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Abstract

The logical foundations of game-theoretic solution concepts have so far
been explored within the con¯nes of epistemic logic. In this paper we turn
to a di®erent branch of modal logic, namely temporal logic, and propose to
view the solution of a game as a complete prediction about future play. The
branching time framework is extended by adding agents and by de¯ning the
notion of prediction. A syntactic characterization of backward induction in
terms of the property of internal consistency of prediction is given.

¤This paper was presented at the Third Conference on Logic and the Foundations of Game
and Decision Theory (LOFT3), Turin, December 1988. I am grateful to two anonymous referees
and to the conference participants for useful and constructive comments.



1. Introduction

The logical foundations of game theory have been the object of a recent and
growing literature. Most papers in this area make use (directly or indirectly)
of epistemic modal logic, that is, the logic of knowledge and belief, and try to
determine what assumptions on the beliefs and reasoning of the players are implicit
in various solution concepts.1

Here we turn to a di®erent branch of modal logic, namely temporal logic2,
and propose to view the solution of a game as a prediction about future play. We
focus on extensive games with perfect information, which are modeled in a natural
way within the framework of branching time logic. We extend the semantics of
branching time by adding agents and by de¯ning the notion of prediction. A
prediction can be thought of as a belief about the future and in Section 2 we
discuss what properties one should attribute to predictions in general. In Section
3 we show that extensive games with perfect information are a special case of
branching time frames and that the backward-induction solution of such games
can indeed be viewed as a prediction. Section 4 contains the main result, namely a
syntactic characterization of backward induction in terms of internal consistency
of prediction, in the following sense: if at any node it is predictable (that is,
possible according to the prediction) that player i's payo® will be q then player
i cannot induce a position where his payo® is greater than q, or it is predictable
that it will be greater than q.

This notion of internal consistency of a solution is not new: it was ¯rst intro-
duced within cooperative game theory by von Neumann and Morgenstern (1947)
and subsequently applied by Joseph Greenberg (1990) in his theory of social sit-
uations. The novelty of this paper lies in the interpretation of a solution as a
prediction within the framework of branching-time logic and in the proof that
the implicit logic behind the backward induction solution is that of an internally
consistent prediction. As far as we know this is also the ¯rst time that the tools
of temporal logic have been used to analyze game-theoretic concepts.3

1Surveys of this literature (and an extensive list of references) can be found in Battigalli and
Bonanno (1999) and Dekel and Gul (1997).

2See, for example, van Benthem (1991), Burgess (1984), Goldblatt (1992) and Âhrstr¿m and
Hasle (1995).

3The logic of agency in branching time has been studied extensively in the philosophical lit-
erature: see, for example, Belnap and Perlo® (1988), Chellas (1992), Horty and Belnap (1995),
Horty (1996) and references therein. These papers, however, focus on philosophical issues con-
cerning the notion of action or "seeing to it that" and there is no explicit consideration of
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2. Agents and predictions in branching time

De¯nition 2.1. A branching-time frame with agents (BTA frame for short) is a
tuple


T; Á; N; fRigi2N

®
where

² T is a (possibly in¯nite) set of nodes.4

² Á is a binary relation on T (the precedence relation, representing the order-
ing of time) satisfying the following properties:

(P.0) antisymmetry: if t1 Á t2 then t2 § t1:
(P.1) transitivity: if t1 Á t2 and t2 Á t3 then t1 Á t3:
(P.2) backward linearity: if t1 Á t3 and t2 Á t3 then either t1 = t2 or t1 Á t2 or t2 Á t1:

² N = f1; :::; ng is a ¯nite set of agents.

² for every i 2 N , Ri is a binary relation on T satisfying the following property:

(P.3) Ri subrelation of Á : if t1Rit2 then t1 Á t2.

Properties (P.0)-(P.2) constitute the de¯nition of branching time in temporal
logic.5 In particular, (P.2) expresses the notion that, while a given node may have
di®erent possible futures, its past is unique, that is, (P.2) rules out the possibility
that two di®erent past histories lead to the same node.

The interpretation of t1Rit2 is that at node t1 agent i has available an action
which leads from t1 to t2: Property (P.3) expresses the notion that actions can

only a®ect the future. It is possible that for some i and t, Ri(t)
def
= ft0 2 T : tRit

0g
is empty. In such a case agent i does not have any actions available at node t. 6

game-theoretic issues. Furthermore, while we make use of standard (Kripkean) temporal logic,
those papers rely on the more complex "Ockhamist" semantics, where the truth of a formula
is not evaluated at a single point in time, but at a pair consisting of a point and a branch or
history through it; the future operator then refers to points in this branch only and, therefore,
the resulting logic is that of linear time. A further operator is then added to capture the notions
of historical necessity and contingency.

4In the philosophical literature the elements of T are usually called moments or points in
time. Since our focus is on games, we prefer to call them nodes.

