thus I(w) C E and I(w) C F so that, by Definition 8.1.2, w € KE and w € KF';
hence w € KENKF. O

Solution to Exercise 8.7

(@) KgmnE = {a,b,c},

(b) KpopE = {aab7f}a

(C) KCarolE = {b,c,f,g},

(d) KcarorKannE = KCaml{aabaC} = {b,c},

(©) KpopKcarolKamE = KBOb{ba C} =0,

(B) Kann—KpopKcarolE = KAnn_‘KBob{bu c,f,g} = KAnn_‘{f} = KAnn{a7b7 ¢,d, e,g,h} -
{a,b,c,d,h}. O
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Solution to Exercise 8.8

(a) We can represent a state as a pair (x,y) where x is the city where Dan is (SF for San
Francisco or LA for Los Angeles) and y is the person that Dan called (A for Ann, B
for Barb and C for Carol). The information partitions are shown in Figure 8.27.

Ann: ((SF, A)) ((LA, A)) ((SF, B) (LA,B) (SE C) (LA, C))

B arb: ((SF, A) (LA, A)l((SF, B)) ((LA, B))f(SF, C) (LA, C)]

Carol: ((SF,A) (LA,A) (SEB) (LA,B)) ((SF,C)) ((LA,C))

Figure 8.27: The information partitions for Exercise 8.8.

(¢) KammE = E,KpuyrpKanmnE = {(SF,B),(LA,B)} and K¢, E = {(SF,C),(LA,C)}
sothat —Kcg0E = {(SF,A),(LA,A),(SF,B),(LA,B)}.

(d) We want a state x such that x € Ky, E, x € KpypKannE and x € = Kego1E
(that is, x ¢ KcaroiE).  There are only two such states: (SF,B) and (LA, B).
Thus either x = (SEB) or x = (LA,B). 0

Solution to Exercise 8.9
X

(a) We can represent a state as a triple y where x is the position of the switch

Z
in Room 1 (Up or Down), y is the position of the switch in Room 2 and z is the light
which is on in Room 3 (Green or Red).
(b) The information partitions are shown in Figure 8.28

U D U D
(¢c) G= U D , KxG=0, KgG=0, KcG= U D
G G G G

(d) L is the set of all states. Hence KyL = KgL. = KcL = L. O
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U U)Y(D D)
Ann: |U DJ|U D
G R) R G,
.
U)|lul (M) |D
Bob: (Ul |D||U||D
G| \R)IR| |G
U) (U D) (D
Carla: |U||D U||D
G| R RJI|G

Figure 8.28: The information partitions for Exercise 8.9.

Solution to Exercise 8.10
(a) The common knowledge partition is shown in Figure 8.29.

(a b ¢ d) (e f 8 h)

Figure 8.29: The common knowledge partition for Exercise 8.10.

(b) CKE =0 (where E = {a,b,c, f,g}).
(¢) CKF ={a,b,c,d} (where F ={a,b,c,d,e,g}). O

Solution to Exercise 8.11
(a) The common knowledge partition is the trivial partition shown in Figure 8.30.

((SF,A) (LA,A) (SE.B) (LA.B) (SEC) (LA, C))

Figure 8.30: The common knowledge partition for Exercise 8.11.

(b) CKE=0 UJ
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Solution to Exercise 8.12
(a) The common knowledge partition is the trivial partition shown below:

(b) CKG =0.
(¢) CKL=L. O

Solution to Exercise 8.13
(@) Let E ={a,c,d,e}. Then: K\E ={c,d}, KyE={a,d,e}, K3E={a,c,d,e},
K4E = {a,d,e} and K| K,—K3E = {g,h} [in fact, -K3E = {b, f,g,h}, so that
K2—|K3E = {f,g,h} and Kle—\K3E = {g,h}].
(b) The common knowledge partition is {{a,b,c},{d,e, f,g,h}}.
(c) Atno state is event E = {a,c,d,e} common knowledge: CKE = 0.
(d) CKF ={a,b,c} (where F={a,b,c,d,g,h}). a

Solution to Exercise 8.14
(a) Represent a state as a triple of letters, where the top letter denotes the color of Amy’s
hat, the second letter the color of Beth’s hat and the bottom letter the color of Carla’s
hat. Each of them knows which hat she chose; furthermore, Beth can see Amy’s hat
and Carla can see everything. Thus the partitions are as shown in Figure 8.31.

YN A G
Amy: W w R R R R W w
oW W W W R
(W) (W) (W) (W) R) (R) (R) [R)
Beth: [|w w R R R R w w
W) u W) R R W) U W)
(W) (W) (W) (W) R) (R) (R) [R)
Carla: |v w R R R R w w
W) R W) us R W) us W)

w LEJRR w

partition

Figure 8.31: The information partitions for Part (a) of Exercise 8.14.
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(b) When the actual state is (W, R, W), the smallest event that is common knowledge
among them is the first information set of the common knowledge partition, that is,
the fact that Amy has a white hat.

(¢) In the modified setting the information partitions are as shown in Figure 8.32.

— = = = ~ = &
W W W W R R R R
Amy: W W R R R R W W
w R W R R W R W
g g g I ) T e e
W W W W R R R R
Beth: [|w W R R R R W W
w R W R R W R W
— — — — — — — —
g ) g ) — ) ) )
W W W W R R R R
Carla: |v W R R R R 4 W
w R W R R W R W
— — — — — — — —
Common (W) (W) (W) (W) (R) (R) (R) (R)
knowledge |w w R R R R w w
partition (W) R W) R R W) R W)

Figure 8.32: The information partitions for Part (c) of Exercise 8.14.

The common knowledge partition is the same as before, hence the smallest event
that is common knowledge among all three of them is that Amy has a white hat. [
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Solution to Exercise 8.15
(@) B ={(wi,w2),(wi,w3),(wa,w2), (w2, w3),(w3,w2), (w3,w3), (wa,w2), (ws,w3)}.
(b) Yes, 4 is serial, transitive and euclidean.

(¢) The more succinct representation is shown in Figure 8.33.

W] —| W2 W3 | €———— w4

Figure 8.33: The more succinct representation of the relation of Figure 8.21.

d IfE = {Wz,W3} then BE = {W],WQ,W3,W4}.
(e) If F={w,w;p} then BF = @.
) IfG= {Wl,WQ,Wg} then BG = {WI,WZ,W3,W4}. O

Solution to Exercise 8.16

(a) Let Z be a serial relation on the set W. Let E C W be an arbitrary event and w € W
an arbitrary state. If w € BE then #(w) C E and if w € B—E then #(w) C —E.
Thus if w € BENB—E then Z(w) C EN—E = &, that is, #(w) = &, which is ruled
out by seriality of A.

(b) Let £ be a transitive relation on the set W. Let E C W be an arbitrary event and
w € W an arbitrary state and assume that w € BE, that is, Z(w) C E. Fix an arbitrary
w € B(w). By transitivity, Z(w') C Z(w) and thus Z(w') C E, that is, w’ € BE.
Hence, for every w' € #B(w), w' € BE i.e. B(w) C BE, that is, w € BBE.

(c) Let £ be a euclidean relation on the set W. Let E C W be an arbitrary event and
w € W an arbitrary state and assume that w ¢ BE, that is, Z(w) N —E # &. We
need to show that w € B-BE, that is, that, for every w' € Z(w), w' € —BE, i.e.
PB(W)N—E # @. Fix an arbitrary w' € % (w); since 4 is euclidean, ZB(w) C B(w')
and thus, since Z(w) N—E # &, it follows that B(w') N —E # &. O

Solution to Exercise 8.17
Figure 8.22 is reproduced below.

1: la)e=—0» cle—d
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(b) Forevery w € {a,b,c,d}, $2(w) = {b,c}.

(c¢) Let E ={a,b,d}. Then B1E = {a,b} and BoE = @.

(d) Forevery w € {a,b,c,d}, B*(w) ={a,b,c}.

(e) Let F = {b,c}. Then B'F = @&.

Solution to Exercise 8.18

Figure 8.23 is reproduced below.

l1:

(@) P3(a) = B3(b) = {b}, B3(c) = H3(d) = {d}.

(b) Let E = {a,b,c}. Then

B\E ={a,b,c,d}.

ByE ={a,b,c,d}.

B3E ={a,b}.

B\BiE = {a,b}.

B3B\E ={a,b,c,d}

(c) Forevery w € {a,b,c,d}, #*(w)={a,b,c,d}.

<« )

(d) Let F ={b,c,d}. Then B'F = @.

c —>»|d
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Solution to Exercise 8.19

(a) Describe a state by three numbers where the top number is the amount of money that
Francis put in the envelope, the middle number is the amount given to Sophia and
the bottom number is the amount given to Justine. As a matter of fact, each sister
can only find either $1 or $3 or $5 or $7 in her own envelope. Thus the objectively
possible states are:

4 4 8 8 12 12
1 , 3 ) 3 , 5 , 5 and 7
3 1 5 3 7 5

8 8 12 12 12 12
1 ) 7 ) 1 , 11 ) 3 and 9
7 1 11 1 9 3

(because Sophia and Justine don’t know that Elise only transferred $1 from one
envelope to the other).

The information partitions are as follows:

SOPHIA:
4 8 12 4 8 12 8 12
1 1 1 3 3 3 5 5
3 7 11 1 5 9 3 7
8 12 12 12
7 7 9 11
1 5 3 1
JUSTINE:
4 12 12 8 12
1 9 11 3 7
3 3 1 5 5
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12 12 12
5 3 1
7 9 11
(b) The event that Sophia is Elise’s favorite sister is
4 8 8 12 12 12
E = 3 5 ; 7 ; 7 ) 9 11
1 3 1 5 3 1
8 12 12 12
KsE = 7 , 7 , 9 , 11
1 5 3 1
4 8 12
K E = 3 , 7 , 11
1 1 1
12
KsK;E = 11 and K;KsE = 0.
1
\
(¢) The common knowledge partition is:
4 8 12 8 12 12
1 , 1 1 ; 5 , 9 ) 5
3 7 11 3 3 7
4 8 12 8 12 12
3 ; 3 3 ) 7 ) 11 , 7
1 5 9 1 1 5

(d) Atno state. In fact, CKE = 0.

(e) Francis should put either $8 or $12 in the envelope. If he were to put $4, then one
sister would end up with $1 and know that she was mistreated. In no other case does
a mistreated sister know that she got less money than the other.

O






9. Adding Beliefs fo Knowledge

In this chapter we discuss probabilistic beliefs, the notions of belief updating and belief
revision and the addition of probabilistic beliefs to knowledge.

We begin with a very brief review of definitions and concepts from set theory and probabil-
ity theory.

Sets and probability: brief review

Sets

We will focus on finite sets, that is, sets that have a finite number of elements. Let U be a
finite set. The set of subsets of U is denoted by 2V. The reason for this notation is that if U
contains n elements then there are 2" subsets of U. For example, if U = {a,b,c} then the
set of subsets of U is the following collection of 23 = 8 sets:

2Y ={0.{a}. {b}.{c}.{a,b}.{a,c} . {b,c} . {a,b,c}},

where () denotes the empty set, that is, a set with no elements.

The following notation is used to denote membership in a set and to denote that one set
is contained in another: x € A means that x is an element of the set A (capital letters are
used to denote sets and lower-case letters to denote elements) and A C B means that A is a
subset of B, that is, every element of A is also an element of B. Note that A C B allows for
the possibility that A = B.

Next we review operations that can be performed on sets.

» Let A € 2Y. The complement of A in U, denoted by —A, is the set of elements of U
that are not in A. When the “universe of discourse” U is clear from the context, one
simply refers to —A as the complement of A. For example, if U = {a,b,c,d, e, f}
and A = {b,d, f} then -A = {a,c,e}. Note that -U =0 and -0 = U.
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e LetA,Be 2U. The intersection of A and B, denoted by AN B, is the set of elements
that belong to both A and B. For example, if A = {b,d, f} and B = {a,b,d, e} then
ANB={b,d}. If ANB = 0 we say that A and B are disjoint.

e LetA,Be 2V, The union of A and B, denoted by A U B, is the set of elements that
belong to either A or B (or both). For example, if A = {b,d, f} and B={a,b,d,e}
then AUB = {a,b,d,e, f}.

The above operations on sets are illustrated in Figure 9.1.

U
A
—A
complement
U U
A B
U U
A ANB B AUB
intersection union

Figure 9.1: Operations on sets.

We denote by A \ B the set of elements of A that are not in B. Thus, A\ B=AN-B.
For example, if A = {b,d, f} and B= {a,b,d,e} then A\ B = {f} and B\ A = {a,¢}.
The following are known as De Morgan’s Laws:

* -(AUB)=-AN-B
* 2(ANB)=-AU-B

Let us verify De Morgan’s Laws in the following example:

U = {a7b7c7d7e7f7g7h7i7j7k}’ A = {b7d7f7g7h7i} andB - {a7b7f7i7k}’
Then —A = {Cl,C,@,j,k}, —B= {C7daeag7h7j}7 AUB = {a7b7d7f7g7hvi7k}

so that -(AUB) = {c,e,j} = ~AN-B;

furthermore, ANB = {b, f,i} so that = (ANB) = {a,c,d,e,g,h, j,k} = -AU-B.
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Probability

In probability theory the “universal set” U is called the sample space; the elements of U
are called states and the subsets of U are called events. We will always restrict attention to
the case where U is finite. A probability measure on U is a function P : 2V — [0, 1] that
assigns to every event E € 2Y a number greater than or equal to 0 and less than or equal
to 1, as shown in Figure 9.2, with the following restrictions (known as the Kolmogorov
axioms):

1. P(U)=1.

2. For every two events E,F € 2V, if ENF = 0 then P(EUF) = P(E) + P(F).

U

=Y
(5
<>
O |

Figure 9.2: A probability measure.

From the above two properties one can obtain the following properties (the reader
might want to try to prove them using Properties 1 and 2 above):

* P(—E) =1—P(E), for every event E (this follows from the fact that E and —E are
disjoint and their union is equal to U).

* P(0) = 0 (this follows from the previous line and the fact that @ = —U).

* For every two events E,F € 2Y, P(EUF) = P(E) +P(F) — P(ENF) (see Exercise
9.5).

* For every two events E,F € 2V, if E C F then P(E) < P(F).

« IfEy,E>,....E, € 2V (m > 2) is a collection of mutually disjoint sets
(thatis, forevery i, j=1,....mwithi# j, EENE; = 0)
then P(E1 UEyU... UEm) = P(El) —I-P(Ez) + ... —I—P(Em).

Recall our assumption that the set U is finite.

A probability distribution p on U is a function that assigns to every state z € U a number

p(z), with 0 < p(z) < 1, and such that ¥, p(z) = 1. Given a probability distribution
€U

p:U —[0,1] on U one can obtain a probability measure P : 2V — [0, 1] by defining, for

every event E, P(E) = Y. p(z2).
€k
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Conversely, given a probability measure P : 2V — [0, 1], one can obtain from it a probability
distribution p : U — [0, 1] by defining, for every state z € U, p(z) = P({z}). Thus, the
two notions are equivalent and we shall use the expressions ‘probability measure’ and
‘probability distribution’ interchangeably. Furthermore, to simplify the notation, if z € U,
we shall write P(z) instead of the more rigorous P({z}), so that all of the following are
interchangeable: p(z), P(z) and P({z}).

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 9.8.1 at the end of this chapter.

Probabilistic beliefs

An information set contains all the states that an individual considers possible, that is, the
states that the individual cannot rule out, given her information. However, of all the states
that are possible, the individual might consider some to be more likely than others and
might even dismiss some states as “extremely unlikely” or “implausible”.

For example, suppose that there are only three students in a class: Ann, Bob and Carla.
The professor tells them that in the last exam one of them got 95 points (out of 100),
another 78 and the third 54. We can think of a state as a triple (a,b,c), where a is Ann’s
score, b is Bob’s score and c is Carla’s score. Then, based on the information given by the
professor, Ann must consider all of the following states as possible: (95,78,54), (95,54,78),
(78,95,54), (78,54,95), (54,95,78) and (54,78,95).

Suppose, however, that in all the previous exams Ann and Bob always obtained a higher
score than Carla. Then Ann might consider states (95,78,54) and (78,95,54) much more
likely than (78,54,95) and (54,78,95), for example.

To represent such judgments of relative likelihood we add to an information set a probability
distribution over the states in the information set. The probability distribution expresses
the individual’s beliefs, while the information set represents what the individual knows. In
this example, Ann’s beliefs could be represented by the following probability distribution:

(95,78,54)  (95,54,78)  (78,95,54)  (54,95,78)  (78,54,95)  (54,78,95)

9 4 2 1
I i 16 16 0 0

4

According to these beliefs, Ann is willing to dismiss the possibility that Carla received
the highest score as extremely unlikely (she assigns probability O to the two states where
Carla’s score is 95) and considers it much more likely that she, rather than Bob, received
the highest score.

Recall that, given a probability distribution p : U — [0, 1] on a set U (U can be thought
of as an information set for the individual under consideration) and an event £ C U, the
probability of event E, denoted by P(E), is defined as as the sum of the probabilities of the
elements of E:

P(E) =Y p(x).

xeE
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For instance, continuing the above example, the proposition “Ann received the highest
score” corresponds to event

E ={(95,78,54),(95,54,78)}
and — according to Ann’s beliefs — the probability of that event is
P(E) = p(95,78,54) +p(95,54,78) = 15 + 16 = 12 = 81.25%.

On the other hand, the proposition “Bob’s score is higher than Carla’s score” corresponds
to the event

F ={(95,78,54),(78,95,54),(54,95,78) }
and — according to Ann’s beliefs — the probability of that event is

P(F) = p(95,78,54) + p(78,95,54) + p(54,95,78) = & + & + 1k = 12 = 75%.

Definition 9.2.1 We say that an individual is certain of an event E if she attaches
probability 1 to E (that is, if P(E) = 1).

In the above example, Ann is certain of event
G =1{(95,78,54),(95,54,78),(78,95,54), (54,95,78) },

corresponding to the proposition “Carla did not get the highest score”. She is also certain
of every event H such that G C H.

Note the important difference between knowledge (as defined in Chapter 8) and
certainty: if at a state x the individual knows an event E (that is, x € KE) then, at
that state, E is indeed true (x € E ),1 that is, it is never the case that an individual
knows something which is false; on the other hand, an individual can be certain of
something which is false, that is, it is possible that the individual assigns probability
1 to an event E even though the actual state is not in E.?

Continuing the example of the exam scores, suppose that — before distributing the
exams — the professor says “I was surprised to see that, this time, Ann did not get the
highest score”. This new announcement by the professor informs the students that the
actual state is neither (95,78,54) nor (95,54,78). Thus we can view the effect of the new
piece of information as shrinking Ann’s information set from

{(95,78,54),(95,54,78),(78,95,54),(54,95,78), (78,54,95), (54,78,95)}
to

{(78,95,54),(54,95,78), (78,54,95), (54,78,95)}.

'Tt was proved in Exercise 8.5 (Chapter 8) that, for every event E, KE C E.

2In the above example, if the actual state is (78,54,95) then it does not belong to event G, representing
the proposition “Carla did not get the highest score” and yet Ann assigns probability 1 to G, that is, she is
certain of G.
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How should Ann revise her beliefs in response to this new information?

The answer cannot be that we simply drop states (95,78,54) and (95,54,78) from the
probability distribution (4) and leave everything else unchanged, because the result would
be

state: (78,95,54)  (54,95,78)  (78,54,95)  (54,78,95)
probability: Z = 0 0

which is not a probability distribution, since the probabilities do not add up to 1 (they add
up to 13—6). The topic of belief updating is addressed in Section 9.4.

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 9.8.2 at the end of this chapter.

Conditional probability and Bayes’ rule

Conditional probability

Let A,B € 2U be two events (where U is the universal set or sample space) and P a
probability measure on U. If P(B) > 0, the conditional probability of A given B, denoted
by P(A|B), is defined as follows:

P(ANB)

PAIB) =

9.D

For example, if P(ANB) = 0.2 and P(B) = 0.6 then P(A|B) = % = %

One way to visualize conditional probability is to think of U as a geometric shape of
area 1 (e.g. a square with each side equal to 1 unit of measurement). For a subset A of the
unit square, P(A) is the area of A. If B is a non-empty subset of the square then AN B is
that part of A that lies in B and P(A|B) is the area of A N B relative to the area of B, that is,
as a fraction of the area of B. This is illustrated in Figure 9.3.
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U U

1-— 1

A B
0 41'1 1 0 1
P(A) =1 P(B)=1
U
! The shaded area, representing A N B, is
% of a small square with sides of length
1, sothat P(ANB) =1 x (1 x1) = 3.
A B Thus
P(AIB) = ol =2 —
0 1

A=

Figure 9.3: Geometric interpretation of the conditional probability P(A|B).

Next we derive from the conditional probability formula (9.1) three versions of what is
known as Bayes’ rule.

Let E and F be two events such that P(E) > 0 and P(F) > 0. Then, using the
conditional probability formula (9.1) we get

__P(ENF)
P(E|F) = W 9.2)
and (since ENF = FNE and thus P(ENF) = P(FNE))
_ P(ENF)
P(F|E) = W (9.3)
From (9.3) we get that
P(ENF)=P(F|E)P(E) 9.4)
and replacing (9.4) in (9.2) we get
Bayes’ formula version 1 : P(E|F) = % 9.5)

As an illustration of how one can use (9.5), consider the following example. You are a
doctor examining a middle-aged man who complains of lower-back pain. You know that
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25% of men in the age group of your patient suffer from lower-back pain.

There are various causes of lower-back pain; one of them is chronic inflammation of the
kidneys. This is not a very common disease: it affects only 4% of men in the age group that
you are considering. Among those who suffer from chronic inflammation of the kidneys,
85% complain of lower-back pain.

What is the probability that your patient has chronic inflammation of the kidneys, given
that he reported lower-back pain? Let I denote inflammation of the kidneys and L denote
lower-back pain.

The information you have is that P(I) = 14—0, P(L) = %50 and P(L|I) = %.

Thus, using (9.5), we get that

PILINPU) 155 (155

P(L) %

P(I|L) = ) _ 0136 = 13.6%

Next we derive a second version of Bayes’ formula. According to Bayes’ rule

(9.5), P(E|F) = 1%. From set theory we have that, given any two sets A and B,
A= (ANB)U(AN-B) and the two sets AN B and AN —B are disjoint. Thus, P(A) =
P(ANB)+ P(AN—B). Hence, in the denominator of Bayes’ formula (9.5) we can re-
place P(F) with P(FNE)+ P(FN—E). Then, using the formula for conditional prob-
ability, we get that P(FNE) = P(F|E)P(E) and P(F N—E) = P(F|-E)P(—E). Thus,
P(F)=P(F|E)P(E)+ P(F|-E)P(—E). Replacing this in Bayes’ formula (9.5) we get

P(FIE) P(E)
(FIE)P(E) + P(F|-E)P(—E)

Bayes’ formula version 2 : P(E|F) = 2 9.6)

As an illustration of how one can use (9.6), consider the following example. Enrollment in

a Game Theory class is as follows: 60% economics majors (E), 40% other majors (—F).
In the past, 80% of the economics majors passed and 65% of the other majors passed.

A student tells you that she passed the class. What is the probability that she is an
economics major? Let A stand for “pass the class”. Then, using (9.6),

P(A|E)P(E) Fm W%) o
P(EJA) = _ _ 2 _ 6186%.
P(A[E)P(E)+P(A|=E)P(=E) ~ 80.(80 4 65 (405 = 37

One more example: 0.3763% of the population (that is, approximately 4 in 100,000
individuals) is infected with the HIV virus. Let H be the event “a randomly selected
individual has the HIV virus”. Then P(H) = 0.003763 and P(—H) = 0.996237.

A blood test can be used to detect the virus. The blood test has a true positive rate
(sensitivity) of 99.97% and a true negative rate (specificity) of 98.5%. Thus, (letting ‘+’
denote a positive blood test and ‘—’ a negative blood test) P(+|H) =0.9997, P(—|H) =
0.0003, P(+|—H) = 0.015 and P(—|—H) = 0.985. Now suppose that you pick an indi-
vidual at random, administer the blood test and it turns out to be positive. What is the
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probability that the individual has the HIV virus? That is, what is P(H|+)? Using (9.6),

P(+|H) P(H)
(+[H) P(H) + P(+|-H) P(-H)

PH|+) =5

0.9997 (0.003763)

- =0.201 =20.1%.
0.9997 (0.003763) + 0.015 (0.996237) ¥

A generalization of (9.6) is as follows: If {Ey,...,E,} is a partition of the sample space
U,? then, for every event F, P(F) = P(F|E;) P(Ey) +---+P(F|E,) P(E,).

Thus, using (9.5) we obtain that, forevery i =1,...,n,

P(F|E;) P(E;)
(F|E1)P(E1) + ...+ P(F|E,)P(Ey)
9.7)

Bayes’ formula version 3 : P(E;|F) = P

Example: enrollment in a class is restricted to the following majors: economics (E),
statistics (S) and math (M). Current enrollmentis: 40% E, 35% S and 25% M.
Let A be the event “pass the class”. According to past data, P(A|E) = 60%, P(A|S)=50%
and P(A|M) = 75%. A student from this class tells you that she received a passing grade.
What is the probability that she is an economics major? Using (9.7),

P(A|E) P(E)
(A|[E)P(E)+P(A|S)P(S)+P(AIM)P(M)

P(EI4) =

100 \ 100 96
- = 26 =39.83%.

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 9.8.3 at the end of this chapter.

Changing beliefs in response to information

The issue of how to “rationally” modify one’s initial beliefs — expressed as a probability
measure P on a set U — after receiving an item of information (represented as a subset F of
U) has been studied extensively. Two different situations may arise:

3 That is, the sets E| ,.--,En (1) cover the set U (in the sense that £y U---UE,, = U) and (2) are pairwise
disjoint (in the sense that, for all i, j = 1,...,n with i # j, E;NE; = 0).
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* In one case, the item of information F' was not ruled out by the initial beliefs, in
the sense that event F was assigned positive probability (P(F) > 0). Information
might still be somewhat surprising, in case P(F) is small (close to zero), but it is not
completely unexpected. We call this case belief updating.

* The other case is where the item of information was initially dismissed, in the sense
that it was assigned zero probability (P(F) = 0). In this case the information received
is completely surprising or completely unexpected. We call this case belief revision.*

We shall first address the issue of belief updating.

Belief updating

It is generally agreed that the rational way to update one’s beliefs is by conditioning the
initial probability measure on the information received, that is, by using the conditional
probability formula (9.1).

Definition 9.4.1 We use the expression belief updating or Bayesian updating to refer
to the modification of initial beliefs (expressed as an initial probability measure P)
obtained by applying the conditional probability rule; this assumes that the belief
change is prompted by the arrival of new information, represented by an event F' such
that P(F) > 0.

Thus, when receiving a piece of information F C U such that P(F) > 0, one would change
one’s initial probability measure P into a new probability measure Py, by

* reducing the probability of every state in —F (the complement of F) to zero (this
captures the notion that the information represented by F is trusted to be correct),
and

* setting Py (s) = P(s|F) for every state s € F (recall the simplified notation: P(s)
instead of P({s}) and P(s|F) instead of P({s}|F)).

Thus, for every state s € U (again, we write P, (s) instead of P, ({s})),

0 ifs¢F
Pnew(s) — P(S|F) — p (98)
HEy ifs€F.

(recall the assumption that P(F') > 0). Thus, for every event E C U,

Puew(E) =Y Piew(s) = Y P(s|F) = P(E|F).

seE seE

As an illustration, let us go back to the example of Section 9.2 concerning three students:
Ann, Bob and Carla. The professor tells them that in the last exam one of them got 95
points (out of 100), another 78 and the third 54. We represented a state as a triple (a,b,c),

“This terminology is widely used in economics, statistics, philosophy and other disciplines. In computer
science the expressions ‘belief updating’ and ‘belief revision’ have been used with a different meaning:
revision occurs when the information is about a static world, whereas updating takes place when the
information is about a possible change in the world.
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where a is Ann’s score, b is Bob’s score and ¢ is Carla’s score. The initial information
given by the professor is represented by the set

U = {(95,78,54),(95,54,78), (78,95,54), (78,54,95), (54,95,78), (54,78,95)}

Based on the results of previous exams, Ann formed the following probabilistic beliefs:

(95,78,54)  (95,54,78)  (78,95,54)  (54,95,78)  (78,54,95)  (54,78,95)

9 4 2 1

16 16 is 16 0 0
We then supposed that — before distributing the exams — the professor made the additional
remark “I was surprised to see that, this time, Ann did not get the highest score”. This
new announcement by the professor informs the students that the actual state is neither
(95,78,54) nor (95,54,78). Thus the new piece of information is represented by the event

F = {(78,95,54),(54,95,78), (78,54,95), (54,78,95)}.

How should Ann revise her beliefs in response to this new piece of information?
Conditioning Ann’s initial beliefs on the event F yields the following updated beliefs:

(9578,54)  (955478)  (78,9554)  (54.9578)  (78,5495)  (54.78,95)
2 1
0 0 2 1 0 0

These updated beliefs can be represented more succinctly as a probability distribution on
the set F' (that is, by dropping the states that belong to the complement of F, which are
zero-probability states in the updated beliefs):

(78,95,54)  (54,95,78)  (78,54,95)  (54,78,95)
2 0 0

1
3 3

Belief revision

[Note: the material of this section will not be needed until Chapter 13. It is presented here
for completeness on the topic of beliefs. ]

How should a rational individual revise her beliefs when receiving information that
is completely surprising, that is, when informed of an event E to which her initial beliefs
assigned zero probability (P(E) = 0)?

As we will see in Part IV, belief revision is very important in dynamic (or extensive-
form) games. In such games a player may find herself at an information set that, according
to her initial beliefs, had zero probability of being reached and thus will have to form new
beliefs reflecting the unexpected information.

The best known theory of rational belief revision is the so-called AGM theory, which
takes its name from its originators: Alchourrdn (a legal scholar), Géardenfors (a philosopher)
and Makinson (a computer scientist); their pioneering contribution was published in 1985.
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Just like the theory of expected utility (Chapter 5), the AGM theory is an axiomatic theory:
it provides a list of “rationality” axioms for belief revision and provides a representation
theorem.”

Although the AGM theory was developed within the language of propositional logic, it
can be restated in terms of a set of states and a collection of possible items of information
represented as events. We first introduce the non-probabilistic version of the theory and
then add graded beliefs, that is, probabilities.

Let U be a finite set of states and & C 2V a collection of events (subsets of U) rep-
resenting possible items of information; we assume that U € & (this means that trivial
information is allowed) and @ ¢ & (this requirement rules out inconsistent information).
To represent initial beliefs and revised beliefs we introduce a function f : & — 2Y, which
we call a belief revision function.

Definition 9.4.2 Let U be a finite set of states and & a collection of events such that
Uc&and0¢ &. A belief revision function is a function f : & — 2U that satisfies the
following properties: for every E € &, (1) f(E) C E and (2) f(E) # 0.

The interpretation of a belief revision function is as follows. First of all, f(U) represents
the initial beliefs, namely the set of states that the individual initially considers possible.
Secondly, for every E € &, f(E) is the set of states that the individual would consider
possible if informed that the actual state belongs to E; thus f(E) represents the individual’s
revised beliefs after receiving information E.” The assumption that f(E) C E means that
the agent believes the information received (every state that she considers possible is a
state where E is true), while the assumption that f(E) # & means that after receiving
information E (which, by assumption, is consistent, that is, £ # &) the agent’s revised
beliefs are consistent.

One of the implications of the AGM axioms for belief revision is the following condi-
tion, which is known as Arrow’s Axiom (proposed by the Nobel laureate Ken Arrow in the
context of social choice theory, rather than rational belief revision):8

if EFe€&, ECF and ENf(F)#0 then f(E)=EnN f(F).

Arrow’s Axiom says that if information E implies information F (E C F' ) and there are
states in E that would be considered possible upon receiving information F (E N f(F) # 0),

SWe will not list and discuss the axioms here. The interested reader can consult http://plato.
stanford.edu/entries/formal-belief/.

®The universal set U can be thought of as representing minimum information: all states are possible. If
the initial beliefs were to be expressed probabilistically, by means of a probability measure P over U, then
f(U) would be the support of P, that is, the set of states to which P assigns positive probability. Thus, f(U)
would be the smallest event of which the individual would initially be certain (that is, to which she assigns
probability 1): she would initially be certain of (assign probability 1 to) any event F such that f(U) C F.

7If the revised beliefs after receiving information E were to be expressed probabilistically, by means of
a probability measure Pg over U, then f(E) would be the support of Pg, that is, the set of states to which
Pg assigns positive probability. Thus, f(E) would be the smallest event of which the individual would be
certain after having been informed that E: according to her revised beliefs she would be certain of any event
F such that f(E) C F. [Note that, since — by assumption — f(E) C E, the individual is assumed to be certain
of the information received (e.g. because she trusts the source of the information).]

81t may be regarded as a reformulation of what Arrow (1951) calls the axiom of Independence of Irrelevant
Alternatives.


http://plato.stanford.edu/entries/formal-belief/
http://plato.stanford.edu/entries/formal-belief/
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then the states that the individual would consider possible if informed that E are precisely
those that belong to both E and f(F) (f(E) =EN f(F) ).

Although necessary for a belief revision policy that satisfies the AGM axioms,’ Arrow’s
Axiom is not sufficient. Before stating the necessary and sufficient conditions for rational
belief revision as captured by the AGM axioms, we remind the reader of the notion of a
complete and transitive relation on a set U (Chapter 2, Section 2.1).

¢ In Chapter 2 the relation was denoted by 7~ and was interpreted in terms of preference:
01 7~ 0 was interpreted as “the individual considers outcome o0; to be at least as
good as outcome 0;”.

¢ In the present context we denote the relation by = and interpret it in terms of
“plausibility”: s 3= s’ means that the individual considers state s to be at least as
plausible as state s’ 1

Definition 9.4.3 A plausibility order on a set of states U is a binary relation = on U
that is complete (for every two states s; and s, either s; =52 or s =51, or both)
and transitive (if s; = s> and sy = s3 then 51 >= 53).

Given an event E C U and a state s € E we say that s is most plausible in E if s 3= s’ for
every s’ € E.

Definition 9.4.4 Given a plausibility order > on U and a belief revision function
f: & — 2V (Definition 9.4.2), we say that = rationalizes f (or f is rationalized by =)
if, for every E € &, f(E) is the set of most plausible states in E, that is,

f(E)y={s€E:s=s forevery s €E}.

For example, let U = {a,b,c,d,e,g,h}, & = {{a,b,c},{c,d,g},{b,g,h},U} and let f be
the following belief revision function:

E f(E)
{a,b,c} {a}
{c.d,g} {d,g}
{b,g,h} {n}

{a,b,c,d,e,g,h} {e}

The reader might find it frustrating that we refer to the AGM axioms without explaining what they are.
Since the AGM theory was developed within the context of propositional logic, expounding the AGM axioms
would require a review of propositional logic and the introduction of extensive new notation. Our purpose in
this book is merely to address the issue of belief revision and explain why and how it is relevant to game
theory (see Chapter 13). Theorem 9.4.1 below states that the notion of rationalizable belief revision function
faithfully captures the AGM theory of belief revision. What this means is explained in detail in Bonanno
(2009), to which the interested reader is referred.

101f 5 = s but s’ % s then we say that s is more plausible than s, and if s 3= s’ and also s’ 3= s then we say
that s and s’ are equally plausible.
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Then the following plausibility order = rationalizes f (as in Chapter 2, we use the conven-
tion that if state s is above state s” then s is more plausible than s” and if s and s” are on the
same row then they are equally plausible):!!

most plausible e
h
a,d,g
b
least plausible c

For instance, f({c,d,g}) ={d, g} because d and g are the most plausible states in {c,d, g}.

The following theorem is based on a result by Adam Grove (1988).12

Let U be a finite set of states, & a collection of events (representing
possible items of information), with U € & and @ ¢ &, and f : & — 2U a belief revision
function (Definition 9.4.2). Then the belief revision represented by f is compatible with
the AGM axioms of belief revision if and only if there exists a plausibility order >> on U
that rationalizes f (Definition 9.4.4).

Definition 9.4.5 A belief revision function f : & — 2V which is rationalized by a
plausibility order is called an AGM belief revision function.

An AGM belief revision function satisfies Arrow’s Axiom. The converse is not true:
it is possible for a belief revision function f : & — 2Y to satisfy Arrow’s Axiom and
yet fail to be rationalized by a plausibility order.

Recall that the support of a probability distribution p : U — [0, 1], denoted by Supp(p),
is the set of states to which p assigns positive probability: Supp(p) ={s € U : p(s) > 0}.

Within the context of probabilistic beliefs, let U be a finite set of states, p: U — [0,1] a
probability distribution that represents the initial beliefs and pg : U — [0, 1] the probability
distribution that represents the updated beliefs after receiving information E such that

! Alternatively, = can be expressed as the following subset of U x U:
{(a7a)7 (a,b),(a,c),(a,d),(a,g), (b,b),(b;c),(c;c),(d,a),(d,b),(d,c),(d,d),(d,g),(e,a),(e,D),

(e,c),(e,d),(e;e),(e.8), (e, h),(g,a)(8,b),(8,¢).(8,d),(8:8), (ha), (h,b), (h,c), (h,d), (h.g), (h,h)}-
12Grove’s result was formulated within the context of propositional logic; the version given here is proved
in Bonanno (2009).
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P(E)= Y p(s) > O (thus the information is not surprising). The rule for updating beliefs
seE
upon receiving information £ (Definition 9.4.1) implies the following:
if ENSupp(p) #0 (thatis, P(E) >0) then Supp(pe)=ENSupp(p). (9.9)

We call this the qualitative belief updating rule or qualitative Bayes’ rule. It is easy to
check that the qualitative belief updating rule is implied by Arrow’s Axiom (see Exercise
9.22). Thus, by the above remark, an AGM belief revision function has incorporated in
it the qualitative belief updating rule. In other words, belief updating is included in the
notion of AGM belief revision.

A belief revision function, however, goes beyond belief updating because it also
encodes new beliefs after receipt of surprising information (that is, after being informed of
an event E such that P(E) = 0).

What is the probabilistic version of AGM belief revision? It turns out that in order
to obtain probabilistic beliefs we only need to make a simple addition to an AGM belief
revision function f: & — 2Y.

- Let po : U — [0, 1] be any full-support probability distribution on U (that is, pg is

such that po(s) > 0, for every s € U) and let Py : 2V — [0, 1] be the corresponding
probability measure.

- For every E € &, let pg be the probability distribution obtained by conditioning pg
on f(E) (note: on f(E), not on E):

po(;2><s') if s € f(E)

pe(s) =Py ({s}f(E)) =< </®
0 if s¢ f(E)

- Then py gives the initial probabilistic beliefs and, for every other E € &, pg gives
the revised probabilistic beliefs after receiving information E.

- The collection {pg} . of probability distributions on U so obtained gives the
individual’s probabilistic belief revision policy (while the function f : & — 2Y gives
the individual’s gualitative belief revision policy).

Definition 9.4.6 Let U be a finite set of states and & a collection of events such that
Ue&and 0 ¢ &. A probabilistic belief revision policy is a collection {pg }p. s of
probability distributions on U such that, for every E € &, Supp(pg) C E; py represents
the initial beliefs and, for every other E € &, pg represents the revised beliefs after
receiving information E. The collection {pg } pc o is called an AGM probabilistic belief
revision policy if it satisfies the following properties:

1. there exists a plausibility order = on U such that, for every E € &, Supp(pEg) is
the set of most plausible states in E, that is,

Supp(pe) ={s€E s> s foreverys' € E} 4

2. there exists a full-support probability distribution pg on U such that, for every E €
&, pE is the probability distribution obtained by conditioning pg on Supp(pr).
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“This condition says that if one defines the function f : & — 2V by f(E) = Supp(pg) then this
function is an AGM belief revision function (see Definition 9.4.5).

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 9.8.4 at the end of this chapter.

Harsanyi consistency of beliefs or like-mindedness

[Note: the material of this section will not be needed until Chapter 14. It is presented here
for completeness on the topic of beliefs.]

We can easily extend the analysis to the case of two or more individuals. We already
know how to model interactive knowledge by means of information partitions; the addition
of beliefs is a simple step: we merely add, for every individual and for every information
set, a probability distribution over the elements of that information set.

Definition 9.5.1 An interactive knowledge-belief structure is a tuple

<U717 {’ﬂi}iEI ) {pi}i61>

where U is a finite set of states, / = {1,...,n} is a set of individuals (n > 2) and, for
every i € I, .Z; is a partition of U and p; is a collection of probability distributions one
for each information set in .#;.¢

“The probability distribution over an information set can be thought of as a probability distribution
over the entire set U by assigning probability zero to every state which is not in the information set.

A two-person example is shown in Figure 9.4, where U = {a,b,c,d,e}, [ = {1,2}, % =
{{a,b,c},{d,e}}, S ={{a,b}, {c,d},{e}}, p1 ={p.q}, p2 = {r,s,t} with

U: a b ¢ d e
pro bbb o0 o
g: 0 0 0 3 3
r 0O 0 O

0

%)
(e} S Wi
(a] S Wi
O Wi

S W=
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1: (ay by ci)(dy ed)
2: (a3 by(cs dI(er)

Figure 9.4: A two-person knowledge-belief structure.

In this example, there are states where the two individuals hold different beliefs. For
example, consider event E = {a,c}. At state a Individual 1 attaches probability 43'1 to £
while Individual 2 attaches probability % to E; at state ¢ Individual 1 attaches probability 43'1
to E while Individual 2 attaches probability % to E.

Can two “equally rational” individuals hold different beliefs? The answer is: of
course! In the above example it is not surprising that the two individuals assign different
probabilities to the same event E, because they have different information. For example, if
the actual state is a, then Individual 1’s information is that the actual state is either a or b

or ¢, while Individual 2 considers only a and b possible (Individual 2 knows more than
Individual 1).

Is there a precise way of expressing the fact that two individuals assign different

probabilities to an event exclusively because they have different information?

In the above example we could ask the hypothetical question: if Individual 1 had the
same information as Individual 2, would he agree with Individual 2’s assessment that
the probability of event E = {a,c} is %? This is, of course, a counterfactual question.
The answer to this counterfactual question is affirmative: imagine giving Individual 1 the
information that the actual state is either a or b (so that, both 1 and 2 would have the same

information set, namely {a,b}); then — according to Definition 9.4.1 — Individual 1 would

a b c a b

update his beliefs from to and thus have the same
1 1 1 2 1
2 4 4 3 3

beliefs as Individual 2.

We say that two individuals are like-minded if it is the case that they would have the
same beliefs if they had the same information. However, it is not straightforward how to

turn this into a precise definition.

Consider, again, the example of Figure 9.4 and state a. Above we asked the question
“what would Individual 1 believe if he knew as much as Individual 2?7 This is a simple
question because we can imagine giving more information to Individual 1 (namely that
the actual state is either a or b) and have him update his beliefs based on that information.

However, we could also have asked the question “what would Individual 2 believe if he
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knew as little as Individual 1?” In this case we would have to imagine “taking away
information” from Individual 2, by increasing his information set from {a,b} to {a,b,c}.
This is not the same as asking Individual 2 to update his beliefs based on information
{a,b,c}, because updating on something you already know leaves your beliefs unchanged.

There is a sense in which the beliefs of the two individuals of Figure 9.4 are “in
agreement”: for example, they both consider state a twice as likely as state ». One could
try to use this condition to define like-mindedness: for every two states x and y, whenever
two individuals consider both x and y as possible (given their information) then they agree

on the relative likelihood of x versus y.

Unfortunately, this condition is too weak. To see this, consider the three-individual
example of Figure 9.5 below.

I @ @_9
2: (@_ b (©
3: (a\ () [c

Figure 9.5: A three-person knowledge-belief structure.

No matter what the actual state is, we cannot find two individuals and two states x and y
that both individuals consider possible. Thus any beliefs would make the three individuals
like-minded. For example, consider the following beliefs:

- Individual 1 at his information set {b,c} assigns equal probability to b and ¢ (thus
considering b to be as likely as ¢),

- Individual 2 at her information set {a, b} assigns probability % to a and % to b (thus
considering a to be three times more likely than b), and

- Individual 3 at his information set {a,c} assigns probability }l to a and % to ¢ (thus
considering c to be three times more likely than a).

Then, putting together the beliefs of Individuals 1 and 2, we would have that a is judged to
be three times more likely than ¢ (according to Individual 2, a is three times more likely
than b and, according to Individual 1, b is just as likely as c), while Individual 3 has the
opposite judgment that c is three times more likely than a.

In order to give a precise definition of like-mindedness we need to introduce some
notation.
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- Let there be n individuals (n > 2).

- Let U be a set of states and let .%; be i’s partition of U representing the possible
states of knowledge of individual i € {1,...,n}.

- As usual, if s is a state, we denote by [;(s) the element (information set) of the
partition .#; that contains s.

- Let p; s denote the beliefs of individual i at state s, that is, p; ¢ is a probability
distribution over ;(s). Note that, since, for every information set of individual i,
there is a unique probability distribution over it (see Definition 9.5.1) if s’ € I;(s)
then Pis = pi,s-B

Definition 9.5.2 A probability distribution p over U is called a common prior if,
letting P be the probability measure corresponding to p (that is, for every £ C U,
P(E)= ¥ p(s)), for every individual i and for every state s,

seE

1. P(Ii(s)) > 0, and

2. updating P on I;(s) (see Definition 9.4.1) yields precisely p; s, thatis, P ({s'}|;(s)) =
pis(s'), forevery s" € I,(s).

When a common prior exists we say that the individuals are like-minded or that the
individuals’ beliefs are Harsanyi consistent.“

“John Harsanyi, who in 1994 won the Nobel Memorial prize in Economics (together with Reinhardt
Selten and John Nash), introduced the theory of games of incomplete information which will be the object
of Part V. In that theory the notion of Harsanyi consistency plays a crucial role.

For instance, in the example of Figure 9.6, which reproduces Figure 9.4, a common
prior exists and thus the two individuals are like-minded. Indeed, the following is a
common prior:

b c

ool QL

oy Q
[oe] | NS IO\

1
8 8
(the reader should convince himself/herself that, indeed, updating this probability dis-
tribution on each information set yields the probability distribution written inside that
information set).

How can we determine if a common prior exists? The issue of existence of a common
prior can be reduced to the issue of whether a system of equations has a solution. To see
this, let us go back to the example of Figure 9.6. A common prior would be a probability
distribution

a b c d e
Pa Pb Pc Pd De

that satisfies the following conditions:

13This means that, at every state, every individual knows (that is, has no uncertainty about) his own
probabilistic beliefs. As noted above, we can think of p; ; as a probability distribution over the entire set of
states U satisfying the property that if s’ ¢ I;(s) then p; ;(s) = 0.
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. 1 1 1 1 1
I: (az b ; 04) (dz ez)
. 2 1 1 2
2: (a3 bi)(ct d3)(er)
Figure 9.6: Copy of Figure 9.4.
1. Updating on information set {a, b, c} of Individual 1 we need
S E— % and P ‘l‘_
Pa+Ppt Pe Pa+Pp+ Pe
.. . ., Pa _ l
(Note that from these two conditions the third condition, namely i = 2
follows automatically.)
2. Updating on information set {d,e} of Individual 1 we need pdlng = 1 (from which
it follows that pdlﬁ o = %).
3. Updating on information set {a,b} of Individual 2 we need ﬁ = % (from which
it follows that # = %).
4. Updating on information set {c,d} of Individual 2 we need # = % (from which

: Pd
it follows that py

3

From the two equations under Point 1 we get , from the equation under Point

2 , from the equation under Point 3 and from the equation under
Point 4 . Adding to these three equations the requirement that p, + p, + p. +

pa+ pe =1, we have a system of five equations in five unknowns, which admits a solution,

a b c d e

namely

ool

2
8

N |
8 8 8

It is not always the case that a common prior exists. For instance, if we add to the
example of Figure 9.5 the beliefs shown in Figure 9.7, then we get a situation where the
individuals’ beliefs are not Harsanyi consistent. In this case, from the updating condition
for Individual 1 we get p;, = p. and from the updating condition for Individual 2 we get
Pa = Pp, from which it follows that p, = p.; however, from the updating condition for
Individual 3 we get that p, = 3p,., yielding a contradiction.



9.6 Agreeing to disagree 335

1: (@ @i ¢

Figure 9.7: The structure of Figure 9.5 with the addition of beliefs.

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 9.8.5 at the end of this chapter.

Agreeing to disagree

Can two rational and like-minded individuals agree to disagree? This question was raised
in 1976 by Robert Aumann (who received the Nobel Memorial prize in Economics in 2005,
together with Thomas Schelling). As remarked above, it is certainly quite possible for two
rational individuals to have different beliefs about a particular event, because they might
have different information. Let us go back to the example of Figure 9.4, reproduced in
Figure 9.8 together with the common prior (showing that the individuals are like-minded).

E ={b,c}

PE=1 PIE=0

bl ci)(d} e})
2: (a3 bH(es dy(e)

PE =1 PRE=1 PE=0

b d

[
()
AN
N

Wl

€

9
0| —
[==I[\S)

common prior: a

ool
ool

0| —

Figure 9.8: The structure of Figure 9.4 with a common prior.

Suppose that the actual state is @ and consider what the two individuals believe about event
E ={b,c}.
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¢ Individual 1’s information set is {a, b, c} and, given his beliefs at that information set,
he attaches probability é—ll + % = % to E: let us denote this by “at state a, P|(E) = %”.
¢ Individual 2’s information set is {a,b} and, given her beliefs at that information set,

_ 1

she attaches probability % to E: let us denote this by “at state a, P»(E) = 3
¢ Thus the two individuals disagree about the probability of event E. Furthermore,
they know that they disagree.

To see this, let ||P1 (E) = %H be the event that (i.e. set of states where) Individual 1 attaches
probability % to E; then

IP(E) =] = fab.c)
Similarly, let HP2(E )= %H be the event that Individual 2 attaches probability % to E; then
1P2(E) = 5[] = {a,b,c.d}-

These are events and thus we can check at what states the two individuals know them.
Using Definition 8.1.3 (Chapter 8), we have that

K |P(E) = 3| ={a,b,c} and K |P(E)=1]| ={a,b}.
—_——— ———

={a,b,c,d} ={a,b,c}
Hence, letting D = ||P|(E) = 3|| N [|B(E) = %H ={a,b,c},
aceD N K DN K)D.

Thus at state a not only do the individuals, as a matter of fact, disagree about the probability
of E, but they know that they disagree. However, their different assessments of the
probability of E are not common knowledge. Indeed, a ¢ K| K> HP1 (E)= %H =0, that 1s,
at state a it is not the case that Individual 1 knows that Individual 2 knows that Individual
1 assigns probability % to event E. As the following theorem states, the opinions of two
like-minded individuals about an event £ cannot be in disagreement and, at the same time,

be commonly known.

The following theorem is proved in Section 9.7.

— Agreement Theorem; Aumann, 1976. Let U be a set of states and
consider a knowledge-belief structure with two individuals, 1 and 2. Let E be an event
and let p,q € [0, 1]. Suppose that at some state s it is common knowledge that Individual
1 assigns probability p to E and Individual 2 assigns probability g to E. Then, if the
individuals’ beliefs are Harsanyi consistent (Definition 9.5.2), p = ¢. In other words,

two like-minded individuals cannot agree to disagree about the probability of an event.
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Formally, if there exists a common prior and CK (||P;(E) = p||N||P(E) =¢q||) # @
then p = gq.

Another way to think about this result is to imagine that the two individuals communi-
cate their opinions to each other. Hearing that the other person has a different opinion is in
itself a valuable piece of information, which ought to be incorporated (by updating) into
one’s beliefs. Thus sequential communication leads to changing beliefs. If, at the end of
this process, the beliefs become common knowledge, then they must be identical.!* We
shall illustrate this with an example.

Imagine two scientists who agree that the laws of Nature are such that the actual state
of the world must be one of seven, call them a, b, ¢, d, e, f, g. They also agree on the
relative likelihood of these possibilities, which they take to be as follows:

b d e
2 s 1
2

c
3
2

RSN
(98]
B~
EE

2

[958
W

2

W)

Experiments can be conducted to learn more. An experiment leads to a partition of the
set of states. For example, if the actual state is a and you perform an experiment then you
might learn that the actual state cannot be d or e or f or g but you still would not know
which is the actual state among the remaining ones. Suppose that the scientists agree that
Scientist 1, from now on denoted by Sy, will perform experiment 1 and Scientist 2, denoted
by S,, will perform experiment 2. They also agree that each experiment would lead to a
partition of the set of states as shown in Figure 9.9.

Experiment 1: [a b C] [d e f ]

Experiment 2: w e f 8

Figure 9.9: The partitions representing the two experiments.

Suppose that the scientists are interested in establishing the truth of a proposition that is
represented by the event E = {a,c,d, e}. Initially (given their shared probabilistic beliefs)
they agree that the probability that E is true is 75%:

P(E)=P(a)+P(c) +P(d)+P(e) =15+ 5+ 5+ 5 =2 =3 =75%.

Before they perform the experiments they also realize that, depending on what the actual
state is, after the experiment they will have an updated probability of event E conditional
on what the experiment reveals. For example, they agree that if one performs experiment 1

14This line of reasoning was investigated by Geanakoplos and Polemarchakis (1982).



338 Chapter 9. Adding Beliefs to Knowledge

and the actual state is b then the experiment will yield the information F = {a,b,c} and
P(E|F) is given by

pep)=PENF) _  P@+PE) _ 5t3 _n_s_geq
P(F) ~ Pla)+P(b)+P(c) L+2+8 M7 .

[Note the interesting fact that sometimes experiments, although they are informative — that
is, they reduce one’s state of uncertainty — might actually induce one to become more
confident of the truth of something that is false: in this case one would increase one’s
subjective probability that E is true from 75% to 86%, although E is actually false if the
actual state is b, as we hypothesized.]

We can associate with every cell of each experiment (that is, with every possible state
of information yielded by the experiment) a new updated probability of event E, as shown
in Figure 9.10.

Prior: § E ={a,c,d,e}

2 4
32 32 32 32 32 32 32
P(E)=1 P(E)=1 P(E)=0

4
Experiment1: (¢ b ¢)(d e f)

Experiment2: |a p| (c||d]|[e f 8]

Figure 9.10: The probability of event £ conditional on the possible results of each experi-
ment.

Suppose now that the scientists go to their laboratories and perform their respective
experiments (Scientist 1 performs experiment 1 and Scientist 2 performs experiment 2).
Assume also that

the actual state is f . ‘

Suppose that the two scientists send each other an e-mail communicating their new subjec-
tive estimates of the truth of E. Scientist 1 writes that he now attaches probability % to E,
while Scientist 2 says that she attaches probability % to E. So their estimates disagree (not
surprisingly, since they have performed different experiments and have collected different
information). Should they be happy with these estimates? The answer is negative.
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Consider first Sy (Scientist 1). He hears that S, has a revised probability of 51 (recall
our assumption that the actual state is f ). What does he learn from this? He learns that
the actual state cannot be d (if it had been, then he would have received an e-mail from
S, saying “my new probability is 11 ). S1’s new state of knowledge and corresponding

probabilities after receiving S»’s e-mail are then as shown in Figure 9.11.

