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Abstract

In [6] a general notion of perfect Bayesian equilibrium (PBE) for extensive-form games was
introduced and shown to be intermediate between subgame-perfect equilibrium and sequential
equilibrium. Besides sequential rationality, the ingredients of the proposed notion are (1) the
existence of a plausibility order on the set of histories that rationalizes the given assessment and
(2) the notion of Bayesian consistency relative to the plausibility order. We show that a cardinal
property of the plausibility order and a strengthening of the notion of Bayesian consistency
provide necessary and su¢ cient conditions for a PBE to be a sequential equilibrium.

Keywords: plausibility order, belief revision, Bayesian updating, sequential equilibrium, con-
sistency.

1 Introduction

In [6] a solution concept for extensive-form games was introduced, called perfect Bayesian equilib-
rium (PBE), and shown to be a strict re�nement of subgame-perfect equilibrium ([16]); it was also
shown that, in turn, the notion of sequential equilibrium ([10]) is a strict re�nement of PBE. Besides
sequential rationality, the ingredients of the de�nition of perfect Bayesian equilibrium are (1) the
qualitative notions of plausibility order and AGM-consistency and (2) the notion of Bayesian con-
sistency relative to the plausibility order.1 In this paper we continue the study of PBE by providing
necessary and su¢ cient conditions for a PBE to be a sequential equilibrium. There are two such
conditions. One is the notion of choice-measurability of the plausibility order, which was shown in
[6] to be implied by sequential equilibrium. Choice measurability requires that the plausibility order
- on the set of histories H that rationalizes the given assessment have a cardinal representation,
in the sense that there is an integer-valued function F : H ! N such that (1) F (h) � F (h0) if and
only if h - h0 (this is the ordinal part) and (2) if a is an action available at h and h0 (where h and

�I am grateful to an Associate Editor and two anonymous reviewers for helpful comments and suggestions.
1As shown in [5], these notions can be derived from the primitive concept of a player�s epistemic state, which

encodes the player�s initial beliefs and her disposition to revise those beliefs upon receiving (possibly unexpected)
information. The existence of a plausibility order that rationalizes the epistemic state of each player guarantees that
the belief revision policy of each player satis�es the so-called AGM axioms for rational belief revision, which were
introduced in [1].
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h0 are two histories in the same information set) then F (h)� F (h0) = F (ha)� F (h0a) (this is the
cardinal part). A cardinal representation F can be interpreted as measuring the �plausibility dis-
tance�between histories and this distance is required to be preserved by the addition of a common
action. Choice measurability imposes constraints on the supports of the belief system. The second
condition concerns the distribution of probabilities over those supports and is a strengthening of
the notion of Bayesian consistency which is part of the de�nition of PBE; we call the stronger con-
dition �uniform Bayesian consistency�. Both notions (choice measurability and uniform Bayesian
consistency) are strictly related to existing notions in the literature, as detailed in Section 4. Al-
though the characterization of sequential equilibrium provided in this paper is strictly related to
earlier characterizations, it o¤ers a novel understanding of sequential equilibrium in terms of its
relationship to the notion of perfect Bayesian equilibrium.
The paper is organized as follows. The next section reviews the de�nition of PBE. In Section 3

it is shown that choice measurability and uniform Bayesian consistency are necessary and su¢ cient
for a PBE to be a sequential equilibrium. Section 4 discusses related literature and Section 5
concludes. The proofs are given in the Appendix.

2 AGM-consistency and perfect Bayesian equilibrium

In this section we recall the notion of perfect Bayesian equilibrium introduced in [6]; we employ the
same notation, which makes use of the history-based de�nition of extensive-form game (see [11]).
As in [6], we restrict attention to �nite extensive-form games with perfect recall.
A total pre-order on a set H is a binary relation - which is complete (8h; h0 2 H, either h - h0

or h0 - h) and transitive (8h; h0; h00 2 H, if h - h0 and h0 - h00 then h - h00). We write h � h0 as a
short-hand for �h - h0 and h0 - h�and h � h0 as a short-hand for �h - h0 and h0 6- h�.

De�nition 1 Given an extensive form, a plausibility order is a total pre-order - on the �nite set
of histories H that satis�es the following properties: 8h 2 D (D is the set of decision histories),

PL1: h - ha; 8a 2 A(h) (A(h) is the set of actions available at h),

PL2: (i) 9a 2 A(h) such that h � ha,
(ii) 8a 2 A(h); if h � ha then, 8h0 2 I(h); h0 � h0a;
(I(h) is the information set that contains h),

PL3: if history h is assigned to chance, then h � ha, 8a 2 A(h):

The interpretation of h - h0 is that history h is at least as plausible as history h0.2 Property PL1
says that adding an action to a decision history h cannot yield a more plausible history than h
itself. Property PL2 says that at every decision history h there is at least one action a which is
�plausibility preserving�in the sense that adding a to h yields a history which is as plausible as h;
furthermore, any such action a performs the same role with any other history that belongs to the
same information set. Property PL3 says that all the actions at a history assigned to chance are
plausibility preserving.

2As in [6] we use the notation h - h0 rather than the, perhaps more natural, notation h % h0, for two reasons:
(1) it is the standard notation in the extensive literature that deals with AGM belief revision (for a recent survey
of this literature see the special issue of the Journal of Philosophical Logic, Vol. 40 (2), April 2011) and (2) when
representing - numerically it is convenient to assign lower values to more plausible histories.
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An assessment is a pair (�; �) where � is a behavior strategy pro�le and � is a system of beliefs.3

De�nition 2 Fix an extensive-form. An assessment (�; �) is AGM-consistent if there exists a
plausibility order - on the set of histories H such that:

(i) the actions that are assigned positive probability by � are precisely the plausibility-preserving
actions: 8h 2 D;8a 2 A(h),

�(a) > 0 if and only if h � ha; (P1)

(ii) the histories that are assigned positive probability by � are precisely those that are most
plausible within the corresponding information set: 8h 2 D;

�(h) > 0 if and only if h - h0;8h0 2 I(h): (P2)

If - satis�es properties P1 and P2 with respect to (�; �), we say that - rationalizes (�; �).

An assessment (�; �) is sequentially rational if, for every player i and every information set I
of hers, player i�s expected payo¤ - given the strategy pro�le � and her beliefs at I (as speci�ed by
�) - cannot be increased by unilaterally changing her choice at I and possibly at information sets
of hers that follow I.4

In conjunction with sequential rationality, the notion of AGM-consistency is su¢ cient to elimi-
nate some subgame-perfect equilibria as �implausible�. Consider, for example, the extensive game
of Figure 1 and the pure-strategy pro�le � = (c; d; f) (highlighted by double edges), which con-
stitutes a Nash equilibrium of the game (and also a subgame-perfect equilibrium since there are
no proper subgames). Can � be part of a sequentially rational AGM-consistent assessment (�; �)?
Since, for Player 3, choice f can be rationally chosen only if the player assigns (su¢ ciently high)
positive probability to history be, sequential rationality requires that �(be) > 0; however, any such
assessment is not AGM-consistent. In fact, if there were a plausibility order - that satis�ed De�n-
ition 2, then, by P1, b � bd (since �(d) = 1 > 0) and b � be (since �(e) = 0)5 and, by P2, be - bd

3A behavior strategy pro�le is a list of probability distributions, one for every information set, over the actions
available at that information set. A system of beliefs is a collection of probability distributions, one for every
information set, over the histories in that information set.