5See, for example, Burgess (1984) and Âhrstr¿m and Hasle (1995).
6A natural requirement might be that di®erent actions of the same agent be either simulta-

neous or determining di®erent future histories, in the sense that if tRit
0 and tRit

00 then t0 § t00

and t00 § t0. Note that simultaneous actions of di®erent agents are not ruled out, that is, it
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De¯nition 2.2. Given a BTA frame, a prediction is a binary relation Áp on T
satisfying the following properties:

(P.4) Áp subrelation of Á : if t1 Áp t2 then t1 Á t2:
(P.5) transitivity: if t1 Áp t2 and t2 Áp t3 then t1 Áp t3:
(P.6) Áp is serial when Á is:7 if t Á t1 for some t1, then t Áp t2 for some t2:
(P.7) time consistency: if t1 Á t2 ; t2 Á t3 and t1 Áp t3 then t1 Áp t2 and t2 Áp t3:

(P.4) expresses the notion that predicting the future consists in selecting a
subset of the conceivable future nodes (those that are believed to be most plau-
sible). Note that it is not assumed that the predictable future of a given node
be a unique history following that node (that is, we do not require that if t Áp t0

and t Áp t00 then either t0 = t00 or t0 Á t00 or t00 Á t0). Furthermore, there is no
requirement that the predictable future of a given node be a proper subset of its
conceivable future, that is, vague predictions are allowed. For example, suppose
that T = ft1; t2; t3; t4g and Á = f(t1; t2); (t1; t3); (t1; t4)g. Suppose also that t2 is
a state where it is sunny, t3 is a state where it rains and t3 is a state where it
snows. Then Áp= Á corresponds to the trivial prediction \tomorrow either it will
be sunny or it will rain or it will snow", while Áp= f(t1; t2); (t1; t3)g corresponds
to the somewhat vague prediction \tomorrow either it will be sunny or it will
rain, but it will not snow" and Áp= f(t1; t2)g corresponds to the sharp prediction
\tomorrow it will be sunny".

The interpretation of Áp in terms of prediction (i.e. belief about the future)
makes (P.5) (transitivity of Áp) a natural requirement: it can be viewed as in-
corporating a principle of coherence of belief close in spirit to van Fraassen's
Re°ection Principle (van Frassen, 1984).

(P.6) requires that a prediction be complete, in the sense that a prediction be
made whenever possible: if there is a conceivable future of t (that is, if t has a
Á-successor) then there must be a predictable future of t (that is, t must have
a Áp-successor). This is not really a restriction, since the trivial prediction that
every conceivable future is plausible (that is, t1 Áp t2 i® t1 Á t2) is not ruled out.

is possible that, for some t and some i and j with i 6= j, both Ri(t) and Rj(t) are non-empty.
In this case restrictions need to be imposed to guarantee that the actions of di®erent agents
are compatible with each other. For the purpose of this paper simultaneity of actions can be
ignored.

7In the modal logic literature seriality is usually de¯ned globally. We de¯ne it as a local
property, since in ¯nite games there are decision nodes, which have successors, as well as terminal
nodes, that have no successors. Note that, therefore, the modal operators do not satisfy the
consistency axiom.
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t1

t2

t3

Figure 1

Property (P.7) says the following. Suppose that at node t1 a conceivable future
development is represented by the path t1t2t3 (that is, t1 Á t2 and t2 Á t3): this
is shown in Figure 1, where a continuous arrow from t to t0 denotes that t Á t0

(and the arrows due to transitivity are omitted). Suppose also that t3 lies in the
predictable future of t1 (that is, t1 Áp t3): this is shown in Figure 1 by a dotted
arrow from t1 to t3. Then (P.7) imposes the following requirements:

(a) since reaching t3 from t1 requires going through t2, t2 should lie in the
predictable future of t1 (that is, t1 Áp t2), and

(b) since reaching t2 from t1 is consistent with (is a partial realization of) the
prediction that t3 will be reached, the prediction should continue to hold at
t2, that is, t3 should be in the predictable future of t2 (t2 Áp t3).

In view of the branching structure of time (there is at most a unique path
between any two nodes) (P7) seems a very natural consistency requirement.

Example 2.3. The following is a BTA frame: T = ft1;t2; :::; t7; t8g, N = f1; 2g,
Á = f(t1; t2); (t1; t3); (t1; t4); (t1; t5); (t1; t6); (t1; t7); (t1; t8); (t2; t4); (t2; t5); (t3; t6);
(t3; t7); (t3; t8)g, R1 = f(t1; t2); (t1; t3)g, R2 = f(t2; t4); (t2; t5); (t3; t6); (t3; t7); (t3; t8)g.
This frame is shown in Figure 2 where, as before, an arrow from t to t0 indicates
that t Á t0 and all the arrows due to transitivity are omitted (thus the continuous
arrows represent the Hasse diagram of hT; Ái); furthermore the label i is assigned
to the arrow from t to t0 if and only if (t; t0) 2 Ri. The following is a prediction
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according to De¯nition 2.2: Áp = f(t1; t3); (t1; t6); (t1; t7); (t3; t6); (t3; t7); (t2; t5)g.
This is represented in Figure 2 by a dotted line next to an arrow that belongs to
both Á and Áp, omitting dotted lines that can be obtained by transitivity (thus
the dotted lines alone represent the Hasse diagram of hT; Ápi).

t1

t2 t3

t4 t5 t6 t7

1 1

2 2 2 2

Figure 2

2

t8

De¯nition 2.4. An augmented BTA frame is a BTA frame together with a pre-
diction.

