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Abstract

We provide a new characterization of both belief update and be-
lief revision in terms of a Kripke-Lewis semantics. We consider frames
consisting of a set of states, a Kripke belief relation and a Lewis se-
lection function. Adding a valuation to a frame yields a model. Given
a model and a state, we identify the initial belief set K with the set
of formulas that are believed at that state and we identify either the
updated belief set K ¢ ¢ or the revised belief set K * ¢ (prompted by
the input represented by formula ¢) as the set of formulas that are the
consequent of conditionals that (1) are believed at that state and (2)
have ¢ as antecedent. We show that this class of models characterizes
both the Katsuno-Mendelzon (KM) belief update functions and the Al-
chourrén, Gardenfors and Makinson (AGM) belief revision functions,
in the following sense: (1) each model gives rise to a partial belief
function that can be completed into a full KM /AGM update/revision
function, and (2) for every KM/AGM update/revision function there
is a model whose associated belief function coincides with it. The dif-
ference between update and revision can be reduced to two semantic
properties that appear in a stronger form in revision relative to update,
thus confirming the finding by Peppas et al. (1996) that, "for a fixed
theory K, revising K is much the same as updating K". It is argued
that the proposed semantic characterization brings into question the
common interpretation of belief revision and update as change in be-
liefs in response to new information.
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1 Introduction

The notion of belief revision is normally associated with the seminal contri-
bution by Alchourron, Gérdenfors and Makinson (henceforth AGM) in [1],
while the notion of belief update was formally introduced by Katsuno and
Melndelson (henceforth KM) in [16]. The two notions are usually interpreted
as instances of belief change in response to new information, when the in-
formation is taken to be entirely reliable. The difference between the two
notions is usually explained in terms of the context in which belief change
occurs: a static context in the case of revision, and a dynamic context in the
case of update. In other words, revision occurs when the new information
adds to, or corrects, the agent’s picture of an unchanged world, while up-
date takes place when the agent is informed that the world itself might have
changed.

Example 1. Consider an agent who is outside two rooms, A and B, that are
not accessible from each other. In each room there is a light controlled by a
motion-activated switch located in that room; once the light is on, it remains
on until it is manually switched off. The agent initially believes that either
the light is on in both rooms or the light is off in both rooms. As an example
of a belief revision scenario, the agent — who is certain that nobody entered
either room and thus no change has occurred — receives information (e.g. in
the form of a snapshot taken by a camera located in Room B) that the light
in Room B is on; in this case the AGM theory of belief revision requires the
agent to now believe that the light is on, not only in Room B, but also in
Room A. In a belief update scenario, the agent observes a robot enter Room
B (so that, if the light was off, the motion-activated switch will have turned
it on; the robot does not have the ability to manually turn the switch off ); in
this case the KM theory of belief update requires the agent to either believe
that the light is on in both rooms or that the light is off in Room A and on
in Room B. [These two scenarios are illustrated in Figure 2 in Section 3./

The common view is that revision and update capture two very differ-
ent phenomena. However, Peppas et al. in [30] reconsidered the distinction
between AGM belief revision and KM belief update by comparing the two
processes in terms of their construction from pre-orders on possible worlds
(|14, 16]) and showed that, "essentially the results of revision can be dupli-
cated using the construction for update", thus concluding that, for a fized
initial belief set K, "revising K is much the same as updating K" ([30, p.
95]. We reach the same conclusion, but from a different route, by using a
Kripke-Lewis semantics that establishes a connection between both revision



and update, on one hand, and belief in conditionals, on the other hand.
The significance of this alternative semantic characterization is discussed at
length in Section 7, where it argued that it challenges the common inter-
pretation of belief revision and update as belief change in response to new
information.

We consider frames consisting of a set of states, a Kripke belief relation
and a Lewis selection function. Adding a valuation to a frame yields a model.
Given a model and a state s, we identify the initial belief set K with the set
of formulas that are believed at state s and interpret the revised/updated
belief set (prompted by the input represented by formula ¢) as the set of
formulas that are the consequent of conditionals that are believed at state
s and have ¢ as antecedent; that is, 1 € K * ¢ (in the case of revision) or
1 € K o ¢ (in the case of update) if and only if at state s the agent believes
that "if ¢ is (or were) the case, then v is (or would be) the case". We show
that this class of models characterizes both the AGM belief revision functions
and the Katsuno-Mendelson (KM) belief update functions, in the following
sense: (1) each model (in the appropriate class) gives rise to a partial belief
function that can be completed into a full AGM/KM function, and (2) for
every AGM/KM function there is a model (in the appropriate class) whose
associated belief function coincides with it. The difference between revision
and update boils down to two semantic properties that appear in a stronger
form in revision and a weaker form in update.

Section 2 reviews and compares the notions of KM belief update func-
tion and AGM belief revision function. Section 3 introduces the semantics,
Section 4 provides frame characterization results for the KM axioms and
provides a characterization of belief update, while Section 5 does the same
for AGM belief revision. Section 6 compares the two notions of update and
revision in light of the results of the previous section. Section 7 contains a
discussion of the significance of the proposed semantics and its relevance to
Artificial Intelligence (AI). Section 8 reviews related literature and Section
9 concludes.

2 Belief change functions

In what follows we shall use the symbol o for general belief change functions,
the symbol ¢ for belief update functions and the symbol * for belief revision
functions.

We consider a propositional logic based on a countable set At of atomic
formulas. We denote by ®¢ the set of Boolean formulas constructed from At



as follows: At C ®g and if ¢,y € &g then —¢ and ¢ V¥ belong to ®g. Define
¢ — Y, AP, and ¢ <> ¥ in terms of - and V in the usual way.

Given a subset K of @, its deductive closure Cn(K) C @ is defined as
follows: ¥ € Cn(K) if and only if there exist ¢1,...,¢, € K (with n > 0)
such that (¢1 A ... A @) — ¥ is a tautology. A set K C ®q is consistent if
Cn(K) # ®o; it is deductively closed if K = Cn(K). Given a set K C @
and a formula ¢ € ®q, the expansion of K by ¢, denoted by K + ¢, is defined
as follows: K 4+ ¢ = Cn (K U {¢}).

Let K C ®g be a consistent and deductively closed set representing the
agent’s initial beliefs and let ¥ C ®( be a set of formulas representing possible
inputs for belief change. A belief change function based on ¥ and K is a
function o : ¥ — 2%0 (where 2%° denotes the set of subsets of ®g) that
associates with every formula ¢ € U a set K o ¢ C P, interpreted as the
change in K prompted by the input ¢. We follow the common practice of
writing K o ¢ instead of o(¢) which has the advantage of making it clear
that the belief change function refers to a given, fized, K. If ¥ # @ then o
is called a partial belief change function, while if ¥ = & then o is called a
full-domain belief change function.!

Definition 1. Let o : U — 2% be a partial belief change function (thus
U C ®g) and o' : &y — 2%0 a full-domain belief change function. We say
that o' is an extension of o if o' coincides with o on the domain of o, that
is, if, for every g € ¥, Ko’ ¢ = K o ¢.

2.1 Belief update functions

We consider the notion of belief update introduced by Katsuno and Mendel-
zon in [16] and compare it to the notion of belief revision introduced by
Alchourrén, Gérdenfors and Makinson in [1]. The formalism in the two the-
ories is somewhat different. In [16] a belief state is represented by a sentence
in a finite propositional calculus and belief update is modeled as a function
over formulas, while in [1] a belief state is represented (as we did above) as
a set of formulas. Furthermore, while [16] allows for the possibility of incon-
sistent initial beliefs, [1] take as starting point a consistent belief set. We
follow closely the axiomatization of belief update proposed by [28, 30], which
makes update directly comparable to revision (note, however, that [28, 30|
only cover the case of "strong" update, where axioms (K ¢ 6) and (K ¢ 7)
are replaced by (K ¢9): see Definition 3 below).

'Partial belief functions were used in [3] to prove an equivalence between AGM belief
revision and rational choice theory.



Definition 2. A belief update function, based on the consistent and deduc-
tively closed set K (representing the initial beliefs), is a full domain belief
change function o : ®y — 220 that satisfies the following azioms: Yo, € By,

Ko¢p=Cn(K o).

¢ e Koo

K o ¢ = D if and only if ¢ is a contradiction.

)
)

Ko2) If¢pe K then Koo =K.
)
) If ¢ <> 1 is a tautology then K o ¢ = K o).
)

Ko(pAd)C (Kod)+o.
Ko6) IfveKopandpe Kot then Kop =Ko .
Ko7) If K is complete? then (K o ¢) N (K o) C K o (¢ V).

Remark 1. Katsuno and Mendelzon provide an additional axiom (they name
it U8), which they call the "disjunction rule”. Peppas et al. ([30]) translate
it into the following "axiom”, which makes use of mazimally consistent sets

of formulas (MCS).> Given a set of formulas T, let [T] be the set of MCS
that contain all the formulas in T.* The additional aziom is the following:

IfIK]#@ thenKog= () wog. (K ©8)
we[K]

(K ©8) is of a different nature than the other azioms, since it applies the
update operator not only to the initial belief set K but also to the individual
MCS contained in [K]. It seems that (K < 8) is more of a condition on
the interpretation or semantics than a real azxiom; it is not needed in our
framework since its role is directly captured by the semantics detailed in the
next section. We shall return to (K ©8) in Section 4.

2A belief set K is complete if, for every formula ¢ € ®o, either ¢ € K or —¢ € K; if K
is consistent, then K is complete if and only if [K] is a singleton, where [K] denotes the
set of maximally consistent sets of formulas (see Footnote 3) that contain all the formulas
in K.

3A set of formulas A C ®¢ is maximally consistent if it is consistent and, furthermore,
Vo € o\ A, AU{¢} is inconsistent. Every MCS is deductively closed and complete.

“Thus, A € [I] if and only if T' C A and A is a MCS.



(K ©0) does not appear in the list of axioms provided by Katsuno and
Mendelzon, since their formalism is not in terms of belief sets. For ¢ €
{1,2,4,5,6}, axiom (K ¢ i) is a translation of Katsuno and Mendelzon’s
axiom (Ui) (for details see [28]). (K ¢ 3) is the translation of Katsuno and
Mendelzon’s axiom (U3) when attention is restricted to the case where the
initial belief set K is consistent.® The following Lemma will be used later.

Lemma 1. Assuming that K is deductively closed (K = Cn(K)), every
belief update function satisfies the following axiom:

Kod C K+ 6.

Proof. Since ¢ <> ((¢p V —d) A @) is a tautology, by (K ¢ 4),

Ko¢p=Ko((¢V-9)Ad). (1)
By (K ¢5),
Ko((¢V9)ANd) S (Ko(pV—d)) +o. (2)
Thus, by (1) and (2),
KopC (Ko(¢V—9))+o. (3)

Since, by hypothesis, K is deductively closed and (¢V —¢) is a tautology, (¢V—¢) €
K, so that, by (K ¢2), Ko (¢V —¢) = K. It follows from this and (3) that
KopC K+ ¢. O

Remark 2. KM show that their notion of belief update corresponds, se-
mantically, to partial pre-orders on the set of mazimally consistent sets of
formulas (also called possible worlds); furthermore, they show that if their az-
ioms (U6) and (UT) are replaced by a stronger axziom, which they call (U9),
then belief update corresponds semantically to total pre-orders on the set of
possible worlds. The translation of their axiom (U9) in our framework is the
following axiom (see [30]):

If K is complete and —~p ¢ K o ¢ then (Ko @)+ C Ko(pA). (Ko9)

Definition 3. A strong belief update function is a full-domain belief change
function o : &g — 2%0 that satisfies azioms (K ¢0)-(K ©5) and (K ©9).

®Katsuno and Mendelzon allow for the possibility that the initial beliefs are inconsistent
in which case (K ¢ 3) would be stated as follows: K ¢ ¢ = ®¢ if and only if either K is
inconsistent or ¢ is inconsistent. In order to facilitate the comparison between belief
update and belief revision, we follow [30] and restrict attention to the case where the
initial belief set K is consistent. It should be noted, however, that one important difference
between update and revision is precisely that updating an inconsistent K by a consistent
formula ¢ yields the inconsistent belief set ®¢, while revising an inconsistent K by a
consistent formula ¢ yields a consistent set (AGM axiom K * 5).



2.2 Belief revision functions

In this section we consider the notion of belief revision proposed Alchourron,
Gérdenfors and Makinson in [1].

Definition 4. A belief revision function, based on the consistent and deduc-
tively closed set K (representing the initial beliefs), is a full domain belief
change function x : ®g — 2%0 that satisfies the following azioms: Vo, € Oy,

(K1) Kx¢=Cn(K xg).

(K%2) ¢eKxop.

(Kx3) Kx¢CK+¢.

(K «4) if ~¢ ¢ K, then K C K % ¢.

(K %5) K x ¢ = ®y if and only if ¢ is a contradiction.
(K %6) if ¢ <> 1 is a tautology then K * ¢ = K % 1.
(K 7)K% (A ) C (K *¢) + .