4The precise de�nition is as follows. Let Z denote the set of terminal histories and, for every player i, let Ui : Z ! R
be player i�s von Neumann-Morgenstern utility function. Given a decision history h, let Z(h) be the set of terminal
histories that have h as a pre�x. Let Ph;� be the probability distribution over Z(h) induced by the strategy pro�le
�, starting from history h (that is, if z is a terminal history and z = ha1:::am then Ph;�(z) =

Qm
j=1 �(aj)). Let I be

an information set of player i and let ui(Ij�; �) =
P
h2I

�(h)
P

z2Z(h)
Ph;�(z)Ui(z) be player i�s expected utility at I if �

is played, given her beliefs at I (as speci�ed by �). We say that player i�s strategy �i is sequentially rational at I if
ui(Ij(�i; ��i); �) � ui(Ij(� i; ��i); �) for every strategy � i of player i (where ��i denotes the strategy pro�le of the
players other than i). An assessment (�; �) is sequentially rational if, for every player i and for every information
set I of player i, �i is sequentially rational at I: Note that there are two de�nitions of sequential rationality: the
weakly local one - which is the one adopted here - according to which at an information set a player can contemplate
changing her choice not only there but possibly also at subsequent information sets of hers, and a strictly local one,
according to which at an information set a player contemplates changing her choice only there. If the de�nition
of perfect Bayesian equilibrium (De�nition 5 below) is modi�ed by using the strictly local de�nition of sequential
rationality, then an extra condition needs to be added, namely the "pre-consistency" condition identi�ed in [8] and
[14] as being necessary and su¢ cient for the equivalence of the two notions. For simplicity we have chosen the weakly
local de�nition.

5By PL1 of De�nition 1, b - be and, by P1 of De�nition 2, it is not the case that b � be because e is not assigned
positive probability by �. Thus b � be.
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(since - by hypothesis - � assigns positive probability to be). By transitivity of -, from b � bd and
b � be it follows that bd � be, yielding a contradiction.
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The Nash equilibrium � = (c; d; f) cannot be part
of a sequentially rational AGM-consistent assessment.

Figure 1

On the other hand, the Nash equilibrium �0 = (b; d; g) together with �0(bd) = 1 forms a sequen-
tially rational, AGM-consistent assessment: it can be rationalized by several plausibility orders, for
instance the following (; denotes the null history, that is, the root of the tree):0@ ;; b; bd; bdg most plausible

a; c; be; ag; beg
af; bdf; bef least plausible

1A (1)

where each row represents an equivalence class. We use the following convention in representing a
total pre-order: if the row to which history h belongs is above the row to which h0 belongs, then
h � h0 (h is more plausible than h0) and if h and h0 belong to the same row then h � h0 (h is as
plausible as h0).

De�nition 3 Fix an extensive form. Let - be a plausibility order that rationalizes the assessment
(�; �). We say that (�; �) is Bayesian relative to- if for every equivalence class E of - that contains
some decision history h with �(h) > 0 (that is, E \ D+

� 6= ?, where D+
� = fh 2 D : �(h) > 0g)

there exists a probability density function �E : H ! [0; 1] (recall that H is a �nite set) such that:

B1: Supp(�E) = E \D+
� :

B2: If h; h0 2 E \D+
� and h

0 = ha1:::am (that is, h is a pre�x of h0) then
�E(h

0) = �E(h)� �(a1)� ::: � �(am):

B3: If h 2 E \D+
� , then, 8h0 2 I(h); �(h0) = �E (h

0 j I(h)) def= �E(h
0)X

h002I(h)

�E(h00)
:

Property B1 requires that �E(h) > 0 if and only if h 2 E and �(h) > 0. Property B2 requires
�E to be consistent with the strategy pro�le � in the sense that if h; h0 2 E, �(h) > 0, �(h0) > 0
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and h0 = ha1:::am then the probability that �E assigns to h0 is equal to the probability that �E
assigns to h multiplied by the probabilities (according to �) of the actions that lead from h to h0.6

Property B3 requires the system of beliefs � to satisfy Bayes�rule in the sense that if h 2 E and
�(h) > 0 (so that E is the equivalence class of the most plausible elements of I(h)) then for every
history h0 2 I(h), �(h0) (the probability assigned to h0 by �) coincides with the probability of h0
conditional on I(h) using the probability measure �E .
How should one interpret the probability �E(h) of De�nition 3? This issue was not discussed

in [6].7 First of all, it should be noted that one cannot interpret �E(h) as the �probability that
history h is reached by the actual play of the game�. To see this, consider the game of Figure 1
and the assessment �0 = (b; d; g), �0(bd) = 1, which is rationalized by the plausibility order (1).
Let E = f;; b; bd; bdgg be the top equivalence class of that order, so that E \ D+

� = f;; b; bdg.
Then there is only one function �E that satis�es the properties of De�nition 3, namely �E(;) =
�E(b) = �E(bd) =

1
3 . In particular, �E(;) =

1
3 which is at odds with the fact that the play of

the game �reaches�history ; (the root of the tree) for sure, that is, with probability 1. However,
�E(;) = 1

3 does have a meaningful interpretation as suggested in [2, pp.114-115]. De�ne two
random variables d and t, where d is the decision node at which the play is and t is the current
time; assume further that each move takes one unit of time (the initial time being set to 0). In the
example of Figure 1, conditional on the actual play of the game belonging to E = f;; b; bd; bdgg, d
takes the values ;, b, and bd, while the possible values of t can be taken to be 0, 1 and 2. Then,
conditional on �0 = (b; d; g), P (d = ; j t = 0) = 1, while for i 2 f1; 2g, P (d = ; j t = i) = 0;
similarly, P (d = b j t = 1) = P (d = bd j t = 2) = 1 and, for i 2 f0; 2g and j 2 f0; 1g,
P (d = b j t = i) = P (d = bd j t = j) = 0. Letting it be equally probable that the current time is
0, 1 or 2, that is, P (t = 0) = P (t = 1) = P (t = 2) = 1

3 , and de�ning �E(;) as P (d = ; and t = 0)
we get that �E(;) = P (d = ; j t = 0)� P (t = 0) = 1

3 . Note that P (d = ; and t = 0) = P (d = ;),
where P (d = ;) =

P2
i=0 [P (d = ; j t = i)� P (t = i)] and thus one can equivalently de�ne �E(;)

as P (d = ; and t = 0) or as P (d = ;). Similarly, �E(b)
def
= P (d = b and t = 1) = 1

3 and

�E(bd)
def
= P (d = bd and t = 2) = 1

3 (note, again, that P (d = b and t = 1) = P (d = b) and
P (d = bd and t = 2) = P (d = bd)).
In general, when conditioning on an equivalence class E which is not the top equivalence class,

the values f�E(h)gh2E\D+
�
� while maintaining the same interpretation � incorporate also the

probabilities of deviations from the most plausible play(s). To see this, consider the extensive form
of Figure 2 and the assessment �(f) = 1, �(L) = �(R) = 1

2 , �(`) =
1
5 , �(r) =

4
5 , �(A) = 1,

�(D) = 1, �(a) = 0, �(b) = 1
3 , �(c) =

2
3 , �(d) =

3
4 , �(e) =

1
4 , which is rationalized by the following

plausibility order: 0@ ;; f
b; c; d; e; bL; bR; cL; cR; d`; dr; e`; er; bLA; erD

a; aL; aR; bLB; erC

1A (2)

6Note that if h; h0 2 E and h0 = ha1:::am, then �(aj) > 0, for all j = 1; :::;m. In fact, since h0 � h, every action
aj is plausibility preserving and therefore, by Property P1 of De�nition 2, �(aj) > 0.

