GIACOMO BONANNO Memory of Past Beliefs and
Actions

Abstract. Two notions of memory are studied both syntactically and semantically:
memory of past beliefs and memory of past actions. The analysis is carried out in a basic
temporal logic framework enriched with beliefs and actions.
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1. Introduction

Memory is usually identified with the retention of past knowledge (see, for
example, [8] and [9]). Thus to model memory one needs two components:
time and epistemic states. Semantically, this can be done with a set of
instants T'and two binary relations on it: a temporal relation < (the inter-
pretation of ¢ < z is that instant ¢ precedes instant z) and an equivalence
relation ~ (¢ ~  means that the individual cannot distinguish between t and
z). Graphically we shall represent the relation < by drawing an arrow from
t to z if t <  and by enclosing ¢ and z in a rounded rectangle if ¢ ~ . For
example, Figure 1a illustrates a situation where at x the individual remem-
bers what he knew previously (i.e. at t), while in the situation represented
in Figure 1b at  the individual has forgotten what he knew before (he does
not remember if in the past he was at ¢ or at t).

The concept of memory can be captured by the following property, which
is illustrated in Figure 2.

If t <z and = ~ 2’ then there exists a ¢’ such that t ~ ' and ¢’ < 2’. (II1)
Property (II1) corresponds to the following axiom:
PK$ — KPo (X1)

where Pis the past operator (Piy means that some time in the past it was
the case that i) and K is the knowledge operator (K1 means that the
individual knows that ). Thus (X1) says that if, at some time in the past,
the individual knew that ¢, then she knows now that some time in the past
it was the case that ¢. Throughout the paper we shall use the Greek letter
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IT to name properties of frames and the letter X to name axioms (we avoid
P and A because the former is used for the past operator and the latter to
denote actions).

In this paper we take a more general point of view and model memory as
the recollection of past epistemic states, rather than knowledge in particular.
For example, the individual might have held incorrect beliefs in the past and
subsequently learned of her mistake. As long as she correctly remembers her
past beliefs we would still claim that she has memory. In other words, it
seems that correctness of beliefs is not a property which is inherent to the
notion of memory. Accordingly, instead of an equivalence relation ~ we will
consider a more general binary relation B and interpret tBx to mean that at
state ¢ the individual considers state z possible. In this more general setup
it may seem that the notion of memory can be captured by the following
adaptation of property (II1):

If t < z and 2Bz’ then there exists a ¢’ such that tBt' and t' < 2. (I12)

This property is illustrated in Figure 3, where — as before — a continuous
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arrow from ¢ to x denotes that ¢t < x, whereas a dotted arrow from ¢ to ¢’
denotes that tBt'.

t e t @ ol »o
L @i >0 7 L @i >0 I
this configuration implies this configuration
Figure 3.

It will be shown later that (II2) corresponds to the following counterpart
to axiom (X1):
PB¢ — BP¢ (X2)

where B is the belief operator (Bt means that the individual believes that
). Thus (X2) says that if, at some time in the past, the individual believed
that ¢, then she believes now that some time in the past it was the case that
¢.!

Is (X2) the appropriate axiom to capture the notion of memory? We
maintain that it is not. Consider, for example, the following situation.
David’s daughter was on the telephone with her friend Ann. From the
conversation he overhears, David believes that his daughter is talking to
her boyfriend Bob. When his daughter leaves the house, David presses the
redial button on the telephone with the intention of asking Bob to leave his
daughter alone. This situation is shown in Figure 4. State ¢ represents the
initial situation where David erroneously believes that after he presses the
redial button, Bob will answer the phone. As a matter of fact, Ann answers.
Let ¢ be the proposition “after the redial button is pressed, Bob answers the
phone”. Then at x it is true that in the past (i.e. at t) David believed that
¢, written x = PB¢. However, once Ann answers the phone, David realizes
his mistake and no longer believes that some time in the past pressing the
redial button would lead to Bob answering the phone. That is, at z it is not
the case that David believes that at some time in the past it was the case
that ¢, written  # BP¢. Thus axiom (X2) is not satisfied at z. However,

! A referee pointed out that an alternative intuition behind (X1) and (X2) is that of
“information increase” or “no revision”.
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at x David correctly remembers his past beliefs (z = BPB¢), although he
now realizes that they were erroneous. We conclude that (X2) cannot be
taken as the axiom that captures the notion of memory of past beliefs.

last number .-"+.. last number
dialed was t i i dialed was
ANN'’s @ i > oA BOB’s

press press

redial redial

button button
Y Y
ANN O, % BOB
answers EE B i answers
the phone -’ “++"  the phone
Figure 4.

We maintain that the appropriate axiom for memory is the following:
PB¢ — BPB¢ (Xmem)

which says that if, at some time in the past, the individual believed that ¢,
then she believes now that some time in the past she believed that ¢. Axiom
(Xmem) and its relationship to (X2) are studied in the next section.

Recollection of past epistemic states is just one type of memory. Re-
membering what one did in the past is another important aspect of memory.
Indeed, as shown by Piccione and Rubinstein in [10], puzzles and paradoxes
arise in decision situations where individuals have imperfect memory of their
past actions.? In Section 3 we study the notion of memory of past actions
by adding actions to epistemic temporal logic and discuss the relationship
between memory of past actions and memory of past beliefs. Section 4
concludes.