(K 8) if w0 ¢ K % ¢, then (K * ¢) +1p C K * (¢ A1b).

Remark 3. Note that
o (K % 1) coincides with (K ©0),

K % 2) coincides with (K o 1),

K % 5) coincides with (K ¢ 3),

)
(K +2)
o (K % 3) applies also to belief update (Lemma 1),
(K 5)
(K 6)

K % 6) coincides with (K ¢ 4),
o (K *7) coincides with (K ¢5)

On the other hand,
> (K x4) is a stronger version of (K ©2), and
> (K % 8) is a stronger version of (K ©9).

Thus one can view the AGM theory of belief revision as a stronger version
of the strong version of KM belief update, namely that which satisfies axioms
(K©0)-(K©b) and (K ©9). At the semantic level, this point is discussed in
detail in Section 5.



3 Semantics: Kripke-Lewis frames

In this section we introduce semantic structures and establish a correspon-
dence between axioms of belief change functions and properties of the struc-
tures. A Kripke-Lewis structure consists of a belief relation, which represents
initial beliefs, and a selection function, which represents conditionals. We be-
gin with the formal definitions and then illustrate them graphically (Figures
1 and 2.)

Definition 5. A Kripke-Lewis frame is a triple (S, B, f) where

1. S is a set of states; subsets of S are called events.

2. BC SxS is a binary belief relation on S which is serial: Vs € S,3s’ €
S, such that sBs' (sBs' is an alternative notation for (s,s’) € B).
We denote by B(s) the set of states that are reachable from s by B:
B(s) ={s' € S:sBs'}. B(s) is interpreted as the set of states that the
agent considers dozastically possible at state s.

8. f:8x(25\@) = 2% is a selection function that associates with every
state-event pair (s, E) (with E # &) a set of states f(s,E) C S, such
that

(8.1) f(s,E)+# @ (Consistency).
(5.2) f(s,E) C E (Success).
(3.3) if s € E then s € f(s,E) (Weak Centering).

f(s, E) is interpreted as the set of E-states that are closest (or most
similar) to s (an E-state is a state that belongs to E).

(8.1) says that there is at least one E-state that is closest to s (note
that, by hypothesis, E #+ & ).

(8.2) is a coherence requirement: the states that are closest to s, con-
ditional on E, are indeed E-states.

(8.3) says that if s is an E-state then it is one of the closest E-states
to itself.b

Adding a valuation to a frame yields a model. Thus a model is a tuple
(S,B, f,V) where (S, B, f) is a frame and V : At — 2° is a valuation that
assigns to every atomic formula p € At the set of states where p is true.
Given a model M = (S, B, f,V) define truth of a Boolean formula ¢ € & at
a state s € S in model M, denoted by s =y ¢, in the usual way:

5A stronger property, called centering, requires that if s € E then f(s, E) = {s}. For
our purposes this stronger property is not needed.



Definition 6. Truth of a formula ¢ € g at a state s is defined as follows:
1. if p € At then s |=p p if and only if s € V(p),
2. s E=p —d if and only if s e @,
3. skEm (0 V) if and only if s = ¢ or s = Y (or both).

We denote by ||¢||as the truth set of formula ¢ in model M: |||y = {s €
S:s ):M ¢}

Given a model M = (S, B, f,V) and a state s € S, let K5 = {¢ € ®y :
B(s)  ||¢|lar}; thus a Boolean formula ¢ belongs to K ar if and only if at
state s the agent believes ¢ (in the sense that ¢ is true at every state that
the agent considers doxastically possible at state s). We identify K, s with
the agent’s initial beliefs at state s. It is shown in Lemma 2 below that the
set Kspr C ®g so defined is deductively closed and consistent.

Next, given a model M = (S, B, f,V) and a state s € S, let Up; = {¢ €
g : ||¢|lar # @}7 and define the following partial belief change function
o: Wy — 2% based on K v

e Kopo¢ ifand only if Vs' € B(s), f (s, ||¢llar) € ||¥]ar- (RI)

Given the customary interpretation of selection functions in terms of condi-
tionals,® (RI) can be interpreted as stating that ¢ € K s o ¢ if and only if
at state s the agent believes that "if ¢ is (were) the case then v is (would

be) the case". ‘RI’ stand for ‘Ramsey Interpretation’.”

"Since, in any given model there are formulas ¢ such that ||$||ar = @ (at the very least
all the contradictions), Wy, is a proper subset of ®g.

8The standard interpretation of the (possibly counterfactual) conditional ‘if ¢ then 1)’,
usually denoted by ¢ > 1, is as follows: ¢ > 1 is true at state s’ if and only if ¢ is true at
all the ¢-states closest to s’ (a state is a ¢-state if ¢ is true at that state), that is, if and
only if (s, l¢])) € [[¥].

°In the literature the expression ‘Ramsey Test’ is used to refer to the following passage
from [31, p. 247]: "If two people are arguing "If p will ¢?" and are both in doubt as to
p, they are adding p hypothetically to their stock of knowledge and arguing on that basis
about ¢".
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Figure 1: The belief relation and valuation.

Example 2. We construct two models to illustrate the two scenarios of
Ezample 1. In both models the set of states is S = {s1,s2,3,84}, the
set of atomic formulas is At = {a,b}, where a means that the light in
Room A is on and b means that the light in Room B is on, the valuation
is V(a) = {s1,s2} and V(b) = {s2,s4}, and the belief relation is B =
{(s1, %2), (81, 83), (S2,52), (52, 53), (83, $2), (83, 83), (84, 52), (4, 83)}. This is il-
lustrated in Figure 1, where the belief relation is shown as directed edges with
the interpretation that s — s' if and only if sBs' (that is, (s,s') € B). Sup-
pose that the actual state is s1; then at s1 the agent believes ((a Ab) V (—a A
—b)), that is, that either the light is on in both rooms or the light is off in
both rooms.

The two models differ in the selection function as illustrated in Figure 2,
where, given two states s and s' and an event E C S, there is a dashed di-
rected edge from s to s' labeled ‘E’ if and only if ' € f(s, E). In particular,
we focus on the event ||b|| = {s2, s4}

Model 1 [The revision scenario, represented in Panel (a) of Figure 2. In
this model, conditional on b the closest state to so is so itself and the closest
state to s3 is also sa, that is, f(s2,||b]]) = f(ss,]|b]]) = {s2}. Thus at state
s1 the agent believes the conditional ‘if b is the case then (a Ab) is the case’,
that 1s, if the light is on in Room B then the light is on in both rooms.
Model 2 [The update scenario, represented in Panel (b) of Figure 2/. In this
model, conditional on b the closest state to so is so itself and the closest state
to s3 is s4, that is, f(s2,[|bl]) = {s2} and f(s3,[|b]]) = {sa}. Thus at state
s1 the agent believes the conditional ‘if b is the case then ((a Ab)V (ma A D))
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is the case’, that is, if the light is on in Room B then either the light is on
in both rooms or it is on only in Room B.

18]
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(b) The update scenario

(a) The revision scenario

Figure 2: Two different selection functions added to the common core shown
in Figure 1.

It is possible that, in a given model M, s’ € B(s) and K5 # Ky,
that is, it is possible that the agent’s initial beliefs at state s are different
from the agent’s beliefs at a state s’ that is doxastically accessible from s.
Such a phenomenon can be ruled out by imposing two additional properties
on B: transitivity (if s’ € B(s) then B(s") C B(s)) and euclideanness (if
s’ € B(s) then B(s) C B(s')).!? Since none of the results proved below
require these two additional properties of B, we did not incorporate them in
Definition 5. Note also that we did not assume reflexivity of B (B is reflexive
if, Vs € S, s € B(s)). Thus, we allow for the possibility of false beliefs (that
is, it is possible in a model to have, at some state s and for some formula ¢,
B(s) C 4]l and also s & [|¢]la).1!

Lemma 2. Let ' = (S,B, f) be a frame, M a model based on F, s € S a
state, and Wy = {¢p € Qo : ||¢||m # D}, Let K = {¢p € @ : B(s) C
|¥|lar} e the initial beliefs at state s and, for every ¢ € Wy, let Kgpro¢p C
O be the new beliefs (in response to input ¢) defined by (RI). Then

0These two properties are satisfied by the belief relation illustrated in Figure 1.

UFor example, in the model shown in Figure 1, at state s; the agent has false beliefs:
he believes that either the light is on in both rooms or that the light is off in both rooms,
but — as a matter of fact — at state s; the light is on in Room A and off in Room B.

11



(A) the set K4 is consistent and deductively closed, and

(B) the set Ko ¢ is consistent and deductively closed.

Proof. To simplify the notation, we omit the subscript M referring to the given
model, that is, we write K instead of K ps and ||¢|| instead of ||¢| as-

(A)

First we show that K is deductively closed, that is, Ky = Cn(K). If ¢ € K,
then ¢ € Cn(K,), because ¥ — v is a tautology; thus Ky C Cn(K,). To
show that Cn(K;) C K, let ¢ € Cn(Ky), that is, there exist ¢1, ..., ¢, € K
(n > 0) such that (¢1 A ... A ¢p,) — 9 is a tautology. Since ||¢1 A ... A ¢y || =
loill N .o N gl and, for all ¢ = 1,...,n, ¢, € K, (that is, B(s) C ||¢;]]), it
follows that B(s) C ||¢1 A ... A ¢p]|. Since (¢1 A ... A ¢) — 9 is a tautology,
161 A . A ) = ]l = S, that is, 1 A . A bl  [[$]]. Thus B(s) C |4l
that is, ¥ € K.

Next we show that K is consistent, that is, Cn(K;) # ®y. Let p € At be
an atomic formula. Then |[p A —p|| = @. By seriality of B, B(s) # & so that
B(s) € |lp A —p|, that is, (p A =p) ¢ K, and hence, since K, = Cn(Kj),
(p A —p) ¢ Cn(Ks).

First we show that K;o¢ is deductively closed, that is, K;0¢ = Cn (K; 0 ¢).
The inclusion K 0 ¢ C Cn (Ko ¢) follows from the fact that, for every
P € Kso¢, ¥ — 1) is a tautology. Next we show that Cn (K, 0 ¢) C K0 ¢.
Since, by hypothesis, ||¢|| # @, f(s',]|#]|) is defined for every s’ € B(s). Fix
an arbitrary ¥ € Cn (K, o ¢); then there exist ¢1,...,¢, € Ks0 ¢ (n > 0)
such that (¢1 A...A¢,) — ¥ is a tautology, so that |[(¢1 A...Ad,) = ¢|| =S,
that is, ||¢1 A ... A @]l C ||¢||. Fix an arbitrary s’ € B(s) and an arbitrary
i = 1,..,n. Then, since ¢, € K, 0 ¢, by (RI) f(s,]|¢|l) C ||¢:]|. Hence
S A € 1610 (@l = 63 A A ]l Since g1 A Al o8] it
follows that f(s', ||¢||) € ||#||. Thus, since s’ € B(s) was chosen arbitrarily,
Y € Ko

Next we show that Ko ¢ is consistent, that is, Cn(Kso ¢) # ®y. Let p € At
be an atomic formula. Then ||p A —p|| = @. Since, by hypothesis, ||¢| # @,
by Property (3.1) of the definition of frame (Definition 5) f(s', ||¢|) # @, for
every s’ € B(s) (recall that, by seriality of B, B(s) # @). Thus f(s',]¢|) €
llp A —pl| so that (p A —p) ¢ K, o ¢. Hence, since (as shown above) K, o0 ¢ =
Cn(Kso¢), (pA—p) ¢ Cn(Kso¢)sothat Cn (K o ¢) # Dyp.

O

In what follows, when stating an axiom for a belief change function, we
implicitly assume that it applies to every formula in its domain. For example,
the axiom ¢ € K o ¢ asserts that, for all ¢ in the domain of o, ¢ € K o ¢.

Definition 7. An axiom is valid on a frame F if, for every model based
on that frame and for every state s in that model, the partial belief change

12



function defined by (RI) satisfies the axiom. An aziom is valid on a set of
frames F if it is valid on every frame F € F.

Proposition 1. The following azioms are valid on the set of all frames (as
defined in Definition 5):

1. KogpC K+ ¢. (x3)
2. peKop. (01/ % 2)
3. if @ & Y is a tautology, then K o p = K o). (04/ % 6)

Proof. Let F be a frame, M a model based on F and s € S a state in that model.
Let Uy = {(b € P : ||¢||M #* @}, Ksm = {¢ € P : B(S) - ||(]5||jw} and, for
every ¢ € Uy, let K ps o ¢ be the partial belief change function defined by (RI).
As before, in what follows we simplify the notation by omitting the subscript M
referring to the given model.