Scientist 1 learns from Scientist 2’s email:

_4 P (E) Py (E) _1 A
6 -9
- clololana
actual
state

Experiment2: (a p|[c||d| (e [f &

=

P(E) =

p—
—

P(E)=%

The new information partition of S1 is explained as follows.
If g is the actual state, then experiment 1 reveals it.
If either d, e or f is the actual state, then experiment 1 reveals {d, e, f}.

With e or £, $2’s e-mail is “}>”, while with d it is “

Thus S2’s email splits {d, e, f} into {d} and {e, f}.

If the actual state is a, b or ¢, then Experiment 1 reveals {a,b,c}.
With a or b, S2 sends “%” while with ¢ she sends “%—?”.

Thus S2’s email splits {a,b,c} into {a,b} and {c}.

Figure 9.11: S1’s assessment of the probability of event E after receiving S,’s first e-mail.

Consider now Scientist 2. From S1’s e-mail she learns that S| has a new updated
probability of %. What can she deduce from this? That the actual state is not g (if it had
been g then she would have received an e-mail from S; saying that her revised probability
of E was zero). Thus she can revise her partition by eliminating g from her information

set. A similar reasoning applies to the other states. S,’s new state of knowledge and
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corresponding probabilities after receiving S;’s e-mail are shown in Figure 9.12.

PE)=2  pE)=2 A

14 =0
Experiment 1: (a b C) (d e [f )

The new information partition of S2 is explained as follows.

If either c, e, f or g is the actual state, then Experiment 2 reveals {c,e, f,g}.

With ¢ or e, S1’s e-mail is “%”, while with g it is “0”.

Thus S1’s email splits {c,e, f,g} into {c,e, f} and {g}.

If the actual state is a, b or d, then Experiment 2 reveals {a,b,d} and,

in all three cases, S1’s email is “%” . Thus S2 learns nothing

from S1’s email.

Figure 9.12: S;’s assessment of the probability of event E after receiving S;’s first e-mail.



9.6 Agreeing to disagree 341

Thus the new situation after the first exchange of e-mails is as shown in Figure 9.13.

_ 4 Pl(E) Pl(E) P/(E) = Z Pl(g)

=% -
Scientist 1: - . . -

actual

state
Scientist2: |a b | |c||d|[e f
B(E) =% i

P(E) =13

Figure 9.13: The new situation after the first e-mail exchange.

Now there is a second round of e-mails. §; communicates “in light of your e-mail,
my new P(E) is g”, while S, writes “after your e-mail I changed my P(E) to %”. While
S1 learns nothing new from S,’s second e-mail, S, learns that the actual state cannot be ¢
(the second e-mail from S would have been “P(E) = 17 if ¢ had been the actual state; in
the hypothetical case where S,’s revised information was {a,b,d} then after S;’s second

e-mail it would split into {a,b} and {d}). Thus the new situation is a shown in Figure
9.14.

4 Pl(E) Pl(E) Pl(E)—Z PI(E)

=% -
Scientist 1: - . . - .

actual
state

sean[clojan]o

_ 4 P(E) PB(E

4 =17
6 =1 1 -9

Figure 9.14: The new situation after the second e-mail exchange.
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Now the two scientists have reached complete agreement: P(E) = %. Further exchanges
do not convey any new information. Indeed it has become common knowledge (at state
f) that both scientists estimate the probability of event E to be % = 78% (before the
experiments the probability of E was judged to be % = 75%; note, again, that with the
experiments and the exchange of information they have gone farther from the truth than at

the beginning, since E = {a,c,d, e} and thus E is not true at the actual state f).

Notice that before the last step it was never common knowledge between the two what
probability each scientist attached to £. When one scientist announced his subjective
estimate, the other scientist found that announcement informative and revised her own
estimate accordingly. After the exchange of two e-mails, the further announcement by
one scientist of his/her estimate of the probability of E would not make the other scientist

change his/her own estimate: the announcement would reveal nothing new.

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 9.8.6 at the end of this chapter.

Proof of the Agreement Theorem
First we prove the following.

Let U be a finite set of states, P a probability measure on U and E, F € 2V
two events. Let {Fi,...,F,} be a partition of F (thus F = F{ U---UF,, and any two F; and
Fj with j # k are non-empty and disjoint). Suppose that, for all j € {1,...,m}, P(F;) >0
and P(E|Fj) = q. Then P(E|F) = gq.

Proof. By definition of conditional probability, P(E|F;) = Pgi;? ) Hence, since P(E|Fj)=
J

g, we have that P(E N F;j) = g P(F;). Adding over j, the left-hand side becomes P(E N F)
[because ENF = (ENF;)U---U(ENF,) and for any j and k with j # k, (ENF;)N(EN
F,)=0,sothat P(ENF)=P(ENF;)+---+ P(ENF,)] and the right-hand side becomes

gP(F). Hence P(E|F) = “70) = 440 — g n

Proof of Theorem 9.6.1. Suppose that CK(||Pi(E) =p| N||P(E)=q|) # 0. Let
P :2Y —[0,1] be the probability measure associated with the common prior. Select
an arbitrary s € CK(||P1(E) = p||N||P.(E) = g||) and let Ick(s) be the cell of the com-
mon knowledge partition containing s. Consider Individual 1. Ick(s) is equal to the union
of a collection of cells (information sets) of 1’s information partition. On each such cell, 1’s

conditional probability of E, using the common-prior measure P, is p. Hence, by Lemma
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9.1, P(E|Ick(s)) = p. A similar reasoning for Individual 2 leads to P(E|lck(s)) = ¢
Hence p =gq. [ |

9.8 Exercises

9.8.1 Exercises for Section 9.1: Sets and probability

The answers to the following exercises are in Section 9.9 at the end of this chapter.

Exercise 9.1

Let U be the universal set (or sample space) and E and F two events. Let the complement
of E be denoted by —E and the complement of F' by —F.

Suppose that P(E) = 13—0, P(F) = % and P(CREU-F) = %. What is the probability of
EUF?

Exercise 9.2
Consider the following probability distribution:

4| 22 13 24 15 26 <7
3 1 3 2 3
2 1w O # o 9 1
What is the probability of the event {z,73,25,26,27}? -

Exercise 9.3

Let the universal set be U = {z1,22,23,24,25,26,27,28 }- Let A = {z2,24,25,27},
B={z3,26,28}, C ={22,26}, D ={z3,24} and E = {27,238}

You are given the following data: P(AUB) = %, P(ANC) = %, P(BNC) = %,
P(AND) =%, P(BND) = 4, P(B) = 5 and P(E) = %,.
(a) Find the probability P(z;) for eachi=1,...,8.

(b) Calculate P((AUB)N(CUD)).
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Exercise 9.4
LetU = {a,b,c,d,e, f,g,h,i} and consider the following probability distribution:

a b e f i
11 7 9 16 5 4 8
o 0 & & & & o o O
(a) Let E ={a,f,g, h,i}. What is the probability of E?
(b) List all the events that have probability 1.
|
Exercise 9.5
Let P be a probability measure on a finite set U and let A and B be two events (that is,
subsets of U). Explain why P(AUB) = P(A) + P(B) — P(ANB). .
Exercise 9.6

You plan to toss a fair coin three times and record the sequence of Heads/Tails.
(a) What is the set of possibilities (or universal set or sample space)?
(b) Let E be the event that you will get at least one Heads. What is E?
(c¢) What is the probability of event E?

(d) Let F be the event that you will get Tails either in the first toss or in the third toss?
[Note: this is not an exclusive ‘or’.] What is event F'?

(e) What is the probability of event F'?

9.8.2 Exercises for Section 9.2: Probabilistic beliefs

The answers to the following exercises are in Section 9.9 at the end of this chapter.

Exercise 9.7

Let the set of states be U = {a,b,c,d,e, f,g,h,i}.
Amy’s initial beliefs are given by the following probability distribution:

state a b c d e f g h i
-7 11 7 9 16 5 4 8
probablllty 50 0 50 50 60 0 50 50 0

(a) Let E ={a, f,g,h,i}. What is the probability of E?
(b) Find all the events that Amy is certain of (that is, attaches probability 1 to).
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Exercises for Section 9.3: Conditional probability and Bayes’ rule
The answers to the following exercises are in Section 9.9 at the end of this chapter.

Let A and B be two events such that P(A) > 0 and P(B) > 0.
Prove that P(A|B) = P(B|A) if and only if P(A) = P(B).

Two events A and B are independent if P(A|B) = P(A).
Construct an example where P(A|B) = P(B|A) and P(A) = P(B) but A and B are not
independent.

There is an urn with 40 balls: 4 red, 16 white, 10 blue and 10 black. You close your
eyes and pick a ball at random. Let E be the event “the selected ball is either red or
white”.

(a) What is the probability of E?

(b) Now somebody tells you: “the ball in your hand is not black”. How likely is it
now that you picked either a red or a white ball?

Suppose there are 3 individuals. It is known that one of them has a virus. A blood test
can be performed to test for the virus. If an individual does have the virus, then the
result of the test will be positive.

However, the test will be positive also for an individual who does not have the virus but
has a particular defective gene. It is known that exactly one of the three individuals has
this defective gene: it could be the same person who has the virus or somebody who
does not have the virus.

A test result will come up positive if and only if either the patient has the virus or the
defective gene (or both).

Suppose that Individual 1 takes the blood test and the result is positive. Assuming that
all the states are equally likely, what is the probability that he has the virus? [Hint: think
of the universal set (or sample space) U as a list of states and each state tells you which
individual has the virus and which individual has the defective gene.]
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Let A and B be two events such that P(A) = 0.2, P(B) = 0.5 and P(B|A) =0.1.
Calculate P(A|B).

In a remote rural clinic with limited resources, a patient arrives complaining of low-
abdomen pain. Based on all the information available, the doctor thinks that there are
only four possible causes: a bacterial infection (b), a viral infection (v), cancer (c),
internal bleeding (i). Of the four, only the bacterial infection and internal bleeding
are treatable at the clinic. In the past the doctor has seen 600 similar cases and they
eventually turned out to be as follows:

b : bacterial infection v : viral infection C : cancer i : internal bleeding

140 110 90 260

The doctor’s probabilistic estimates are based on those past cases.
(a) What is the probability that the patient has a treatable disease?

There are two possible ways of gathering more information: a blood test and an
ultrasound. A positive blood test will reveal that there is an infection, however it could
be either bacterial or viral; a negative blood test rules out an infection and thus leaves
cancer and internal bleeding as the only possibilities. The ultrasound, on the other hand,
will reveal if there is internal bleeding.

(b) Suppose that the patient gets an ultrasound and it turns out that there is no internal
bleeding. What is the probability that he does not have a treatable disease? What
is the probability that he has cancer?

(c) If instead of getting the ultrasound he had taken the blood test and it had been
positive, what would the probability that he had a treatable disease have been?

(d) Now let us go back to the hypothesis that the patient only gets the ultrasound and
it turns out that there is no internal bleeding. He then asks the doctor: “if I were
to take the blood test too (that is, in addition to the ultrasound), how likely is it
that it would be positive?”. What should the doctor’s answer be?

(e) Finally, suppose that the patient gets both the ultrasound and the blood test and
the ultrasound reveals that there is no internal bleeding, while the blood test is
positive. How likely is it that he has a treatable disease?
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LABEL | Number
AE
AF
AG
BE
BF
BG
CE
CF
CG

Figure 9.15: The specimen example of Exercise 9.14.

Exercise 9.14

A lab technician was asked to mark some specimens with two letters, the first from the
set {A, B,C} and the second from the set {E, F, G}. For example, a specimen could be
labeled as AE or BG, etc. He had a total of 220 specimens. He has to file a report to his
boss by filling in the table shown in Figure 9.15. Unfortunately, he does not remember
all the figures. He had written some notes to himself, which are reproduced below. Fill
in the table with the help of his notes and conditional probabilities.

Here are the technician’s notes:

(a) Of all the ones that he marked with an E, % were also marked with an A and %

were marked with a B.
(b) He marked 36 specimens with the label CE.

(c) Of all the specimens that he marked with a C, the fraction % were marked with a
G.

(d) Of all the specimens, the fraction % were marked with a C.

(e) The number of specimens marked BG was twice the number of specimens marked
BE.

(f) Of all the specimens marked with an A, the fraction % were marked with an E.

(g) Of all the specimens marked with an A, 1i0 were marked with a G.
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Exercises for Section 9.4: Changing beliefs in response to new information

The answers to the following exercises are in Section 9.9 at the end of this chapter.

Exercises for Section 9.4.1: Belief updating

Let the set of states be U = {a,b,c,d, e, f,g}. Fran’s initial beliefs are as follows:

state: a b c d e f g
probability: 5 0 & 4 0 35
Consider the event E = {a,d, e, g}.
(a) What probability does Fran attach to event E?
(b) Suppose that Fran is now informed that E is indeed true (that is, that the actual
state belongs to £). What are her updated beliefs?

(c) Consider the event D = {a,b,c, f,g}. What probability does Fran assign to event
D (1) initially and (2) after she is informed that E?

Consider again the example where there are only three students in a class: Ann, Bob
and Carla and the professor tells them that in the last exam one of them got 95 points
(out of 100), another 78 and the third 54. Ann’s initial beliefs are as follows (where
the triple (a, b, c) is interpreted as follows: a is Ann’s score, b is Bob’s score and c is
Carla’s score):

(95,78.54) (95,54,78) (78,95,54) (54,95,78) (78,54,95) (54,78.,95)

3 4 2 L L
32 2 32 32 32

W=
l\-)lc\
N

(a) Suppose that (before distributing the exams) the professor tells the students that
Carla received a lower score than Bob. Let E be the event that represents this
information. What is E'?

(b) How should Ann update her beliefs in response to information E?
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Exercise 9.17
Let the set of states be U = {a,b,c,d,e, f,g}.

s : b ¢ d e f g
Bill’s initial beliefs are as follows: ) s | 1 5 S
20 20 20 20 20 20 20
(a) Suppose that Bill receives information E = {a,c,e, f,g}. What are his updated
beliefs?

(b) Suppose that, after receiving information E, he later learns a new piece of in-
formation, namely F = {b,d,e, f,g}. What are his final beliefs (that is, after
updating first on E and then on F)?

Exercise 9.18

Inspector Gethem has been put in charge of a museum robbery that took place yesterday.
Two precious items were stolen: a statuette and a gold tiara, which were displayed in
the same room. Surveillance cameras show that only three people visited the room at
the time the items disappeared: call them suspect A, suspect B and suspect C.

Let a state be a complete specification of who stole what (including the possibility that
the same person stole both items).

(a) List all the states.

(b) Inspector Gethem recognizes the suspects and, based on what he knows about
them, initially believes that the probability that suspect A stole both items is
%, the probability that suspect B stole both items is 2% and the probability that
suspect C stole both items is 24—0. Furthermore, he assigns equal probability to
every other state. What are his initial beliefs?

(¢) Suppose now that the inspector receives reliable information that suspect B did
not steal the statuette and suspect C did not steal the tiara.
What are his beliefs after he updates on this information?

Exercise 9.19

Let the set of states be U = {a,b,c,d,e,f,g} and let E = {a,d e, g}.
The individual’s initial beliefs are given by the following probability distribution:

b d e f g
3 7 1 4 5
% 0 % 2w 0 % %

(a) Calculate P(E),P(b|E) and P(d|E).

(b) Calculate the updated beliefs in response to information E.
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Exercise 9.20
The instructor of a class has the following data on enrollment:

major ‘ Economics = Mathematics  Philosophy  Psychology  Statistics

enrollment ‘ 35% 22% 18% 16% 9%

(a) A student in her class, Jim, tells her that his major is neither Math nor Statistics.
What are the instructor’s beliefs about Jim’s major upon learning this?

(b) After a while Jim further informs the instructor that he is not an Economics major.
What are the instructor’s beliefs about Jim’s major upon learning this second fact?

(c) Finally, Jim tells the instructor that he is not a Philosophy major. What are the
instructor’s updated beliefs about Jim’s major upon learning this third fact?

Exercises for Section 9.4.2: Belief revision

The answers to the following exercises are in Section 9.9 at the end of this chapter.

Exercise 9.21

Prove that an AGM belief revision function (Definition 9.4.5) satisfies Arrow’s Axiom:
ifE,Fe&, ECFand ENf(F)#0then f(E)=EN f(F). .

Exercise 9.22

Prove that the qualitative belief updating rule (9.9) (page 329) is implied by Arrow’s
Axiom. -

Exercise 9.23

Let U = {a,b,c,d,e,g,h,k,m} and let = be the following plausibility order on U (as
usual, we use the convention that if the row to which state s belongs is above the row to
which state s” belongs then s = s/, and if s and s’ belong to the same row then s ~ s').

most plausible b,g
c,k,m
d,h
e
least plausible a

Let & = {{a,e},{d,e,k,m},{b,d,e,k},U}.
Find the belief revision function f : & — 2Y that is rationalized by =. .
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Exercise 9.24
As in Exercise 9.23, let U = {a,b,c,d,e,g,h,k,m} and

& =< {a,e},{d,e,k,m},{b,d ek}, U
—— 2 S ——

E F G

Using the plausibility order of Exercise 9.23, namely

most plausible b,g
c,k,m
d,h
e
least plausible a

find a collection of probability distributions {pg, pr, pG, pv} that provides an AGM
probabilistic belief revision policy (Definition 9.4.6). [There are many; find one.] =

9.8.5 Exercises for Section 9.5: Harsanyi consistency of beliefs or like-mindedness

The answers to the following exercises are in Section 9.9 at the end of this chapter.

Exercise 9.25

9

Consider the knowledge-belief structure shown in Figure 9.16. Are the individuals
beliefs Harsanyi consistent? n

ek
Q
[OSTE

b%) (c

W=
Y
NG

Figure 9.16: The knowledge-belief structure for Exercise 9.25.
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Consider the knowledge-belief structure shown in Figure 9.17.
(a) Show that if p = % then the beliefs are Harsanyi consistent.

(b) Show that if p # % then the beliefs are not Harsanyi consistent.

L @ DO @ E D
2: @@L D ) D
3: @[bp\(c; d1) (o (fl—p]

Figure 9.17: The knowledge-belief structure for Exercise 9.26.

Exercises for Section 9.6: Agreeing to disagree
The answers to the following exercises are in Section 9.9 at the end of this chapter.

1: (a3 by (cs di ei) (fi &%)

Figure 9.18: The knowledge-belief structure for Exercise 9.27.

Consider the knowledge-belief structure shown in Figure 9.18.
(a) Find the common knowledge partition.
(b) Find a common prior.
(c) LetE={b,d,f}.
(1) Is the probability that Individual 1 assigns to £ common knowledge?
(2) Is the probability that Individual 2 assigns to E common knowledge?
(d) LetE={b,d, f}.
(1) At state b does Individual 1 know what probability Individual 2 assigns to E?
(2) At state ¢ does Individual 1 know what probability Individual 2 assigns to E?
(3) At state f does Individual 1 know what probability Individual 2 assigns to E?
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— %% % Challenging Question %% %.
This is known as the Monty Hall problem.

You are a contestant in a show. You are shown three doors, numbered 1, 2 and 3. Behind
one of them is a new car, which will be yours if you choose to open that door.

The door behind which the car was placed was chosen randomly with equal probability
(a die was thrown, if it came up 1 or 2 then the car was placed behind Door 1, if it came
up 3 or 4 then the car was placed behind Door 2 and if it came up 5 or 6 then the car
was placed behind Door 3).

You have to choose one door. Suppose that you have chosen door number 1. Before the
door is opened the host tells you that he knows where the car is and, to help you, he will
open one of the other two doors, making sure that he opens a door behind which there is
no car; if there are two such doors, then he will choose randomly with equal probability.

Afterwards he will give you a chance to change your mind and switch to the other
closed door, but you will have to pay $20 if you decide to switch.

Suppose that initially you chose Door 1 and the host opens Door 3 to show you that the
car is not there. Assume that, if switching increases the probability of getting the car
(relative to not switching), then you find it worthwhile to pay $20 to switch.

Should you switch from Door 1 to Door 27

Answer the question using two different approaches.

(a) Method 1. Let D,, denote the event that the car is behind door » and let O,, denote
the event that the host opens door n (n € {1,2,3}).
The prior probabilities are P(Dy) = P(D,) = P(D3) = % Compute P(D1|03)
using Bayes’ rule (if P(D;|03) > 5 then you should not switch, since there is a
cost in switching).

(b) Method 2. Draw (part of) an extensive form with imperfect information where
Nature moves first and chooses where the car is, then you choose one door and
then the host chooses which door to open (of course, the host’s choice is made
according to the rules specified above).

Reasoning about the information set you are in after you have pointed to Door 1
and the host has opened Door 3, determine if you should switch from Door 1 to
Door 2.

Solutions to Exercises

Solution to Exercise 9.1.
The general formulais P(EUF) =P(E)+P(F)—P(ENF).
By The Morgan’s Law, ~EU—F = =(ENF).

Thus, since P(~(ENF)) = %, we have that P(ENF) =1—3 = 1.
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Solution to Exercise 9.2.

P({z2,23,25,26:27}) = Y P{{z}) =13 +0+5+0+5 =13
i€{2,3.5,6,7}

rI—
]

Solution to Exercise 9.3.
(a) Since {z;} is the complement of AUB, P(z;) = 1 — 3 = 5.
Since {22} =ANC, P(z2) = 3.
Similarly, P(z¢) = (BﬂC) 3., P(z3) =P(BND) = 3 and
P(z4) = P(AND) =
Thus, P(z3) = P(B P( 3)—P(z6) = 55 — 31— 55 = 5-
Hence, P(z7) = P(E) — P(z3) = % — 5; = 5. Finally, P(z5) =1 — '§5P(z,~) =2
l

e e <1 2 B3 W 5 W U
Thus, the probability distribution is:
3 5 3

2 3
24 24 24 24 24 24 24
(b) AUB={22,23,24,25,26,27,28 } , CUD = {22,23,24,26 }-
Hence, (AUB)N(CUD) =CUD = {z,23,24,2¢} 0 that

P((AUB)N(CUD)) = P(z2) + P(z3) + P(z4) + P(z6) = iy + iy + H + 5y = 2. O

Solution to Exercise 9.4. The given probability distribution is:

—
=]
]

[o)
o

(@) Let E ={a,f,gh,i}.

Then P(E) = P(a) + P(f) +P(g) +P(h)+P() =S+ &+ 4+ e +0=2 = L.

(b) The events that have probability 1 are:

{a,c,d,e,f,g,h}:U\{b,i}, {aab7cvd7e7f’g7h}:U\{i}’
{a,c,d,e, f,g,h,i} =U\{b} and {a,b,c,d,e,f,g h,i} =U. O

Solution to Exercise 9.5. Since P(A) = Y P(w) and P(B) = Y P(w), when adding
weA weB

P(A) to P(B) the elements that belong to both A and B (that is, the elements of AN B) are

added twice and thus we need to subtract Y. P(w) from P(A)+ P(B) in order to get
weANB

Y P(w)=P(AUB). O
weAUB

Solution to Exercise 9.6.

<8
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(a) There are 8 possibilities:

HHH HHT HTH HITT THH THT TTH TTT

Since the coin is fair, each possibility has the same probability, namely %.
(b) E=U\{TTT}, where U is the universal set (the set of 8 possibilities listed above).
(¢) P(E)=P(U)—P(TTT)=1—§=1.
(d F=U\{HHH,HTH}
(e) P(F)=P({U)—P({HHH,HTH})=1—§—t=5%=13. O

Solution to Exercise 9.7. The probability distribution is

state: a b c
probability: o O 6—70 % 50

(@) Let E ={a,f,g h,i}.
Then P(E) = P(a)+ P(f)+P(8) + P(h)+ P(i) = i+ G+ G+ S+0=B =L

(b) Amy is certain of all events that have probability 1, namely
{a7c?d7e7f7g7h}’ {a7b7c7d?e?f7g7h}’ {aJC7d7e7f7g7h7i} and {a?b7c7dﬂeﬂf7g7h7i}‘

0
Solution to Exercise 9.8.

Suppose that P(A|B) = P(B|A).

Since P(A|B) = P5g? and P(B|A) = "5i?) it follows that P(A) = P(B).
Conversely, if P(A) = P(B) then P(A|B) = "8l = PG5 — p(Bla). 0

Solution to Exercise 9.9.
Example 1. Let P(A) = % and let B = —A.
Then P(B) = 1—P(A) = } and ANB =0 so that P(ANB) =0

and thus P(A|B) = % =9=0=P(BJA) = Pg\(gf)'

Thus P(A|B) = P(B|A) =0 and P(A) = P(B) = % and A and B are not independent since
P(A|B) # P(A).
Example 2. U = {a,b,c},P(a) = P(c) = % and P(b) = % Let A= {a,b} and B = {b,c}.

wl—|

_p(B) 3 _PANB) _ _P() 5 _1_
Then P(A) = P(B) = 5 and P(A|B) = 557 = 55y p1c) = % =3 =P(BJA).
Thus A and B are not independent since P(A|B) # P(A). O

Solution to Exercise 9.10.
(@) P(E)=*0=1.
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(b) Let F be the event “the selected ball is not black”. Then, initially, P(F) = 2—0 =

Furthermore, ENF = E. Thus, P(E|F) = P%E;I;) = % == % O

=)
Bl

eS| w| | —

Solution to Exercise 9.11.

First we list the possible states. A state is a complete description of the facts that are
relevant: it tells you who has the virus and who has the gene.

Let us represent a state as a pair (x,y) interpreted as follows: individual x has the virus and
individual y has the defective gene.

ThenU ={a=(1,1),b=(1,2), c=(1,3),d=(2,1), e=(2,2), f=(2,3), g=(3,1),
h=(3,2),i=(3,3)}.

Let V; be the event “Individual 1 has the virus”. Then V| = {a,b,c}.

Let G| be the event “Individual 1 has the defective gene”. Then G| = {a,d, g}.

Since every state is assumed to have probability %, P(V})=P(G) = é + é + é = %

Let 1 be the event that a blood test administered to Individual 1 comes up positive.
Then 14 = {a,b,c,d,g} and P(1,) = g.

Now we can compute the requested conditional probability as follows (note that Vi N 14 =
V] )3

P(Vin1 P(V1) 3
P(Vi|1,) = (Pll +) _ P(ll) =3 =3 =60%.
(14) (1) 3
O
Solution to Exercise 9.12.
Using Bayes” rule, P(4|B) = “EA) = ©02) — 0,04 = 4%, O
Solution to Exercise 9.13.
The probabilities are as follows:
b v c i
140 _ 14 110 _ 11 20 _ 9 260 _ 26
600 — 6 600 — 6 600 — 60 600 — 60
(a) The event that the patient has a treatable disease is {b,i}.
P({b,i}) =P(b)+P(i) =+ 2% =2
(b) A negative result of the ultrasound is represented by the event {b,v,c}.
A non-treatable disease is the event {v,c}. Thus,
P({ve}nibne)) _ P({ne)) _ wte
) » Yy s 60 " 60
P({v,c}|{b,v,c}) = = = =10 =58.82%.

P({b7vac}) _P({b,v,c}) - @“‘@4—%
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9

P(c) 60 9
P b — — :—:26.47(7.
oD = ey " g O

(c) A positive blood test is represented by the event {b,v}.
A treatable disease is the event {b,i}. Thus,

P({b,iY N {b,v P(b &
(it = PR = 5 = 1 =5 =50%
(d) Here we want
P({bv}{bov,c}) = 4D 14%+% - =2 =735,

P({b,v,c}) @4‘%—(1)4—@

(e) We are conditioning on {b,v} N{b,v,c} = {b,v};
thus, we want P ({b,i}|{b,v}) which was calculated in Part (c) as % =56%. O

Solution to Exercise 9.14.

Let #xy be the number of specimens that were marked xy (thus, x € {A,B,C} and
ye{D,E,F})and P(xy) = %y) be the fraction of specimens that were marked xy; let #z be
the number of specimens whose label contains a z € {A,B,C,D,E,F} and let P(z) = 2%—20;

finally, let P(xy|z) = ’%.15

With this notation we can re-write the information contained in the technician’s notes as
follows.

(a) P(AE|E) =P(BE|E) = 1. It follows that the remaining three fifth were marked with

aC, thatis P(CE|E) = %
36

(b) #CE = 36; thus, P(CE) = %. Since P(CE|E) = 1%, using (a) we get % = %,

that is, P(E) = 23—260 (%) = % Hence, the number of specimens marked with an E is

, using (a) we get % = P(’gE) , that
11

is, P(AE) = 53—5 Thus, the number of specimens marked AE is % 220 =12. The

P(AE)

13—1 220 = 60. Furthermore, since P(AE|E) = P(E)

calculation for P(BE|E) is identical; thus, the number of specimens marked BE is

also 12. So far, we have:

#xy

'5This is a conditional probability, since P(xy|z) = 22 = % = f;,(g).

Z
220
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LABEL number
AE 12
AF
AG
BE 12
BF
BG
CE 36
CF
CG

(¢) P(CG|C) = 2. Since P(CG|C) = 29 it follows that 12 = £€9).

P(C) P(C)

(CG)

d P(C)= % Thus, using (c) we get % = P—3, that is, P(CG) = %

55
Hence, the number of specimens marked CG is % 220 = 48.

Since P(C) = %, the total number of specimens marked with a C is % 220 =92.

Since 36 were marked CE (see the above table) and 48 were marked CG, it follows

that the number of specimens marked CF is 92 —48 —36 = 8. Up to this point we

have:

LABEL number
AE 12
AF
AG
BE 12
BF
BG
CE 36
CF 8
CG 48
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(e)

®

(2

The number of BGs is twice the number of BESs.
Since the latter is 12 (see the above table), the number of BGs is 24.

we have that

P(AE|A) = 20 Since P(AE|A) = (( )) and, from (b), P(AE) =
3

3 _ 3 (20)_ 4
30 = ( - Hence, PA) =2 (F) =11

Thus, the number of specimens marked with an A is %220 = 80.

55’

Since P(A) = 1} and, from (d), P(C) = £, it follows that P(B) = 1 — - — 2 = 12,
Thus, the number of specimens marked with a B is 5% 220 = 48. Of these, 12 were
marked BE and 24 were marked BG. Thus, the number of specimens marked BF is

48 — 12 — 24 = 12. So far, we have:

LABEL number
AE 12
AF
AG
BE 12
BF 12
BG 24
CE 36
CF 8
CG 48

Since P(AG|A) = P(?A(;), and from (f) we have that P(A) = 14—1 it

1
10°
1 P(AG . 4 4
—O:%,thatls (AG) (11) = 110*
11
Thus, the number of specimens marked AG is m220 =8.

P(AG|A) =

follows that

Since the number marked with an A is 14—1220 — 80 and the number of those marked
AFE is 12 and the number ot those marked AG is 8, we get that the number of

specimens marked AF is 80 — 12 — 8 = 60.

Thus, we have completed the table:
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LABEL number
AE 12
AF 60
AG 8
BE 12
BF 12
BG 24
CE 36
CF 8
CG 48

Solution to Exercise 9.15. Fran’s initial beliefs are:

state: a b c d e g

2
20

SE

probability: 5 0 & 55 O

The events under consideration are: E = {a,d,e,g} and D = {a,b,c, f,g}.
(a) P(E) = P(a)+P(d) +P(e) +P(g) = 55+ 2 + 0+ 3 = 5.

)+
(b) P(b|E) = P(c|E) = P(f|E) = 0 (since each of these states does not belong to E),
3 3>
P(alE)=% =3, P(|E)=% =3§, P(e|E) =5 =0and P(¢|E) = 3 =
20 20 20 20
Thus the operation of conditioning on event E yields the following updated probabil-

I 8I~
ol

ity distribution:

state: a b ¢ d e f g

probability: % 0 O % 0 O

ol

(¢) (1) Initially Fran attaches the following probability to event D'
P(D) =P(a)+P(b)+P(c) +P(f) +P(g) = 35+ 0+ 55+ 55+ 35 = 33 = 95%.
(2) After updating on information E Fran attaches the following probability to event

D: P(D|E) — P(DNE) — P({a.g}) —

8

SEIEE
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Solution to Exercise 9.16.

(a) E = {(95,78,54),(78,95,54),(54,95,78)}. Thus P(E) = 16+ & 4

W)

(b) Conditioning on E yields the following beliefs:

(95,78,54)  (95,54,78)  (78,95,54)  (54,95,78)  (78,54,95)  (54,78,95)

16 4 2
32 8 32 2 32
32 32 32
U

Solution to Exercise 9.17.
(a) Updating on information E = {a,c,e, f,g} yields the following beliefs:

QU
Y
Qe =

-
Sl o0

(b) Updating the beliefs of Part (a) on information F = {b.d, e, f, g} yields the following
beliefs:

N}
S
o
QU
Q
Olw

Ol—
Ol 0

Solution to Exercise 9.18.
Represent a state as a pair (x,y) where x is the suspect who stole the statuette and y is the
suspect who stole the tiara.

(a) Thesetof statesis U = {(A,A), (A, B), (A,C), (B,A), (B, B),(B,C),(C,A),(C,B),(C,C)}.
(b) The inspector’s initial beliefs are:

(4,4)  (A.B) (AC) (BA) (BB) (BC) (CA) (CB) (CC)
1 2 2 2 3 2 2 2 4
20 20 20 20 20 20 20 20 20

[Explanation: P(A,A) +P(B,B)+ P(C,C) = 55 + 2% + 24—0 = %; thus % remains
to be distributed equally among the remaining six states, so that each receives %. }

(c) The informationis F = {(A,A),(A,B),(C,A),(C,B)}.

Updating on this information yields the following beliefs:

(A,A)  (A,B) (A,C) (B,A) (B,B) (B,C) (C,A) (C,B) (C,C)

1 2 2 2
1 2 0 0 0 0 2 2 0
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Solution to Exercise 9.19.
(a) P(E) = P(a)+P(d)+P(e)+P(g) = 35+ 55 +0+ 35 = 55, P(bIE)=0
1

and P(d|E) = 5 = L.

(b) The updated beliefs are as follows:

\O|—
)
)
ol 0Q

Solution to Exercise 9.20.
The initial beliefs are:

Economics =~ Mathematics  Philosophy  Psychology  Statistics
35 22 18 16 9

100 100 100 100 100

(a) Updating on {Economics, Philosophy, Psychology} yields the following beliefs:

Economics = Mathematics  Philosophy  Psychology  Statistics

35 18 16
) 0 ) & 0

(b) Updating the beliefs of Part (a) on {Philosophy, Psychology } ' yields the following
beliefs:
Economics =~ Mathematics  Philosophy  Psychology  Statistics
0 0 2 2 0
(c¢) Updating the beliefs of Part (b) on {Psychology} yields the following beliefs:

Economics =~ Mathematics  Philosophy  Psychology  Statistics
0 0 0 1 0

Solution to Exercise 9.21.

Let f : & — 2V be an AGM belief revision function.

Let E,F € & be suchthat E C F and EN f(F) # 0. We need to show that f(E) =ENf(F).
By definition of AGM belief revision function (Definition 9.4.2), there is a plausibility
order >= on U such that

f(F):{sGF:s%s’foreverys’eF} (9.10)

16This is the intersection of the initial piece of information, namely {Economics, Philosophy, Psychology},
and the new piece of information, namely {Mathematics, Philosophy, Psychology, Statistics}. Updating the
updated beliefs on {Mathematics, Philosophy, Psychology, Statistics} yields the same result as updating
on {Philosophy, Psychology}. Indeed, one would obtain the same result by updating the initial beliefs on
{Philosophy, Psychology}.
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and
f(E)y={s€E:ss foreverys' €E}. (9.11)

Choose an arbitrary s € EN f(F).

Then, by (9.10) and the fact that E C F, s = s’ for every s’ € E and thus, by (9.11), s € f(E).
Hence, ENf(F) C f(E).

Conversely, choose an arbitrary s; € f(E).

Then, since (by definition of belief revision function: Definition 9.4.2) f(E) C E, s; € E.
We want to show that s; € f(F) [so that s; € EN f(F) and, therefore, f(E) C EN f(F)].
Suppose it is not true. Then, by (9.10), there exists an s, € F such that s, > s7.

Select an s3 € EN f(F) (recall that, by hypothesis, E N f(F) # 0).

Then, by (9.10) (since 57,53 € f(F)), 53 = 52, from which it follows (by transitivity of =
and the fact that s, > s1) that s3 > s7.

But then, since s3 € E, it is not true that sy 3= s’ for every s’ € E, contradicting — by (9.11) —
the hypothesis that s; € f(E). O

Solution to Exercise 9.22. For every event E (representing a possible item of informa-
tion), let pg be the probability distribution on E that represents the revised beliefs of the
individual after receiving information E.

Let p be the probability distribution on U representing the individual’s initial beliefs.
Define the following belief revision function f : f(U) = Supp(p) and f(E) = Supp(pE).
Suppose that f satisfies Arrow’s Axiom.

Then, for every event E, if EN f(U) # 0 [that is, if ENSupp(p) # 0 i.e. P(E) > 0]

then f(E) =EN f(U) [thatis, Supp(pe) = ENSupp(p)]. O

Solution to Exercise 9.23.
We have that & = {{a,e},{d,e,k,m},{b,d,e,k}, U} and 3= is given by

most plausible b,g
c,k,m
d,h
e

least plausible a

Then the belief revision function rationalized by this plausibility order is given by:

f({a7e}) = {€}7 f({d7e7k7m}) - {kam}7 f({b7d7e7k}) = {b} and f(U> = {bvg}' O
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Solution to Exercise 9.24.
From Exercise 9.23 we get that {pg, pr, pc, pv } must be such that

Supp(pe) = {e}, Supp(pr) = {k,m}, Supp(pc) = {b} and Supp(pv) = {b,g}.
For every full-support probability distribution pg on U, there is a corresponding collec-
tion {pg, pr,pc,pu}. For example, if py is the uniform distribution on U (that assigns
probability é to every state), then the corresponding {pg, pr, PG, pu} is given by:

state a b ¢ d e g h k m
PE o o o0 o 1 o0 o0 o0 o0
DF o o0 o0 o o0 o0 o0
PG o 1 o0 o o o0 o0 o0 o0

1 1
pu 0O L 0o 0o o 1 0o o o

As another example, if pg is the following probability distribution

state  a b c d e g h k m
1 3 1 4 8 9 3 2 A
Po 50 50 5 50 50 50 50 50 50

then the corresponding {pg, pr, pc, pu} is given by: pg and pg the same as above, and
pr and py as follows:

state a b ¢ d e g h k m
pp. 0 0 0 O 0 0 0 3 ¢

pu O 4+ 0 0 0 32 0 0 O

Solution to Exercise 9.25.

Yes. The following is a common prior: . 0

\O|—
(=]l \S]
N=ll ]
Ol

Solution to Exercise 9.26.
(a) Assume that p = % (sothat 1 —p = % ).
From the updating conditions for Individual 1 we get p;, = 2p, and p, = py;
from the updating conditions for Individual 2 we get p. = 3p;, and p, = 4py;
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from the updating conditions for Individual 3 we get p. = py and py = 12p,.

All these equations have a solution, which constitutes a common prior, namely
a b c d e f

5
63

24 24

63 63

A
Dl

1
63
(b) From the equations of Part (a) we have that py = pe, pe = 4p4, pa = pc and p. = 3 py,

from which it follows that py = 12p,,.

Thus, updating on the information set {b, f} of Individual 3, we get that | — p =

Py _12py
Db tDpy pr+12pp

= 15 and thus p = 15. Hence, if p # 5 there is no common prior.

O

Solution to Exercise 9.27.

(a) The common knowledge partition is the trivial partition shown in Figure 9.19.

(b) The common prior is also shown shown in Figure 9.19.

(¢) (1) Individual 1 assigns probability % to E = {b,d, f} at every state. Thus his
assessment of the probability of E is common knowledge at every state.

(2) At state a Individual 2 assigns probability % to E, while at state b she assigns
probability % to E. Thus there is no state where her assessment of the probability of
E is common knowledge.

(d) (1) At state b Individual 1’s information set is {a,b}; since at a Individual 2 assigns
probability % to E, while at b she assigns probability % to E, it follows that at b it is
not the case that Individual 1 knows Individual 2’s assessment of the probability of
E.

(2) At state ¢ Individual 1’s information set is {c,d, e}; since at ¢ Individual 2 assigns
probability % to E, while at d she assigns probability % to E, it follows that at c it is
not the case that Individual 1 knows Individual 2’s assessment of the probability of
E.

(3) At state f Individual 1’s information set is { f, g}; since at f Individual 2 assigns
probability % to E, while at g she assigns probability O to E, it follows that at f it is
not the case that Individual 1 knows Individual 2’s assessment of the probability of
E. U

Solution to Exercise 9.28.

(a) Method 1. We solve this problem using Bayes’ formula.
For every n € {1,2,3}, let D, denote the event that the car is behind door n and let
O,, denote the event that the host opens Door n.
The initial probabilities are P(D) = P(D;) = P(D3) = %
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common prior:

(b)
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Figure 9.19: The information structure for Exercise 9.27.

We want to compute P(D;]03); if P(D1]03) > 5 then you should not switch, since

there is a cost in switching (recall that Door 1 is your initial choice).

By Bayes’ rule, P(Dy]03) = 0 1P

We know that P(D;) = % and P(O3|Dy) = % (when the car is behind Door 1 then
the host has a choice between opening Door 2 and opening Door 3 and he chooses
with equal probability). Thus,

P(Dy|03) = 2= = (9.12)

We need to compute P(O3):

P(0;)

P(03|D1) P(D1) + P(O3|D;) P(D3) + P(03|D3) P(D3)
P(03|Dy) 1 +P(03|D2) 1 + P(03]D3) 1
HE+1 () +o() =4+l =1

because P(O3|D;) = % , P(03]D,) =1 (if the car is behind Door 2 then the host has
to open Door 3, since he cannot open the door that you chose, namely Door 1) and
P(03|D3) = 0 (if the car is behind Door 3 then the host cannot open that door).
Substituting § for P(03) in (9.12) we get that P(D;|03) = 1 .

Hence, the updated probability that the car is behind the other door (Door 2) is %
and therefore you should switch.

Method 2. The extensive form is shown in Figure 9.20
(‘cbn’ means ‘the car is behind door »’, ‘chn’ means ‘you choose door n’).

The hypothesized sequence of events leads to either node x or node y (you first
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choose Door 1 and then the host opens Door 3).
The prior probability of getting to x is % X % = %
while the prior probability of getting to y is % x 1= %

The information you have is {x,y} and, using the conditional probability rule,

P({x X, P({x 1
P (5)) = Pl — A — 8,

Thus you should switch. 0

1
3

° ®
01?3
¢ 3 ch3 *
ch2 ch?2
¥  You § .
ch2 ch3
chl Chi \ chl
o Y °
Host Host ¢ Host
open 3
open 2 1 open 3
1 2
2 C‘ x You ey j open 2

T v 2

Figure 9.20: The Monty Hall problem represented using an imperfect-information frame.







10. Rationality

The epistemic foundation program in game theory aims to identify, for every game, the
strategies that might be chosen by rational players who know the structure of the game and
the preferences of their opponents and who recognize each other’s rationality.! The two
central questions are thus:

(1) Under what circumstances is a player rational?
(2) What does ‘mutual recognition of rationality’ mean?

A natural interpretation of the latter notion is in terms of common belief or common
knowledge of rationality. We already know how to model these two notions (Chapter 8);
thus, we only need to define what it means for a player to be rational. Intuitively, a player
is rational if she chooses an action which is ’best” given what she believes. In order to
make this more precise we need to introduce the notion of a model of a game. In Section
10.1 we shall focus on strategic-form games with ordinal payoffs (Definition 2.1.3, Chapter
2) and the notion of common belief (Section 8.5, Chapter 8), while in Section 10.2 we
shall turn to strategic-form games with cardinal payoffs (Definition 6.1.2, Chapter 6) and
the notion of common knowledge (Section 8.3, Chapter 8).

In Chapter 2 (Section 2.5) and Chapter 6 (Section 6.4) we discussed (two versions of)
the procedure of iterated deletion of strictly dominated strategies (IDSDS) and claimed
that it captures the notion of common belief/knowledge of rationality in strategic-form
games. We now have the tools to prove this claim.

Mixed strategies play no role in the analysis of chapter: only pure strategies are
considered.

'For an overview of the epistemic foundation program in game theory the reader is referred to Battigalli
and Bonanno (1999) and Perea (2012).
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Strategic-form games with ordinal payoffs

The definition of a strategic-form game specifies the choices available to the players and
what motivates the players when making their choices (their preferences over the possible
outcomes); however, it leaves out an important factor in the determination of players’
choices, namely what they believe about the other players. Adding a specification of the
players’ beliefs determines the context in which a particular game is played; this can be
done with the help of an interactive belief structure.

Models of ordinal games

Recall that an interactive belief structure (Section 8.5, Chapter 8) consists of

< aset of states W,
o aset of players I = {1,...,n},

o for every Player i € I, a binary relation %; on W, that represents Player i’s beliefs.
Recall that Z;(w) = {w' € W : (w,w') € %;}. The relation %; is assumed to satisfy
seriality, transitivity and euclideanness.?

Definition 10.1.1 Let G be a n-player strategic-form game with ordinal payoffs. A
model of G is an interactive belief structure together with, for every Playeri € {1,...,n},
a function

C,‘ W= S;

that associates with every state a pure strategy of Player i (recall that S; denotes the set
of pure strategies of Player i). The interpretation of {;(w) = s; € S; is that, at state w,
Player i plays (or has chosen) strategy s;.

We impose the restriction that a player cannot be mistaken about her own choice of
strategy, that is, Player i chooses strategy s; if and only if she believes that her chosen
strategy is s;: for every state w € W and for every Playeri € {1,...,n},

i(w) = s; if and only if, for all W' € B(w), {(W') = s;.9

“Equivalently, for all i € {1,...,n}, for all w € W and for all w' € %;(w), §;(w) = §i(w).

The addition of the functions §; (i € {1,...,n}) to an interactive belief structure yields an
interpretation of events in terms of propositions about what strategies the players play,
thereby giving content to players’ beliefs.

2Seriality: for all w € W, %(w) # @. Transitivity: if w' € %(w) then Z(w') C %(w). Euclideanness:
if w' € B(w) then B(w) C B(w').
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Figure 10.1 shows a strategic-form game with ordinal payoffs and a model of it with
W ={a,b,c}, #i(a) =A{a}, B1(b) = Bi(c) = {c}, $a(a) = P(b) = {a}, Za(c) =
{c}. Ci(a) =8, &i(b) = Ci(c) =N and §(a) = §(b) =R, {(c) = L.

Player 2

L R
Player 1 2 210 0
I 112 2

l: @ b —(c)
2: @<—b (o)

Ci: s N N

6 R R L

Figure 10.1: A strategic-form game with ordinal payoffs and a model of it.

Let us focus on state . What situation does it describe?

* At state b, Player 1 erroneously believes that Player 2 is playing L (%,(b) = {c}
and §(c) = L, but, as a matter of fact, {,(b) = R); furthermore, she herself plays N
(&1 (b) = N), which is a best reply to L;

* at state b, Player 2 erroneously believes that Player 1 is playing S (%,(b) = {a}
and &) (a) = S, but, as a matter of fact, {;(b) = N); furthermore, he himself plays R,
which is a best reply to S.

It seems natural to claim that at state b both players are rational, since their choices are
justified by their (albeit incorrect) beliefs, even though they end up playing (N, R), which
gives rise to the worst outcome for both players.

To summarize, one can view a strategic-form game as only a partial description of an
interactive situation: it specifies who the players are, what actions they can take and how
they rank the possible outcomes; a model of the game completes this description by also
specifying what each player actually does and what she believes about what her opponents
are going to do. Once we know what a player does and what she believes, then we are in a
position to judge whether her choice is rational or irrational.

30r, expressed as subsets of W x W, %1 = {(a,a), (b,c),(c,c)}, B> = {(a,a), (b,a),(c,c)}.
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Next we introduce a very weak notion of rationality and in the next section we will
show that common belief of this weak notion of rationality corresponds to the procedure
of iterated deletion of strictly dominated strategies (IDSDS) defined in Chapter 2.

Recall that, given a game, 7;(s) denotes Player i’s payoff from the strategy profile
s €85 =381 x---xS,, which - in turn - is Player i’s (ordinal) utility of the outcome associated
with s. Furthermore, given a state w in a model of that game, {;(w) € S; is the pure strategy
chosen by Player i at state w and we denote by {_;(w) € S| X ...S;—1 X Sit1 X -+ X S, the
strategy profile chosen by the players other than i at state w.

Definition 10.1.2 Given a model of a strategic-form game with ordinal payoffs, Player
i 1s weakly rational at state w if, given her beliefs, there is no pure strategy of hers that
is "unquestionably" better than the strategy that she has chosen at state w, that is, there
is no strategy s; € S; which is strictly better than {;(w) at every state w' that Player i
considers possible at w (i.e. at every w' € %;(w)):

player i is rational at w € W if there is no s; € S; such that
7 (si, (W) > m (&i(w), E_i(W)), forall w' € ZBi(w).2

(Recall the assumption in Definition 10.1.1 that, for all w' € Z;(w), i(w) = §;(W).)

“Equivalently, if for every s; € S; there is aw’ € %B;(w) such that 7; (§i(w), §—i(W')) > m; (si, §_i(W')).

To understand this definition and appreciate how permissive it is, consider the game and
model shown in Figure 10.2, where %) (a) = {a}, #1(b) = $B1(c) = {b,c}, $,(d) ={d},
and %, (a) = %1 (b) ={a,b}, $a(c) = $B>(d) = {d}. (Note that this is a partitional model,
so that erroneous beliefs are ruled out.)

Player 2
L R
N
Player 1 0 010 1
s{0 Of1 O

Figure 10.2: A strategic-form game with ordinal payoffs and a model of it.
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Consider state b. At state b Player 1 is uncertain as to whether Player 2 is playing L or R
(A)(b) ={b,c} and & (b) = L while {,(c) = R); furthermore, Player 1’s choice at state b
is N (§1(b) = N), which is weakly dominated by S. However, Player 1’s choice of N at
state b is still rational according to Definition 10.1.2, because it is not the case that § is
unquestionably better than N: S is better than N if the actual state is ¢, but it is just as good
as N if the actual state is b and, according to Player 1’s beliefs, either b or ¢ could be the
actual state.

Since we have defined weak rationality of a player at a state, we can determine, for every
player, the set of states where that player is weakly rational. Let WR,; be the event that (that
is, the set of states at which) Player i is weakly rational and let WR = WR; N...NWR,
be the event that all players are weakly rational.

In the model of Figure 10.2 we have that WR; = WR, = WR =W = {q,b,c,d}, that
is, both players are weakly rational at every state. It follows that, at every state, there is
common belief of weak rationality. Note that in this model, for every strategy profile, there
is a state where that strategy profile is played; hence every strategy profile is compatible
with common belief of weak rationality. Furthermore, note also that the output of IDSDS
procedure in this game is the entire set of strategy profiles. As shown in the next section,
this correspondence is true in general.

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 10.6.1 at the end of this chapter.

Common belief of weak rationality

Since we can identify weak rationality of a player, or a set of players, as an event, we can
apply the belief operators and the common belief operator to such events; thus we can
determine, for example, if there are any states where the weak rationality of all the players
is commonly believed and see what strategy profiles are compatible with common belief
of weak rationality.

Note that, for every player, the set of states where she is weakly rational coincides
with the set of states where she believes that she is weakly rational:

foralli € {1,...,n}, WR; = B;WR,.

This is a consequence of the assumption in Definition 10.1.1 that a player has correct
beliefs about what strategy she herself chooses, together with the assumption that
she believes an event E if and only if she believes that she believes E (this is a
consequence of the assumed transitivity and euclideanness of %;: if w' € %;(w) then
%’i(w) = %KW’))A

Note also that B*WR C WR, that is, if at a state it is common belief that all the
players are weakly rational, then at that state the players are indeed weakly rational
(while, in general, it is not true that WR is a subset of B*WR, that is, there may be
states where all the players are weakly rational but this fact is not commonly believed.

4See Footnote 2.
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In Chapter 2 we claimed that, in strategic-form games with ordinal payoffs, the iterated
deletion of strictly dominated strategies (IDSDS; Section 2.5, Chapter 2) captures the
notion of common belief of rationality. The following two theorems establish the exact
correspondence between the two notions. The proofs of Theorems 10.1.1 and 10.1.2 are
given in Section 10.5.

Let G be a finite strategic-form game with ordinal payoffs. For any
model of G and any state w in that model, if w € B*WR (that is, at w there is common
belief of weak rationality) then the pure-strategy profile associated with w must be one
that survives the IDSDS procedure.

Let G be a finite strategic-form game with ordinal payoffs and let s € S
be a pure-strategy profile that survives the IDSDS procedure. Then there is a model of
G and a state w in that model, such that w € B*WR and the strategy profile associated
with w is s, that is, (§1(w),...,§(w)) =s.

As an illustration of the above two theorems, consider the strategic-form game with
ordinal payoffs shown in Figure 10.3.

Player 2
L C R
ry1 3 (3 2 1
Player 1 mM|2 1|0 2|4
B10 312 1 0

Figure 10.3: A strategic-form game with cardinal payoffs.

In this game, for Player 2 R is strictly dominated by C. After deleting R, for Player 1
B becomes strictly dominated by 7'. After deleting B no more deletions are possible. Thus
the output of the IDSDS procedure is the following set of strategy profiles

{(1,L),(T,C),(M,L),(M,C)}.

By Theorem 10.1.1, only the above strategy profiles are compatible with common belief
of weak rationality. By Theorem 10.1.2, for any of the above four strategy profiles it is
possible to construct a model where at a state there is common belief of weak rationality
and that strategy profile is played there. In fact, one can construct a model where there
is common belief of weak rationality at every state and each of (7,L),(T,C),(M,L) and
(M,C) is played at some state. Figure 10.3 shows such a model. Note that in this model
the belief relations are equivalence relations, that is, it is a partitional model, and thus we
have the stronger property of common knowledge, rather than common belief, of weak
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rationality. The reader should convince herself/himself that in this model there is common
knowledge of weak rationality at every state.

: (D
2: @j@

CK Ca b c d)

partition
Ci: T T M M
oL c c L

Figure 10.4: A model of the strategic-form game with cardinal payoffs of Figure 10.3.

As noted in Section 10.1.1 the notion of weak rationality (Definition 10.1.2) is indeed
very weak: it allows a player to be judged as rational even if, given his beliefs, there is a
strategy of his that weakly dominates the strategy that he has chosen. It is therefore natural
to ask the question: if we strengthen the definition of rationality does common belief of
the stronger notion of rationality have stronger implications than the IDSDS procedure?