2. Memory of past beliefs

We consider frames (T, <, B), where T' is a set of instants or states and < and
B are binary relations on T": < is the temporal precedence relation, while B

2 An entire issue of Games and Economic Behavior (Vol. 20, 1997) has been devoted to
the debate concerning the proper way of modeling decision-making under imperfect recall.
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is the belief relation. Thus ¢; < to means that instant ¢; precedes instant ta,
while ¢; Bts means that at ¢; the individual considers ts possible. For the sake
of generality, no properties are imposed on the temporal precedence relation
<, so that the logic that we consider is basic temporal logic.> Whenever
there are results that require more structure (e.g. a tree-like structure for
<) the assumed properties will be stated explicitly. The same applies to the
belief relation B: no properties are assumed unless explicitly stated, so that
the logic of belief that we consider is the normal system K (see [4][p. 115];
in particular, we do not assume positive or negative introspection, nor the
truth axiom).

On the syntactic side, we consider a propositional language with three
modal operators: the temporal operators G and H and the belief operator
B. The intended interpretation is:

G¢ : “it is Going to be the case at every future time that ¢”
H¢ : “it Has always been the case that ¢”
B¢ :  “the individual Believes that ¢”.
The formal language is built in the usual way from a countable set S

of atomic propositions, the connectives — (for “not”) and Vv (for “or”) and

the modal operators.* Let F¢ def -G—¢ and P¢ def —H-¢. Thus the

interpretation is:

F¢: “at some Future time it will be the case that ¢”
P¢: “at some Past time it was the case that ¢”.

Given a frame (T, <, B) one obtains a model based on it by adding a func-
tion V : § — 2T (where 27 denotes the set of subsets of T') that associates
with every atomic proposition ¢ € S the set of states at which ¢ is true.
Truth of a formula ¢ at a state ¢, denoted by t = ¢, is defined inductively
as follows:

if ¢ is an atomic proposition, ¢ = ¢ if and only if ¢ € V(q),
t E —¢ if and only if t ¥ ¢

t = ¢V if and only if either ¢ |= ¢ or ¢ |= 1),

t = G¢ if and only if t’ |= ¢ for all ¢’ such that ¢ < ¢/,

t = Ho if and only if t” |= ¢ for all t” such that ¢t" <,

t |= B¢ if and only if ¢’ |= ¢ for all ¢’ such that tBt'.

Thus G¢ (H) is true at state ¢ if and only if ¢ is true at every successor
(predecessor) of ¢, while F'¢ (P¢) is true at t if and only if ¢ is true at some

3 See, for example, [1, 3] and [6].

4 See, for example, [4]. The connectives A (for “and”) and — (for “if ... then”) are

defined as usual: ¢ A df (m¢ V) and ¢ — e/ I ARUR
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successor (predecessor) of ¢t. Furthermore, B¢ is true at state t if and only
if ¢ is true at every state that the individual considers possible at ¢t. By
means of models one can capture either an evolving world and the extent to
which the individual learns about it, or a constant world in which the only
thing that changes is the epistemic state of the individual. An example of
the latter is an archaeologist’s reaction to the discovery of new clues about
events that occurred in the distant past.

We denote by ||¢|| the truth set of formula ¢, that is, ||¢|| = {t € T :
t = ¢}

A formula ¢ is valid in a model if t = ¢ for all t € T, that is, if ¢ is true
at every state. A formula ¢ is valid in a frame if it is valid in every model
based on it.

Finally, we say that a property of a frame (e.g. property (II2) above) is
characterized by an axiom if the axiom is valid in every frame that satisfies
the property and, conversely, if whenever the axiom is valid in a frame then
the frame satisfies the property.

PROPOSITION 1. Property (I12) (see Section 1) is characterized by either of
the following axioms:

(X2) PB¢— BP¢

(X2") B¢ — GBP¢.

(X2) says that if in the past the individual believed ¢, then she believes
now that some time in the past it was the case that ¢. While (X2) is
backward-looking, (X2') is forward looking: it says that if the individual
believes ¢ now, then at every future time she will believe that some time in
the past it was the case that ¢.%

PRrROOF. Assume (I12). We show that both (X2) and (X2') are valid. For
(X2): suppose that = PB¢. Then there exists a t such that ¢ < z and
t = B¢. Fix an arbitrary z’ such that zBx’. By (I12) there exists a ¢ such
that tBt’ and ¢’ < 2’. Since t = B¢, t’ = ¢. Thus 2’ = P¢ and = |= BP¢.
For (X2'): suppose that t = B¢. Fix arbitrary z and z’ such that ¢ < z and
zBz'. By (I12) there exists a ' such that tBt' and ¢’ < 2’. Since ¢t = B¢,
t' = ¢. Thus 2’ |= P$ and z = BP¢ and t = GBP¢.

To prove the converse, assume that (II2) does not hold, that is, there
exist t,z, 2’ € T such that:

t <z, zBz', and (i)

% Syntactically (X2') can be derived from (X2) by means of the valid principle (theorem
of basic temporal logic) ¢ — GP¢, and (X2) can be derived from (X2') by means of the
valid principle PG¢ — ¢.
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Vi’ € T, if t' <2’ then not tBt'. (ii)

We want to show that both (X2) and (X2') can be falsified. Let gbe an
atomic proposition and construct a model where ||g|| = {t' € T : tBt'} . Then

t = Bg. (ii)
For every t’ such that ¢’ < 2/, by (ii), ¢’ ¥ q. Thus 2’ ¥ Pq. Hence, by (i),
z ¥ BPq. (iv)

By (i) and (iii),  |= PBgq. This, together with (iv), falsifies (X2) at z. By
(iv) and (i), t ¥ GBPq. This, together with (iii), falsifies (X2') at ¢. n