7 I am grateful to a reviewer for raising this question.
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Figure 2

Let E be the middle equivalence class of (2): E = fb; c; d; e; bL; bR; cL; cR; d`; dr; e`; er; bLA; erDg,
so that E \ D+

� = fb; c; d; e; bL; erg. There is an in�nite number of probability density functions
�E : H ! [0; 1] that satisfy the properties of De�nition 3: the degree of freedom is given by the
relative likelihood of information set fa; b; cg to information set fd; eg, conditional on t = 1. Let
P (fa; b; cg j t = 1) = � 2 (0; 1). Then, conditioning on decision and terminal histories in E and
on times 1 and 2, and taking P (t = 1) = P (t = 2) = 1

2 , one gets the following joint probability
distribution (only the positive values are shown), call it �̂E(�):�

b c d e
t = 1 1

6�
1
3�

3
8 (1� �)

1
8 (1� �)

�
�

bL bR cL cR d` dr e` er
t = 2 1

12�
1
12�

1
6�

1
6�

3
40 (1� �)

3
10 (1� �)

1
40 (1� �)

1
10 (1� �)

�
Then �E(h) = �̂E(h j E\D+

� ) =
�̂E(h)

�̂E(b)+�̂E(c)+�̂E(d)+�̂E(e)+�̂E(bL)+�̂E(er)
. For example, if one chooses

� = 1
2 , then �E(�) is uniquely given by0@ b c d e bL er

t = 1 10
71

20
71

45
142

15
142 0 0

t = 2 0 0 0 0 5
71

6
71

1A
which incorporates the following probabilistic judgements (given the information that the actual
play of the game is at a decision history in E): (1) the probability that the actual play of the game
is at history b is �E(b) = 10

71 , (2) conditional on being at information set fa; b; cg (and thus on
t = 1) the probabilities are �(b) = �E(b)

�E(b)+�E(c)
=

10
71

10
71+

20
71

= 1
3 and �(c) =

2
3 , (3) conditional on t = 1
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the probabilities are
�
b c d e
1
6

2
6

3
8

1
8

�
, (4) conditional on t = 2 the probabilities are

�
bL er
5
11

6
11

�
,

etc. We summarize the above discussion in the following remark. The important di¤erence between
�being at history h�and �reaching h�was emphasized in [2, 7, 15].8

Remark 4 The interpretation of �E(h) in De�nition 3 is �the probability that the actual play of
the game is currently at history h, conditional on it being in E \ D+

��, assuming that any two
(relevant) dates are equally likely. The unique time t(h) at which a decision history h is visited
can be taken to be equal to the length of h, denoted by `(h), which is de�ned recursively as follows:
`(;) = 0 and `(ha) = `(h)+1. As noted above, one can equivalently de�ne �E(h) as �the probability
that the actual play of the game is at history h and the time is t(h)�(conditional on E \D+

� ).
9

De�nition 5 An assessment (�; �) is a perfect Bayesian equilibrium if it is sequentially rational,
it is rationalized by a plausibility order on the set of histories and is Bayesian relative to it.

Remark 6 It is proved in [6] that if (�; �) is a perfect Bayesian equilibrium then � is a subgame-
perfect equilibrium and that every sequential equilibrium is a perfect Bayesian equilibrium.10

For the game illustrated in Figure 3, a perfect Bayesian equilibrium is given by � = (c; d; g),
�(a) = �(be) = 1 (� is highlighted by double edges). In fact (�; �) is sequentially rational and,
furthermore, it is rationalized by the following plausibility order and is Bayesian relative to it (the
trivial density functions on the equivalence classes that contain histories h with �(h) > 0 are written
next to the order): 0BBBBBBBB@

;; c
a; ad
b; bd
be; beg
ae; aeg
bef
aef

1CCCCCCCCA
;

0@ �f;;cg(;) = 1
�fa;adg(a) = 1
�fbe;begg(be) = 1

1A (3)

The belief revision policy encoded in a perfect Bayesian equilibrium can be interpreted either as
the epistemic state of an external observer11 or as a belief revision policy which is shared by all the
players. For example, the perfect Bayesian equilibrium � = (c; d; g) and �(a) = �(be) = 1 of the
game of Figure 3 re�ects the following belief revision policy: the initial beliefs are that Player 1 will
play c; conditional on learning that Player 1 did not play c, the observer would become convinced

8The probability of reaching history h is the sum of the probabilities of the histories that have h as a pre�x and is
thus interpreted as the probability that the actual play of the game is or was at h. In the above example, conditional
on t = 1 or t = 2 and considering decision and terminal histories in E, the probability of reaching b is given by
�̂E(d = b and t = 1) + �̂E(d = bL and t = 2) + �̂E(d = bR and t = 2) = 1

6
� + 1

12
� + 1

12
� = 1

3
� or, conditioning

on E \D+
� and taking � = 1

2
, by �((d = b and t = 1) + �(d = bL and t = 2) = 10

71
+ 5

71
= 15

71
:

9The reason why we take the support of �E to be E \ D+
� , rather than E, is that terminal histories as well as

decision histories h with �(h) = 0 are irrelevant for the notion of Bayesian consistency and �E so de�ned is a much
simpler object (compare, for instance, the simpler function �E with the more extensive function �̂E in the above
example).
10The example of Figure 1 shows that PBE is a strict re�nement of subgame-perfect equilibrium. It is shown in

[6] that, in turn, sequential equilibrium is a strict re�nement of PBE.
11For example, [9] adopt this interpretation. For a subjective interpretation of perfect Bayesian equilibrium see

[5].
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that Player 1 played a (that is, she would judge a to be strictly more plausible than b) and would
expect Player 2 to play d; upon learning that Player 1 did not play c and Player 2 did not play d,
the observer would become convinced that Player 1 played b and Player 2 played e, hence judging
be to be strictly more plausible than ae, thereby reversing her earlier belief that a was strictly more
plausible than b. Note that such a belief revision policy is consistent with the AGM rationality
axioms introduced in [1]; however, it is ruled out by the stronger notion of sequential equilibrium.
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The assessments (1) � = (c; d; g) with �(a) = �(be) = 1 and
(2) � = (c; d; g) with �(a) = �(be) = 3

4 , �(b) = �(ae) =
1
4

are both perfect Bayesian equilibria.
Figure 3

Another perfect Bayesian equilibrium of the game of Figure 3 is � = (c; d; g), �(a) = 3
4 , �(b) =

1
4 ,

�(ae) = 1
4 and �(be) =

3
4 ; it is rationalized by the following plausibility order and is Bayesian relative

to it: 0BB@
;; c

a; ad; b; bd
ae; aeg; be; beg
aef; bef

1CCA ;
0B@ �f;;cg(;) = 1

�E(a) =
3
4 ; �E(b) =

1
4

�F (ae) =
1
4 ; �F (be) =

3
4

1CA (4)

where E = fa; ad; b; bdg and F = fae; aeg; be; begg. In this case the relative plausibility of a and
b remains unchanged after observing e, since a � b and ae � be; however, the relative probability
does change, since a is judged to be three times as likely as b but ae is judged to be one third as
likely as be. Such a revised judgment is also incompatible with the notion of sequential equilibrium.
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We will show in the next section that sequential equilibrium can be characterized as a strenght-
ening PBE based on two properties: (1) a property of the plausibility order that constrains the
supports of the belief system in a way that rules out the phenomenon highlighted by the �rst PBE
of the game of Figure 3 and (2) a strengthening of the notion of Bayesian consistency, which imposes
constraints on how the probabilities are distributed over those supports and thereby rules out the
phenomenon highlighted by the second PBE of the game of Figure 3.

3 Perfect Bayesian equilibrium and sequential equilibrium.

Given a plausibility order - on the �nite set of histories H, a function F : H ! N (where N denotes
the set of non-negative integers) is said to be an ordinal integer-valued representation of - if, for
every h; h0 2 H,

F (h) � F (h0) if and only if h - h0: (5)

Since H is �nite, the set of ordinal integer-valued representations is non-empty. Instead of an
ordinal representation of the plausibility order - one could seek a cardinal representation which,
besides (5), satis�es the following property: if h and h0 belong to the same information set and
a 2 A(h), then

F (h0)� F (h) = F (h0a)� F (ha): (CM)

If we think of F as measuring the �plausibility distance�between histories, then we can interpret
CM as a distance-preserving condition: the plausibility distance between two histories in the same
information set is preserved by the addition of the same action. The following de�nition is taken
from [6].