Consider, the following - stronger - definition of rationality.

Definition 10.1.3 Given a model of a strategic-form game with ordinal payoffs, Player
i 1s rational at state w if, given her beliefs, there is no pure strategy of hers that is at
least as good as, and possibly better than, the strategy that she has chosen at state w,
that is, there is no strategy s; € S; which is at least as good as §;(w) at every state w’
that Player i considers possible at w and there is at least one state that Player i considers
possible at w where s; is better than §;(w):

player i is rational at w € W if there is no s; € S; such that
1. m(si,&oi(W) > m (&i(w), E_i(w)), forall w' € %;(w), and
2. foratleast one w € %;(w), m; (si, E_i(W)) > m (§;(w),E_i(W)).

For example, in the model of Figure 10.2, this stronger notion of rationality would require
us to label Player 1 as irrational at states b and ¢ and to label Player 2 as irrational at states
a and b, so that the only state where both players are rational is state d.
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It can be shown that, in general, common belief of this stronger notion of rationality
does indeed restrict the set of strategy profiles to a proper subset of the output of the IDSDS
procedure. We will not pursue this further here.”

In the next section we turn to games with cardinal payoffs and to an even stronger
notion of rationality, which is often called Bayesian rationality.

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 10.6.2 at the end of this chapter.

Strategic-form games with cardinal payoffs

We now turn to strategic-form games with cardinal (that is, von Neumann-Morgenstern)
payoffs. We also switch from interactive belief structures to interactive knowledge-belief
structures (this is not conceptually necessary, but it affords a simpler graphical representa-
tion of the models). The layout of the next two sections mirrors the layout of the preceding
two sections.

Models of cardinal games

Recall that an interactive knowledge-belief structure (Definition 9.5.1, Chapter 9) consists
of

¢ a set of states W,
o aset of players {1,...,n},
o for every Player i € {1,...,n}, a partition .%; of W,

o for every Playeri € {1,...,n}, a collection of probability distributions on W, one
for each element (information set) of the partition .#;, whose support is a subset of
that information set. The probability distributions encode the beliefs of the players
in each possible state of knowledge (i.e. information set).

Recall that if w € W is a state we denote by /;(w) the element of the partition . that
contains w, that is, the information set of Player i at state w and by p; ,, the probability
distribution on I;(w), representing the beliefs of Player i at state w.

Definition 10.2.1 Let G be a strategic-form game with cardinal payoffs.

A model of G is an interactive knowledge-belief structure together with, for every Player
i, a function §;: W — S; that associates with every state a pure strategy of Player i. As
before, the interpretation of s; = {;(w) is that, at state w, Player i plays (or has chosen)
strategy s;. As we did in Section 10.1, we impose the restriction that at every state, a
player always knows what strategy she has chosen, that is, the function {; is constant on
each information set of Player i: if w' € I;(w) then §;(w') = §;(w).

The interested reader is referred to Bonanno and Tsakas (2018).
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Figure 10.5 shows a strategic-form game with cardinal payoffs and Figure 10.6 a model
of it.

Player 2
L C R
T4 6|3 2|8 O
Player I M0 9]0 0|4 12
Bl8 3|12 410 0

Figure 10.5: A strategic-form game with cardinal payoffs.

1: (ai b)) (co  dy)
2: (@ @

CK Ca b c d)

partition

&, B B M M

=

6L oC L L

Figure 10.6: A model of the game of Figure 10.5.

State b in Figure 10.6 describes the following situation:
* Player 1 plays B ({;(b) = B) and Player 2 plays L ({;(b) = L).
* Player 1 (whose information set is {a,b}) is uncertain as to whether Player 2 has

chosen to play C ({;(a) = C) or L (§,(b) = L); furthermore, he attaches probability
% to each of these two possibilities.

* Player 2 (whose information set is {b,c}) is uncertain as to whether Player 1 has
chosen to play B ({1 (b) = B) or M ({1 (c) = M); furthermore, she attaches probability
% to Player 1 playing B and % to Player 1 playing M.

Are the two players’ choosing rationally at state »? Definition 10.2.2 below provides
an answer to this question. It says that at a state (of a model) a player is rational if her
choice at that state is optimal, given her beliefs, in the sense that there is no other pure
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strategy that would give her a higher expected payoff, given her probabilistic beliefs about
the choices of her opponents.

Recall that, given a state w and a Player i, we denote by {_;(w) the profile of pure
strategies chosen at w by the players other than i :

Ciw) = (G1(W), oo Gt (W), G (W), 05 Gu(W)) -

Recall also that p; ,, denotes the probabilistic beliefs of Player i at state w.% Note that, for
every Player i, there is just one probability distribution on I;(w), that is, if w’ € I;(w) then
Piw' = Piw-

Definition 10.2.2 Given a model of a strategic-form game with cardinal payoffs, Player
i is Bayesian rational at state w if, given her beliefs p; ,,, there is no pure strategy s’ € S;
of hers that yields a higher expected payoff than §;(w):*

player i is rational at w € W if, for all s} € S;,

L piw) m(Gw), (W) = X piw(W) Tilsi, E-i(w)-

w'el(w) w'eli(w)

9Recall that §;(w) € S; is the pure strategy chosen by Player i at state w and 7;(s) is Player i’s payoff
from the strategy profile s € S = S§; X --- X Sy, which, in turn, is Player i’s von Neumann-Morgenstern
utility from the outcome associated with s.

To illustrate Definition 10.2.2 let us revisit the example of Figures 10.5 and 10.6, which
is reproduced below.

Player 2

T4 6|3 218 0
Player I M0 9|0 0]4 12
B8 32 40 O

6 Piw 18 a probability distribution on Z;(w), which can also be thought of as a probability distribution over
the entire set of states W satisfying the property that if w’ ¢ I;(w) then p; ,,(w’) = 0.
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1: (at bY) (co ay)
2: (@ (@

pagilﬁion (a b ¢ d)

&, B B M M

L ¢ L L R

Let us focus on state b.

Consider first Player 1. Given his beliefs and his choice of B, his expected payoff is:

% m (B,C) + % m (B,L) = %(2) + %(8) = 5. Given his beliefs about Player 2, could he
obtain a higher expected payoff with a different choice?

With M his expected payoff would be 7 (M,C) + 5 m (M, L) = (0) + 3(0) =0,

while with T his expected payoff would be 3 7;(7,C) + 5 m (T, L) = 3(3) + 5(4) = 3.5.
Thus, given his beliefs, Player 1’s choice of B is optimal and we can say that Player 1 is
Bayesian rational at state b.

Consider now Player 2. Given her beliefs and her choice of L, her expected payoff is:

% m(B,L) +% m(M,L) = %(3) +%(9) = 5. Given her beliefs about Player 1, could she
obtain a higher expected payoff with a different choice?

With C her expected payoff would be 3 m,(B,C) + 1 m(M,C) = 3(4) +3(0) = §,

while with R her expected payoff would be % m(B,R)+ % m(M,R) = %(0) + %(12) =4.
Thus, given her beliefs, Player 2’s choice of L is optimal and we can say that also Player 2
is Bayesian rational at state b.

Given a model of a game, using Definition 10.2.2 we can determine, for every player,
the set of states where that player is Bayesian rational. Let R; be the event that (that is, the
set of states at which) Player i is Bayesian rational and let R = R;N...NR, be the event
that all players are Bayesian rational.

In the example of Figures 10.5 and 10.6 we have that Ry = {a, b} (it was shown above
that b € Ry; since Player 1’s choice and beliefs at a are the same as at b, it follows that
also a € Ry). On the other hand, Player 1 is not Bayesian rational at state ¢ because he is
certain (that is, attaches probability 1 to the fact) that Player 2 plays R and his choice of M
is not optimal against R (the unique best response to R is T"). The same is true of state d.

For Player 2 we have that R, = {a,b,c,d}, that is, Player 2 is Bayesian rational at every
state (the reader should convince himself/herself of this).



380 Chapter 10. Rationality

Thus the event that both players are Bayesian rational is R=R;NRy = {a,b} N{a,b,c,d} =

{a,b}.

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 10.6.3 at the end of this chapter.

Common knowledge of Bayesian rationality

In this section we will simply write ‘rational’ instead of the longer expression ‘Bayesian
rational’.

Since we have defined the rationality of a player and the rationality of all the players
as events, we can apply the knowledge operators and the common knowledge operator
to these events; thus we can determine, for example, if there are any states where the
rationality of all the players is common knowledge and see what strategy profiles are
compatible with common knowledge of rationality.

Note that, for every player i, K;R; = R;, that is, every player is rational if and only if
she knows it (this is a consequence of the assumption that a player always knows what
strategy she has chosen and knows her own beliefs: if w' € I;(w) then {;(w') = §(w)

and Piw = pi,w)-

Note also that CKR C R, that is, if it is common knowledge that all the players are
rational, then they are indeed rational (while, in general, it is not true that R is a
subset of CKR, that is, it is possible for all the players to be rational without it being
common knowledge).

In Chapter 6 we claimed that, in strategic-form games with cardinal payoffs, the
cardinal iterated deletion of strictly dominated strategies (Definition 6.4.1, Chapter 6)
corresponds to the notion of common knowledge of rationality. We are now able to
state this precisely. The following two theorems establish the correspondence between
the two notions.” The proofs of Theorems 10.2.1 and 10.2.2 are given in Section 10.5.

Let G be a finite strategic-form game with cardinal payoffs. The
following is true for any model of G and any state w in that model: if w € CKR (that is,
at w there is common knowledge of rationality) then the pure-strategy profile associated
with w must be one that survives the cardinal iterated deletion of strictly dominated
strategies.

"These two theorems were proved, with differing degrees of formality, in Bernheim (1984,1986), Pearce
(1984), Brandenburger and Dekel (1987) and Tan and Werlang (1988).
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Let G be a finite strategic-form game with cardinal payoffs and let s € S
be a pure-strategy profile that survives the cardinal iterated deletion of strictly dominated
strategies. Then then there is a model of G and a state w in that model, such that
w € CKR and the strategy profile associated with w is s, that is, ({;(w),...,{,(w)) = s.

As an application of Theorem 10.2.1 consider the game of Figure 10.7.

Player 2

L C R

T4 6|3 2|0 3

Player 1 M| 4 9|2 0[3 9
BlS 312 4|8 3

Figure 10.7: A strategic-form game with cardinal payoffs.

In this game the output of the cardinal iterated deletion of strictly dominated strategies is
{(T,L),(T,C),(B,L),(B,C)}.2 Thus these are the only strategy profiles that are compati-
ble with common knowledge of rationality: by Theorem 10.1, at a state in a model of this
game where there is common knowledge of rationality the players will play one of these
strategy profiles. Furthermore, by Theorem 10.2.2, any of these four strategy profiles can
in fact be played in a situation where there is common knowledge of rationality.

It is worth stressing that common knowledge of rationality does not imply that the
players play a Nash equilibrium: indeed, none of the above four strategy profiles is a Nash
equilibrium. However, since a pure-strategy Nash equilibrium always survives the iterated
deletion of strictly dominated strategies, the pure-strategy Nash equilibria (if any) are
always compatible with common knowledge of rationality.

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 10.6.4 at the end of this chapter.

B
) . After deletion of M, for

).

8For Player 1, M is strictly dominated by the mixed strategy (

D= NN
= N
A
=

Bl —

Player 2 R becomes strictly dominated by the mixed strategy (
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Beyond common knowledge of rationality

In Sections 10.2.1 and 10.2.2 we saw that the notion of common belief/knowledge of
rationality provides a doxastic/epistemic foundation or justification for the procedure of
iterated deletion of strictly dominated strategies. What about the procedure of iterated
deletion of weakly dominated strategies: can one provide an epistemic foundation for
it? And what about Nash equilibrium: are there epistemic conditions that characterize
the notion of Nash equilibrium? Clearly, as the examples of the previous sections show,
common knowledge of rationality is not enough. One needs to add further conditions.
We will not pursue these issues here. Below is a partial list of epistemic conditions that
characterize various solution concepts together with relevant references.

- For cardinal games in strategic form, adding to common knowledge of Bayesian
rationality the existence of a common prior yields a characterization of the notion of
correlated equilibrium (Aumann, 1987), which will not be discussed in this book.
The notion of correlated equilibrium generalizes that of Nash equilibrium.

- For cardinal games in strategic form, Aumann and Brandenburger (1995) proved that
if there is a common prior, mutual knowledge of rationality and common knowledge
of conjectures then the profile of conjectures constitutes a mixed-strategy Nash
equilibrium.

- The more complex issue of the epistemic foundations of the iterated deletion of
weakly dominated strategies has been studied by Brandenburger et al. (2008).

Common knowledge of rationality in extensive-forrm games

So far we have only discussed the implications of common knowledge of rationality in
strategic-form games, where the players make their choices simultaneously (or in ignorance
of the other players’ choices). We now turn to a brief discussion of the issues that arise
when one attempts to determine the implications of common belief/knowledge of rationality
in dynamic (or extensive-form) games.

How should a model of a dynamic game be constructed? One approach in the literature
has been to consider models of the corresponding strategic-form. However, there are
several conceptual issues that arise in this context. In the models considered in Sections
10.1.1 and 10.2.1 the interpretation of s; = {;(w) is that, at state w, Player i “plays” or
“chooses” strategy s;.

Consider the perfect-information game shown in Figure 10.8 and any model of the
corresponding strategic-form game. Let w be a state in that model where

Ci(w) = (d1,a3).

What does it mean to say that Player 1 “chooses” strategy (d;,a3)? The first part of the
strategy, namely d;, can be interpreted as a description of Player 1’s actual behavior (what
he actually does: he plays d;), but the second part of the strategy, namely a3, has no such
interpretation: if Player 1 in fact plays d; then he knows that he will not have to make any
further choices and thus it is not clear what it means for him to “choose” a3 (playing a3 is
made impossible by his decision to play d).
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Figure 10.8: A prefect-information game.

Thus it does not seem to make sense to interpret §; (w) = (dj,a3) as ‘at state w Player 1
chooses (d,a3)’. Perhaps the correct interpretation is in terms of a more complex object,
which includes a counterfactual: ‘Player 1 chooses to play d; and if — contrary to this plan
— he were to play a; and Player 2 were to follow with a5, then Player 1 would play a3.

While in a simultaneous game the association of a strategy of Player i to a state can be
interpreted as a description of Player i’s actual behavior at that state, in the case of dynamic
games this interpretation is no longer valid, since one would end up describing not only
the actual behavior of Player i at that state but also his counterfactual behavior.

Methodologically, this is not satisfactory: if it is considered to be necessary to specify
what a player would do in situations that do not occur at the state under consideration, then
one should model the counterfactuals explicitly. Furthermore, why should it be necessary
to specify at state w (where Player 1 is playing d;) what he would do at the counterfactual
node following actions a; and a;? Perhaps what matters is not so much what Player 1
would actually do in that situation but what Player 2 believes that Player 1 would do: after
all, Player 2 might not know that Player 1 has decided to play d; and she needs to consider
what to do in the eventuality that Player 1 actually ends up playing a;.

So, perhaps, the strategy of Player 1 is to be interpreted as having two components:
(1) a description of Player 1’s behavior and (2) a conjecture in the mind of Player 2 about
what Player 1 would do. If this is the correct interpretation, then one could object — again
from a methodological point of view — that it would be preferable to disentangle the two
components and model them explicitly.?

An alternative — although less common — approach in the literature dispenses with
strategies and considers models of games where
1. states are described in terms of players’ actual behavior and

2. players’ conjectures concerning the actions of their opponents in various hypothet-
ical situations are modeled by means of a generalization of the belief structures

For an extensive discussion of these issues see Bonanno (2015).
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considered in Section 10.1.1 or the knowledge-belief structures considered in Section
10.2.1. The generalization is obtained by encoding not only the initial beliefs of the
players (at each state) but also their dispositions to revise those beliefs under various
hypotheses. '

A third approach is to modify the notion of a model of a game by dropping the
assumption that a player, when deliberating, knows his own choice (that is, knows what
action he is going to take); in this approach a player is modeled as contemplating the
consequences of taking different actions, without prejudging his future choice. This is
done within the context of behavioral models, where strategies play no role and the only
beliefs that are specified are the actual beliefs of the players at the time of deliberation.!!

A fourth approach has been to move away from static models (like the models consid-
ered in Section 10.1) and consider dynamic models where time is introduced explicitly
into the analysis. Thus players’ beliefs are modeled as temporal, rather than conditional,
beliefs and rationality is defined in terms of actual choices, rather than hypothetical plans.
These are also behavioral models where strategies play no role.!?

A discussion of the implications of common belief (or common knowledge) of ra-
tionality in dynamic games would require the introduction of several new concepts and
definitions. For the sake of brevity, we shall not pursue this topic in this book.

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 10.6.5 at the end of this chapter.

Proofs of Theorems

Proof of Theorem 10.1.1.

Let G be a finite strategic-form game with ordinal payoffs. For m > 0, let G™ be the game
obtained after step m of the IDSDS procedure (thus G° = G) and, for every Player i, let S
be the set of Player i’s strategies in game G™, that is, S}" = Slr.”_1 \ D!, where D" is
the (possibly empty) set of strategies of Player i that are strictly dominated in G .

Let (W,1,{%;}ic1,{{:}ic1) be amodel of G and w € W a state such that w € B"WR,'? that
is, for every w' € #*(w), w' € WR. We want to show that §(w) = (& (w),...,{,(w)) € §=,
where S* denotes the output of the IDSDS procedure. We shall prove that, for every w e W,
for every w' € 28*(w), for every Player i and for every m > 1, {;(w') € S. The proof is
by induction.

19The interested reader is referred to Stalnaker (1998), Halpern (2001), Perea (2012).

'This is the approach taken in Bonanno (2018).

2The interested reader is referred to Bonanno (2014).

I3Recall that WR = WR; N---N'WR,, and WR; is the set of states where Player i is weakly rational.
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1. BASE STEP: m = 1. Select arbitrary w € W, w' € #*(w) and i € I. Since B*(w) C
WR C WR;, w' € WR;. Thus ;(w') cannot be a strictly dominated strategy of
Player i in G° = G. Thus {;(w) € Sil. (Recall that, by assumption, %; is serial, that
is, ;(w') # @, for every state w'.)

2. INDUCTIVE STEP: we prove that if the statement is true for m > 1, then it is true
for m+ 1. The hypothesis is that, for every w € W, for every w' € %*(w) and for
every Player j, {j(w') € S”. Select arbitrary w € W and i € I. By hypothesis,

for every w' € %*(w), and for every j € I, {;(w') € 7. (10.1)

By definition of %; and B*, & # %;(w) C B*(w). It follows from (10.1) that, for
every w' € %;(w) and for every j € I'\ {i}, {;(w') € S, that is, Player i believes
that the other players choose strategies from the sets ST. If w € B"WR, then, for
every w € #*(w), w € WR C WR,, that is, Player i is weakly rational at state
w'. Since %i(w) C $*(w), it follows that, for every w' € %;(w), w € WR;, that
is, w € B;WR;. By definition of model (see Definition 10.1.2 and the remark at the
beginning of Section 10.1.2), B;WR; = WR; and thus w € WR;. Thus at state w
Player i is weakly rational and believes that the other players are choosing strategies
from the sets S7. It follows that {;(w) ¢ D, so that {;(w) € ST |

Proof of Theorem 10.1.2.

Let G be a finite strategic-form game with ordinal payoffs and let s € S be a pure-strategy
profile that survives the IDSDS procedure. We need to show that there is a model of G and
a state w in that model such that w € B*WR and the strategy profile associated with w is s,
that is, (§1(w),..., &, (w)) = s. Construct the following model of G (note that the relations
H; are equivalence relations, so that we are constructing a partitional model):

- W =5

- for every Player i and every s € S, %i(s) = {s' € § : s} = 5;} (that is, %;(s) consists
of all the strategy profiles in S that have the same strategy of Player i as in s);

- finally, let §;(s) = s; (s; is the i component of ).

Select an arbitrary s € S and an arbitrary Player i. By definition of $*, it is not the
case that s; is strictly dominated in game G™ (defined as the restriction of G to the set of
strategies profiles ). Thus s € WR,;. Since i was chosen arbitrarily, s € WR; hence, since
s € §% was chosen arbitrarily, WR = §. It follows that s € B*WR for every s € . W

In order to prove Theorem 10.2.1 we will need the following lemma, which is an

application of Theorem 6.4.3 (Chapter 6).
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Consider a finite n-player game in strategic form with cardinal payoffs
<I s (Si)icr (T)ic 1>. Select an arbitrary Player i and a pure strategy s; of Player i. For
every Player j # i, let S} C S; be a subset of j’s set of pure strategies and let §' ; =
S %X Sp X Sy X -+ x S, be the Cartesian product of the sets S'; (j # i). Then the
following are equivalent:

(1) There is a belief of Player i on S’ ; (that is, a probability distribution p : A\ ;= [0,1])

that makes s; a best response, that is, for every x € S;,

Y, m(sis)p(sy) =Y, mxsl)p(shy),

/ ) / !
s_ €S8 s €S,

(2) s; is not strictly dominated by a (possibly mixed) strategy of Player i in the restriction

of the game to the sets of pure strategies Si,...,S),.

Given a finite strategic-form game with cardinal payoffs G = (I,{S;},c;, {mi};c;) we
denote by S7° the set of pure strategies of Player i that survive the cardinal iterated deletion
of strictly dominated strategies (Definition 6.4.1, Chapter 6) and by $* the corresponding
set of strategy profiles (that is, §* = §T" x --- X §).

Proof of Theorem 10.2.1.
Consider a finite strategic-form game G with cardinal payoffs and a model of G (Definition
10.2.1). Let w be a state in that model such that w € CKR. We want to show that
Ew)=(&i(w),..., 5 (w)) € . We shall prove that, for every w € W, for every Player i
and for every w' € Icx (w) (recall that Icg (w) is the cell of the common knowledge partition
that contains w) and for every m > 0, §;(w') € S™"! = 57\ D", where D" C S; is the set
of pure strategies of Player i that are strictly dominated in game G™ (G™ is the subgame of
G obtained at step m of the iterated deletion procedure; as before, we set GO = G). Since
w € Icg(w), it follows from this that {(w) € S. Once again, the proof is by induction.
1. BASE STEP (m = 0). Select an arbitrary w’ € Icgx(w) and an arbitrary Player i. Since
w € CKR, Icg(w) C R and thus w' € R; furthermore, since R C R;, w’ € R;. Thus
C:(w') is a best response in G = GV to the beliefs of Player i at state w'. Hence, by
Lemma 10.1, §;(w') ¢ DY.

2. INDUCTIVE STEP: assuming that the statement is true for m > 0, we prove that it
is true for m+ 1. The hypothesis is that, for every Player i and for every w' € Icx(w),
Gi(w') € S™1. Select an arbitrary w' € Icx(w) and an arbitrary Player i. Since
we CKR C R CR;, w €R; and thus §;(w') is a best reply to Player i’s beliefs at
w’ which, by hypothesis, attach positive probability only to strategy profiles of the
other players that belong to §”; = ST x --- x 87" | x ST |, X S} (note that, since
w € Ick(w), Ick(W') = Icx (w) and, by definition of common knowledge partition,
L(W) C Icg(w')). By Lemma 10.1, it follows that &;(w') € ST+, |
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Proof of Theorem 10.2.1.
Given a strategic-form game G = (I, (Si),c;, (7;);;) with cardinal payoffs, construct the
following epistemic model of G:
- W=_5,
- for every Player i and every s € S, [;(s) = {s’ € $* : s}, = s} (that is, the information
set of Player i that contains s consists of all the strategy profiles in $ that have the
same strategy of Player i as in s);
- finally, let §;(s) = s; (s; is the i’ component of ).
Select an arbitrary s € §* and an arbitrary Player i. By definition of S, it is not the
case that s; is strictly dominated in the restriction of G to the sets of pure strategies
STy 87158687 15+ -, Sy - Thus, by Lemma 10.1, there is a probability distribution over
S%; that makes s; = {;(s) a best reply. Choose one such probability as Player i’s beliefs
at s. Then s € R;. Since i was chosen arbitrarily, s € R; hence, since s € $” was chosen
arbitrarily, R = $°. It follows that s € CKR for every s € §7. [
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Exercises

Exercises for Section 10.1.1: Models of ordinal games

The answers to the following exercises are in Section 10.7 at the end of this chap-
ter.

Consider the game with ordinal payoffs and model shown in Figure 10.9.
(a) Find the event WR| (that is, the set of states where Player 1 is weakly rational).
(b) Find the event WR, (the set of states where Player 2 is weakly rational).
(c) Find the event WR (the set of states where both players are weakly rational).

Player 2

Player N| 1 110 2|1 2
I st2 21 11 0

1: (@b (4 ©
2: @ (b c) (d D

Ci: N N N N S
G L M M R R

Figure 10.9: The game and model for Exercise 10.1.
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Consider the game with ordinal payoffs and model shown in Figure 10.10.
(a) Find the event WR| (that is, the set of states where Player 1 is weakly rational).
(b) Find the event WR,, (the set of states where Player 2 is weakly rational).
(c) Find the event WR3 (the set of states where Player 3 is weakly rational).
(d) Find the event WR (the set of states where all the players are weakly rational).

Player 2 Player 2
C D ¥ C D
Player A|2 0 2|1 1 4| A0 0 3[0 9 7
1 B|3 6 2|10 8 O0f#B[2 1 3]1 3 1
Player 3: E ' Player 3: F

(i: A A B B B B

Czi

(s: E F E E F F

Figure 10.10: The game and model for Exercise 10.2.
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Exercises for Section 10.1.2: Common belief of weak rationality

The answers to the following exercises are in Section 10.7 at the end of this chap-
ter.

Consider the game with ordinal payoffs and model shown in Figure 10.11.

(a) Find the event WR| (that is, the set of states where Player 1 is weakly rational).
(b) Find the event WR, (the set of states where Player 2 is weakly rational).

(c) Find the event WR (the set of states where all the players are weakly rational).
(d) Find the common belief relation.

(e) Find the event B*WR| (it is common belief that Player 1 is weakly rational).

(f) Find the event B*WR, (it is common belief that Player 2 is weakly rational).

(g) Find the event B*WR (it is common belief that both players are weakly rational).

Player 2

Player N1 1[0 2|1 2
I st2 211 11 0

1: (@)«—»b C—>@
2: @ @ @<—d

Ci: N N S S

(. R M R R

Figure 10.11: The game and model for Exercise 10.3.
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Consider the game with ordinal payoffs and model shown in Figure 10.12.
(a) Find the event WR| (that is, the set of states where Player 1 is weakly rational).
(b) Find the event WR,, (the set of states where Player 2 is weakly rational).
(c) Find the event WRj (the set of states where Player 2 is weakly rational).
(d) Find the event WR (the set of states where all the players are weakly rational).
(e) Find the common belief relation.
(f) Find the event B*WR| (it is common belief that Player 1 is weakly rational).
(g) Find the event B*WR; (it is common belief that Player 2 is weakly rational).
(h) Find the event B*WR3 (it is common belief that Player 3 is weakly rational).
(i) Find the event B*WR (it is common belief that all players are weakly rational).

Player 2 Player 2
C D 3 C D
Player A2 0 2|1 1 4 AlO 0O 310 9 7
1 B3 6 2|10 8 0 B2 1 3|1 3 1
Player 3: E Player 3: F

Figure 10.12: The game and model for Exercise 10.4.



392 Chapter 10. Rationality

Exercises for Section 10.2.1: Models of cardinal games

The answers to the following exercises are in Section 10.7 at the end of this chap-
ter.

Consider the game of Figure 10.13 (where the payoffs are von Neumann-Morgenstern
payoffs) and the model of it shown in Figure 10.14.

(a) Find the event R; (that is, the set of states where Player 1 is Bayesian rational).
(b) Find the event R; (the set of states where Player 2 is Bayesian rational).
(c) Find the event R (the set of states where both players are Bayesian rational).

Player 2
L M R
Al3 512 02 2
Player 1 B|5 2|1 2|2 1
cl9 0|1 52 2

Figure 10.13: A strategic-form game with cardinal payoffs.

1: (at bi)(ct d3)

DI—

2: (a) (bt c1)(d)
& C C A A
&L M L L R

Figure 10.14: A model of the game of Figure 10.13.
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Consider the three-player game and model shown in Figures 10.15 and 10.16.
(a) Find the event R (that is, the set of states where Player 1 is Bayesian rational).
(b) Find the event R; (that is, the set of states where Player 2 is Bayesian rational).
(c) Find the event Rj3 (that is, the set of states where Player 3 is Bayesian rational).

(d) Find the event R (that is, the set of states where all players are Bayesian rational).

Player 2 Player 2
C D ! C D
Player A|2 3 2|1 0 4| A0 0 3[2 9 7
I B[3 6 4]0 8 0| B[2 1 3]0 3 1
Player 3: E : Player 3: F

Figure 10.15: A three-player strategic-form game with cardinal payoffs.

1: (a3 bi)(c3 dijfeo )

Ci: A A B B B B
(-:c b ¢ D C D

;s E F E E F F

Figure 10.16: A model of the game of Figure 10.15.
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10.6.4 Exercises for Section 10.2.2: Common knowledge of Bayesian rationality

The answers to the following exercises are in Section 10.7 at the end of this chapter.

Exercise 10.7
(a) For the game and model of Exercise 10.5 find the following events:

(1) KiRy,

(i) K2Ry,

(ii1) K2K 1Ry,
(iv) K1 K2Ry,
(v) CKRy,

(Vi) CKRz,

(vii) CKR.

(b) Suppose that you found a model of the game of Exercise 10.5 (Figure 10.13) and

a state w in that model such that w € CKR.
What strategy profile could you find at w?

(1) K1R,
(i) K>R,
(iii) K3R,
(iv) CKRs,
(v) CKR.

(b) Suppose that you found a model of the game of Exercise 10.6 (Figure 10.15) and
a state w in that model such that w € CKR.
What strategy profile could you find at w?

Exercise 10.9

For the game of Exercise 10.5 construct a model where there is a state at which there is
common knowledge of rationality and the strategy profile played there is (C,L).

[Hints: (1) four states are sufficient, (2) it is easiest to postulate degenerated beliefs
where a player assigns probability 1 to a single state in his information set.] n

Exercise 10.10

For the game of Exercise 10.6 construct a model where there is a state at which there is
common knowledge of rationality. [Hint: think carefully, you don’t need many states!]

Exercise 10.8
(a) For the game and model of Exercise Exercise 10.6 find the following events:
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Exercises for Section10.4: Common knowledge of rationality in extensive-
form games

— xxxChallenging Questionx x x.
Consider the extensive-form game shown in Figure 10.17 (where 01,0,,03 and o4 are
the possible outcomes).
(a) What is the backward-induction outcome?
(b) Write the strategic-form game associated with the extensive-form game and find
all the outcomes that are supported by a pure-strategy Nash equilibrium.
(c) Considering models of the strategic form, what strategy profiles are compatible
with common knowledge of Bayesian rationality?

(d) Choose a strategy profile which is not a Nash equilibrium and construct a model
of the strategic form where at a state there is common knowledge of Bayesian
rationality and the associated strategy profile is the one you selected.

I 4 2 r 3 ¢
> > >0
04
6
) °® 6
03

0 (1°s payoff)
0 (2’s payoff)
0 (3’s payoff)

TN N N
NS @

Figure 10.17: A perfect-information game with cardinal payoffs.

Solutions to Exercises

Solution to Exercise 10.1

(a) WR; ={c,d,e}.
At states a and b, Player 1 is not weakly rational because her choice is N, which
is strictly worse than S, given her belief that Player 2 is playing either L or M:
m(N,L)=1<m(S,L)=2and m;(N,M) =0 < m (S,M) = 1.

(b) WR;, ={b,c,d,e}.
At state a, Player 2 is not weakly rational because his choice is L, which is strictly
worse than M, given his belief that Player 1 is playing N: my(N,L) =1 < mp(N,M) =
2

() WR=/{c,d,e}.



396 Chapter 10. Rationality

Solution to Exercise 10.2

(a) WR;| ={c,d,e, f}.
At states a and b, Player 1 is not weakly rational because she plays A which is
worse than B, given her belief that Players 2 and 3 play either (C,E) or (D,F):
m(A,C,E)=2<m(B,C,E)=3and m(A,D,F)=0< m(B,D,F) = 1.
At states a,c and e, Player 2 is not weakly rational because he plays C which is
worse than D, given his belief that Players 1 and 3 play either (A,E) or (B,E) or
(B,F): m(A,C,E) =0 < my(A,D,E) =1, m(B,C,E) = 6 < m(B,D,E) = 8 and
EQ(B,C,F) =2< EQ(B,D,F) =3.

(¢c) WR3 = {b,e,f}.
Note that, for Player 3, F strictly dominates E, thus weak rationality rules out all the
states where Player 3 plays E.

(d) WR = {f}.

Solution to Exercise 10.3
(a) WR; ={a,b,c,d}.
(b) WR, = {a,b}.
(¢c) WR = {a,b}.
(d) The common belief relation is as follows: %*(a) = {a}, B*(b) = {a,b}, #*(c) =
#*(d) = {c,d}. It is shown graphically below with the convention that there is a
directed edge from state x to state y if and only if y € B*(x):

6o O o O

a<«—» c—> (

(e) B"WR| ={a,b,c,d}.
(f) B*WR, = {a,b}.
(g) BWR = {a,b}.

Solution to Exercise 10.4

(a) WR| ={a,b,c,d,e, f}.

(b) WR;, ={b,c,d,e, f}.

(¢) WR3 = {c, f}.

(d) WR={c,f}.

(e) The common belief relation is as follows: %*(a) = #*(b) = {a,b}, B*(c) =
{a,b,c}, #*(d) ={d}, B*(e) ={d,e}, B*(f) ={d,e, f}. It is shown graphically
below with the convention that there is a directed edge from state x to state y if and
only if y € %" (x):

(v (v
gk—\>b<—(g d<—g<—

(v
~ = =
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®
(g
(h)
(i)

B*WR| ={a,b,c,d,e, f}.
B*WR, = {d, e, f}.
B*WR; =@

B*WR = @.

Solution to Exercise 10.5

(a)

(b)
(c)

R1 = {a,b}.

At states a and b Player 1 believes that Player 2 is playing either L or M with equal
probability. Thus his expected payoff from playing A is %(3) + %(2) = 2.5, from
playing B is 1(5) + (1) = 3 and from playing C is 1(9) + (1) = 5. Hence the best
choice is C and this is indeed his choice at those two states. Thus a,b € R;.

At states ¢ and d Player 1 plays A with an expected payoff of %(3) + %(2) =25
but he could get a higher expected payoff with C (namely %(9) + %(3) = 6); thus
C7d ¢ Rl.

R, = {a,b,c}.

R = {a,b}. 0

Solution to Exercise 10.6

(a)

(b)

For each state let us calculate Player 1’s expected payoff (denoted by Ex;) from
playing A and from playing B.
At states a and b,

Em (A) = 3m(A,C,E)+ 3m(A,D,F) = 3(2) + 3(2) = 2,
Em (B) = 3m(B,C,E)+ sm (B,D,F) = 3(3) + 3(0) = L.5.
Thus A is optimal and hence, since ) (a) = §;(b) =A, a,b € R,

At states ¢ and d,

Em(A) = 3m(A,C.E) + 3m(A,D,E) = 3(2) + (1) = 3 and
Em(B) = 3m(B,C,E) + im (B,D,E) = 2(3) + 1(0) = §.
Thus B is optimal and hence, since {i(c¢) = {;(d) = B, ¢,d € R;.

At states e and f,
Player 1 assigns probability 1 to (D, F) against which A is the unique best reply and

yet Ci(e) = Ci(f) = Bi hence e, f ¢ Ry.
Thus R; = {a,b,c,d}.

For each state let us calculate Player 2’s expected payoff (denoted by En,) from
playing C and from playing D.
At states a,c and e,

Emy(C) = 37r2(A C,E)+ 37r2(B C,E)+ 37r2(B C,F)=1(3)+%(6)+1(1) = ¥,
Emy (D) = 3m(A,D,E) + 1m,(B,D,E) + 1m(B,D,F)=5(0) + (8) + $(3) = &
Thus D is optimal and hence, since §(a) = §(c) = G(e) =C, a,c,e ¢ Ry

At states b,d and f,

Emy(C) = im(A,C,F) + 3m(B,C,E) + m(B,C,F) = 1(0)+ $(6) + 3(1) = ]
Em, (D) = 3m(A,D,F) + m(B,D,E) + 3m(B,D,F) = £(9) +

Thus D is optimal and hence, since §(b) = §(d) = & (f) =

Thus R, = {b,d, f}.
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(c)

(d)

For each state let us calculate Player 3’s expected payoff (denoted by Em3) from
playing E and from playing F.
At states a,c and d

Thus both E and F are optimal and hence a,c,d € Rs.

At states b, and e

At state f Player 3 knows that Players 1 and 2 play (B, D) and she is best replying
with F. Thus f € Rj.

Hence Rz = {a,b,c,d,e, f}.
R:RlﬂRzﬂR3:{b,d}. [

Solution to Exercise 10.7
In Exercise 10.5 we determined that Ry = {a,b}, Ry = {a,b,c} and R = {a,b}. Thus

(a)

(b)

(i) K1Ry = {a,b}, (ii)) KR = {a}, (iii) K2K R, = {a}, (iv) K1 K>2R| = 0.
The common knowledge partition consists of a single information set containing all
the states. Thus (v) CKR| =0, (vi) CKR; = 0, (vii) CKR = 0.

By Theorem 10.2.1, at a state at which there is common knowledge of rationality
one can only find a strategy profile that survives the cardinal iterated deletion of
strictly dominates strategies.

In this game, for Player 2 strategy R is strictly dominated by the mixed strategy

L
| . After deleting R, for Player 1 strategy B becomes strictly domi-
2 2

nated by the mixed strategy | | . Thus the iterated deletion of strictly

2 2
dominated strategies yields the set of strategy profiles {(A, L), (A,M),(C,L),(C,M)}.
Hence at a state where there is common knowledge of rationality one could only
find one of these four strategy profiles. U

Solution to Exercise 10.8
In Exercise 10.6 we determined that R = {b,d}.

(a)

(1) K1R =0, (i1) KR =0, (iii) K3R = 0.

The common knowledge partition consists of a single information set containing all
the states. Thus (since R3 = {a,b,c,d,e, f}) (iv) CKR3 ={a,b,c,d,e, f},

(v) CKR =0.
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(b) By Theorem 10.2.1, at a state at which there is common knowledge of rationality one
can only find a strategy profile that survives the cardinal iterated deletion of strictly
dominated strategies. Since in this game there are no strictly dominated strategies,
at such a state one could find any strategy profile. U

Solution to Exercise 10.9

In the model shown in Figure 10.18 there is common knowledge of rationality at every
state. At state a the strategy profile played is (C,L).

1 (O C )

2 @ b))

Ci: C A A C
6 L L M M

Figure 10.18: A model of the game of Figure 10.13 where there is common knowledge of
rationality at every state.

Solution to Exercise 10.10

Whenever a game has a Nash equilibrium in pure strategies, a one-state model where that
Nash equilibrium is played is such that there is common knowledge of rationality at that
state. Thus the model shown in Figure 10.19 provides a possible answer. 0

1:
2:

3:
G
&
G

mw>@@@

Figure 10.19: A one-state model of the game of Figure 10.13 where there is common
knowledge of rationality and the strategy profile is (A, D, F).
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Solution to Exercise 10.11

(a) The backward induction outcome is o4, with associated strategy profile (A, R,C) and

payoffs (6,6,6).

(b) The strategic form is shown in Figure 10.20. The Nash equilibria are: (D,L,G),
(D,R,G), (D,L,C) and (A,R,C).
Thus the only two outcomes sustained by a Nash equilibrium are o1, with payoffs

(4,4,4), and o4, with payoffs (6,6,6).

Player 2 Player 2
L R L R
Player D |4 4 414 4 4 D[4 4 414 4 4
1 A2 2 210 0 O Al2 2 2|16 6 6
Player 3: G Player 3: C

Figure 10.20: The strategic-form associated with the extensive-form game of Figure 10.17.

(¢) By Theorem 10.2.1, the outcomes that are compatible with common knowledge
of rationality are those associated with strategy profiles that survive the iterated
deletion of strictly dominated strategies. Since no player has any strictly dominated
strategies, all the outcomes are compatible with common knowledge of rationality.

(Note that, for Player 3, C weakly dominates G, but not strictly.)

(d) In the model shown in Figure 10.21 at state a the players choose (A, L, G), which is
not a Nash equilibrium; furthermore, there is no Nash equilibrium whose associated

outcome is 0 (with payoffs (2,2,2)).

In this model R = {a,b} (in particular, Player 1’s choice of A at states a and b is
rational, given his belief that Player 2 plays L and R with equal probability). Thus
CKR = {a,b}, so that a € CKR. O
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CK
partition (a b )
Ci: A A
¥ L R
G G C

Figure 10.21: A model of the strategic-form of the game of Figure 10.17 where the strategy
profile (A,L,G), which is not a Nash equilibrium, is played under common knowledge of
rationality.
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11. Weak Sequential Equilibrium

Assessments and sequential rationality

At the end of Chapter 6 (Section 6.4) we showed that, although the notion of subgame-
perfect equilibrium is a refinement of Nash equilibrium, it is not strong enough to eliminate
all “unreasonable” Nash equilibria. One reason for this is that a subgame-perfect equilib-
rium o allows a player’s strategy to include a strictly dominated choice at an information
set that is not reached by the play induced by o. In order to eliminate such possibilities we
need to define the notion of equilibrium for dynamic games in terms of a more complex
object than merely a strategy profile. We need to add a description of what the players
believe when it is their turn to move.

Throughout this chapter we will focus on extensive-form games with cardinal (i.e.
Von Neumann-Morgenstern) payoffs.

Definition 11.1.1 Given an extensive-form game G, an assessment for G is a pair (o, 1),
where o is a profile of behavioral strategies and u is a list of probability distributions,
one for every information set, over the nodes in that information set. We call u a system
of beliefs.

The system of beliefs u specifies, for every information set, the beliefs (about past
moves) that the player who moves at that information set would have if told that her
information set had been reached.
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Consider, for example, the extensive-form game of Figure 11.1.

g:x/z\m g.fw/\

AVATATA

([ o © e ©o o ©o ®
21 2 73 4 35 %6 7 78
0 4 0 1 3 1 0 1
3 6 3 0 1 3 2 1
0 4 0 I 3 I 0 |
Figure 11.1: An extensive-form game with cardinal payoffs; z;,...,zg are the terminal
nodes.
A possible assessment for this game is (o, i) with
a b c | f g | d e h k Xy | w z
o= and U=
13 4 1 0| 32 1 1 4 2 1 11
8 8§ 8 i 4 55 33 2 2

Note that, typically, we will not bother to include in u the trivial probability distributions
over singleton information sets.!

The interpretation of this assessment is that

o Player 1 plans to play a with probability 1 3» bwith probability 3 5 and ¢ with probability
8 ’
o Player 2 plans to play f if her information set {x,y} is reached and to mix between

d and e with probabilities % and }l, respectively, if her decision node ¢ is reached;

¢ Player 3 plans to mix between 4 and k with probabilities % and 2, respectively, if his
information set {w, z} is reached,;

W= <
©l— =

) where s is the decision

Nl—= N

s

'A complete specification of u would be (
1 1

node

of Player 1 (the root) and ¢ is the decision node of Player 2 following choice c.
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o Player 2 — if informed that her information set {x,y} had been reached would
attach probability 2 5 to Player 1 having played a (node x) and probability 1 3 to Player
1 having played b (node y);

o Player 3 — if informed that his information set {w,z} had been reached — would
attach probability % to node w (that is, to the sequence of moves cd) and probability
% to node z (that is, to the sequence of moves ce).

In order for an assessment (o, i) to be considered “reasonable” we will impose two
requirements:

1. The choices specified by ¢ should be optimal given the beliefs specified by u. We
call this requirement sequential rationality.

2. The beliefs specified by u should be consistent with the strategy profile . We call

this requirement Bayesian updating.

Before we give a precise definition of these concepts, we shall illustrate them with
reference to the assessment considered above for the game of Figure 11.1, namely

a h

f g
1 0

w

<

and U=

Ao QL
Q

ool S
ol O
wis X
Wiy =
[NSTE |

1
2

W=

1
5

=

1
8

This assessment fails to satisfy sequential rationality, because, for example, at Player 3’s

] yields Player 3 — given

information set {w,z} the planned mixed strategy (
5

wnis =

N

1

1
2 2
while she could get a higher expected payoff, namely %(3) + %(()) = % 10, by playing &

her beliefs < ) —an expected payoffof% [%(3) + %(1)} —1—% [%(0) + ‘5—‘(1)} = %,

with probability 1.

This assessment also fails the rule for belief updating (Definition 9.4.1, Chapter 9); for
example, given o the prior probability that node x is reached is P(x) = % (it is the probability
with which Player 1 plays @) and the prior probability that node y is reached is P(y) = %
(the probability with which Player 1 plays b), so that updating on information {x,y} one

gets

OO —

P(x) P(x) _
PEY) = 5o = Pa+ PO §t5

us, in order to be consistent with the rule for belief updating, Player

).

=

and P(y|{x,y})=13.

Th
2’s beliefs should b ( ) , while u specifies these beliefs to be (

= <

EN[OS I
DI— &=

1
4
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Now we can turn to the formal definitions. First we need to introduce some notation. If
o is a profile of behavioral strategies and a is a choice of Player i (at some information set
of Player i), we denote by o(a) the probability that o; (the strategy of Player i that is part
of ¢) assigns to a.
For example, referring again to the game of Figure 11.1, if

a b c f d e h k
O =

L3 4 1 31 14

8 8 8 4 4 5 5

then o(b) = %, o(g)=0, o(d)= %, etc.

Similarly, if p is a system of beliefs and x is a decision node, then we denote by pt(x) the
probability that the relevant part of u assigns to x. For example, if

s t Xy w Z . . Xy w z

n= or, written more succinctly, yu =
1112 1] 11 2 1| 11
3 3 2 2 3 3 2 2

I
0l
o
[l
o

then u(s) =1, u(y) = 3, p(w)

Recall that Z denotes the set of terminal nodes and, for every Player i, m; : Z — R is
the payoff function of Player i.

- Given a decision node x, let Z(x) C Z be the set of terminal nodes that can be reached
starting from x. For example, in the game of Figure 11.1, Z(¢) = {z5,26,27,28 }-

- Given a behavioral strategy profile ¢ and a decision node x, let P, 5 be the prob-
ability distribution over Z(x) induced by o, that is, if z € Z(x) and (ay,...,a;) is
the sequence of choices that leads from x to z then PP, 5(z) is the product of the
probabilities of those choices: Py 5(z) = 0(a1) X 6(az) X ... X &(am).

For example, with reference again to the game of Figure 11.1, if ¢ is the strategy
profile

f h

1

Blw QL
o

FN-

k
4
5

ool O
ool O

1
5

oo|—

and ¢ is Player 2’s decision node after choice c of Player 1, then P, 5(z5) = o(d) o(h) =
1(3) =3 Puolze) =o(d)alk) =3 (4) = 3. etc.

If H is an information set of Player i we denoted by 7; (H|o, it) the expected payoff of
Player i starting from information set H, given the beliefs specified by u at H and given
the choices prescribed by o at H and at the information sets that come after H, that is,

m(Hlo,u) = ¥ [mx)( Y Px,o@m(z))].

xeH 2€Z(x)
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For example, in the game of Figure 11.1, if

a b c f g | d e h k Xy w Z
o= and U= ,

13 4 1 0| 31 1 4 2 1 11

8 8 8 4 4 5 5 3 3 2 2

then (as we computed above)

m({malon) =
1) (Pro(25) m3(25) + Prio(26) ma(26) ) + 1(2) (Pro a7 a(27) + e () m3(35) )

TE@)+2]+A O+ =15

Recall that if ¢ is a strategy profile and i is a player, then 6_; denotes the profile of
strategies of the players other than i and we can use (0;,0_;) as an alternative way of
denoting o; furthermore, if 7; is a strategy of Player i, we denote by (7;,0_;) the strategy
profile obtained from o by replacing o; with 7; (and leaving everything else unchanged).

Definition 11.1.2 Fix an extensive-form game and an assessment (o, 1t). We say that
Player i’s behavioral strategy o; is sequentially rational if, for every information set H
of Player i, m; (H|(0;,0-i), 1) > m; (H|(7;,0-;), 1), for every behavioral strategy 7; of
Player i. We say that o is sequentially rational if, for every Player i, 0; is sequentially
rational.

Note that for Player i’s strategy o; to be sequentially rational it is not sufficient
(although it is necessary) that at every information set H of Player i the choice(s) at H
prescribed by o; be optimal (given the choices of the other players specified by 6_;): we
need to check if Player i could improve her payoff by changing her choice(s) not only at H
but also at information sets of hers that follow H. To see this, consider the game as shown
in Figure 11.2.
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d
(2

y /
] o O ]
2 0 0 2
0 2 1 0

Figure 11.2: A strategic-form game with cardinal payoffs.

Let (o, 1) be the assessment where © is the pure-strategy profile (a, (c,e)) and

S t A . . . .
U= . For Player 2, e is rational at information set {x,y}

1 0 0 1
because — given her belief that she is making her choice at node y — e gives her a payoff of
1 while f would give her a payoff of 0; furthermore, at information set {s,7} — given her
belief that she is making her choice at node s and given her future choice of e at {x,y} —
choice c is better than choice d because the former gives her a payoff of 1 while the latter
gives her a payoff of 0.

However, the strategy (c,e) (while sequentially rational at {x,y}) is not sequentially
rational at {s,7} because — given her belief that she is making her choice at node s — with
(c,e) she gets a payoff of 1 but if she switched to (d, f) she would get a payoff of 2; in
other words, Player 2 can improve her payoff by changing her choice at {s,¢} from c to d
and also her future planned choice at {x,y} from e to f.?

Note that the pure-strategy profile (a, (c,e)) is not a Nash equilibrium: for Player 2 the
unique best reply to a is (d, f).

Consider now the game shown in Figure 11.3. An example of a sequentially rational
assessment for this game is

LMR|AB]|cd
0= and U=
0 0 1 1 lro

=

w

A <
wmw <

1
5

-
FN
| —

21t is possible to impose restrictions on the system of beliefs i such that sequential rationality as defined
in Definition 11.1.2 is equivalent to the weaker condition that, at every information set H, the corresponding
player cannot increase her payoff by changing her choice(s) at H only. We will not discuss this condition
here. The interested reader is referred to Hendon et al (1996) and Perea (2002).
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RN
e

V\“
|
V\“
ed
~\°
<

Figure 11.3: An extensive-form game with cardinal payoffs.

Let us first verify sequential rationality of Player 3’s strategy.
At her information set {u,v,w}, given her beliefs,
- ¢ gives a payoff of %(5) + %(1) + %(2) =2,
- while d gives a payoff of 1(2) +2(2) + 1(2) =2.
- Thus c 1s optimal (as would be d and any randomization over ¢ and d).
Now consider Player 2:
At his information set {x,y}, given his beliefs and given the strategy of Player 3,
- A gives a payoff of 1(5) +3(3) =3.5
- and B gives a payoff of 7(2)+ 3(4) =3.5;

A B
- thus any mixture of A and B is optimal, in particular, the mixture

B[ —

|
2
is optimal.
Finally, at the root, R gives Player 1 a payoff of 3, L a payoff of %(4) + %(1) =2.5
and M a payoff of 3(0) + 3(6) = 3; thus R is optimal (as would be any mixture over M
and R).

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 11.4.1 at the end of this chapter.
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Bayesian updating at reached information sets

The second requirement for an assessment to be “reasonable” is that the beliefs encoded in
u should be consistent with the behavior postulated by ¢ in the sense that the rule for belief
updating (Definition 9.4.1, Chapter 9), should be used to form those beliefs, whenever it is
applicable. We shall call this rule Bayesian updating.

Let x be a node that belongs to information set H and let P,y o(x) be the prob-

ability that node x is reached (from the root of the tree) if ¢ is implemented.’ Let

Proot,o(H) = ¥ Proor,o(y) be the probability that information set H is reached (that s,
€H

the probability that some node in H is reached). Then Bayesian updating requires that the
probability that is assigned to x — given the information that H has been reached — be given

by the conditional probability

IEDroot,cr (x) .

Pr00t76(x|H) = m,
root,0

of course, this conditional probability is well defined if and only if Py o (H) > 0.

Definition 11.2.1 Consider an extensive-form game and a behavioral strategy profile
0. We say that an information set H is reachable by & if Pyypr.(H) > 0. That is, H is
reachable by o if at least one node in H is reached with positive probability when the
game is played according to ©.

For example, in the game-frame of Figure 11.4 (which partially reproduces of Figure 11.1
by omitting the payoffs), if

o
~
Bl Q
Q
=
b

Wi S
e}

[S—Y

Al

—_

o

W=

then {x,y} is reachable (with probability 1) by o, while {w,z} is not.*

3That is, if (ay,...,a,) is the sequence of choices that leads from the root to x then P05 (x) is the
product o(aj)o(az)...o(an).
4Pr{)at,6 (x) = %7 Proot,o(y) = % and thus Praol,o‘({xvy})

= % 5 =1, on the other hand,
Pr{)ot,O‘(W) =o(c)o(d)=0 (431) =0and Pmot,o'(z) =0(c)o(e)=0 (%)

2
T3
=0, so that Prpr o ({w,2}) = 0.
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1 c 2

Figure 11.4: A game-frame in extensive form.

Definition 11.2.2 Given an extensive-form game and an assessment (o, 1), we say that
(o, p) satisfies Bayesian updating at reachable information sets if, for every information

set H and every node x € H, if H is reachable by o (that is, if Py o(H) > 0) then

Proot,o (X
Hix) = —Pmm.;((ﬂ))'

For example, in the game-frame of Figure 11.4, the assessment

R a b c f g d e h k

°= 1 5 3 3 1 and
5 5 3 0 1 i1 L0

. x oy Wz

=10 s 3001
6 6 4 1

satisfies Bayesian updating at reachable information sets.

In fact, we have that
Pons®) =4 Pono0) =3  Proas(ixh) =§+3=$
root,6 9> root,6\Y 9> root,& xa)’}) 9 T9=79s

]P)root,ff(w) = % (43_1) = 3%’ ]Proot,é(z) = % (211) = %’ ]P)rool,fi({wvx}) = % + 33_6 = é_Z

1
]P)rout.,é(x) — 9 — 1 — ‘a(x) ]P)root,(r()))
Proot,&({xvy}) g 6 ’ Pmot,&({xvy})

©|0\|\D|Ul
I
AN
I
=
—
~
N—

IPjroot,é‘ (W) — 3 IPjroot,é‘ (Z)

3 A
Prz)ot,é({w7z}) 1—_2 4 - ‘u (W) and Pr()ot,&({w7z}) -

(%]
S
Il
N
Il
=
—~~
2
N~—
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Note that the condition “Bayesian updating at reachable information sets” is trivially
satisfied at every information set H that is not reachable by ¢ that is, at every
information set H such that Py o (H) = 0’

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 11.4.2 at the end of this chapter.