As argued in the introduction, axiom (X2) (or its equivalent counterpart
(X2")) cannot be taken to correctly capture the notion of memory of past
beliefs. The frame of Figure 4 violates property (I12), and hence axiom
(X2) is not valid in it, and yet it is the case that the individual correctly
remembers his past beliefs (although he now realizes that he was mistaken
in those beliefs). We maintain that the following property does capture the
notion of memory:

If t <z and 2Bz’ then there exists a t' € T such that (o)
(1) ¢ <2’ and (2) Vt" €T, if ¢ Bt" then tBt". mem

PROPOSITION 2. Property (Imem) is characterized by either of the following
azrioms:

(Xmem)  PB¢ — BPB¢
(X! B¢ — GBPB#¢.

mem)

(Xmem) is the backward-looking version of memory: it says that if, at some
time in the past, the individual believed ¢ then she believes now that at
some time in the past she believed ¢. On the other hand, (X! ) is forward-
looking: it says that if the individual believes ¢ now, then at every future
time she will believe that at some time in the past she believed ¢.6

PRrOOF. Assume (Iljem). We show that both (Xpem) and (X ! ..) are valid.
For (Xpmem): suppose that = PB¢. Then there exists a t such that t < z
and t = B¢. Fix an arbitrary «’ such that zBz’. By (ILjen,) there exists a
t’ such that ¢’ < 2’ and Vt" € T, if t'Bt” then tBt". Fix an arbitrary t" such

® As in the case of (X2') and (X2), (Xynem) can be derived from (Xmem) by using
¢ — GP¢, and (Xmem) can be derived from (X;,c,,) by using PG¢ — ¢.
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that ¢'Bt” (if there is no such t” then ¢’ |= B¢ vacuously). By (Iyem) tBt".
Thus, since ¢ = B¢, t” |= ¢. Hence t' = B¢ and z' | PB¢ and, therefore,
z = BPBé¢. For (X! ): suppose that ¢ = B¢. Fix arbitrary z and z’
such that t < z and zBz'. By (Iljem) there exists a ' such that ¢ < 2’
and Vt" € T, if 'Bt"” then tBt". It follows from t = B¢ and the fact that
t'Bt” implies ¢tBt", that t' = B¢. Thus 2’ = PB¢ and = = BPB¢. Hence
t = GBPBg.

To prove the converse, assume that (Ilem) does not hold, that is, there
exist t,z,z’ € T such that

t <z, zBx', and (v)

Vi'eT, if ' <2’ then Ft” such that ¢Bt” and not tBt". (vi)

We want to show that both (Xmem) and (X! ) can be falsified. Let gbe
an atomic proposition and construct a model where ||g|| = {¢' € T : tBt).
Then

t = Bg. (vii)
For every ¢’ such that ¢ < 2/, by (vi) t' ¥ Bq and therefore z' ¥ PBq. Hence,

by (v),
x ¥ BPBq. (viii)

By (v) and (vii), z = PBgq. This, together with (viii), falsifies (Xmem) at
z. By (viii) and (v), t ¥ GBPBq. This, together with (vii), falsifies (X! )
at t. u

The frame of Figure 4 satisfies property (Ilem) and therefore validates
both (Xpem) and (X! ). In that example the individual correctly re-
members his past beliefs, while at the same time realizing that they were
mistaken. His realization comes after taking an action (pressing the redial
button) that leads him to learn the truth. Figures 5a and 5b illustrate the
opposite situation, where the individual initially holds correct beliefs and
later, as a consequence of taking an action (drinking), starts believing some-
thing which is false.” At state ¢ the individual is sitting at a bar and correctly
believes that if he drinks it will be unsafe to drive. At state z, after drinking,
the individual remembers that he drank and yet mistakenly believes that it
is safe to drive. In Figure 5a at state x the individual correctly remembers
his old belief (that it would be unsafe to drive) but does not take it seriously

" 1 learned this example from Johan van Benthem. The first version of this paper
contained only Figure 5b. A referee pointed out that (Xmem ) is compatible with switching
from correct to incorrect beliefs and suggested the alternative scenario of Figure 5a.
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anymore, while in Figure 5b at state z the individual is mistaken, not only
about the safety of driving, but also in his recollection of his past belief (he
believes that he previously believed, as he does now, that it would be safe
to drive). While the frame of Figure 5a validates (Xmem), that of Figure 5b
does not. In fact, let ¢ be an atomic proposition that is true at ¢ and false
at t': t = q and t' = —q. Then ¢t |= Bq and therefore x = PBq. For every
formula ¢, z |= B¢ if and only if 2’ = ¢. Since t' = —q, t' ¥ Bq. Hence
z' ¥ PBq and z ¥ BPBq. Thus (Xmenm) is falsified at .

S ¢ S Sy
.‘4. ................ ) .A .A

dV \id
S 3 .. ;

v v VS . .Vs
d d ~old d '
I Y, f..‘:S TS @ *_.‘fS
T Sxl x '
a correctly remembering b being mistaken

Figure 5. Action d means ‘drink’, dd denotes ‘don’t drink’ and proposition s means ‘safe
to drive’.

What is the relationship between axioms (X2) and (Xpem)? There are
classes of frames where the two axioms are equivalent, that is, validity of
one implies validity of the other.

PROPOSITION 3. In the class of frames (T, <, B) where the belief relation B
is reflevive and transitive,d (Xmem) is valid if and only if (X2) is valid.

Proposition 3 follows from the next two lemmas.

LEMMA 4. In the class of frames (T, =<,B) where B is transitive, validity of
(X2) implies validity of (Xmem)-

ProoOF. We give a syntactic proof (“PL” stands for “Propositional Logic”).
Recall that in a frame (T, <,B), B is transitive if and only if the axiom
B¢ — BB¢ is valid in the frame (see [4]).