1. Let ¢ € ¥y be in the domain of o (that is, ||¢|| # @) and fix an arbitrary
4 € K,o0. Then, by (RI), ¥s' € B(s), f(s,[|6]) C 4]l Thus, since
[l € 1=l U]l = ¢ — | we have that

Vs' € B(s), £(s,[I¢l)) € ll¢ — &I (4)
We need to show that 1 € K, + ¢ = Cn(KsU{¢}), that is — since, by (A) of
Lemma 2, K, = Cn(K,) — that (¢p — ¢) € K, i.e. B(s) C ||¢ — |- Fix an
arbitrary s' € B(s). If s" ¢ [|¢[| then s" € |[=¢] S [[=¢] U [l¥] = [|6 = .
If s’ € ||¢||, then by Property (3.2) of the definition of frame (Definition 5),
s' € f(s',]|0]]), so that, by (4), s € [l = ¢

2. Fix an arbitrary ¢ € ®( such that ||¢|| # @ and an arbitrary s’ € B(s).
By Property (3.2) of the definition of frame (Definition 5), f(s', ||¢||) C ||4]|-
Hence, by (RI), ¢ € K o ¢.

3. Let ¢,9¢ € @y be such that ||¢|| # @ and ||¢| # @. If ¢ <> ¢ is a tautology
then ||¢ < | = S, that is, ||¢| = |[¢]], so that, for every s € B(s),

F(& 1ol = f(s, |#]). Hence, for every x € ¥, f(s',]|¢]|) C |x|| if and only
if £(s', ] C IIx, that is, by (RI), x € K o6 if and only if x € K o .

O

4 Frame correspondence. Part 1: Update

A stronger notion than validity is that of frame correspondence. The follow-
ing definition mimics the notion of frame correspondence in modal logic.

Definition 8. We say that an axiom A of belief change functions is char-
acterized by or corresponds to a property P of frames if the following is
true:

13



(1) aziom A is valid on the class of frames that satisfy property P, and

(2) if a frame does not satisfy property P then aziom A is not valid on that
frame, that is, there is a model based on that frame and a state in that
model where the partial belief change function defined by (RI) wviolates
axiom A.

Proposition 2. The following aziom:
ifpeK then Kogp =K (62)
1s characterized by the following property of frames: Vs € S,;VE C S,
if B(s) C E then, Vs’ € B(s), f(s', E) C B(s). (Ps2)

Proof. (A) Fix a frame that satisfies property (P,2), an arbitrary model M based
on it and an arbitrary state s € S. As before, we simplify the notation and omit
the subscript M referring to the given model. Let ¢ € ® be such that ¢ € K,
that is, B(s) C ||¢|| (note that, by seriality of B, it follows that ||¢|| # @ so that
f(s',]|#]) is defined for every s').

First we show that K; C Kso0¢. Let ¢ € K. Then B(s) C ||¢||. By property (Ps2)
(with B = [[¢]), for every s" € B(s), f(s, ||¢[l) € B(s) and thus f(s", [|¢[])  [|¥],
so that, by (RI), v € K, o0 ¢.

Conversely, suppose that ¢ € K, o ¢, that is, Vs’ € B(s), f(s,||oll) € |[«|l, so
that J f(s",[[¢l]) € [[¢]l. Since B(s) < [[¢]], for every s" € B(s), s’ € [|¢]| and

s'€B(s)
thus, by Property (3.3) of Definition 5 (Weak Centering), {s'} C f(s,||#||). Hence

Bs)= U {sT<C U f(&,]ol) C l|¢|; it follows from this and the definition
s’ €B(s) s’€B(s)
of K, that ¢ € K.

(B) Fix a frame that violates property (Ps2). Then there exist two states s, € S
and an event E C S such that (a) B(s) C E, (b) s’ € B(s) and (c) f(s', E) € B(s).
Let p,q € At be atomic formulas and construct a model where ||p|| = E and
lgll = B(s). Since B(s) C llall, q € K,. Since f(s', E) € B(s), £(, Ip]) € lla]l and
thus, since s’ € B(s), by (RI) ¢ ¢ Ksop so that Ks;op # K. O

Proposition 3. The following aziom:
Ko(oni) C(Kod)+4 (5/ % 7)

is characterized by the following property of frames: Vs € S,YE,F,G € 2°,
with ENF #+ &,

if, Vs € B(s), f(s, ENF) C G,

Posys
then, Vs' € B(s), f(s’, E)NF € G. (Fosy)

14



Proof. (A) Fix a frame that satisfies property (FPe5/,7), an arbitrary model M based
on it and an arbitrary state s € S and let o be the belief change function defined by
(RI). Let ¢, v € ®q be such that $ A is in the domain of o, that is, ||pA|| # @ (so
that, since ||¢ A || = ||¢]| N ||¢]|, also ¢ and ¢ are in the domain of o). We want to
show that K o(dA1)) C (Ksog)+ (recall that (Ksop)+1 = Cn ((Ks o ¢) U {¢}).
By (A) of Lemma 2, K o ¢ is deductively closed, so that, Vx € &g,

X €Cn((Kso@)U{yp}) if and only if (Y= x) € K00
if and only if, Vs' € B(s), f(s', [4l]) S ¥ = x|| = l=¢] U x| (5)
= (S\ 1) U llxll-

First note that

F( N8I € (SN0 U lIxll if and only if f£(s", [|o]) N [lwll S lIx]. (6)

Fix an arbitrary x € Kso(¢Av). Then, by (RI), Vs’ € B(s), f(s',|1ollN]¥]) < lIxl-

By Property (Pos.7) and by (6), Vs’ € B(s), /(s', [4]) € (S\[I)Ulx]l = & - x|
and thus, by (5), x € Cn (K, o) U{}).

(B) Fix a frame that violates property (Ps5/.7). Then there exist two states s,5 €
and three events E, F and G, with EN F # &, such that (a) Vs’ € B(s), f(s', EN
F)CG@, (b) § € B(s) and (c) f(8, E)NF ¢ G, that is, by (6), f(8, E) € (S\F)UG.
Let p,q,r € At be atomic formulas and construct a model where ||p|| = E, ||¢|| = F
and |r]| = G. Then, by (a), 7 € K,o(pAq) and, by (¢), £(3, |p]) € lg = rll, so that,
by (b) and (RI), (¢ — r) ¢ K, o p and thus, by (5), r ¢ Cn ((Ks op) U {q}). O

Remark 4. A stronger property than (P /.7) is the following:

Vs € S,VE,F € 25 Vs' € B(s),

f(8,E)NF C f(s',ENF). (P57

To see that (Pég’/*?) implies (Py5/47), let G C S be such that Vs' € B(s),
f(s,ENF) CG. By (Pég)/*?), Vs € B(s), f(s', E)NF C f(s', ENF), so that
f(s', E)NF C G. On the other hand, (P,5/.7) does not imply (Pé5/*7), as the

following example shows: S = {sg, s1, S2, 83, S4, S5}, B(so) = {s1,s2}, E =
{s3,80,85}, F'= f(s1,E) = {s3,51}, f(s1, ENF) = {s3}, f(s2, E) = f(s2, EN
F) = {s4}. Then f(s1,ENF)U f(s2, ENF) = {s3,s4} so that any G C S
that contains f(s1, ENF)U f(s2, ENF) must be a superset of {s3,s4} and
we do have that both f(s1, E)NF C G and f(s2, E) N F C G are satisfied,

while {s3, 54} = f(s1, E)NF € f(s1,ENF) = {s3}.

From Proposition 3 and Remark 4 we get the following corollary.

Corollary 1. Aziom (05/ % 7) is valid on the set of frames that satisfy Prop-
erty <P<£5/*7>'
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Proposition 4. The following aziom:
ifveKogpand p € Ko then Kop=K o (06)
is characterized by the following property of frames: ¥s € S,\VE,F € 2%\ @,

if, Vs' € B(s), f(s,E) C F and f(s',F)CFE
then U f(s,E)= U f(s,F). (Pos)

s'eB(s) s'eB(s)

Proof. Fix a frame that satisfies property (Psg), an arbitrary model M based on
it and an arbitrary state s € S and let o be the belief change function defined by
(RI). Let ¢,% € ®¢ be in the domain of o (that is, ||¢|| # & and ||¢| # @) and
suppose that ¢ € Ky o0 ¢ and ¢ € K; o). Then, Vs’ € B(s), f(s',]6]]) C ||[¢] and
[ 11¥]) € [[¢]l and thus, by Property (Pes),

U 76 leh= U 16120 (7)

s'eB(s) s'eB(s)

It follows from (7) that, for every x € ®g, x € K, o ¢ if and only if x € K, 0.12

Conversely, fix a frame that violates property (Pog). Then there exist s € S and
E,F € 29\ @ such that,

Vs’ € B(s), f(s,E) C Fand f(s,F)CE

and U J(s,E) £ U J(s,P). ®)
s'€B(s) s'e€B(s)
Thus either | f(s,E) ¢ U f(s,F)or U f(s,F) ¢ U f(s,E).
s’ €B(s) s'€B(s) s'€B(s) s'€B(s)
Suppose first that | f(s',E) € U f(s',F). Then there must be a § € B(s)
s'e€B(s) s'eB(s)

such that

ree ¢ U 6. 9)
s'eB(s)
Let p, g, € At be atomic sentences and construct a model based on this frame where
Ipll = E, [lgll = F and |[r| = Lg( )f(8’>F)- By (8), Vs' € B(s), f(s', |lpll) < llall
s'eB(s

and f(s',]lqll) € |Ip|l, so that, by (RI), ¢ € K op and p € K oq. Next we show that
K op # K o ¢, thus obtaining a violation of axiom (¢6). By (9), f(3,|lpll) € |7l
and thus, by (RI), r ¢ K o p. On the other hand, Vs” € B(s), f(s”,|ql) C

In fact, x € K, o ¢ if and only if, Vs’ € B(s), f(s,|#]) C ||x|| which implies that

U( )f(8'7|\¢||) C [Ixll, so that, by (7), U( )f(SZHlﬁH) C x|, which implies that,
s'e€B(s s'eB(s

vs' € B(s), f(s', 1)) € llx|l, so that, by (RI), x € K o). Similarly for the case where
X € Kso0.
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U flgll) = ||| and thus, by (RI), r € K o q. Hence K op # K oq. The
s'€B(s)
case where |J f(s',F) € U f(s',E) is handled similarly, by constructing a
s'€B(s) s'€B(s)
model where [lp]| = E, [lgll = F and ]| = U (s, E). O
s'e€B(s)

Axiom (K ¢7) is different from the other axioms of belief update, because
it involves the clause “K is complete”. In our framework, completeness of a
belief set K, is a property pertaining to a model, not a property of frames.'3
As noted above, a consistent belief set K is complete if it corresponds to a
single MCS (or possible world), that is, if [K] is a singleton. Thus updating
a complete and consistent K means updating a single possible world. This
property can be captured in a frame by having B(s) be a singleton. This is
the motivation for the following result.

Define a state s in a frame to be focused if B(s) is a singleton. Note that,
in any model, if s is a focused state then the belief set K is complete.'

Proposition 5. Let Fo7 be the class of frames that satisfy the following
property: Vs,s' € S,

if B(s) = {s'} then, VE,F € 2°, f(s', EUF) C f(s, E)U f(s', F). (Py)
Then the following axiom
if K is complete then (K o) N (K o) C Ko (¢V 1) (7)

is valid at every focused state of every model based on a frame in For and,
conversely, if a frame is not in For then the axiom is not valid on it.

Proof. Fix a frame that satisfies property (Ps7), an arbitrary model M based on it
and an arbitrary focused state s € S and let o be the belief change function based
on K, defined by (RI). Let s’ € S be such that B(s) = {s'}. Let ¢, € @y be
in the domain of o and fix an arbitrary x € (K0 ¢) N (K o). Then, by (RI),
f(& 01D € lxll and f(s',]1¥]l) € |Ix|l and thus, by Property (P,7) and the fact
that [lg[| U [[9]l = [l¢ VI, f(s',[l¢ V) € x|, that is, by (RI), x € Kso (¢ V).

13For example, consider a frame where for some state s, B(s) = {s1,52}. A model based
on this frame where, for every atomic sentence p € At, s1 = p if and only if s2 |= p is such
that K is complete. On the other hand, a different model where, for some p € At, s1 = p
and s2 = —p, is such that K is not complete (because p ¢ K, and —p ¢ K5).

“Pix an arbitrary model and a state s and let K the belief set at s. If B(s) = {s}
then, V¢ € ®o, either s’ € ||¢||, in which case, by definition of K, ¢ € K, or s* & ||9||
(that is, s’ € ||=¢||) and thus —¢ € K.
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Conversely, fix a frame that violates property (Ps7). Then there exist s,s’ € S and
E,F € 2° such that

(a) B(s)={s'}, and
(b) f(s$\EUF){Z f(s',E)U f(s,F).