De�nition 7 A plausibility order - on the set of histories H is choice measurable if it has at least
one integer-valued representation that satis�es property CM .

For example, the plausibility order (3) is not choice measurable, since any integer-valued repre-
sentation F of it must be such that F (b)�F (a) > 0 and F (be)�F (ae) < 0. On the other hand, the
plausibility order (4) is choice measurable, as shown by the following integer-valued representation:
F (;) = F (c) = 0, F (h) = 1 for all h 2 fa; ad; b; bdg, F (h) = 2 for all h 2 fae; aeg; be; begg and
F (aef) = F (bef) = 3:
Choice measurability plays a crucial role in �lling the gap between perfect Bayesian equilibrium

and sequential equilibrium. First we recall the de�nition of sequential equilibrium. An assess-
ment (�; �) is KW-consistent (�KW� stands for �Kreps-Wilson�) if there is an in�nite sequence

�1; :::; �m; :::

�
of completely mixed strategy pro�les such that, letting �m be the unique system

of beliefs obtained from �m by applying Bayes�rule,12 limm!1(�
m; �m) = (�; �). An assessment

(�; �) is a sequential equilibrium if it is KW-consistent and sequentially rational.
It is shown in [6] that if (�; �) is a KW-consistent assessment then it is rationalized by a

plausibility order that is choice measurable and that the notion of sequential equilibrium is a strict

12That is, for every h 2 Dnf;g, �m(h) =

Q
a2Ah

�m(a)P
h02I(h)

Q
a2A

h0
�m(a)

, where Ah is the set of actions that occur in history

h. Since �m is completely mixed, �m(a) > 0 for every a 2 A and thus �m(h) > 0 for all h 2 Dnf;g:

9



re�nement of perfect Bayesian equilibrium. We now show that choice measurability together with
a strengthening of De�nition 3, which we call uniform Bayesian consistency (De�nition 9 below), is
necessary and su¢ cient for a perfect Bayesian equilibrium to be a sequential equilibrium.
To motivate the next de�nition, let (�; �) be an assessment which is rationalized by a plausibility

order -. As before, let D+
� be the set of decision histories to which � assigns positive probability:

D+
� = fh 2 D : �(h) > 0g. Let E+� be the set of equivalence classes of - that have a non-empty

intersection with D+
� . Clearly E+� is a non-empty, �nite set. Suppose that (�; �) is Bayesian relative

to - and �x a collection of probability density functions f�EgE2E+� that satisfy the properties of
De�nition 3. We call a probability density function � : D ! (0; 1] (recall that D is the set of
all decision histories) a full-support common prior of f�EgE2E+� if, for every E 2 E+� , �E(�) =
�(� j E \ D+

� ), that is, for all h 2 E \ D+
� , �E(h) =

�(h)P
h02E\D+

�
�(h0) . Note that a full support

common prior assigns positive probability to all decision histories, not only to those in D+
� . Since

any two elements of E+� are mutually disjoint, a full support common prior always exists; indeed,
there is an in�nite number of them. To see this, let E+� = fE1; :::; Emg (m � 1) and choose arbitrary
�1; :::; �m 2 (0; 1) and � 2 [0; 1) such that �1+ :::+�m+� = 1 and � > 0 if and only if DnD+

� 6= ?.
Then �(�) = ��(�)+���(�) is a full-support common prior of f�Eigi2f1;:::;mg, where �� : D ! [0; 1] is
given by ��(h) =

Pm
i=1 [�i � �Ei(h)] (so that ��(h) > 0 if and only if h 2 D+

� ) and �
�� : D ! [0; 1]

is such that ���(h) > 0 if and only if h 2 DnD+
� and

P
h2DnD+

�
���(h) = �. Among the many

full-support common priors there are some that satisfy further properties, as the following lemma,
which is proved in the Appendix, shows.

Lemma 8 There always exists a full-support common prior � that satis�es the following property:
if a 2 A(h) and ha 2 D, then (A) �(ha) � �(h) and (B) if �(a) > 0 then �(ha) = �(h)� �(a).

The following de�nition requires that, among the many full-support common priors, there be one
that, besides the property of Lemma 8, satis�es the additional property that the relative likelihood
of any two histories in the same information set be preserved by the addition of the same action.

De�nition 9 Fix an extensive form. Let (�; �) be an assessment which is rationalized by the
plausibility order -. We say that (�; �) is uniformly Bayesian relative to- if there exists a collection
of probability density functions f�EgE2E+� that satisfy the properties of De�nition 3 and a full-
support common prior � : D ! (0; 1] of f�EgE2E+� that satis�es the following properties.

UB1: If a 2 A(h) and ha 2 D, then
(A) �(ha) � �(h) and (B) if �(a) > 0 then �(ha) = �(h)� �(a):

UB2: If a 2 A(h), h and h0 belong to the same information set and ha; h0a 2 D
then �(h)

�(h0) =
�(ha)
�(h0a) :

We call such a function � a uniform full-support common prior of f�EgE2E+� .

UB1 is the property of Lemma 8, which can always be satis�ed by an appropriate choice of a
full-support common prior. UB2 requires that the relative probability, according to the common
prior �, of any two histories that belong to the same information set remain unchanged by the
addition of the same action.

Remark 10 Choice measurability and uniform Bayesian consistency are independent properties.
For example, the perfect Bayesian equilibrium � = (c; d; g) and �(a) = �(be) = 1 of the game of
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Figure 3 is such that any plausibility order that rationalizes it cannot be choice measurable13 and
yet (�; �) is uniformly Bayesian relative to plausibility order (3) that rationalizes it.14 On the other
hand, the perfect Bayesian equilibrium � = (c; d; g), �(a) = �(be) = 3

4 , �(b) = �(ae) = 1
4 of the

game of Figure 3 is rationalized by the choice measurable plausibility order (4) (as shown above)
but it cannot be uniformly Bayesian relative to any plausibility order that rationalizes it.15

We can now state the main result of this paper, namely that choice measurability and uniform
Bayesian consistency are necessary and su¢ cient for a perfect Bayesian equilibrium to be a sequen-
tial equilibrium. The proof, which exploits the characterization of sequential equilibrium provided
in [12] (for an alternative and similar characterization see [17]), is given in the Appendix.

Proposition 11 Fix an extensive game and an assessment (�; �). The following are equivalent:

(I) (�; �) is a perfect Bayesian equilibrium which is rationalized by a
choice measurable plausibility order and is uniformly Bayesian relative to it.

(II) (�; �) is a sequential equilibrium.

As an application of Proposition 11 consider the extensive game of Figure 4. Let (�; �) be
an assessment with �(a) = �(T ) = �(f) = �(L) = 1 (highlighted by double edges; note that �
is a subgame-perfect equilibrium), �(b) > 0 and �(c) > 0. Then (�; �) can be rationalized by a
choice-measurable plausibility order only if � is such that16

either �(bB) = �(cBf) = 0, or �(bB) > 0 and �(cBf) > 0: (6)

If, besides from being rationalized by a choice-measurable plausibility order -, (�; �) is also uni-
formly Bayesian relative to - (De�nition 9), then17

13Because, by P2 of De�nition 2, any such plausibility order - would have to satisfy a � b and be � ae, so that
any integer-valued representation F of it would be such that F (b)� F (a) > 0 and F (be)� F (ae) < 0.
14As can be seen by taking � to be the uniform distribution over the set D = f;; a; b; ae; beg (UB1 is clearly

satis�ed and UB2 is also satis�ed, since �(a)
�(b)

=
1
5
1
5

=
�(ae)
�(be)

).
15Because, by P2 De�nition 2, any such plausibility order - would have to satisfy a � b and ae � be, so that -

letting E be the equivalence class fa; b; ad; bdg and F the equivalence class fae; be; aeg; begg (thus E \D+
� = fa; bg

and F \D+
� = fae; beg) - if � is any common prior then �E(a) = �(a)

�(a)+�(b)
, �E(b) =

�(b)
�(a)+�(b)

. By B3 of De�nition

3, �(a) = �E(a)
�E(a)+�E(b)

and �(b) = �E(b)
�E(a)+�E(b)

. Thus �(a)
�(b)

=
�E(a)
�E(b)

=
�(a)
�(b)

= 3; similarly, �(ae)
�(be)

=
�F (ae)
�F (be)

=

�(ae)
�(be)

= 1
3
, yielding a violation of UB2 of De�nition 9.