Every t 2 T should be thought of as a complete description of the world, and
sets of nodes represent propositions. In order to establish this interpretation we
need to introduce a formal language and the notion of a model based on a frame.
We consider a propositional language with the following modal operators:

² Tense and prediction operators8: G, Gp, H and Hp. The intended interpre-
tation is as follows:

GÁ : \it is going to be the case in every conceivable future that Á"
GpÁ : \it is going to be the case in every predictable future that Á"
HÁ : \it has always been the case that Á"
HpÁ : \it has always been the case at every past node at which the

current node was predicted that Á"

8The names of the operators are the standard ones in temporal logic. G stands for "going to
be" and H for "has been".

6



² Action operators: ¤i (for every i 2 N), whose intended interpretation is:

¤iÁ : \no matter what action agent i takes, it will be the case that Á".

The formal language is built in the familiar way from the following compo-
nents: a countable set S of sentence letters (representing atomic propositions), the
connectives : and _ (from which the other connectives ^, ! and $ are de¯ned
as usual) and the above modal operators.9

Given an augmented BTA frame one obtains a model M based on it by adding
a function V : S ! 2T (where 2T denotes the set of subsets of T ) that associates
with every sentence letter p the set of nodes at which p is true. For non-modal
formulae truth at a node in a model is de¯ned as usual.10 Validation for modal
formulae is as follows:

M; t j= GÁ i® M; t0 j= Á for all t0 such that t Á t0:

M; t j= HÁ i® M; t00 j= Á for all t00 such that t00 Á t:

M; t j= GpÁ i® M; t0 j= Á for all t0 such that t Áp t0:

M; t j= HpÁ i® M; t00 j= Á for all t00 such that t00 Áp t:

M; t j= ¤iÁ i® M; t0 j= Á for all t0 such that tRit
0.

Thus GÁ (GpÁ) is true at node t if Á is true at every Á-successor (Áp-successor) of

t. Similarly for H and Hp: Let FpÁ
def
= :Gp:Á. Then its intended interpretation

is:

FpÁ : \at some predictable future node Á ".11

A formula Á is valid in model M if M; t j= Á for all t 2 T ; it is valid on a
frame if it is valid in every model based on it.12

9The set © of formulae is thus obtained from the sentence letters by closing with respect to
negation, disjunction and the operators G, H, Gp, Hp and ¤i: (i) for every p 2 S, (p) 2 ©, (ii)
if Á; Ã 2 © then all of the following belong to ©: (:Á), (Á _ Ã), GÁ, HÁ, GpÁ, HpÁ and ¤iÁ:

10M; t j= Á denotes that Á is true at node t in model M and M; t 2 Á denotes that Á is false
at t. For a sentence letter p, M; t j= p i® t 2 V (p); furthermore, M; t j= :Á i® M; t 2 Á and
M; t j= (Á _ Ã) i® either M; t j= Á or M; t j= Ã. It follows that M; t j= (Á ^ Ã) i® M; t j= Á
and M; t j= Ã, and M; t j= (Á ! Ã) i® M; t j= Á implies M; t j= Ã:

11Thus M; t j= FpÁ i® M; t0 j= Á for some t0 with t Áp t0: F , the dual of G, P , the dual of
H, and Pp, the dual of Hp, are de¯ned and interpreted similarly.

12A sound and complete axiomatization of augmented BTA frames is given in Bonanno (1998).
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3. Extensive games with perfect information

In this section we show that an extensive game with perfect information is a special
case of a BTA frame and that the backward induction solution is a special case
of a prediction. In Section 4 we provide a syntactic characterization of backward
induction.

A rooted tree is a pair hT; ½i where T is a set of nodes and ½ is a binary
relation on T (if t ½ t0 we say that t immediately precedes t0 or that t0 immediately
succeeds t) satisfying the following properties:

1. there is a unique node t0 (the root) with no immediate predecessors;

2. for every node t 2 Tnft0g there is a unique path from t0 to t, that is, there
is a unique sequence hx1; :::; xmi in T with x1 = t0, xm = t, and, for every
j = 1; :::m ¡ 1, xj ½ xj+1:

Given a rooted tree hT; ½i, a terminal node is a t 2 T which has no immediate
successors. Let Z µ T denote the set of terminal nodes. It is easy to see that if
T is ¯nite then Z 6= ;:

De¯nition 3.1. A ¯nite extensive form with perfect information is a tuple
hT; ½; N; ¶i where hT; ½i is a ¯nite rooted tree, N = f1; :::; ng is a set of players
and ¶ : TnZ ! N is a function that associates with every non-terminal or decision
node the player who moves at that node. If i = ¶(t) and t ½ t0 we say that the
pair (t; t0) is a choice of player i at node t. Given an extensive form, one obtains
a perfect information game by adding, for every player i 2 N , a payo® or utility
function ui : Z ! Q (where Z is the set of terminal nodes and Q is the set of
rational numbers).

Figure 3a shows a perfect information game with three players. There is an
arrow from t to t0 if and only if t ½ t0 and the vector (x1; x2; x3) written next to a
terminal node z is the payo® vector (u1(z); u2(z); u3(z)). For every decision node
t, the corresponding player ¶(t) is written next to it.