Let p,q,r € At be atomic formulas and construct a model where ||p|| = E, ||q|| =
Fand |r|| = f(s, E) U f(s',F). Then, by (10) (since [|p|| U [lgll = [[p V ql]),
f(s,lpVgll) € |Ir]| and thus, by (RI), r ¢ K o (pV ¢). On the other hand, since
F(lpll) € F(s Ipl) U f(s's llall) = [Ir]| and f(s', [lgl) S (f(s", [lpll) U £ (s, [lall) =
|I7]l, » € Kopand r € K ogq, yielding a violation of axiom (¢7), since K is complete
because B(s) is a singleton. O

(10)

The following proposition provides a similar characterization of Axiom
(K ©9).

Proposition 6. Let Fo9 be the class of frames that satisfy the following
property: Vs,s' € S,

if B(s) = {s'} then, VE, F € 2%,

if f(s\EYNF # & then, f(s,ENF)C f(s,E)NF. (Feo)

Then the following axiom
if K is complete and —) ¢ (K o ¢) then (Ko@) + 9 C Ko (pA) (09)

is valid at every focused state of every model based on a frame in Fo9 and,
conversely, if a frame is not in Fog then the axiom is not valid on it.

Proof. Fix a frame that satisfies Property (Psg), an arbitrary model based on it, a
focused state s, and let s € S be such that B(s) = {s'}. Let K the belief set at s
and o be the belief change function (based on Kj) defined by (RI). Let ¢,9 € &g
be two formulas such that ¢ A ¢ is in the domain of o (that is ||¢ A || # @, which
implies that also ||¢|| # & and ||¢| # @) and suppose that =) ¢ K o ¢, that
is, (s, [4) N 4]l # 2. Then, by Property (Psg) (and noting that [ A 4 =
el A1,

7' 16 A9l € FG5 161D 0 191 (11)

We need to show that Cn((Kso¢)U{y}) C Kso(pA1)). Let x € Cn((Ks09)U{1});
then, since, by (B) of Lemma 2, K, o ¢ is deductively closed, (¢ — x) € K, o ¢,
that is, £(5',|6]) € [ — x|l = (5 \ [1¢]}) U |lx]l, which is equivalent to

£ el N el < lixll- (12)

It follows from (11) and (12) that f(s',]|¢ A ¢|]) C |Ix|| so that, by (RI) (since
B(s) ={s'}), x € Ko (¢ A ).
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Conversely, fix a frame that violates Property (P,9). Then there exist s,s’ € S and
E,F € 2° such that

() B(s)= 1)
(b) f(s\E)NF #2, (13)
(¢) f(&LENF)Z f(s',E)NF.

Let p,q,r € At be atomic formulas and construct a model where ||p|| = E, ||¢|| = F
and ||r]| = f(s', E)NF. Then, by (b) of (13), f(s, [[plNN]l¢l| # @ so that —q ¢ Ksop.
Furthermore, by (c) of (13), f(s', [[pAql|]) € ||| and thus » ¢ Ko (pAg). To obtain
a violation of Axiom (¢9) it only remains to show that r € Cn((K op)U{q}), which
is equivalent to (¢ — r) € K o p (since, by (B) of Lemma 2, K o p is deductively
closed); that is, we have to show that f(s',||p|) C |lg = 7|l = (S\ |lgl|]) U |I7||. But
this is equivalent to f(s', ||p||) N||¢|| # &, which is our hypothesis (namely, (b) of
(13)). O

We now return to the observation made in Remark 1 about axiom (K ¢8),
which [30] propose as a translation of axiom (U8) in [16] within the context
of belief sets. Let W denote the set of maximally consistent sets (MCS) of
formulas in ®p. Recall that, given a set of formulas I' C &g, [I'] denotes
the set of MCS that contain all the formulas in I': [I'] = {w € W : V¢ €
I',¢ € w}. Recall also that (K ¢ 8) is the following requirement: if [K] #
@ then K o ¢ = ﬂwe[[K]] (w o ¢). Since we restricted attention to the case
where the initial belief set K is consistent, the clause [K] # @ is superfluous.
Thus "axiom" (K ¢ 8) can be stated as:

Kop= (] (wog).

we[K]

Consider the subclass of frames where S = W. Given any such frame, a
natural model based on it is one where, Yw € W,V¢ € @y, w = ¢ if and
only if ¢ € w, so that [|¢|| = [¢]. Thus the definition of the initial belief
set K at w € W, namely K,, = {¢ € &9 : B(w) C ||¢]| = [¢]}, implies
that B(w) C [Ky]. Furthermore, if either B(w) is finite or the set of atomic
formulas At is finite, then [K,] C B(w). Let us focus on this case, so that
B(w) = [Ky]. For w' € W and ¢ € & define v’ ¢ ¢ C P as follows:
Yy € Dy,

Y e (w o) ifandonlyif f(w',[¢]) C [¢]. (14)
Then (since B(w) = [Ky])
Kyop= (] (o9 (15)
w'€[Kw]

19



which is exactly (K o 8).15

Definition 9. An update frame is a frame that (besides the properties of
Definition 5) satisfies the properties of Propositions 2, 3, 4 and 5, namely:

(Ps2)  if B(s) C E then, Vs’ € B(s), f(s', E) C B(s).

(P<>5/*7) Zf: VSIGB(S)v f(S/,EﬂF) QG,
then, Vs' € B(s), f(s, E)NF C G.

(Pss) if, Vs' € B(s), f(s',E) C F and f(s',F)CFE
then J f(&,E)= U f(s,F).
s'eB(s) s'eB(s)
(Py7) if B(s) = {s'} then, VE, F € 29,
f(s,EUF)C f(s",E)U f(s, F).

We denote by Fo the class of such frames.

For every model based on a frame in F¢ and for every state s in that
model, the belief change function (based on Ky = {¢ € &g : B(s) C ||¢||})
defined by (RI) satisfies the following axioms for belief update:

1. by (B) of Lemma 2),

2. by (2) of Proposition 1),

3. by Proposition 2),

5. by Proposition 3),

6. by Proposition 4),

(K < 0) (
(K o1) (
(K 02) (
4. (K o 4) (by (3) of Proposition 1),
(K ©5) (
(K ©6) (
(K oT7) (

7. by Proposition 5).

5Proof. First we show that K, o ¢ C N eB(w) (w' o @). Fix an arbitrary ¢ € K, ©
¢. Then, by (RI), Vo' € B(w), f(w',[¢]) C [¢], that is, by (14), Vw' € B(w),¢ €
(w' o ¢) so that ¥ € (,/cpp) (W ). Next we show that (s, (W 0 @) C Ku o ¢.
Let ¥ € Nyrep) (W ©@). Then, Yu' € B(w), ¢ € (w' ¢ ¢), that is, by (14), Vu' €
B(w), f(w',[4])  [¥] so that, by (RI), v € K. o6,
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The only remaining axiom is K ¢ 3 which says that K ¢ ¢ = &g if and
only if ¢ is a contradiction. When ¢ is a contradiction, then ||¢| = @ in
every model and thus K o ¢ is not defined according to (RI). This is easily
fixed by adding the stipulation that K o ¢ = &y when ¢ is a contradiction.
However, in a given model there may also be consistent formulas ¢ such
that ||¢| = @, so that - again - K o ¢ is not defined according to (RI).
Thus the question arises as to whether any partial belief change function
o defined by (RI) can be extended to a full-domain belief update function
¢ (Definition 2). Conversely, it is natural to ask whether any full-domain
belief update function coincides with the belief change function defined by
(RI) in some model. The following proposition answers both questions in the
affirmative. Since the proof of Proposition 7 is rather lengthy it is relegated
to the Appendix.

Proposition 7. The class Fo of update frames characterizes the set of full-
domain belief update functions in the following sense:

(A) For every model based on a frame in Fo and for every state s in that
model, the belief change function o (based on Kg = {¢p € ®¢y : B(s) C
loll}) defined by (RI) can be extended to a full-domain belief update
function o (Definition 2).

(B) Let K C ®¢ be a consistent and deductively closed set and let o : g —
2%0 be a belief update function based on K (Definition 2). Then there
exists a frame in Fo, a model based on that frame and a state s in that
model such that (1) K = Kg = {¢ € @y : B(s) C ||¢||} and (2) the
partial belief change function o (based on Ks) defined by (RI) is such
that Kso ¢ = Ks o ¢ for every consistent formula ¢.

Remark 5. As noted in Remark 2, in [16] Katsuno and Mendelzon also
put forward a stronger notion of belief update, obtained by replacing (in our
translation) azioms (K ¢ 6) and (K ©7) with aziom (K ©9). Proposition 8
below shows that a result analogous to the characterization of Proposition 7
applies also to this stronger notion. Since the proof is very similar to the
proof of Proposition 7 we omit it.

Definition 10. A strong update frame is a frame that (besides the properties
of Definition 5) satisfies the following properties:

(Ps2) if B(s) C E then, Vs' € B(s), f(s', E) C B(s).
(Posjs7) if, Vs' € B(s), f(s, ENF) C G,
then, Vs' € B(s), f(s', E)NF C G.
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(Pso) if B(s) = {s'} then, VE,F € 2% if f(s, EYNF # &
then, f(s', ENF)C f(s',E)NnF.

We denote by Foo the class of such frames.

Proposition 8. The class Foo of strong update frames characterizes the set
of strong belief update functions (Definition 3):

(A) For every model based on a frame in Foo and for every state s in that
model, the belief change function o (based on Kg = {¢p € ®y : B(s) C
loll}) defined by (RI) can be extended to a full-domain belief update
function o that satisfies axioms (K ©0)-(K ©5) and (K ©9).

(B) Let K C ®y be a consistent and deductively closed set and let o :
Oy — 2%0 be a belief update function based on K that satisfies axioms
(K ©0)-(Kob5) and (K ©9). Then there exists a frame in Foo, a
model based on that frame and a state s in that model such that (1)
K =Ks;={¢ € ®: B(s) C ||} and (2) the partial belief change
function o (based on Kg) defined by (RI) is such that Kso¢ = Ks0 ¢
for every consistent formula ¢.

5 Frame correspondence. Part 2: Revision

As noted in Remark 3, axioms (K *4) and (K % 8) can be viewed as the
crucial axioms that distinguish AGM belief revision from the strong version
of KM belief update. In this section we provide a semantic characterization
of these two axioms and a characterization of AGM belief revision functions
along the lines of that provided for belief update (Propositions 7 and 8),
while in Section 6 we compare belief revision and belief update by focusing
on the interpretation of the semantic properties corresponding to (K *4) and
(K % 8) in relation to the semantic properties corresponding to (K ¢ 2) and
(K ©9).

Proposition 9. The following aziom:
if "¢ ¢ K then K C Ko¢ (x4)
s characterized by the following property of frames: Vs € S,;VE C S,

if B(s) N E # @ then, Vs' € B(s), f(s', E) C B(s) N E. (Pia)
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Proof. Fix a frame that satisfies Property (Pi.4), an arbitrary model based on it,
a state s and let K the belief set at s and o be the belief change function (based
on K) defined by (RI). Let ¢ € ®¢ be a formula in the domain of o and suppose
that —¢ ¢ K, that is, B(s) € ||—=¢]], i.e. B(s) N|¢|| # @. We need to show that
Ks; C K5 o ¢. Fix an arbitrary ¢ € Kj; then B(s) C ||¢]|. Since B(s) N||¢| # <,
by Property (P.4) (with E = ||¢]]) Vs' € B(s), f(¢, [|¢|l) C B(s) N ||¢||. Thus (since
B(s) N ol € B(s) S [l4l), Vs" € B(s), f(s', [|6]]) € [¥l, that is, ¢ € K o ¢.
Conversely, consider a frame that violates Property (Pi4). Then there exist s € S
and E C S such that B(s)NE # @, s’ € B(s) and f(s',E) € B(s)NE. Let p,q € At
and construct a model based on this frame where |p|| = E and |q|| = B(s) N E.
Since s" € B(s) and B(s) N [|p|| # @, —p ¢ K. Since f(s', [[pll) £ B(s) N E = [|q],

q¢ Ksop. (16)

By (2) of Proposition 1, p € K op. Thus, for every formula ¢, (p — ¢) € Kop
if and only if ¢ € K o p (since, by (B) of Lemma 2, K o p is deductively closed).
Hence, by (16),

(p—q) ¢ Ksop. (17)

Next we show that (p — ¢q) € K so that Ky ¢ K, op, yielding a violation of axiom

(%4) (since —p ¢ K;). We need to show that B(s) C |lp — ¢|| = [|-p||l U |lgll =
(S\ llpl) U llg|l- First note that

B(s) = (B(s) N (S\ E)) U (B(s) N E). (18)

Since E = [|p||, B(s) N (S\ E) = B(s) N [|=p|| < [[=pll € [[=pl) U llgll = [lp — qll-
Thus

B(s)N(S\ E) € [lp = 4l (19)
Since B(s) N E = ||g|l, B(s)NE C ||-p|U|l¢ll = lp — ¢||- Tt follows from this, (19)
and (18) that B(s) C |lp — 4| O

Proposition 10. The following aziom:
if ¢ Kogthen Ko+ C Ko(pA)) (*8)
is characterized by the following property of frames: Vs € S,YE, F € 25,

if 35 € B(s) such that f(5,E) N F # & then,

Vs' € B(s), f(s,ENF)C U (f(s",E)NF). (Pis)
s"eB(s)