8 Reflexivity requires that Bz for all z, while transitivity requires that zBz whenever
zBy and yBz.
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1. PBB¢ — BPB¢ (instance of (X2), valid by hypothesis)
2. B¢ — BB¢ (valid because of transitivity of B)

3. PB¢— PBB¢ (2, inference rule RK¢: see [4][p. 116])
4. PB¢— BPB¢ (1,3, PL).

LEMMA 5. In the class of frames (T, <,B) where B is reflexive, validity of
(Xmem) implies validity of (X2).°

PROOF. We give a syntactic proof.!® Recall that in a frame (T, <, B), B is
reflexive if and only if the axiom B¢ — ¢ is valid in the frame (see [4]).

PB¢ — BPB¢ (hypothesized validity of (Xmem))

B¢ — ¢ (valid because of reflexivity of B)
PB¢ — P¢ (2, inference rule RKo: see [4][p. 116])
BPB¢ — BP¢ (3, inference rule RK: see [4][p. 114]).
PB¢ — BP¢ (1, 4, PL).

We now turn to a property which is related to memory of past beliefs.
As part of the definition of extensive game it is usually required that if two
nodes belong to the same information set of a player, then it is not the case
that one node precedes the other (see, for example, [5][p. 81]). Violation
of this property has been called “absent-mindedness” (see [10]). We use
the expression “backward time uncertainty” to refer to a generalization of
absent-mindedness to our setup.

U W

DEFINITION 6. At x € T there is backward time uncertainty if there exists
a t € T such that t < x and zBt.

The following lemma states that in frames that satisfy (II12) backward
time uncertainty “propagates into the past”.

LEMMA 7. Let (T, <,B) be a frame that satisfies (I12). Then the following
is true for every x € T': if at x there is backward time uncertainty, then
there exists a t € T' such that (1) t < = and (2) at t there is backward time
uncertainty.

 Lemma, 5 can be proved under a weaker assumption than reflexivity, namely converse
transitivity. Given a binary relation R on T, let R(t) = {z € T : tRz}. While transitivity
requires that if z € R(t) then R(z) C R(t), converse transitive requires that if R(z) C R(t)
then = € R(t). Note that a relation which is transitive and converse transitive is not
necessarily reflexive nor euclidean (a relation R is euclidean if x € R(t) implies R(¢) C
R(z)). Thus the corresponding modal operator [1 does not necessarily satisfy truth ((¢ —
¢) nor negative introspection (-0¢ — [-l¢). For example, let T = {t1,t2,t3} and
R = {(t1,t1), (t2,t1), (t2,3), (ts,t3)}. Then R is transitive and converse transitive but
neither reflexive nor euclidean.

10 This proof was suggested to me by Johan van Benthem.
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PROOF. Let x be such that there exists a ¢ with ¢ < z and zBt. By (I12)
(letting =’ = t) there exists a ¢’ such that tBt' and ¢’ < t. Thus at t there is
backward time uncertainty. n

The following proposition says that a frame where the temporal prece-
dence relation < is well-founded'! cannot have backward time uncertainty if
it satisfies (I12). For example, a (finite or infinite) rooted tree is well-founded.
Thus the typical dynamic decision problem or extensive game satisfies this

property.

PROPOSITION 8. Let (T, <,B) be a frame that satisfies (112). If < is well-
founded, then there is no x € T' at which there is backward time uncertainty.

PROOF. Suppose that there is a t; € T at which there is backward time
uncertainty. By Lemma 7 there is an infinite sequence (t1, t9, ...) such that,
for all ¢ > 1, ¢t;41 < t; and at ¢;4; there is backward time uncertainty,
contradicting the assumption that < is well-founded. 2 ]

Since, when B is reflexive, (Iljem) implies (I12) (cf. Lemma 5), in Propo-
sition 8 the hypothesis that the frame satisfies (II2) can be replaced by the
hypothesis that the frame satisfies (ILpem) and B is reflexive.!3

3. Actions

We now extend the framework by adding actions. The frames that we con-
sider now are of the form <T, =<, B, A, {Ra} ¢ A> where A is a set of actions
and, for every a € A, R, is a partial function on T, that is, a binary relation
satisfying the property that if ¢{R,x and tR,y then x = y. The interpre-
tation of tR4t' is: by taking action a at state ¢ the individual can bring
about state t'. Note that it is possible that for some ¢t € T and all a € A,

11 That is, there is no infinite sequence (t1,t2,...) such that, for all i > 1, t;41 < t;. In
other words, time does not extend infinitely into the past and there are no <-cycles.

2 If < is not well-founded, then (T12) is consistent with there being backward time un-
certainty at every state, as the following frame shows: T = {t,z}, <= B = {(t,z), (z,t)}.
In this example < contains a cycle, while in the following example there are no <-cycles:
T = 7Z (where Z denotes the set of positive or negative integers), for all m,n € Z, m < n
if and only if m < n, and B is the universal relation on Z, that is, B = Z x Z. This frame
satisfies (I12) and there is backward time uncertainty at every state.

13 As pointed out above, the weaker hypothesis of converse transitivity is sufficient.
When B is not converse transitive, (Ilmem) is compatible with backward time uncertainty,
as the following example shows: T' = {t',t,z}, <= {(t,t),(t',z),(¢t,z)} and B = {(,t)}.
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R,(t) def {t' € T : tR,t'} is empty. In such a case the individual does not

have any actions available at state .14

With every relation R, we associate two modal operators: [, and its
inverse ;. The interpretation of (¢ is “after action a it will the case
that ¢” and the interpretation of (07 '¢ is “if action a was performed, then
before that it was the case that ¢ ”. The truth conditions are as usual:

t = 0q¢ if and only if ¢/ |= ¢ for all ¢’ such that tR,t’, and

t |=0;1¢ if and only if ¢ |= ¢ for all t” such that ¢’ R,t.