Lemma 3.2. A ¯nite extensive form with perfect information is a special case of
a BTA frame (cf. De¯nition 2.1).
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Proof. Let Á be the transitive closure of ½, that is, t Á t0 i® there is a ½-path
from t to t0. It is straightforward to show that Á satis¯es properties (P.0)-(P.3) of
De¯nition 2.1. Furthermore, if t is a decision node let tRit

0 if and only if i = ¶(t)
and t ½ t0, while for every j 6= ¶(t), Rj(t) = ;. If z is a terminal node, then
Rj(z) = ; for all j 2 N . It is obvious that property (P.3) is satis¯ed.

t1 t2

z3 z4z1 z2

t0

1

32

Figure 3a

4
0
3

1
1
2

2
0
1

0
3
1

Player 1's payoff

Player 3's payoff

Player 2's payoff

t1 t2

z3 z4z1 z2

t0

1

32

Figure 3b

4
0
3

1
1
2

2
0
1

0
3
1

A well-known procedure for solving a perfect information game is the back-
ward induction algorithm (see, for example, Fudenberg and Tirole, 1991). The
algorithm starts at the end of the game and proceeds backwards towards the root:

1. Start at a decision node t whose immediate successors are only terminal
nodes (e.g. node t1 in Figure 3a) and select one choice that maximizes
the utility of player ¶(t) (in the example of Figure 3a, at t1 player 2 would
make the choice that leads to node z2 since it gives her a payo® of 1 rather
than 0, which is the payo® that she would get if the play proceeded to node
z1). Delete the immediate successors of t and assign to t the payo® vector
associated with the selected choice.

2. Repeat step 1 until all the decision nodes have been exhausted.

Figure 3b shows one possible outcome of the backward induction algorithm
for the game of Figure 3a. The choices selected by the algorithm are shown as
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dotted lines next to the corresponding arrows. Note that the backward induction
algorithm may yield more than one solution. Multiplicity can arise if there are
players who have more than one utility-maximizing choice. For example, in the
game of Figure 3a at node t2 both choices are optimal for Player 3. The selection
of choice (t2; z3) leads to the solution shown in Figure 3b, while the selection of
choice (t2; z4) leads to a di®erent solution, namely f(t0; t1); (t1; z2); (t2; z4)g.

De¯nition 3.3. A perfect information game is generic if no player is indi®erent
between any two terminal nodes, that is, if 8i 2 N; 8z; z0 2 Z if ui(z) = ui(z

0)
then z = z0:

Remark 1. In a generic game the backward induction algorithm yields a unique
solution.

We now show that a backward-induction solution is a prediction in the sense of
De¯nition 2.2. To do this we need a more precise de¯nition of backward-induction,
which, together with the proof of the following lemma, is given in the Appendix.

Lemma 3.4. Fix a perfect information game. Let ½BI be a backward induction
relation for it (cf. De¯nition A.3 in the Appendix) and Áp its transitive closure.
Then Áp is a prediction in the sense of De¯nition 2.2.

De¯nition 3.5. Given a perfect information game, a relation Áp on T is called a
backward induction prediction if it is the transitive closure of a backward-induction
relation for that game.

For every ¯nite perfect information game there is at least one backward-
induction prediction, although, as noted above, there may be more than one. How-
ever, in generic games (cf. De¯nition 3.3) there is a unique backward-induction
prediction.

Remark 2. It follows from De¯nitions A.3 (in the Appendix) and 3.5 that, if Áp

is a backward-induction prediction, then

(a) if t Áp t0 and t Áp t00 then either t0 = t00 or t0 Áp t00 or t00 Áp t0,

(b) for every decision node t 2 TnZ, there is a unique z 2 Z such that t Áp z.
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4. A characterization of backward induction

The relationship between an extensive form with perfect information and a perfect
information game is similar to the relationship between a frame and a model.
Lemma 3.2 showed that an extensive form with perfect information is a special
case of a BTA frame. To view a perfect information game as a model (as de¯ned
in Section 2) all we need to do is include in the set of sentences (or atomic
propositions) sentences of the form (ui = q) with i 2 N and q 2 Q, whose
intended interpretation is \player i's utility (or payo®) is q". We also need to add
the standard ordering of the rational numbers by means of sentences of the form
(q1 · q2) whose intended interpretation is \the rational number q1 is less than
or equal to the rational number q2". A game language is a language obtained as
explained in Section 2 from a set of sentences S that includes atomic propositions
of the form (ui = q) and (q1 · q2).

De¯nition 4.1. Fix a perfect information game and let F be the corresponding
BTA frame. A game model is a model based on F (cf. Section 2) obtained in a
game language by adding to F a valuation V : S ! 2T satisfying the following
properties:

² if p 2 S is of the form (q1 · q2) with q1; q2 2 Q then

V (p) = T if q1 · q2 and V (p) = ; otherwise

² if p 2 S is of the form (ui = q) then

V (p) = fz 2 Z : ui(z) = qg.

Thus if M is a game model then, 8t 2 T , M; t j= (q1 · q2) if q1 is less than or
equal to q2 and M; t j= :(q1 · q2) otherwise; furthermore, M; t j= (ui = q) if t is
a terminal node with ui(t) = q and M; t j= :(ui = q) if t is either a decision node
or a terminal node with ui(t) 6= q.13 The valuation of the other atomic formulae
and of the non-atomic formulae is as explained in Section 2.