Proof. Fix a frame that satisfies Property (P,g), an arbitrary model based on it, a
state s, and let K the belief set at s and o be the belief change function (based
on K,) defined by (RI). Let ¢,vp € &y be two formulas such that ¢ A ¢ is in
the domain of o (that is ||[¢ A | # @, which implies that also ||¢|| # @ and
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||| # @) and suppose that —1) ¢ K, o ¢, that is, there exists an § € B(s) such that
f(,1lolDN]l¢]| # 2. Then, by Property (P.s) (and noting that [|[¢Ay[| = [l¢[[N[[¥]),

vs' € B(s), f(s,lenvl) € | ("ol n ). (20)

s'"eB(s)

We need to show that Cn((Ks o ¢) U {¢}) C Ks;o (¢ A). Fix an arbitrary
X € Cn((Ks o ¢) U {1}); then, since, by (B) of Lemma 2, K, o ¢ is deductively
closed, (¢ — x) € K o ¢, that is,

Vs' € B(s), f(s",18I]) € llv — xIl = (S\ [[#1) U lIxl,

which is equivalent to

vs' € B(s), £(s, lel) N 14l < [xll,

so that
U el il < lixdl- (21)
s'€B(s)
It follows from (20) and (21) that Vs’ € B(s), f(s',]|¢ A ¥|) C |Ix|l, that is, x €
Ko (¢N).
Conversely, fix a frame that violates Property (P.s). Then there exist s,s1,82 € S
and E, F € 25 such that

(a) s1€B(s)and f(s1,E)NF # @,

(b) sy B(s)and f(s2, ENF) ¢ U (f(s',E)NF). (22)
s'eB(s)

Let p, g, r € At be atomic formulas and construct a model where ||p|| = E, ||g|| = F
and [l = U (f(s',E)NF). Then,
s'eB(s)

(A) by (a) of (22), ~g ¢ Ksop

(23)
(B) by (b) of (22), 7 ¢ Ko (pAq).

To obtain a violation of Axiom (*8) it only remains to show that » € Cn((K o
p) U {q}), which is equivalent to (since, by (B) of Lemma 2, K o p is deductively
closed) (¢ — 7) € K o p; that is, we have to show that Vs’ € B(s), f(s',|p|) C
llg = 7l = (S\ llgl) U|Ir|l. Fix an arbitrary s' € B(s). If f(s', |[p[l) N [l¢|l = @ then
FG el < (S\llall) < (S\llaDulirll I £(s", Ipl)Nllgll # @ then f(s", [[pl)N[lqll €

U (6" el Ollgll) = lirlls thus f(s", [Ipll) N llgll € [Ir]| which is equivalent to
s""eB(s)

F(Mlpll) < (SN Nlall) Ul l- -

Definition 11. A revision frame is a frame that (besides the properties of
Definition 5) satisfies the properties of Propositions 9 and 10, namely:
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(Py) if B(s)NE # & then, Vs’ € B(s), f(s', E) C B(s) N E.

(Pyg) if, 35 € B(s) such that f(5,E) N F # & then,

Vs' € B(s), f(s,ENF)C U (f(s",E)NF).
s"eB(s)

We denote by Fx the class of such frames.
The proof of the following proposition is given in the Appendix.

Proposition 11. The class Fx of revision frames characterizes the set of
AGM belief revision functions (Definition 4), in the following sense:

(A) For every model based on a frame in Fx and for every state s in that
model, the belief change function o (based on Ky = {¢ € ®¢ : B(s) C
lloll}) defined by (RI) can be extended to a full-domain belief revision
function x that satisfies the AGM axioms (K x 1)-(K  8).

(B) Let K C ®¢ be a consistent and deductively closed set and let * :
Oy — 2%0 be a belief revision function based on K that satisfies the
AGM azioms (K % 1)-(K % 8). Then there exists a frame in Fx, a
model based on that frame and a state s in that model such that (1)
K =Ks;={¢ € @ : B(s) C ||} and (2) the partial belief change
function o (based on K) defined by (RI) is such that Kso¢ = Kg* ¢
for every consistent formula ¢.

6 Comparing KM update and AGM revision

As noted in Remark 3, AGM axiom (K %4) can be seen as a strengthening of
KM axiom (K ¢2). This is clear if we compare the corresponding semantic
properties (Propositions 2 and 9):

(i) For (K ¢©2): if B(s) C FE then, Vs’ € B(s), f(s', E) C B(s).
(i1) For (K x4): it B(s) N E # & then, Vs’ € B(s), f(s', E) CB(s) N E.

By definition of frame (Definition 5), since B is serial, B(s) # @ and thus
B(s) C E implies that B(s) N E = B(s) # @. Hence if (i) is satisfied then
so is (11). What (i) says is that if, initially, the agent believes event E then,
conditional on F, he continues to believe everything that he believed initially.
On the other hand, (i) says that if, among the states that the agent initially
considered possible, there are states where event E is true, then those states
should be given priority when conditioning on F. In other words, when
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looking for FE-states that are closest to a state that is initially considered
possible, the agent should give priority to those states in his initial belief
set that are already E-states, if there are any such states. We shall call this
requirement Dogastic Priority 1 (DP1):16

E-states in B(s) are to be selected as nearer to states in B(s)

than any E-states outside of B(s). (DP1)

(DP1) is reminiscent of a principle put forward by Stalnaker [35] in his theory
of context-dependent indicative conditionals: if an indicative conditional is
being evaluated at a world in the context set, then the world selected must,
if possible, be within the context set as well. In our semantic framework,
the set B(s) can be viewed as playing a role similar to the role played by the
context set in Stalnaker’s theory of indicative conditionals.

In Remark 3 it was also noted that axiom (K  8) can be seen as a
strengthening of KM axiom (K ¢9). Once again, this is clear if we compare
the corresponding semantic properties (Propositions 6 and 10):

(I) For (K ©9): if B(s) = {s'} then, VE, F € 25, if f(s/, E)N F # & then
f(&ENnF)C f(s,E)nF.

(IT) For (K = 8): if 35 € B(s) such that f(5,FE)NF # & then, Vs’ €

B(s), f(s" ENF)C U (f(s",E)NF).
s"eB(s)

It is clear that if B(s) is a singleton then (II) reduces to (I). Property (II)
plays a similar role to (DP1): it says that if there are E-states closest to
states in B(s) which are also F-states then the closest E-and-F-states to

states in B(s) must be among those. We call this principle Dozastic Priority
2 (DP2):

When looking for E-and-F states outside of B(s), the
closest E-states that are also F-states are to be selected
as nearer to B(s) than any E-states outside of B(s) that
are not also F-states.

(DP2)

The examples given by Katsuno and Mendelzon in [16] show that (DP1) and
(DP2) are not requirements that one would want to impose, in general, on a
theory of belief updating. However, the fact remains that if one strengthens
the definition of strong update frame (Definition 10) by replacing (Ps2) with

Y5 This requirement is what leads to f(s3, ||b||) = {s2} in the model of Panel (a) of Figure
2.
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the stronger (P.4) and (Psg) with the stronger (P.g), then one obtains a
revision frame (Definition 11); in other words, the set of revision frames is a
subset of the set of strong update frames. This fact suggests that, as Peppas
et al. point out in [30, p. 98] "revision functions are nothing but a special
kind of update operator"; indeed, they prove (by making use of a different
semantics from the one considered in this paper) that, given a consistent
belief set K, for every revision function * there exists an update operator ¢
such that K x ¢ = K o ¢, V¢ € ®¢ [30, Theorem 2, p. 98].

7 Discussion

As noted in the Introduction, the dominant interpretation of an input to both
AGM revision and KM update is in terms of reliable new information, so that
K x¢ is interpreted as the revised belief set after the information represented
by the formula ¢ has been made compatible with the initial belief set K and,
similarly, K ¢ ¢ is interpreted as the updated belief set after incorporating
information ¢. This interpretation is apparent in the way in which (in the
context of belief revision) the Success Axiom (AGM axiom (K # 2) and KM
axiom (K ¢ 1)) is described or criticized in the literature:

"The Success postulate says that the new information ¢ should
always be included in the new belief set. [It] places enormous
faith on the reliability of ¢. The new information is perceived to
be so reliable that it prevails over all previous conflicting beliefs,
no matter what these beliefs might be." [29, p. 319]

"In AGM revision, new information has primacy. This is mir-
rored in the Success postulate for revision. At each stage the
system has total trust in the input information, and previous
beliefs are discarded whenever that is needed to consistently in-
corporate the new information. This is an unrealistic feature
since in real life, cognitive agents sometimes do not accept the
new information that they receive."|7, p. 65|

"A system obeying [the Success axiom] is totally trusting at each
stage about the input information; it is willing to give up what-
ever elements of the background theory must be abandoned to
render it consistent with the new information. Once this informa-
tion has been incorporated, however, it is at once as susceptible
to revision as anything else in the current theory. Such a rule
of revision seems to place an inordinate value on novelty, and its
behaviour towards what it learns seems capricious." [5, p. 251]
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By contrast, in our Kripke-Lewis semantics, the Success axiom is entirely
trivial, in that it merely requires the agent to believe that "if ¢ is (or were)
the case then ¢ is (or would be) the case", which is a natural consequence of
any meaningful reading of such conditional; indeed, as shown in Proposition
1, no additional properties are required for the axiom ¢ € K o ¢ to be valid
on an arbitrary frame.

In this section we will argue that our proposed semantics provides an
alternative interpretation of both revision and update in terms of suppo-
sition rather than information, and that supposition and information are
conceptually very different.

7.1 Supposition versus information

There are many types of belief "change":

1. The mental simulation of scenarios that are known to be contrary to
actual reality. This type of belief change has been recently investi-
gated under the name of "reality-oriented mental simulation" (|2]) or
"pretense imagination" ([27]).

2. The reaction to information that is accepted as entirely reliable: as
[36, p. 194] puts it, an "input proposition [that] represents an item of
information that the subject takes himself to have come to know".

3. The mental exercise of entertaining a supposition and examining its
consequences.

Several authors have noted that there seems to be a significant difference
between supposing that ¢ and learning that ¢:

"Merely suppositional change is essentially different from "gen-
uine" change due to new information." [32, p. 410]

"There seems to be a need to distinguish actual belief revision
from belief revision that is merely hypothetical. [...| Ordinary
theories of belief change do not seem suited to handle the sort of
hypothetical belief change that goes on, for example, in debates
where the participants agree, "for the sake of argument", on a
certain common ground on which possibilities can be explored
and disagreements can be aired. One need not actually believe
what one accepts in this way." [34, p. 1]

28



"In none of these contexts is supposing that ¢ equivalent to be-
lieving that ¢... Changing full beliefs calls for some sort of ac-
counting or justification. Supposition does not..." [20, p.5, em-
phasis added]

There is also empirical evidence that, even in the case where what is be-
ing supposed or learned is compatible with the initial beliefs, people treat
supposition and information differently: [38] found "substantial differences
between the conditional probability of an event A supposing an event B,
compared to the probability of A after having learned B. Specifically, sup-
posing B appears to have less impact on the credibility of A than learning
that B is true."

The following example illustrates the difference between supposition and
information.

Example 3. From my interactions with my colleague Louis I have come to
believe that he is shy and sociophobic; indeed, he has never attended any of the
frequent social gatherings organized by members of the department. Yesterday
there was a big party to which we were all invited (including Louis). I was
not able to go and I believe that Louis did not go either — because I believe
that he is sociophobic. On the supposition that he did go to the party, I
believe that he would have been anzious and uncomfortable and would have
left after a very short time — because I believe that he is sociophobic and this
is how a sociophobic person would react. As Levi ([20], quoted above) notes,
a supposition "for the sake of the argument” does not require an explanation
or a justification; in particular, when I reason under the supposition that he
was at the party, I am not compelled to change my basic belief that he is
soctophobic. Indeed, "he was not at the party” and "if he was at the party
then he was anxious” are an expression of the same belief, namely that he is
soctophobic. There is no change in belief involved in the supposition that he
was at the party. On the other hand, if I were to learn — that is, if I were
reliably informed — that Louis was in fact at the party, then I would need
to come up with some ezxplanation (perhaps he is taking medication for his
anxiety, or perhaps I was wrong in my belief that he is sociophobic) and in
that case I might not believe that he would have been anzious and would have
left after o very short time.

In terms of our semantics, consider a model and a state s in that model
where B(s) C ||p A —q||, where p is the atomic formula ‘Louis is sociophobic’
and ¢ is the atomic formula ‘Louis was at the party’; thus, I initially believe
that Louis is sociophobic and was not at the party. Now consider any state
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s’ such that sBs’; then s’ |= p A g, in particular, s’ is a state where Louis
is sociophobic. If I have a strong belief that Louis is sociophobic, it seems
natural that the closest states to s’ where Louis was at the party (the closest
g-states) are still states where Louis is sociophobic and at any such state
Louis would be anxious and would leave after a very short time; hence my
belief that if Louis was at the party then he would have been anxious and
would have left early. On the other hand, if I were to learn that Louis
was at the party, then my beliefs would change and my new beliefs would
be represented by a new state § such that B(S) C ||¢|| and possibly even
B() C [-pl.