16Proof. Let - be a choice measurable plausibility order that rationalizes (�; �) and let F be a cardinal rep-
resentation of it. Since �(b) > 0 and �(c) > 0, by P2 of De�nition 2, b � c and thus F (b) = F (c). By choice
measurability, F (b) � F (c) = F (bB) � F (cB) and thus F (bB) = F (cB), so that bB � cB. Since �(f) > 0, by
P1 of De�nition 2, cB � cBf and therefore, by transitivity of -, bB � cBf . Hence if �(bB) > 0 then, by P2
of De�nition 2, bB 2 Min-fbB; cBf; dg (for any S � H, Min-S is de�ned as fh 2 S : h - h0; 8h0 2 Sg) and thus
cBf 2Min-fbB; cBf; dg so that, by P2 of De�nition 2, �(cBf) > 0. The proof that if �(cBf) > 0 then �(bB) > 0
is similar.
17Proof. Suppose that �(b) > 0, �(c) > 0 (so that b � c) and �(bB) > 0: Let � be a full-support common

prior that satis�es the properties of De�nition 9. Then, by UB2, �(c)
�(b)

=
�(cB)
�(bB)

and, by UB1, since �(f) = 1,

�(cBf) = �(cB) � �(f) = �(cB). Let E be the equivalence class that contains b: Then E \ D+
� = fb; cg. Since

�E(�) = �(� j E \ D+
� ), by B3 of Defnition 3, �(b) =

�(b)
�(b)+�(c)

and �(c) = �(c)
�(b)+�(c)

, so that �(c)
�(b)

=
�(c)
�(b)

: Let G

be the equivalence class that contains bB. Then, since - by hypothesis - �(bB) > 0, it follows from (6) that either
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�(bB) > 0 ) �(cBf)

�(bB)
=
�(c)

�(b)
: (7)
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Implications of choice measurability and the uniform Bayesian property for
assessments of the form �(a) = �(T ) = �(f) = �(L) = 1; �(b) > 0, �(c) > 0.

Figure 4

Thus, for example, continuing to assume that � = ((a; f); T; L), the assessment (�; ~�) with
~�(b) = 7

10 , ~�(c) =
3
10 , ~�(bB) =

7
18 , ~�(cBF ) =

3
18 and ~�(d) =

8
18 is a sequential equilibrium,

18 while
the assessment (�; �̂) with �̂(b) = 7

10 , �̂(c) =
3
10 , �̂(bB) = �̂(cBf) = �̂(d) =

1
3 is a perfect Bayesian

equilibrium but not a sequential equilibrium.19

G \D+
� = fbB; cBfg or G \D+

� = fbB; cBf; dg. Since �G(�) = �(� j G \D+
� ), by B3 of Defnition 3, in the former

case �(bB) = �(bB)
�(bB)+�(cBf)

and �(cBf) = �(cBf)
�(bB)+�(cBf)

and in the latter case �(bB) = �(bB)
�(bB)+�(cBf)+�(d)

and

�(cBf) =
�(cBf)

�(bB)+�(cBf)+�(d)
; thus in both cases �(cBf)

�(bB)
=

�(cBf)
�(bB)

: Hence, since �(cBf) = �(cB), �(cBf)
�(bB)

=
�(cB)
�(bB)

and, therefore, since - as shown above - �(cB)
�(bB)

=
�(c)
�(b)

and �(c)
�(b)

=
�(c)
�(b)

, we have that �(cBf)
�(bB)

=
�(c)
�(b)

.
18 It follows from Proposition 11 and the fact that (�; �) is sequentially rational and rationalized by the following

choice-measurable plausibility order:

0BBBBB@
- : F :

;; a 0
b; c; bT; cT 1
d; bB; cB; cBf; dL; bBL; cBfL 2
bBR; cBe; cBfR; dR 3

1CCCCCA and is uniformly Bayesian relative

to it: letting E1; E2 and E3 be the top three equivalence classes, there is a unique collection of probability density
functions that satify the properties of De�nition 3, namely �E1 (;) = 1, �E2 (b) =

7
10
, �E2 (c) =

3
10
, �E3 (d) =

8
21
,

�E3 (bB) =
7
21
, �E3 (cB) = �E3 (cBf) =

3
21
; then the following is a full-support uniform common prior: �(;) =

9
40
; �(b) = �(bB) = 7

40
, �(c) = �(cB) = �(cBf) = 3

40
, �(d) = 8

40
.

19Both (�; ~�) and (�; �̂) are sequentially rational and are rationalized by the choice measurable plausibility order
given in Footnote 18; (�; �̂) is Bayesian relative to that plausibility order but cannot be uniformly Bayesian relative
to any rationalizing order, because it fails to satisfy (7).
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4 Related literature

The notion of perfect Bayesian equilibrium is built on two properties (besides sequential rationality):

(1) rationalizability of the assessment (�; �) by a plausibility order (De�nition 2) and

(2) Bayesian consistency relative to the plausibility order (De�nition 3).

The �rst property identi�es the set of decision histories that can be assigned positive conditional
probability by the system of beliefs, while the second property imposes constraints on how con-
ditional probabilities can be distributed over that set in order to guarantee �Bayesian updating
whenever possible�.20 The characterization of sequential equilibrium provided in this paper is built
on a strengthening of each of those two properties:

(10) the plausibility order must be choice measurable (De�nition 7) and

(20) the collection of conditional probability density functions identi�ed by Bayesian consistency
must be compatible with each other, in the sense that there exists a full-support common prior
that preserves the relative likelihood of two decision histories in the same information set when a
common action is added (we called this property uniform Bayesian consistency: De�nition 9).

This two-part characterization is similar to a two-part characterization of KW-consistency provided
in the literature ([10, 12, 17]).21 This characterization is based on two functions de�ned on the set
of actions A:

(i) the �rst function concerns the support of the assessment: it is expressed in terms of the labeling
K in [10, p. 887], the function " in [12, p. 241] and the function e in [17, p. 11];

(ii) the second function concerns the distribution of probabilities on that support: it is expressed
in terms of the function � in [10, p. 888], the function �� in [12, p. 241] and the function c in [17,
p. 11]; this function is used to de�ne �pseudo�probabilities on decision histories.

Our de�nition of choice measurability is a reformulation of (i) that shows it to be a strengthening of
the notion of AGM consistency (De�nition 2), while the notions of Bayesian consistency and uniform
Bayesian consistency disentangle two properties implied by (ii): �Bayesian updating whenever
possible�and �preservation of the relative likelihood of any two histories in the same information
set after the addition of a common action�(the �rst property constitutes Bayesian consistency and
the conjunction of both properties consitutes uniform Bayesian consistency).
The proof of Proposition 11 in the Appendix shows precisely how to translate the two-part

characterization of sequential equilibrium given in [12] (a similar characterization is provided in
[17]) into the characterization o¤ered in this paper and vice versa. Here we comment on other
relevant contributions.
In [18] the author shows the following (using our notation). A set of actions and histories

B � A [H is called a �basement�if it coincides with the support of at least one assessment, that
is, if there is an assessment (�; �) such that a 2 B if and only if �(a) > 0 and h 2 B if and only
if �(h) > 0. Given a basement, one can construct a partial relation - on the set of histories H as

20By �Bayesian updating whenever possible� we mean the following: (1) when information causes no surprises,
because the actual play of the game is consistent with the most plausible play(s) (that is, when information sets
are reached that have positive prior probability), then beliefs should be updated using Bayes� rule and (2) when
information is surprising (that is, when an information set is reached that had zero prior probability) then new
beliefs can be formed in an arbitrary way, but from then on Bayes�rule should be used to update those new beliefs,
whenever further information is received that is consistent with those beliefs.
21 [4] provides an indirect proof of the fact that consistent assessments are determined by �nitely many algebraic

equations and inequalities.