Consider the following axiom scheme:

Fp(ui = q) ! ¤i (((ui = r) _ Fp(ui = r)) ! (r · q)) (ICo)

13Thus if t is a node whose successors include non-terminal nodes, then the formula Gp(ui = q)
is necessarily false at t, for every player i and for every number q.
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(ICo) says that if it is predictable (i.e. possible according to the prediction) that
player i's payo® will be q then, no matter what action he takes, if his payo® is
r, or it is predictable that it will be r, then r is not greater than q. Thus (ICo)
can be viewed as expressing a notion of internal consistency14 of prediction or
recommendation, in the sense that no player can increase his payo® by deviating
from the recommendation, using the recommendation itself to predict his future
payo® after the deviation.

The following proposition shows that axiom (ICo) characterizes the notion of
backward induction in generic games.

Proposition 4.2. Let G be a generic perfect information game, F the associated
BTA frame and Áp a prediction for F (cf. De¯nition 2.2). Let M be any game
model based on hF ; Ápi (cf. De¯nition 4.1). Then the following are equivalent:

(a) axiom (ICo) is valid in M.;
(b) Áp is the backward induction prediction (cf. De¯nition 3.5).15

Proof. First we show that if Áp is the backward induction prediction then
every instance of (ICo) is true at every t 2 T . If t is a terminal node, then
ft0 2 T : t Áp t0g = ; and therefore M; t j= :Fp(ui = q) for all i 2 N and q 2 Q:
Thus (ICo) is true at t. If t be a decision node and i 6= ¶(t) then Ri(t) = ; and
therefore M; t j= ¤iÁ for every formula Á; hence (ICo) is true at t. Thus we only
need to consider the case where t is a decision node and i = ¶(t). Suppose that
(ICo) is false at t. Then there are numbers q; r 2 Q such that

M; t j= Fp(ui = q) (4.1)

and M; t 2 ¤i (((ui = r) _ Fp(ui = r)) ! (r · q)), that is,

9t0 2 T : tRit
0 and M; t0 j= ((ui = r) _ Fp(ui = r)) ^ :(r · q)): (4.2)

14Hence the name IC. The subscript `o' stands for `optimistic' as will be explained later.
As noted in the introduction, the notion of internal consistency is due to von Neumann and
Morgenstern (1947) and is central to Joseph Greenberg's (1990) theory of social situations.

15Recall that in generic games there is a unique backward induction prediction. Note that the
statements \(ICo) is valid in a game model based on hF ; Ápi" and \(ICo) is valid in every game
model based on hF ; Ápi" are equivalent, since (ICo) is made up only of atomic propositions of
the form (ui = q) and (r ¸ q) and the valuations of di®erent models coincide on this class of
atomic propositions.
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By Remark 2 there is a unique z 2 Z such that t Áp z. By (4.1) ui(z) = q: Let t00

be the unique immediate successor of t on the Áp-path from t to z. By de¯nition
of Ri (cf. Lemma 3.2), the t0 of (4.2) is also an immediate successor of t. Let z0 be
the unique terminal node such that t0 Áp z0 (if t0 is a terminal node, let z0 = t0).
Then, by (4.2), ui(z

0) = r and r > q. Thus

ui(z
0) > ui(z): (4.3)

By De¯nition A.2 (in the Appendix), u
`(t00)
i (t00) = ui(z), u

`(t0)
i (t0) = ui(z

0) and

u
`(t00)
i (t00) ¸ u

`(t0)
i (t0), contradicting (4.3).

Next we show that if (ICo) is valid in M then Áp is the backward induction
prediction. First of all, by property (P.4) of De¯nition 2.2 (Áp subrelation of Á),
all predictions coincide when restricted to the set of level 0 (or terminal) nodes
(they are equal to the empty set). Thus, in particular, Áp restricted to T0 coincides
with the backward-induction prediction restricted to T0: Now we show that Áp

restricted to T1 (the set of level 1 nodes: cf. De¯nition A.1 in the Appendix)
coincides with the restriction of the backward-induction prediction to T1. Let
t̂ 2 T1 and let Ẑ = fz 2 Z : t̂ ½ zg. By Properties (P.4) and (P.6) of De¯nition
2.2 (Áp subrelation of Á, and Áp serial if Á is serial), Ẑ \ ft 2 T : t̂ Áp tg 6= ;.