Let g be the dual of 0, and < the dual of -1, i.e. Og¢p & —,~¢ and

1, d _
01 001,

We make the following assumption about each relation R:
if tR,t' then t<t. (Msyp)

(ITsyp) says that each R, is a subrelation of <, which means that actions can
only affect the future. It is straightforward to show that (Ilgy) is character-
ized by the following axiom:

Gé — Oy (Xsup)

which states that if, at every future time, it will be the case that ¢ then
after action a it will be the case that ¢.

The same action can be available at different states and lead to different
outcomes. For example, the action of opening the window may lead to a
state where the floor is wet, if it is raining outside, or to a state where the
floor is dry, if it is not raining outside. The individual might or might not
know which outcome will occur, depending on whether she can tell what the
weather is like (for example, she might be blind). Let r be the proposition
“it is raining”, w the proposition “the floor is wet” and let a denote the
action of opening the window. Figure 6 shows three possibilities. As before,
the temporal precedence relation < is denoted by continuous arrows and the
belief relation B by dotted arrows. We represent the relation R, by writing
the label a next to a continuous arrow. Consider state ¢;. In Figure 6a
the individual knows that it is not raining and correctly believes that if she
opens the window the floor will not get wet. In Figure 6b she is erroneously
convinced that is raining (perhaps because she hears the sound of water

14 A transition from t to z that does not correspond to an action (i.e. t < z but, for
all a € A, not tR,z) could represent either a choice by “Nature” or an action taken by
another individual. In this paper the focus is on a single individual and A is the set of
actions available to that individual.
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and, being blind, does not realize that it is a sprinkler) and thus incorrectly
believes that if she opens the window the floor will get wet. In Figure 6¢ she
is uncertain as to whether or not it is raining and, therefore, she is uncertain
as to the effect of opening the window. In all three cases we have that
t; E Oy~w. In Figure 6a, t; = BO,~w whereas in Figure 6b, ¢; = BOgw.

S by ¢ Sty £ t
-r 1 ‘2Arr -r .1 ........ ».2‘7'- -r .1‘4. ..... - 2 r
w e, o, w —w . e, e, w —w e, o,

t3 ta It -::.t4 ) t3 ty
a b c
Figure 6.

The main topic that we want to address in this section is how to express
the notion of remembering what one did, that is, we want to capture the
fact that an individual always remembers what actions she took in the past.
This is a different type of memory from the one discussed in the previous
section which dealt with recollection of past beliefs. In the frame of Figure 7,
for example, at state to the individual remembers what she knew earlier (i.e.
at state t1) although she has forgotten what action she took at that time.
Indeed, the frame of Figure 7 satisfies property (Ilynem) (as well as (I12)),
although it intuitively violates memory of past actions.

St

.'-- . .A.
a b
LR -,
to 3

Figure 7.
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In the context of extensive-form games (where the belief relation of every
player is an equivalence relation) van Benthem proposes in [2] the following
axiom to capture the notion of perfect recall:

BO,¢ — O,B¢ (XuB)

which says that if the individual believes that after action a it will be the
case that ¢ then after action a she will believe that ¢.'5 In the more general
framework of this paper (X,p) cannot be taken as an expression of memory
of past actions. Consider the frame of Figure 6b and state ¢;. We have that
t1 FE BO,w and yet, since t3 = B~w and t1R4t3, t1 ¥ O, Bw. Thus axiom
(XypB) is falsified at t;. Indeed, whenever the individual has mistaken beliefs
about the effects of a certain action and later, after taking the action, learns
the truth, then axiom (X, ) is necessarily violated, despite the fact that the
individual might very well remember what actions she took in the past.

Consider the following property (“ar” stands for “action recall”):

If tR,x and either = y or = < y, then for every y' such that yBy/,
there exist ¢/, 2’ € T such that ¢’ R,x’ and either 2’ =y’ or 2’ < ¢/.
(Iar)

The frames of Figure 5a and 5b (where “drink” is an action) satisfy this
property, while the frame of Figure 7 violates it.

Let T be the symbol for Truth. For every action a and state z, z = ;1T
if and only if there exists a ¢ such that tR,x. Thus the interpretation of O, 1T
is “the individual has just taken action a”. The following axiom says that
if the individual has just taken action a, then she believes that either she
has just taken action a or that some time in the past she took action a and,
furthermore, she will believe this at every future time.

01T — B(O;'TVPOIT)AGB (0,1 T v POIT). (Xar)

Note that the antecedent of (X,,) does not contain any hypothesis about
what the individual believed when she acted. Thus axiom (X,,) captures

15 It should be stressed that van Benthem proposed this axiom in a different context and
that transposing it to our framework does not do justice to his analysis. In particular, van
Benthem referred to choices, rather than actions. The definition of choice in an extensive
game (see, for example, [11]) implies that if the same choice is available at two different
nodes then those two nodes must belong to the same information set of the same player
(a restriction that we have not imposed on actions). Thus the notion of choice bundles
together actions and epistemic states, while the purpose of our analysis is to disentangle
these two notions. The analysis of this paper concerning axiom (X, g) thus is not intended,
nor can it be taken, to be a criticism of van Benthem’s contribution.
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merely memory of past actions and allows the individual to forget what she
believed in the past. An example of this is the frame of Figure 5b where, by
the following proposition, (Xg,) is valid, although (X,nem) is not.

PROPOSITION 9. Property (Il,,) is characterized by aziom (Xg).