Some authors have argued that the AGM axioms for belief revision are
suitable for modeling suppositional beliefs but not for belief change in re-
sponse to learning new information. For example, [20, p. 117| writes "the
contribution of Alchourrén, Gardenfors and Makinson is best seen as a con-
tribution to an account of reasoning for the sake of the argument and not as
an account of the logic of belief change". If we interpret the sentence ‘on the
supposition that ¢, the agent believes that 1’ as ‘the agent believes that if ¢
is (or were) the case then v is (or would be) the case’, then our semantics and
characterization results (Propositions 7 and 11) show that both AGM belief
revision and KM belief revision can be given a consistent interpretation in
terms of supposition rather than information.

7.2 Relevance to Al

Belief change plays a crucial role in the field of artificial intelligence (AI),!7
particularly in the following areas:

e Knowledge Representation (KR) and Knowledge Base (KB) systems.
Knowledge bases need to be revised when new information is obtained.
An important issue is how to resolve logical or semantic inconsistencies,
in particular, how to update a database when new facts are introduced
that are inconsistent with its previous contents.

e Dynamic Environments. An Al system deployed in a dynamic envi-
ronment (such as autonomous vehicles, robotics, or real-time decision-
making systems) must continuously update its model of (or beliefs
about) the environment to adapt to perceived changes in the environ-
ment.

Y"For a historical account of the impact and role of AGM belief revision in Al see [4]
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e Reasoning about Action. An important issue in Al is how to model the
reasoning of an agent about the outcomes of the actions that the agent
itself performs. This reasoning involves determining the new state of
the world after performing an action and the corresponding change in
the agent’s beliefs.

e Planning, in particular how to deal with plan failure. Failure typically
occurs when the agent receives information that points to a mismatch
between the expected and the perceived state of the world (for example,
when the agent detects that an action which was intended to establish
a precondition of a subsequent action in the same plan fails to do
s0). Plan failure requires that the initial beliefs and the plan itself be
revised.

e Machine Learning. In machine learning, especially in online learn-
ing scenarios or reinforcement learning, belief change mechanisms are
needed to adjust models based on new data or experiences.

e Natural Language Processing. In natural language understanding tasks,
belief revision helps in resolving ambiguities or contradictions that arise
from interpreting human language, thereby improving the accuracy
of Al systems in understanding and responding to natural language
queries.

It is clear that in all of these areas what is needed is a theory of belief change
in response to new information. If Levi is right in claiming that AGM belief
revision ought to be viewed as a theory of suppositional beliefs, rather than
of belief change prompted by new information, then it seems that there is a
need — at least in the context of AI —for a more suitable theory. Our analysis
suggests that both belief revision and update can in fact be given a merely
suppositional interpretation. The common distinction between update and
revision in terms of a dynamic versus a static world is just an interpretation
of the axioms: as lamented by several authors, there is nothing in the AGM
or KM frameworks that directly captures the nature (dynamic or static) of
the environment and the nature of the informational input. For example, [17,
p. 2518] remarks that "nothing in the AGM theory of belief revision implies
that we should restrict its application to static worlds" and [8, p.118] remark
that "what is essential in belief revision is not that the world is static, but
that the language used to describe the world is static". Perhaps, as suggested
in [17], a suitable theory of belief change ought to be based on a language
containing time-stamped atomic formulas of the form p;, interpreted as ‘p
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is true at time t’, so that one can directly capture changes in the world
over time (e.g. py A —pe11) as well as be explicit about whether information
pertains to the past or the present. A first step in this direction (for belief
revision only) is taken in [§].

8 Related literature

The characterization results of Propositions 7 and 11 provide an interpreta-
tion of ¥ € K ¢ ¢ in the KM framework (believing ¢ after updating by ¢)
and ¢ € K x ¢ in the AGM framework (believing 1 after revising by ¢) in
terms of believing the conditional "if ¢ is, or were, the case, then ¢ is, or
would be, the case".

That the notion of belief update is closely related to conditionals has
been pointed out before in the literature. Grahne ([13| considers a modal
logic containing two bi-modal operators: the conditional operator > and the
update operator ¢ (Grahne uses the symbol o but for consistency with our
previous notation we have changed it to ¢). The proposed axioms involve
only the conditional operator >, while the update operator enters via two
rules of inference, which Grahne calls "Ramsey’s Rules" (RR):

X @>0) L ed) o
(xop) =1 X— (p>v)

Grahne ([13, p. 97| offers the following explanation for (RR).

(RR)

The intuitive interpretation of (RR) is as follows. Let original
belief state be x and let ¢ > 9 stand for ‘If ¢, then o.” If
¢ > 1 is accepted in state x it means that x — (¢ > 1) is a
theorem. Now ‘the minimal change’ of x ‘needed to accept’ ¢,
which is represented by x ¢ ¢ ‘also requires accepting’ 1, since
(x © @) — 9 is a theorem, according to (RR).

He also notes that, without (RR), his logic coincides with Lewis’ logic VCU
for counterfactuals ([21]). Grahne proves that his proposed logic is sound and
complete with respect to the standard semantics based on possible worlds
(|14, 21]) and concludes that Gérdenfors’ Triviality Theorem (see below)
applies only to revision operators, not to update operators.

Ryan and Schobbens ([33]) point out a link between the theory of up-
dates, the theory of counterfactuals and classical modal logic: they show that
update is a classical existential modality, counterfactual is a classical univer-
sal modality and the accessibility relations corresponding to these modalities
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are inverses of each other. They argue that the Ramsey Rule (see (R) below)
is simply an axiomatisation of this inverse relationship.

In the belief revision literature, the attempt to relate belief revision to
conditionals led to Gardenfors’ Triviality Theorem ([9]). In his approach the
Boolean propositional language ®g is extended to a modal language, call it
&, which includes conditionals of the form ¢ > v (if ¢ were the case then
1 would be the case). In this extended language, belief sets are allowed to
contain conditionals and indeed it is postulated [9, p.84| that

(¢ > ) € K if and only if ¥ € K * ¢, (R)

which is intended to capture the "Ramsey test" (see Footnote 9). Géardenfors
proved that if (R) is added to the AGM postulates for belief revision, only
trivialized revision operators (or revision operators defined on a trivialized
set of belief sets) are allowed.'® Note that Gérdenfors’ triviality result does
not apply to our framework because — as in the original AGM theory — we
restricted the analysis to a propositional language containing only Boolean
formulas.

In a series of related papers, Giordano et al. ([10, 11, 12|) establish a
connection between AGM belief revision and conditionals. They consider a
modal language obtained by adding to a propositional logic the conditional
operator >, with the usual interpretation of ¢ > 1) as "if ¢ were the case,
then ¢ would be the case". On the semantic side they consider a selection
function f that takes as input a possible world w and a formula ¢ and
returns as output a set f(w, ¢) of possible worlds. They do not postulate a
belief relation, but instead they extract the initial beliefs from the selection
function as follows: letting T denote any tautology, they define "¢ is initially
believed" as f(w, T) C ||¢]|. They correspondingly define the relation R C
W x W as follows: (w,w’) € Rif and only if w’ € f(w, T) and impose axioms
in their logic that make R reflexive and euclidean, that is, a partition, thus
imposing the logic S5 on beliefs. They also impose the condition (which
they call BEL) that a conditional ¢ > 1 is true at world w if and only if
it is true at every w’ such that (w,w’) € R. They then prove the following
representation result: (1) each AGM belief revision system corresponds to
a model of their logic and (2) every model of their logic that satisfies a
strong condition, which they call the "covering condition", determines an
AGM belief revision system. A model satisfies the covering condition if|
for every consistent formula ¢, ||¢|| # @. Translating their semantics into

18Girdenfors’ triviality result gave rise to a sizeable literature; see, for example, [19, 22,
23, 24].
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our framework would require us to define B(s) = f(s,S) and to impose the
following restriction on the selection function: if s’ € f(s,S) then, for every
ECS, f(s',E) = f(s, E). This approach leaves to be desired: first of all,
it rules out incorrect beliefs and, secondly, it rules out the possibility that
for &', 8" € B(s) the closest E-states to s’ might be different from the closest
E-states to s”. A distinguishing feature of our semantics is that it allows
for "small" models where it is possible for a consistent formula ¢ to be such

that ||¢|| = @. In order to prove their representation result, Giordano et
al. rule this out via their "covering condition". By contrast, we are able to
allow for the possibility that, in a model, ||¢|| = @ even if ¢ is consistent,

because we frame the analysis in terms of partial belief revision functions
and formulate the characterization problem in terms of the existence of an
AGM/KM extension of a given partial belief change function. It should also
be noted that the analysis of Giordano et al. is restricted to belief revision
and does not deal with belief update.

The semantics given in Section 3 — namely a Lewis selection function
with the addition of a Kripke belief relation — was also implicitly considered
in [18] who proposed a different interpretation of ¢ € K x ¢:

Let w be a possible world in which the agent’s actual belief set
is K. Now consider the set W’ of worlds w’ in which our agent
believes ¢ |...] we can thus reformulate the semantics of the
revision operator as follows: "i € Kx¢" is true in w if and
only if all those worlds w” among the members of W’ that are
maximally similar to w in Lewis’ sense are worlds in which the
agent believes 1. [...] a rational agent has a conditional belief in
1 given ¢ if and only if: if she believed ¢, then she would believe
¥. [18, p. 121]

Thus Leitgeb suggests a very different interpretation from ours. He argues
that "there are two different types of beliefs of "conditional character": beliefs
in conditionals and conditional beliefs." [18, p. 115]. We focused on the
former while Leitgeb opted for the latter. Leitgeb offers several arguments
in favor of his suggested interpretation, but does not establish an exact
correspondence between AGM belief revision functions and the semantics he
has in mind. Our objective is not to argue that our proposed interpretation
is "the correct" one, but simply to show that it works, in the sense that
it provides a semantic characterization, not only of KM belief update, but
also of AGM belief revision that is different from the standard one based
on plausibility pre-orders. Proposition 11 shows that, in the AGM theory,
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¥ € K x ¢ can be consistently interpreted as belief in the conditional "if ¢ is
(were) the case, then 1 is (would be) the case".

A semantics consisting of a Stalnaker selection function!? augmented
with a belief relation was considered recently by Giinther and Sisti in [15]
who dubbed it "Stalnaker’s Ramsey Test". However, the focus of [15] is very
different from ours: the authors do no establish a link to the AGM theory
of belief revision and do not view the proposed semantics as an alternative
characterization of AGM belief revision. The main purpose of [15] is to
argue that the "Stalnaker Ramsey Test" provides an alternative way of cap-
turing Ramsey’s inferential account, which was framed in terms of variable
hypotheticals.?°

The interpretation of both ¢ € K ¢ ¢ (update) and v € K * ¢ (revi-
sion) suggested in this paper as belief in the conditional "if ¢ is (were) the
case, then 1) is (would be) the case" does not make a distinction between
indicative and subjunctive conditionals. The view that a closest-world se-
mantics is appropriate for both indicative and subjunctive conditionals has
been defended by several authors ([6, 25, 37, 26, 35]). In our framework, the
indicative form (if ¢ is the case then 1) is the case) seems more appropriate
when the initial belief set does not contain —¢ (that is, if the agent initially
considers it possible that ¢) while the subjunctive form (if ¢ were the case
then ¢ would be the case) seems more appropriate when the agent initially
believes —¢.

9 Conclusion

We provided a characterization of KM belief update and AGM belief revision
in terms of a semantics that consists of a selection function together with
a belief relation. We have shown that KM/AGM belief update/revision
functions corresponds to the functions that can be obtained from the class
of models that we considered, by identifying the initial belief set K with
the set of formulas that the agent believes at a state s (K = {¢ € ¥ :
B(s) C |l¢|l}) and by identifying the updated belief set (K ¢ ¢), or the

9The difference between a Stalnaker selection function and a Lewis selection function is
that the former requires f(s, E) to be a singleton, that is, that there be a unique E-state
closest to s.

20A variable hypothetical is a subjective rule that Ramsey expresses as "If I meet a
¢ I shall regard it as a ¥" [31, p. 241]. [15, p.29] argue that the belief in the variable
hypothetical Vz (¢(z) — ¢ (z)) can be faithfully translated into Stalnaker semantics as
follows: for all worlds the agent cannot exclude to be the actual, the most similar ¢-world
is a 1-world.
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revised belief set (K * ¢), in response to input ¢, with the set of formulas
that are the consequent of conditionals that are believed at state s and
have ¢ as antecedent. Thus our analysis shows that both belief update and
belief revision can be characterized in terms of belief in the conditional "if
¢ is (or were) the case then v is (or would be) the case". The difference
between (strong) update and revision boils down to two stronger properties
(properties of doxastic priority DP1 and DP2) that are required for belief
revision but not for belief update. Since every revision frame is also an
update frame, our analysis confirms Peppas et al.’s assessment that, for a
fized initial belief set K, "revising K is much the same as updating K" (|30,
p. 95].