Fix an arbitrary ẑ 2 Ẑ \ ft 2 T : t̂ Áp tg. Then, letting i = ¶(t̂) and q = ui(ẑ),

M; t̂ j= Fp(ui = q): (4.4)

Furthermore, it must be the case that

q ¸ ui(z); 8z 2 Ẑ: (4.5)

In fact, suppose that, for some z0 2 Ẑ, ui(z
0) = r > q: Then M; z0 j= (ui =

r) ^ :(r · q). Since t̂Riz
0, M; t̂ j= :¤i ((ui = r) _ Fp(ui = r) ! (r · q)). Thus,

by (4.4) (ICo) would be false at t̂, contrary to the hypothesis that (ICo) is valid in
M. Since the game is generic, if z 2 Ẑ is such that z 6= ẑ then, by (4.5), ui(z) < q;
it follows that ft 2 T : t̂ Áp tg = fẑg. Thus, restricted to T1, Áp coincides with
the backward induction prediction. Next we show that if Áp and the backward-

induction prediction coincide when restricted to
Sk

j=0 Tk for k ¸ 1, then they

coincide when restricted to Tk+1. Fix an arbitrary t̂ 2 Tk+1. By Property (P.6) of
De¯nition 2.2, 9t00 2 T such that t̂ Áp t00. If t00 is not a terminal node, let t0 be the
unique immediate successor of t̂ on the Á-path from t̂ to t00. Then, by Property
(P.7) of De¯nition 2.2, t̂ Áp t0. Clearly, `(t0) · k; hence, by our supposition that
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Áp coincides with the backward-induction prediction when restricted to
Sk

j=0 Tk,

there is a unique z0 2 Z such that t0 Áp z0. Let i = ¶(t̂) and q = ui(z
0): Then

M; t̂ j= Fp(ui = q): (4.6)

For every t 2 T such that t̂ ½ t, if t is not a terminal node let zt be the unique
terminal node such that t Áp zt (once again, uniqueness is guaranteed by our
supposition; if t is a terminal node, let zt = t). We want to show that

ui(zt0) ¸ ui(zt); 8t 2 T : t̂ ½ t (4.7)

Suppose not. Then there exists a ~t 2 T such that t̂ ½ ~t and ui(z~t) = r >
q = ui(zt0). Two cases are possible: (1) ~t 2 Z, or (2) ~t =2 Z. In case (1),
M; ~t j= (ui = r) ^ :(r · q);while in case (2) M; ~t j= Fp(ui = r) ^ :(r · q). Thus
in either case M; t̂ j= :¤i (((ui = r) _ Fp(ui = r)) ! (r · q)). Hence, by (4.6),
(ICo) is false at t̂, contradicting the hypothesis that (ICo) is valid in M. Since the
game is generic, it follows from (4.7) that fz 2 Z : t̂ Áp zg = fzt0g and, therefore,
if t is an immediate successor of t̂ and t̂ Áp t then t = t0. Thus the restriction
of Áp to Tk+1 coincides with the restriction to Tk+1 of the backward induction
prediction.

In non-generic games it is still true that if Áp is a backward induction pre-
diction then (ICo) is valid, since a backward induction prediction is such that the
predictable future of any node t is always a unique path (cf. Remark 2). However,
in non-generic games it is possible to satisfy (ICo) with a relation that includes
more than one path out of some nodes. This is illustrated in Figure 4, where (a)
and (b) are the only backward induction relations, while the relation illustrated
in (c) is not a backward-induction relation; however, it is easy to see that all three
validate (ICo) in every model based on this game.

When there is a multiplicity of predictable paths, the issue arises of how to
compare sets of predictable payo®s. Greenberg (1990) proposes two notions of
internal consistency (or stability). According to the notion of optimistic internal
consistency, a player will reject a recommendation x i® she can induce a position
where, among the recommendations made, there is one which she prefers to x.
That is, the player looks at the best possible outcome among those recommended
at the position to which she is contemplating a deviation. On the other hand,
according to the notion of conservative internal consistency, a player will reject
a recommendation x i® she can induce a position where every recommendation
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is better than x. That is, the player looks at the worst possible outcome among
those recommended at the position to which she is contemplating a deviation.
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(c)

The next proposition shows that axiom (IC o) captures the notion of optimistic
internal consistency. In order to characterize the alternative notion of conservative
internal consistency, we ¯rst introduce a short-hand notation:

G¸
p (ui = q)

def
= Fp(ui = q) ^ (Fp(ui = s) ! (q · s))

Thus G¸
p (ui = q) says that, according to the prediction, player i's payo® can be

exactly q and will be at least q, that is, his minimum payo® will be q. Thus, for
every player i and node t, G¸

p (ui = q) is true at t if and only if q = minfui(z) :
z 2 Z and t Áp zg. Consider now the following axiom:
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G¸
p (ui = q) ! ¤i

¡
((ui = r) _ G¸

p (ui = r)) ! (r · q)
¢

(ICc)

(ICc) says that if, according to the prediction, player i's payo® will be at least
q, then, no matter what action player i takes, if her payo® is r, or is predicted to
be at least r, then r is not greater than q. The following proposition shows that
(IC c) captures the notion of conservative internal consistency. Furthermore, in
generic games both (ICo) and (ICc) characterize backward induction.

Proposition 4.3. Let G be an arbitrary perfect information game, F the asso-
ciated BTA frame and Áp a prediction for F . Let M be any game model based
on hF ; Ápi. Then:

(a) (ICo) is valid in M i® , for every node t and every immediate successor t0

of t, maxfu¶(t)(z) : z 2 Z and t0 Áp zg · minfu¶(t)(z) : z 2 Z and t Áp zg if t0 is
a decision node and u¶(t)(t

0) · minfu¶(t)(z) : z 2 Z and t Áp zg if t0 is a terminal
node;

(b) (ICc) is valid in M i®, for every node t and every immediate successor t0

of t, minfu¶(t)(z) : z 2 Z and t0 Áp zg · minfu¶(t)(z) : z 2 Z and t Áp zg if t0 is
a decision node and u¶(t)(t

0) · minfu¶(t)(z) : z 2 Z and t Áp zg if t0 is a terminal
node;

(c) if the game is generic then the following are equivalent: (c.1) (ICo) is valid
in M, (c.2) (ICc) is valid in M and (c.3) Áp is the backward-induction prediction.