A first attempt: Weak sequential equilibrium

Our objective is to find a refinement of subgame-perfect equilibrium that rules out “unrea-
sonable” equilibria. Moving from strategy profiles to assessments allowed us to judge the
rationality of a choice at an information set independently of whether that information set
can be reached by the strategy profile under consideration; for example, the requirement
of sequential rationality rules out choices that are strictly dominated at an information
set. As a first attempt we define a notion of equilibrium based on the two requirements of
sequential rationality and Bayesian updating at reached information sets.

Definition 11.3.1 A weak sequential equilibrium is an assessment (o, 1) which satisfies
two requirements: (1) sequential rationality and (2) Bayesian updating at reachable
information sets.

Before we discuss the properties of weak sequential equilibria we illustrate the type of
reasoning that one needs to go through in order to find weak sequential equilibria. Consider
first the game of Figure 11.5.

Let us see if there is a weak sequential equilibrium (o, i) where Player 1°s strategy in © is
a pure strategy. The set of pure strategies of Player 1is S; = {(A,C), (B,D),(B,C),(A,D)}.
The strategy of Player 1 determines the beliefs of Player 2 at her information set {x,y}.

Let us consider the four possibilities.
o If Player 1’s strategy is (A, C), then Player 2’s information set {x,y} is reached with

positive probability and the only beliefs that are consistent with Bayesian updating

x
are , so that — by sequential rationality — Player 2 must choose E.

0 1
However, if Player 2’s strategy is E then at node s it is not sequentially rational for
Player 1 to choose A. Thus there is no weak sequential equilibrium where Player 1’s

strategy is (A,C).

3In logic a proposition of the form “if A then B” (A is called the antecedent and B is called the consequent)
is false only when A is true and B is false. Thus, in particular, the proposition “if A then B” is true whenever
A is false (whatever the truth value of B). In our case the antecedent is “Prpor o (H) > 07
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Nature

Figure 11.5: An extensive-form game with cardinal payoffs.

o If Player 1’s strategy is (B, D), then Player 2’s information set {x,y} is reached with

positive probability and the only beliefs that are consistent with Bayesian updating

X
are , so that — by sequential rationality — Player 2 must choose F.

1 0
However, if Player 2’s strategy is F then at node s it is not sequentially rational for
Player 1 to choose B. Thus there is no weak sequential equilibrium where Player 1’s

strategy is (B, D).

* If Player 1’s strategy is (B,C), then Player 2’s information set {x,y} is reached (with

probability 1) and the only beliefs that are consistent with Bayesian updating are

X y

3

1
4 4
- Given these beliefs, Player 2’s payoff from playing E is }T(O) + %(1) = % and

her payoff from playing F is }1(3) + %(0) = 43'1'

- Thus any mixed strategy is sequentially rational for Player 2, that is, for any

E F
p€10,1], is sequentially rational.

p l-p

- At node s choice B is sequentially rational for Player 1 if and only if the ex-
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pected payoff from playing B is at least 1 (which is the payoff from playing A);
thus we need 2p +0(1 — p) > 1, that is, p > %

- At node ¢ choice C is sequentially rational for Player 1 if and only if the ex-
pected payoff from playing C is at least 2 (which is the payoff from playing
D); tus we need 3p+0(1 — p) > 2, thatis, p > %

- Hence, if p > % then both B and C are sequentially rational. Thus we have an
infinite number of weak sequential equilibria at which Player 1’s strategy is

(B,C): for every p € [%, 1} , (o, ) is a weak sequential equilibrium, where

A B C D E F
o= and U =

0 1 I 0 p 1—p

-
<

I,
NI

* If Player 1’s strategy is (A, D), then Player 2’s information set {x,y} is not reached

and thus, according to the notion of weak sequential equilibrium, any beliefs are

E F
allowed there. Let be Player 2’s strategy. From previous cal-

p l-p
culations we have that if p < % then A is sequentially rational at node s and D is
sequentially rational at node ¢.

One possibility is to set p = 0; this means that Player 2 chooses the pure strategy F

X
and this is sequentially rational if and only if her beliefs are with

g l—gq

3g+0(1—¢q) > 0¢g+1(1—q), that is, q>
payofFfrrom F payoﬁ?frrom E

B—

Thus we have an infinite number of weak sequential equilibria: for every g € [é—ll, 1} ,

(o,u) is a weak sequential equilibrium, where
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Next we consider the more complex game shown in Figure 11.6. For simplicity, let
us limit the search to pure-strategy weak sequential equilibria. How should we proceed?
The first step is to see if the game itself can be simplified by checking if there are any
information sets where there is a strictly dominant choice: if there is such a choice then,
no matter what beliefs the relevant player has at that information set, sequential rationality
requires that choice to be selected.

In the game of Figure 11.6 there is indeed such an information set, namely information
set {w,z} of Player 2: here L is strictly better than R for Player 2 at both nodes, that is, R is
strictly dominated by L.

Nature
()

play

A!u 3 Ve 3 653—K>;
AN IR
0

oo~ 0

o O

p—
o
N O N e
V{

Figure 11.6: An extensive-form game with cardinal payoffs.

Thus we can simplify the game by

1. removing the information set {w,z},
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2. converting nodes w and z into terminal nodes, and

3. assigning to these newly created terminal nodes the payoffs associated with choice
L.

The simplified game is shown in Figure 11.7.

Nature
( )
| 3
a % b . c 5
pass pass
" (T ¥ Rl .
2 2
3 pass 3
2 play play 2
play

VDO~ O
x

Figure 11.7: The game of Figure 11.6 simplified.

Applying the same reasoning to the simplified game of Figure 11.7, we can delete the
two singleton decision nodes of Player 3 and replace the one on the left with the payoff
associated with choice F' and the one on the right with the payoff associated with choice
H, thus obtaining the further simplification shown in Figure 11.8.
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Nature

5
pass E ‘r/ 1 Ix B \lk ; pass

pass

o WD e
o Wi e

play 2

(O8]
=
\]
~
N

e
<
(O8]
[\®]
<
°
.A/m
‘/‘
oo - @

NO B~ 0
coo .
o]
\
./ N
h O W o]
R W
W K~ O

Figure 11.8: The game of Figure 11.7 simplified.

In this game there are no more information sets with strictly dominant choices. Thus we
have to proceed by trial and error.
Note first that, at any weak sequential equilibrium, by Bayesian updating Player 1’s beliefs

r s t
r 1 3

5 5 5
a pure-strategy weak sequential equilibrium where Player 1’s strategy is “play”. When

y

must be . Let us see if in the simplified game of Figure 11.8 there is

Player 1 chooses “play” then, by Bayesian updating, Player 2’s beliefs must be
4 4
* Let us first try the hypothesis that there is a weak sequential equilibrium where
Player 1’s strategy is “play” and Player 2’s strategy is e. Then, by Bayesian updating,
u v
1 o)
at information set {u,v}. However, if Player 3’s strategy is A then Player 2, at her

Player 3’s beliefs must be making A the only sequentially rational choice

information set {x,y}, gets a payoff of }T(IO) + %(2) = % from playing d and a
payoff of é—ll(3) + %(4) = 15 from playing e. Thus e is not sequentially rational and
we have reached a contradiction.

* Let us now try the hypothesis that there is a weak sequential equilibrium where

Player 1’s strategy is “play” and Player 2’s strategy is d. Then, by Bayesian updating,
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Player 3’s beliefs must be <b1t Y
2 2

Ais 3(2) + 3(4) = 3 and his expected payoff from playing B is 1(0) + 3(5) = 2.5.
Thus A is the only sequentially rational choice at information set {u,v}. Hence, by

> ; hence Player 3’s expected payoff from playing

the previous calculations for Player 2, d is indeed sequentially rational for Player 2.

It only remains to check if Player 1 indeed wants to choose “play”. Given the
strategies d and A of Players 2 and 3, respectively, Player 1 gets a payoff of 2 from
“pass” and a payoff of %(4) + %(4) + %(1) = % > 2 from “play”. Thus “play” is

indeed sequentially rational.

Thus we have found a pure-strategy weak sequential equilibrium of the game of Figure

11.8, namely

pass play | d e | A B ros t |l x oy | uv
o= U=
o L propto 5551122

This equilibrium can be extended to a weak sequential equilibrium of the original game

of Figure 11.6 by adding the choices that led to the simplified game of Figure 11.8 and

arbitrary beliefs at information set {w,z}: for any p € [0, 1],

pass play | d e | A B | F G| H K | L R

0 1 1o} 10| 1 01} 10|10

and = )

[W,1[98)
ENT
ENIN
rl—
l—
A
—_
A

n|—
n|—

Are there any other pure-strategy weak sequential equilibria? This question is addressed

in Exercise 11.7.

We now explore the relationship between the notion of weak sequential equilibrium and

other equilibrium concepts. The proof of the following theorem is omitted.

Given an extensive-form game with cardinal payoffs G, if (o, ) is a

weak sequential equilibrium of G then ¢ is a Nash equilibrium of G.
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In general, not every Nash equilibrium can be part of a weak sequential equilibrium. To
see this, consider the extensive-form game of Figure 11.9.

¢ >0 -

1

a e 1
0

()
O <
o
@<
\—/

[\O R \O N S}
o O O
(NS I \O I S}
o O O

Figure 11.9: A game with a Nash equilibrium which is not part of any weak sequential
equilibria.

The pure-strategy profile (b, f,d) is a Nash equilibrium, but it cannot be part of any weak
sequential equilibrium, because — no matter what beliefs Player 3 has at her information
set — choice d is not sequentially rational (it is strictly dominated by c at both nodes in that
information set).

Thus weak sequential equilibrium is a strict refinement of Nash equilibrium. Does
it also refine the notion of subgame-perfect equilibrium? Unfortunately, the answer is
negative: it is possible for (o, 1) to be a weak sequential equilibrium without ¢ being a
subgame-perfect equilibrium.

To see this, consider the game of Figure 11.10 (which reproduces Figure 11.1).
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1 ¢ 2

o o e o o o o
21 2 23 475 6 27 28
0 4 0 1 3 1 0 1
3 6 3 0 1 3 2 1
0 4 0 1 3 1 0 1

Figure 11.10: A game with a weak sequential equilibrium whose strategy profile is not a
subgame-perfect equilibrium.

The assessment

o= (b (fe).h) and p=

is a weak sequential equilibrium (the reader should verify this; in particular, note that
information set {w,z} is not reachable and thus Bayesian updating allows for arbitrary
beliefs at that information set). However, (b, (f,e),h) is not a subgame-perfect equilibrium,
because the restriction of this strategy profile to the proper subgame that starts at note ¢ of
Player 2, namely (e, i), is not a Nash equilibrium of that subgame: % is not a best reply to
e.

The relationship between the three notions of Nash equilibrium, subgame-perfect
equilibrium and weak sequential equilibrium is illustrated in the Venn diagram of Figure
11.11.

* Every subgame-perfect equilibrium is a Nash equilibrium. However, there are
games in which there is a subgame-perfect equilibrium that is not part of any weak
sequential equilibrium. For example, in the game of Figure 11.9, (b, f,d) is a Nash
equilibrium which is also subgame-perfect (because there are no proper subgames);
however, choice d is strictly dominated and thus is not sequentially rational for
Player 3, no matter what beliefs he has at his information set. Thus (b, f,d) cannot
be part of a weak sequential equilibrium.

* Every weak sequential equilibrium is a Nash equilibrium. However, as shown in
the example of Figure 11.10, there are games in which there is a weak sequential
equilibrium whose strategy is not a subgame-perfect equilibrium.
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Nash equilibria

4 N
Subgame-perfect equilibria
4 N
4 Y
\, J
Weak sequential equilibria
\, y

Figure 11.11: The relationship between Nash, subgame-perfect and weak sequential
equilibrium.

In the next chapter we define the notion of sequential equilibrium and state two results:
(1) a sequential equilibrium is a weak sequential equilibrium and (2) every finite extensive-
form game with cardinal payoffs has at least one sequential equilibrium. As a corollary we
obtain the following result.

Theorem 11.3.2 Every finite extensive-form game with cardinal payoffs has at least
one weak sequential equilibrium (possibly in mixed strategies).

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 11.4.3 at the end of this chapter.
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Exercises
Exercises for Section 11.1: Assessments and sequential rationality

The answers to the following exercises are in Section 11.5 at the end of this chapter.

For the game of Figure 11.12 (which reproduces Figure 11.1), check whether the
following assessment is sequentially rational.

(abcf dehk)
O = )
1 3 4

L3 4 1 1 0 1 10
[ ox w oz
=1 1 2 101
33 2 2
C

>0 /

Figure 11.12: The game for Exercise 11.1.
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Consider the game of Figure 11.13, obtained from the game of Figure 11.12 by replacing
Player 3 with Player 1 at information set {w,z}

(note that in the game of Figure 11.12 the payoffs of Players 1 and 3 are identical).

Is the following assessment sequentially rational?

:ggg 1 0 0 1 1o )

X y w  Z
“:12 1 1

1 c 2

[ >0

a b d e
(&£ 2 % v 1 )
/AN /\f AWAS
o e © e © e O o
0 4 0 1 3 1 0 1
3 6 3 0 1 3 2 1

Figure 11.13: A two-player version of the game of Figure 11.12.
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Consider the game shown in Figure 11.14. Is the assessment

)

Tl QL
Wi

W=

T O

Al =
Bl— <
N~ —

t
1
2

=
I
~
RI—

sequentially rational?

® —

e A /
[ e O ®
2 0 0 2
1 0 0 2.5
0 4 12 0

Figure 11.14: The game for Exercise 11.3.
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Exercises for Section 11.2:
Bayesian updating at reached information sets

The answers to the following exercises are in Section 11.5 at the end of this chapter.

For the game of Figure 11.12, reproduced below. find a system of beliefs ¢ such that

(o, u) satisfies Bayesian updating at reached information sets (Definition 11.2.2), where

a b c f g d e h k
O =

1 3 4 3 1 1 4

§ 8 8 10 i1 5 5
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In the game shown in Figure 11.15, let

a b r c d e f

[e—
o
Q| —
W

2 1 7
10 10 10
Find all the systems of beliefs which, combined with ¢ yield assessments that satisfy

Bayesian updating at reached information sets.

® —

e f e f

o o O o
2 0 O 2
1 0 O 2.5
0 4 12 0

Figure 11.15: The game for Exercise 11.5.
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Exercises for Section 11.3: Weak sequential equilibrium
The answers to the following exercises are in Section 11.5 at the end of this chapter.

Find all the pure-strategy weak sequential equilibria of the game shown in Figure 11.16.

Nature

ﬁ/ \ﬁ

/\ /\

2 O O O

Figure 11.16: The game for Exercise 11.6.



430 Chapter 11. Weak Sequential Equilibrium

In the game of Figure 11.17 (which reproduces Figure 11.8), is there a pure-strategy
weak sequential equilibrium where Player 1 chooses “pass”?

Nature
)
1 3
a % b : c 5
pass pass
;4—61/ 1 } s )o)—»;
3 pass 3
) play play 2)
o
play 2
3
2

oo — @

w~
(\ @]

<

<

/|
whOoOe Q“

Figure 11.17: The game for Exercise 11.7.
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Exercise 11.8 — xxxChallenging Question x x x.

Player 1 can take action C or L and Player 2 can take action ¢ or f. The von Neumann-
Morgenstern payoffs are as shown in Figure 11.18.

The game, however, is more complex than the strategic form shown in Figure 11.18.

- Player 1 moves first and chooses between C and L.

- He then sends an e-mail to Player 2 telling her truthfully what choice he made.

- However, it is commonly known between the two players that a hacker likes to
intercept e-mails and change the text. The hacker is a computer program that, with
probability (1 — €), leaves the text unchanged and, with probability €, changes the
sentence “I chose C” into the sentence “I chose L” and the sentence “I chose L” into
the sentence “I chose C”. This is commonly known.

- The value of € is also commonly known. Assume that € € (0, %)

(a) Draw the extensive-form game.
(b) Find all the pure-strategy weak sequential equilibria.

(c) Are there any (pure or mixed) weak sequential equilibria in which Player 2, when
he receives a message from Player 1 saying “I chose L”, plays f with probability
1?

Player 2

C| 4 4 6 3

Player 1
L] 3 1 5 2

Figure 11.18: The payoffs for Exercise 11.8.
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Solutions to Exercises

Solution to Exercise 11.1
The assessment

a b c f g | d e h k

=
<
S
N

3 4
341100110

0| —
W=
Wl
=
=

is sequentially rational. In fact,

* at the root, a gives Player 1 a payoff of 0 and so do b and ¢ (given the strategies of

Players 2 and 3). Thus any mixture of a, b and c is sequentially rational; in particular,

a b c

0| —
[o2<]|9%]
ool &

* at Player 2’s node 7, given Player 3’s strategy, d gives Player 2 a payoff of 1

while e gives a payoff of 2; thus e is sequentially rational;

* given p at information set {x,y}, f gives Player 2 a payoff of %(3) + %(3) =3
while g gives %(6) + %(O) = 2; thus f is sequentially rational;

« given [ at information set {w,z}, h gives Player 3 a payoff of 1(3)+1(0) = 1.5,
while k gives 1; thus 4 is sequentially rational. 0

Solution to Exercise 11.2

It might seem that the answer is the same as in the previous exercise, because the calcu-
lations at the various information sets remain the same; however, in this game checking
sequential rationality at the root involves checking whether, given the strategy of Player 2
(namely (f,e)), Player 1 can increase his payoff by changing his entire strategy, that is by
changing his choices at both the root and at information set {w, z}.

Indeed, if Player 1 changes his strategy from

a b c h k a b c h k
to

1 3 4

3 3 3 1 0 0 0 1 0 1

his payoff increases from O to 1.

Hence is not sequentially rational at the root.

ool—

[SI[Y)

ool
—
e}
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Solution to Exercise 11.3
The game under consideration is shown in Figure 11.19.

1 r
® >e
c/\b (2)
0
014—ch"5 2 ;‘oac—>;
2 d d 0
1 Y Y 2

(3 3 »3)
e/\f e f
° °

2 0 0 2

1 0 O 2.5

0 4 12 0

Figure 11.19: The game for Exercise 11.3.

The assessment

a b r

0 01

and u=

i QL
W= 8
WY

wminy O

is sequentially rational, as the following calculations show.

N[ —

N[ —

ENTISEE

~<

ISP

* At Player 3’s information set {x,y}, e gives Player 3 a payoff of 2(0) + 7(12) =3

and f a payoff of %(4) + %(O) = 3; thus both e and f are optimal and so is any

f

) . ) ) e
mixture of e and f; in particular, the mixture (1 2) .

3 3

« At Player 2’s information set {s,}, ¢ gives Player 2 a payoff of 3(2) + 1(0) =1

and (given the strategy of Player 3)
dapayotof §[1(1)+30)] + 4 [10)+ 3 ()] = 1

thus both ¢ and d are optimal and so is any mixture of ¢ and d; in particular the

) c d
mixture | , 3 -
5 5

* At the root, r gives Player 1 a payoff of 2 and (given the strategies of Players 2
and 3) a gives a payoff of 2(1)+ 2 [§(2)+3(0)] = % and b a payoff of (0) +

% [%(O) + %(2)} = %1. Thus r is sequentially rational.

O
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Solution to Exercise 11.4

The game under consideration is shown in Figure 11.20.

1

C

o %)
(2 o sv 3 :m

L o O e O o O L
74| Ve 23 24 <5 <6 <7 <8
0 4 0 1 3 1 0 1
3 6 3 0 1 3 2 1
0 4 0 1 3 1 1 1

The system of beliefs is u =

e

In fact, we have that
_ 1 _ 3
]P)root,c(x) =3 Proot,c()’) =3

IEDroot.,cr(w) = % (?T) = %,

Thus
u (x) Proot,o(x)
‘LL (W) — PVOOI,G(W) — %
]P)root,()'({wvz}) %

NI

ENT

Prooto(2) = § (3) = 3

Al

1
Proot,o ({x,5}) %1 + 1)

p(z) =

ENT

]P)root,c({xvy}) = %"—% = %’

and Py o ({w,z}) = %—I—% = %.

IEDrc)ot,O'(y) _ % _3

Prool,d({xvy}) % +
1

Proot,o(z) _ 8 _1

]P)root,()'({wvz}) % 4
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Solution to Exercise 11.5
The game under consideration is shown in Figure 11.21.

1

N
S

|Q

*~

(\@

oA

Q‘T

(@)
MO o @ OO

Q
~

Q
~

o o O [
2 0 O 2
| 0 O 2.5
0 4 12 0

Figure 11.21: The game for Exercise 11.5.

Let

S
(@}
QU
Q
WY

SIS
SRl
P—

s
W=

Since only information set {s,7} is reached by &, no restrictions are imposed on the beliefs
at information set {x,y}. Thus, for every p such that 0 < p < 1, the system of beliefs

-~
=

y

W

l—p

W=
<

combined with ¢ yields an assessment that satisfies Bayesian updating at reached informa-
tion sets. U
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Solution to Exercise 11.6
The game under consideration is shown in Figure 11.22.

Nature
*o¢—¢ / \0—».
1 1
1 B C 1
o2 )
o ° Y
2 0 0 0

Figure 11.22: The game for Exercise 11.6.

We restrict attention to pure strategies. First of all, note that — for Player 1 — A is sequen-
tially rational no matter what strategy Player 2 chooses and, similarly, C is sequentially
rational no matter what strategy Player 2 chooses. The strategy of Player 1 determines the
beliefs of Player 2 at her information set {x,y}.

Let us consider the four possibilities (the set of pure strategies of Player 1 is S| =

{(4,C),(B,D),(B,C),(A,D)}).

o If Player 1’s strategy is (A, C), then Player 2’s information set {x,y} is reached with

positive probability and the only beliefs that are consistent with Bayesian updating

X
are , so that both E and F are sequentially rational for Player 2.
0 1
x Yy
By our preliminary observation it follows that ((A,C), E) with beliefs is

0 1
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X y
a weak sequential equilibrium and so is ((4,C), F) with beliefs

0 1
o If Player 1’s strategy is (B, D), then Player 2’s information set {x,y} is reached with

positive probability and the only beliefs that are consistent with Bayesian updating

X y
are , so that — by sequential rationality — Player 2 must choose E.

1 0
However, if Player 2’s strategy is E then at node 7 it is not sequentially rational for
Player 1 to choose D. Thus there is no pure-strategy weak sequential equilibrium

where Player 1’s strategy is (B, D).

o If Player 1’s strategy is (B,C), then Player 2’s information set {x,y} is reached (with
probability 1) and the only beliefs that are consistent with Bayesian updating are
X oy

. Given these beliefs, E is the only sequentially rational choice for Player
1 1

2 2
2 (her payoff from playing E is %(2) + %(O) = 1, while her payoff from playing F is
0).

X y
Thus ((B,C), E) with beliefs is a weak sequential equilibrium.

1
2

B[ —

o If Player 1’s strategy is (A,D), then Player 2’s information set {x,y} is not reached
and thus, according to the notion of weak sequential equilibrium, any beliefs are
allowed there.

In order for D to be sequentially rational for Player 1 it must be that Player 2’s pure

strategy is F'.

X oy
In order for F to be sequentially rational for Player 2, her beliefs must be
0 1
Xy
Thus ((A, D), F) with beliefs is a weak sequential equilibrium.
0 1

Summarizing, there are four pure-strategy weak sequential equilibria:
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Xy

1. ((A,C),E) with beliefs ,
0 1
X y

2. ((A,C),F) with beliefs ,
0 1
x oy

3. ((B,C),E) with beliefs ,
1 1
ol
X )

4. ((A,D),F) with beliefs . O
0 1

Solution to Exercise 11.7
The game under consideration is shown in Figure 11.23.

Nature

3
a1 b[l c 5
3 5

pass E‘r/ 1 Ix R \t‘; pass

° °
2 2
3 pass 3
2 play play 2
play 2
3 G j 7 y Y) d .
2 1
a/ e e 2
* 2
oé&o u 3 v ,‘\{J Y
4 2 0
0 B A B 3 4
2 2 3
°
0 4 5
0 10 0
0 4 5

Figure 11.23: The game for Exercise 11.7.

When Player 1’s strategy is “pass” then it is much easier to construct a weak sequential
equilibrium, because there are no restrictions on the beliefs at the information sets of



11.5 Solutions o Exercises 439

Players 2 and 3.

X
For example, we can choose beliefs Y for Player 2, which make e the only
0

u v

sequentially rational choice, and beliefs for Player 3, which make B the only
0 1

sequentially rational choice.

It only remains to check sequential rationality of “pass”: if Player 1 chooses “pass” he gets

a payoff of 2, while if he chooses “play” he gets a payoff of %(0) + %(2) + %(O) = % <2,

so that “pass” is indeed the better choice.

Thus we have found the following weak sequential equilibrium:

pass play | d e | A B ros t X u v
o= and U=
1 0 |01]01 N 0 1
(Note, however, that this is just one of several weak sequential equilibria). [
Solution to Exercise 11.8
(a) The extensive form is shown in Figure 11.24.
4 QK y‘ 4
— Hacker —
( B ¢ ® L - )
/ N

1—¢ 4 €

W N
°
\H
A
<
°
W

—_ 9

/
\

D
e
~
~
o

Figure 11.24: The game for Exercise 11.8.
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(b)

(c)

Let us consider the pure strategies of Player 1. If Player 1 plays L then Player 2
assigns probability 1 to the bottom node of each information set and responds with f
with probability 1, but this makes Player 1 want to deviate to C to get a payoff of 6.°
Thus there is no pure-strategy sequential equilibrium where Player 1 plays L.

On the other hand, if Player 1 plays C, then Player 2 assigns probability 1 to
the top node of each information set and thus sequential rationality requires her to
respond with ¢ at each information set, which makes playing C optimal for Player 1.
Thus (C,(c,c)), with beliefs that assign probability one to the top node of each
information set, is the only pure-strategy weak sequential equilibrium.

Suppose that Player 2 plays f after reading the message “I chose L”, that is, at her
information set on the right. We know from the argument in Part (b) that there are no
equilibria of this kind in which Player 1 chooses a pure strategy, so Player 1 must be
playing a mixed strategy. For him to be willing to do so, he must receive the same
payoff from playing C or L. If we let p be the probability with which Player 2 plays
c if she receives the message “I chose C" (that is, at her information set on the left),
then Player 1 is indifferent between choosing C and choosing L if and only if

(1—¢)[4p+6(1—p)]+€6 = e[3p+5(1—p)]+(1—¢€)5

=m(C) =m(L)

that is, if and only if
1

T 2—4g
Note that, since € € (0, }T) , it follows that

p

pe(31).

For Player 2 to be willing to randomize after reading “I chose C” (that is, at her
information set on the left), she must be indifferent between ¢ and f after reading “I
chose C”.

- Let ¢ € (0,1) be the probability with which Player 1 plays C (so that 1 —gq is

the probability of L);
- then Bayesian updating requires that Player 2 assign probability e)are(1=9) ;)qug(qlfq) to
the top node of her information set on the left and probability % to

the bottom node.

- Then, for Player 2, the expected payoff from playing c at the information set

: 1- 1—
on the left is m(c) = = S()q fg(ql_q) 44 = :)(q T sq()l_q) 1 and the expected payoff

from playing f is m(f) = = g()qug(qlf q)3 + (1738)(4114:561()17(1)2'

®In other words, if Player 1 plays L, then Bayesian updating requires Player 2 to assign probability 1 to
the bottom node of each information set and then sequential rationality requires Player 2 to play f at each
information set, so that (L, (f, f)) is the only candidate for a weak sequential equilibrium where Player 1
plays L. But L is not a best reply to (f, f) and thus (L, (f, f)) is not a Nash equilibrium and hence cannot be
part of a weak sequential equilibrium.
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- Player 2 is indifferent if these two are equal, that is if
49(1—¢€)+(1—q)e =3¢(1—¢€)+2(1 —q)e,

which is true if and only if g = €.

We have now specified behavior at all information sets. To ensure that the specified
behavior constitutes an equilibrium, we need to check that f is optimal for Player 2
if she receives the message “I chose L” (that is, at her information set on the right).
This will be true if

m(c|Ichose L) < m(f|Ichose L)

if and only if 4ge+1(1—¢q)(1 —€) <3ge+2(1—¢q)(1—¢)
%,—/
since e=¢q
. . 2 2 2 2
if and only if de+(1—€)" <3e°+2(l—¢)
if and only if £< 3.

Since we have assumed that € < %, Player 2 strictly prefers to play f after receiving
the message “I chose L”. Thus we have constructed the following weak sequential
equilibrium:

* Behavioral strategy of Player 1:
€ l1—-¢

* Behavioral strategy of Player 2. At the information set on the left (where she

¢ f

1 1—4¢
2—4¢ 2—4¢

receives the message “I chose C”):

At the information set on the right (where she receives the message “I chose
c f
0 1

L”):

 Player 2’s beliefs at the information set on the left assign probability

e(l—eg) |

e(l—g)+e(l—e) 2

to the top node

and probability % to the bottom node
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and her beliefs at the information set on the right assign probability

82

m to the tOp node

and probability

(1-¢)?

m to the bottom node. [l



12. Sequential Equilibrium

Consistent assessments

The stated goal at the beginning of Chapter 11 was to seek a refinement of the notion of
subgame-perfect equilibrium that would rule out strictly dominated choices at unreached

information sets.

The notion of weak sequential equilibrium achieved the goal of ruling out strictly dom-
inated choices, by means of the requirement of sequential rationality. According to this
requirement, a choice at an information set of Player i must be optimal given Player i’s
beliefs at that information set; for a strictly dominated choice there can be no beliefs that

make it optimal.

However, the notion of weak sequential equilibrium turned out not to be a refinement of
subgame-perfect equilibrium: as shown in Section 11.3 (Chapter 11), it is possible for the
strategy profile in a weak sequential equilibrium not to be a subgame-perfect equilibrium.
The reason for this is that the only restriction on beliefs that is incorporated in the notion
of weak sequential equilibrium is Bayesian updating at reachable information sets. At an
information set that is not reached by the strategy profile under consideration any beliefs
whatsoever are allowed, even if those beliefs are at odds with the strategy profile.
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To see this, consider the game of Figure 12.1 and the assessment consisting of the
pure-strategy profile 6 = (c,d, f) (highlighted as double edges) and the system of beliefs

N t u

0 0 1

1

s
fg/\ /\

that assigns probability 1 to node u:

o O =

L L
0 0 0
0 0 1 0 O 1
0 1 0 1 1 0

Figure 12.1: A system of beliefs pt that attaches probability 1 to node u is at odds with the
strategy profile o = (c,d, f).

Since Player 3’s information set {s,#,u} is not reached by o, Bayesian updating imposes
no restrictions on beliefs at that information set. However, attaching probability 1 to node
u is at odds with ¢ because in order for node u to be reached the play must have gone
through Player 2’s node and there, according to o, Player 2 should have played d with
probability 1, making it impossible for node u to be reached.

Thus we need to impose some restrictions on beliefs to ensure that they are consistent
with the strategy profile with which they are paired (in the assessment under consideration).
At reached information sets this is achieved by requiring Bayesian updating, but so far
we have imposed no restriction on beliefs at unreached information sets. We want these
restrictions to be “just like Bayesian updating”. Kreps and Wilson (1982) proposed a
restriction on beliefs that they called consistency, which is stated formally in Definition
12.1.1. To understand the rationale behind this notion, note that if ¢ is a completely mixed
strategy profile (in the sense that 6(a) > 0, for every choice a) then the issue disappears,
because every information set is reached with positive probability and Bayesian updating
yields unique beliefs at every information set.



12.1 Consistent assessments 445

For example, in the game of Figure 12.1 above, if Player 1 uses the completely

a b c
mixed strategy with ps,pp € (0,1) and p, + pp < 1

Da Db I —pa—pp

d e
and Player 2 uses the completely mixed strategy with p; € (0,1)

Pa  1—pa
then, by Bayesian updating, Player 3’s beliefs must be

l.L(S) — pa — pa
Pa+pypa+ps(1—pa)  Patpp
u(r) = PbPd __DPvPd
Pa+popa+po(1—pa)  Patpo
Pr(1—pa Po(1 = pa
() = ( ) ol )_

~ patpepatps(l—pa)  patpp

In the case of a completely mixed strategy profile o, it is clear what it means for a
system of beliefs 1 to be consistent with the strategy profile 6: y must be the unique
system of beliefs obtained from o by applying Bayesian updating.

What about assessments (o, i) where o is such that some information sets are not
reached? How can we decide, in such cases, whether u is consistent with ¢? Kreps
and Wilson (1982) proposed the following criterion: the assessment (o, 1t) is consistent
if there is a completely mixed strategy profile ¢’ which is arbitrarily close to ¢ and
whose associated unique system of beliefs u’ (obtained by applying Bayesian updating) is
arbitrarily close to t. In mathematics “arbitrary closeness” is captured by the notion of
limit.

Definition 12.1.1 Given an extensive game, an assessment (o, lt) is consistent if there
is a sequence of completely mixed strategy profiles (01,0, ...,0y,...) such that:

1. the sequence converges to ¢ as n tends to infinity, that is, lim ¢, = o, and
n—oo

2. letting U, be the unique system of beliefs obtained from ¢, by using Bayesian
updating, the sequence (Uj, Uy, ..., Uy, ..) converges to i as n tends to infinity,
that is, lim u, = u.

n—oo
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For example, consider the extensive form game-frame shown in Figure 12.2.

1 Cc
oO——p @
b

a 2o—e>o
\d
(s 3 4

AWA

Figure 12.2: The assessment ¢ = (c¢,d, f) and u(s) = %, u(t) =

18 consistent.

[e]|9)])

s t . . :
The assessment ¢ = (c¢,d,f), U = <§ §) is consistent. To see this, let
8 8
a b c d e f g
On =
3 5 8 1 1 1 1
oo oy =3 2 =3 %
Then, as n tends to infinity, all of %, %, % tend to O and both 1 — % and 1 — % tend
to 1:
a b ¢ d e f g
lim ¢, = =0.
n—yoo
0O 0 1 1 0 1 0
3
Furthermore, i, (s) = +—<+— = —=, Wwhich tends to % as n tends to infinity and
ﬁ+ﬁ(1—z) 8=
%(1—%) 5_% : 5 P
W (1) 7] 5, Wwhich tends to 3 as n tends to infinity, so that
sta(-n) 8
lim u,, = > L) = u
oM\ ST
n—r ) g

The notion of consistent assessment (o, 1) was meant to capture an extension of the
requirement of Bayesian updating that would apply also to information sets that have zero
probability of being reached (when the play of the game is according to the strategy profile
o). However, Definition 12.1.1 is rather technical and not easy to apply. Showing that
an assessment is consistent requires displaying an appropriate sequence and showing that
the sequence converges to the given assessment. This is relatively easy as compared to
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the considerably more difficult task of proving that an assessment is not consistent: this
requires showing that every possible sequence that one could construct would not converge.
To see the kind of reasoning involved, consider the extensive form of Figure 12.3.

o<«

2
B /
f
,,‘\t u! Ve
R L R
o o o

Figure 12.3: The assessment 6 = (a,T, f,L), u(r) = u(s) = % u(r) = %

n(u)=pulv) = % is not consistent.

We want to show that the following assessment is not consistent:

a b c d T B|e f| LR

r s r u v
O = s ‘LL:
1000 |1 001|110 T 1L 2z

Suppose that (o, 1) is consistent. Then there must be a sequence (0‘,,),1:1727“. of completely
mixed strategies that converges to o, whose corresponding sequence of systems of beliefs
(M) 1. »,... (obtained by applying Bayesian updating) converges to UL.

Let the n'" term of this sequence of completely mixed strategies be:

Thus pé + p+ p§+ pl = pl +pB = p&+ph = ph+ pE =1,

¥ € (0,1) forall x € {a,b,c,d,B,T,e, f,L,R},
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li_r)npﬁ:()forxe{b,c,d,B,e,R} and li_r>np’,“,:1f0rx€{a,T,f,L}.
n—oo n—oo

a b ¢ d T B e f L R

From o, = we obtain, by Bayesian
pe bbby i | pE PR | pe o ph| PE PE

updating, the following system of beliefs p,:

r A t u 1%
and
it rh rary Piphph ri
Pitph Pitps PiPE+PiPEP+PY  PhPE+PipEDRAD  PhpE+pipEpa+pi

Ha(s) p_;z
Note that ) = o

By hypothesis, ILm L (s) = (s) = 3 and lim p,(r) = u(r) = 3 and thus
n—oo

n—yoo

fim 25— i Bnl8) _ ) )
nseopl o noe fi(r) o lim g (r) - p(r)

1
— 2 _
_l_l'
2

Ma(w) _ py f S ()T Pn S
On the other hand, RGN pﬁp”’ so that r}gl’olo (D) _r}glgo< bpn),

By hypothesis, lim w,(u) = p(u) = % and lim ,(¢) = u(t) = £, so that
n—yoo n—oo

lim M (1) _nlij;#n(u) ()

A (6) im0

c ¢
However, lim (p—g oh ) = ( tim 22 (lim ph ) =(1)(0) =0, yielding a contradiction.
n—oo \ Pn n—oo pz n—oo
0
=1 =

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 12.4.1 at the end of this chapter.
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Sequential equilibrium
The notion of sequential equilibrium was introduced by Kreps and Wilson (1982).

Definition 12.2.1 Given an extensive game, an assessment (0, ) is a sequential equi-
librium if it is consistent (Definition 12.1.1) and sequentially rational (Definition 11.1.2,
Chapter 11).

For an example of a sequential equilibrium consider the extensive game of Figure 12.4.

Figure 12.4: An extensive-form game with cardinal payoffs.

Let us show that the following assessment is a sequential equilibrium:

L MR | A B | cd Xy u v w
o= 1 1 and‘u:13133
00 1]3 3|10 13|77 7

Let us first verify sequential rationality of Player 3’s strategy. At her information set —
given her beliefs — ¢ gives a payoft of %(5) + %(1) + %(2) =2 and d gives a payoff of
%(2) + %(2) + %(2) = 2. Thus c is optimal (as would be d and any randomization over ¢

and d).

For Player 2, at his information set {x,y} — given his beliefs and given the strategy of
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Player 3 — A gives a payoff of 3(5)+3(3) =3.5 and B gives a payoff of }(2)+2(4) =3.5;

A B
thus any mixture of A and B is optimal, in particular, the mixture is optimal.

1

2 2

Finally, at the root, R gives Player 1 a payoff of 3, L a payoff of %(4) + %(1) =2.5

and M a payoff of 5(0) + %(6) = 3; thus R is optimal (as would be any mixture of M and
R). Next we show consistency. Consider the sequence of completely mixed strategies

(On)y=i 2. Where

L M R A B c d
On = 1 3 4 1 1 1 1
R 2 2 =5 %

Clearly li_r>n 0, = 0. The corresponding sequence of systems of beliefs (u,),_;, is
n—soo 2,

given by the following constant sequence, which obviously converges to u:

X y u A% w
St IO SR T N 1 N | NP
R O R O R O T O ) R

Since consistency implies Bayesian updating at reached information sets, every
sequential equilibrium is a weak sequential equilibrium.

We now turn to the properties of sequential equilibria.

— Kreps and Wilson, 1982. Given an extensive-form game with
cardinal payoffs, if (o,u) is a sequential equilibrium then ¢ is a subgame-perfect
equilibrium.

— Kreps and Wilson, 1982. Every finite extensive-form game with
cardinal payoffs has at least one sequential equilibrium.

By Theorem 12.1, the notion of sequential equilibrium achieves the objective of refining
the notion of subgame-perfect equilibrium. The relationship between the various solution
concepts considered so far is shown in the Venn diagram of Figure 12.5.
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, Nash equilibria \
~—Subgame-perfect equilibria —

é )

(Sequential equilibria)

\“Weak sequential equilibria <
\, .

Figure 12.5: The relationship between Nash equilibrium, subgame-perfect equilibrium,
weak sequential equilibrium and sequential equilibrium.

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 12.4.2 at the end of this chapter.

12.3 Is ‘consistency’ a good notion?

The notion of consistency (Definition 12.1) is unsatisfactory in two respects.

¢ From a practical point of view, consistency is computationally hard to prove, since
one has to construct a sequence of completely mixed strategies, calculate the corre-
sponding Bayesian beliefs and take the limit of the two sequences. The larger and
more complex the game, the harder it is to establish consistency.

¢ From a conceptual point of view, it is not clear how one should interpret, or justify,
the requirement of taking the limit of sequences of strategies and beliefs.

Concerning the latter point, Kreps and Wilson themselves express dissatisfaction with their
definition of sequential equilibrium:

“We shall proceed here to develop the properties of sequential equilibrium as
defined above; however, we do so with some doubts of our own concerning
what “ought’ to be the definition of a consistent assessment that, with sequential
rationality, will give the *proper’ definition of a sequential equilibrium.” (Kreps
and Wilson, 1982, p. 876.)

In a similar vein, Osborne and Rubinstein (1994, p. 225) write
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“We do not find the consistency requirement to be natural, since it is stated in
terms of limits; it appears to be a rather opaque technical assumption.”

In the next chapter we will introduce a simpler refinement of subgame-perfect equilib-
rium which has a clear interpretation in terms of the AGM theory of belief revision: we
call it Perfect Bayesian Equilibrium. We will also show that one can use this notion to
provide a characterization of sequential equilibrium that does not require the use of limits
of sequences of completely mixed strategies.

We conclude this chapter by observing that while the notion of sequential equilibrium
eliminates strictly dominated choices at information sets (even if they are reached with
zero probability), it is not strong enough to eliminate weakly dominated choices. To see
this, consider the game shown in Figure 12.6.

/N

B

(£ 2 %)
D
°
1

c D i//
®
1

o [
0 2
0 2 3 3

Figure 12.6: A game where a weakly dominated strategy can be part of a sequential
equilibrium.

In this game there are two Nash (and subgame-perfect) equilibria: (A, D) and (B,C).
Note that C is a weakly dominated strategy for Player 2. The only beliefs of Player 2 that
rationalize choosing C is that Player 1 chose B with probability 1 (if Player 2 attaches
any positive probability, no matter how small, to Player 1 choosing A, then D is the only
sequentially rational choice). Nevertheless, both Nash equilibria are sequential equilibria.

For example, it is straightforward to check that the “unreasonable” Nash equilibrium
X oy
0 1
Consistency of this assessment is easily verified by considering the sequence

o = (B,C), when paired with beliefs g = , constitutes a sequential equilibrium.

X y

1 1 1 1
n L= =5

o, = ( A B ¢ b ) whose associated beliefs are ,, =

S =

1
1—1
and sequential rationality is clearly satisfied.

Many game theorists feel that it is “irrational” to choose a weakly dominated strategy;
thus further refinements beyond sequential equilibrium have been proposed. A stronger
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notion of equilibrium, which is a strict refinement of sequential equilibrium, is the notion
of trembling-hand perfect equilibrium. This notion, due to Reinhardt Selten (who also
introduced the notion of subgame-perfect equilibrium) precedes chronologically the notion
of sequential equilibrium (Selten, 1975). Trembling-hand perfect equilibrium does in fact
eliminate weakly dominated strategies. This topic is outside the scope of this book.!

Exercises

Exercises for Section 12.1: Consistent assessments
The answers to the following exercises are in Section 12.5 at the end of this chapter.

Consider the extensive form shown in Figure 12.7.

Consider the following (partial) behavioral strategy profile

a b c d e
O =

1 3 1 1 3

5 5 5 4 4

Find the corresponding system of beliefs obtained by Bayesian updating.

Figure 12.7: The extensive form for Exercise 12.1.

I'The interested reader is referred to van Damme (2002).
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Consider the extensive game shown in Figure 12.8.
(a) Write the corresponding strategic form.
(b) Find all the pure-strategy Nash equilibria.
(c) Find all the pure-strategy subgame-perfect equilibria.

(d) Which of the pure-strategy subgame-perfect equilibria can be part of a consistent
assessment? Give a proof for each of your claims.

A Y T
o<« (J ]
AN
10 W E b

(2 2 xe) o
AR
o o o o

—1 0 —1 1
0 1 1 2

t
Y
1
1

Figure 12.8: The extensive form for Exercise 12.2.

Exercises for Section 12.2: Sequential equilibrium

Consider the extensive-form game shown in Figure 12.9. For each pure-strategy Nash
equilibrium determine whether it is part of an assessment which is a sequential equilib-
rium.

Consider the game shown in Figure 12.10.

(a) Find three subgame-perfect equilibria. [Use pure strategies wherever possible.]

(b) For each of the equilibria you found in Part (a), explain if it can be written as part
of a weak sequential equilibrium.

(¢) Find a sequential equilibrium. [Use pure strategies wherever possible.]
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L
o
o |
o

0 0 2 0
1 1 2 0
1 0 1 0

Figure 12.9: The extensive-form game for Exercise 12.3.

')
("’x 2 y"‘) (/\ 3 ze °
1
C D C D L M L Mo
2
° ° ° e o e o °
1 0 0 2 2 0 0 2
0 1 2 0 3 2 3 1
0 2 2 0 1 0 3 2

Figure 12.10: The extensive-form game for Exercise 12.4.
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An electric circuit connects two switches and a light. One switch is in Room 1, the

second switch is in Room 2 and the light is in Room 3.
Player 1 is in Room 1, Player 2 in Room 2 and Player 3 in Room 3.

The two switches are now in the Off position. The light in Room 3 comes on if and
only if both switches are in the On position. Players 1 and 2 act simultaneously and
independently: each is allowed only two choices, namely whether to leave her switch in

the Off position or turn it to the On position.

If the light comes on in Room 3 then the game ends and Players 1 and 2 get $100 each
while Player 3 gets $300.

If the light in Room 3 stays off, then Player 3 (not knowing what the other players did)
has to make a guess as to what Players 1 and 2 did (thus, for example, one possible

guess is “both players left their respective switches in the Off position”).
Then the payoffs are as follows:

- if Player 3’s guess turns out to be correct then each player gets $200,

- if Player 3 makes one correct guess but the other wrong (for example, he guesses that
both Player 1 and Player 2 chose “Off” and, as a matter of fact, Player 1 chose “Off”
while Player 2 chose “On”), then Player 3 gets $50, the player whose action was
guessed correctly gets $100 and the remaining player gets nothing (in the example,

Player 1 gets $100, Player 2 gets nothing and Player 3 gets $50) and
- if Player 3’s guess is entirely wrong then all the players get nothing.

All the players are selfish and greedy (that is, each player only cares about how much

money he/she gets and prefers more money to less) and risk neutral.
(a) Represent this situation as an extensive-form game.

(b) Write the corresponding strategic form, assigning the rows to Player 1, the

columns to Player 2, etc.
(¢) Find all the pure-strategy Nash equilibria.

(d) For at least one pure-strategy Nash equilibrium prove that it cannot be part of a

sequential equilibrium.
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— xx+xChallenging Question x x x.

A buyer and a seller are bargaining over an object owned by the seller. The value of the
object to the buyer is known to her but not to the seller. The buyer is drawn randomly
from a population with the following characteristics: the fraction A value the object at

$H while the remaining fraction value the object at $L, with H > L > 0.

The bargaining takes place over two periods. In the first period the seller makes a
take-it-or-leave-it offer (i.e. names the price) and the buyer accepts or rejects. If the
buyer accepts, the transaction takes place and the game ends. If the buyer rejects, then
the seller makes a new take-it-or-leave-it offer and the buyer accepts or rejects. In either

case the game ends.

Payoffs are as follows:

(1) if the seller’s offer is accepted (whether it was made in the first period or in the
second period), the seller’s payoff is equal to the price agreed upon and the buyer’s
payoff is equal to the difference between the value of the object to the buyer and the

price paid;
(2) if the second offer is rejected both players get a payoff of 0.

Assume that both players discount period 2 payoffs with a discount factor 6 € (0, 1),
that is, from the point of view of period 1, getting $x in period 2 is considered to be
the same as getting $0x in period 1. For example, if the seller offers price p in the first
period and the offer is accepted, then the seller’s payoff is p, whereas if the same price
p is offered and accepted in the second period, then the seller’s payoff, viewed from the

standpoint of period 1, is $0 p.

Assume that these payoffs are von Neumann-Morgenstern payoffs; assume further that
H=20,L=10,6=3and A = 3.

(a) Draw the extensive form of this game for the case where, in both periods, the
seller can only offer one of two prices: $10 or $12. Nature moves first and selects
the value for the buyer; the buyer is informed, while the seller is not. It is common
knowledge between buyer and seller that Nature will pick H with probability A
and L with probability (1-1).

(b) For the game of Part (a) find a pure-strategy sequential equilibrium. Prove that

what you suggest is indeed a sequential equilibrium.
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Solutions to Exercises

Solution to Exercise 12.1
The extensive form under consideration is shown in Figure 12.11.

Figure 12.11: The extensive form for Exercise 12.1.

The system of beliefs obtained, by Bayesian updating, from the (partial) behavior strategy

a b c d e )
profile o = is as follows:
13 1 r 3
5 5 5 4 4
% 1 % 3 %(%) 9 % 4
u(r) = %+% =3, u(s)= %+% =7 M= %(%>+% =1 HO)= %(%>+% =13
u(r) = s(3) =7 M) = =(3) =3
Am I
_ 5\4 _3 0
SO

Solution to Exercise 12.2

(a) The game under consideration is shown in Figure 12.12. The corresponding strategic
form is shown in Figure 12.13.

(b) The pure-strategy Nash equilibria are: (L,bl), (R,tl), (R,tr), (E,tr), (E,br).

(¢) There is only one proper subgame, namely the one that starts at the singleton node
of Player 2; in that subgame the unique Nash equilibrium is .
Thus only the following are subgame-perfect equilibria: (R,zl), (R,tr), (E,tr).

(d) Each of the above subgame-perfect equilibria can be part of a consistent assessment.

X2 X3

Leto = (R,tl), u= | | ; this assessment is consistent as the following
2 2
sequences of completely mixed strategies and corresponding system of beliefs show:
L 1% E R b t / r
On = 1 1 1 3 1 1 1 1 ’
noon oon l—oa A L= 1= %
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X2 X3
U = 1 ) % . Clearly lim;, .0, = ¢ and lim,, e ll;; = U.
T 12 T,12
ntn ntn

The proof for (R,tr) is similar: we can take the sequence

L W E R b t l r
On = 1 1 1 3 1 1 1 1
nooonoon Ll—a R R
X2 X3
Leto = (E,tr), u = ; this assessment is consistent as the following
0 1

sequences of completely mixed strategies and corresponding beliefs show:

L W E R b t I r
G}’l — ’
1 1 3 1 1 1 1 1
nooon ITa o PR PR
X2 X3
au’fl = l 172
1 " 3 1 5 3
atl=n  wtln
Clearly lim;,_,.6;,, = 0 and lim,,_seo t,, = U. [

—1
) r ) r 1
® ® ®
—1 0 —1 1
0 1 1 2

Figure 12.12: The extensive form for Exercise 12.2.
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Player 2

tl tr bl br
L0 10 1010 10 {0 10

Player R|1 1 -1 —1{-1 -1
I w|-10 1|1 0fl0 1
E[ -1 2 [ -1 1|1 2

—_— O | == | O

Figure 12.13: The strategic-form of the game of Figure 12.12.

Solution to Exercise 12.3
The game under consideration is shown in Figure 12.14.

L M

(1 2 x'e)

SO = o @
S OO @
‘\Q

S

Q

S

= ]
SO~ O @
— NN @
oM

Figure 12.14: The extensive form for Exercise 12.3.

(a) The corresponding strategic form is shown in Figure 12.15.

(b) The pure-strategy Nash equilibria are: (R,l,a), (M,r,a), (R,l,b) and (R,r,b). They
are all subgame perfect because there are no proper subgames. (R,[,b)) and (R, r,b)
cannot be part of a sequential equilibrium because b is a strictly dominated choice at
Player 3’s information set and, therefore, (R,[,b) and (R, r,b) would violate sequen-
tial rationality (with any system of beliefs).

On the other hand, both (R,[,a) and (M, r,a) can be part of an assessment which is
a sequential equilibrium.
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Player 2 Player 2
/ r l r
R 0O 0|1 0 O RI1 O 0
Plalyer | ) ) 0
L 1 0 0 0 L 1 0
Player 3: a Player 3: b

Figure 12.15: The strategic-form of the game of Figure 12.14.

First we show that ¢ = (R,l,a) together with the system of beliefs

X1 X2 X3 X4 . . ey s
u= is a sequential equilibrium.
2 1
Consider the sequence of completely mixed strategy profiles whose n'" term is
L M R [ r a b
o, = ) | 3 1 | | 1 . Clearly
FA S R - % =5 2
lim ¢, = ©.

n—oo

The corresponding Bayesian system of beliefs has n'* term

X1 B %) X3 X4

Un = 2 1 1 ,l) l(l)
n_o—2 _n__1 n\ _n) __q_1 n\n —1
2,173 2,173 1 1 1/1\ — n 1 1 1/1\ — n
ntn ntn a (1) 4 () a(1-3) 4 ()

Clearly li_r>n U, = 1. Thus the assessment is consistent (Definition 12.1.1).
n—oo

Sequential rationality is easily checked: given the strategy profile and the system of
beliefs,

(1) for Player 3, a yields 1, while b yields 0,

(2) for Player 2, [ yields 1, while r yields 2(0) + 1(2) = 2,

(3) for Player 1, R yields 1, while L and M yield 0.

X1 X2 X3 X4

0 1 0 1
is a sequential equilibrium. Consider the sequence of completely mixed strategy
profiles whose " term is

Next we show that 6 = (M, r,a) together with u =

|>—
[S—
|
[—
|>—a
S =
(S

|
=
[

|
[—
|—
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Clearly li_r)n 0, = 0. The corresponding Bayesian system of beliefs has n'" term
n—oo

X1 X2 X3 X4
,un: L l<1_1>
2n — _1 [ n\__n 1 1—1
L+<171> - 2n—1 2n—1 1 1 1N2  n n
217 a(1=n)+(1-3)

Clearly lgll U, = W. Thus the assessment is consistent (Definition 12.1.1). Sequen-
n—oo

tial rationality is easily checked: given the strategy profile and the system of beliefs,
(1) for Player 3, a yields 1, while b yields 0,

(2) for Player 2, [ yields 1, while r yields 2 and

(3) for Player 1, M yields 2, while R yields 1 and L yields 0.

Solution to Exercise 12.4
The game under consideration is shown in Figure 12.16.

/ .\R&Lﬁ
/ \ - o/

Faxw) Foh N
s\ NVASE

N0 O @ A
\
OOM.A/U

o o o o o o
1 0 2 0 0 2
0 1 3 2 3 1
0 2 1 0 3 2

Figure 12.16: The extensive-from game for Exercise 12.4.