PRroor. Fix a frame that satisfies property (Il ;). Fix an arbitrary state z
and action a and suppose that z |= O, T. Then there exists a t € T such
that tRox. First we show that z = B (71T v POSIT). Fix an arbitrary
y' such that zBy'. By (Il,,) there exist ¢, 2’ € T such that ' R,z and either
=y ors <y. Thusz' | O;'T and ¢ = O;1T v POSIT. Hence
z = B(O;1TVPOSIT). Next we show that z = GB (O71T vV POIT).
Fix arbitrary y and y’ such that z < y and yBy'. Then by (Il,) there
exist ¢/,2' € T such that t'R,z’ and either 2’ = y' or 2’ < ¢/. Thus 2’ =
O'T and ¢ | OF'T VPOSIT and y | B(O;1TVPOSIT). Hence
z | GB(OIT VvV POLIT).

To prove the converse, fix a frame that violates property (Il;.). Then
there exist states t,z,y,7’ and an action a such that

tR,x and either x =y or z < y, (ix)
yBy', (x)
vt',z' € T, if  Ryx' then 2’ # o' and 2’ £ /. (xi)
By (ix),
r O T. (xii)

By (xi), ¥ ¥ 01T v POSIT. Thus, by (x),
y¥ B (01T Vv POIT). (xiii)

If x = y, then by (xii) and (xiii), axiom (X, ) is falsified at z. If, on the other
hand, < y, then by (xiii), z ¥ GB (<>g ITVvPOSIT) and this, together
with (xii), falsifies (X,,) at z. |

It is worth pointing out that property (Il,-) and its characterizing axiom
(X4r) are rather weak. For example, they are consistent with the individual
remembering what actions he took, but forgetting the order in which he took
them. This is shown in the frame of Figure 8, where s is the action of shaving
and d the action of getting dressed. Here the relation B is an equivalence
relation and we have enclosed in a rounded rectangle all the states that
belong to the same equivalence class. At state t the individual remembers
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both shaving and getting dressed, but does not remember whether he first
shaved and then got dressed or the other way round. The frame of Figure 8
satisfies property (Ilo-) and therefore validates axiom (X,;).16

oJ0
G

We now turn to the relationship between axioms (Xmem) and (Xg) on
one hand and axiom (X,p) on the other. The frame of Figure 6b satisfies
both (ITjpem) and (I1,,) and thus, by Propositions 2 and 9, it validates both
(Xmem) and (Xg4r); however, as shown above, it violates (X,g5). We will
show that, if we replace belief with knowledge (i.e. we require the relation
B to be an equivalence relation) and add more structure to the temporal
relation < and the action relations R,, then the conjunction of (Xem) and
(X4r) implies (Xyp). Note, however, that merely switching from beliefs to
knowledge is not enough to guarantee validity of (X,5) even in the presence
of action recall, as shown in Figure 9a (where, as in Figure 8, the relation
B is an equivalence relation and its equivalence classes are represented by
rounded rectangles). Let ¢ be a formula which is true at z and 3’ and false
at ’. Then t |= BOg¢ but ¢ ¥ O, B¢ so that axiom (X,p) is falsified at t.
Note that this frame satisfies property (Il,.) but violates (Ilyem ).t

First we need to impose more restrictions on the relations R, (a € A).

6 As depicted, the relation < is not transitive. However, validity of (Xar) would not
be affected if we made < transitive by adding an arrow from z to ¢ and an arrow from '
to t'.

17 As depicted, the relation < is not transitive. However, the example would not be
affected if we made it transitive by adding an arrow from ¢’ to 2’. Note also that the frame
of Figure 9a could be (part of) an extensive game where the individual under consideration
moves at ¢,t',z and z', while a different player moves at y'. In this case, the unlabeled
transition from y’ to y would correspond to an action available to the other player.
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(e @) '
o xe ey

a b

Figure 9. in part a we have t |= O, A BO,¢p A =0, B, t' = 0.0, y' E &, z = ¢ A B¢
and z’ = —¢.Property IImin rules out situations like b

The following property requires actions to correspond to minimal transitions,
thereby ruling out situations like the one shown in Figure 9b.

If zR,y and t <y then either t =1z or t < z. (Mmin)

PROPOSITION 10. Property (Ilymin) is characterized by the following aziom:
(Xrnin) <>aP¢ — ¢V Pd)

PRrROOF. Assume (IIp,;y). Let z = Oy P¢. Then there exist y and t such that
TRy, t < y and t |= ¢. By (Iliin) either ¢ = z, in which case z |= ¢, or
t < z, in which case z = P¢. In either case, z |= ¢ V P¢. Conversely,
suppose that (Ily;,) is not satisfied. Then there exist states z, ¢t and y and
an action a such that zR,y, t <y and ¢t # = and ¢ A . Construct a model
where, for some atomic proposition g, ||g|| = {¢t}. Then z | O,Pq and z ¥ q
and z ¥ Pq. Thus (Xyin) is falsified at z. [

The following proposition identifies a class of frames where situations
like the one depicted in Figure 9a cannot arise.!® We use the notation t < =
to denote that either t = z or ¢ < x.