Proof. We only sketch the proof, since it follows directly from the de¯nitions
and the arguments used in the proof of Proposition 4.2. We shall concentrate
on the case where t0 is a decision node. Preliminaries: let q = minfu¶(t)(z) :
z 2 Z and t Áp zg, m = minfu¶(t)(z) : z 2 Z and t0 Áp zg, and M =
maxfu¶(t)(z) : z 2 Z and t0 Áp zg. Thus M; t j= Fp(u¶(t) = q), M; t0 j=
Fp(u¶(t) = m) ^ Fp(u¶(t) = M), M; t j= G¸

p (u¶(t) = q) and M; t0 j= G¸
p (u¶(t) = m).

For part (a), if M > q then, since (t; t0) 2 R¶(t), (ICo) is violated at t. For the
converse, ¯rst note that, by the de¯nition of prediction, the sets fz 2 Z : t Áp zg
and fz 2 Z : t0 Áp zg are non-empty; thus the numbers q and M are well-de¯ned.
Furthermore, (ICo) can be violated at t only if, for some immediate successor t0

of t, and for some v > q, M; t0 j= Fp(u¶(t) = v). But, since v · M , this would
require M > q.

For part (b), if m · q then (ICc) is satis¯ed at t. Conversely, if (ICc) is satis¯ed
at t, given that the sets fz 2 Z : t Áp zg and fz 2 Z : t0 Áp zg are non-empty
and thus the numbers q and m are well de¯ned, it must be that m · q.
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The equivalence of (c.1) and (c.3) was established in Proposition 4.2. The
equivalence of (c.2) and (c.3) follows from an argument similar to the one used in
the proof of Proposition 4.2.

To see the di®erence between (ICo) and (ICc), consider the game of Figure
4(c) modi¯ed so that u1(z4) = 4. Then the prediction shown by the dotted lines
validates (ICc) but not (ICo). In fact, by (a) of Proposition 4.3, since t2 is an
immediate successor of player 1's node t0, for (ICo) to be satis¯ed at t0 it must be
that maxfu1(z) : z 2 Z and t2 Áp zg · minfu1(z) : z 2 Z and t0 Áp zg; that is,
given the prediction shown by the dotted arrows, it must be that u1(z3) = u1(z4).

The following proposition characterizes the predictions that validate (ICo) in
arbitrary (that is, possibly non-generic) perfect information games. Part (a) of
the proposition states that validity of (ICo) implies that, for every decision node t,
if there are multiple predictable paths out of t, they all lead to the same payo® for
the player moving at t. The second part states that Áp is obtained by extending
a backward-induction relation subject to the constraint that, whenever an arrow
from a node t to one of its immediate successors is added, the player who moves at
t ¡ and all the players who move at predecessors t00 of t that satisfy the condition
t00 Áp t ¡ are indi®erent between the terminal nodes previously reachable from t
and any other terminal node that becomes reachable due to the addition.

Proposition 4.4. Let G be a perfect information game, F the corresponding
BTA frame and Áp a prediction for F . Let M be a game model based on hF ; Ápi
where axiom (ICo) is valid. Then,

(a) 8t 2 T; 8q1; q2 2 Q, if M; t j= Fp(u¶(t) = q1) ^ Fp(u¶(t) = q2) then q1 = q2;
(b) Áp is the transitive closure of a subrelation ½p of ½ satisfying the fol-

lowing properties: (b.1) there is a backward relation ½BI which is contained in
½p, and (b.2) if (t; t0) 2½p and (t; t0) =2½BI then, for every t00 such that either
t00 = t or t00 Áp t, u¶(t00)(z) = u¶(t00)(z

0), where z is the unique terminal node
½BI-reachable from t and z0 the unique terminal node ½BI-reachable from t0 (if
t0 is a terminal node, then z0 = t0).

Proof. Part (a) is a corollary of (a) of Proposition 4.2. We only sketch the proof
of part (b). Starting from a backward-induction relation (which, by Proposition
4.2, validates (ICo)), by part (a) one can extend it without violating (ICo) only
by adding paths that leave all the players involved indi®erent between the ter-
minal nodes that become reachable due to the addition and the terminal nodes
previously reachable.
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5. Conclusion

The logical foundations of game-theoretic solution concepts have so far been de-
veloped within the con¯nes of epistemic logic. The purpose of this paper was to
show that a di®erent branch of modal logic, namely temporal logic, can o®er new
insights into the logic of solution concepts. We proposed to view the solution of
a game as a complete prediction about future play. After having extended the
branching time framework by adding agents and by de¯ning the notion of pre-
diction, we showed that perfect information games are a special case of extended
branching time frames and that the backward-induction solution can be viewed
as a prediction. We provided a syntactic characterization of backward induction
in terms of the property of internal consistency of prediction and characterized
the two notions of optimistic and conservative internal consistency.