13



follows: (1) if h and h0 belong to the same information set then h � h0 if h; h0 2 B and h � h0 if
h 2 B and h0 =2 B, (2) if a 2 A(h) then h � ha if a 2 B and h � ha if a =2 B. A total pre-order -�
on H is said to be �additively representable�if there exists a function � : A! R such that h -� h0
if and only if

P
a2Ah

�(a) �
P

a2Ah0
�(a) (Ah denotes the set of actions that appear in history h).

Proposition 12 [18, Theorem 1 and Corollary 1, pp. 17 and 20] If the relation - derived from
a basement B can be extended to a total pre-order -� that has an additive representation, then
there exists a KW-consistent assessment (�; �) whose support coincides with B. Conversely, given
a KW-consistent assessment (�; �), the relation - derived from its basement can be extended to a
total pre-order -� that has an additive representation.

There is a clear connection between Proposition 12 and Proposition 11. However, while Proposi-
tion 12 characterizes basements that are supported by a KW-consistent assessment, Proposition 11
focuses on a particular PBE (�; �) and on the conditions that are necessary and su¢ cient for (�; �)
to be a sequential equilibrium. One of these conditions is choice measurability of the plausibility
order that rationalizes (�; �), which is equivalent to the existence of an additive representation of
a total pre-order that extends the plausibility relation obtained from the support of (�; �). The
other condition is that (�; �) be uniformly Bayesian relative to the plausibility order (there is no
counterpart to this property in Proposition 12, since it only deals with supports).22

The characterizations of sequential equilibrium provided in [10, 12, 17] and in Proposition 11 do
not make any use of sequences and limits. A �limit free�characterization of sequential equilibrium
is also provided in [9] using relative probability spaces (
; �) (which express the notion of an event
being in�nitely less likely than another) and random variables si : 
 ! Si (where Si is the set
of pure strategies of player i), representing the beliefs of an external observer (who can assess
the relative probabilities of any two strategy pro�les, even those that have zero probability); the
authors provide a characterization of KW-consistency in terms of the notion of strong independence
for relative probability spaces (and, in turn, a characterization of strong independence in terms of
weak independence and exchangeability).23

5 Conclusion

Besides sequential rationality, the notion of perfect Bayesian equilibrium introduced in [6] is based
on two elements: (1) the qualitative notions of plausibility order and AGM-consistency and (2)
the notion of Bayesian consistency relative to the plausibility order. In this paper we showed that
by strengthening these two conditions one obtains a characterization of sequential equilibrium.
The strengthening of the �rst condition is that the plausibility order that rationalizes the given
assessment be choice measurable, that it, that there be a cardinal representation of it (which can
be interpreted as measuring the plausibility distance between histories in a way that is preserved
by the addition of a common action). The strengthening of the second condition imposes �uniform
consistency� on the conditional probability density functions on the equivalence classes of the
plausibility order, by requiring that there be a full-support common prior that preserves the relative
probabilities of two decision histories in the same information set when a common action is added.

22At the 13th SAET conference in July 2013 Streufert presented a characterization of KW-consistent assessments in
terms of additive plausibility and a condition that he called �pseudo-Bayesianism�which is essentially a reformulation
of one of the conditions given in [17, Theorem 2.1, p. 11].
23 [3] shows that in games with observable deviators weak independence su¢ ces for KW-consistency.
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Although the characterization provided in this paper is strictly related to earlier characterizations,
it o¤ers a novel understanding of sequential equilibrium, expressed in terms of a strengthening of
the notion of perfect Bayesian equilibrium.24

A Appendix: proofs

Proof of Lemma 8. We shall construct a full-support common prior that satis�es the properties
of Lemma 8. Let E be the �nite collection of equivalence classes of � and let (E1; :::; Em) be the
ordering of E according to decreasing plausibility, that is, 8h; h0 2 H, 8i; j 2 f1; :::;mg, if h 2 Ei and
h0 2 Ej then h � h0 if and only if i < j. Let E+ =

�
E 2 E : E \D+

� 6= ?
	
and let N = f�EgE2E+

be an arbitrary collection of probability density functions that satisfy the properties of De�nition
3. Fix an equivalence class Ei and de�ne the function fEi : H ! (0; 1] recursively as follows.
Step 0. For every h =2 Ei set fEi(h) = 0.
Step 1. For every h 2 Ei \ D+

� set fEi(h) = �Ei(h); where �Ei(�) is the relevant element of N .
Note that, by Property B2 of De�nition 3, if h; ha 2 Ei \D+

� then fEi(ha) = fEi(h)� �(a).

Step 2. Let h; ha 2 Ei; then (a) if h =2 D+
� and ha 2 D+

� , set fEi(h) =
fEi (ha)

�(a) (note that, by P1 of
De�nition 2, h � ha implies �(a) > 0) and (b) if h 2 D+

� and ha =2 D+
� , set fEi(ha) = fEi(h)��(a).

Note that, because of Property B2 of De�nition 3, the values assigned under Step 2 cannot be
inconsistent with the values assigned under Step 1.25

Step 3. After completing Steps 1 and 2, the only histories h 2 Ei for which fEi(h) has not been
de�ned yet are those that satisfy the following properties: (1) there is no pre�x h0 of h such that
h0 2 Ei \ D+

� and (2) there is no h0 2 Ei \ D+
� such that h is a pre�x of h0. Let Êi � Ei

be the set of such histories (it could be that Êi = ?). A maximal path in Êi is a sequence
hh; ha1; ha1a2; :::; ha1a2:::api in Êi such that ha1a2:::ap is a terminal history and there is no h0 2 Êi
which is a proper pre�x of h. Fix an arbitrary maximal path hh; ha1; :::; ha1a2:::api in Êi and de�ne
fEi(h) = 1 and, for every i = 0; :::; p� 1, fEi(ha1:::ai+1) = fEi(ha1:::ai)� �(ai+1) (de�ning ha0 to
be h; note that, by P1 of De�nition 2 �(ai) > 0 for all i = 1; :::; p).
By construction, the function fEi satis�es the following property:

8h 2 Ei, 8a 2 A(h), if �(a) > 0 then (ha 2 Ei and)
fEi(ha) = fEi(h)� �(a) and thus fEi(ha) � fEi(h):

(8)

Note that Steps 1-3 always assign positive values in (0; 1]; thus if h 2 Ei then fEi(h) 2 (0; 1].
Next we show that there exist weights �1; :::; �m 2 (0; 1) such that �1 + ::: + �m < 1 and,

8i; j 2 f1; :::;mg, if h 2 Ei, h0 2 Ej and i < j then �j � fEj (h0) � �i � fEi(h). Fix an arbitrary
�1 2 (0; 1) and let a = minh2E1 f�1 � fE1(h)g (clearly, a 2 (0; 1)). Let b = maxh2E2 ffE2(h)g and
24Kreps and Wilson themselves [10, p. 876] express dissatisfaction with their de�nition of sequential equilibrium:

�We shall proceed here to develop the properties of sequential equilibrium as de�ned above; however, we do so with
some doubts of our own concerning what �ought�to be the de�nition of a consistent assessment that, with sequential
rationality, will give the �proper�de�nition of a sequential equilibrium.� In a similar vein, Osborne and Rubinstein
[11, p. 225] write �we do not �nd the consistency requirement to be natural, since it is stated in terms of limits;
it appears to be a rather opaque technical assumption�. In these quotations �consistency� corresponds to what we
called �KW-consistency�.
25 In the sense that If h; h0 2 E\D+