PROPOSITION 11. Let (T, <,B) be a frame where: (1) the temporal relation
< s transitive and well-founded, (2) the belief relation B is an equivalence

relation and (3) properties (mem) and (ILyin) are satisfied. Then the fol-
lowing holds:

if tRex, tBY, zBx', ' <y’ and v 32’ then ¢ =2,

18 In fact, Proposition 11 rules out more than what is shown in Figure 9a, because there
is no requirement that t' Ry’ merely that ¢’ < y'.
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PROOF. First of all, note that the frame satisfies (I12). In fact, since it
satisfies (Ilyem), by Proposition 2 (Xpem) is valid in it. Hence, since B is
reflexive, by Lemma 5 (X2) is valid and, by Proposition 1, (I12) is satisfied.
Let t,z,z',9y' and a be such that

tRyx, tBt, B2, ' <y and ¢ 3. (xiv)

By Proposition 8, since ¢’ < ¢/, it is not the case that y'Bt’. This implies
that
not y'Bt. (xv)

In fact, if it were the case that y'Bt, then this, together with tB¢, would
yield, by transitivity of B, that y'Bt’.

Suppose (by contradiction) that 3’ < z’. Since zBz', by symmetry of B
we have 'B z. Thus, by (I12), since y' < =’ and 2’ Bz, there exists a y” such
that

y'By’ and 3y’ < =z. (xvi)

By (IIiin), from tRez and y” < z we get that either t = y” or y” < t. The
case t = y” yields a contradiction between (xv) and (xvi). Thus it must be

y' <t (xvii)

By (I12), from t' < ¢ (by (xiv)) and y'By” (by (xvi)), it follows that there
exists a t” such that

t'Bt" and t" <y". (xviii)

By transitivity of B, from ¢tBt' (by (xiv)) and ¢'Bt” (by (xviii)) we get that

tBt". (xix)

By transitivity of <, from t” < y” (by (xviii)) and y” < ¢ (by (xvii)) we get
that t” < ¢. This, in conjunction with (xix), yields backward time uncertainty
at t”, contradicting Proposition 8. Since 3’ 3 2’ and the hypothesis that
y' <z’ yields a contradiction, it must be ¢/ = z'. [

We can now prove that, with additional hypotheses, memory of past
beliefs and action recall imply validity of axiom (X, g). In fact we will prove
a stronger result. Axiom (X,p) has implicit in it both memory of past
actions and memory of the epistemic state the individual was in when she
took the action. However, this memory requirement applies only to instants
that immediately follow the action and allows the individual to forget later
on what action she took and what she knew at the time. For example, the
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frame of Figure 10 validates axiom (X,p) although at state z the individual
has forgotten that she took action a and has also forgotten what she knew
at the earlier instant ¢.'°

Cx ‘ ‘ x>

Figure 10.

The following axiom strengthens (X, ) by requiring memory to be main-
tained at every future time, that is, by extending it into the future (“SvB”
stands for ”strong version of vB”):

BO,¢p — O,(BéAG(BopV BPg)). (XsvB)

Axiom (Xg,p) says that if the individual believes that after action a it will
be the case that ¢, then after action a the individual believes that ¢ and
it will always be the case that either the individual believes that ¢ or that
she believes that at some time in the past it was the case that ¢. (Xgyp) is
stronger than (X,p): for example, in the frame of Figure 10 (Xgyp) is not
valid, although (X,p) is. On the other hand, it is clear that (X,p) can be
derived from (Xg,p).
We need to add more structure to the relations < and R, (a € A).

DEFINITION 12. A pair (T, <) is called a branching time frame if the tem-
poral precedence relation < satisfies the following properties:

(1) irreflexivity (for all ¢t € T, not t < t),

(2) transitivity (if ¢ < ¢’ and ¢ < ¢” then t < "),

(3) backward linearity (if ¢ < y and x < y then either t =z or t < x or
z <t).

19 In this frame, the only actions available to the individual are a and b; in particular,
there is no action available to her at state ¢, so that, for every action ¢ € A and for every
formula ¢, the formula [ ¢ is trivially true at t.
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The following property requires that if the individual has action a avail-
able then he is aware of it:

if tRyx and tBt' then there exists an z’ such that ¢ R,z (Mgware)

As shown by van Benthem (2001), (IIzyqre) is characterized by the following
axiom:

O T — BO,T. (Xaware)

The last property we introduce rules out situations where the same action
is performed more than once along a given history:2°

if tRyz, z 3y and yRpz then a #b. (Mnoseq)

PROPOSITION 13. Let (T, <,B) be a frame such that (T, <) is a branching
time frame where < is well-founded, the belief relation B is an equivalence
relation and property (Ilposeq) is satisfied. If azioms (Xmem), (Xar) , (Xmin)
and (Xqware) are valid in the frame then also aziom (Xgyp) is valid in it.

PROOF. As a first step we prove validity of axiom (X,g). Let t,a and ¢ be
such that ¢ = BO,¢. We want to show that ¢ = 0, B¢. Fix arbitrary = and
@’ such that tR,z and zBz’. We need to show that ' = ¢. By (Ilsyw) tRex
implies ¢ < z. Since B is reflexive and (Xpem) is valid, by Lemma 5 (X2)
is valid and thus, by Proposition 1, the frame satisfies (I12). Hence, since
t < « and zBz/, there exists a t' such that tBt’ and ¢’ < z’. From ¢ | BO,¢
and tBt' we get that

t' | Oy (xx)

By (Ilg), since tR,x and zBx’ there exist ¢’ and 3’ such that t”R,y’ and
either y' =2’ or ¢ <7 (xxi)

By (Isy) from t”R,y" we get t” < 3. From this, (xxi) and transitivity of
< we get t < z'. Since t' < 2’ and ¢ < z’, by backward linearity of < it
follows that

either ' =¢" or ¢ <t' or t" <t. (xxii)

We need to consider each of the six possible cases arising from (xxi) and
(xxii).