(a) First we solve the subgame on the left, whose strategic form is shown in Figure
12.17.
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Player 2

C D
All 010 1
B[O 212 0

Player 1

Figure 12.17: The strategic-form of the subgame that starts after choice L of Player 1.

(b)

There is no pure-strategy Nash equilibrium. Let p be the probability of A and ¢ the
probability of C.

Then at a Nash equilibrium it must be that g = 2(1 — ¢) and 2(1 — p) = p.

A B | CD

Thus there is a unique Nash equilibrium given by ;o , with an

3 3 3 3
expected payoff of % for both players. Next consider the subgame on the right.

In this subgame the following are pure-strategy Nash equilibria: (F,H,M) (where
Player 1’s payoff is 1), (E,L,H) (where Player 1’s payoff is 2), and (E,L,G) (where
Player 1’s payoff is 2).

Thus the following are subgame-perfect equilibria of the entire game:

LR|AB|CD|EVF | GH | LM
2 1 2 1 ’
1 5 3 5 3 0 1 0 1 0 1
L R A B Cc D E F G H L M
2 1 2 1 ’
1 5 3 5 3 1 0 0 1 1 0
L R A B Cc D E F G H L M
2 1 2 1
0 1 5 3 5 3 1 0 1 0 1 0
A B | CD | EF | GH | LM
cannot be part of a weak
o134+ |3%+jo1 01|01

sequential equilibrium, because at Player 3’s information set choice M is strictly
dominated by L and thus there are no beliefs at Player 3’s information set that justify
choosing M.

F | GH | LM
1 0 0O 1 |10

L R
0 1

cannot be part of a weak

Wi >
o]
w0
T
oy

W —
[OSTEY
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sequential equilibrium, because - given that Player 3 chooses L - H is not a sequen-
tially rational choice for Player 2 at his singleton node.

LR | AB | CD|EVF | GH | LM\, )
)y )y is a weak sequential
0 1 5 3 5 3 1 0 1 0 1 0
qep e . . Xy w z
equilibrium with the system of beliefs
Z1lt1o
LR|AB|CD|EF|GHI|LM ' '
(c) 51| . together with beliefs
1 5 3 3 3 1 0 1 0 1 0
Xy w Z . . e
is a sequential equilibrium.
310
3 3

Consistency can be verified with the sequence of completely mixed strategies

L R

b

B D | E F G H | L M

1
3 | 1=

O, =

WY >
wi )

S|=
S|

1
3
For example,

(1) (1=3)

S (e (e Ea (R F (e R S

n

Sequential rationality is easily verified. 0

Solution to Exercise 12.5

(a) The extensive form is shown in Figure 12.18, where FF means 10ff-20ff, FN means
101f-20n, etc.

(b) The corresponding strategic form is shown in Figure 12.19.
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Of/ \)n Of/ w
(2 . 3 L .
FF/FN NF FF/FN NF FF/FN NF 100
300
o o O { (] { [ ]
200 100 0 100 200 0 0 0 200
200 0 100 O 200 0 100 0 200
200 50 50 50 200 0 50 0 200

Figure 12.18: The extensive-form game for Exercise 12.5.

Player 2
On Off

Player On| 100 100 300 200 200 200
| offf 0 0 0 |0 100 50

Player 3: 1-on/2-0ff
Player 2
On Off
Player On | 100 100 300 0 0 O
1 Off | 200 200 200 | 100 0 50

Player 3: 1-off/2-On
Player 2
On Off
Player On |100 100 300| 0 100 100
1 Off | 100 0 50 | 200 200 200

Player 3: both Off

Figure 12.19: The strategic form of the game of Figure 12.18.

(c) The Nash equilibria are highlighted in the strategic form: (On, Off, 10n-20ff),

(Off, On, 101f-20n), (On, On, both-Off) and (Off, Off, both-Off).

(d) (On, On, both-Off) cannot be part of a sequential equilibrium. First of all, for Player
3 ’both-Off” is a sequentially rational choice only if Player 3 attaches (sufficiently
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high) positive probability to node x.

However, consistency does not allow beliefs with pt(x) > 0. To see this, consider a
sequence of completely mixed strategies (p,,q,) for Players 1 and 2, where p,, is
the probability with which Player 1 chooses Off and g, is the probability with which
Player 2 chooses Off and ,}gl(}o Dn = y}grol0 qn =0.

Then, by Bayesian updating,

N Pndn
b (x‘ {X7y7z})_ ann‘f’Pn(l_Qn)‘f’Qn(l_pn). <‘)

If g,, goes to O as fast as, or faster than, p, (thatis, if lim g—” is finite), then divide
n—soo Pn

numerator and denominator of (¢) by p, to get

qn
By (x X, ¥,z =
nl ) = ) T B (= )

Taking the limit as n — o we get

0
im dn
01+ (lim ) (1)

[If p,, goes to O as fast as or faster than g, then repeat the above argument by dividing
by g,.] Thus a consistent assessment must assign zero probability to node x.

=0.

O

Solution to Exercise 12.6

(a) The extensive-form game is shown in Figure 12.20.

(b) The following assessment (o, 1) is a sequential equilibrium. The pure-strategy

profile o is as follows:

The seller offers p = 12 in period 1 and, if his offer is rejected, adjusts his offer to
g = 10 in period 2; furthermore, if the first-period offer had been ¢ = 10 and it had
been rejected then he would have offered g = 10 again in the second period.

The H buyer (that is, the buyer at information sets that follow Nature’s choice of
H) always says Yes to any offer of the seller. The L buyer (that is, the buyer at
information sets that follow Nature’s choice of L) always says No to an offer of
p = 12 and always says Yes to an offer of g = 10.

The system of beliefs is as follows (where TL means the left node of the top
information set of the seller, TR the right node of that information set, ML means
the left node of the middle information set of the seller, MR the right node of that
information set, BL means the left node of the bottom information set of the seller,
BR the right node of that information set):

TL TR ML MR BL  BR
0 1 0 1

H= 1
3

W
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e’ Buyer Buyer's
Buyer {Iq - 10 - IOI\ Buyer
sp=9 ** v 15,2 Seller o 5p=9
S =6 jNo Pz LI pr=r No\ B S(L—p)=—1.5
A

Seller

| J
6g=15 0 0g=15 0
6(H—q)=15 0 6(L—q)=0 0

Figure 12.20: The buyer-seller game of Exercise 12.6.



468

Chapter 12. Sequential Equilibrium

Let us first check sequential rationality. The seller’s payoff is (recall that 6 = %)

2 1\ (3 63
(5)12+(3) (3)10=7F
which is greater than the payoff he would get if he offered g = 10, namely a payoff
of 10.

The H-type’s payoff is 20 — 12 = 8, while if she said No to p = 12 and then Yes to

g = 10 in period 2 her payoff would be lower: %(20 —10) = 75 =17.5.

Furthermore, for the H type, at every node of hers, saying Yes is always strictly
better than saying No.

The L-type’s payoff is 0, while if she said Yes to p = 12 then her payoff would be
-2.

At every node of the L type after having been offered p = 12 saying No is strictly
better than saying Yes and at every node after having been offered ¢ = 10 saying No
gives the same payoff as saying Yes, namely 0.

To check consistency, construct the following completely mixed strategy profile
<Gﬂ>n:1 2.

(1) for the seller and for the L-buyer, any choice that has zero probability in o is

assigned probability % in 0, and any choice that has probability 1 in o is assigned
probability 1 — }l in 0y,

(2) for the H-buyer, any choice that has zero probability in ¢ is assigned probability

niz in 0, and any choice that has probability 1 in o is assigned probability 1 — }1]_2

in o,,.
Let us compute the corresponding beliefs , at the top and at the bottom information
sets of the seller:

n(TL) =
(
Thus

1i_r>n Un(TL) =0=pu(TL) and 1i_r>n W,(TR) =1=u(TR).

(1-3) ()

Hn(BL) = /1 =4

and
(-5 (-}
(=2 G +0-3)0-3)

thus
li_r>n Un(BL) =0 = u(BL) and li_r>n W.(BR) =1= u(BR).
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Belief revision and AGM consistency

Any attempt to refine the notion of subgame-perfect equilibrium in extensive-form (or
dynamic) games must deal with the issue of belief revision: how should a player revise
her beliefs when informed that she has to make a choice at an information set of hers to
which she initially assigned zero probability? As we saw in the previous chapter, Kreps
and Wilson (1982) suggested the notion of a consistent assessment (Definition 12.1.1,
Chapter 12) to deal with this issue. From now on, we shall refer to the notion of consistency
proposed by Kreps and Wilson, as KW-consistency (KW stands for ‘Kreps-Wilson’), in
order to distinguish it from a different notion of consistency, called AGM-consistency, that
will be introduced 1n this section. We shall make use of concepts developed in Section 9.4

(Chapter 9): the reader might want to review that material before continuing.

In this chapter it will be more convenient to use the so called “history-based” definition
of extensive-form game, which is spelled out in Section 13.6. Essentially it boils down to
identifying a node in the tree with the sequence of actions leading from the root to it. We

call a sequence of actions starting from the root of the tree a history.
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For example, consider the extensive form of Figure 13.1.

L

X0 >0 7]

a

N

(2 0% 3 e x3)

AN
e \

~
~

S (u% 4 O [x;* 4 Y

é)

X

\—_/

S

8 h 8 h

<3 <4 <5 <6 210

Figure 13.1: A game-frame in extensive form.

Node x( (the root of the tree) is identified with the null or empty history 0, decision
node xg with the history (or sequence of actions) ad f, terminal node zg with history ad fn,
etc. Thus it will no longer be necessary to label the nodes of the tree, because we can refer
to them by naming the corresponding histories.

If &2 is a decision history we denote by A () the set of actions (or choices) available at A.
For example, in the game of Figure 13.1, A(a) = {c,d}, A(ac) =A(ad) ={e, f},A(adf) =
A(D) = {m,n}, etc. If h is a history and a is an action available at /& (that is a € A(h)), then
we denote by ha the history obtained by appending a to A.

Definition 13.1.1 Given a set H, a fotal pre-order on H is a binary relation >C H x H
which is complete (Vh,h' € H, either h 5= i’ or I’ 3= h, or both) and transitive (Vh,h',h" €
H,if h>=h and ' = h" then h = h").

We write

h ~ H as ashort-hand for “h=h" and i’ = h”, and

h = K as a short-hand for “h %= k" and % h”.
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We saw in Chapter 9 (Section 9.4.2) that the AGM theory of belief revision (introduced by
Alchourrén et al., 1985) is intimately linked to the notion of a plausibility order. This is
reflected in the following definition.

Definition 13.1.2 Given an extensive form, a plausibility order on the set of histories
H is a total pre-order on H that satisfies the following properties (D denotes the set of
decision histories, A(h) the set of actions available at decision history & and I () the
information set that contains decision history A): for all 4 € D,

PL1.  h= ha, forall a€A(h).

PL2. (i) There exists an a € A(h) such that ha ~ h,

(ii) forall a € A(h), if ha~h then Wa~ N, forall i €lI(h).

PL3.  Ifhistory h is assigned to chance (or Nature), then ha ~ h, forall a € A(h).

The interpretation of 4 = A’ is that history h is at least as plausible as history A’ (thus the
interpretation of i ~ K’ is that & is just as plausible as h' and the interpretation of i = A’ is
that 4 is more plausible than h').

- Property PLI of Definition 13.1.2 says that adding an action to a decision history &
cannot yield a more plausible history than 4 itself (that is, the immediate successor
of a history cannon be more plausible than the history itself).

- Property PL2 says that at every decision history 4 there is at least one action a which
is “plausibility preserving” in the sense that adding a to & yields a history which is
as plausible as &; furthermore, any such action a performs the same role with any
other history that belongs to the same information set as A.

- Property PL3 says that all the actions at a history assigned to chance are plausibility
preserving.

Definition 13.1.3 Given an extensive-form game, an assessment (o, it) (see Definition
11.1.1, Chapter 11) is AGM-consistent if there exists a plausibility order >= on H such
that:

(i) the actions that are assigned positive probability by o are precisely the plausibility-
preserving actions: for all 2 € D and for all a € A(h),

o(a) >0 if and only if A ~ ha, (P1)

(if) the histories that are assigned positive probability by u are precisely those that are
most plausible within the corresponding information set: for all 4 € D,

w(h) > 0if and only if h =1, forall i’ € I(h). (P2)

If >= satisfies properties (P1) and (P2) with respect to (o, i), we say that = rationalizes
(o, ).
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In conjunction with sequential rationality, the notion of AGM-consistency is sufficient
to rule out some subgame-perfect equilibria. Consider, for example, the extensive-form
game of Figure 13.2 and the pure-strategy profile ¢ = (¢,d, f) (highlighted by double
edges), which constitutes a Nash equilibrium of the game (and also a subgame-perfect
equilibrium since there are no proper subgames).

1

[ >0
|
0
2

3 bd be\o)

[ o

0 2 2
0 0 1 0 0
0 1 0 1 |

Figure 13.2: The strategy profile (¢, d, f) cannot be part of an AGM-consistent assessment.

Can ¢ = (c,d, f) be part of a sequentially rational AGM-consistent assessment (o, 11)?
Since, for Player 3, choice f is rational only if the player assigns (sufficiently high) positive
probability to history be (at histories a and bd, g yields a higher payoff than f for Player
3), sequential rationality requires that u(be) > 0; however, any such assessment is not
AGM-consistent. In fact, if there were a plausibility order = that satisfied Definition 13.1.3,
then

b >~ be by P1 (since o(e) =0)
be = bd by P2 (since, by hypothesis, u(be) > 0).

By transitivity of =, from b > be and be = bd we get that b > bd, contradicting the fact
that, by P1, it must be that b ~ bd (since o(d) =1 > 0).
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On the other hand, the Nash equilibrium

Q
S
9
U
Q
~
oQ

NI—
NI~
NI—
NI~

a bd be
‘LL:
| 1
0 3 2

forms a sequentially rational, AGM-consistent assessment: it can be rationalized by the
following plausibility order (we use the usual convention that if the row to which history
h belongs is above the row to which history 4’ belongs, then & = 4’ , that is, & is more
plausible than /', and if & and /' belong to the same row then & ~ /', that is, 4 and /' are
equally plausible; as usual, @ denotes the null history, that is, the root of the tree):

most plausible  0,c
b,bd,be,bd f,bdg,bef,beg

least plausible a,af,ag

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 13.8.1 at the end of this chapter.

Bayesian consistency

The definition of AGM-consistency pertains to the supports of a given assessment, that
is, with the actions that are assigned positive probability by the strategy profile o and the
histories that are assigned positive probability by the system of beliefs u. In this sense
it is a qualitative property: how the probabilities are distributed on those supports is
irrelevant for AGM-consistency. However, AGM-consistency is not sufficient: we also
need to impose quantitative restrictions concerning the actual probabilities. The reason for
this is that we want the given assessment to satisfy “Bayesian updating as long as possible”.
By this we mean the following:

1. when information causes no surprises, because the play of the game is consistent
with the most plausible play(s) (that is, when information sets are reached that have
positive prior probability), then beliefs should be formed using Bayesian updating
(Definition 9.4.1, Chapter 9), and
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2. when information is surprising (that is, when an information set is reached that had
zero prior probability) then new beliefs can be formed in an arbitrary way, but from
then on Bayesian updating should be used to update those new beliefs, whenever
further information is received that is consistent with those new beliefs.

The next definition formalizes the above requirements.

Definition 13.2.1 Given a finite extensive form, let = be a plausibility order that
rationalizes the assessment (o, it). We say that (o, i) is Bayesian (or Bayes) consistent
relative to >= if for every equivalence class E of = that contains some decision history
h with y(h) > 0 (that is, EN D} # 0, where D;; = {h € D : i(h) > 0}) there exists a
probability distribution vg : H — [0, 1] (recall that H is a finite set) such that:

B1. vg(h) > 0if and only if h € ENDy;.
B2. If h,W € E ﬂD:[ and ' = hay ...a,, (that is, h is a prefix of 4’) then vg (/') is
given by the following product: vg(h') = vg(h)o(ay) ...o(am).
B3. Ifh € END}; then, for every i € I(h), p(i') = vi (W|1(h)) < —200
n'el(h)
Property Bl requires that vg(h) > 0 if and only if h € E and u(h) > 0.!

Property B2 requires Vg to be consistent with the strategy profile o in the sense that if
h,h' € E, vg(h) >0, vg(h') > 0 and &’ = hay ...a,, then the probability of /' (according to
VE) is equal to the probability of 4 multiplied by the probabilities (according to ¢) of the
actions that lead from / to i’ .

Property B3 requires the system of beliefs u to satisfy Bayes’ rule in the sense that if
h € E and u(h) > 0 (so that E is the equivalence class of the most plausible elements of
the information set /(h)) then, for every history 4’ € I(h), w(h’) (the probability assigned
to &’ by u) coincides with the probability of 4’ conditional on I(k), using the probability
measure Vg.

For an example of an AGM-consistent and Bayesian-consistent assessment, consider
the extensive-form game of Figure 13.3. The assessment

a b c | de | [ g ad ae b | a bf bg
0011043 A
is AGM-consistent because it is rationalized by the following plausibility order:
most plausible  0,c
a,b,ad,bf,bg,adf,adg,bfd,bgd
least plausible ae,aef,aeg,bfe,bge

Furthermore, it is Bayesian relative to this plausibility order. First of all, note that
D:j = {0,a,ad,b,bf bg}.’? Let E = {0,c} be the top equivalence class,

"Thus vg (k) = 0 if and only if either 2 € H\E or u(h) =0
ZNote that if 4,/ € E and I = ha,...ay, then o(aj) >0, forall j=1,...,m. Infact, since ' ~ h, every
action a; is plausibility preserving and therefore, by Property P1 of Definition 13.1.3, 6(a;) > 0.

d
3Recall that D} “ {h € D: () > 0}.
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(c.d.(3/.38)). mlad) =3, u(b)=1.
w(a) =pu(bf) =z, ulbg) = % both AGM-consistent and Bayes-consistent.

Figure 13.3: The assessment

F ={a,b,ad,bf,bg,adf,adg,bfd,bgd} the middle one and G = {ae,aef,aeg,bfe,bge}
the bottom one. Then only E and F have a non-empty intersection with Dj and thus, by
Definition 13.2.1, we only need to specify two probability distributions: vg and vg. The
first one is trivial: since Dy NE = {0} (note that c is not a decision history), it must be
Ve(0) = 1 (and ve(c) = 0). Since Djf NF = {a,ad,b,bf,bg}, by Bl of Definition 13.2.1
it must be that vr(h) > 0 if and only if & € {a,ad,b,bf,bg}.

Consider the following probability distribution:

a ad b bf bg
3 1 2
8 8 8

VF = (and vr(h) = 0 for every other history £).

L
8

ool —

Property B2 of Definition 13.2.1 is satisfied, because

1, ve(bf)= 3 3 3
~—
o(d) _ _
a) =vr(b)  o(f) =vr(b)

vr(ad) = X X and vp(bg) = X

(-
{on

=Vg

—

Q
o
-

To check that Property B3 of Definition 13.2.1 is satisfied, let I, = {a,bf,bg} be the
information set of Player 2 and Is = {b, ad,ae} be the information set of Player 3. Then

Vi (l) = Vr(a) + Vi (bf)+Vr(bg) =5 and

00le

Ve () = Ve (b) + Vr(ad) + Vp(ae) = 3 + £ +0 =
Thus
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1 1 2
a 8 bf 8 b 8
Zont SERCIR R RN R R
b % d %
i ===k, V=3 ==, =3 =0=p(a),

Test your understanding of the concepts introduced in this section, by

going through the exercises in Section 13.8.2 at the end of this chapter.

Perfect Bayesian equilibrium

By adding sequential rationality (Definition 11.1.2, Chapter 11) to AGM-consistency
(Definition 13.1.3) and Bayesian consistency (Definition 13.2.1) we obtain a new notion of

equilibrium for extensive-form games.

Definition 13.3.1 Given a finite extensive-form game, an assessment (o, 1) is a per-
fect Bayesian equilibrium (PBE) if it is sequentially rational, it is rationalized by a
plausibility order on the set of histories and is Bayesian relative to that plausibility

order.

For an example of a perfect Bayesian equilibrium, consider the game of Figure 13.4 (which
is based on the game-frame of Figure 13.3) and the assessment considered in the previous

section, namely

a b c d e f g

o= and
0 0 1 1 0 1z
ad ae b a bf bg

A
(]
AW
FN-
FN-
INTS)
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e © e © e © [ ]
0 1 3 1 3 2 3
2 3 3 2 0 2 1
3 1 2 1 2 0 ]

Figure 13.4: A game based on the game-frame of Figure 13.3.

We showed in the previous section that the assessment under consideration is AGM-
consistent and Bayes-consistent. Thus we only need to verify sequential rationality.
For Player 3 the expected payoff from playing f is (é—ll) 0+ (0)1+ (%) 1= %

and the expected payoff from playing g is (1)3+ (0)2+ (3)0= 3

Wl 0Q
v

thus any mixture of f and g is sequentially rational, in particular the mixture (1
3
_|_

-lkll\)

For Player 2 the expected payoff from playing d is }‘ [( ) %) 2
1

( 1=
4

NN 4>l~
-Nm

1
7 2|+
3

while the expected payoff from playing e is % [(%) 34 (%) } ) ( )

thus d is sequentially rational.

For Player 1, ¢ gives a payoff of 2 while a gives a payoff of % and b a gives a payoff of 2;

thus c is sequentially rational.

We now turn to the properties of Perfect Bayesian equilibria.
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— Bonanno, 2013. Consider a finite extensive-form game with car-

dinal payoffs and an assessment (o, ). If (o,u) is a perfect Bayesian equilibrium
then

(1) o is a subgame-perfect equilibrium and

(2) (o,u) is a weak sequential equilibrium.

The example of Figure 13.2 showed that not every subgame-perfect equilibrium can
be part of a perfect Bayesian equilibrium. Thus, by Theorem 13.3.1, the notion of
perfect Bayesian equilibrium is a strict refinement of the notion of subgame-perfect

equilibrium.
— Bonanno, 2013. Consider a finite extensive-form game with car-
dinal payoffs. If the assessment (o, ) is sequential equilibrium then it is a perfect

Bayesian equilibrium.

The game of Figure 13.5 shows that not every perfect Bayesian equilibrium is a
sequential equilibrium, so that the notion of sequential equilibrium is a strict refinement of

perfect Bayesian equilibrium.
| B
o >0
1
a b 0
0

o
0 0
1 € € 0
0 0

801 3 |

/% /\

0
1 0

O =

Figure 13.5: A game with a perfect Bayesian equilibrium which is not a sequential
equilibrium.

A perfect Bayesian equilibrium of this game is given by the pure-strategy profile
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o = (c,d, g) (highlighted by double edges), together with the degenerate beliefs u(a) =
W(be) = 1. In fact, (o, 1) is sequentially rational and, furthermore, it is rationalized by
the plausibility order (A) below and is Bayesian relative to it (the probability distributions
on the equivalence classes that contain histories & with @ (k) > 0 are written next to the
order):

most plausible  0,c Vo (0) =1
a,ad Vigad) (@) =1
b,bd —
be,beg Vibepeg) (De) =1 (A)
ae,aeg —
bef —

least plausible  aef —

The belief revision policy encoded in a perfect Bayesian equilibrium can be interpreted
either as the point of view of an external observer or as a belief revision policy which is
shared by all the players. For example, the perfect Bayesian equilibrium under consider-
ation (for the game of Figure 13.5), namely 6 = (c,d, g) and p(a) = p(be) = 1, reflects
the following belief revision policy:

o the initial beliefs are that Player 1 will play c;

o conditional on learning that Player 1 did not play c, the observer would become
convinced that Player 1 played a (that is, she would judge a to be strictly more
plausible than b) and would expect Player 2 to play d;

o upon learning that Player 1 did not play ¢ and Player 2 did not play d, the observer
would become convinced that Player 1 played b and Player 2 played e, hence judging
history be to be strictly more plausible than history ae, thereby reversing her earlier
belief that a was strictly more plausible than b.

Such a belief revision policy is consistent with the AGM rationality axioms (see Chapter
9) but is incompatible with the notion of sequential equilibrium. In fact, (o, ) is not
KW-consistent (Definition 12.1.1, Chapter 12). To see this, consider an arbitrary sequence
(On)p—1 2, . that converges to O:

a b c d e f g
Gn:
Pn dn I —pun—aqn I—ry T'n Iy I —1,

lim p, = lim g, = lim r, = lim #,, = 0.
n—soeo n—yoo n—soo n—oo

Then the corresponding sequence ( .un>n:1,2,... of beliefs obtained by Bayesian updating is

with

given by

Hn = Pn qn Pnln — _Pn Gn'n _ _4n
DPntdn Dn+dqn Pntntqnin Pntan Pntntqnin Pntdn

a b ae be
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Since p,(a) = py(ae), if ILm Un(a) = u(a) =1 then li_r>n Un(ae) =15 p(ae) = 0.
n—o0 n—oo

By Theorem 12.2 (Chapter 12), every finite extensive-form game with cardinal payoffs
has at least one sequential equilibrium and, by Theorem 13.3.2, every sequential equilib-
rium is a perfect Bayesian equilibrium. Thus the following theorem follows as a corollary
of these two results.

Theorem 13.3.3 Every finite extensive-form game with cardinal payoffs has at least
one perfect Bayesian equilibrium.

The relationship among the different notions of equilibrium introduced so far (Nash
equilibrium, subgame-perfect equilibrium, weak sequential equilibrium, perfect Bayesian
equilibrium and sequential equilibrium) is shown in the Venn diagram of Figure 13.6.

Nash equilibria

Subgame-perfect equilibria

Perfect Bayesian equilibria

(Sequential equilibria)

Weak sequential equilibria

Figure 13.6: The relationship among Nash equilibria, subgame-perfect equilibria, weak
sequential equilibria, perfect Bayesian equilibria and sequential equilibria.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 13.8.3 at the end of this chapter.
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Adding independence
Weak independence

The notion of perfect Bayesian equilibrium imposes relatively mild restrictions on beliefs
at information sets that are reached with zero probability. Those restrictions require
consistency between the strategy profile ¢ and the system of belief u, as well as the
requirement of Bayesian updating “as long as possible” (that is, also after beliefs have been
revised at unreached information sets). The example of Figure 13.5 showed that perfect
Bayesian equilibrium is compatible with a belief revision policy that allows a reversal of
judgment concerning the behavior of one player after observing an unexpected move by a
different player. One might want to rule out such forms of belief revision. In this section
we introduce and discuss further restrictions on belief revision that incorporate some form
of independence.

“Questionable” belief revision policies like the one illustrated in the previous section®
are ruled out by imposing the following restriction on the plausibility order:

if h and /' belong to the same information set (that is, i’ € I(h))
and a is an action available at h (a € A(h)), then

h=Hh if and only if ha = Ia. (INDy)

(INDy) says that if i is deemed to be at least as plausible as /' then the addition of any
available action a must preserve this judgment, in the sense that ha must be deemed to
be at least as plausible as #'a, and vice versa; it can also be viewed as an “independence”
condition, in the sense that observation of a new action cannot lead to a change in the
relative plausibility of previous histories.’

Any plausibility order that rationalizes the assessment o = (c¢,d,g) and p(a) =
i (be) = 1 for the game of Figure 13.5 violates (INDy), since it must be such that a > b
(because p(a) > 0 while p(b) = 0: see Definition 13.1.3) and also that be > ae (because
t(be) > 0 while p(ae) = 0: see Definition 13.1.3).

Property (IND) is a qualitative property (that is, a property that pertains to the plau-
sibility order). We can add to it a quantitative condition on the probabilities to obtain a
refinement of the notion of perfect Bayesian equilibrium. This quantitative property is
given in Definition 13.4.1 and is a strengthening of the notion of Bayesian consistency
introduced in Definition 13.2.1. First we need to define a “full-support common prior”.

Let (o,u) be an assessment which is rationalized by a plausibility order »=. As
before, let D;j be the set of decision histories to which p assigns positive probability:
Djj ={he D:u(h)>0}. Let & be the set of equivalence classes of = that have a non-
empty intersection with DZ. Clearly éaj is a non-empty, finite set. Suppose that (o, 1) is
Bayesian relative to = and let {Vg } . &t be a collection of probability distributions that
satisfy the properties of Definition 13.2.1.

“Reversal of relative likelihood judgments implied by the belief revision policy encoded in the assessment
o6 = (c,d,g) and p(a) = p(be) = 1 for the game of Figure 13.5.

SNote, however, that (IND;) is compatible with the following: a > b (with b € I(a)) and bc > ad (with
be € I(ad), c,d € A(a), c #d).
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We call a probability distribution v : D — (0,1] a full-support common prior of {Vg} &t
if, for every E € 6, ve(-) = v(- | END};), that is,

v(h)
r o)

W €END}

forallhe END);,  vg(h) =

Note that a full support common prior assigns positive probability to all decision histories,

not only to those in DJj.

Definition 13.4.1 Consider an extensive form. Let (o, i) be an assessment which is
rationalized by the plausibility order = and is Bayesian relative to it and let {Vg } . &t
be a collection of probability distributions that satisfy the properties of Definition
13.2.1. We say that (o, 1) is uniformly Bayesian relative to = if there exists a full-
support common prior vV : D — (0,1] of {Vg} . &t that satisfies the following properties.
UBl1. IfacA(h)and ha € D, then
(i) v(ha) < v(h) and, (ii) if o(a) > 0 then v(ha) = v(h)o(a).
UB2. Ifae€A(h), hand i’ belong to the same information set and ha,h'a € D
then (( )) = ((h, ))
We call such a function v a uniform full-support common prior of {Vg }p st

Property UB1 requires that the common prior v be consistent with the strategy profile o,
in the sense that if o(a) > 0 then v(ha) is equal to the product v(h)o(a) (thus extending
Property B2 of Definition 13.2.1 from le to D).

Property U B2 requires that the relative probability, according to the common prior v, of
any two histories that belong to the same information set remain unchanged by the addition
of the same action.

We can obtain a strengthening of the notion of perfect Bayesian equilibrium (Definition
13.3.1) by (1) adding property (IND7) and (2) strengthening Bayes consistency (Definition
13.2.1) to uniform Bayesian consistency (Definition 13.4.1).

Definition 13.4.2 Given an extensive-form game, an assessment (o,U) is a weakly
independent perfect Bayesian equilibrium if it is sequentially rational, it is rationalized
by a plausibility order that satisfies (/ND7) and is uniformly Bayesian relative to that
plausibility order.

As an example of a weakly independent PBE consider the game of Figure 13.7 be-
low and the assessment (o,u) where ¢ = (c,d, g,¢) (highlighted by double edges) and
w(b) = u(ae) = u(bf) =1 (thus u(a) = u(af) = u(be) = 0; the decision histories x such
that u(x) > 0 are shown as black nodes and the decision histories x such that p(x) = 0 are
shown as gray nodes).

This assessment is sequentially rational and is rationalized by the plausibility order (13.1).
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It is straightforward to check that plausibility order (13.1) satisfies (IND; ).6

To see that (o,ut) is uniformly Bayesian relative to the plausibility order (13.1), note that
D:[ = {0,b,ae,bf} and thus the only equivalence classes that have a non-empty intersec-
tion with D} are Ey = {0,c}, Ey = {b,bd}, E3 = {ae,aeg} and E4 = {bf,bf(}.

Letting Vg, (0) = 1, Vg, (b) =1, Vg, (ae) = 1 and vg, (bf) = 1, this collection of probability
distributions satisfies the Properties of Definition 13.2.1. Let v be the uniform distribu-
tion over the set of decision histories D = {0,a,b,ae,af,be,bf} (thus v(h) = % for every
h € D). Then V is a full support common prior of the collection { Vg, }c {1.2,3,4) and satisfies
Properties UB1 and UB2 of Definition 13.4.1.

»O

/\ é
/\ AN

CEEIRY

/\ /\ AN

Figure 13.7: The assessment ¢ = (c,d,g,0),u(b) = u(ae) = u(bf) =1 is a weakly
independent PBE.

most plausible  0,c¢
b,bd
a,ad
bf,bfrt
be,bel
ae,aeg (13.1)
af,afg
bfm
bem
aek

least plausible  afk

® We have that (1) b = a, bd = ad,be = ae and bf = af, (2) ae = af, aeg = afg and aek = afk,
(B)bf = be, bft > bel and bfm > bem.
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Note, however, that (o,ut) is not a sequential equilibrium. The reader is asked to prove
this in Exercise 13.9.

Strong independence

A second independence condition (besides (INDy)) is Property (IND;) below, which says
that if action a is implicitly judged to be at least as plausible as action b, conditional on
history 4 (that is, ha = hb), then the same judgment must be made conditional on any other
history that belongs to the same information set as &: if 4’ € I(h) and a,b € A(h), then

ha = hb if and only if #'a = H'b. (UND»)

The two properties (IND) and (IND) are independent of each other, in the sense
that there are plausibility orders that satisfy one of the two properties but not the other
(see Exercises 13.7 and 13.8).

Adding Property (IND;) to the properties given in Definition 13.4.2 we obtain a
refinement of the notion of weakly independent perfect Bayesian equilibrium.

Definition 13.4.3 Given an extensive-form game, an assessment (o,ll) is a strongly
independent perfect Bayesian equilibrium if it is sequentially rational, it is rationalized
by a plausibility order that satisfies Properties (IND1) and (IND;), and is uniformly
Bayesian relative to that plausibility order.

The notion of strongly independent PBE is a refinement of the notion of weakly independent
PBE. To see this, consider again the game of Figure 13.7 and the assessment (o,u) where
o = (c,d,g,0)and u(b) = p(ae) = u(bf) =1 (thus u(a) = u(af) = u(be) = 0). It was
shown in the previous section that (o,ut) is a weakly independent PBE; however, it is not a
strongly independent PBE because any plausibility order »= that rationalizes (o,1) must
violate (IND;). In fact, since p(ae) > 0 and p(af) = 0 it follows from Property P2 of
Definition 13.1.3 that

ae > af. (13.2)

Similarly, since p(bf) > 0 and p(be) = 0 it follows from Property P2 of Definition 13.1.3
that

bf - be. (13.3)

Since a and b belong to the same information set, (13.2) and (13.3) constitute a violation
of (IND).

The following result states that the notions of weakly/strongly independent PBE identify
two (nested) solution concepts that lie strictly in the gap between PBE and sequential
equilibrium.
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Consider a finite extensive-form game with cardinal payoffs and an
assessment (o, ll).

(A) If (o,u) is a sequential equilibrium then it is a strongly independent perfect
Bayesian equilibrium.

(B) There are games where there is a strongly independent perfect Bayesian equilib-
rium which is not a sequential equilibrium. Part (A) of Theorem 13.4.1 is proved
in Section 13.7.

For an example of a strongly independent PBE which is not a sequential equilibrium,
consider the game of Figure 13.8.

1
/HN
e ~

2
\/r [N
m |
0 1

3 ]
a b
[0
0 1

0 1 1

CV 3 - Y

x
L S
RS

o o o0
1 10
1 e/f \f e// \f 1 o
1 0o 1

O O O

o 1 0 0

o 1 0 1

o 1 1 0

Figure 13.8: A game with a strongly independent PBE which is not a sequential equilib-
rium.

Consider the following assessment (o, [1):

= (M,l,a,c,e) (highlighted by double edges)
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0 1 0 0 1 1 0 0 1

(the decision histories A such that p(h) = 1 are denoted by black dots and the decision
histories A such that p(h) = 0 are denoted by smaller grey dots). In Exercise 13.13 the
reader is asked to prove that (o, 1) is a strongly independent perfect Bayesian equilibrium
but not a sequential equilibrium.

u_(LMRLE Mr Lm Rr | Mm Ré)

The relationship between the notions of (weakly/strongly independent) perfect Bayesian
equilibrium and sequential equilibrium is illustrated in the Venn diagram of Figure 13.9.

Perfect Bayesian equilibria (PBE)
\
Weakly independent PBE

( )

Strongly independent PBE

e

(Sequential equilibria)

Figure 13.9: The relationship between (weakly/strongly independent) PBE and sequential
equilibrium.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 13.8.4 at the end of this chapter.

Characterization of SE in terms of PBE

Besides sequential rationality, the notion of perfect Bayesian equilibrium (Definition
13.3.1) is based on two elements:

1. the qualitative notions of plausibility order and AGM-consistency and
2. the notion of Bayesian consistency relative to the plausibility order.

By adding two further qualitative properties to the plausibility order — properties (/NDy)
and (/IND;) — and by strengthening Bayesian consistency to uniform Bayesian consistency
(Definition 13.4.1) we then obtained two nested refinements of the notion of PBE: weakly
independent and strongly independent PBE. However, we also noted that the notion of
sequential equilibrium is stronger than the notion of (weakly/strictly) independent PBE.

In this section we show that by introducing a further property of the plausibility order —
which is a strengthening of both (/ND1) and (IND,) — we can obtain a characterization of
sequential equilibrium. The new requirement is that the plausibility order that rationalizes
the given assessment have a “cardinal” numerical representation that can be interpreted
as measuring the plausibility distance between histories in a way that is preserved by the
addition of a common action.
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Definition 13.5.1 Given a plausibility order >= on a finite set of histories H, a function
F : H — N (where N denotes the set of non-negative integers) is said to be an ordinal
integer-valued representation of = if, for every h,h' € H,

F(h) < F(I) if and only if n 3= 1. (13.4)

* An ordinal integer-valued representation of a plausibility order is analogous
to an ordinal utility function for a preference relation: it is just a numerical
representation of the order. Note that, in the case of a plausibility order, we find
it more convenient to assign lower values to more plausible histories (while a
utility function assigns higher values to more preferred outcomes).

* If F: H — N is an integer-valued representation of a plausibility order = on
the set of histories H, without loss of generality we can assume that F(0) =0
(recall that @ denotes the null history, which is always one of the most plausible
histories).”

* Since H is a finite set, an integer-valued representation of a plausibility order =
on H always exists. A natural integer-valued representation is the following,
which we shall call the canonical integer-valued representation.

— Define Hy={h € H: h = x, for all x € H} (thus Hy is the set of most
plausible histories in H), and Hy ={h € H\Hy : h = x, forallx € H\ Hp}
(thus H; is the set of most plausible histories among the ones that remain
after removing the set Hy from H).

— In general, for every integer k > 1, define Hy ={h € H \ (HyU---U
Hi1) @ h=x, forallxe H \ (HyU---U Hy_1)}. Since H is finite,
there is an m € N such that {Hy,...,H,,} is a partition of H and, for every
Jj.k € N, withj < k < m, and for every h,h' € H, if h € Hj and I’ € Hy
then h = K.

— Define £ : H — N as follows: F(h) = k if and only if h € Hy; then
the function F so defined is an integer-valued representation of > and

N

£(0) =0.

Instead of an ordinal representation of the plausibility order > one could seek a cardinal
representation which, besides (13.4), satisfies the following property: if / and /4’ belong to
the same information set and a € A(h), then

F(K) —F(h) = F(Ka) — F(ha). (CM)

If we think of F' as measuring the “plausibility distance” between histories, then we can
interpret (CM) as a distance-preserving condition: the plausibility distance between two
histories in the same information set is preserved by the addition of the same action.

"Let F : H — N be an integer-valued representation of a plausibility order = and define F : H — N as
follows: F(h) = F(h) — F(0). Then F is also an integer-valued representation of 3= and F(0) = 0.
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Definition 13.5.2 A plausibility order > on the set of histories H is choice measurable
if it has at least one integer-valued representation that satisfies property (CM).

For example, consider the extensive-form game-frame of Figure 13.10 and the assessment
consisting of the pure-strategy profile ¢ = (a,¢) (highlighted by double edges) and the

system of beliefs p(b) = 1, p(c) = 0 (the gray node in Player 2’s information set represents
the history which is assigned zero probability).

Figure 13.10: The assessment 6 = (a,e), 1(b) = 1 is choice measurable.

This assessment is rationalized by the plausibility order shown below together with two
integer-valued representations: F' is the canonical representation explained in the above
remark (page 487), while F is an alternative representation:

- F | F

most plausible 0,a 0 0
b,be 1 1

bf 2 3

c,ce 3 4

d 4 5

least plausible cf 5 6

While £ does not satisfy Property (CM) (since F(c) —F(b) =3 —1=2# F(cf) —
F(bf)=5—2=23), F does satisfy Property (CM). Since there is at least one integer-valued

representation that satisfies Property (CM), by Definition 13.5.2 the above plausibility
order is choice measurable.

We can now state the main result of this section, namely that choice measurability

and uniform Bayesian consistency are necessary and sufficient for a perfect Bayesian
equilibrium to be a sequential equilibrium.
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— Bonanno, 2016. Consider a finite extensive-form game with cardi-
nal payoffs and an assessment (o, it). The following are equivalent:

(A) (o,u) is a sequential equilibrium,

(B) (o,u) is a perfect Bayesian equilibrium that is rationalized by a choice-measurable
plausibility order and is uniformly Bayesian relative to it.

Theorem 13.5.1 provides a characterization (or understanding) of sequential equilibrium
which is free of the questionable requirement of taking a limit of sequences of completely
mixed strategies and associated systems of beliefs (see the remarks in Chapter 12, Section
12.3).

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 13.8.5 at the end of this chapter.

History-based definition of extensive-form game

If A is a set, we denote by A* the set of finite sequences in A. If h = (ay,...,a;) € A* and
1 < j <k, the sequence i’ = <a1 , ...,aj> is called a prefix of h (a proper prefix of hif j < k).
If h = {ay,...,ar) € A* and a € A, we denote the sequence (ay,...,a;,a) € A* by ha.

A finite extensive form is a tuple <A,H,I, 1, {%i}iel> whose elements are:

* A finite set of actions A.

* A finite set of histories H C A* which is closed under prefixes (that is, if # € H and
h' € A* is a prefix of h, then &’ € H). The null (or empty) history (), denoted by 0,
is an element of H and is a prefix of every history (the null history @ represents the
root of the tree).

A history h € H such that, for every a € A, ha ¢ H, is called a terminal history. The
set of terminal histories is denoted by Z.

D = H\Z denotes the set of non-terminal or decision histories. For every decision
history & € D, we denote by A(h) the set of actions available at &, that is, A(h) =
{a€A:hacH}.

* A finite set I = {1,...,n} of players. In some cases there is also an additional,
fictitious, player called chance or Nature.

* A function t : D — IU{chance}. If 1(h) € I then 1(h) is the player who moves at

decision history A. A game is said to be without chance moves if 1(h) € I for every
heD.
For every i € IU{chance}, let D; = 1~ !(i) be the histories assigned to Player i. Thus
{D¢hance, D1, - - ., Dy} is a partition of D. If history & is assigned to chance, then a
probability distribution over A(h) is given that assigns positive probability to every
acAh).

* For every player i € I, =; is an equivalence relation on D;. The interpretation of
h =; I is that, when choosing an action at history & € D;, Player i does not know
whether she is moving at 4 or at #’. The equivalence class of & € D; is denoted by
I;(h) and is called an information set of Player i; thus I;(h) = {h' € D; : h~; I'}.
The following restriction applies: if ' € I;(h) then A(h") = A(h), that is, the set of
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actions available to a player is the same at any two histories that belong to the same
information set of that player.

* The following property, known as perfect recall, is assumed: for every playeri € I, if
hi,hy € D;, a € A(hy) and hja is a prefix of hy then for every i’ € I;(h;) there exists
an h € I;(hy) such that ha is a prefix of /. Intuitively, perfect recall requires a player
to remember what she knew in the past and what actions she took previously.

Given an extensive form, one obtains an extensive game by adding, for every Player
i € 1, a utility (or payoff) function U;:Z — R (where R denotes the set of real numbers;

recall that Z is the set of terminal histories).

Figure 13.11 shows an extensive form without chance moves where®

1={1,2,3,4}, A={ab,s,cdef,ghmn},

Z = {s,ace,acfg,acfh,adeg,adeh,ad fm,ad fn,bm,bn},

D ={0,a,b,ac,ad,acf,ade,adf}, H=DUZ,

A0) = {a,b,s}, Ala)={c,d}, Alac)=A(ad)=/e,f},

Alacf) =A(ade) = {g,h}, Aladf)=A(b) ={m,n},

1(0) =1, 1(a) =2, 1(ac) = 1(ad) = 3, 1(acf) = t(ade) = 1(adf) = 1(b) = 4,
~1={(0,0)}, ~={(a,a)}, ~3={(ac,ac), (ac,ad), (ad,ac),(ad,ad)},

4= {(Cle, Cle), (Cle, ade)’ (ade,acf), (ade7ade)7
(adf,adf),(adf,b),(b,adf),(b,b)}.

The information sets containing more than one history (for example, I4(b) = {ad f,b})
are shown as rounded rectangles. The root of the tree represents the null history 0.

If 4 and /' are decision histories not assigned to chance, we write &’ € I(h) as a short-
hand for ' € I, ;,y (h). Thus /" € I(h) means that 4 and /' belong to the same information set
(of the player who moves at /). If 4 is a history assigned to chance, we use the convention
that I(h) = {h}.

Given an extensive form, a pure strategy of player i € I is a function that associates

with every information set of Player i an action at that information set, that is, a function
si : Di — A such that (1) s;(h) € A(h) and (2)if /' € I;(h) then s;(h') = s;(h).

81n order to simplify the notation we write a instead of (0,a), ac instead of (0,a,c), etc.
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2 /. ) >0

Figure 13.11: Extensive form without chance moves.

For example, one of the pure strategies of Player 4 in the extensive form illustrated in
Figure 13.11 is s4(acf) = s4(ade) = g and s4(adf) = sa(b) = m.

A behavioral strategy of player i is a collection of probability distributions, one for
each information set, over the actions available at that information set; that is, a function
0;: D; — A(A) (where A(A) denotes the set of probability distributions over A) such that
(1) o;(h) is a probability distribution over A(h) and (2)if 4’ € I;(h) then o;(K') = o;(h).

- If the game does not have chance moves, we define a behavioral strategy profile as an
n-tuple ¢ = (01, ...,0,) where, for every i € I, 0; is a behavioral strategy of Player i.

- If the game has chance moves then we use the convention that a behavioral strategy
profile is an (n+ 1)-tuple 6 = (01, ..., Oy, Ocpance) Where, if h is a history assigned to
chance and a € A(h) then G junce(h)(a) is the probability associated with a.

- When there is no risk of ambiguity (e.g. because no action is assigned to more than
one information set) we shall denote by o(a) the probability assigned to action a by the
relevant component of the strategy profile ¢.°

Note that a pure strategy is a special case of a behavior strategy where each probability
distribution is degenerate.

A behavior strategy is completely mixed at history h € D if, for every a € A(h), 6(a) > 0.

For example, in the extensive form of Figure 13.11:

°If h € D; and o; is the i component of &, then o;(h) is a probability distribution over A(h) and if
a € A(h) then o;(h)(a) is the probability assigned to action a by o;(h). Thus we denote o;(h)(a) more
simply by o(a).
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a b s
0 0 1
denote by s (it coincides with a pure strategy of Player 1)

a possible behavior strategy for Player 1 is , which we will more simply

and a possible behavior strategy of Player 2 is ( ‘21 ) , which is a completely mixed

3

W= O

strategy.

Proofs

In this section we prove Theorem 13.4.1. To simplify the notation, we will assume that no
action is available at more than one information set, that is, that if a € A(h) NA(R) then
h' € I(h) (this is without loss of generality, because we can always rename some of the
actions). We start with a preliminary result.

Let = be a plausibility order over the set H of histories of an extensive
form and let F : H — N be an integer-valued representation of >= (that is, for all 4, h' € H,
F(h) < F(/) if and only if & 3= h'). Then the following are equivalent:

(A) F satisfies Property (CM).
(B) F satisfies the following property: for all h,i' € H and a,b € A(h), if k' € I(h) then

F(hb) — F (ha) = F(i'b) — F (K a). (CM')

Proof. Let = be a plausibility order on the set of histories H and let F : H — N be an
integer-valued representation of >= that satisfies Property (CM).

Without loss of generality (see Remark on page 487), we can assume that F(0) = 0.

For every decision history 4 and action a € A(h), define A(a) = F(ha) — F(h). The
function A : A — N is well defined, since, by assumption, no action is available at more
than one information set and, by (CM), if i’ € I(h) then F (W'a) — F (k') = F (ha) — F (h).

m
Then, for every history h = {(ay,as,...,an), F(h) = Y. A(a;). In fact,
i=1

Alar) +A(a) + -+ A(am)
= (F(a1)—F(0))+ (F(ajaz) —F(a1))+---+ (F(aiaz...am) — F(a1az ... apm—1))
=F(ayay...ay)=F(h)

(recall that F(0) = 0). Thus, for every h € D and a € A(h), F (ha) = F(h) + A(a).
Hence, F (hb) — F (ha) = F(h) + A(b) — (F (h) + A(a)) = A(b) — A(a)

and F(W'b)—F(Wa)=F(N)+A(b)— (F(W)+A(a)) = A(b) — A(a)

so that F(hb) — F (ha) = F (h'b) — F (W a).

Thus we have shown that (CM) implies (CM").

Now we show the converse, namely that (CM") implies (CM).

Let = be a plausibility order on the set of histories H and let F : H — N be an integer-
valued representation of 5= that satisfies (CM’).

Select arbitrary 4’ € I(h) and a € A(h). Let b € A(h) be a plausibility-preserving action
at i (there must be at least one such action: see Definition 13.1.2); then, 2 ~ hb and
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h' ~ h'b. Hence, since F is a representation of 3=, F(hb) = F(h) an (h’b) = F(h')
so that F(I') — F(h) = F('b) — F(hb). By (CM"), F(K'b) — F(h b) — F(Ka) — F(ha).
From the last two equalities it follows that F (k") — F (h) = F (h'a) — F (ha), that is, (CM)
holds. u

Proof of Theorem 13.4.1 Consider a finite extensive-form game and an assessment (0, ).
Suppose that (o, 1) is a sequential equilibrium. We want to show that (o, i) is a strongly
independent PBE, that is, that (o, i) is sequentially rational, is rationalized by a plausibility
order that satisfies properties (/IND1) and (IND;) and is uniformly Bayesian relative to that
plausibility order.

By Theorem 13.5.1 (o, i) is sequentially rational, is rationalized by a plausibility order
that satisfies property (CM) and is uniformly Bayesian relative to that plausibility order.

Thus it is sufficient to prove that property (CM) implies properties (IND{) and (IND,).

* Proof that CM implies IND;.
Let >= be a plausibility order and F an integer valued representation of >= that satisfies
property (CM). Let histories & and /' belong to the same information set (h’ el (h))
and let a be an action available at / (a € A(h)) We need to show that

h=h ifandonlyif ha=Ha.
Suppose that & 3= #; then (by Definition 13.5.1) F(h) < F(I'), that is,
F(h)—F(n') <0. (13.5)

By (CM) it follows from (13.5) that F(ha) — F (l'a) < 0, that is, F(ha) < F (W a)
and thus, by Definition 13.5.1, ha 3= K a.

Conversely, if ha = h'a then F(ha) < F(h'a) and thus, by (CM), F(h) < F(hi'),
which implies that & = /.

* Proof that CM implies IND;.
Let /' € I(h) and a,b € A(h). We need to show that

ha = hb if and only if h'a = I'b.

By Lemma 13.1, F(hb) — F (ha) = F(h'b) — F (W a).

If F(hb) < F(ha) then F (h'b) < F(h'a) and thus (by Definition 13.5.1) hb 3= ha and
Wb = HWa;

if F(ha) < F(hb) then F(h'a) < F(h'b) and thus (by Definition 13.5.1) ha = hb and
Hax=Wb. [
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Exercises
Exercises for Section 13.1: Belief revision and AGM consistency

The answers to the following exercises are given in Section 13.9

Consider the game shown in Figure 13.12. Determine if there is a plausibility order that
rationalizes the following assessment (Definition 13.1.3):

G_( a b s c d e f g h )
- 1 2 1 1
- ac ad acf ade adf b
F=0U o 1 N

(\®)
\

S
Y
O — oM e

‘ s 4 o » .

1 8 h 8 h g h &8 h

3

3 ® o ® ([ ) ® ([ ) ® o
2 1 3 3 1 3 3 2
0 1 0 1 1 0 0 0
2 1 0 1 3 1 1 2
2 1 0 3 2 1 3 2

Figure 13.12: The game for Exercise 13.1.
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Exercise 13.2

Consider again the game of Exercise 13.1 (Figure 13.12). Find all the assessments that
are rationalized by the following plausibility order:

most plausible  0,s
a,ac,ad,ace,ade,adeg,b,bg

acf,adf,acfg,adfg
adeh,bh

least plausible acfh,adfh

13.8.2 Exercises for Section 13.2: Bayesian consistency

The answers to the following exercises are given in Section 13.9.

Exercise 13.3

Consider the game of Figure 13.13 (which reproduces Figure 13.4) and the assessment

o a b ¢ d e f g
Lo o0 1 1 0 1z
ad ae b a bf  bg
H={ 1 ¢ 3 10 2
7 1 4 1 i

which is rationalized by the plausibility order

most plausible 0, c
a,ad,adf,adg,b,bf,bg,bfd,bgd
least plausible  ae,aef,aeg,bfe,bge

Let F = {a,ad,adf,adg,b,bf ,bg,bfd,bgd} be the middle equivalence class of the
plausibility order. It was shown in Section 13.2 that the probability distribution

vF:( blf bg )

8 8
satisfies the properties of Definition 13.2.1.
Show that there is no other probability distribution on F' that satisfies those properties. =

ad

ool— Q
ool S~

0| —
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Figure 13.13: The game for Exercise 13.3.

Consider the extensive form shown in Figure 13.14 and the assessment

L R { r a c d
(111509 +- (3 5110)
2 2 5 5 3 3 4

(a) Verify that the given assessment is rationalized by the following plausibility order:

S
A= Q

most plausible 0, f, fA
b,c,d,e,bL,bR,cL,cR,dl,dr,el,er,erD
least plausible a,al,aR, fB,erC

(b) Let E = {0, f, fA} be the top equivalence class of the plausibility order.

Show that there is a unique probability distribution Vg on E that satisfies the
properties of Definition 13.2.1.

(c) Let F = {b,c,d,e,bL,bR,cL,cR,dl,dr,el,er,erD} be the middle equivalence
class of the plausibility order.

Show that both of the following probability distributions satisfy the properties of
Definition 13.2.1:

er

12

87

b c d e er . b ¢ d
VF = 20 40 45 15 12 VF = 5 10 45
7

132 132 132 132 132 87

87 8

Az
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/ ’1 2 3 \ 1)

G)/.n 2 ny 3 IA\3) /?\Z 2 A

L R L R L R E/ r ! T

1 1 1 1 1 1 1 4 1 4

2 ) 2 2 2 5 5 5 5

() () e O (] ) ) (] [ 3
C D
o

Figure 13.14: The game for Exercise 13.4.