The analysis in this paper was con¯ned to perfect information games. In future
work we hope to extend this approach to general games in extensive form.

A. APPENDIX

De¯nition A.1. Given a ¯nite perfect information game, for k ¸ 0 de¯ne the
set Tk of level k nodes recursively as follows:

(1) T0 = Z (that is, level 0 nodes are all and only the terminal nodes),
(2) for k ¸ 1, t 2 Tk i® (a) t 2 TnZ, (b) every immediate successor of t is a

node of level not greater than k ¡ 1, and (c) at least one immediate successor of
t is of level k ¡ 1.

Figure 5

level 0

level 0

level 0 level 0 level 0

level 0

level 1

level 1
level 2

level 4

level 3
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We denote by `(t) the level of node t (thus t 2 T`(t)). Note that a node t is
of level k if and only if k is the length of the maximal path from t to a terminal
node, as illustrated in Figure 5.

De¯nition A.2. Given a ¯nite perfect information game, de¯ne, for k ¸ 1 and
i 2 N , binary relations ½k

BI on T and functions uk
i : Tk ! Q recursively as

follows:

² de¯nition of ½1
BI :

(1) if t ½1
BI t0 then (a) t 2 T1 (that is, t is a level-1 node) and t ½ t0, (b)

u¶(t)(t
0) ¸ u¶(t)(t

00) for all t00 such that t ½ t00, (c) if t ½1
BI t0 and t ½1

BI t00

then t0 = t00 and

(2) t ½1
BI t0 for some t0;16

² de¯nition of u1
i : T1 ! Q: u1

i (t) = u0
i (t

0) where u0
i = ui and t0 is the unique

node such that t ½1
BI t0;17

² de¯nition of ½k
BI for k > 1:

(1) if t ½k
BI t0 then (a) t 2 Tk (that is, t is a level-k node) and t ½ t0, (b)

u
`(t0)
¶(t) (t0) ¸ u

`(t00)
¶(t) (t00) for all t00 such that t ½ t00, (c) if t ½k

BI t0 and t ½k
BI t00

then t0 = t00 and

(2) t ½k
BI t0 for some t0;

² de¯nition of uk
i : Tk ! Q for k > 1: uk

i (t) = u
`(t0)
i (t0) where t0 is the unique

node such that t ½k
BI t0.

For the example of Figure 3b above, the following satisfy De¯nition A.1:
½1

BI= f(t1; z2); (t2; z3)g ; ½2
BI= f(t0; t2)g, (u1

1(t2); u1
2(t2); u1

3(t2)) = (2; 0; 1),
(u1

1(t1); u1
2(t1); u1

3(t1)) = (1; 1; 2), (u2
1(t0); u2

2(t0); u2
3(t0)) = (2; 0; 1). Note that there

may be several relations ½k
BI and functions uk

i that satisfy De¯nition A.1.

16Thus ½1
BI mimics the ¯rst step of the backward induction algorithm: for every \last decision

node" t, ½1
BI associates with t a unique immediate successor t0 which maximizes the payo® of

the player assigned to node t:
17Thus, for every player i 2 N , u1

i associates with a level-1 decision node t the payo® associated
with the terminal node t0 selected by ½1

BI . This de¯nition corresponds to the step in the
backward-induction algorithm of pruning the tree and making t a terminal node with the payo®
vector associated with the terminal node that follows the choice selected at t.
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De¯nition A.3. Given a ¯nite perfect information game

T; ½; N; ¶; fuigi2N

®
a

binary relation ½BI on T is called a backward induction relation if

½BI =

`(t0)[
k=1

½k
BI

where the ½k
BI are relations obtained according to De¯nition A.2.18

Thus, for the example of Figure 3b, the following relation satis¯es De¯nition
A.3: ½BI= f(t0; t2); (t1; z2); (t2; z3)g. Note that a given perfect information game

might have more than one backward-induction relation. For example, for the
game of Figure 3a, one backward induction relation is the one just described,
which is illustrated in Figure 3b, and a di®erent one is f(t0; t1); (t1; z2); (t2; z4)g.

Proof of Lemma 3.4. We need to show that Áp satis¯es properties (P.4)-
(P.7) of De¯nition 2.2. First of all, it is clear from De¯nition A.2 that Áp is a
subrelation of Á (the transitive closure of ½: see Lemma 3.2). By construction,
Áp is transitive. It is easy to see from De¯nition A.2 that t is such that there is
no t0 with t Áp t0 only if and only if t is a terminal node; thus property (P.6) is
satis¯ed. Finally, if t1 Áp t3 and t1 Á t2 and t2 Á t3 then: (1) by de¯nition of
Á, there is a ½-path from t1 to t3 through t2, (2) by de¯nition of Áp, there is a
½BI-path from t1 to t3, which, since ½BI is a subrelation of ½, is also a ½-path
from t1 to t3. By de¯nition of tree, the ½-path from t1 to t3 is unique; hence the
½BI-path from t1 to t3 goes through t2 . Thus, by de¯nition of Áp, we have that
t1 Áp t2 and t2 Áp t3, that is, property (P.7) is satis¯ed.
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