20 This property forces the same action performed consecutively to be identified with
different action-labels, e.g. “shaving in the morning” and “shaving in the evening” or
“turning left at the first junction” and “tunring left at the second junction”. For instance,
property (IInoseq) is satisfied whenever actions are “time-stamped”.
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CASE 1: 3 = 2’ and ¢/ = t". In this case, since t'R,y’, we have t' R,z and,
therefore, by (xx) =’ = ¢.

CASE 2: ¢/ < 2’ and ¢/ = t". In this case we would have tR,x, tBt', xBz/,
t'Ryy’ (and thus, by (IIsy) ¢’ < 3') and 3 < 2’. By Proposition 11 it follows
that ¢’ = 2/ which is incompatible with 3’ < 2’ and irreflexivity of < .

CASE 3: ¢ =2/ and ¢’ < t. In this case we would have tR,z, tBt', zBx/,
t' < t" and t’ < 2’. By Proposition 11 it follows that ¢’ = 2’ which is
incompatible with ¢” < 2’ and irreflexivity of < .

CASE 4: y < 2’ and ¢’ < t’. By transitivity of <, it follows from ¢’ < ¢’
and ¢t <y’ that ¢’ < y/. Thus we would have tR,z, tBt', zBz’, t' < v and
y' < z’. By Proposition 11 it follows that 3’ = 2’ which is incompatible
with ¢’ < 2/ and irreflexivity of < .

CASE 5: ¢ =2’ and ¢ < t'. In this case we have t” < t', ¢’ < =’ and t" R ’.
By (ILpmin) this requires either ¢’ = #', which is incompatible with ¢ < ¢ and
irreflexivity of <, or ¢’ < t” which, together with ¢’ < ¢’ and transitivity of
< would yield ¢’ < ¢, contradicting irreflexivity of < .

CASE 6: y' < 2’ and ¢’ < . In this case since since ' < 2’ and 3 < 2/, by
backward linearity of < either (i) ' <y’ or (ii) ¢’ = ¢ or (iii) ¥’ < t'. In case
(i) we have ¢ </, t' < ¢/ and t"Ryy’. By (ILimin) this requires either ¢’ < ¢
or t' = t" and in both cases we have a violation of irreflexivity of < (as in
case 5). In case (ii) we have t"R,t'. Since tR,x and tBt', by (gyqre) there
exists an z” such that ¢ R,z”. The conjunction of ¢’ R,t' and t' R,z” violates
(ILnoseq)- In case (iii) we have t"Ryy/, v/ < t' and, by (Ilgyare), t' Roz” for
some z”, yielding once again a violation of (Ipeseq)-

This completes the proof that (X,p) is valid. Since the frame satisfies prop-
erty (I12), by Proposition 1, axiom (X2') is valid. The last step of the proof
is a syntactic derivation of (Xg,g) from (X2') and (X,p) (as before, “PL”
stands for “Propositional Logic”):

1. B¢ — GBP¢ Axiom (X2)

2. 0,B¢ — O,GBP¢ 1, rule RK?! for O,
3. BO,¢ — O0,B¢ Axiom (X,g)

4. BO,¢ — 0,GBPé 2,3, PL

5. BP¢ — B\ BPo PL

6. GBP$ — G(B¢V BP¢) 5, rule RK for G

7. 0,GBP¢ — O0,G(B¢V BP¢) 6, rule RK for [J,
8. BU,p — 0,G(Bo V BP) 4,7, PL
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9. B¢ — (0uBp AO.G(Bp VvV BP¢)) 3,8, PL
10. (0uB¢ A 0,G(Bé V BP¢)) —
0. (B¢ A G(Bo V BP4)) Axiom C 22
11. BO,¢ — O,(Bé AG(Bp Vv BP$)) 9, 10, PL. =

a b

. .,
@.t .@ y

Figure 11.

It can be shown that all of the hypotheses of Proposition 13 are necessary
for the result. We will only give an example to show that without property
(IMposeq) Proposition 13 is false. Consider the frame of Figure 11.2 It
satisfies all the hypotheses of Proposition 13 except (Iloseq). Construct a
model based on it, where, for some atomic proposition g, ||q|| = {t,y}. Then
x = BO,q. However, since t ¥ Bq, = ¥ [,Bgq, so that (X,p) is falsified at
at .

4. Conclusion

Memory of past knowledge and of one’s own past actions are properties nor-
mally associated with extensive-form (or dynamic) games. Indeed, most of
the game theory literature restricts attention to games with perfect recall, a
property introduced by Kuhn ([7]) who interpreted it as “equivalent to the

21 See [4][p. 114].

2 See [4][p. 114]. For any normal modal operator [, C is the axiom (O¢ A Oy) —
O(¢ A9).

23 For simplicity we have not drawn continuous arrows that can be obtained by transi-
tivity.
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assertion that each player is allowed by the rules of the game to remember
everything he knew at previous moves and all of his choices at those moves”.
Recently (see Games and Economic Behavior, 1997, Vol. 20), several con-
tributions have focused on the dynamic inconsistency of choices and other
problems that arise when the assumption of perfect recall is relaxed. Thus
a general analysis of different types of memory and their interaction seems
potentially useful. We have carried out such an analysis in terms of two
types of memory: memory of past beliefs and memory of past actions. Our
analysis covers general temporal structures (not necessarily trees or branch-
ing structures) and general epistemic states (not necessarily knowledge or
even belief that satisfies the KD45 logic). The interaction of the two types
of memory was also discussed as well as their relationship to an axiom pro-
posed by van Benthem in the context of extensive games. Our analysis is
both semantic and syntactic, in line with the recent literature on the logical
analysis of games (see, for example, the two special issues of the Bulletin of
Economic Research, Vol. 53, October 2001 and Vol. 54, January 2002).
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