Exercises for Section 13.3: Perfect Bayesian equilibrium
The answers to the following exercises are given in Section 13.9

1 b
>0
a 2
0
21 ‘
c d
(o 3 )

\
1 G I ¢ %)
AWAWA

®
1
1
1

N O WwWe
O O W e
r—A)—*UJ‘
UJ»—»—"
— O W @

Figure 13.15: The game for Exercise 13.5.
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Consider the extensive-form game shown in Figure 13.15.

Find two perfect Bayesian equilibria (o, ) and (6’, 1) where both ¢ and ¢’ are

pure-strategy profiles and ¢ # ¢’.

Consider the extensive form shown in Figure 13.16.
Prove that the following assessment is a perfect Bayesian equilibrium:

c d e f g h

0= <S7 11 12 11
2 2 3 3 2 2

ac ad acf ade adf b

H=1 1 1 2 € 2 6
2 2 T 11 11 11

).
).

>0

S = O W

N B~ O W

Figure 13.16: The game for Exercise 13.6.
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13.6.4 Exercises for Section 13.4: Adding independence

The answers to the following exercises are given in Section 13.9

Exercise 13.7

Draw an extensive form where Player 1 moves first and Player 2 moves second without
being informed of Player 1’s choice.

Player 1 chooses between a and b, while Player 2’s choices are ¢, d and e.

Find an assessment (o, 1) which is rationalized by a plausibility order that satisfies

Property (INDy) but fails Property (IND,). n

Exercise 13.8

Find an extensive form and an assessment (o, i) which is rationalized by a plausibility

order that violates Property (/N D) but satisfies Property (IND») as well as the following

property:

if h'el(h), acA(h), hacl(ha) and {hh' ha,h'a} C D}

p(h) _ p(ha)

B LW) e’
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Exercises for Section 13.5:
Characterization of sequential equilibrium in terms of PBE

The answers to the following exercises are given in Section 13.9

Consider the game of Figure 13.7, reproduced below, and the assessment (o, 1) where
o = (c,d, g,0) (highlighted by double edges) and u(b) = p(ae) = u(bf) =1 (thus
w(a) = u(af) = u(be) = 0; the decision histories x such that (x) > 0 are shown as
black nodes and the decision histories x such that u(x) = 0 are shown as gray nodes).
It was shown in Section 13.4.1 that (o,u) is a weakly independent perfect Bayesian
equilibrium. Using Theorem 13.5.1 prove that (o,u) is not a sequential equilibrium.

o
oo~g

RN

3 %)

KR AR

Consider the (partial) extensive form shown in Figure 13.17.

Using Theorem 13.5.1, prove that there is no sequential equilibrium (o, i) where
o =(a,g,r,...) (thatis, o assigns probability 1 to a, g and r), t(c) = p(e) = u(ch) =0
and p(h) > 0 for every other decision history .

[Hint: consider all the possible plausibility orders that rationalize (o, t).]
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@3 Y

Figure 13.17: The partial extensive form for Exercise 13.10.

Consider the game shown in Figure 13.18.
Let (o, 1) be an assessment with o = (a, T, f,L) (highlighted by double edges; note
that o is a subgame-perfect equilibrium), p(b) > 0 and p(c) > 0.
(a) Prove that (o, i) can be rationalized by a choice-measurable plausibility order
only if u satisfies the following condition:

w(bB) >0 ifand onlyif pu(cBf) > 0.

(b) Prove that if, besides from being rationalized by a choice-measurable plausibility
order =, (o, i) is also uniformly Bayesian relative to = (Definition 13.4.1), then
u satisfies the following condition:

u(eBf) _ p(c)

if w(bB)>0 then 1(0B) ~ ()
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L R L R L R
[ ] ([ [ ] o o ([ ]
2 1 2 0 O 2
0 1 3 I 1 1
1 0 0 ] 1 0

Figure 13.18: The extensive form for Exercise 13.11.

Consider again the game of Exercise 13.11 (shown in Figure 13.18). Let (o, ) be an
assessment with

b c bB cBf d
10 10 18 18 18

Prove that (o, it) is a sequential equilibrium by using Theorem 13.5.1.
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Exercise 13.13 — xxxChallenging Question x x x.

Consider the game shown in Figure 13.19. Let (o, it) be the following assessment:

o= (M,l,a,c,e) (highlighted by double edges)

0 1 0 0 1 1 0 0 1
(the decision histories & such that p(h) = 1 are denoted by large black dots and the
decision histories & such that p(h) = 0 are denoted by small grey dots).

(a) Prove that (o, 1) is a strongly independent perfect Bayesian equilibrium (Defini-
tion 13.4.3).
(b) Prove that (o, ) is not a sequential equilibrium.

[Hint: prove that (o, i) cannot be rationalized by a choice-measurable plausibility
order and then invoke Theorem 13.5.1.]

“_<LMRL€MerRrMmR£)

1
/WN
& 2 .
NV
[ ] E [ ]
0 1 1
0 1 m 1
0 0 I
3 ]
lb a b
[ ] [ ] [ )
0 1 0
o 0 1
0 1 10
Y A 4
(% 3 /
/! /)
[ ] [ J g 3 [ J x
10 I 0
1 0 e f e foo 0
10 0o 1
[ ] e ©o [ ]
0 10 0
0 10 I
0 11 0

Figure 13.19: The extensive form for Exercise 13.13.
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Solutions to Exercises

Solution to Exercise 13.1
From o we get that the plausibility preserving actions are a, s, d, e, f and g.

Thus ade is as plausible as ad f (by transitivity, since each of them is as plausible as ad)
and each of them is more plausible than:
* acf [since (1) ad is more plausible than ac, (2) ade and ad f are as plausible as ad
and (3) acf is as plausible as ac]
* and b [since (1) a is more plausible than b and (2) ade and ad f are as plausible as
ad, which in turn is as plausible as a].

Hence the most plausible histories in Player 4’s information set are ade and ad f.
It follows that it should be that u(ade) > 0, p(adf) > 0, u(acf) =0 and pu(b) =0.
Hence the given assessment cannot be rationalized by a plausibility order. 0

Solution to Exercise 13.2
The assessment under consideration is:

most plausible  0,s
a,ac,ad,ace,ade,adeg,b,bg
acf,adf,acfg,adfg
adeh,bh

least plausible acfh,adfh

The plausibility-preserving actions are s, ¢, d, e and g.
Thus the strategy profile must be of the form

o — a b s c d e f g h
L0 0 1 p 1—p 0

with0 < p < 1.

At Player 3’s information set ac and ad are equally plausible and
at Player 4’s information set ade and b are equally plausible and each is more plausible

than acf and ad f.
Thus the system of beliefs must be of the form
- ac ad acf ade adf b
H= q 1—g¢g 0 r 0 l—r
with0<g<landO<r<I1. 0

Solution to Exercise 13.3

Since Djj NF = {a,ad,b,bf,bg}, Property B1 of Definition 13.2.1 requires that vy (k) >0
if and only if h € {a,ad,b,bf bg}.

Let vr(a) = p € (0,1) and vr(b) = g € (0, 1). Then, by Property B2 of Definition 13.2.1,
vr(ad) = vp(a)6(d) = (p)1 = p, vr(bf) = Vr(b) o(f) = 34



13.9 Solutions to Exercises 505

g > and the

a ad b bf
p p q q
sum of these probabilities must be 1: 2p +2g =1, thatis | p+g =5 |

and vp(bg) = vp(b)o(g) = %q. Thus vp = ( .

Wi S

|— | —

Let I, = {a,bf,bg} be the information set of Player 2 and Is = {b, ad,ae} the information
set of Player 3.

Then vp (L) = vp(a)+ Ve (bf) + ve(bg) = p+3q+359=p+q=1%

and VF(I3) = VF(b)+ VF(ad) +VF(ae) = q+p+0 — %

Thus \Yi ((Z)) = ? = 2p and, by Property B3, we need this to be equal to u(a) = 211;

solving 2p = %‘ we get p = %.

Similarly, “Z ((Il; )) = 4 = 2g and, by Property B3, we need this to be equal to i (b) = %;
2

solving 2¢g = % we get g = %

(alternatively, we could have derived g = 3 from p = % and p+qg= %). 0

Solution to Exercise 13.4
(a) The plausibility-preserving actions are f,A,L,R,¢,r and D and these are precisely
the actions that are assigned positive probability by ©.
Furthermore, the most plausible histories in information set {a, b, c} are b and ¢ and
the two histories in information set {d, e} are equally plausible.
This is consistent with the fact that Dj = {0, f,b,c,d, e, er}.
Thus the properties of Definition 13.1.3 are satisfied.

(b) By Property B1 of Definition 13.2.1 the support of vg must be Dy NE = {0, f}
and by Property B2 it must be that vg(f) = vg(0) o(f) = ve(0) (since o(f) = 1).
Thus the only solution is Vg(0) = Vg (f) = 1.

(c) Since Dy NF = {b,c,d,e,er}:
* By Property B1 of Definition 13.2.1 the support of the probability distribution
must coincide with the set {b,c,d, e, er}, which is indeed true for both vg and
Vr.
* By Property B2, the probability of er must be equal to the probability of e
times o(r) = % and this is indeed true for both v and V.

20
* By Property B3, the conditional probability @ JX/‘; Ezg e 2532 o= %
0+137+7132
must be equal to p(b) and this is indeed true;
ﬁ
similarly, the conditional probability e (;/1;4(-{/)]: 5= 4513215 = % must be equal
27132

to ((d) and this is also true.
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Similar computations show that - +:£ EZ% T = w(b)
Vp(d)
and g = H(D)- =

Solution to Exercise 13.5
The game under consideration is reproduced in Figure 13.20.

Ly

>0

a

—_ O N

2e

;/\f /\f
AVAVA

L
1
|
|

o O W e
SO W e
— = W@
W —_= — @
—_ O W @

Figure 13.20: The extensive game for Exercise 13.5.

One perfect Bayesian equilibrium is

ac ad

6:(b7c?e7g)? u: < 1 0

acf ade adf >
1 0 .

22

Let us first verify sequential rationality.

For Player 1, at the root, b gives a payoff of 2, while ag and ah give a payoff of 1 (since
Player 2’s strategy is ¢ and Player 3’s strategy is e); thus b is sequentially rational.

For Player 2, ¢ gives a payoff of 1 and d a payoff of 0; thus c is sequentially rational.

For Player 3, e gives a payoff of 3, while f gives a payoff of 2; thus e is sequentially
rational.

For Player 1 at his bottom information set, g gives a payoff of (%) 3+ (%) 3=3andh
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gives a payoff of (%) 1+ (%) 3 = 2; thus g is sequentially rational.

The following plausibility order rationalizes the above assessment:

most plausible  0,b
a,ac,ace
acf,acfg,ad,ade,adeg
adf,adfg,acfh,adeh
least plausible adfh

Name the equivalence classes of this order £, E», ..., Es (with E| being the top one and

Es the bottom one). Then the following probability distributions on the sets E; N Drj
(i =1,2,3) satisty the properties of Definition 13.2.1 (note that E; N D:[ # (0 if and only if
i €{1,2,3}, since D} = {0,a,ac,acf,ade}):

a ac ac ad ade
VEI(@):I, VEZZ( 1 ), VE3:( lf )

1 1 1
2 2 3 3 3
Another perfect Bayesian equilibrium is:

ac ad ac ade ad
o = (a,d,e,h), /.Lz( 0 | Of ) Of )

Sequential rationality is easily verified. The assessment is rationalized by the following
plausibility order:

most plausible  0,a,ad,ade,adeh
b,ac,ace,adf,adfh
acf,acfh,adeg
least plausible acfg,adfg

Only the top equivalence class E; = {0,a,ad,ade,adeh} has a non-empty intersection
with Dif = {0,a,ad, ade}.
The following probability distribution satisfies the properties of Definition 13.2.1:
0 a ad ade
Ve =\ 1 1 1 I [
4 4 4 4

Solution to Exercise 13.6 The game under consideration is reproduced in Figure 13.21.
We need to show that the following is a perfect Bayesian equilibrium:

d h ac ad acf ade ad b
0'=<S,l ll]gvif 1), .u:(l 1 2f 1 2fg)-
2 2 3 3 11

o
Q

2 2 2 2 1 1 1

First we verify sequential rationality.

For Player 1 the possible payoffs are:

from s: 3

fromb:  1(3)+1(2)=25
1
2

from a:
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|
>0
2 N
c 1
/ N !
AT
[ ) 4 .} \. [ )

V{
|
V\“
3

oo WwWe
N ENWe
W — O W e
DO

Figure 13.21: The extensive game for Exercise 13.6.

Thus s is sequentially rational.

For Player 2 the possible payoffs are:

2)+32
0)+3(6)]+3 @) +3(1)] =2

~
I
[\®]

from c:

W= W=

from d:

Thus both ¢ and d are sequentially rational and so is any mixture of the two, in particular
. c d
the mixture 1 I .

2 2
For Player 3 the possible payoffs are:

from e:

1
2
from f: %

Thus both e and f are sequentially rational and so is any mixture of the two, in particular

. e
the m1xture( 1 ]zp )

3 3
For Player 4 the possible payoffs are:
from g: £(2) + 1(0) + 7(2) + {1(3) =
from /i £5(3) +17(2) + 3 (3) + 7 (2) = 3.
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Thus both g and /4 are rational and so is any mixture of the two, in particular the mixture
g h
1 :
2 2

For AGM consistency, note that all of the actions, except a and b, are plausibility preserving
and, furthermore, all decision histories are assigned positive probability by tt. Thus there
is only one plausibility order that rationalizes the given assessment, namely the one that
has only two equivalence classes: the top one being {0, s} and the other one consisting of
all the remaining histories.

For Bayesian consistency, the probability distribution for the top equivalence class is the
trivial one that assigns probability 1 to the null history 0.

Let E = H \ {0, s} be the other equivalence class and note that

END;; ={a,ac,ad,acf,ade,adf,b}.

Thus, in order for a probability distribution Vg to satisfy the properties of Definition 13.2.1,
the support of vg must be the set {a,ac,ad,acf,ade,adf,b} (Property B1).

Let vg(a) = p; then by Property B2 it must be that

)4 )4
P 2 2

with the sum equal to 1, that is, % p +q = 1. Furthermore, by Property B3, it must be that

V(D) _ q _ 6
ve(acf) + vg(ade) + ve(adf) +ve(b)  §+2+8+q 1L
=u(b)
The solution to the pair of equations %p +g=1and —5L5— = % iIsp=gq= %,
3tet3ta
yielding
a ac ad acf ade adf b
VE =
6 3 3 2 1 2 6
23 23 23 23 23 23 23

Thus we have shown that the given assessment is AGM-consistent, Bayes-consistent

and sequentially rational, hence a perfect Bayesian equilibrium. U
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Solution to Exercise 13.7
The extensive form is shown in Figure 13.22.

1

®
a b

S
cd.e ‘/{ie

Figure 13.22: The extensive form for Exercise 13.7.

Let

a b c d e a b
[0 — ‘LL:
1 0 1 0 0

—
]

This assessment is rationalized by the following plausibility order:

most plausible  0,a,ac
b,bc
ad
ae
be
least plausible bd

which satisfies Property (IND) (since a > b and ac > bc, ad > bd, ae - be) but fails
Property (IND;) since b € I(a) and ad > ae (implying that — conditional on a — d is more
plausible than e) but be > bd (implying that — conditional on b — e is more plausible than
d). OJ

Solution to Exercise 13.8
The game of Figure 13.5, reproduced in Figure 13.23, provides such an example.
Consider the assessment ¢ = (c,d, g) (highlighted by double edges), together with the

a b ae be

1 0 0 1

This assessment is rationalized by the plausibility order

system of beliefs u =
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| B
] >o
|
a b 0
0

( ) d

o<———o|l] 2 [0] @F——>0
0 0
1 € € 0
0 0

201 3 g

WA

[
1
1
1

— NN @
SO O @
o= O @

Figure 13.23: Copy of Figure 13.5.

most plausible 0,c
a,ad
b,bd

be,beg which violates Property (IND;) since a > b and yet
ae,aeg

bef

least plausible aef
be > ae.

On the other hand, the above plausibility order satisfies Property (IND;) since
(1) ad > ae and bd > be and (2) aeg > aef and beg > bef.

Furthermore, the above assessment trivially satisfies the additional property,

since a,be € D} but ae,b ¢ D;; (we have that b € I(a), e € A(a), be € I(ae)

but it is not true that {a,b,ae,be} C Djf = {0,a,be}). O
Solution to Exercise 13.9

By appealing to Theorem 13.5.1 it is sufficient to show that any plausibility order that ratio-

nalizes (o, 1) cannot be choice measurable. Let 3= be a plausibility order that rationalizes
(o,u). Then

* since U (ae) > 0 while u(af) = 0 and ae and af belong to the same information set,
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by P2 of Definition 13.1.3
ae > af, (13.6)

e since i (bf) > 0 while u(be) =0 and bf and be belong to the same information set,
by P2 of Definition 13.1.3

bf > be. (13.7)

Let F be an integer-valued representation of = that satisfies (CM).
Then, since a and b belong to the same information set, it must be that
F(b)—F(a) = F(be) — F(ae) and F (b) — F(a) = F(bf) — F(af),

so that F'(be) — F (ae) = F (bf) — F (af) and thus

F(af) — F(ae) = F(bf) — F(be). (13.8)

However, by definition of integer-valued representation (Definition 13.5.1), from (13.6) we
get that F(af) — F (ae) > 0 and from (13.7) we get that F (bf) — F (be) < 0, contradicting
(13.8). O

Solution to Exercise 13.10
The extensive form under consideration is shown in Figure 13.24.

Se)

(3. 3 .Y)

Figure 13.24: The extensive form for Exercise 13.10.

Consider an arbitrary assessment of the form (o, ) where 6 = (a,g,r,...), u(c) =
w(e) = p(ch) =0and u(h) > 0 for every other decision history #.
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There are plausibility orders that rationalize (o, it); for example, either of the following:

most plausible 0,a most plausible 0,a
b,bg,d,dr b,bg,d,dr
bh,ds c,cg,e,er

or
c,cg,e,er bh,ds
es es
least plausible  ch least plausible  ch

First we show that any plausibility order = that rationalizes (o, 1) must satisfy the

following properties:

¢ ~ e because, by P2 of Definition 13.1.3, cg ~ er (since cg € I(er), u(cg) > 0 and
W(er) > 0) and, by P1 of Definition 13.1.3, ¢ ~ cg and e ~ er (since both g and
r are plausibility preserving) and thus, by transitivity, ¢ ~ e.

es > ch this follows from P2 of Definition 13.1.3, since es and ch belong to the same
information set and p(es) > 0, while u(ch) = 0.

b ~ d because, by P2 of Definition 13.1.3, bg ~ dr (since bg € I(dr), u(bg) > 0 and
u(dr) > 0) and, by P1 of Definition 13.1.3, b ~ bg and d ~ dr (since both g

and r are plausibility preserving) and thus, by transitivity, b ~ d.

bh ~ ds by P2 of Definition 13.1.3, because bh € I(ds), u(bh) > 0 and p(ds) > 0.

Next we show that no plausibility order that rationalizes (o, ) is choice measurable.
Select an arbitrary plausibility order that rationalizes (o, i) and let F be an integer valued
representation of it. Then the following must be true:

1. F(e) — F(es) > F(c) — F(ch) (because ¢ ~ e, implying that F(c) = F(e), and
es > ch, implying that F'(es) < F(ch)),

2. F(b)—F(bh) = F(d) — F(ds) (because bh ~ ds, implying that F'(bh) = F(ds), and
b ~ d, implying that F (b) = F(d)).

Thus if, as required by choice measurability, F(c) — F(ch) = F(b) — F (bh) then, by Points
1 and 2 above, F(e) — F(es) > F(d) — F(ds), which violates choice measurability. It
follows from Theorem 13.5.1 that, since any plausibility ordering that rationalizes (o, 1t)
is not choice measurable, (o, 1) cannot be a sequential equilibrium. O
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Solution to Exercise 13.11
The game under consideration is shown in Figure 13.25.

e NeNeN |

N
X
)
=
X
\___/

e
L/ \R L/RLR

o o L
2 1 2 0 O 2
0 | 3 I 1 1
1 0 0 1 1 0

Figure 13.25: The game for Exercise 13.11.

Let (0, 1) be an assessment with 6 = (a, T, f,L), i(b) > 0 and p(c) > 0.

(a) We have to prove that (o, i) can be rationalized by a choice-measurable plausibility

order only if u satisfies the following condition:
w(bB) >0 ifand onlyif u(cBf) > 0.

Let = be a choice measurable plausibility order that rationalizes (o, i) and let F be
an integer-valued representation of >= that satisfies choice measurability.

Since p(b) >0 and p(c) > 0, by P2 of Definition 13.1.3, b ~ ¢ and thus F (b) = F(¢);
by choice measurability, F (b) — F(c¢) = F(bB) — F(cB) and thus F(bB) = F(cB),
so that bB ~ cB.
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Since o (f) > 0, by P1 of Definition 13.1.3, ¢B ~ ¢Bf and therefore, by transitivity

of =, bB ~ cB.

Hence if u(bB) > 0 then, by P2 of Definition 13.1.3, bB = h for every h € {bB,cBf,d}
and thus (since cBf ~ bB) ¢Bf = h for every h € {bB,cBf,d} so that, by P2 of

Definition 13.1.3, u(¢Bf) > 0.

The proof that if u(cBf) > 0 then u(bB) > 0 is analogous.

(b) We have to prove that if, besides from being rationalized by a choice-measurable
plausibility order =, (o, ) is also uniformly Bayesian relative to = (Definition

13.4.1), then u satisfies the following condition:

u(eBf) _ u(c)
ubB)  u(b)

if w(bB)>0 then

Suppose that pu(b) > 0, u(c) > 0 (so that b ~ ¢) and u(bB) > 0.
Let v be a full-support common prior that satisfies the properties of Definition 13.4.1.

Then, by UB2, 115} = Y%} and, by UBI, since (f) = 1, v(cBf) = v(cB) x o (f) =
v(cB).

Let E be the equivalence class that contains b.
Then END}; = {b,c}.

Since Vg (-) = v(-| END)}), by B3 of Definition 13.2.1, u(b) = v(b‘;gf‘),(c) and

_ v(c) ule) _ v(e)
H(e) = v S0 that i) = vy
Let G be the equivalence class that contains bB.
Then, since — by hypothesis — t(bB) > 0, it follows from the condition proved in
Part (a) that either GN D} = {bB,cBf} or GND}; = {bB,cBf,d}.
Since vg(-) = v(- | GND};), by B3 of Definition 13.2.1,

in the former case u(bB) = % and p(cBf) = %
and in the latter case p(bB) = v(bBHtEIC’@)H( ) and p(cBf) = bB)Jrv((Cg?Hv( ik
p(cBf) _ v(cBf)

thus in both cases W(bB) = VbB) -

Hence, since v(cBf) = v(cB), £ CBf g;gg and, therefore, since (as shown above)
¢B) _ v(c u(eBf) _ ulc)
‘V/Eng = % nd (—% E ) we have that (( BB = u(b)" U
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Solution to Exercise 13.12
The game under consideration is reproduced in Figure 13.26.

da
o«
1
0
¢
/
0
3
0
(.
L
o
2
0
1

Figure 13.26: The game for Exercise 13.12.

We have to show that the assessment (o, i) with

b c bB c¢Bf d
o =(aT.f,L) H= 7 3 7 3 8
10 10 18 18 18

is a sequential equilibrium. By Theorem 13.5.1 it is sufficient to show that (o, u) is

sequentially rational, is rationalized by a choice measurable plausibility order and is
uniformly Bayesian relative to it.

First we verify sequential rationality.

o For Player 1 at the root the possible payoffs are: 1 with a, 0 with b, 0 with ¢ (more
precisely, with either ce or cf) and 0 with d; thus a is sequentially rational.

o For Player 1 at history c¢B the possible payoffs are: 1 with e and 2 with f;
thus f is sequentially rational.
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o For Player 2 the possible payoffs are:
5(3)+35(0) =31 with T
and 15(0) + 3(3) = 75 with B;

thus 7 is sequentially rational.

o For Player 3 the possible payoffs are:
H)+ 50+ (1) = with L
and 118(0) + 13—8(1) + 1%(0) = 13—8 with R;

thus L is sequentially rational.

Next we show that (o, 1) is rationalized by a choice-measurable plausibility order. It is
straightforward to verify that (o, i) is rationalized by the plausibility order shown below
together with a choice-measurable integer-valued representation F:

<.

~ °

most plausible  0,a
b,c,bT,cT
d,bB,cB,cBf,dL,bBL,cBfL
least plausible dR,bBR,cBfR,cBe

w NN = O |

To see that (o, u) is uniformly Bayesian relative to this plausibility order, let E;, E,
and E3 be the top three equivalence classes of the order and consider the following prob-
ability distributions, which satisfy the properties of Definition 13.2.1 (so that (o, u) is
Bayesian relative to this plausibility order):

b c bB c¢B c¢Bf d
VE, (@) = 1, VE, = 7 3 and VE;, = 7 3 3 8
10 10 21 21 21 21

A full support common prior that satisfies the properties of Definition 13.4.1 is the follow-
ing:
] b bB ¢ ¢cB  c¢Bf d

21 1 33 3 8
0 40 40 40 40 40 40

Solution to Exercise 13.13
The extensive form under consideration is shown in Figure 13.27.

L M R L{ Mr Lm Rr
0 1 0 0 1 1 0

Mm RY

Let 0 =(M,l,a,c,e), U=
0 1
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0 1 0 1
0 I 0

Figure 13.27: The extensive form for Exercise 13.13.

(a) We have to show that (o, 1) is a strongly independent perfect Bayesian equilibrium.
Sequential rationality is straightforward to verify. It is also straightforward to verify
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that the following plausibility order rationalizes (o, 1):

most plausible O,M,M¢
R,Rl,Rle
Mm,Mme
Mr,Mra
L,L¢,Lla
Rm
Lm,Lmc
Rr,Rrc
Lr
R(f
Mmf
Lmd
Rrd
Mrb
least plausible Llb

Let us check that the above plausibility order satisfies properties (/ND1) and (IND>).
For (IND) first note that there are no two decision histories 4 and 4’ that belong to
the same information set and are such that 4 ~ /’; thus we only need to check that
if h and A’ belong to the same information set and & = /' then ha = h'a for every
a € A(h). This is indeed true:

1. M= Rand M¢ = RV, Mm = Rm and Mr = Rr,
M>=Land M¢ = L¢, Mm = Lm and Mr = Lr,
R>=Land R¢ = LY, Rm = Lm and Rr > Lr,
Mr = L¢ and Mra > Lla and Mrb > L/b,

Lm = Rr and Lmc = Rrc and Lmd ~ Rrd,

6. RC >~ Mm and Rle = Mme and R(f >~ Mmf.

For (IND,) first note that there is no decision history 4 that ha ~ hb for a,b € A(h)
with a # b; thus we only need to show that if ha = hb and i’ € I(h) then h'a = I'b.
This is indeed true:

1. M¢ = Mm and LY = Lm and RY = Rm,

2. Mm = Mr and Lm = Lr and Rm = Rr,
3. M¢{ = Mr LY = Lr and R¢ > Rr,

and the rest is trivial, since at the other information sets there are only two actions,
one of which is plausibility preserving and the other is not.

o

It remains to show that (o,ut) is uniformly Bayesian relative to the plausibility order
given above. First of all, note that, for every equivalence class E of the order, E N Dﬁ
is either empty or a singleton. Thus as a full support common prior one can take, for
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(b)

example, the uniform distribution over the set of decision histories: v(h) = % for

every h € {0,L,M,R,L{,Mr,Lm,Rr,Mm,R(}.

To prove that (o, i) is not a sequential equilibrium it would not be sufficient to
prove that the plausibility order given above is not choice measurable (although it
is indeed true that it is not choice measurable), because in principle there could be
another plausibility order which is choice measurable and rationalizes (o, it). Thus
we need to show that any plausibility order that rationalizes (o, 1) is not choice
measurable. Let = be a plausibility order that rationalizes (o, it ); then it must satisfy
the following properties:

* Lm > Rr (because they belong to the same information set and p(Lm) > 0
while t(Rr) = 0). Thus if F is any integer-valued representation of = it must
be that

F(Lm) < F(Rr). (13.9)

* Mr>~L{~L (M r > L{ because Mr and L¢ belong to the same information set
and p(Mr) > 0 while p(L¢) = 0; L¢ ~ L because / is a plausibility-preserving
action since o (¢) > 0) ). Thus if F is any integer-valued representation of = it
must be that

F(Mr) < F(L). (13.10)

* R~Rl>Mm (R ~ R/ because / is a plausibility-preserving action; R¢ - Mm
because R¢ and Mm belong to the same information set and p(R¢) > 0 while
w(Mm) = O). Thus if F is any integer-valued representation of = it must be
that

F(R) < F(Mm). (13.11)

Now suppose that = is choice measurable and let F' be an integer-valued represen-
tation of it that satisfies choice measurability. From (13.9) and (13.10) we get that

F(Lm)—F(L) < F(Rr)—F(Mr) (13.12)
and by choice measurability

F(Rr)—F(Mr)=F(R)—F(M). (13.13)
If follows from (13.12) and (13.13) that

F(Lm)—F(L) < F(R)—F(M). (13.14)
Subtracting F (M) from both sides of (13.11) we obtain

F(R)—F(M) < F(Mm)—F(M). (13.15)

It follows from (13.14) and (13.15) that F(Lm) — F(L) < F(Mm) — F (M), which
can be written as F (M) — F (L) < F(Mm) — F (Lm), yielding a contradiction, because
choice measurability requires that F (M) — F(L) = F(Mm) — F (Lm). O
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14. Static Games

Interactive situations with incomplete information

An implicit assumption in game theory is that the game being played is common knowledge
among the players. The expression “incomplete information” refers to situations where
some of the elements of the game (e.g. the actions available to the players, the possible
outcomes, the players’ preferences, etc.) are not common knowledge. In such situations
the knowledge and beliefs of the players about the game need to be made an integral
part of the description of the situation. Pioneering work in this direction was done by
John Harsanyi (1967, 1968), who was the recipient of the 1994 Nobel Memorial prize in
economics (together with John Nash and Reinhard Selten). Harsanyi suggested a method
for converting a situation of incomplete information into an extensive game with imperfect
information (this is the so-called Harsanyi transformation). The theory of games of
incomplete information has been developed for the case of von Neumann-Morgenstern
payoffs and the solution concept proposed by Harsanyi is Bayesian Nash equilibrium,
which is merely Nash equilibrium of the imperfect-information game that is obtained by
applying the Harsanyi transformation.

Although the approach put forward by Harsanyi was in terms of “types” of players
and of probability distributions over types, we shall develop the theory using the so-called
“state-space” approach, which makes use of the interactive knowledge-belief structures
developed in Chapters 8 and 9. In Chapter 16 we will explain the “type-space” approach
and show how to convert one type of structure into the other.

The distinction between imperfect and incomplete information is not at all the same as
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that between perfect and imperfect information. To say that a game (in extensive form)
has imperfect information is to say that there is at least one player who may have to make
a choice in a situation where she does not know what choices were made previously by
other players. To say that there is incomplete information is to say that there is at least one
player who does not quite know what game she is playing.

Consider, for example, the players’ preferences. In some situations it is not overly
restrictive to assume that the players’ preferences are common knowledge: for instance, in
the game of chess, it seems quite plausible to assume that it is common knowledge that
both players prefer winning to either drawing or losing (and prefer drawing to losing).

But think of a contractual dispute. Somebody claims that you owe him a sum of money
and threatens to sue you if you don’t pay. We can view this situation as a two-player
game: you have two strategies, “pay”” and “not pay”, and he has two strategies, “sue (if
no payment)” and “not sue (if no payment)”. In order to determine your best choice, you
need to know how he will respond to your refusal to pay. A lawsuit is costly for him as
well as for yous; if he is the “aggressive” type he will sue you; if he is the “not aggressive”
type he will drop the dispute. If you don’t know what type he is, you are in a situation of
incomplete information.

As explained above, we have a situation of incomplete information whenever at least
one of the players does not know some aspects of the game: it could be the preferences of
her opponents, the choices available to her opponents, the set of possible outcomes or even
the identity of her opponents. We shall focus almost exclusively on the case where the
uncertainty concerns the preferences of the players, while everything else will be assumed
to be common knowledge (for an exception see Exercise 14.2). Harsanyi argued that every
situation can be reduced to this case. For example, he argued that if Player 1 does not know
whether Player 2 has available only choices a and b or also choice ¢, we can model this as
a situation where there are two possible “states of the world” in both of which Player 2 has
three choices available, a, b and c, but in one of the two states choice ¢ gives an extremely
low payoff to Player 2, so that she would definitely not choose c.

The interactive knowledge-belief structures developed in Chapters 8 and 9 are suffi-
ciently rich to model situations of incomplete information. The states in these structures
can be used to express any type of uncertainty. In Chapter 10 we interpreted the states
in terms of the actual choices of the players, thus representing uncertainty in the mind of
a player about the behavior of another player. In that case the game was assumed to be
common knowledge among the players (that is, it was the same game at every state) and
what varied from one state to another was the choice of at least one player. If we want to
represent a situation where one player is not sure what game she is playing, all we have
to do is interpret the states in terms of games, that is, assign different games to different
states.

We shall begin with games in strategic form with cardinal payoffs where only one
player is uncertain about what game is being played. We use the expression “one-sided
incomplete information” to refer to these situations.
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One-sided incomplete information

Let us model the following situation: the game being played is the one shown in Figure
14.1; call this the “true” game.

Player 2

Player 1

Figure 14.1: The “true” or actual game.

Player 1 knows that she is playing this game, while Player 2 is uncertain as to whether she
is playing this game or a different game, shown in Figure 14.2, where the payoffs of Player
1 are different.

Player 2

Player 1

Figure 14.2: The alternative game in Player 2’s mind.

For convenience, let us refer to the “true” game of Figure 14.1 as the game where Player 1
is of type b and the game of Figure 14.2 as the game where Player 1 is of type a. Suppose
that Player 2 assigns probability % to Player 1 being of type a and probability % to Player 1
being of type b.

The description is not complete yet because we need to specify whether Player 1 has
any uncertainty concerning the beliefs of Player 2; let us assume that the beliefs of Player
2 are common knowledge. We also need to specify whether Player 2 is uncertain about
the state of mind of Player 1; let us assume that it is common knowledge that Player 2
knows that Player 1 knows what game is being played. This is a long verbal description! A
picture is worth a thousand words and indeed the simple knowledge-belief structure shown
in Figure 14.3 captures all of the above.

There are two states, o and f: « is interpreted as a (counterfactual) state where the

game of Figure 14.2 is played, while f3 is interpreted as the state where the “true” game of
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Figure 14.1 is played. We capture the fact that latter is the “true” game, that is, the game

which is actually played, by designating state B as “the true state” or the actual state.!

2 2

R

T| 6

3

0

9

B|3

3

3

0

R

T|O

3

3

9

B|3

3

0

0

Player 1 is of type a Player 1 is of type b

O, ®

CE B 1)

T

true state

ok

Figure 14.3: A situation of one-sided incomplete information.

It is easy to check that, in the knowledge-belief structure of Figure 14.3, at state f3 all of the
elements of the verbal description given above are true. Anything that is constant across

states is common knowledge: (i) the payoffs of Player 2, (ii) the beliefs of Player 2,

namely (; [13 ) , and (7ii) the fact that Player 1 knows what game is being played,

. 3 3
that is, that
- if the game being played is the one of Figure 14.2 (associated with state o) then
Player 1 knows that they are playing that game and

- if the game being played is the one of Figure 14.1 (associated with state ) then
Player 1 knows that they are playing that game.

Note that, at the true state 3, Player 1 knows more than Player 2, namely which of the two
games is actually being played.

In the situation illustrated in Figure 14.3, at every state each player knows his/her
own payoffs. It may seem natural to make this a requirement of rationality: shouldn’t
a rational player know her own payoffs? The answer is: Yes for preferences and No

IThis is something that is almost never done in the literature, but it is an important element of a description
of a situation of incomplete information: what is the actual state of affairs?
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for payoffs. A rational player should know how she ranks the possible outcomes (her
preferences over outcomes); however, it is perfectly rational to be uncertain about
what outcome will follow a particular action and thus about one’s own payoff. For
example, you know that you prefer accepting a wrapped box containing a thoughtful
gift (payoff of 1) to accepting a wrapped box containing an insulting gift (payoff of
—1): you know your preferences over these two outcomes. However, you may be
uncertain about the intentions of the gift-giver and thus you are uncertain about what
outcome will follow if you accept the gift: you don’t know if your payoff will be 1
or —1. Thus, although you know your payoff function, you may be uncertain about
what your actual payoff will be if you accept the gift. This example is developed in
Exercise 14.2.

Figure 14.3 illustrates a situation that has to do with games, but is not a game.
Harsanyi’s insight was that we can transform that situation into an extensive-form game
with imperfect information, as follows. We start with a chance move, where Nature chooses
the state; then Player 1 is informed of Nature’s choice and makes her decision between
T and B; Player 2 then makes his choice between L and R, without being informed of
Nature’s choice (to capture his uncertainty about the game) and without being informed of
Player 1’s choice (to capture the simultaneity of the game). The game is shown in Figure
14.4. Note that the probabilities assigned to Nature’s choices coincide with the beliefs of
Player 2.

(£
Y/

3

Figure 14.4: The extensive-form game obtained from the incomplete-information situation
of Figure 14.3 by applying the Harsanyi transformation.

The reduction of the situation illustrated in Figure 14.3 to the extensive-form game of
Figure 14.4 is called the Harsanyi transformation. Once a game has been obtained by
means of the Harsanyi transformation, it can be solved using, for example, the notion
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of Nash equilibrium. The Nash equilibria of a game corresponding to a situation of
incomplete information are called Bayesian Nash equilibria. Note that these are nothing
more than Nash equilibria: the extra term ‘Bayesian’ is merely a hint that the game being
solved is meant to represent a situation of incomplete information.

Note also that the Harsanyi transformation involves some loss of information: in particular,
in the resulting game one can no longer tell what the true state is, that is, what the actual
game being played is.

To find the Bayesian Nash equilibria of the game of Figure 14.4 we can construct the
corresponding strategic-form game, which is shown in Figure 14.5.2

Player 2

L R

riopes| 2 3 [ 29

ool EEEYN R
Player P

E ] P

piopes | 3 3| 10

Figure 14.5: The strategic-form game corresponding to the game of Figure 14.4.

There are two pure-strategy Bayesian Nash equilibria: ((7,B),R) and ((B,T),L) (where
(T,B) means “T if type a and B if type b” and (B, T) means “B if type a and T if type b”).
How should we interpret them?

Let us consider, for example, the Bayesian Nash equilibrium ((7',B),R). This is a Nash
equilibrium of the game of Figure 14.4; however, we assumed that the true state was f3,
where Player 1 is of type b and thus, in the actual game (the one associated with state f3),
the actual play is (B, R), which is not a Nash equilibrium of that game (because, while B is
a best reply to R, R is not a best reply to B).

This is not surprising, since Player 1 knows that she is playing that game, while Player 2
attaches only probability % to that game being the actual game. Thus the first observation
is that a Bayesian Nash equilibrium of a “game of incomplete information” does not imply
that the players play a Nash equilibrium in the actual (or “true’) game.

ZRecall that, when constructing the strategic-form game associated with an extensive-form game with
chance moves, payoffs are expected payoffs: see Chapter 7.
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The second observation has to do with Player 1’s strategy. By definition, Player 1’s
strategy in the game of Figure 14.4 consists of a pair of choices, one for the case where
she is informed that her type is a and the other for the case where she is informed that her
type is b: in the Bayesian Nash equilibrium under consideration, Player 1’s strategy (7', B)
means “Player 1 plays 7 if of type a and plays B if of type b”. However, Player 1 knows
that she is of type b: she knows what game she is playing!

Why, then, should she formulate a plan on how she would play in a counterfactual world
where her type was a (that is, in a counterfactual game)? The answer is that Player 1’s
strategy (7, B) is best understood not as a contingent plan of action formulated by Player
1, but as a complex object that incorporates (1) the actual choice (namely to play B) made
by Player 1 in the game that she knows she is playing and (2) a belief in the mind of Player
2 about what Player 1 would do in the two games that, as far as Player 2 knows, are actual
possibilities.

An alternative (and easier) way to find the Bayesian Nash equilibria of the game of
Figure 14.4 is to use the notion of weak sequential equilibrium for that game.
For example, to verify that ((B,T),L) is a Nash equilibrium we can reason as follows: If
the strategy of Player 1 is (B,T), then Bayesian updating requires Player 2 to have the
following beliefs: probability % on the second node from the left and probability % on the
third node from the left.

Given these beliefs, playing L yields him an expected payoff of %(3) + %(3) = 3 while
playing R yields him an expected payoff of %(O) + %(9) = 3; thus any strategy (pure or

mixed) is sequentially rational: in particular L is sequentially rational.

If Player 2 plays L then at her left node Player 1 gets O with 7 and 3 with B, so that
B is sequentially rational; at her right node Player 1 gets 6 with 7" and 3 with B, so that
T is sequentially rational. Hence ((B,T),L) with the stated beliefs is a weak sequential
equilibrium, implying that ((B,T),L) is a Nash equilibrium (Theorem 11.3.1, Chapter 11).

Definition 14.2.1 In a “game of one-sided incomplete information” a pure-strategy
Bayesian Nash equilibrium where the “informed” player makes the same choice at every
singleton node is called a pooling equilibrium, while a pure-strategy Bayesian Nash
equilibrium where the “informed” player makes different choices at different nodes is
called a separating equilibrium.

Thus in the game of Figure 14.4 there are no pooling equilibria: all the pure-strategy
Bayesian Nash equilibria are separating equilibria.

Although we have only looked at the case of two players, situations of one-sided
incomplete information can involve any number of players, as long as only one player
is uncertain about the game being played (while all the other players are not). An
example of a situation of one-sided incomplete information with three players will
be given in the next chapter with reference to Selten’s chain-store game (which we
studied in Chapter 3, Section 3.4).
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We conclude this section with an example of a situation of one-sided incomplete
information involving a two-player game where each player has an infinite number of
strategies. This is an incomplete-information version of Cournot’s game of competition
between two firms (Chapter 2, Section 2.7). This example involves the use of calculus and
some readers might want to skip it.

Consider a Cournot duopoly (that is, an industry consisting of two firms, which compete
in output levels) with inverse demand given by P(Q) =34 — Q, where Q = ¢+ ¢ is
total industry output (¢q; is the output of Firm 1 and g3 is the output of Firm 2).

It is common knowledge between the two firms that Firm 1°s cost function is given by:
Ci(q1) = 6q;. Firm 2’s cost function is C>(g2) = 9¢». Firm 2 knows this, while Firm 1
believes that Firm 2’s cost function is C>(g2) = 9¢» with probability % and C>(q2) =3¢
with probability % (Firm 2 could be a new entrant to the industry using an old technology,

or could have just invented a new technology).
Firm 1 knows that Firm 2 knows its own cost function. Everything that Firm 1 knows

is common knowledge between the two firms. Thus we have the situation of one-sided
incomplete information illustrated in Figure 14.6.

1’s cost function:  Ci(q1) = 6q Ci(q1) = 64

2’s cost function:  C2(q2) = 3¢2 C2(q2) =992
Firm 1; (0 3 o %)

L H

Firm 2: @ @

true
State

Figure 14.6: A one-sided incomplete information situation involving two firms.

Let us find a Bayesian Nash equilibrium of the game obtained by applying the Harsanyi
transformation to this situation of incomplete information and compare it to the Nash
equilibrium of the complete information game where Firm 2’s actual cost function is
common knowledge.

In the complete information case where it is common knowledge that Firm 2’s cost
function is C2(g2) = 9¢», the profit (= payoff) functions of the two firms are given by:

m1(q1,92) = [34— (q1 +q2)] g1 — 641
m(q1,92) = 34— (1 +q2)] @2 — 992
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The Nash equilibrium is given by the solution to the following pair of equations:

o (q1,92)
— T =347 6=0
aql q1 —q2 —
om(q1,92)
aqz q1 q2

The solution is ¢; =3 =10.33 and q, = ¥ =7.33.

Next we go back to the incomplete-information situation illustrated in Figure 14.6.
Although it is not possible to draw the extensive-form game that results from applying the
Harsanyi transformation (because of the infinite number of possible output levels) we can
nevertheless sketch the game as shown in Figure 14.7 (where H means “high cost” and L
“low cost™):

Nature
o

W=
SN S)

H L
Firm2 e ® Firm 2

yAN/AN

(F% Fmi &%)
/\ /\

Q1/\ %/\

o ‘® o ‘®

Figure 14.7: Sketch of the infinite extensive-form game obtained by applying the Harsanyi
transformation to the incomplete-information situation of Figure 14.6.

To find a Bayesian Nash equilibrium it is easiest to think in terms of weak sequential
equilibrium: if the strategy profile g(qdz'l , c}é) ,c}l) is part of a weak sequential equilibrium,
then — by sequential rationality — §;" must maximize the function

() =134 —q1 — gt —94H]

and c}% must maximize the function

g(q5) = [(34 — 41 — 43)q5 — 345].
Furthermore, by Bayesian updating, Firm 1 must assign probablhty to the node following

choice ¢ q2 and probability 2 5 to the node following choice g q2 so that §; must maximize the
function

h(q) = £[(34—q1 —85)q1 —6q1] +3[(34—q1 — G5)q1 — 61].
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Thus we need to solve the following three equations:

af(Q§) :25_2q51_qf\1:0

H
gy

dg(qk A
SoE =31 -2g5— 1 =0

There is a unique solution given by §; =9, ¢4 =8, g5 = 11. Since the true state is where
Firm 2’s cost is high, the actual output levels are §; = 9 for Firm 1 and ¢4 = 8 for Firm 2.
Thus in the incomplete information case Firm 2’s output is higher than in the complete
information case and Firm 1’s output is lower than in the complete information case.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 14.5.2 at the end of this chapter.

Two-sided incomplete information

Let us now consider a situation involving two players, both of whom face some uncertainty.
Such a situation is called a two-sided incomplete-information situation. Note that for
such a situation to arise, it is not necessary that both players are uncertain about some
“objective” aspect of the game (such as the preferences of the opponent): one of the two
players might simply be uncertain about the beliefs of the other player. A situation of this
sort is illustrated in Figure 14.8 below.
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Figure 14.8: A two-sided incomplete-information situation.
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Let G be the game associated with states o and (it is the same game) and G’ the
game associated with state 7.

Suppose that the true or actual state is &. Then all of the following are true at state :

(a) both Player 1 and Player 2 know that they are playing game G (that is, neither player
has any uncertainty about the objective aspects of the game),

(b) Player 1 knows that Player 2 knows that they are playing game G,

(c) Player 2 is uncertain as to whether Player 1 knows that they are playing G (which is
the case if the actual state is o) or whether Player 1 is uncertain (if the actual state is
B) between the possibility that they are playing game G and the possibility that they
are playing game G’ and Player 1 considers the two possibilities equally likely;
furthermore, Player 2 attaches probability % to the first case (where Player 1 knows
that they are playing game G) and probability % to the second case (where Player 1
is uncertain between game G and game G),

(d) Player 1 knows the state of uncertainty of Player 2 (concerning Player 1, as described
in Part (c) above),

(e) The payoffs of Player 1 are common knowledge; furthermore, it is common knowl-
edge that Player 2 knows his own payoffs.

In principle, the Harsanyi transformation can be applied also to situations of two-

sided incomplete information. However, in such cases there is an issue concerning the
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probabilities that should be assigned to Nature’s choices.

In the case of one-sided incomplete information we can take Nature’s probabilities to be
the beliefs of the uninformed player, but in the case of two-sided incomplete information

we have two uninformed players and thus two sets of beliefs.

For instance, if we look at state 8 in Figure 14.8, we have two different probabilities
assigned to that state: % by Player 1 and % by Player 2. Which of the two should we take
as Nature’s probability for state ? The answer is: neither of them. What we should take
as Nature’s probabilities is a probability distribution over the set of states {c, 3,7} that
reflects the beliefs of both players. We have encountered such a notion before, in Chapter
9: it is the notion of a common prior (Definition 9.5.1). A common prior is a probability
distribution over the set of states that yields the players’ beliefs upon conditioning on the

information represented by a cell of an information partition.

For example, in the situation illustrated in Figure 14.8 we are seeking a probability
distribution p over {a, B, v} such that, letting P be the corresponding probability measure,

PBIB. YY) = —t— = L

Plal{a,p}) = - = 2

(and, of course, p(ct)+p(B)+p(y) = D).

ENT

In this case a common prior exists and is given by p(a) = % and p(B) =p(y) =

Using this common prior to assign probabilities to Nature’s choices we obtain the

imperfect-information game shown in Figure 14.9 below.
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Nature
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(o"y 2 Zo

/\ A /\ AVA

Figure 14.9: The extensive-form game obtained by applying the Harsanyi transformation
to the incomplete-information situation of Figure 14.8.
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The following pure-strategy profile is Bayesian Nash equilibrium of the game of Figure
14.9:

* Player 1’s strategy is AB (that is, he plays A if informed that the state is o and plays
B if informed that the state is either B or ) and

* Player 2’s strategy is CD (that is, she plays C at her information set on the left and D
at her information set on the right).

To verify that this is a Bayesian Nash equilibrium it is easier to verify that it is a weak
sequential equilibrium together with the following system of belief, obtained by using
Bayesian updating (note that every information set is reached with positive probability by
the strategy profile):

=~

‘LL:

= ©
NI —
w8
()
()
W= =
(]
p—

Let us check sequential rationality.

We begin with Player 1:

o at the singleton node on the left, A gives Player 1 a payoff of 1 (given Player 2’s
choice of C) while B gives him a payoff of 0,

hence A is sequentially rational;
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¢ at the information set on the right, given his beliefs and given Player 2’s strategy CD,

choosing A gives him an expected payoff of %(1) — %(O) = %

while B gives him an expected payoff of £(0) + 1(3) = 3,

hence B is sequentially rational.

Now consider Player 2:

¢ at her information set on the left, given her beliefs,

C gives her an expected payoff of %(3) + %(O) =2,

while D gives her an expected payoff of %(1) + %(1) =1,

hence C is sequentially rational;

¢ at her information set on the right, given her beliefs,
C gives her a payoff of 0
while D gives her a payoff of 1,

hence D is sequentially rational.

The existence of a common prior is essential in order to be able to apply the Harsanyi
transformation to a situation of two-sided incomplete information. In some cases a common
prior does not exist (see Exercise 14.6) and thus the Harsanyi transformation cannot be

carried out.

Besides the conceptual issues that arise in general with respect to the notion of Nash
equilibrium, the notion of Bayesian Nash equilibrium for games with incomplete
information raises the further issue of how one should understand or justify the notion
of a common prior. This issue is not a trivial one and has been the object of debate in
the literature.’

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 14.5.3 at the end of this chapter.

Multi-sided incomplete information

So far we have only considered strategic-form games with two players. However, the
analysis extends easily to games involving more than two players. If there are n > 3 players
and only one player has uncertainty about some aspects of the game, while the others have
no uncertainty whatsoever, then we have a situation of one-sided incomplete information; if
two or more players have uncertainty (not necessarily all about the game but some possibly

3See, for example, Bonanno and Nehring (1999), Gul (1998) and Morris (1995).
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about the beliefs of other players) then we have a multi-sided incomplete-information
situation (the two-sided case being a special case).

We will consider an example of this below. Let G| and G; be the three-player games in
strategic form (with cardinal payoffs) shown in Figure 14.10.

Player 2
Al4 1 012 4 2
Player I H——010 0 0
B o s e L S
Player 2
PlayerlA 2 0 2]0 1 0
B O 0 010 2 0
Player 3: F
GAME G,
Player 2
Al4 4 0]2 1 2
Player 1 o ——10 1 0
SN, ) o e O
c Player 2 D
Player 1 * |2 L 210 0 0
y B L0 2 010 0 0

Player 3: F

GAME G,

Figure 14.10: Two three-player games in strategic form with cardinal payoffs.

Consider the multi-sided situation of incomplete information illustrated in Figure 14.11,
where with each state is associated one of the two games of Figure 14.10.
At the true state «, all of the following are true:
(a) All three players know that they are playing game G,
(b) Player 1 knows that Players 2 and 3 know that the actual game is Gy;

(c) Player 2 knows that Player 3 knows that the actual game is G, but is uncertain as to
whether Player 1 knows or is uncertain; furthermore, Player 2 assigns probability %
to Player 1 being uncertain;
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game  game  game  game

(\9)
)
R
Q| —
WIN
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\__/

true
state

Figure 14.11: A three-sided situation of incomplete information.
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(d) Player 3 knows that Player 1 knows that the actual game is G, but is uncertain as to
whether Player 2 knows or is uncertain; furthermore, Player 3 assigns probability %
to Player 2 being uncertain;

(e) The payoffs of Players 1 and 3 are common knowledge.

The beliefs of the players in the situation illustrated in Figure 14.11 are compatible with
each other, in the sense that there exists a common prior. In fact the following is a common

o P Y 0
3 6 6 2
17 17 17 17
Thus we can apply the Harsanyi transformation and obtain the game shown in Figure
14.12.

prior:

- 0 4 2 2 2 4 0 0
1 0 I 0 0 4 I 0 2
0 0 0 2 2 2 0 O 0

o o ® o oo ®

~

/

D
D
",.
WAWA
e o o
22 0
11 0
22 0

Figure 14.12: The extensive-form game obtained by applying the Harsanyi transformation
to the incomplete-information situation of Figure 14.11.
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The task of finding Bayesian Nash equilibria for the game of Figure 14.12 is left as an
exercise (see Exercise 14.7)

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 14.5.3 at the end of this chapter.

Exercises

Exercises for Section 14.2: One-sided incomplete information.
The answers to the following exercises are in Section 14.6 at the end of the chapter.

Albert and Bill play a Game of Chicken® under incomplete information.

The situation is as follows.

(a)

(b)
(¢
(d)

Choices are made simultaneously.

Each player can choose “swerve” or “don’t swerve.”

If a player swerves then he is a chicken.

If he does not swerve, then he is a rooster if the other player swerves,
but he gets injured if the other player does not swerve.

Each player can be a “normal” type or a “reckless” type.

A “normal” type gets a payoff of 100 from being a rooster, 85 from being a
chicken, and zero from being injured.

A “reckless” type gets a payoff of 100 from being a rooster, 50 from being injured,

and zero from being a chicken.

As a matter of fact, both Albert and Bill are normal; it is common knowledge
between them that Bill is normal, but Bill thinks that there is a 20% chance that
Albert is reckless (and an 80% chance that Albert is normal).

Bill knows that Albert knows whether he (= Albert) is reckless or normal. Every-
thing that Bill knows is common knowledge between Albert and Bill.

Construct an interactive knowledge-belief structure that represents the situation

of incomplete information described above.
Apply the Harsanyi transformation to obtain an extensive-form game.
Construct the strategic-form associated with the extensive-form game of Part (b).

Find the pure-strategy Bayesian Nash equilibria and classify them as either
pooling or separating (Definition 14.2.1).