A natural next step is to go beyond the propositional language considered
in this paper and study a modal language that includes a unimodal belief
operator B, corresponding to the belief relation B, and a bimodal conditional
operator > corresponding to the selection function f. The investigation of
the corresponding modal logic and its potential use in modeling belief change
is beyond the scope of this paper and is pursued in a companion paper (work
in progress).

A Proof of Propositions 7 and 11

Proof of Proposition 7. In what follows we write - ¢ to denote that ¢ is a
tautology.

(A) We need to show that the partial belief change function obtained at a state
of an arbitrary model based on an update frame, can be extended to a full-domain
belief update function. The purpose here is not to define the most natural extension,
but to show that at least one such an extension exists. Thus we will do so in the
simplest, possible way.

Fix an arbitrary frame F' € Fo, an arbitrary model based on F', an arbitrary state
s and let Ky = {¢p € ®p : B(s) C ||#]|}. Let o be the belief change function
based on K defined by (RI), that is, ¢ € K, o ¢ if and only if, ||¢|| # @ and,
Vs' € B(s), f(s', 19l)) C ||¥]|. Consider the following full-domain extension ¢ of o:

_ [ Koo if|lo] £ o
Reoo= { Cn(g) if o] = 2. (24)

We want to show that the function defined in (24) is a belief update function
(Definition 2), that is, that it satisfies axioms (K ¢ 0)-(K o 7).

e (K ©0). We need to show that K;o ¢ = Cn(Ks;¢¢). If ||¢|| # @ then this
follows from (B) of Lemma 2. If ||¢| = @ then it follows from the fact that
Cn(¢) = Cn(Cn(¢)) .

e (K ©1). We need to show that ¢ € Ko ¢. If ||¢|| # @ then this follows from (2)
of Proposition 1. If ||¢|| = @ then it follows from the fact that ¢ € Cn(¢).
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e (K ©2). We need to show that if ¢ € K then K 0¢ = K. Assume that ¢ € Kg;
then B(s) C ||¢|| and thus, since by definition of frame (Definition 5), B(s) # &,
||| # @. Hence, by (24), K, ¢ ¢ = K, o ¢ and the desired property follows from
Proposition 2.

e (K ©3). We need to show that K, ¢ ¢ = @ if and only if ¢ is a contradiction.
If ¢ is a contradiction then Cn(¢) = ®g; furthermore, ||¢|| = @ and thus, by (24),
K;0¢=Cn(¢). If ¢ is consistent and ||¢|| # &, then, by (B) of Lemma 2, K 0 ¢
is consistent and thus Ko ¢ # ®g and, by (24), K, o ¢ = K 0 ¢. Finally, if ¢ is
consistent and ||¢|| = &, then, by (24), K ¢ ¢ = Cn(¢) and, since ¢ is consistent,
o (K o4). We need to show that if - (¢ <> ¢) then K, ¢ ¢ = K ¢ 1. Assume that
F (¢ < ). If |¢|| # @ then this follows from (3) of Proposition 1. If ||¢| = &,
then (since F (¢ < ) implies that ||¢|| = ||¥]]) ||¥]| = @ and thus K¢ ¢ = Cn(¢)
and K o1 = Cn(y) and, since F (¢ <> ¢), Cn(é) = Cn(y).

o (K¢5). We need to show that K o(pA)) C (Kso0p)+1. If ||¢|| = @ then ||¢pAy|| =
@ and, by (24), K, ¢ ¢ = Cn(¢) — so that (Ko ¢) + ¢ = Cn(Cn(¢p) U {¢}) — and
Kso(pN) = Cn(pAY). Fix an arbitrary x € Cn(¢pAt)). Then - (¢pA)) — x which
implies that - ¢ — (¥ — ), from which it follows that ¢ — (¢» — x) € Cn(9)
and thus (¢ — x) € Cn(¢) which, in turn, is equivalent to x € Cn (Cn(¢) U {¢}).
Hence Cn(¢ A1) C Cn(Cn(op) U{y}). If ||¢ A | # @ then ||¢|| # @ so that, by
(24), K09 = Kgo¢ and Ko (pA1)) = Kso(d A1) and the desired property follows
from Proposition 3. Finally, if ||¢|| # @ and ||¢ Ay|| = @ then K06 = K0 ¢ and
Kso (o A1) = Cn(¢ Av). Fix an arbitrary x € Cn(p Av). Then F (¢ A ) — x,
from which it follows that - ¢ — (¥ — X), so that since, by (B) of Lemma 2, K0 ¢
is deductively closed, (¢ — (¢ — x)) € K; o ¢. From this and the fact that, by (2)
of Proposition 1, ¢ € K o ¢, it follows that (¢» — x) € K, o ¢ which is equivalent
to x € Cn((Ks o ¢) U {y}). O
o (K©6). We need to show that if v € K ;0¢ and ¢ € Ko then K;0¢ = K 0.
Assume that ) € K;0¢ and ¢ € Ky o). If [|¢]] # @, then K, 0 ¢ = K, o ¢;
furthermore, since - by hypothesis - ¢ € K;0¢, Vs' € B(s), f(s', ||¢|]) C ||+||) which
implies that [|1|| # & because, by definition of frame (Definition 5), f(¢', ||¢]]) # 2.
A similar argument shows that if ||¢| # & then ||¢|| # &. Thus there are only two
cases to consider: (1) ||¢]| = ||¢| = @ and (2) ||¢|| # @ and ||| # @. Consider first
the case where ||¢|| = ||¢|| = @. Then, by (24), Kso¢ = Cn(¢) and Ksotp = Cn().
Then, since ¢ € Cn(¢), - (¢ — ) and, since ¢ € Cn(y), b (¢ — ¢). Thus
F (¢ <> 9) and therefore Cn(¢) = Cn(v)). Next consider the case where ||¢| # @
and ||¢|| # @. In this case K;0¢ = Kso0 ¢ and Ks o9 = K, o1 and the desired
property follows from Proposition 4.

e (K o7). We need to show that if K, is complete then (K o ¢) N (Ko v) C
Kso(pN). If (K 09)N(Ks01)) = & there is nothing to prove. Suppose, therefore,
that (Kso¢) N (Ksoy) # @ and let x € (K;0¢) N (Kyo). If |¢|| # @ and
||| # @, then Kyo¢ = Ks0¢ and K019 = K o1 and the desired property follows
from Proposition 5. If ||¢|| = ||¢|| = @ then ||¢ Ay|| = @ and thus Ko ¢ = Cn(¢),
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Ksop = Cn(v) and Kso(pAh) = Cn(dA). Since x € (Ks0p)N(Ks01) it follows
that - (¢ — x) and F (¢ — x) so that - ((¢ A¢) — x) and thus x € Cn(pA). If
|¢]l # @ and [ = & then [[pA 4] = & and thus K, 06 = K, 0, Kot = Cn(v)
and K, ¢ (¢ A1) = Cn(¢p Atp). Since x € (K5 09) = Cn(y), F (¢ — x) so that
F ((¢ Ap) — x) and thus x € Cn(¢ A ). The case where ||¢|| = @ and ||¢|| # @
is similar: F (¢ — x) and thus F ((¢ A ) — x) and x € Cn(p A ).

(B) Next we prove that, for every belief update function o, there is a model based
on an update frame such that the belief change function o obtained at a state in
that model coincides with ¢ on the domain of o and, furthermore, the domain of o
is the set of consistent formulas. Once again, the purpose here is not to define the
most natural model but to show that such a model exists. Thus we will construct
the simplest model.

Let K C ®; be consistent and deductively closed and let ¢ : ®; — 2% be a belief
update function based on K (Definition 2). Define the following model (S, B, f,V):

1. S is the set of maximally consistent sets (MCS) of formulas in ®y.

2. The valuation V : At — S is defined by V(p) = {s € S : p € s}, so
that, for every ¢ € P, the truth set of ¢, which - in this context - we
denote by [¢] instead of ||@]], is [¢] = {s € S : ¢ € s}. If ¥ C D, define
[¥] = {s € S:V¢p € U,¢ € s}. Note that [V] # @ if and only if U is
consistent.

3. For every s € S, define B(s) = [K].

4. In order to define the selection function f, note first that [¢] # @ if and only
if ¢ is consistent. Thus we only need to define f(s,||¢||) for ¢ consistent.
Let ®., C P be the set of consistent formulas and let £ = {E C S : E =
[#] for some ¢ € ®.,}. Define f : [K] x & — 29 as follows:

f(s,[0]) = [K < 9]. (25)

First we show that the frame so defined is an update frame (Definition 9).

o f(s,[¢]) # @. This follows from axiom (K ¢3) since we are restricting attentions
to ¢ € D.,,.

o f(s,[¢]) C [¢]. This follows from axiom (K ¢ 1) (since ¢ € K ¢ ¢, the set of MCS
that satisfy all the formulas in K ¢ ¢ is a subset of the of MCS that satisfy ¢).

To prove Weak Centering we first prove the following lemma.
Lemma 3. V¢ € O, [K]N[¢] = [Cn(K U{¢})].
Proof. By hypothesis, K is deductively closed. Thus, Vx € ®,
X € Cn(K U{¢}) if and only if (¢ — x) € K. (26)
First we show that

[E]N[¢] € [Cn(K U {s})].
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Fix an arbitrary s € [K] N [¢]; we need to show that s € [Cn(K U {¢})], that
is, that, Vx € Cn(K U {¢}), x € s. Since s € [¢], ¢ € s. Fix an arbitrary
x € Cn(K U {¢}); then, by (26), (¢ — x) € K; thus, since s € [K], (¢ — x) € s.
Hence, since both ¢ and ¢ — y belong to s and s is deductively closed (every MCS
is deductively closed), x € s.

Next we show that

[Cn(KU{s}] € [K]N[e].

Let s € [Cn(K U {¢})]. Then, since ¢ € Cn(K U {¢}), ¢ € s, that is, s € [¢].
It remains to show that s € [K], that is, that, for every x € K, x € s. Fix an
arbitrary x € K; then, since, by hypothesis, K is deductively closed, (¢ — x) € K.
Thus, by (26), x € Cn(K U {¢}) and thus, since s € [Cn(K U {¢})], x € s. O

o if s € [¢] then s € f(s,[¢]). Let s € [K] and ¢ € P,,. Assume that s € ||¢|;
then s € [K] N [¢] so that, by Lemma 3, s € ||[Cn(K U {¢})||. By Lemma 1,
Ko ¢ C Cn(K U{¢}) from which it follows that [Cn(K U {¢}] C [K ¢ ¢]. Hence
s € [K o6 and, by (25), [K o 6] = £(s, [4]).

o if B(s) C [¢] then, Vs' € B(s), f(s,[¢]) C B(s). Fix an arbitrary ¢ € ®., and
an arbitrary MCS s and recall that, by construction, B(s) = [K] and, Vs’ € B(s),
F(s',[#]) = [K ¢ ¢]. Thus we need to show that if [K] C [¢] then [K ¢ ¢] C [K].
Assume that [K] C [¢], which is equivalent to ¢ € K. Then, by (K¢2), Ko¢p = K
and thus [K ¢ ¢] = [K].

In order to prove the next property we need the following lemma, which is similar
to Lemma 3.

Lemma 4. Vo,9) € @, [K o @] N[Y] = [Cn((K o ¢) U{y})].
Proof. By (K ¢0), K ¢ ¢ is deductively closed. Thus, Vx € ®,

X € Cn((K o ¢)U{¢}) if and only if (¢ — x) € K ¢ ¢. (27)
First we show that

[K ool n 4] € [Cn((K o) U {})].

Fix an arbitrary s € [K ¢ ¢] N [¢]; we need to show that s € [Cn((K o ¢) U{¥})],
that is, that, Vx € Cn((Ko¢)U{y}), x € s. Since s € [¢], ¢ € s. Fix an arbitrary
X € Cn((K ¢ ¢) U {9}); then, by (29), (v — x) € K o ¢; thus, since s € [K ¢ ¢],
(¥ — x) € s. Hence, since both % and ¥ — x belong to s and s is deductively
closed, x € s.