� and h0 = ha1:::am then by Step 1 (and B2 of De�nition 3) fEi (h
0) = fEi (h)�

�(a1)� ::: � �(am) and by Step 2 - if applicable - for every j = 1; :::;m, fEi (ha1:::aj) = fEi (h)��(a1)� ::: � �(aj).
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choose a �2 2 (0; 1) such that (1) �1 + �2 < 1 and (2) �2 � b � a. Then, for every h 2 E1 and
h0 2 E2, �2 � fE2(h0) � �1 � fE1(h). Repeat this procedure for choosing a weight �i for every
i 2 f3; :::;mg: De�ne �i = �i

�1+:::+�m
and �� : H ! (0; 1] by ��(h) :

Pm
i=1 [�i � fEi(h)]. We want to

show that, 8h 2 H, 8a 2 A(h)

if ha 2 D then (A) ��(ha) � ��(h) and
(B) if �(a) > 0 then ��(ha) = ��(h)� �(a):

(9)

Fix an arbitrary ha 2 D. Suppose �rst that h � ha. Then, by Property P1 of De�nition 2,
�(a) = 0; so that (B) of (9) is trivially satis�ed. Let Ei be the equivalence class to which h belongs
and Ej the equivalence class to which ha belongs, so that i < j. Then ��(h) = �i � fEi(h) and
��(ha) = �j�fEj (ha) and thus, since �j�fEj (ha) � �i�fEi(h), dividing both sides by (�1+:::+�m)
we get that ��(ha) � ��(h). Suppose now that h � ha (so that, by Property P1 of De�nition 2,
�(a) > 0). Let Ei be the equivalence class to which both h and ha belong; then, ��(h) = �i�fEi(h)
and �v(ha) = �i � fEi(ha) and thus (9) follows from (8).
Finally, de�ne � : D ! (0; 1] by �(h) = ��(h)P

h02D ��(h0) . Then it follows from (9) that if ha 2 D
then (A) �(ha) � �(h) and (B) if �(a) > 0 then �(ha) = �(h) � �(a). It only remains to
prove that � is a common prior of N = f�EgE2E+ , that is, that, 8i 2 f1; :::;mg and 8h 2
Ei \ D+

� , v(h j Ei \ D+
� )

def
= �(h)P

h02Ei\D
+
�

�(h0) = �Ei(h), where �Ei(�) is the relevant element of

N . Now, �(h)P
h02Ei\D

+
�

�(h0) =
�(h) �

P
h002D ��(h00)P

h02Ei\D
+
�

�(h0) �
P

h002D ��(h00) =
��(h)P

h02Ei\D
+
�
[�(h0) �

P
h002D ��(h00)]

=

��(h)P
h02Ei\D

+
�

��(h0) =
�i � fEi (h)P

h02Ei\D
+
�
[�i � fEi (h

0)]
=

�i � �Ei (h)P
h02Ei\D

+
�
[�i � �Ei (h

0)]
=

�i � �Ei (h)

�i �
P

h02Ei\D
+
�
�Ei (h

0) =

�Ei(h) since, by construction, for all h 2 Ei \D+
� , fEi(h) = �Ei(h) and Supp(�Ei) = Ei \D+

� . �
In order to prove Proposition 11 we will exploit the characterization of sequential equilibrium

given in [12]. First some notation and terminology. Let A be the set of actions (as in [6], we assume
that no action is available at more than one information set, that is, if h0 =2 I(h) then A(h0) 6= A(h)).
If h is a history, we denote by Ah the set of actions that occur in history h (thus while h is a sequence
of actions, Ah is the set of actions in that sequence; note that, for every history h, Ah 6= ? if and
only if h 6= ;). Given an assessment (�; �) we denote by A0 = fa 2 A : �(a) = 0g the set of
actions that are assigned zero probability by the strategy pro�le �. Recall that D+

� denotes the
set of decision histories to which � assigns positive probability (D+

� = fh 2 D : �(h) > 0g) and
that h0 2 I(h) mans that h and h0 belong to the same information set. A pseudo behavior strategy
pro�le (PBSP) is a generalization of the notion of behavior strategy pro�le that allows the sum of
the �probabilities�over the actions at an information set to be larger than 1, that is, a PBSP is a
function �� : A! [0; 1]: A PBSP �� is a completely mixed extension of a behavior strategy pro�le �
if, 8a 2 A, (1) ��(a) > 0 and (2) if �(a) > 0 then ��(a) = �(a). Given a PBSP ��, for every history h

let P��(h) =
�
1 if h = ;
��(a1)� :::� ��(am) if h = a1:::am

:

The following proposition is proved in [12] (see also [13, p. 74] and [17]).
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Proposition 13 ([12, Theorem 3.1, p. 241]) Fix an extensive game and let (�; �) be an assessment.
Then the following are equivalent:

(A) (A:1) There exists a function " : A0 ! (0; 1) such that, 8h; h0 2 D with h0 2 I(h);
(A:1a) If h; h0 2 D+

� then
Q
a2A0\Ah

"(a) =
Q
a2A0\Ah0

"(a), and

(A:1b) if h 2 D+
� and h

0 =2 D+
� then

Q
a2A0\Ah

"(a) >
Q
a2A0\Ah0

"(a),
and

(A:2) there is a PBSP �� which is a completely mixed extension of � and is such that,

8h; h0 2 D+
� with h

0 2 I(h), P��(h)
P��(h0) =

�(h)
�(h0) :

(B) (�; �) is KW-consistent.

Proof of Proposition 11. (I) ) (II). Let (�; �) be a perfect Bayesian equilibrium which is
rationalized by a choice measurable plausibility order - and is uniformly Bayesian relative to it. We
need to show that (�; �) is a sequential equilibrium. Since (�; �) is a perfect Bayesian equilibrium,
it is sequentially rational and thus we only need to show that (�; �) is KW-consistent. We shall use
choice measurability (De�nition 7) to obtain the function " of Proposition 13 (a similar argument
can be found in [18]) and the full-support common prior � of De�nition 9 to obtain the PBSP ��.

By hypothesis - is choice measurable. Fix a cardinal integer-valued representation F of - and
normalize it so that F (;) = 0.26 For every action a 2 A, de�ne "(a) = e[F (h)�F (ha)] for some h such
that a 2 A(h). By de�nition of choice measurability, if h0 2 I(h) then F (h)�F (ha) = F (h0)�F (h0a)
and thus the function "(a) is well de�ned. Furthermore, if a 2 A0 (that is, �(a) = 0) it follows from
P1 of De�nition 2 that h � ha and thus F (h) � F (ha) < 0 so that 0 < "(a) < 1, while if a =2 A0
(that is, �(a) > 0) then, by P1 of De�nition 2, h � ha and thus F (h)�F (ha) = 0 so that "(a) = 1;
hence,

if A0 \Ah 6= ?; then
Y

a2Ah

"(a) =
Y

a2A0\Ah

"(a): (10)

We want to show that the restriction of "(�) to A0 satis�es (A:1) of Proposition 13. Fix an arbi-
trary history h = a1a2:::am. Since [F (;)� F (a1)]+[F (a1)� F (a1a2)]+:::+[F (a1:::am�1)� F (h)] =
�F (h) (recall that F (;) = 0), it follows that,

8h 2 Hnf;g,
Y

a2Ah

"(a) = e�F (h): (11)

Fix arbitrary h; h0 2 Dnf;g with h0 2 I(h) and h 2 D+
� (that is, �(h) > 0).27 Suppose �rst

that h0 2 D+
� . Then, by P2 of De�nition 2, h � h0 and thus F (h) = F (h0), so that, by (11),Q

a2Ah
"(a) =

Q
a2Ah0

"(a): Thus, by (10), (A:1a) of Proposition 13 is satis�ed. Suppose now that

h0 =2 D+
� . Then, by P2 of De�nition 2, h � h0 and thus F (h) < F (h0) so that e�F (h

0) < e�F (h) and
thus, by (11),

Q
a2Ah

"(a) >
Q
a2Ah0

"(a). Thus, by (10), (A:1b) of Proposition 13 is also satis�ed.