“In the original interpretation of this game, two drivers drive towards each other on a collision course:
at least one must swerve in order to avoid a deadly crash; if one driver swerves and the other does not,
the one who swerved will be called a "chicken", meaning a coward. Hence the name “game of chicken”.
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Bill used to be Ann’s boyfriend. Today it is Ann’s birthday. Bill can either not give a

gift to Ann or give her a nicely wrapped gift. If offered a gift, Ann can either accept or

reject. This would be a pretty simple situation, if it weren’t for the fact that Ann does

not know if Bill is still a friend or has become an enemy. If he is a friend, she expects a

nice present from him. If Bill is an enemy, she expects to find a humiliating thing in the

box (he is known to have given dead frogs to his “not so nice friends” when he was in

third grade!). The preferences are as follows.

o

(a)

(b)
(0
(d)

(e)

Bill’s favorite outcome (payoff = 1) occurs when he offers a gift and it is accepted
(in either case: if he is a friend, he enjoys seeing her unwrap a nice present, and
if he is an enemy, he revels in the cruelty of insulting Ann with a humiliating
“gift”). Whether he is a friend or an enemy, Bill prefers having not extended a gift
(payoft = 0) to enduring the humiliation of a rejected gift (payoff = —1).

Ann prefers accepting a gift coming from a friend (payoff = 1) to refusing a gift
(payoff = 0); the worst outcome for her (payoff = —1) is one where she accepts a

gift from an enemy.

Ann attaches probability p (with 0 < p < 1) to the event that Bill is a friend (and
1 — p to Bill being an enemy); however, Ann knows that Bill knows whether he is

a friend or an enemy.
Everything that Ann knows is common knowledge between Ann and Bill.

As a matter of fact, Bill is a friend.

Construct an interactive knowledge-belief structure that represents the situation
of incomplete information described above.

Apply the Harsanyi transformation to obtain an extensive-form game.

Construct the strategic-form associated with the extensive-form game.

Find all the pure-strategy Bayesian Nash equilibria and classify them as either
pooling or separating.

Suppose that p = %. Is the outcome associated with a pure-strategy Bayesian

Nash equilibrium Pareto efficient? ¢

“An outcome is Pareto efficient if there is no other outcome that is Pareto superior to it (Definition
2.2.4, Chapter 2).



542 Chapter 14. Static Games

Exercises for Section14.3: Two-sided incomplete information.

The answers to the following exercises are in Section 14.6 at the end of the chapter.

Consider the situation of two-sided incomplete information illustrated in Figure 14.13

(where the true state is o).

Use the Harsanyi transformation to represent this incomplete-information situation as
an extensive-form game. Be explicit about how you calculated the probabilities for

Nature’s choices.

2 2 2

L R L R L R
1T63 09 1T03 39 1T0132
Bl133[30 B133[00 B134]103

EANON)
n—

l: @ (C )
o 14
C ) O

Figure 14.13: A two-sided incomplete-information situation.
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Consider the following congestion situation (a variant of the so called El Farol Bar
Problem: see https://en.wikipedia.org/wiki/El_Farol_Bar_problem).

o Two students at a college are simultaneously deciding between going to a bar or
going home. The bar is extremely small and it gets congested when more than
one person is there.

o In principle, there are two types of students. One type, call it the b type, prefers
going to the bar if he is the only customer there (in which case he gets a utility
of 20) but dislikes congestion and gets a utility of —20 if he goes to the bar and
is not the only customer there; furthermore, for the b type, the utility of being at


https://en.wikipedia.org/wiki/El_Farol_Bar_problem
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home is O.

o The other type of student, call him the not-b type, prefers being at home (in
which case his utility is 20) to being at the bar; being at the bar alone gives him a
utility of O but being at the bar with other customers is very stressful and gives
him a utility of —40. Let G(b1,b,) be the game where both players are b types,
G(by,not-by) the game where Player 1 is a b type and Player 2 a not-b type, etc.

o Assume that all payoffs are von Neumann-Morgenstern payoffs.

(a) Write the four possible strategic-form games.

(b) (b.1) For each of the games of Part (a) find the pure-strategy Nash equilibria.
(b.2) For game G(by,b;) find also a mixed-strategy equilibrium where each
choice is made with positive probability.

(c¢) Assume now that, as a matter of fact, both players are b types. However, it
is a situation of incomplete information where it is common knowledge that
each player knows his own type but is uncertain about the type of the other
player and assigns probability % to the other player being the same type as he
is and probability %‘ to the other player being of the opposite type. Draw an
interactive knowledge-belief structure that represents this situation of incomplete
information.

(d) Use the Harsanyi transformation to represent the above situation of incomplete
information as an extensive-form game.

(e) For the game of Part (d), pick one strategy of Player 1 and explain in words what
it means.

(f) For the game of Part (d), write the corresponding strategic-form game.
(g) Find a pure-strategy Bayesian Nash equilibrium of the game of Part (d).

(h) For the Bayesian Nash equilibrium of Part (g).
(h.1) Find where the players are actually going,
(h.2) Find the actual payoffs of the players in the game that they are actually
playing (that is, at the true state),
(h.3) Do their actual choices yield a Nash equilibrium of the game that they are
actually playing?

(i) If you didn’t know what the true state was but you knew the game of Part (d),
what probability would you assign to the event that the players would end-up
making actual choices that constitute a Nash equilibrium of the true game that
they are playing?
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Consider the situation of two-sided incomplete information illustrated in Figure 14.14
(where the true state is ).

(a) Use the Harsanyi transformation to represent this situation as an extensive-form
y P
game. Be explicit about how you calculated the probabilities for Nature.

(b) Write all the pure strategies of Player 1 and all the pure strategies of Player 2.

(c) Consider the following pure-strategy profile: Player 1 plays T always and Player
2 plays L always. What belief system, paired with this strategy profile, would
satisfy Bayesian updating?

2 2 2 2

L R L R L R L R
T144100 T104140 704140 144100

Bl120|22 Bl120]02 Bl120]02 Bl120|22

1: (9) (o2 ()
(04 )

2: (0 (0

Figure 14.14: A two-sided situation of incomplete information.
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Exercises for Section14.4: Multi-sided incomplete information.

The answers to the following exercises are in Section 14.6 at the end of the chapter.

Consider the three-sided situation of incomplete information shown in Figure 14.15
(what games G| and G, are is irrelevant to the following question). For what values of
p can the Harsanyi transformation be carried out?
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Figure 14.15: A three-sided situation of incomplete information.

Exercise 14.7

Find a pure-strategy Bayesian Nash equilibrium of the game of Figure 14.12 which is
reproduced below. [Hint: it is best to think in terms of weak sequential equilibrium.] =
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— xx+xChallenging Question x x x.

Consider the following situation. It is common knowledge between Players 1 and 2 that
tomorrow one of three states will occur: a, b or c.
It is also common knowledge between them that

* if state a materializes, then Player 1 will only know that either a or b occurred
and Player 2 will only know that either a or ¢ occurred,

* if state b materializes, then Player 1 will only know that either a or b occurred
and Player 2 will know that b occurred,

* if state ¢ materializes, then Player 1 will know that ¢ occurred
while Player 2 will only know that either a or ¢ occurred.

Tomorrow they will play the following simultaneous game: each will report, confiden-
tially, one of her two possible states of information to a third party (for example, Player
1 can only report either {a,b} or {c}).

Note that lying is a possibility: for example, if the state is a Player 1 can choose to
report {c}.

Let R be the report of Player 1 and R, the report of Player 2. The third party, who
always knows the true state, then proceeds as follows:

(1) if the reports are compatible, in the sense that
RiNR; 7é @7
then he gives the players the following sums of money (which depend on R; N R5):

If the true state is a :

RINRy = ‘ a ‘ b ‘ c
1 gets $5 $4 $6
2 gets $5 $6 $4

If the true state is b :

RiNRy = a b c
1 gets $5 $4 $4
2 gets $0 $1 $1
If the true state is c :
RiNRy, = ‘ a ‘ b ‘ c
1 gets $0 $1 $1
2 gets $5 $4 $4
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(2)

(a)

(b)

(0

(d)

if the reports are incompatible, in the sense that
RiNRy, =0,

then he gives the players the following sums of money:

The true state is ‘ a ‘ b ‘ c
1 gets $5 $4 $1
2 gets $5 $1 $4

Represent this situation of incomplete information by means of an interactive
knowledge structure (for the moment do not worry about beliefs).

Apply the Harsanyi transformation to the situation represented in Part (a) to obtain
an extensive-form frame (again, at this stage, do not worry about probabilities).

Suppose first that both players have no idea what the probabilities of the states
are and are not willing to form subjective probabilities.

It is common knowledge that each player is selfish (i.e. only cares about how
much money she herself gets) and greedy (i.e. prefers more money to less) and
ranks sets of outcomes according to the worst outcome, in the sense that she is
indifferent between sets X and Y if and only if the worst outcome in X is equal to
the worst outcome in Y and prefers X to Y if and only if the worst outcome in X
is better than the worst outcome in Y.

(c.1) Write the normal-form (or strategic-form) of the game of Part (a).
(c.2) Find all the pure-strategy Nash equilibria of this game.
(c.3) Among the Nash equilibria, is there one where each player tells the truth?

Suppose now that it is common knowledge between the players that there are
objective probabilities for the states as follows:

n— S

wmio Q
w0

This time assume that it is common knowledge that both players are selfish,
greedy and risk-neutral. (Thus ignore now the preferences described in Part (c).)

(d.1) Suppose that Player 2 expects Player 1 to report truthfully. Is it rational for
Player 2 to also report truthfully?

(d.2) Is “always lying” for each player part of a pure-strategy weak sequential
equilibrium? Prove your claim.
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Solutions to Exercises

Solution to Exercise 14.1
(a) The structure is shown in Figure 14.16 (s means “swerve”, ds means “don’t swerve”):

Bill Bill
S ds S ds
s1 O 8|0 100 s| 85 85(85 100
Albert Albert
ds| 100 8550 O ds[100 85[0 O
Albert is reckless Albert is normal
Albert : @ @
Bill : [oc 0.2 B 0.8)
true state

Figure 14.16: The one-sided incomplete information situation for Exercise 14.1.

(b) The Harsanyi transformation yields the game shown in Figure 14.17.

Nature

°
reckless normal
0.2 0.8
Albert Albert

AN / \ds

R \ Bill . '.‘
/ Ys / Ys / Xis / Xis
100 lOO 0 (Albert’s payoff)

85 100 85 0 85 100 85 O (Bill’s payoff)

Figure 14.17: The game obtained by applying the Harsanyi transformation to the situation
of Figure 14.16.

(¢) The corresponding strategic-form game is shown in Figure 14.18.

(d) There is only one pure-strategy Bayesian Nash equilibrium, namely ((ds,ds),s) and
it is a pooling equilibrium.
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S ds
(0.8)85 = (0.8)85 —

A S, 8 68 85 6 100
1 (0.8)100 =

s, ds 85 0
b ~ (0.2)100
e (0.8)85+ (0.2)100 = (0.8)85+ (0.2)50 =

ds, s 88 85 78
T = (0.8)100
t (0.2)50 =

ds,ds| 100 85 10 0

Figure 14.18: The strategic form of the game of Figure 14.17.

Solution to Exercise 14.2

(a) The structure is shown in Figure 14.19
(g means “gift”, ng means “no gift”, a means “accept’ and r means “reject”).

Bill

Bill

Bill :

Ann :

Figure 14.19: The one-sided incomplete-information structure for Exercise 14.2.

Bill is a friend

©

Bill is an enemy

®

(=7

1—p ﬁ)

T

true state

(b) The Harsanyi transformation yields the game shown in Figure 14.20.

(c) The corresponding strategic-form game is shown in Figure 14.21.
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Nature
> AN\
. o (S)
D 1- PN\
Bill Bill
N eA\m
(: y Ann y
ARNFA
{  J
1 —1 0 1 —1 0 (Bill’s payoff)
1 0 0 —1 0 0 (Ann’s payoff)

Figure 14.20: The game obtained by applying the Harsanyi transformation to the
incomplete-information situation of Figure 14.19.

Ann
a r
88 1 2p—1 -1 0
Bill
ng, gl 1—p p—1 p—1 0
ng,ngl 0 0 0 0

Figure 14.21: The strategic form of the game of Figure 14.20.

@ If p> % then there are two pure-strategy Bayesian Nash equilibria: ((g,g),a) and
((ng,ng), r). Both of them are pooling equilibria. If p < % then there is only one
Bayesian -Nash equilibrium: ((ng,ng), r) (a pooling equilibrium).

(e) If p= zlt the only Bayesian-Nash equilibrium is ((ng,ng),r) and the outcome is that
Bill does not offer a gift to Ann. This outcome is Pareto inefficient in the true game
because, given that the true state of affairs is one where Bill is a friend, a Pareto
superior outcome would be one where Bill offers a gift and Ann accepts; it is also
Pareto inefficient in the game of Figure 14.21 (both players prefer the outcome
associated with the strategy profile ((g,ng), a)). O



14.6 Solutions To Exercises 551

Solution to Exercise 14.3
The game is shown in Figure 14.22.

Nature
([ )

2

AVAVATATA

e o e o
0 3 30 3 3 0 0 3 3 0
3 9 3 0 3 9 3 0 1 2 4 3

Figure 14.22: The game for exercise 14.3.

Nature’s probabilities are obtained by solving the following system of equations, to obtain
a common prior:

[OSTE

Pa+Pg

Pp
pp+ry

RENIOS)

Patpp+py=1
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Solution to Exercise 14.4
(a) The four games are shown in Figure 14.23.

Player 2 Player 2
B H B H
Player B|—20 —=20| 20 0 | B|—20 —40]|20 20
Fowlo 2000 o0 Hl 0 0|0 20
The game G(by,b,) The game G(by,not-b,)
Nash equilibria: (H,B) and (B,H) Nash equilibrium: (B,H)
Player 2 Player 2
B H B H
Player B|—40 =20 O 0 | B|—40 —40] 0 20
Fowl20 20020 0 H| 20 0]20 20
The game G(not-by,b;) The game G(not-by,not-b,)
Nash equilibrium: (H, B) Nash equilibrium: (H,H)

Figure 14.23: The four games of Part (a) of Exercise 14.4.

(b) (b.1) The pure-strategy Nash equilibria are written under each game in Figure 14.23.

(b.2) Let p be the probability that Player 1 plays B and g the probability that Player
2 plays B. Then the mixed-strategy equilibrium is given by the solution to
—20g+20(1 —g) = 0 and —20p +20(1 — p) = 0, which is p =g = 3.

(¢) The structure is shown in Figure 14.24.

B CEED B CET

bi,b, by,not-b, not-by,b, not-b,not-b,

2 loé' ° ’o l
!

true

state

| —
| —

(SATE
SR

| —

Figure 14.24: The two-sided incomplete-information structure of Part (c) of Exercise 14.4.
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(d) First of all, note that the common prior is

1 4 4 1

1 1 1 10

( (b] , bz) (b] ,hot —bz) (IlOt -by, bz) (IlOt -b1,not —bz) )

The extensive-form game is shown in Figure 14.25.

Nature

T

—40 0 20 20—-40 0 20 20
20 -200 20 0 —40 20 0 20

[ ] o o [ ] [ ] [ ]
—20 20 O 0 =20 20
-20 0 20 0 —40 20

Figure 14.25: The game obtained by applying the Harsanyi transformation to the
incomplete-information situation of Figure 14.24.

(e) One possible strategy for Player 1 is (B,H) which means “if I am the b type then I
go to the bar and if I am the not-b type then I go home”.
(f) The strategic form is shown in Figure 14.26.
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Player 2
B,B B,H H,B H,H

Y

B,B|—-30 =30 —10 O |—10 —=20] 10 10

Player B.H|[ 0 —10| 16 16 [ 4 —16| 20 10
1 HB|[-20-10| -16 4|4 —4[ 0 10

HH| 10 10 10 20 10 O 10 10

Figure 14.26: The strategic form of the game of Figure 14.25.

(g) There is a unique pure-strategy Nash equilibrium, namely ((B,H), (B,H)) where

each player goes to the bar if he is a b type and goes home if he is a not-b type. This
can be found either the long way, by filling in all the payoffs in the above matrix, or
by reasoning as follows: For each player, going home is strictly better than going to
the bar if the player is of type not-b, no matter what she anticipates the other player
doing (in other words, H strictly dominates B at the information set where not-b;
holds). Thus the question is what to do if you are of type b. You know that the other
player is going home if he is of type not-b, thus you only need to consider his choice
if he is of type b; if his plan is to go home also in that case, then B gives you 20 for
sure and H gives you 0 for sure, hence B is better; if his plan is to go to the bar, then
H gives you 0 for sure while B gives you the lottery

=20 20

wn|—
W~

that is, an expected payoff of 12; hence B is better in that case too.

(h) At the true state, both players prefer going to the bar, thus

(h.1) they both end up going to the bar and

(h.2) they both get a payoff of —20.

(h.3) (B,B) is not a Nash equilibrium of the game that they are actually playing
(game G(b1,by)).

(i) If the true game is G(by,b;) they end up playing (B,B) which is not a Nash

equilibrium of that game,

if the true game is G(by,not - by) they end up playing (B,H) which is a Nash
equilibrium of that game,

if the true game is G(not - b1,b;) they end up playing (H,B) which is a Nash
equilibrium of that game

and if the true game is G(not - by, not - by) they end up playing (H,H) which is a
Nash equilibrium of that game.

Since the probability of G(by,b;) is %, the probability that they end up playing a
Nash equilibrium of the actual game is %. 0
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Solution to Exercise 14.5
(a) The game is shown in Figure 14.27.

Nature

Figure 14.27: The extensive-form game for Exercise 14.5.

Nature’s probabilities are obtained solving the following system of equations:

=, ==, =~ Patpgtpytps=1
Patpg 4 pptpy 27 pytps 4 TOTPRTHY

(b) Player 1 has 8 strategies: 717, TTB, TBT, TBB, BTT, BTB, BBT, BBB. Player 2
has four strategies: LL, LR, RL, RR.

(c) Player 1’s beliefs must be % at the left node and % at the right node of his middle
information set.
Player 2’s beliefs at her information set on the left must be: i at the left-most node
and % at the third node from the left. The same is true for the other information set
of Player 2. U

Solution to Exercise 14.6
The Harsanyi transformation requires that there be a common prior. Thus we need a
probability distribution v : {ct, B,7,8} — (0,1) such that:

vi@ 1 vi) 2 viB)  _ 1 v
Diyerm =5 @wmom =3 Oupnm =3 0d @ g =7,
From (1) we get v() =4v(a), from (2) we get v(y) =2v(8) from (3) we get
v(y) = 2v(9); these three equalities, together with v(o) +v(B)+ v(y) + v(8) = 1 yield

a B Y )
4 3 4

17 17 17 1

a unique solution, namely v = . This is a common prior

1
if and only if p = v(av)(ﬁz((s) = Lii = % Thus p = % is the only value that makes it
17717

possible to apply the Harsanyi transformation. U
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Solution to Exercise 14.7
The game under consideration is reproduced in Figure 14.28.

4 00 04 22 O 4 22 04 00 O

1 00 21 04 1 1 04 11 0O0 2

0o 00 OO0 22 O 0 22 00 0O0 O

®e o0 *o *o0o * e o0 *o0o *o0 °

E\ F E\/F E\/F E\/F E\/F E\/F E\/F E\/F
S S o Y &0 ¥
A pa A £

o o L L
4 0 4 0
1 0 4 1
0 0 0 0

Figure 14.28: The game for Exercise 14.7.

Given the complexity of the game, it is definitely not a good idea to construct the cor-
responding strategic form. It is best to think in terms of weak sequential equilibrium.
Consider the assessment (0, it ), highlighted in the Figure 14.28 by thick arrows, where
0 = (BBB, CC, EEE) (that is, o is the pure-strategy profile where Player 1 chooses B at
each of his three information sets, Player 2 chooses C at each of her two information sets
and Player 3 chooses E at each of her three information sets) and u is the following system
of beliefs (shown in square brackets in Figure 14.28):
o Player 1 attaches probability % to each node in his bottom information set;

o Player 2, at her information set on the left, attaches probability % to the second node

from the top and probability % to the bottom node and,
at her information set on the right, attaches probability 3—1 to the second node from
the top and probability % to the bottom node;

o Player 3, at her top information set, attaches probability % to the left-most node and
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probability % to the second node from the right and,

at her bottom-left information set, attaches probability 1 to the third node from the
left and,

at her bottom-right information set, attaches probability 1 to the left-most node.

Let us verify that (o, i) is a weak sequential equilibrium. The beliefs described above
are obtained from ¢ using Bayesian updating. Thus we only need to check sequential
rationality.
For Player 1:
1. at the top-left node, both A and B give the same payoff (namely, 4),
thus B is sequentially rational;
2. the same is true at the top-right node;
3. at the bottom information set both A and B give an expected payoff of %(4) + %(4) =
4, thus B is sequentially rational.

For Player 2:
1. at the left information set C gives an expected payoff of +(1)+%(1) =1
while D gives %(0) + %(O) =0, thus C is sequentially rational;
2. at the information on the right C gives an expected payoff of %(1) + %(4) =7
while D gives an expected payoff of %(O) + %(1) = %,

thus C is sequentially rational.

For Player 3:
1. at the top information set both E and F give an expected payoff of %(0) + %(0) =0,
thus E is sequentially rational;
2. at the bottom-left information set both £ and F' give a payoff of 0,
thus E is sequentially rational;
3. the same is true at the bottom-right information set. U

Solution to Exercise 14.8
(a) The structure is shown in Figure 14.29.

(b) The game is shown in Figure 14.30.

Player 1: @

Player 2: (a @ C

Figure 14.29: The two-sided incomplete-information structure for Exercise 14.8.
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5 4 4 4
0
[ ] [ ]
e foy e\ fo
= -

{a,% /c}

(/\\

I
@t/ \fo) ./

Nature (a, 7 \‘j
factf \} {ac1f \goy 1@ \ /

4 5

{0}

DN N
N B~
W O
no—
Do—
Do—

Figure 14.30: The extensive-form game for the incomplete-information situation of Figure
14.29.

(c.1) The strategic form is as follows (where the strategy (x,y) for Player 1 means x
if {a,b} and y if {c} and the strategy (z,w) for Player 2 means z if {a,c} and
wif {b}). Given inside each cell are the sets of outcomes:

Player 2
({a.c}{a,c}) ({a.c}.{p}) ({p}{a.c}) ({p}.{0})
({a,b}.{a,b}) [{(5,5),(5,0),(0,5)} |{(5,5),(4,1),(0,5)} | {(4,6),(5,0),(1,4)}/{(4,6),(4,1),(1,4)}
Pl ({a,b}.{c}) [{(5.5),(5,0),(1,4)} |{(5.5),(4,1),(1,4)} | {(4,6),(5,0),(1,4)} |{(4,6),(4,1),(1,4)}
1 ({c}{a,b}) [{(6,4),(4,1),(0,5)}{(6,4),(4,1),(0,5)} | {(5,5),(4,1),(1,4)} |{(5.5),(4,1),(1,4)}
({ch{ch)  [{(6,4),(4,1),(1,4)}{(6,4),(4,1),(1,4)} | {(5,5),(4,1),(1,4)}]{(5,5),(4,1),(1,4)}

Taking as payoffs the smallest sum of money in each cell (for the corresponding
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player) the game can be written as follows:

Player 2
({a,c}{a,c})  ({a,c},{b}) ({b}{a,c})  ({b},{})
({a,b},{a,b}) 0 0 0 1 10 11
Pl ({a,b},{c}) 1 0 1 1 1 0 1 1
1 ({c},{a,b}) 0 1 0 1 1 1 1 1
({c},{c}) 1 1 1 1 1 1 1 1

(c.2) There are 9 Nash equilibria, namely all the strategy profiles with payoffs (1,1).

(c.3) Truth telling is represented by the following strategy profile and it is one of the
Nash equilibria: (({a,b},{c}) ({a,c},{b})).

(c) (d.1) No. If the state is b then it is a good idea for Player 2 to report truthfully
because {a,c} yields her O while {b} yields her 1.
But if the state is either a or ¢ then, by Bayesian updating, Player 2 must assign
probability % to the left-most node and probability % to the right-most node of
her bottom information set;
thus her expected payoff from reporting {a,c} is 1(5) + 5(4) = 4.5
while the expected payoff from reporting {b} is %(6) + %(4) =3.

(d.2) Yes. “Always lie” corresponds to the strategy profile (({c},{a,b}), ({6},{a,c})).
By Bayesian updating the corresponding beliefs must be: for Player 1 (%, %)
and for Player 2 (O, %, %,O) at the bottom information set and (0,1) at the top
information set.

Sequential rationality is then satisfied at every information set: for Player 1 at
Lig) = 14

the top information set {c} gives an expected payoff of 3(5) + 1(4) = &
while {a,b} gives %(4) +1(5) = 13_3
and at the singleton node on the right {a,b} gives 1 and so does {c}.

For Player 2 at the bottom information set {b} gives an expected payoff of
L(5)+1(4) =4.5and {a,c} gives 1 (4) +1(5) = 4.5,
and at the top information set both {a,c} and {b} give 1. [






15. Dynamic Games

One-sided incomplete information

At the conceptual level, situations of incomplete information involving dynamic (or
extensive-form) games are essentially the same as situations involving static games: the
only difference in the representation is that one would associate with every state a dynamic

game instead of a static game.!

As in the case of static games, we will distinguish between one-sided and multi-sided
incomplete information. In this section we will go through two examples of the former,

while the latter will be discussed in Section 15.2.

Recall that a situation of incomplete information is said to be one-sided if only one
of the players has some uncertainty about what game is being played. In Chapter 14 we
restricted attention to the case where the uncertainty is about the payoffs and we will
continue to do so in this chapter. The player who is uncertain about the game is often
referred to as the “uninformed” player, whereas the other players are referred to as the
“informed” players. It is common knowledge among all the players that the informed
players know what game they are playing; furthermore, the beliefs of the uninformed

player are common knowledge among all the players.

IThe reader might have noticed that in Exercise 14.2 (Chapter 14) we “sneaked in” a dynamic game
(where Bill moved first and decided whether or not to offer a gift, and Ann — if offered a gift — decided
whether or not to accept it). However, the game can also be written as a simultaneous game, where Ann
decides whether or not to accept before knowing whether Bill will offer a gift (without knowing Ann’s
decision).
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Consider the perfect-information game-frame shown in Figure 15.1, where the question
marks in place of Player 2’s payoffs indicate that her payoffs are not common knowledge
between the two players.

>0

oy

< - <t —
>

o O 0Ot—0
<o N

Figure 15.1: A perfect-information game-frame where the question marks indicate uncer-
tainty about Player 2’s payoffs.

Suppose that Player 1’s payoffs are common knowledge between the two players. Further-
more, suppose that Player 1 is uncertain between the two possibilities shown in Figure 15.2
and assigns probability % to the one on the left and probability % to the one on the right.
The double edges represent the backward-induction solutions of the two games. Thus, if
Player 1 knew that he was playing the game on the left, he would choose B, while if he
knew that he was playing the game on the right, he would choose T

1 7 2 4 I 7 2 4
° > >e ° >o >o
2 2
B D . B D
! ! ! :
1 0 ] 0
0 2 0 1

Figure 15.2: The two possibilities in the mind of Player 1.

If we assume that Player 1’s beliefs are common knowledge between the players, then
we have the situation of one-sided incomplete information shown in Figure 15.3. Let us
take state ¢ to be the true or actual state.

Using the Harsanyi transformation we can convert the situation illustrated in Figure 15.3
into the extensive-form game shown in Figure 15.4.
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I 7 2 4 I 7 2 4

° >0 >o ° >0 >0
I I R

o o o o

1 0 1 0

0 2 0 1

[S—
)
®
Q| =
WIN
®
\—/

o B
Figure 15.3: A one-sided situation of incomplete information involving the two games of
Figure 15.2.

Nature
®
o /1 2
3 3 ﬁ
o&Eo’ 1 X)L»o
] ]
1 1
0 l T T l
2. °?
D A D A
° o ° o
0 2 0 2
2 1 1 2

Figure 15.4: The game obtained by applying the Harsanyi transformation to the incomplete-
information situation of Figure 15.3.
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The solution concept used for the case of static games was Bayesian Nash equilibrium
(that is, Nash equilibrium of the imperfect-information game obtained by applying the
Harsanyi transformation to the situation of incomplete information).

In the case of dynamic games this is no longer an appropriate solution concept, since — as
we know from Chapter 4 — it allows a player to “choose” a strictly dominated action at an
unreached information set. To see this, consider the strategic-form game associated with
the game of Figure 15.4, shown in Figure 15.5.

Player 2
DD DA AD AA

-

Player B
1 T|0

[OSTIEN
W] —
\O N Ne
WIN | =
_—
(\®)

wln| O

Figure 15.5: The strategic form of the game of Figure 15.4.

The Nash equilibria of the strategic-form game shown in Figure 15.5 (and thus the Bayesian
Nash equilibria of the game shown in Figure 15.4) are:

(B,DD),  (B,AD) and  (T,DA).

Of these, only (7,DA) is a subgame-perfect equilibrium. From now on we shall use either
the notion of subgame-perfect equilibrium or the notion of weak sequential equilibrium (in
the game of Figure 15.4 the two notions coincide). Thus we will take (7, DA) to be the
solution of the game of Figure 15.4. Since we postulated that the true game was the one
associated with state a, as a matter of fact the players end up playing (7, D) which is not
the backward induction solution of the true game. As pointed out in Chapter 14, this is not
surprising given the uncertainty in the mind of Player 1 as to which game he is playing.

Next we consider a more complex example, built on Selten’s Chain-Store game ana-
lyzed in Chapter 3 (Section 4). Recall that the story is as follows (we will consider the
special case where m, the number of towns and thus of potential entrants, is 2). A chain
store is a monopolist in an industry. It owns stores in two different towns. In each town the
chain store makes $5 million if left to enjoy its privileged position undisturbed. In each
town there is a businesswoman who could enter the industry in that town, but earns $1
million in an alternative investment if she chooses not to enter; if she decides to enter, then
the monopolist can either fight the entrant, leading to zero profits for both the chain store
and the entrant in that town, or it can accommodate entry and share the market with the
entrant, in which case both players make $1.5 million in that town. Thus, in each town the
interaction between the incumbent monopolist and the potential entrant is as illustrated in
Figure 15.6.
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Potential
entrant Incumbent

[ >0 >0
n share 15
out fight '
o
1
5

1.5

—hy

0

Figure 15.6: The game with only one potential entrant.

Decisions are made sequentially, as follows. At date ¢ (# = 1,2) the businesswoman in
town ¢ decides whether or not to enter and, if she enters, then the chain store decides
whether or not to fight in that town. What happens in town ¢ (at date #) becomes known to
everybody. Thus the businesswoman in town 2 at date 2 knows what happened in town 1
at date 1 (either that there was no entry or that entry was met with a fight or that entry was
accommodated).

Intuition suggests that in this game the threat by the Incumbent to fight early entrants
might be credible, for the following reason. The Incumbent could tell Businesswoman 1
the following:

“It is true that, if you enter and I fight you, I will make zero profits, while
by accommodating your entry I would make $1.5 million and thus it would
seem that it cannot be in my interest to fight you. However, somebody else is
watching us, namely Businesswoman 2. If she sees that I have fought your
entry then she might fear that I would do the same with her and decide to
stay out, in which case, in town 2, I would make $5 million, so that my total
profits in towns 1 and 2 would be $(0+5) = $5 million. On the other hand, if
I accommodate your entry, then she will be encouraged to enter herself and |
will make $1.5 million in each town, for a total profit of $3 million. Hence, as
you can see, it is indeed in my interest to fight you and thus you should stay
out.”

We showed in Chapter 3 that the notion of backward induction does not capture this
intuition. In the game depicting the entire interaction (Figure 3.11, Chapter 3) there
was a unique backward-induction solution whose corresponding outcome was that both
businesswomen entered and the Incumbent accommodated entry in both towns. The
reason why the backward-induction solution did not capture the “reputation” argument
outlined above was explained in Chapter 3. We remarked there that, in order to capture the
reputation effect, one would need to allow for some uncertainty in the mind of some of the
players. This is what we now show.
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Suppose that, in principle, there are two types of incumbent monopolists: the rational
type and the hotheaded type. The payoffs of a rational type are shown in Figure 15.7
(a rational incumbent prefers ‘share’ to ‘fight’ if there is entry), while the payoffs of a
hotheaded type are shown in Figure 15.8 (a hotheaded type prefers ‘fight’ to ‘share’ if
there is entry). On the other hand, there is only one type of potential entrant.

Incumbent
fight share
Potential in | 0 015 15
entrant out| | 5 1 5

Figure 15.7: The payoffs of a rational incumbent.

Incumbent
fight share
Potential in | O 2 1.5 1.5
entrant out| 1 5 1 5

Figure 15.8: The payoffs of a hotheaded incumbent.

Consider the following situation of one-sided incomplete information.

o As a matter of fact, the Incumbent is rational and this fact is common knowledge
between the Incumbent and Potential Entrant 1 (from now on denoted by PE-1).

o Potential Entrant 2 (PE-2) is uncertain whether the Incumbent is rational or hot-
headed and attaches probability p to the latter case. The beliefs of PE-2 are common
knowledge as are the payoffs of PE-1 and PE-2.

This situation can be illustrated with the knowledge-belief structure of Figure 15.9.

Iis
hotheaded

®
®

» B)

Iis
rational

I: @
PE-1: ()
PE-2: (@ (-»)

T

true
state

Figure 15.9: The one-sided incomplete-information situation.
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Applying the Harsanyi transformation to the situation depicted in Figure 15.9 yields the
extensive-form game shown in Figure 15.10. We want to see if this situation of one-
sided incomplete information can indeed capture the reputation effect discussed above;
in particular, we want to check if there is a weak sequential equilibrium of the game of
Figure 15.10 where the Incumbent’s strategy would be to fight PE-1’s entry in order to
scare off PE-2 and, as a consequence, PE-1 decides to stay out and so does PE-2.

Nature

hot head ed o [iongy
PE-1 o/ moPE_ I

out

I o o
0 0 (PE-1’s payoff)
2,§ ?9; ; §m 1 (PE-2’s payoff)
5 (I's payoff)
° ° °
0 0 0
1.5 0 1.5
35 4 1.5

Figure 15.10: The game obtained by applying the Harsanyi transformation to the one-sided
situation of incomplete information of Figure 15.9.

The notion of weak sequential equilibrium allows us to simplify the game, by selecting
the strictly dominant choice for the Incumbent at each of his singleton nodes followed only
by terminal nodes. It is straightforward to check that at such nodes a hotheaded Incumbent
would choose “fight” while a rational Incumbent would choose “share”. Thus we can
delete those decision nodes and replace them with the payoff vectors associated with the
optimal choice.
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The simplified game is shown in Figure 15.11.

Nature
ot headed e Tationg,
PE-1 ° / m‘PE‘ 1

/ out | / out

in out in out
Y Y
° o ® o
0 0 0 0
0 1 1.5 1
4 7 1.5 5

Figure 15.11: The reduced game obtained from Figure 15.10 by eliminating strictly
dominated choices.

Consider the following pure-strategy profile, call it o, for the simplified game of Figure
15.11 (it is highlighted by thick arrows in Figure 15.11):

1. PE-1’s strategy is “out” at both nodes,

2. PE-2’s strategy is
- “out” at the top information set (after having observed that PE-1 stayed out),
- “in” at the middle information set (after having observed that PE-1’s entry was
followed by the Incumbent sharing the market with PE-1)
- “out” at the bottom information set (after having observed that PE-1’s entry
was followed by the Incumbent fighting against PE-1),

3. the Incumbent’s strategy is to fight entry of PE-1 in any case (that is, whether the
Incumbent himself is hotheaded or rational).
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We want to show that o, together with the system of beliefs tt shown in square brackets in
Figure 15.11 (at her top-left information set PE-2 assigns probability O to the Incumbent
being hotheaded, at her top-right information set she assigns probability p to the Incumbent
being hotheaded, and at her bottom information set she assigns probability 1 to the
Incurlnbent being hotheaded) constitutes a weak sequential equilibrium for any value of
P =3

Bayesian updating is satisfied at PE-2’s top-right information set (the only information set
reached by ), and at the other two information sets of PE-2 any beliefs are allowed by
the notion of weak sequential equilibrium.

Sequential rationality also holds:

* For PE-1, at the left node “in” yields 0 and “out” yields 1, so that “out” is sequentially
rational; the same is true at the right node.

* For the Incumbent,
- at the left node “fight” yields 7 and “share” yields 3.5, so that “fight” is
sequentially rational;

- at the right node “fight” yields 5 and “share” yields 3, so that “fight” is sequen-
tially rational.

e For PE-2,
- at the top-right information set “in” yields an expected payoff of p(0)+ (1 —
p)(1.5) and “out” yields 1, so that “out” is sequentially rational as long as
P> 3
- at the top-left information set, given her belief that / is rational, “in” yields 1.5
and “out” yields 1, so that “in” is sequentially rational;

(13992

- at the bottom information set, given her belief that / is hotheaded, “in” yields 0
and “out” yields 1, so that “out” is sequentially rational.

Thus the equilibrium described above captures the intuition suggested in Chapter 3, namely
that — even though it is common knowledge between the Incumbent and PE-1 that the
Incumbent is rational and thus would suffer a loss of 1.5 by fighting PE-1’s entry — it is
still credible for the Incumbent to threaten to fight PE-1’s entry because it would influence
the beliefs of PE-2 and induce her to stay out; understanding the credibility of this threat,
it is optimal for PE-1 to stay out.

The above argument exploits the fact that the notion of weak sequential equilibrium
allows for any beliefs whatsoever at unreached information sets. However, the beliefs
postulated for PE-2 at her top-left and bottom information sets seem highly reasonable.
Indeed, as shown in Exercise 15.2, the assessment described above is also a sequential
equilibrium.
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We now turn to an example that deals with the issue of labor-management negotiations
and the inefficiency of strikes. It is not uncommon to observe a firm and a union engaging
in unsuccessful negotiations leading to a strike by the workers, followed by renewed
negotiations and a final agreement. Strikes are costly for the workers, in terms of lost
wages, and for the firm, in terms of lost production. Why, then, don’t the parties reach the
agreement at the very beginning, thus avoiding the inefficiency of a strike? The answer
in many cases has to do with the fact that there is incomplete information on the side of
the labor union and enduring a strike is the only credible way for the firm to convince the
union to reduce its demands. We shall illustrate this in a simple example of one-sided
incomplete information.

Consider the following game between a new firm and a labor union. The union requests
a wage (either high, wy, or low, wy) and the firm can either accept or reject. If the union’s
request is accepted, then a contract is signed and production starts immediately. If the
request is rejected, then the union goes on strike for one period and at the end of that period
makes a second, and last, request to the firm, which the firm can accept or reject. If the
firm rejects, then it cannot enter the industry. When no agreement is signed, both parties
get a payoff of 0.
Both the firm and the union have a discount factor of é with 0 < 8 < 1, which means that
$1 accrued one period into the future is considered to be equivalent to $0 at the present
time (this captures the cost of waiting and thus the desirability of avoiding a strike).

The extensive-form game is shown in Figure 15.12, where 7 denotes the firm’s profit
(gross of labor costs).

Union
Fir / Firm
wg 04_ —_—0
T —WH Yes T—wp,
No No
Union @ ® Union
/ \ Firm Flrm
owy 04—. Firm Firm _>‘ owp
o(z = wi) No Yes/\No Yes/\No No o(z—wi)
') ° ° ° ° )
0 owy 0 Swy 0 0
0 5(7’[*WL) 0 5(7[*WH) 0 0

Figure 15.12: The structure of the wage bargaining game.
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Suppose, however, that the union does not know the firm’s expected profit 7 (gross of
labor costs). It is not unlikely that the management will know what profits to expect, while
the union will not (because, for example, the union does not have enough information on
the intensity of competition, the firm’s non-labor costs, etc.).

Suppose that we have a one-sided incomplete information situation where the union
believes that 7w can have two values: 7wy (high) and 77 (low) and assigns probability & to
7y and (1-o) to 7z

This situation of one-sided incomplete information is illustrated in Figure 15.13.

The game with The game with
T =Ty T =17y

Union: (e« (1-a) o)

Firm: @ @

Figure 15.13: The one-sided situation of incomplete information involving the wage
bargaining game of Figure 15.12.

Let ty > mp > 0 and wy > wy, > 0 (thus H means “high” and L means “low”).

We also assume that

* gy —wpg > 0 (so that the high-profit firm could in fact afford to pay a high wage),

e m; —wg >0 (thatis, the low wage is sufficiently low for the low-profit firm to be

able to pay it), and
* 1, —wp < 0 (thatis, the low-profit firm cannot afford to pay a high wage).
Finally, we assume that the true state is the one where w = 7z, that is, the firm’s potential

profits are in fact low. These assumptions imply that it is in the interest of both the firm

and the union to sign a contract (even if the firm’s profits are low).

Using the Harsanyi transformation we can convert the situation shown in Figure 15.13

into the extensive-form game shown in Figure 15.14.
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Nature

Union e

(o
AN
WH wL WH wr
Firm Firm Firm Firm
@ [ J @ [ )

i i
o o o o
wy NO wr, NO Wy N 0 wr, NO
TTH — WH TH — WL, T, — WH T, —wL
. 4
Union A)

/ \ W% wr,
Firm Firm Firm Firm
° .
/ lNo Yes/ \\10 Y’VlNo Yes/ \\10
0 0
0 0

[ [ ] [

Swy 5 wy Swy Swy, 0

S(ﬂywa) 6(7TH7WL) 0 S(ﬂL*WH) S(ﬂwaL) 0
G{ Union

W% wr / \
Firm Firm Firm Firm
. °
Y:S/lNO Yes/ \\10 / lNO Yes/ x\io
[ J

0 0

0 ) 0

Figure 15.14: The game obtained by applying the Harsanyi transformation to the situation
of incomplete information of Figure 15.13.

Let us find conditions under which the following strategy profile is part of a separating
weak sequential equilibrium:

1. The union requests a high wage in the first period.
2. The high-profit firm accepts while the low-profit firm rejects.

3. After rejection of the first-period high-wage offer the union requests a low wage and
the firm accepts.

That is, we want an equilibrium where the low-profit firm endures a strike to signal to the
union that its expected profits are low and cannot afford to pay a high wage. The union
reacts to the signal by lowering its demand.

Of course, we need to worry about the fact that the high-profit firm might want to mas-
querade as a low-profit firm by rejecting the first-period offer (that is, by sending the same
signal as the low-profit firm).
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First of all, we can simplify the game by replacing the second-period choice of the firm
with the outcome that follows the best choice for the firm (which is “accept wy” for both
the 7y and the 77 firm, “accept wy” for the 7y firm and "reject wy™ for the 7z firm).

The simplified game is shown in Figure 15.15.

Nature

0{ Union \))
Firm Firm Firm Firm
/o Y/. Y/. Y/.
Yes es es es

WH No WL No WH No wr, No
Ty — Wy Ty —wr, T, —WH T, —wr,
(1 Union 1)
[  J
owy owr 0 Swy,
O(mg —wr) (g —wr) 0 O(mp—wr)

v . v
(.\ Union l.)
W;f/ \:u Wﬁ/ \:vL
[ ® [ ®
Swy Swy, 0 Swr
O(mg —wn)  8(mg —wr) 0 S(my —wr)

Figure 15.15: The simplified game after eliminating the second-period choice of the firm.

In order for a low-wage offer to be optimal for the union in period 2 it is necessary for the
union to assign sufficiently high probability to the firm being a low-profit one: if p is this
probability, then we need the following (for example, p = 1 would be fine):

wL

owr > (1—p)owp, that is, p>1——
WH

For the high-profit firm not to have an incentive to send the same signal as the low-profit
firm it is necessary that

g —W
5§H H

Ty —wy >0 (7'L'H — WL) , that is, .
T — wi,
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If this condition is satisfied, then the high-profit firm will accept wy in period 1, the
low-profit firm will reject and Bayesian updating requires the union to assign probability 1
to the right node of its middle information set (that is, to the firm being a low-profit type),
in which case adjusting its demand to wy, is sequentially rational.

On the other hand, requesting a low wage in period 1 will lead to both types of the firm
accepting immediately. So in order for a high-wage offer to be optimal for the union in
period 1 it is necessary that w;, < awy + (1 — o) dwy, which will be true if « is sufficiently

large, that is, if
P )L
~ wy —Oowg,

Finally, given the above strategies, the notion of weak sequential equilibrium imposes no
restrictions on the beliefs (and hence choice) of the union at the bottom information set.

For example, all of the above inequalities are satisfied if:
g =100, @ =55 wy=60, w,=50, a=0.7 &6=0.6.

Given the above values, 7wy —wy =40 > §(my —wr) = 0.6(50) =30
and wy = 50 < awg + (1 — a)dwy = (0.7)60+0.3(0.6)50 = 51.

We conclude this section with one more example that has to do with the effectiveness
of truth-in-advertising laws.

Consider the case of a seller and a buyer. The seller knows the quality x of his product,
while the buyer does not, although she knows that he knows. The buyer can thus ask the
seller to reveal the information he has. Suppose that there is a truth-in-advertising law
which imposes harsh penalties for false claims. This is not quite enough, because the seller
can tell the truth without necessarily revealing all the information.

For example, if x is the octane content of gasoline and x = 89, then the following are
all true statements:

“the octane content of this gasoline is at least 70”
“the octane content of this gasoline is at least 85”
“the octane content of this gasoline is at most 89”

“the octane content of this gasoline is exactly 89, etc.

Other examples are:

o the fat content of food (the label on a package of ground meat might read “not more
than 30% fat”),

o fuel consumption for cars (a car might be advertised as yielding “at least 35 miles
per gallon”),

o the label on a mixed-nut package might read “not more than 40% peanuts”, etc.
An interesting question is: Would the seller reveal all the information he has or would

he try to be as vague as possible (while being truthful)? In the latter case, will the buyer be
in a worse position than she would be in the case of complete information?
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Milgrom and Roberts (1986) consider the following game (resulting from applying the
Harsanyi transformation to the situation of one-sided incomplete information described
above).

1. First Nature selects the value of x, representing the seller’s information, from a
finite set X; as usual, the probabilities with which Nature chooses reflect the buyer’s
beliefs.

2. The seller “observes” Nature’s choice and makes an assertion A to the buyer; A is a
subset of X. The seller is restricted to make true assertions, that is, we require that
x EA.

3. The buyer observes the seller’s claim A and then selects a quantity ¢ > 0 to buy.

Milgrom and Roberts show that (under reasonable hypotheses), if the buyer adopts a
skeptical view concerning the seller’s claim, that is, she always interprets the seller’s
claim in a way which is least favorable to the seller (for example “not more than 30%
fat” is interpreted as “exactly 30% fat”), then there is an equilibrium where the outcome
is the same as it would be in the case of complete information. We shall illustrate this
phenomenon by means of a simple example.

Suppose that there are three possible quality levels for the good under consideration:
low (/), medium (m) and high (h); thus X = {{,m,h}. The buyer believes that the three
quality levels are equally likely. The buyer has to choose whether to buy one unit or two
units. The seller can only make truthful claims. For example, if the quality is /, the seller’s
possible claims are {/} (full revelation) or vague claims such as {l,m}, {l,h}, {{,m,h}.
The extensive-form game is shown in Figure 15.16.

It is straightforward to check that the following is a weak sequential equilibrium:

* The seller claims {/,m,h} if Nature chooses /, {m,h} if Nature chooses m and {h}
if Nature chooses # (that is, the seller makes a vague claim by adding to the actual
quality all the higher qualities).

» The buyer adopts beliefs which are least favorable to the seller and acts accordingly:

- if told {I,m} or {l,h} or {l,m,h} she will believe [ with probability one and
buy one unit,

- if told {m, h} she will believe m with probability one and buy two units.

- if told {A} she buys two units.

All these beliefs satisfy Bayesian consistency (some of them trivially so, since the
corresponding information set is not reached).

On the other hand, as shown in Exercise 15.4, if the buyer is naive then there is a
sequential equilibrium where the seller is able to mislead the buyer.
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Figure 15.16: The buyer-seller game representing a situation of one-sided incomplete
information.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 15.3.1 at the end of this chapter.

Multi-sided incomplete information

The case of situations of multi-sided incomplete information involving dynamic games
is conceptually the same as the case of multi-sided situations of incomplete information
involving static games. In this section we shall go through one example.

Consider the following situation of two-sided incomplete information. A seller (player
S) owns an item that a buyer (player B) would like to purchase. The seller’s reservation
price is s (that is, she is willing to sell if and only if the price paid by the buyer is at least s)
and the buyer’s reservation price is b (that is, he is willing to buy if and only if the price is
less than or equal to b). It is common knowledge between the two that
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- both b and s belong to the set {1,2,...,n},
- the buyer knows the value of b and the seller knows the value of s,
- both the buyer and the seller attach equal probability to all the possibilities among
which they are uncertain.
Buyer and Seller play the following game. First the buyer makes an offer of a price
p €{1,...,n} to the seller. If p = n the game ends and the object is exchanged for $p.

If p < n then the seller either accepts (in which case the game ends and the object is
exchanged for $p) or makes a counter-offer of p’ > p, in which case either the buyer
accepts (and the game ends and the object is exchanged for $p’) or the buyer rejects, in
which case the game ends without an exchange.

Payoffs are as follows:

0 if there is no exchange
Tseller = . .
x—s  if exchange takes place at price $x
0 if there is no exchange
Thuyer = b—p if exchange takes place at price $p (the initial offer)

b—p'—¢e  if exchange takes place at price $p’ (the counter-offer)

where € > 0 is a measure of the buyer’s “hurt feelings” for seeing his initial offer rejected.

These are von Neumann-Morgenstern payoffs.

Let us start by focusing on the case n = 2. First we represent the situation described
above by means of an interactive knowledge-belief structure. A possible state can be
written as a pair (b,s), where b is the reservation price of the buyer and s that of the seller.

Thus when n = 2 the possible states are (1,1), (1,2), (2,1) and (2,2). Figure 15.17 represents
this two-sided situation of incomplete information.

(1,1) (1,2) (1,1) (1,2)
1 1 1 1

2 2 2 2

BUYER: SELLER:
2.0 (2,2) 2.1 (2,2)
1 1

Figure 15.17: The two-sided situation of incomplete information between a buyer and a
seller.

For each state there is a corresponding extensive-form game. The four possible games are
shown in Figure 15.18 (the top number is the Buyer’s payoff and the bottom number the
Seller’s payoff).
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Figure 15.18: The four games corresponding to the four states of Figure 15.17.
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The extensive-form game that results from applying the Harsanyi transformation to the
situation illustrated in Figure 15.17 is shown in Figure 15.19.

Nature

(o<

Seller 0

Yes p =2 / p =

0
. Buyer ‘ O C Buyer ‘
AN \N” AN \“

—1—¢ —1—¢ — —

1 0 0 o 5 o 0 0

Figure 15.19: The extensive-form game that results from applying the Harsanyi transfor-
mation to the situation illustrated in Figure 15.17.

Let us find all the pure-strategy weak sequential equilibria of the game of Figure 15.19.
First of all, note that at the bottom information sets of the Buyer, “Yes” is strictly dominated
by “No” (“Yes” gives the buyer a negative payoff, while “No” gives him a payoff of 0) and
thus a weak sequential equilibrium must select “No”.
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Hence the game simplifies to the one shown in Figure 15.20.

Nature

0 1

0 4 0 4
Y ® Y °
0 0 0 0
0 0 0 0

Figure 15.20: The reduced game after eliminating the strictly dominated choices.

In the game of Figure 15.20, at the middle information of the Seller, making a counteroffer
of p’ = 2 strictly dominates “Yes”.

Thus the game can be further simplified as shown in Figure 15.21.
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Nature

<
<
<
«

SO @
SO @

G; Seller ::]

Yes p’ =2 Yes p/ =2
0 1
0
(
0 0
0 0

Figure 15.21: The further reduced game after eliminating strictly dominated choices from
the game of Figure 15.20.

In the game of Figure 15.21 at the left information set of the Buyer p = 1 strictly dominates
p =2 (p =1 guarantees the buyer a payoff of 0, while p = 2 yields a negative payoff). By
Bayesian consistency, at the right information set the Buyer’s beliefs must be % on each
node so that if the Seller’s strategy is to say “Yes”, then p = 1 is the only sequentially
rational choice there, otherwise both p = 1 and p = 2 are sequentially rational. Thus the
following pure-strategy weak sequential equilibria of the reduced game shown in Figure
15.21:

1. (( p=Lp=1), Yes) with beliefs given by probability % on each node at every
information set.

2. (( p=1lp=1),p = 2) with beliefs given by probability % on each node at every
information set.

3. ((p=1,p=2), p' =2) with beliefs given by (i) probability % on each node at both

information sets of the Buyer and (ii) probability 1 on the left node at the information
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set of the Seller.

These equilibria can be extended to the original game of Figure 15.19 as follows:

1. ((p=1,p=1,No,No), (p' =2,Yes)) with beliefs given by (i) probability § on
each node at both information sets of the Buyer at the top and at both information
sets of the Seller and (ii) probability 1 on the right node at both information sets of
Buyer at the bottom. The corresponding payoffs are: % for the Buyer and O for the
Seller.

2. ((p=1,p=1,No,No), (p' =2,p' =2)) with beliefs given by probability 5 on
each node at every information set. The corresponding payoffs are O for both Buyer
and Seller.

3. ((p=1,p=2,No,No), (p' =2,p' =2)) with beliefs given by
(i) probability % on each node at both information sets of the Buyer at the top and at
the lower left information set of the Buyer,
(ii) any beliefs at the lower right information set of the Buyer and
(iii) probability 1 on the left node at each information set of the Seller.
The corresponding payoffs are: 0 for the Buyer and i for the Seller.

Now let us consider the case n = 100. Drawing the interactive knowledge-belief
structure and the corresponding extensive-form game (obtained by applying the Harsanyi
transformation) is clearly not practical. However, one can still reason about what could
be a pure-strategy Bayesian Nash equilibrium of that game. As a matter of fact, there are
many Bayesian Nash equilibria.

One of them is the following:
o each type of the Buyer offers a price equal to his reservation price,

o the Seller accepts if, and only if, that price is greater than or equal to her reservation
price,

o at information sets of the Seller that are not reached, the Seller rejects and counterof-
fers $100,

o at information sets of the Buyer that are not reached the Buyer says “No”.

The reader should convince himself/herself that this is indeed a Nash equilibrium.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 15.3.2 at the end of this chapter.
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Exercises

Exercises for Section 15.1: One-sided incomplete information
The answers to the following exercises are in Section 15.4 at the end of this chapter.

A 1
] o< L J

B C

7
ARVA

2 23 24 ?

Figure 15.22: The extensive form for Exercise 15.1.