Next we show that

[Cn((K o) U{P}] € [K o] N Y]

Let s € [Cn((K ¢ ¢) U{%})]. Then, since ¢ € Cn((K ¢ ¢) U{y}), ¥ € s, that is,
s € [¢]. It remains to show that s € [K ¢ ¢], that is, that, for every x € K ¢ ¢,
X € s. Fix an arbitrary x € Ko¢; then, since, by axiom (K¢0), Ko¢ is deductively
closed, (¢ — x) € K o ¢. Thus, by (29), x € Cn((K ¢ ¢) U {¢}) and thus, since
s € [Cn((Kog)U{Bh], x € 5. 0
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o If, Vs’ € B(s), f(s,[o]N[¥]) C [x], then, Vs' € B(s), f(s',[¢]) N[«] C [x]- Fix
arbitrary ¢, v, x € ®., and an arbitrary MCS s and recall that, by construction,
B(s) = [K], f(s',[¢]) = [K ¢ ¢] and (since [¢] N [¥] = [¢ A ¥]) f(s", [0l N [¥]) =
[K o (¢ A)]. Thus it is sufficient to show that [K o ¢] N [¢] C [K o (¢ A)]. By
axiom (K ¢5), Ko (¢ A1) C Cn((K ¢ ¢)U{9}) from which it follows that

[Crn((Kod)U{g}] C [K o (o AD)]- (28)

By Lemma 4, [K ¢ ¢] N [¢] = [Cn((K ¢ ¢) U{})]. Tt follows from this and (28)
that [K o ] N [¥] C[K o (¢ A)].
o If, Vs’ € 8(8)7 f(5/7[[¢]]) C [¢] and f(Sla[[i/J]]) C [¢], then U f(S/7H¢H) =

s'€B(s)
U f(s,[¥]). By (25) this reduces to:
s'eB(s)

if [K o ¢] C [¢] and [K o] C [4] then [K o] = [Kov].  (29)

By (K¢6),ifp € Kog and ¢ € K o1 then Ko ¢ = K o1. Since ¢ € K o ¢ if
and only if [K ¢ ¢] C [¢], and ¢ € K o if and only if [K ¢ 9] C [¢], (29) follows
directly from (K ¢ 6).

o If B(s) = {s'} then f(s',[o]Ul%]) C f(s',[¢]) U f(s',[¢]). First of all, note that
[P1U¥] = [o VY] By (K o7),since [K] is a singleton (and thus K is complete),
(K o) (K o) C K o(¢V), which implies that [K o(¢V)] C [Kod]N[K o] C
[K o] UK o9]. Finally, by (25), f(s',[¢]) = [K o ¢], f(s',[¢]) = [K o¢] and
f(s" [oVvil) =Ko (V)]

So far we have shown that the model that we have constructed is based on an
update frame (Definition 9). It remains to show that the belief update function
o that we started with coincides with the partial belief change function o defined
by (RI) relative to some MCS s. Since, in the model that we constructed, for any
two MCS’s s and s, B(s) = B(s'), we can take an arbitrary MCS, call it §. Let
K; = {¢ € &y : B(5) C [¢]}- By construction, B(§) = [K] and thus K; = K.
Let o be the belief change function based on K; = K defined by (RI). We need
to show that (since the domain of o is ®.,), Vo € ., K © ¢ = K o ¢. First
we show that K o¢ C Ko¢. Let v € K o ¢; then ¢ € s for all s € [K o ¢],
that is, [K ¢ ¢] C [¢]. By (25), Vs € B(3), f(s,[¢]) = [K ¢ ¢]. Thus, Vs € B(s),
f(s,[8]) C [¢], that is, ¢ € Ko¢. Next we show that Ko¢p C Ko¢. Let 1p € Koo,
that is, ¥s € B(3), f(s,[9]) C [V]. By (25), ¥s € B(3), (s, []) = [K o ¢]. Thus
[K o ¢] C [¢], that is, Vs € [K ¢ ¢], ¥ € s. Hence ¢ € K ¢ ¢. O

Proof of Proposition 11. Recall that - ¢ means that ¢ is a tautology.

(A) We need to show that the partial belief change function obtained at a state
of an arbitrary model based on a revision frame, can be extended to a full-domain
AGM belief revision function. We note again that the purpose here is not to define
the most natural extension, but to show that such an extension is in fact possible.
Fix an arbitrary frame F' € Fx, an arbitrary model based on F, an arbitrary state
sandlet Ky = {¢ € ®g: B(s) C ||¢||}. Let o be the belief change function based on
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K, defined by (RI), that is, ¢ € K, o ¢ if and only if, Vs’ € B(s), f(s', ||¢]l) C |-
Consider the following full-domain extension * of o:

woo | Ksoo if|gll #2
s ‘b_{ Cn(¢) if || = @. (30)

We want to show that the function defined in (30) satisfies axioms (K % 1)-(K *8).

e (K x1). We need to show that K; * ¢ = Cn (K ¢). If ||§|| # @ then this
follows from (B) of Lemma 2. If ||¢| = @ then it follows from the fact that
Cn(¢) = Cn (Cn(9)) -

o (K %2). We need to show that ¢ € K, x . If ||¢|| # @ then this follows from (2)
of Proposition 1. If ||¢|| = @ then it follows from the fact that ¢ € Cn(d).

o (K x3). We need to show that K x ¢ C Cn(Ks U {¢}). If ||¢|| # @ then this
follows from (1) of Proposition 1. If ||¢|| = @ then ||—¢| = S and thus B(s) C ||—d]|,
that is, ¢ € K which implies that Cn(K; U {¢}) = Py.

o (K x4). We need to show that if —¢ ¢ K, then K, C K, x ¢. Since —¢ ¢ K,
B(s) N ||o|| # @ so that ||¢|| # @ and thus, by Proposition 9, K, C K * ¢.

e (K x5). We need to show that K, x ¢ = ®¢ if and only if - —¢. If - ¢ then
Cn(¢) = ®¢; furthermore, ||¢|| = @ and thus, by (30), K * ¢ = Cn(¢). If ¢ is
consistent and ||¢|| # &, then, by (B) of Lemma 2, K, o ¢ is consistent and thus
K0 ¢ # @y and, by (30), K x ¢ = K o ¢. Finally, if ¢ is consistent and ||¢| = @,
then, by (30), K * ¢ = Cn(¢) and, since ¢ is consistent, Cn(¢) # ®g.

o (K x6). We need to show that if - (¢ <> ¢) then K x ¢ = K, x 1. Assume that
F (¢ < ). If |¢|| # @ then this follows from (3) of Proposition 1. If ||¢| = &,
then (since F (¢ < ¢) implies that ||¢|| = ||¥]]) ||¥]| = @ and thus K x ¢ = Cn(¢)
and Ky * 1 = Cn(y) and, since F (¢ <> ¢), Cn(¢) = Cn(y).

o (Kx7). We need to show that Ksx(pAY) C (Ksx¢)+1. If ||¢]| = @ then |[|[pAY|| =
@ and, by (30), K * ¢ = Cn(¢) — so that (K * ¢) + ¢ = Cn (Cn(¢p) U {¢}) — and
Ksx(pN) = Cn(pAY). Fix an arbitrary x € Cn(¢pAt)). Then - (¢pA)) — x which
implies that - ¢ — (¥ — x), from which it follows that ¢ — (¢p — x) € Cn(9)
and thus (¢ — x) € Cn(¢) which, in turn, is equivalent to xy € Cn (Cn(¢) U {¢}).
Hence Cn(¢ A1) C Cn(Cn(op) U{y}). If ||¢ A | # @ then ||¢|| # @ so that, by
(30), Ks#¢ = Kso¢ and Ks*x(pA1)) = Kso(d A1) and the desired property follows
from Proposition 3. Finally, if ||¢|| # @ and ||¢ Ay|| = @ then K, ¢ = K0 ¢ and
K« (¢ Ap) = Cn(p A ). Fix an arbitrary x € Cn(¢ A ). Then F (¢ A ) — ¥,
from which it follows that - ¢ — (¥ — X), so that since, by (B) of Lemma 2, K0 ¢
is deductively closed, (¢ — (¢p — x)) € Ko ¢. From this and the fact that, by (2)
of Proposition 1, ¢ € K, o ¢, it follows that (¢» — x) € K, o ¢ which is equivalent
to x € Cn((Ks o ¢) U {y}). O
o (K *8). We need to show that if =) ¢ K, * ¢ then (K x ¢) + 9 C K * (¢ A ).
If |¢|| = @ then, as shown in the proof of (K % 7), K % (¢ AN¢p) = (K * ¢) + . If
ll¢|| # @, then the result follows from Proposition 10.

(B) Next we prove that, for every AGM belief revision function =, there is a model
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based on a revision frame such that the belief change function o obtained at a state
in that model coincides with * on the domain of o and, furthermore, the domain
of o is the set of consistent formulas. Once again, the purpose here is not to define
the most natural model but to show that such a model exists.

Let K C ®; be consistent and deductively closed and let * : &5 — 2%° be an AGM
belief revision function based on K (Definition 4). Define the following model

(S,B, f,V):
1. S is the set of maximally consistent sets (MCS) of formulas in ®y.

2. The valuation V : At — S is defined by V(p) = {s € S : p € s}, so
that, for every ¢ € ®q, the truth set of ¢, which - in this context - we
denote by [¢] instead of ||@]], is [¢] = {s € S : ¢ € s}. If ¥ C Dy, define
[Y]={s€S:Vpec ¥, ¢cs}.

3. For every s € S and define B(s) = [K].

4. In order to define the selection function f, note first that [¢] # @ if and only
if ¢ is consistent. Thus we only need to define f(s,||¢||) for ¢ consistent.
Let ®., C P be the set of consistent formulas and let £ = {E C S : E =
[¢] for some ¢ € ®.,,}. Define f: [K] x & — 2° as follows:

f(s,[9]) = [K 9] (31)

First we show that the frame so defined is a revision frame (Definition 11).

e f(s,[¢]) # @. This follows from axiom (K *5) since we are restricting attentions

to ¢ € D.,,.

e f(s,[¢]) C [¢]. This follows from axiom (K x2) (since ¢ € K x ¢, [K * ¢] C [#]

and, by (31), f(s, [¢]) = [K * ¢].

o If s € [¢] then s € f(s,[#]). Let s € [K] and ¢ € ®.,. Assume that s € ||¢|;

then s € [K] N [¢] so that, by Lemma 3, s € ||[Cn(K U {¢})||. By Lemma 1,

K+ ¢ C Cn(K U{¢}) from which it follows that [Cn(K U {¢}] C [K * ¢]. Hence

s € [Kx ] = f(s,[])-

o if B(s) N[¢] # & then, Vs' € B(s), f(s',[¢]) C B(s) N [¢]. Fix an arbitrary

¢ € O, and an arbitrary MCS s and recall that, by construction, B(s) = [K] and,

Vs’ € B(s), f(s',[¢]) = [K * ¢]. Thus we need to show that if [K] N [¢] # @

then [K * ¢] C [K] N [¢]. Assume that [K] N [¢] # @, which is equivalent to

—¢ ¢ K. Then, by (K x4), K C K % ¢ which implies that [K * ¢] C [K] and

thus [K % ¢] N [#] C [K] N [#]. Furthermore, by (K *2), [K * ¢] C [¢], so that

[K + o] = [K * o] N [¢]-

e if, 35 € B(s) such that f(3,F) N F # & then, Vs’ € B(s), f(s, ENF)C
U (f(s”",E)N F). Fix arbitrary ¢,¢,x € ®., and an arbitrary MCS s and

s""eB(s)

recall that, by construction, B(s) = [K], Vs' € B(s), f(s,[¢]) = [K * ¢] and

(since [6] N [¢] = [6 A 9]) £/, 16 N [4]) = [K % (6 A )] Thus we need to
show that if [K * ¢] N [v] # @ then [K x (¢ A)] C [K * ¢] N [¢)]. Assume that
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[K *¢] N[¢] # @. Then [K x ¢] € [-], that is, =) ¢ K * ¢. Hence, by (K x8),
(Kx¢)+1 C K« (dA1), from which it follows that [K * (¢ A)] C [(K * ) + ¢].
Finally, by Lemma 4,%! [(K * ¢) + ¢] = [K * ¢] N [¢].

So far we have shown that the model that we have constructed is based on a re-
vision frame (Definition 11). It remains to show that the belief revision function
x that we started with coincides with the partial belief change function o defined
by (RI) relative to some MCS s. Since, in the model that we constructed, for any
two MCS’s s and ', B(s) = B(s'), we can take an arbitrary MCS, call it §. Let
K; ={¢ € Dy :B(3) C [¢]}. By construction, B(§) = [K] and thus K; = K. Let
o be the belief change function based on Kz = K defined by (RI). We need to show
that, V¢ € @, K x p = K 0 ¢.

First we show that K « ¢ C K o ¢. Let 1) € K * ¢; then ¢ € s for all s € [K * ¢],
that is, [K * 6] C [¢]. By (31), Vs € B(3), f(s,[6]) = [K * ¢]. Thus, Vs € B(3),
£(5,[61) C [¥], that is, ¢ € K o 6.

Next we show that Ko¢ C Kx*¢. Let ¢ € Ko, that is, Vs € B(3), f(s,[¢]) C [¥]-
By (31), Vs € B(3), f(s,[¢]) = [K * ¢]. Thus [K * ¢] C [¢/], that is, Vs € [K * ¢],
1 € s. Hence ¢ € K * ¢. O
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