26Recal that ; denotes the null history, that is, the root of the tree. If F̂ is an integer-valued representation of -
that satis�es property CM , then F de�ned by F (h) = F̂ (h)� F̂ (;) is also an integer-valued representation of - that
satis�es property CM ; clearly, F (;) = 0.
27 If h = ; then h0 = h and there is nothing to prove because Ah = A0 \Ah = ?.
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Next we prove (A:2). Denote by �A the set of �non-terminal actions�, that is, �A = fa 2 A :
ha 2 D for some h with a 2 A(h)g. Let � be a uniform full-support common prior (De�nition
9). De�ne �� : �A ! (0; 1] as follows: ��(a) = �(ha)

�(h) for some h such that a 2 A(h) and ha 2 D.
By Property UB2 of De�nition 9, if h0 2 I(h) then �(h0a)

�(h0) = �(ha)
�(h) and thus �� is well de�ned;

furthermore, since �(h) > 0 for all h 2 D, ��(a) > 0: By (A) of Property UB1 of De�nition 9,
��(a) � 1: Finally, by (B) of Property UB1 of De�nition 9, if �(a) > 0 then ��(a) = �(a). Thus ��
is a PBSP which is a completely mixed extension of �. We need to show that 8h; h0 2 D+

� with

h0 2 I(h), P��(h)
P��(h0) =

�(h)
�(h0) . If h = ; it is trivially true because h0 = h and P��(;) = �(;) = 1. Fix

arbitrary h; h0 2 D+
� nf;g with h0 2 I(h): Let h = a1a2:::ap (p � 1) and h0 = b1b2:::br (r � 1). By

de�nition of ��, P��(h) = ��(a1) � ��(a2) � ::: � ��(ap) =
�(a1)
�(;) �

�(a1a2)
�(a1)

� ::: � �(h)
�(a1a2:::ap�1)

= �(h)
�(;) .

Similarly, P��(h0) = �(h0)
�(;) . Thus

P��(h)
P��(h0) =

�(h)
�(h0) . Dividing numerator and denominator of the right-

hand-side by
X

h002Ei\D+
�

�(h00) and using the fact that (since � is a common prior) �(h)X
h002Ei\D

+
�

�(h00)
=

�Ei(h) and
�(h0)X

h002Ei\D
+
�

�(h00)
= �Ei(h

0), where Ei is the equivalence class to which both h and h0

belong, we get that P��(h)
P��(h0) =

�Ei (h)

�Ei (h
0) ; now, dividing numerator and denominator of the right-hand-

side by
X

h002I(h)

�Ei(h
00) and using the fact that, by B3 of De�nition 3, �Ei (h)X

h002I(h)

�Ei (h
00)
= �(h) and

�Ei (h
0)X

h002I(h)

�Ei (h
00)
= �(h0), we obtain P��(h)

P��(h0) =
�(h)
�(h0) , so that (A:2) of Proposition 13 also holds. Hence,

by Proposition 13, (�; �) is KW-consistent.

(II) ) (I). Let (�; �) be a sequential equilibrium. That (�; �) is rationalized by a choice
measurable plausibility order - and is Bayesian relative to it was proved in [6]. Thus we only need
to show that it is uniformly Bayesian. By Proposition 13, there exists a completely mixed PBSP ��
that extends � and is such that,

8h; h0 2 D+
� with h

0 2 I(h); P��(h)
P��(h0)

=
�(h)

�(h0)
: (12)

De�ne �� : D ! (0; 1] recursively as follows: �(;) = 1 and, if a 2 A(h) and ha 2 D, ��(ha) =
��(h)� ��(a). Since, 8a 2 A, ��(a) 2 (0; 1] and ��(a) = �(a) whenever �(a) > 0, it follows that

if a 2 A(h) and ha 2 D, then (A) ��(ha) � ��(h) and
(B) if �(a) > 0 then ��(ha) = ��(h)� �(a): (13)

De�ne the probability density function � : D ! (0; 1] by �(h) = ��(h)X
h02D

��(h0)
: Then, by (13), � satis�es

Property UB1 of De�nition 9. Furthermore, if a 2 A(h), h and h0 belong to the same information
set and ha; h0a 2 D, then ��(ha)

��(h0a) =
��(h)���(a)
��(h0)���(a) =

��(h)
��(h0) and thus, dividing numerator and denominator

by
X
h002D

��(h00), we get that � satis�es Property UB2 of De�nition 9.
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Furthermore, as shown above,

8h 2 Dnf;g; P��(h)
def
=

Y
a2Ah

��(a) =
��(h)

��(;) = ��(h) (since �(;) = 1), (14)

it follows from (12) and (14) that

8h; h0 2 D+
� with h

0 2 I(h); ��(h)

��(h0)
=
�(h)

�(h0)
and thus

�(h)

�(h0)
=
�(h)

�(h0)
: (15)

Fix an arbitrary equivalence class E of the plausibility order that rationalizes (�; �) such that
E \D+

� 6= ? and de�ne �E : H ! [0; 1] as follows:

�E(h) =

8<:
�(h)P

h02E\D+
�
�(h0) if h 2 E \D+

�

0 if h =2 E \D+
� :

(16)

By construction �E satis�es Property B1 of De�nition 3 and, by UB1 of De�nition 9 (proved
above), �E satis�es also B2 of De�nition 3 (recall that if h; h0 2 E with h0 = ha1:::am then, by P1 of
De�nition 2, �(ai) > 0 for all i = 1; :::;m). It only remains to prove that Property B3 of De�nition 3
is satis�ed, namely that if h 2 E\D+

� then, for every h
0 2 I(h), �(h0) = �E(h

0)P
h002I(h) �E(h

00) . Number the

elements of E\D+
� from 1 tom in such a way that h1 = h and the �rst p elements belong to I(h1) and

the remaining elements (if any) do not belong to I(h1), that is, E \D+
� = fh1; :::; hp; hp+1; :::; hmg

with h1 = h, I(h1) \ E \D+
� = fh1; :::; hpg and, for i > p; hi =2 I(h1). We shall prove that

�E(h1)P
h002I(h1) �E(h

00)
= �(h1): (17)

The proof for 1 < j � p is similar. By (15), for every j = 1; :::;m, �(hj)�(h1)
=

�(hj)
�(h1)

. ThusPp
j=1 �(hj)

�(h1)
=

Pp
j=1 �(hj)

�(h1)
: (18)

By de�nition of �,
Pp

j=1 �(hj) = 1 (since, for any h0 2 I(h1) that does not belong to E \ D+
� ,

�(h0) = 0: recall that, by Property P2 of De�nition 2, if h0 2 I(h1) is such that �(h0) > 0 then
h0 � h, that is, h0 2 E). Hence �(h1)Pp

j=1 �(hj)
= �(h1): By (16), dividing numerator and denominator

of left-hand-side by
Pm

i=1 �(hi) we obtain

�E(h1)Pp
j=1 �E(hj)

= �(h1) (19)

Since, by (16), for any h0 2 I(h1) that does not belong to E \D+
� , �E(h

0) = 0,
P

h002I(h1) �E(h
00) =Pp

j=1 �E(hj). Thus (19) yields the desired (17). Since, by construction, � is a full-support common
prior to the collection of probability density functions �E given in (16), which have been shown to
satisfy the properties of De�nition 3, the proof that (�; �) is uniformly Bayesian is complete. �
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