Consider the following situation of one-sided incomplete information. Players 1 and
2 are playing the extensive-form game-frame shown in Figure 15.22 (where z1, 22, etc.
are outcomes and the question mark stands for either outcome zs or outcome zg). The
outcome that is behind the question mark is actually outcome z5 and Player 1 knows
this, but Player 2 does not know. Player 2 thinks that the outcome behind the question
mark is either z5 or z¢ and assigns probability 25% to it being z5 and probability 75% to
it being zg. Player 2 also thinks that whatever the outcome is, Player 1 knows (that is, if
it is zs5, then Player 1 knows that it is z5, and if it is zg then Player 1 knows that it is z¢).

The beliefs of Player 2 are common knowledge between the two players.

(a) Represent this situation of incomplete information using an interactive knowledge-
belief structure.

(b) Apply the Harsanyi transformation to transform the situation represented in
Part (a) into an extensive-form game-frame. [Don’t worry about payoffs for the

moment. ]
(continues on the next page)
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From now on assume that the following is common knowledge:
1. Both players have von Neumann-Morgenstern preferences.
2. The ranking of Player 1 is

best second worst

244,26 <1 22,23,25

Z
and he is indifferent between z; for sure and the lottery :
05 05
3. The ranking of Player 2 is
best second third worst
76 24 22,25 <1,<3
Z
and she is indifferent between z4 for sure and the lottery :
05 05
. .. <6 2
and she is also indifferent between z, for sure and the lottery
025 0.75

(c) Calculate the von Neumann-Morgenstern normalized utility functions for the two
players.

(d) Is there a weak sequential equilibrium of the game of Part (b) where Player 1
always plays A (thus a pooling equilibrium)?

(e) Is there a weak sequential equilibrium of the game of Part (b) where Player 1
always plays C (thus a pooling equilibrium)?

(f) Is there a pure-strategy weak sequential equilibrium of the game of Part (b) where
Player 1 does not always choose the same action (thus a separating equilibrium)?

Exercise 15.2

Show that the assessment highlighted by thick arrows in the Figure 15.23 below (which
reproduces Figure 15.11) is a sequential equilibrium as long as p > % [The assessment
is fully described on page 568.] ]
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Nature
hot peaded_—® [iong)

1.5 15 1.5 1.5 1 1 1
0 1 1.5 1 0 1 1.5
35 65 3 65 7 10 6.5

e ]
in out in out
Y

Y
'Y [ ] o o
0 0 0 0
0 1 1.5 1
4 7 1.5 5

Figure 15.23: Copy of Figure 15.11.

Exercise 15.3

Consider again the game of Figure 15.23 (which reproduces Figure 15.11).

(a) For the case where p < %, find a pure-strategy weak sequential equilibrium where
PE-1 stays out but PE-2 enters; furthermore, the Incumbent would fight PE-1 if
she entered. Prove that what you propose is a weak sequential equilibrium.

(b) Either prove that the weak sequential equilibrium of Part (a) is a sequential
equilibrium or prove that it is not a sequential equilibrium.

Exercise 15.4

Show that in the “truth-in-advertising” game of Figure 15.16 - which is reproduced on
the next page - there is a weak sequential equilibrium where the seller makes vague
claims and the buyer ends up buying two units of the low-quality good with positive
probability. =
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Nature
®.

o
—

Seller

{l,m,h}
{1 1)

Buyer

Consider a simpler version of the “truth-in-advertising” game, where there are only two
quality levels: L and H. The payoffs are as follows:

e If the quality is L and the buyer buys one unit, the seller’s payoff is 9 and the
buyer’s payoff is 1,
* If the quality is L and the buyer buys two units, the seller’s payoff is 18 and the
buyer’s payoff is 0,
* If the quality is H and the buyer buys one unit, the seller’s payoff is 6 and the
buyer’s payoff is 2,
* If the quality is H and the buyer buys two units, the seller’s payoff is 12 and the
buyer’s payoff is 3,
Let the buyer’s initial beliefs be as follows: the good is of quality L with probability
p € (0,1) (and of quality H with probability 1 — p).
(a) Draw the extensive-form game that results from applying the Harsanyi transfor-
mation to this one-sided situation of incomplete information.

(b) Find the pure-strategy subgame-perfect equilibria of the game of Part (a) for every
possible value of p € (0,1).
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Exercises for Section 15.2: Multi-sided incomplete information
The answers to the following exercises are in Section 15.4 at the end of this chapter.

Consider the following situation of two-sided incomplete information. Players 1 and
2 are having dinner with friends and during dinner Player 2 insinuates that Player 1 is
guilty of unethical behavior.

- Player 1 can either demand an apology (D) or ignore (/) Player 2’s remark;

- if Player 1 demands an apology, then Player 2 can either apologize (A) or refuse
to apologize (not-A);
- if Player 2 refuses to apologize, Player 1 can either concede (C) or start a fight
(F).
Thus the sequence of moves is as shown in Figure 15.24 (where z1,...,z4 are the
possible outcomes).

Let U; be the von Neumann-Morgenstern utility function of Player i (i = 1,2). The
following is common knowledge between Players 1 and 2:

. U1(21)24, U1(Z2):2, U1(Z3):6
c Ux(z1)=6, Ua(z2)=8, Ua(mz)=2, Up(z4)=0.
* The only uncertainty concerns the value of U (z4). As a matter of fact, U} (z4) = 0;

Player 1 knows this, but Player 2 does not. It is common knowledge between
Players 1 and 2 that Player 2 thinks that either Uj(z4) = 0 or U;(z4) = 3.

Furthermore,

* Player 2 assigns probability }l to U} (z4) = 0 and probability % to Uy (z4) = 3;

 Player 1 is uncertain as to whether Player 2’s beliefs are

Ui(z4) =0 Ui(z4) =3 Ui(z4) =0
| 1

1

N

and he attaches probability % to each.

(a) Construct a three-state interactive knowledge-belief structure that captures all of
the above.

(b) Draw the extensive-form game that results from applying the Harsanyi transfor-
mation to the incomplete-information situation of Part (a).

(c) Find the pure-strategy weak sequential equilibria of the game of Part (b).
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Il D

@ ®
<1
not’-y X
1
[ [
<3
7 Y
® o
22 24
[ = ignore D = demand apology

A = apologize  not-A = not apologize
C = concede F = fight

Figure 15.24: The extensive form for Exercise 15.6.
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— xx+xChallenging Question x x x.

There are two parties to a potential lawsuit: the owner of a chemical plant and a supplier
of safety equipment. The chemical plant owner, from now on called the plaintiff, alleges
that the supplier, from now on called the defendant, was negligent in providing the
safety equipment. The defendant knows whether or not he was negligent, while the
plaintiff does not know; the plaintiff believes that there was negligence with probability
g. These beliefs are common knowledge between the parties.

The plaintiff has to decide whether or not to sue. If she does not sue then nothing
happens and both parties get a payoff of 0. If the plaintiff sues then the defendant can
either offer an out-of-court settlement of $S or resist. If the defendant offers a settlement,
the plaintiff can either accept (in which case her payoff is S and the defendant’s payoff
is =§) or go to trial. If the defendant resists then the plaintiff can either drop the case (in
which case both parties get a payoff of 0) or go to trial. If the case goes to trial then
legal costs are created in the amount of $P for the plaintiff and $D for the defendant.

Furthermore (if the case goes to trial), the judge is able to determine if there was
negligence and, if there was, requires the defendant to pay $W to the plaintiff (and each
party has to pay its own legal costs), while if there was no negligence the judge will
drop the case without imposing any payments to either party (but each party still has to
pay its own legal costs). It is common knowledge that each party is “selfish and greedy”
(that is, only cares about its own wealth and prefers more money to less) and is risk
neutral.

Assume the following about the parameters:
0<g<l, 0<D<S, O<P<S<W-P

(a) Represent this situation of incomplete information by means of an interactive
knowledge-belief structure (the only two players are the plaintiff and the defen-
dant).

(b) Apply the Harsanyi transformation to represent the situation in Part (a) as an
extensive-form game. [Don’t forget to subtract the legal expenses from each
party’s payoff if the case goes to trial.]

(c) Write all the pure strategies of the plaintiff.

(d) Prove that there is no pure-strategy weak sequential equilibrium which
(1) is a separating equilibrium and (2) involves suing.

(e) For what values of the parameters (g,S,P,W,D) are there pure-strategy weak
sequential equilibria which (1) are pooling equilibria and (2) involve suing?
Consider all types of pooling equilibria and prove your claim.

(f) Now drop the assumption that S < W — P. For the case where g = 11—2, P=70,S=

80 and W = 100 find all the pure-strategy weak sequential equilibria which (1)
are pooling equilibria and (2) involve suing.
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Solutions to Exercises

Solution to Exercise 15.1
(a) Let G| be the game with outcome z5 and G, the game with outcome zg. Then the
structure is as shown in Figure 15.25, with g = %. The true state is Q.

G G

0 ©)
p

2: (.q (1—Q)°)

Figure 15.25: The one-sided incomplete-information situation of Exercise 15.1.

(b) The extensive form is shown in Figure 15.26.

Nature

<1 04— —»0 <1

/\ /\
/\ AW /\

22 23 <4 <5 22 <3 <4 <6

Figure 15.26: The extensive form obtained by applying the Harsanyi transformation to the
incomplete-information situation shown in Figure 15.25.
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(¢) The von Neumann-Morgenstern utility functions are as follows:

21 22 23 24 5 <6
U 0.5 0 0 1 0 1
U, : 0 0.25 0 0.5 0.25 1

Adding these payoffs to the extensive form we obtain the game shown in Figure

15.27.
Nature
yey
g
<
o 0 1 o 0 0 1 1
0.25 0 05 025 0.25 0 05 1

Figure 15.27: The game obtained by adding the payoffs to the game-frame of Figure 15.26.

(d) No, because at the right node of Player 1, C gives a payoff of 1 no matter what
Player 2 does and thus Player 1 would choose C rather than A (which only gives him
a payoff of 0.5).

(e) No. If Player 1 always plays C (that is, his strategy is CC), then — by Bayesian
updating — Player 2 should assign probability % to node y and probability % to node
2,
in which case D gives her a payoff of 0.5
while E gives her a payoff of %(0.25) + %(1) = 0.8125; hence she must choose E.
But then at his left node Player 1 with C gets 0 while with A he gets 0.5.
Hence choosing C at the left node is not sequentially rational.

(f) Yes, the following is a weak sequential equilibrium:
xX 'y w z

o = (AC, E) with beliefs u = . It is straightforward to
0O 0 O 1

verify that sequential rationality and Bayesian updating are satisfied. U
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Solution to Exercise 15.2
Sequential rationality was verified in Section 15.1. Thus we only need to show that
the highlighted pure-strategy profile together with the following system of beliefs yu =

s t u v X

p 1—p 0 1 1 0
Figure 15.28) constitutes a consistent assessment (Definition 12.1.1, Chapter 12).

(for the names of the nodes refer to

Nature

inl1 ()m] ' in 1 out 1— %
Y Y
° [ ° o
0 0 0 0
0 1 1.5 1
4 7 1.5 5

Figure 15.28: The game for Exercise 15.2.

Let <6n>n:1’2 _ be the sequence of completely mixed strategies shown in Figure 15.28. It

is clear that lim 6, = o. Let us calculate the system of beliefs u, obtained from o, by
n—o0

using Bayesian updating:
= p(l—%) us lim p, (s S G
‘un(S)_p(l—%)—l-(l—p)(l—n%) th r}%w“"()_p—k(l—p)_p’
P(1) (%) _»
P()GE)+0=pnG)G)  pall-p)
e p(3)(1- ) ) p(1- 1) |
@ O=R) -G (-0 PR+ 0= () (1-7)

Thus, lim p,(x) = 1 (the numerator tends to p(1) = p and the denominator tends
n—oo

Wn(u) = thus 1i_r>n Wa(u) = 0;

to p(1)+ (1 —p)(0)(1) = p). Hence (o, ) is consistent and sequentially rational and
therefore it is a sequential equilibrium. U
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Solution to Exercise 15.3

(a) Consider the following pure-strategy profile, call it o, which is highlighted by thick
arrows in Figure 15.29:

o PE-1’s strategy is “out” at both nodes,

o PE-2’s strategy is
- “in” at the top-right information set (after having observed that PE-1 stayed
out),
- “in” at the top-left information set (after having observed that PE-1’s entry
was followed by the Incumbent sharing the market with PE-1),
- “out” at the bottom information set (after having observed that PE-1’s
entry was followed by the Incumbent fighting against PE-1).

o The Incumbent’s strategy is to fight entry of PE-1 in any case (that is, whether
the Incumbent himself is hotheaded or rational).

Nature

Sr—tk—‘.

. 1
in 1 out 1— o

4 Y
° o ® ®
0 0 0 0
0 1 1.5 1
4 7 1.5 5

Figure 15.29: The game for Exercise 15.3.
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We want to show that o, together with the system of beliefs y shown in Figure 15.29
(where at her top-right information PE-2 assigns probability p to the Incumbent being
hotheaded, at her top-left information set she assigns probability O to the Incumbent being
hotheaded and at her bottom information set she assigns probability 1 to the Incumbent
being hotheaded) constitutes a weak sequential equilibrium for any value of p < %

Bayesian updating is satisfied at PE-2’s top-right information set (the only non-singleton
information set reached by ), and at the other two information sets of PE-2 any beliefs
are allowed by the notion of weak sequential equilibrium.

Sequential rationality also holds:

* For PE-1, at the left node “in” yields 0 and “out” yields 1, so that “out” is sequentially
rational; the same is true at the right node.

* For the Incumbent,
- at the left node “fight” yields 7 and “share” yields 3.5, so that “fight” is
sequentially rational;
- at the right node “fight” yields 5 and “share” yields 3, so that “fight” is sequen-
tially rational.

e For PE-2,

- at the top-right information set “in” yields an expected payoff of p(0) + (1 —
p)(1.5) = (1—p)(1.5) and “out’ yields 1, so that “in” is sequentially rational
aslongas p < %;

- at the top-left information set “in” yields 1.5 and “out” yields 1, so that “in” is
sequentially rational;

- at the bottom information set “in” yields 0 and “out” yields 1, so that “out” is
sequentially rational.

(b) The assessment described in Part (a) is in fact a sequential equilibrium. This can be
shown using the sequence of completely mixed strategies marked in Figure 15.29,
which coincides with the sequence of mixed strategies considered in Exercise 15.2;
thus the calculations to show consistency are identical to the ones carried out in
Exercise 15.2.

0J
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Solution to Exercise 15.4
The game under consideration is the following (which reproduces Figure 15.16):

Nature

Buyer

10

Let the buyer be naive, in the sense that at every unreached information set she assigns
equal probability to each node; furthermore, let the buyer’s strategy be as follows: if told
{1}, buy one unit, in every other case buy two units.

Let the seller’s strategy be as follows: if Nature chooses / or m, claim {I,m} and if Nature
chooses £, then claim {h}.

Let us verify that this assessment constitutes a weak sequential equilibrium. The only
non-singleton information set that is reached by the strategy profile is the top information
set (where the buyer hears the claim {/,m}) and Bayesian updating requires the buyer to
assign equal probability to each node. Every other non-singleton information set is not
reached and thus the notion of weak sequential equilibrium allows any beliefs: in particular
beliefs that assign probability % to each node.
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Now we check sequential rationality.

Let us start with the buyer.

At the singleton node following claim {/}, buying one unit is optimal and at the
singleton nodes following claims {m} and {h} buying two units is optimal.

At the top information set (after the claim {/,m}) choosing one unit gives an expected

payoff of §(1)+ 3(2) = 1.5 and choosing two units yields 3(0) + 1(3) = 1.5, thus

buying two units is sequentially rational.

At the information set following claim {/, 4} choosing one unit gives an expected
payoff of 1(1) + 1(3) =2 while choosing two units yields 3(0) + 4(6) = 3, thus

buying two units is sequentially rational.

At the information set following claim {/,m,h} choosing one unit gives an expected

payoff of (1) +%(2) + 3(3) = 2 while choosing two units yields 1(0) + 5(3) +

%(6) = 3, thus buying two units is sequentially rational.

Finally, at the information set following claim {m,h} choosing one unit gives an

expected payoff of 1(2) + %(3) = 2.5 while choosing two units yields %(3) +3(6) =

4.5, thus buying two units is sequentially rational.

Now let us check sequential rationality for the seller’s strategy.

o

e}

At the left node (after Nature chooses /) claiming {/} yields a payoff of 9, while -
given the buyer’s strategy - every other claim yields a payoff of 18. Thus {/,m} is
sequentially rational.

At the other two nodes, the seller is indifferent among all the claims, because they
yield the same payoff (12 at the node after Nature chooses m and 10 at the node after

Nature chooses /) thus the postulated choices are sequentially rational. U
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Solution to Exercise 15.5
(a) The extensive form is shown in Figure 15.30.

Nature
L H

Seller p Seller

{L,H} {L,H} \j}
Buyer Buyer

o
9 18 9 18 6 12
1 0 1 0 2 3 2 3

Figure 15.30: The game for Exercise 15.5.

(b) At any subgame-perfect equilibrium, the buyer buys one unit at the singleton infor-
mation set on the left and two units at the singleton information set on the right.
Thus we can simplify the game by replacing the buyer’s node on the left with the
payoff vector (9,1) and the buyer’s node on the right with the payoff vector (12,3).
The simplified game is shown in Figure 15.31

Nature
L H
Seller P b=p Seller
L} {L,H} {L.H} {H}
¢ Gf Buyer ‘ﬁ °

—
()
[\
(O8]

Figure 15.31: The game for Exercise 15.5.
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The strategic form corresponding to the simplified game of Figure 15.31 is shown in
Figure 15.32. The buyer’s strategy refers to the buyer’s only information set that has
remained, where he is told {L,H }.

~ BUYER .
Buy 1 unit Buy 2 units

LLH| 9p+6(1—p) p+2(1=p) | 9p+12(1=p) p+3(1-p)

LH|9p+12(1-p) p+3(1—=p) | 9p+12(1-p) p+3(1—-p)

SELLER
LH,LH| 9p+6(1—p) p+2(1—p) | 18p+12(1—p) 3(1-p)

LH.H|9p+12(1—p) p+3(1—p) | 18p+12(1—p) 3(1-p)

simplifying: BUYER
1 2
LLH| 6+3p 2—p [(12—-3p 3-2p
LH|12—-3p 3-2p|12-3p 3-2p
SELLER

LH,LH| 643p 2—p |1246p 3-3p

LHH|12—-3p 3-2p|124+6p 3—-3p

Figure 15.32: The strategic form of the simplified game.

Since p <1, 12—3p > 6+3p. Thus ((LH,H),1) and ((L,H), 1) are always Nash
equilibria for every value or p € (0,1). Note that 2— p >3 —3p if and only if p > %;
thus if p > % then there are no other pure-strategy Nash equilibria.

On the other hand, if p < % then ((LH ,LH), 2) is also a Nash equilibrium.

To sum up, the pure-strategy Nash equilibria of this normal form, which correspond
to the pure-strategy subgame-perfect equilibria of the reduced extensive form, are as
follows:

« Ifp> 1, ((LH,H),1) and ((L,H),1);

« If p< 3, ((LH,H),1), ((L,H),1) and ((LH,LH),2).
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Solution to Exercise 15.6
(a) Let G| and G be the perfect-information games (whose backward induction solution
has been highlighted by means of thick arrows) shown in Figure 15.33.

AN N,
FAOre
ACA

o ° o
2 3§ 2 3
8 o 8 0

Game G, Game G,

Figure 15.33: The possible perfect information games for Exercise 15.6.

The interactive knowledge-belief structure is shown in Figure 15.34

game game game

G Gy G

1: (el (B) [iv
2: (@5 3B) (V)

true state

Figure 15.34: The two-sided incomplete-information situation.

(b) The common prior is given by |

1
5 5 5
The Harsanyi transformation yields the game shown in Figure 15.35.

a B vy
3

(c) - At the bottom information set of Player 1, C strictly dominates F and thus we can
replace the two nodes in that information set with the payoff vector (2,8).
- At the bottom singleton node of Player 1, F strictly dominates C and thus we can
replace that node with the payoff vector (3,0).
Thus — by appealing to sequential rationality — the game can be reduced to the game
shown in Figure 15.36.
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Nature
> >
VS ) B % e
CO‘M/ 1 \v‘OJ
e I N
Y D 1 o—l>. D °
4 | D 4 4
6 6 6

Figure 15.35: The game obtained by applying the Harsanyi transformation to Figure 15.34.

Nature
N
¢ 5 B g > p
CO‘M/ 1 \v‘OJ
/ D 1 l 1 . D \
b
6 6 6
& X 2 y %o 2
/ not-A not-A g not-A
Y
°
2 3 2 2
8 0 8

Figure 15.36: The reduced game.
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Now at the bottom-right node of Player 2, not-A strictly dominates A and thus we can

replace that node with the payoff vector (2,8) and further simplify the game as shown in
Figure 15.37.

Nature

N B~

N B~
N B~

Yx 2 ygL;.

not-A not-A

0NN 0«

[\ lNe)
oD 0«
S W 0«

Figure 15.37: The further reduced game.

The following are the pure-strategy weak sequential equilibria of the reduced game (which
can be extended into weak sequential equilibria of the original game by adding the choices
that were selected during the simplification process and assigning probability 1 to them):

u vV X
* ((171)7 n'A) with beliefs H= | | y for any p Z %
2 2 p 1—p
° (<I7D)7A) with beliefs n= u v X y
33 0 1

° ((DaD)7A) with beliefs H =

[STE SN
= <
N
EN[ES



602 Chapter 15. Dynamic Games

Solution to Exercise 15.7
(a) Let G and G, be the games shown in Figure 15.38 (in G the defendant is negligent
and in G, he is not).

Game G, Game G,
(defendatnt is negligent) (defendatnt is not negligent)
P = plaintiff, D = Defendant P = plaintiff, D = Defendant
not sue P not sue P
*¢+—0 *¢—0
0 sue 0 sue

0 0

oD
rey \)iier reiV \)iier
droy \trlal settle / xrlal droy \trlal settle / \trlal

% %

() —W—D —S —W—D —D —S —-D

o O

Figure 15.38: The two possible games.

Then the situation can be represented as shown in Figure 15.39 (at state ¢ is the
defendant is negligent and at state 8 the defendant is not negligent).

G G
I: @ @
o p
2: (.q (1—q) 0)

Figure 15.39: The one-sided incomplete-information situation.
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(b) The extensive-form game is shown in Figure 15.40.

Nature
. ‘\\ OO[
\\%6 Oeg /)
(»~ Plaintiff e)
not SV sue sue wt sue
° °
0 Y Y 0
0 Defendant Defendant 0
offer offer
Plaintiff o) .
/ resist

resist & - )
settlfy \:rlal settl.e/ \trlal
( [

o
S W —P S —P
-S -W-D ) -D

6{ Plaintiff }J
drop/ \trial drov &rial
[ ]
0o w

[ [ ([
—P 0 P
0 -W—-D 0 -D

Figure 15.40:

(c) Plaintiff’s strategies:
1. (sue; if offer settle; if resist drop),
(sue; if offer settle; if resist go to trial),
(sue; if offer go to trial; if resist drop),
(sue; if offer go to trial; if resist go to trial),
(not sue; if offer settle; if resist drop),
(not sue; if offer settle; if resist go to trial),
(not sue; if offer go to trial; if resist drop),
8. (not sue; if offer go to trial; if resist go to trial).

NowneswDd

(d) There are two possibilities for a separating equilibrium:
Case S1: the defendant’s strategy is “resist if negligent and offer if not negligent”,
Case S2: the defendant’s strategy is “offer if negligent and resist if not negligent”.
In both cases we assume that the plaintiff’s strategy involves suing with
probability 1.
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(e)

Consider Case S1 first. By Bayesian updating, at the bottom information set the
plaintiff must attach probability 1 to the negligent type and thus, by sequential
rationality, must choose “trial” (because W — P > 0).

Similarly, by Bayesian updating, at the middle information set the plaintiff must
attach probability 1 to the non-negligent type and thus by sequential rationality must
choose “settle”. But then the negligent type of the defendant gets —(W + D) by
resisting and would get —S by offering to settle.

Since, by assumption, S < W (< W + D), the choice of resisting is not sequentially
rational.

Now consider Case S2. By Bayesian updating, at the bottom information set the
plaintiff must attach probability 1 to the non-negligent type and thus by sequential
rationality must choose “drop”.

But then the negligent type of the defendant gets a negative payoff by offering, while
he would get 0 by resisting. Hence the choice of offering is not sequentially rational.

There are two candidates for a pure-strategy pooling equilibrium:
Case P1: both types of the defendant choose “offer” and
Case P2: both types of the defendant choose “resist”.

Consider Case P1 first. (both types of the defendant choose “offer’””). In order for
“offer” to be sequentially rational for the non-negligent type, it cannot be that the
plaintiff’s strategy involves “settle” at the middle information set (the non-negligent
type would get either O or —D by resisting and both payoffs are greater than —S)
and/or “drop” at the bottom information set. That is, it must be that the plaintiff
chooses “trial” at both information sets.

By Bayesian updating, at the middle information set the plaintiff must attach proba-
bility ¢ to the negligent type and probability (1 — ¢) to the non-negligent type.

Hence at the middle information set “trial” is sequentially rational if and only if
qgW —P > §, that is, g > %.

In order for “trial” to be sequentially rational at the bottom information set, the
plaintiff must attach sufficiently high probability (namely p > %) to the negligent
type. This is allowed by weak sequential equilibrium because the bottom information
set is not reached.

Finally, in order for “sue” to be sequentially rational it must be that g — P > 0,

that is, ¢ > &, which is implied by g > 5.

Thus there is a pooling equilibrium with ((sue,trial,trial),(offer,offer))

- - S+P
if and only if g > =5-.




15.4 Solutions to Exercises 605

Now consider Case P2. (both types of the defendant choose “resist”). [Note: since
in Part (f) below the restriction S < W — P does not hold, we will carry out the
analysis at first without imposing the restriction.]

If the plaintiff’s strategy involves “drop” at the bottom information set, then it is

indeed sequentially rational for both types of the defendant to choose “resist”.

Furthermore, “drop” is sequentially rational in this case if, and only if, g — P <0
. P

that is, g < W

Then “sue” is also sequentially rational, since the Plaintiff’s payoff is 0 no matter

whether he sues or does not sue.

Thus there is a pooling equilibrium with ((sue, x, drop),(resist.resist))

if and only if g < &

and appropriate beliefs as follows (p is the probability on the left node of the
unreached middle information set):

o x = settle and either any pif W < S+Porp < %3 ifW>S+P,or

o x=trial and p > %), which requires W > S+ P (since p < 1).

Since it is assumed that W > S + P, we can conclude that

((sue,settle,drop),(resist,resist))is an equilibrium if and only if g < % with p < %)

((sue,trial,drop),(resist,resist))is an equilibrium if and only if g < % with p > %

If, on he other hand, g > L then “trial” is sequentially rational at the bottom
information set. Then, in order for the non-negligent type of the defendant to
choose “resist” it must be that the plaintiff’s strategy involves “trial” also at the
middle information set, for which we need him to assign probability p > % to the
negligent type (which is possible, since the middle information set is not reached);
of course, this requires W > S+ P. Thus,

((sue,trial,trial),(resist,resist))is an equilibrium if and only if g > % with p > %.

(f) Note that here the restriction W — P > S does not hold.

In this case, g < % = % = % and thus, by the previous analysis, there is no
pooling equilibrium of type P1, that is, ((sue,trial,trial),(offer,offer)) is not an equi-

librium.

As for pooling equilibria of type P2, ((sue,trial,trial),(resist,resist)) is not an equilib-
rium because S+ P > W; ((sue,trial,drop),(resist,resist)) is not an equilibrium either.
However, there is a pooling equilibrium of type P2 with ((sue,settle,drop),(resist,resist))
with any beliefs at the middle information set, since “settle” strictly dominates “trial”
there (and, of course, belief g = ﬁ on the left node of the bottom information set). []






16. The Type-Space Approach

Types of players

As noted in Chapter 14, the theory of “games of incomplete information”! was pioneered by
John Harsanyi (1967-68). Harsanyi’s approach was developed using a different approach
from the one we employed in Chapters 14 and 15, which is based on the interactive
knowledge-belief structures introduced in Chapters 8 and 9. The interactive knowledge
structures of Chapter 9 are in fact a special case of the more general notion of interactive
Kripke structure, named after the philosopher and logician Saul Kripke, whose work on
this goes back to 1959 and was written while he was still an undergraduate.> Although
well known among logicians and philosophers, these structures were not known to game
theorists. Perhaps, if Harasnyi had been aware of Kripke’s work he might have developed
his theory using those structures. We find the interactive Kripke structures more natural
and elegant and thus chose to explain the “theory of games of incomplete information’
using those structures. In this chapter we will explain the “type-space” approach developed
by Harsanyi and show that the two approaches are equivalent. We will limit ourselves
to situations of incomplete information involving static games. We will begin in the
next section with a simple special case, which is often all that one finds in game-theory
textbooks, and then explain the general case in Section 16.3.

b

"'We use quotation marks because, strictly speaking, there is no such thing as a game of incomplete
information. There are situations of incomplete information involving the playing of a game and what
Harsanyi did was to suggest a way of transforming such situations into extensive-form games with imperfect
information. Once the so-called ‘“Harsanyi transformation” has been applied, the resulting game is a game
of complete information. Thus the “theory of games of incomplete information” is a theory on how to
represent a situation of incomplete information concerning the playing of a game and how to transform it
into a dynamic game with imperfect, but complete, information.

2Kripke (1959, 1963). For further details the reader is referred to van Ditmarsch et al. (2015).
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Types that know their own payoffs

We take as a starting point the case of incomplete information concerning a strategic-form
game-frame.> In the special case considered in this section, any uncertainty Player i has (if
any) concerns either the von Neumann-Morgenstern utility function U; : O — R (j # i)
of another player (or several other players) or the beliefs of the other player(s), or both.
Within the approach of Chapter 14, we would represent such a situation with an interactive
knowledge-belief structure by associating with every state @ € € (in this chapter we denote
the set of states by Q) a game with cardinal payoffs based on the given game-frame.*
Recall that the payoff function of Player i, 7; : S — R (where S is the set of strategy profiles)
is defined as follows: m;(s) = U;(f(s)). Let m; ¢ : O — R be the payoff function of Player

I at state @.

We say that every player knows her own payoffs if the following condition is satisfied,
for every Player i (recall that /;( @) is the information set of Player i’s partition that contains

state m):

if w;,0;€Q and COZEI,'((Dl) then Tiw, = T, -

An example of such a situation of incomplete information is given in Figure 16.1,

which reproduces Figure 14.3 of Chapter 14.°

SRecall (Definition 2.1.1, Chapter 2) that the elements of a strategic-form game-frame
(I,(S1,...,8,),0, f) are as follows: I = {1,...,n} is a set of players, S; is the set of strategies of Player i € [
(and § = 81 x --- x §, is the set of strategy profiles), O is a set of outcomes and f : S — O is a function that
associates with every strategy profile an outcome.

4Recall that, given a game-frame, a game based on it is obtained by specifying, for every Player i, a von
Neumann-Morgenstern utility function U; : O — R on the set of outcomes.

SIn this case the game-frame is given by: I = {1,2},S; = {T,B},S» = {L,R} (so that
S = {(T,L),(T,R),(B,L),(B,R)}), 0 = {01702a03504}a f(T7L) = 017f(T7R) = 027f(B7L) = 03,

. . . 01 03 03 04
f(B,R) = 04. The (state-dependent) utility functions are given by U o = ,

0 3 3 0

Uip= or o2 030k and U q=Uyp = or o2 030 . Thus the (state-dependent)

6 0 3 3 ' 39 3 0

: (T.L) (T,R) (B,L) (B,R)
payoff functions are as follows: 7} o = ,
0 3 3 0

(T,L) (T,R) (B,L) (B,R) (T,L) (T,R) (B,L) (B,R)

mpg= » Ma =M p =

6 0 3 3 3 9 3 0
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L 2 R L 2 R
TI0 313 9 TN6 3|10 9
! B3 310 O : B3 3|3 O
1 is of type a 1 is of type b

true state

Figure 16.1: A situation of incomplete information represented by means of an interactive
knowledge-belief structure.

In the “type-space” approach the situation illustrated in Figure 16.1 would be repre-
sented using “types of players”: each type of Player i represents a utility function of Player
i as well as Player i’s beliefs about the types of the other players. The formal definition is
as follows.

Definition 16.2.1 A static Bayesian game of incomplete information with knowledge of
one’s own payolffs consists of the following elements:

e aset!/ ={l1,...,n} of players;
* for every Player i € I, a set S; of strategies (as usual, we denote by S the set of
strategy profiles);

* for every Player i € I, a set T; of possible types; we denote by T =T X ... x T,
the set of profiles of types and by 7_; =T} X --- X T;_1 X Ty X --- X T,, the set
of profiles of types for the players other than i;

* for every Player i and for every type t; € T; of Player i a von Neumann-Morgenstern
payoff function 7; 5, : § — R;

* for every Player i and for every type t; € T; of Player i, a probability distribution
piy - T-i — [0, 1] representing the beliefs of type #; about the types of the other
players.

The beliefs of all the types are said to be Harsanyi consistent if there exists a common
prior, that is, a probability distribution p : T — [0, 1] such that, for every Player i and
for every type #; € T; of Player i, p;;, coincides with the probability distribution obtained
from p by conditioning on the event {#;}, that is (denoting a profile t € T by (t;,7_;),
Piali—) = —2e .

H Y p(ud)

/
liiET_l‘
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Let us recast the situation illustrated in Figure 16.1 in the terminology of Definition 16.2.1.
First of all, we have that

1={1,2}, S ={T,B}, S»={L,R} (sothatS={(T,L),(T,R),(B,L),(B,R)}).
Furthermore, there are two types of Player 1 and only one type of Player 2:

Ty ={t8,t}, T={n}, sothatT ={(t{,1),(t?.1)}.

. . (T,L) (T,R) (B,L) (B,R)
The payoff functions are given by: 7 ;¢ = ,
0 3 3 0

(T,L) (T.R) (B,L) (B.R) (T.L) (T,R) (B.L) (B.R)
T o= ) 71'271 -
b 6 0 3 3 ? 3 9 3 0
) ) 15) tf t{’
The beliefs are given by pj e« = p, = s =,
bA 1 Z
3 3

(tf,) (1],12)
2 |

3 3

and the common prior is

Before we explain in detail how to transform a “state-space” structure into a “type-
space” structure and vice versa, we give one more example, this time with double-sided
incomplete information. Consider the situation illustrated in Figure 16.2, which reproduces
Figure 14.8 of Chapter 14.

)
L

N [—
Do [—
L

\—/

1: @
o Y
2: (o ) O

Figure 16.2: A situation with two-sided incomplete information.

wIN
[SSTE
o | =

In this case we have that each player has two types: we can identify a type of a player with
a cell of the player’s information partition.
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Thus we have that

(A,C) (A,D) (B,C) (B,D)
1 0 0 3 ’

T {0}, T={4). mg—— (

14 19 b
pe= 21, pa=(2 7|
a0 1 L, 1 1

7 2

_ (@0 @«Dp) B0 BD) . (a0 «p B0 BD)
213 3 1 0 ) 0 2 0 1

i 1y
p27l‘2 = 2 1 ) p27[2 = 1 .
3 3

(0,08) (ef,68) (e0,08) (17,15)
2 0 1 1 :

The common prior is given by (
4 4

i

Thus the two types of Player 1 have the same payoff function but different beliefs about the
types of Player 2, while the two types of Player 2 differ both in terms of payoff function
and in terms of beliefs about the types of Player 1.

From these examples it should be clear how to transform a “‘state-space” model into a
“type-space” model.

* First of all, for every Player i, create one type for every cell of Player i’s partition,
making sure that different cells are associated with different types. In this way we
have identified each state with a profile of types.

* Since there is a probability distribution over each information set of Player i, that
probability distribution will give a probability distribution for the associated type of
Player i over some set of type-profiles for the other players.

* Finally, since our assumption (to be relaxed in the next section) is that each player
knows her own payoff function (that is, the payoff function of a player does not vary
from state to state within the same information set of that player), with each type #;
of Player i is associated a unique payoff function 7; ;,.

Conversely, we can convert a “type-space” structure into a “state-space” structure as
follows:

o Let the set of states be the set 7" of profiles of types. For every Player i and for every
two states 7, € T, let r and ¢’ belong to the same information set of Player i (that is,
to the same cell of Player i’s partition) if and only if Player i’s type is the same in ¢
and t': ¢’ € I;(t) if and only if ; = 1.

)
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o The beliefs of each type of Player i then yield a probability distribution over the infor-
mation set of Player i corresponding to that type. An example of this transformation
is given in Exercise 16.2.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 16.4.1 at the end of this chapter.

The general case

As pointed out in Chapter 14, it may very well be the case that a rational player does not
know her own payoffs (for example, because she is uncertain about what outcomes might
occur if she chooses a particular action: see Exercise 14.2, Chapter 14). Uncertainty about
a player’s own payoffs is compatible with the player knowing her own utility function
(that is, how she ranks the outcomes that she considers possible). Definition 16.2.1 is not
general enough to encompass such possibilities.

The following, more general, definition allows the payoff function of a player to depend
not only on the player’s own type but also on the types of the other players. Definition
16.3.1 is identical to Definition 16.2.1, except for the starred items and the boldface part in

the last item.
Definition 16.3.1 A static Bayesian game of incomplete information consists of the

following elements:

e aset! ={l,...n} of players;

* for every Player i € I, a set S; of strategies (as usual, we denote by S the set of

strategy profiles);

* for every Player i € I, a set T; of possible types; we denote by T =T X ... X T,
the set of profiles of types and by T_; =T X ... x T X Tiy1 X --- X T, the set
of profiles of types for the players other than i;

% asetY C T of relevant profiles of types;

% for every Player i and for every profile of types t € Y, a payoff function
Tir:S—R;

« for every Player i and for every type #; € T; of Player i, a probability distribution
pis » T-i — [0,1] representing the beliefs of type #; about the types of the other
players satisfying the restriction that if p; . (t_;) > 0 then (t;,t_;) € Y.
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As in the special case considered in the previous section, also in the general case one

can transform a “state-space” structure into a “type-space” structure and vice versa.

Given a “state-space” structure, for every Player i we identify the cells of Player i’s
partition with the types of Player i (one type for every information set). Since there is a
probability distribution over each information set of Player i, that probability distribution
will yield the probability distribution for the associated type of Player i over some set of
type-profiles for the other players. Finally, having identified each state with a profile of
types (since each state belongs to one and only one information set of each player), we can

assign to the corresponding type of Player i the payoff function of Player i at that state.

We shall illustrate this conversion using the ‘“‘state-space” structure shown in Figure
16.3 (taken from Exercise 14.2, Chapter 14).

Ann Ann
a r a ’
gl 1 1[—-1 O g|r —-1{—1 0
Bill Bill
ngtlg 0|10 O ngtg 0|0 O
Bill is a friend Bill is an enemy

o © ®

2: [« 1-q B)

true state

Figure 16.3: The situation of incomplete information described in Exercise 14.2 (Chapter
14) where it is not true that each player knows his/her own payoffs (in this case, Player 2 is
uncertain about her own payoffs, in particular, whether 7 (g,a) = 1 or m(g,a) = —1).

The corresponding “type-space” structure (static Bayesian game of incomplete information)
is as follows:

o I ={1,2} (letting Bill be Player 1 and Ann Player 2),
° Slz{gvng} Sz:{a,}"} (sothatS:{(g,a),(g,r),(ng,a),(ng,r)}).

o There are two types of Player 1 and only one type of Player 2:

T\ = {t{ ,t{} (f stands for ‘friend” and e for ‘enemy’),

T={n}  sothatT = {(r{,tz),(rf,rz)}.
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o Thus in this case we have thatY = T.

o The payoff functions are given by:

T . _( (&a) (&) (ng,a) (ngr)
1,(1{.,[2) — ML) T 1 —1 0 0
T _( (&a) (&r) (ng,a) (ng,r)
2,{ 1) 10 0 0

o) = ( (fiil) (gér) (n%a) (ns(';r)>

. . l’z tf te
o The beliefs are givenby  p, s = pise = [ ) = 1 | 1
o q9 1—4q

f e
and the common prior is < (11.12) (il’tz) )
q —q

Conversely, we can convert a “type-space” structure into a ‘“state-space” structure as
follows:

- Let the set of states be the set Y of relevant profiles of types.

- For every Player i and for every two states ¢,t' € Y, let t and ¢’ belong to the same
information set of Player i (that is, to the same cell of Player i’s partition) if and only
if Player i’s type is the same in 7 and ¢": ¢’ € [;(¢) if and only if 7; =1/.

- The beliefs of each type of Player i then yield a probability distribution over the
information set of Player i corresponding to that type.

An example of this transformation is given in Exercise 16.3.

Test your understanding of the concepts introduced in this section, by
going through the exercises in Section 16.4.2 at the end of this chapter.
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Exercises

The answers to the following exercises are in Section 16.5 at the end of this chapter.

Exercises for Section 16.2: Types that know their own payoffs

Transform the situation of incomplete information shown in Figure 16.4,

where G| and G, are the games shown in Figure 16.5, into a type-space structure.

Game Game Game Game

G G G G

l: @U)’ 7)@

=
=

e
K
NelEN|
=
W[
Nell v}
<
W=

o)

Ol
W=

3: (¢35 B3) (v 19)

Figure 16.4: A situation of incomplete information. The games G| and G, are shown in
Figure 16.5.
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Player A
Il B

Player A
1 B

Player A
1 B

Player A
1 B

Figure 16.5: The games for the situation of incomplete information of Figure 16.4.

Player 2
C D
- 02 4 2
4 1 0(0 0 O
Player 3: E
Player 2
C D
2 0 2(0 1 O
0O 0 0[0 2 O
Player 3: F
GAME G,
Player 2
C D
4 4 02 1 2
4 4 0(0 1 O
Player 3: E
Player 2
C D
2 1 210 0 O
0 2 0(0 0 O

Player 3: F

GAME G,
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Exercise 16.2 Consider the following Bayesian game of incomplete information:
12{172} Slz{AaB} SZZ{CvD} le{tlaat{)} TZZ{tgatgatg}

o ._ [ AC AD BC BD __( AC AD BC BD
L4 4 1 0 2 =\ o o0 2 1

(AC AD BC BD) . (AC AD BC BD)
= 215 =

2 1 2 3 o 2 2 0
51y 1
pl,tf: < l 3 0 ’ p]J{’:
i 1

a b a b
[ 5 f N
szé’ o 2 1 > p2712 - O 1 ’
3 3

(a) Are the beliefs of the types Harsanyi consistent, that is, is there a common prior?

b
53

=S

Cc
)

ot
i ’ p2,t§ - l
1 3

3

$|“’ &

—_— =~
Iy EIN
W

(b) Transform this type-space structure into an interactive knowledge-belief structure.
|

16.4.2 Exercises for Section 16.3: The general case
Exercise 16.3 Consider the following Bayesian game of incomplete information:

12{172a3} Slz{AvB} SZZ{C7D} S3:{E7F}
n={fny DL={55} B={4n}
Y ={(tf.15.15), (0,0.15) , (e7.15,15) , (17,1515 }

_ ( ACE ADE BCE BDE ACF ADF BCF BDF
1,8 05.08) = 2 2 3 0 0 0 1 1

_ ( ACE ADE BCE BDE ACF ADF BCF BDF
p.3) — 1 2 0 0 1 0 0 1

T
17( 29

=T
A 1,(t}

i _ ( ACE ADE BCE BDE ACF ADF BCF BDF
NGE 0 0 2 1 2 0 0 1

[ ACE ADE BCE BDE ACF ADF BCF BDF
Dus)=\ 2 4 2 0o 0o 1 0 2

([ ACE ADE BCE BDE ACF ADF BCF BDF
i 4 1 4 1 1 0 2 0

(b i2.08) = Mo, (eb gb

B ( ACE ADE BCE BDE ACF ADF BCF BDF)
8t —

X 4 3 1 20 1 0o 2

1>
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_ ([ ACE ADE BCE BDE ACF ADF BCF BDF
3 (e2.5.48) = 0 2 0 0 2 0 0 0

_( ACE ADE BCE BDE ACF ADF BCF BDF
) 3 2 0 1 1 2 2 0

T =T
3,(th.15.14) 3,(th bt

_ ( ACE ADE BCE BDE ACF ADF BCF BDF
)~ 1 2 0 1 2 0 0 1

(5,15) (13,55) (15,13) (13.15)
Py = P = 2 2 1

1

v/
50765,

5 5 5
b b b b b
pass = ( (’?vf) (tl’;3) ) Pry = ( (tl’;g) (tlvl%) )
7 7 3 3
a .a b (b b a b (b
pase = ( (t17§t2) (tlazlz) ) Pra = ( (tlvztz) (tlallz) )
7 7 3 3

(a) Are the beliefs of the types Harsanyi consistent, that is, is there a common prior?

(b) Transform this type-space structure into a knowledge-belief structure.

Exercise 16.4 — xxx Challenging Question x x x.

Consider the following two-player Bayesian game of incomplete information:
1={1,2y  $={T,B} S={LRy Ti={#} DL={414}

B _( (1,.L) (T,R) (B,L) (B,R)
”1,(;;*,tg)—”1,(t?7t§)_( 6 0 3 3

_ _( (r,L) (T,R) (B,L) (B,R)
”L(rf‘,té‘)—”l,(t{ité’)_( 0 3 3 0

_ _ _ _( (T,L) (T,R) (B,L) (B,R)
T 18) = T, aby = T, (B 49) = T (¢B 1) = 3 9 3 0
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(a) Transform the situation described above into an interactive knowledge-belief
structure. Assume that the true or actual state is where Player 1 is of type tf‘ and
Player 2 is of type #5.

(b) Apply the Harsanyi transformation to obtain an extensive-form game.
(c) Write the strategic-form game corresponding to the game of Part (b).

(d) Find all the pure-strategy Bayesian Nash equilibria. Does any of these yield a
Nash equilibrium in the true game being played?

(e) Of the pure-strategy Bayesian Nash equilibria select one where Player 2 takes
different actions at her information sets (that is, the different types of Player 2
make different choices).

For this equilibrium complete the structure of Part (a) by turning it into a model
(see Chapter 10), by associating with each state an action for each player (note:
an action in the base game, not a strategy in the game obtained by applying
the Harsanyi transformation) and verify that at the true state there is common
knowledge of rationality.

Solutions to Exercises

Solution to Exercise 16.1
The structure is as follows (the elements are given as listed in Definition 16.2.1).

12{17273} Slz{AvB} S2:{C7D} S3:{E7F}
Re (i) B-(gd)  T-{ad)

_ _. __ _(ACE ADE BCE BDE ACF ADF BCF BDF
MERATTAE4 2 4 0 2 0 0 0

o . ( ACE ADE BCE BDE ACF ADF BCF BDF
21— 1 4 1 0 0 1 0 2

_ ( ACE ADE BCE BDE ACF ADF BCF BDF
215 4 1 4 1 1 0 2 0

tou—n . — [ ACE ADE BCE BDE ACF ADF BCF BDF
35 = M3y 0 2 0 0 2 0 0 0
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1919 2 12) (1910 b b
pras = (t5,15) Ly = (213) (213) pris = (13,19)
1 g 1 1 1
| g) (17.15) @) (5.13)
P2sg = 7 ’ Prsh = 2 1
9 9 3 3

7 2 P3b =
9 9

poss = ( CINCE) ) () (5.0 )

wIN
[OSTIE

The common prior is given by:

a4a4a asah asb.a ab.b bsa.a bsab
5 0 0 0 0o 3
b.b.a b.b.b Cciapa ciah cibia c+bsb
nnhty nnhty nhly Lhiz iy G5
Z 0 0 0 0 5

Solution to Exercise 16.2

(a) Yes, the following is a common prior:

(ef,15) (f,13) (efo15) (t7.08) (17.5) (17.85)

2 I3 0 4 3 6
21 21 21 21 21

(b) The knowledge-belief structure is shown in Figure 16.6. The set of states is

Q={a,B,7,06,e}, where

a:(tfvtg) B:(t?atg) y:(tlbatg) 6:(tf7t§)7 g:(tfjtg)_
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2 2 2 2 2
C D C D C D C D C D

Al4 211 1 Al4 211 1 AlO 210
BJ0O 2|2 3 B10 2(2 3 B2 2|1 3 B2 21 3 B2 2|1

RS
o
o
o
b
o
o
[\

ek
)
K
I

Bi) (7 575 e )

@S e @

Figure 16.6: The interactive knowledge-belief structure representing the Bayesian game of
incomplete information of Exercise 16.2.

W[

Solution to Exercise 16.3

(a) Yes: the following is a common prior:

azaa bia.b b.b.a bbb
[ hhlz Ly LLl3 L
pP= 1 | | |

) and p(t) = 0 for every othert € T'.
2 5 5 10

(b) The interactive knowledge-belief structure is shown in Figure 16.7, where
a=(5.08)  B=(hh)  y=(hgd) 8= (dadad)

and the games G, G, and G3 are as shown in Figure 16.8. [
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Game Game Game Game

G Gy Gz Gy

1: (o) (B2 ir 19)
2: fe3) B3 () U3
3: (¢35 B3 (Br_ 19

Figure 16.7: The knowledge-belief structure for Exercise 16.3; the games G, G, and G3
are as shown in Figure 16.8.
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Player 2 Player 2
C D C D
Player A[2 2 0]2 4 2| ! Playera|[l 4 3]2 1 2
I B|32 0]0 0 O I B|O 4 0|0 1 1
Player 3: E Player 3: E
Player 2 Player 2
C D C D
Player A[0 0 2]0 1 Of {Playeraf[l 1 1]0 0 2
I B|l1. 0 OJ1 2 Of # 1 BIO2 2|1 0 0
Player 3: F : Player 3: F
GAME G, GAME G,
Player 2 GAME G Player 2
C D C D
Player A0 4 1[0 3 2 Player A2 0 2|0 1 O
I B2 1 Of[1 2 1 I B|JO O O]1 2 1
Player 3: E Player 3: F

Figure 16.8: The games in the situation of incomplete information shown in Figure 16.7.

Solution to Exercise 16.4
(a) The interactive knowledge-belief structure is represented in Figure 16.9 where

a=(n.5)  B=0n)  v=0n)  §=(10)

2 2 2 2
L R L R L R L R
1 T]16 310 9 1 T]16 310 9 1 T10 313 9 | T10 313 9
B3 313 0 Bl3 313 0 Bl3 3]0 0 B3 3{0 O
types: 1A,2a types: 1A,2b types: 1B,2a types: 1B,2b

T By (v 5 )

2: ‘Oﬂi| Iﬁ %I Y |5§|

Figure 16.9: The interactive knowledge-belief structure for Exercise 16.4.

N[N
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o By o )

1 1 2

(b) First of all, there is a common prior: < 3
7 07 7 7

The extensive-form game is shown in Figure 16.10.

Nature

£ W N S5 )

AWA AWAY

3 9 3 0 G t 3 ;3 0 ! t
AR R

Figure 16.10: The game obtained by applying the Harsanyi transformation to the situation
of incomplete information of Figure 16.9.

(c) The strategy profiles give rise to the lotteries shown in Figure 16.11. Thus the
strategic form is as shown in Figure 16.12.

(d) The pure-strategy Nash equilibria are: (TB,LL),(TB,LR) and (BT,RR). None of
them yields a Nash equilibrium of the game associated with state @, since neither
(T,L) nor (B,R) are Nash equilibria of that game.
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T if type 1A
T if type 1B

T if type 1A
Bif type 1B

Player

B if type 1A
T if type 1B

B if type 1A
B if type 1B

Player 2
L if type 2a L if type 2a R if type 2a R if type 2a
L if type 2b R if type 2b L if type 2b R if type 2b
L1 3 2 L1 3 2 L1 3 2 Lo 3 2
77 1 7 77 1 7 77 1 7 77 1T 7
TL TL TL TL TL TR TL TR TR TL TR TL TR TR TR TR
6 6 0 0 6 0 0 3 0 6 3 O 0o 0 3 3
3 3 3 3 39 3 9 9 3 9 3 9 9 9 9
L1 3 2 11 3 2 L1 3 2 L1 3 2
707 1 7 77 71 7 77 7 7 707 7 7
TL TL BL BL TL TR BL BR TR TL BR BL TR TR BR BR
6 6 3 3 6 0 3 0 0 6 0 3 0 0 0 0
33 3 3 39 3 0 9 3 0 3 9 9 0 0
L1 3 2 L1 3 2 L1 3 2 i1 3 2
707 71 7 707 71 7 707 71 7 77 7 7
BL BL TL TL BL BR TL TR BR BL TR TL BR BR TR TR
33 0 0 3 3 0 3 3 3 3 0 3 3 3 3
33 3 3 30 3 9 0 3 9 3 0o 0 9 9
L1 3 2 Lo 3 2 Lo 3 2 Lo 3 2
77 71 7 77 71 7 77 T 7 7007 71 7
BL BL BL BL BL BR BL BR BR BL BR BL BR BR BR BR
33 3 3 3 3 3 0 33 0 3 33 0 0
33 3 3 30 3 0 0o 3 0 3 o 0 0 O

Figure 16.11: The lotteries associated with the strategy profiles for the game of Figure
16.10.

Player 2
Liftype 2a Liftype2a Riftype2a R if type 2a
Liftype2b Riftype2b Liftype2b Riftype2b
T if type 1A 12 3 12 39 | 15 45 | 15 9
T if type 1B 7 7 7 7 7 7
T if type 1A 27 3 15 3 12 18 0 18
Player Biftype1B | 7 7 7 7 7
1 Biftypeld 16 5 |12 30|15 36|73 45
T if type 1B 7 7 7 7 7 7
Bif type 14 15 12 | 12 91 6
Bift 3 3|7 F|7 7|7 O
ype 1B 7 7 7 7 7

Figure 16.12: The strategic form of the game of Figure 16.10.
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(e) The only pure-strategy equilibrium where Player 1 is uncertain of Player 2’s choice
is (TB,LR). The corresponding model is shown in Figure 16.13.

2 2 2 2
L R L R L R L R
T16 30 9 T16 30 9 T10 3[3 9 T10 3[3 9
1 1 1 1
3 3130 3 3130 3 310 0 3 310 0
types: 1A,2a types: 1A,2b types: 1B,2a types: 1B,2b

=

1 (o By (v 5 3

s @) By ) o

1’s choice: T T B B

2’s choice: L R L R
true state

Figure 16.13: A model of the game of Figure 16.10.

There is common knowledge of rationality because at every state both players are
rational:

- Atstates a and 8 Player 1 has an expected payoff of 3 from both T and B (thus
T is a best reply) and at states ¥ and 0 Player 1 has an expected payoff of %

from B and g from T (thus B is a best reply).

- At states o and y Player 2 has an expected payoff of 3 from L and % from R
(thus L is a best reply) and at states 8 and & Player 2 has an expected payoff of
3 from both L and R (thus R is a best reply). U
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